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ABSTRACT 

 Human telomerase is a nuclear ribonucleoprotein enzyme complex that catalyzes the 

synthesis and extension of telomeric DNA. This enzyme is highly expressed and active in 

most malignant tumors while it is usually not or transiently detectable in normal somatic cells, 

suggesting that it plays an important role in cellular immortalization and tumorigenesis. As 

most leukemic cells are generally telomerase-positive and have often shortened telomeres, 

our understanding of how telomerase is deregulated in these diseases could help to define 

novel therapies targeting the telomere/telomerase complex. Nonetheless, considering that 

normal hematopoietic stem cells and some of their progeny do express a functional 

telomerase, it is tempting to consider such an activity in leukemias as a sustained stemness 

feature and important to understand how telomere length and telomerase activity are 

regulated in the various forms of leukemias. 
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1. Introduction 

 Telomeres [1] are nucleoprotein structures composed of tandem arrays of telomeric 

repeats (5'-TTAGGG-3'). They preserve genome integrity and prevent chromosome ends 

from being recognized as double-strand breaks avoiding the activation of DNA damage 

pathways that result in senescence and cell death. Telomeres of human somatic cells 

shorten gradually during successive cycles of cell division. This shortening leads to 

chromosomal instability and senescence.  

 In contrast to most somatic cells, stem cells, including hematopoietic stem cells 

(HSCs) and some peripheral blood cells have a significant proliferative capacity that requires 

telomere length maintenance throughout many divisions. It is achieved in part by the activity 

of a specialized reverse transcriptase named telomerase which is thought to play an 

important role in self-renewal of HSCs [2]. However, despite telomerase activity, telomere 

shortening is not prevented but delayed suggesting that HSCs lack sufficient telomerase 

activity to completely prevent telomere loss [3]. Because extinguished telomerase expression 

is a constant feature of functionally mature cells, the question raised by recent works is 

whether sustained telomerase activity has to be considered as integral feature of stemness. 

This question is central for cancer cell therapy, but also when considering engineered 

somatic cell for cell therapy and tissue repair. 

 Tumor cells including leukemic cells take on properties of undifferentiated or stem 

cells. These properties result from acquired genetic/epigenetic defects in signaling pathways, 

making physiological access to maturation, senescence or apoptotic program impossible. 

Tumor cells, as stem cells, are endowed with self-renewal capacity and have lost the 

possibility to express a physiological mature and functional phenotype. The current 

knowledge on telomere and telomerase biology in cancer cells indicates that beside the 

acquisition of genetic defects, activation of telomerase in these cells constitutes an essential 

parameter in tumor progression [4-10]. Thus, telomerase/telomere regulation represents a 

promising target for anticancer drug discovery (reviewed in [11]). 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 4

Because the levels of telomerase activity vary in normal hematopoietic cells 

according to their state of differentiation and activation, the study of telomerase deregulation 

in hematological malignancies has been a difficult task. The difficulties come from the 

complex telomerase machinery and its physiological regulation and the multiple cases of 

regulation evidenced by the distinct types of hematopoietic diseases 

 This paper will first briefly review our current knowledge on telomerase machinery 

together with an overview of the hierarchy of regulatory mechanisms encountered, and 

second, analyze the deregulation of telomerase in hematological cancers, in order to clarify 

the feasibility of transferring basic research breakthrough to clinic cases for telomerase-

targeted therapeutic strategies. 

 

2. Mechanisms of regulation of telomerase activity 

 Telomerase is a ribonucleoprotein complex that extends chromosomal ends by the 

addition of single-stranded TTAGGG repeats [5, 8]. Telomerase consists of two components, 

a protein reverse transcriptase (hTERT) and a RNA component (hTR), which is used as a 

template for the elongation of telomeres [3, 12, 13]. hTR belongs to the family of small 

nucleolar RNAs and contains a H/ACA domain essential for telomerase activity, hTR nuclear 

accumulation and maturation. Since hTR expression shows a broad tissue distribution, 

telomerase activity is generally well correlated with hTERT expression suggesting that 

hTERT is a key regulator of this enzyme. However, it cannot be excluded that the level of 

hTR can be limiting. Indeed, a recent study showed that overexpression of hTR together with 

hTERT in cancer cell lines and primary human fibroblasts induced telomerase activity and 

telomere length elongation to a higher extent than overexpression of hTERT alone showing 

that hTR may be limiting in vivo [14]. Regulation of telomerase operates at several biological 

levels: transcription, splicing, hTR and hTERT modifications, enzyme trafficking and 

subcellular localization of each component, assembly in an active ribonucleoprotein, 

accessibility and action on telomeres [15]. Not only has telomerase a role in the prevention of 

senescence in highly proliferative cells by compensating for the loss of telomeric ends, which 
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occurs at each cycle of replication, but it also presents non conventional roles including 

capping and anti-apoptotic functions, activation of pro-proliferative signaling pathways, 

modulation of specification of hematopoietic stem/progenitor cells during vertebrate 

development [16, 17]. Furthermore, emerging evidence indicates that beside controlling 

replicative lifespan and cell proliferation, telomerase controls cell differentiation through 

signaling pathways that remain to be unraveled [18-22].  Although most of these 

extracurricular activities of telomerase have been reported to be independent of its activity on 

telomere length maintenance, a definitive demonstration is still lacking. Indeed, as in most of 

these studies only the mean length of telomere was measured, an activity of telomerase on 

critically short telomeres cannot be excluded.  

Telomere structure and functions rely on two different types of complexes, one 

involves in DNA elongation [23], including hTR, hTERT and dyskerin and one involves in 

capping, including the shelterin complex [24] (TRF1, TRF2, TIN2, hRAP1, TPP1, POT1). In 

addition to shelterin, several DNA repair proteins present at telomeres play a direct role in 

regulating telomere length and protecting telomeres indicating an interplay between telomere 

function and DNA repair [25]. Removal of telomeric proteins induces a de-protection of 

telomeric DNA and dysfunction of telomeres leading to their rapid shortening and 

consequently to cell death. 

Regulation of telomerase activity takes place at both telomerase protein and gene 

levels. The hTERT gene comprises about 35kb DNA and codes for an mRNA comprising 16 

exons and 15 introns [26-28]. As activation of hTERT has been shown to be one important 

limiting step for the induction of telomerase activity, much effort has been focused on the 

understanding of the transcription regulation of hTERT. However increasing data indicate 

that regulation of telomerase is a complex process involving many steps. 

2.1. Epigenetic regulation of hTERT 

 The hTERT promoter contains a cluster of CpG sites suggesting its regulation to 

involve DNA methylation. Some groups showed the association between the methylation 

status of the hTERT promoter with gene silencing [20, 29, 30]. However, other reports 
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indicated no significant correlation [29, 31]. Furthermore, contradictory reports have 

mentioned an increased DNA methylation in hTERT promoter in hTERT-positive cancer cells 

while lack of methylation was found in normal-negative cells [32]. These apparent 

discrepancies have been recently solved [33, 34]. In several cancer cell lines and tissues, 

careful analysis of hTERT methylation patterns has demonstrated a short region of the CpG 

island located in the hTERT core promoter that remains unmethylated despite highly 

methylated border regions [33]. Chromatin immunoprecipitation assays have shown that 

active chromatin marks in this region allow for the expression of hTERT [34] and hTERT 

methylation in the border region prevents the binding of negatively-acting transcription 

factors such as CTCF [35]. Recently MBD2 (MethylCpG binding domain protein2) has been 

shown to be directly involved in transcriptional repression in hTERT-methylated telomerase 

positive cells [36]. Regulation of hTERT transcription may also involve histone 

acetylation/deacetylation. Trichostatin A, which inhibits histone deacetylase, activates hTERT 

gene expression in multiple cell types [37, 38]. However, Trichostatin A may also activate 

additional genes that directly or indirectly derepress hTERT. 

2.2. Transcriptional regulation of hTERT 

  The transcription of hTERT gene has been suggested to be the key determinant in 

the regulation of telomerase activity. Transient expression assays using the 3.0 kb of the 

flanking sequences of the hTERT gene revealed that the transcriptional activity was up-

regulated specifically in cancer cells, while it was silent in most normal cells [28]. Deletion 

analysis of the promoter identified the proximal 260 bp region as the core promoter essential 

for cancer-specific transcriptional activation [26-28].       

 A number of binding sites for transcription factors (activators and repressors) have 

been identified in the hTERT core promoter (reviewed in [39]): two E-boxes (CACGTG 

located at -165 and +44 from the transcription start site) which are binding sites for basic-

helix-loop-helix zipper transcription factors encoded by the Myc family oncogenes (Myc/Mad-

1/Max); at least five GC-boxes (GGGCGG), which are binding sites for zinc finger 

transcription factor Sp1, and various cis-regulatory element that may recruit various factors 
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regulating hTERT transcription (Table 1). However, the participation of many of these factors 

in hTERT regulation is often deduced from studies based on overexpression and/or gene 

reporter experiments, which do not mimic physiological situation.   

 It has been proposed that several human viruses could deregulate telomerase 

transcription acting in trans as transcription factors or in cis through viral integration 

(reviewed in [40]). Indeed, the integration of hepatitis B virus, papilloma virus and more 

recently avian leucosis virus (ALV) in a small number of liver, cervical tumors and B cell 

lymphomas have been reported suggesting that proviral integration in TERT may be of 

general importance in oncogenesis [41-43]. 

2.3. Post-transcriptional regulation of hTERT 

  Transcriptional activation of hTERT gene is not necessary the rate-limiting step to 

generate a functional telomerase. Another regulatory step in controlling telomerase function 

in cells could result from the differential splicing of hTERT mRNA. Although the regulatory 

mechanisms underlying these alternative splicing events remain unknown, several groups 

have found that hTERT mRNA can exist in a variety of splice forms [44-49]. These forms 

result from complete or partial deletions of exons, or insertion of parts of introns. Alternative 

splicing could therefore represents a means for cells to modulate telomerase activity by 

switching their hTERT spliced variant expression profiles during development and in certain 

tumors [50-57]. Furthermore, some mechanisms of in vitro resistance to anti-telomerase 

strategies could be explained by modifications in the profile of expression of these variants 

[58]. In the case of complete or partial deletions of exons, hTERT RNA splicing leads to the 

elimination of important motifs for the reverse transcriptase activity. These variants should 

then generate truncated protein isoforms deprived of any active role in the maintenance of 

telomere length. Furthermore, it has been proposed that these splicing products, by 

competitive interaction with components of the telomerase complex may act as "dominant-

negative" isoforms: so far, a dominant-negative function has been described for the α-

isoform only [44, 48]. However, it has not been investigated whether some of these variants 

harbor other functions distinct from telomere maintenance. Beyond what should be 
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considered today as interesting speculation, the decisive question is to clearly prove that 

these multiple splice variants isoforms are indeed translated into functional proteins. Today 

there are only scarce evidences for that, simply because appropriate experimental tools to go 

further are not yet available (i.e. variant-inducible cell lines, splice variant-specific antibodies, 

in cellulo functional assays for a traceable biological response that develops over weeks…). 

To face a conceptually important question, investigators are often technically powerless. The 

answer to this key question will need experimental approaches starting from ground with 

relevant cellular models. 

2.4. Post-translational regulation of hTERT 

  That it has been demonstrated the presence of apparently full-length hTERT mRNA 

in samples that lack telomerase activity [59] suggests post-translational regulation of hTERT. 

Modulation of telomerase activity has been shown in response to a variety of kinase and 

phosphatase inhibitors [60-63] suggesting telomerase regulation by phosphorylation at 

specific serine/threonine or tyrosine residues. It remains unclear, however, whether this 

modulation occurs directly at the level of hTERT phosphorylation itself or alters indirectly 

telomerase activity. Akt kinase was reported to enhance telomerase activity through 

phosphorylation of hTERT [60] at Ser 824, whereas c-Abl protein kinase inhibits telomerase 

activity by tyrosine phosphorylation after interacting with c-Abl SH3 binding domain located in 

hTERT (amino acid residues 308-316) [61].  

2.5. Cellular localization of telomerase 

  Another important level of telomerase activity regulation  is the proper assembly of 

hTERT with other telomerase components and proper localization of this complex to at least 

one of its sites of action, the telomeres [64, 65]. The assembly of active telomerase involves 

the stabilization and transcriptional upregulation of hTR and its functional association with 

hTERT. Processing and stability of hTR require binding of nucleolar RNA binding proteins 

(H/ACA proteins) such as dyskerin, NHP2, NOP10, and GAR1 to the H/ACA motif [66]. 

Subcellular transport of hTERT has also important implications in its functional regulations. 

hTERT has been localized in the nucleus [67]. Yang et al observed that hTERT protein could 
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either be concentrated or excluded of the nucleolus within the nucleus [68]. In another study, 

both TERT and TR have been found to localize to nucleolus, leading to the suggestion of 

nucleolus as the site for telomerase ribonucleoprotein complex biogenesis in human cells 

[66]. Furthermore, it was reported that hTERT underwent a dynamic subnuclear shuttling 

between nucleolus and nucleoplasm that was dependent on the cell cycle, DNA damage or 

transformation [69-72]. However, this result has been recently challenged by studies based 

on mutational inactivation of a nucleolar-targeting signal that showed that although TERT 

mutant did not localize in the nucleolus, it still had telomerase activity, could maintain 

telomere length and did not affect cellular proliferation [73]. This study suggests that 

nucleolar localization is not related to telomerase canonical functions.  

hTR was recently shown to accumulate in Cajal bodies, subnuclear structures 

implicated in ribonucleoprotein maturation [70, 74]. This localization is specific to cancer cells 

where telomerase is active and seems dependent on hTERT although this point remains 

controversial [72, 74]. Furthermore, during S phase both hTR and hTERT colocalize within 

Cajal bodies that are associated with telomeres [71, 75]. During the other phases of the cell 

cycle, hTERT is not detected in the Cajal bodies. These studies are very important as they 

suggested that Cajal bodies, serving as sites of telomerase maturation and assembly to 

deliver active telomerase to telomeres might be a key factor in telomere length homeostasis. 

The assembly of the telomerase holoenzyme is controlled by chaperone proteins helping the 

formation of active enzyme [76]. The Hsp90 and p23 proteins remain permanently 

associated to the telomerase complex affecting its activity.  

Beside this nuclear localization of telomerase, it has recently been demonstrated that 

the N terminus of hTERT has a mitochondrial leader sequence and that active telomerase 

can be detected in mitochondrial extracts of hTERT overexpressing cells. Therefore 

telomerase has been added to a growing list of proteins that can shuttle between the nucleus 

and different subcellular compartments including mitochondria [77, 78]. However the 

biological significance of hTERT translocation into mitochondria is still elusive and 

controversial.  
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The above observations indicate that further investigation is still required to explore 

the importance of hTERT cellular localization. Moreover, cautious has to be taken regarding 

the already published results as some of them were mainly deduced from experiments using 

ectopic expression of hTERT while in others direct detection of hTERT has been performed 

with antibodies with low specificity if any. Indeed, it has been recently unambiguously 

demonstrated that one of the most frequently used anti-hTERT antibody, the NCL-hTERT 

from Novocastra antibody in fact recognized nucleolin rather than telomerase [79]. The 

conclusions previously drawn from studies using this antibody began to be reconsidered [53, 

80]. 

2.6. Telomerase regulation by telomeric proteins and RNAs 

 Mammalian telomeres have been observed in a special conformation, called t-loop in 

which the telomere terminus is unlikely to be accessible to telomerase. This structure is 

associated with telomeric binding proteins including those of the shelterin complex which 

play an important role in the regulation of telomere length as already mentioned. TRF1 and 

TRF2 directly bind to the double-strand telomere repeats. TRF1 is a negative regulator of 

telomere length [81] and TFR2 is essential for telomere protection and promotion of the t-

loop [82]. POT1 which binds the single-stranded telomeric DNA transduces the information 

sensed by TRF1 to telomerase resulting in elongation of critically short telomere [83]. POT1 

and TPP1 can form a complex with telomeric DNA that has recently been shown to increase 

the activity and processivity of telomerase [84]. It has also been shown that PARP-1 

modulates telomerase activity by altering poly-ADP-ribosylation of hTERT and/or the 

expression of telomerase associated protein1 (TEP1/TP1) subunit of telomerase holoenzyme 

[85]. All these observations show that having an understanding of how telomeric proteins 

levels vary in tumors is fundamental for clinical studies and may help to predict the success 

of treatment with telomere-targeted agents. Finally, the newly discovered telomeric RNAs 

transcribed from telomeric repeats by DNA-dependent RNA polymerase II, TelRNAs or 

TERRA [86, 87], block the activity of telomerase in vitro, possibly through pairing with the 
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template region of hTR, suggesting that TelRNAs may regulate telomerase activity at 

chromosome ends.  

  

3. Deregulation of telomerase in hematological cancers 

 Several factors are important to consider for interpretation of telomerase expression 

and activity levels in leukemias such as variability among individuals and heterogeneity at the 

level of the cell populations that are analyzed. The role and the mechanisms of reactivation 

of telomerase in leukemic development remain currently under debate. Telomerase positivity 

may occur by expansion of a pre-existing telomerase-competent clone or alternatively by 

upregulation in previously telomerase-negative cells as a consequence of genetic instability 

or acquired genetic defects.  

When considering hematological cancers one has first to remind the key feature of 

the developmental process of normal hemopoiesis: a stem cell-based system, where 

hemopoetic stem cells have an extraordinary capacity of self-renewal. However, this 

potential is fully exploited during pathological situations, when the stem cell reservoir has to 

be rapidly mobilized according to the demand of a fast differentiating cell compartment. The 

steady daily hemopoiesis is in charge of committed progenitors whose cell fate is aimed at 

the production of short-life mature cells. This differentiating cell compartment is exceptionally 

rich in cell phenotypes which when matured have to achieve multiple biological functions 

(anti-bacterial, anti-viral, anti-parasite immune responses, survey of the production of red 

blood cells, phagocytes involved in cell defense and tissue clearance of apoptotic cells, 

coagulation, etc…). Each of these mature cell types exhibits a specific physiology, and 

requires a specific homeostatic control of the functional population. The gain of specialized 

functions is acquired at the expense of the proliferation potential. Senescence and 

elimination of injured or aged cells by phagocytes, and programmed cell death altogether 

contribute to avoid potentially oncogenic events to be settled by the proliferation bursts 

necessary to the clonal production of specialized hematopoietic cells. It is highly intriguing 

that telomerase whose expression is observed in hematopoietic stem cells, progressively 
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decreases along differentiation of hematopoietic progenitor cells and is annihilated in short-

life mature cells. The intimate link between telomerase expression in the hemopoietic system 

and the hierarchy cells with distinct self-renewal potential observed during the developmental 

process, led to consider telomerase expression and function as a matter of stemness. 

Recent data suggest that telomere dysfunction can induce environmental defects that 

impair the function and engraftment of hematopoietic stem and progenitor cells [88, 89]. This 

finding has implications for therapy as telomere dysfunction could limit the therapeutic 

potential of transplanted cells and also could contribute to the increase cancer initiation that 

has been observed in aging telomere-dysfunctional mice [90]. Indeed, the loss of telomere 

functions resulting from either telomerase disorder or loss of hematopoietic stem cells can 

provide selection for abnormal cells and result in malignant progression facilitated by 

genomic instability due to uncapped telomeres. 

 Without maintenance of telomerase activity and thus telomere maintenance, the 

oncogenic transformation of either myeloid stem cells (ref. CML) or committed progenitors 

(ref. AML), would have little probability to settle as an hematopoietic cancer. 

Therefore, the questions as to whether 1) telomerase expression and dysregulation take part 

in the etiology of hematopoietic cancers, 2) telomerase downregulation mechanism 

constitutes a protection against oncogenic events, and 3) telomerase can be a therapeutic 

target, cannot be eluded. These questions can only be considered, case by case, within each 

pathology context. 

 3.1. Myelodysplasia and Acute Leukemia 

  Several studies have investigated telomerase activity and telomere length in total 

mononuclear cell populations from patients with Myelodysplasia (MDS) and Acute Myeloid 

Leukemia (AML) [91, 92]. Hematopoietic cells from MDS patients express low level of 

telomerase [93]. This means that telomere erosion due to rapid cell division may not be 

prevented in most the MDS cells. This loss of telomere stability may induce further genetic 

abnormalities leading to other mutations and disease progression. MDS is a preleukemic 

state with approximately 25% of patients progressing into acute myeloid leukemia. Incidence 
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of leukemic transformation is significantly higher in MDS patients with shortened telomeres. 

Therefore, short telomeres without elevated telomerase activity may be a hallmark of MDS 

cells and of importance in the pathogenesis of the disease. AML with multiple chromosome 

aberrations are characterized by critically short telomeres [94, 95] but high telomerase 

activity. A recent study performed on 40 patients during the course of acute promyelocytic 

leukemia (APL) disease showed that shortened telomere length and elevated telomerase 

activity correlate with disease progression and relapse, and that this parameter may serve as 

prognostic factors for a subset of APL patients with more aggressive disease who may not 

respond favorably to therapy [96]. 

3.2. Chronic Myeloid Leukemia 

  Chronic myeloid leukemia (CML), a myeloid stem cell disease, represents a model 

disorder to study the role of telomere/telomerase biology for disease progression in a 

malignant stem cell disorder. This disease is a clonal myeloproliferative disorder 

characterized by the Philadelphia (Ph) chromosome, due to a reciprocal translocation 

involving the long arms of chromosomes 9 and 22. This translocation generates a fusion 

gene, BCR-ABL, which encodes a chimeric p210BCR/ABL protein tyrosine kinase that is 

necessary and sufficient for cell transformation [97]. CML is characterized by distinct clinical 

phases: a relatively stable chronic phase (CP) that can last for many years, in which mature 

granulocytes are still produced even though patients have an increased number of myeloid 

progenitor cells in the peripheral blood, followed by an accelerated phase (AP). The AP, 

associated with increased genetic instability and acquisition of additional cytogenetic 

abnormalities, is followed by a blast crisis (BC), in which hematopoietic differentiation has 

become arrested. The availability of imatinib mesylate, a BCR-ABL tyrosine kinase inhibitor, 

has revolutionized the treatment of CML [98].  

T. Brummendorf et al found that telomeres in Ph(+) cells are significantly shorter than 

in Ph(-) cells from the same individuals [99]. In line with this finding, cytogenetic and 

molecular response after imatinib therapy are correlated with an increase in mean telomere 

length [100]. 
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Several published studies demonstrate changes of telomere length and telomerase 

activity between CP and BC. Telomerase activity has been shown to increase in the bone 

marrow cells of patients with CML during disease progression [101-104]. Telomere length is 

generally shorter in AP and BC compared with serial samples taken at CP. Since the levels 

of telomerase activity is elevated but not enough to maintain telomere length, telomere length 

reflects a proliferative history of leukemia cells closely related to disease severity. 

Furthermore, it has been shown that telomere shortening observed at the time of diagnosis 

significantly influences the time of progression to AP [99, 105]. 

 However, in other studies, it has been shown that hTERT is downregulated in the 

purified CML CD34+ cells relative to the normal CD34+ cell population and that gene 

expression levels of hTERT progressively decrease with disease evolution [106]. Since 

previous studies have been performed mostly on unfractionated bone marrow samples, this 

discrepancy might simply reflect the differences in the number of immature cells present in 

the sample: mononuclear fraction in BC CML contains higher numbers of blast cells than 

mononuclear fraction from normal individuals or CP CML patients. In support of these results 

Drummond et al. showed a lack of overexpression of hTERT as well as reduction of hTR 

expression levels in CD34+ cells of CP patients compared to controls [52]. These results 

suggest that the increase in telomerase activity observed in patients might actually only 

reflect the increased proportion of cycling cells in bone marrow [52] and not a genuine 

increase in telomerase activity. However, it has to be kept in mind that the CD34+ cells, 

immuno-selected strictly on expression of this marker, are not identical in all biological 

aspects in patient and control patients. The link between telomerase expression and the 

progenitor status might prove more subtle than initially thought. Finally, altered mRNA 

splicing appeared to play a significant role in determining functional hTERT levels and 

telomere maintenance during the CP of CML and may influence the disease progression [52] 

but this issue has to be analyzed in consideration of the difficulties linked to approach the 

biology of hTERT splice variant isoforms, as discussed above. 

3.3.T-cell leukemia/lymphoma 
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  The oncogenic human retrovirus HTLV-1 (human T-cell leukemia virus type I) has 

been identified as the etiologic agent of adult T-cell leukemia/lymphoma (ATLL), a 

lymphoproliferative disorder of infected CD4+ T-cells. Several lines of evidence established 

that HTLV-1 Tax protein play a central role in the conversion of normal T cell to a leukemic 

cell. Similar to the pattern seen in most leukemia, telomeres are short in HTLV-1 infected 

cells despite the presence of strong telomerase activity [107-110]. The reactivation of 

telomerase seems to be a key event in development and progression of ATLL. High 

telomerase activity and shortened telomere length were associated with poorer prognosis, 

indicating that these parameters may be useful markers for predicting the course of disease 

[110]. 

 The effect of Tax protein on expression of telomerase activity in human cells remains 

controversial. One study suggested that the HTLV-1 encoded Tax protein had a negative 

effect on hTERT promoter reporter vector in transient assays [111] even though this 

observation is difficult to reconcile with the capacity of this protein to immortalize T-cells. 

However, this repression was observed when Tax-expressing cells were subjected to 

mitogenic stimulation. This result has been challenged by recent data indicating, in contrast, 

that in the absence of mitogenic stimulation, Tax stimulates the endogenous hTERT 

promoter through the nuclear factor κB (NF-κB) signaling pathway mediated by Sp1 and c-

Myc [112]. This discrepancy can be explained by differences in the cell systems used but 

also by a cell cycle dependent effect of Tax on hTERT expression. Indeed, a recent paper 

showed that Tax activates hTERT promoter only in quiescent T-cells and not in growing T-

cells [113]. Recently, other alternative mechanisms for telomerase activation independent of 

the viral Tax protein have been identified [40, 114].  One involves the HBZ (HTLV-1, bZIP 

factor) identified in ATLL cells that can be responsible for the increase of hTERT transcription 

during late stages of leukemogenesis. The other one is dependent on the presence of 

interleukin-2 (IL-2) and involves the PI3K/Akt pathway. Furthermore, it has been 

demonstrated that IL-2 signaling was associated with PI3K dependent/Akt independent 

transcriptional up regulation of endogenous hTERT promoter. The activation of PI3K 
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pathway mediated cytoplasmic retention of the Wilms tumor (WT1) protein, which strongly 

suppressed hTERT promoter. This model provides an explanation for the elevated 

telomerase activity in IL-2 dependent cells and ATLL patient samples even in the absence of 

the HTLV1-Tax protein. It has been reported that telomere lengths were significantly shorter 

in ATLL cells, despite expressing high telomerase activity, compared to non infected cell 

isolated from the same patients [108]. This shortening of telomeres has been associated with 

an increased expression of telomere binding proteins TRF1, TRF2 and TIN2 which may 

increase genetic instability and tumor progression. These results suggest that these genes 

could constitute potential target for future ATLL therapy. 

3.4. B-cell malignancies 

B-cell chronic lymphocytic leukemia (B-CLL) results from the progressive 

accumulation of a leukemia clone [115]. The identification of reliable prognostic markers is 

essential in this leukemia, which is clinically heterogeneous. Many reports provide evidence 

that telomere length as well as telomerase activity exerts a strong impact on the survival of 

B-CLL patients. A low telomerase activity is observed at disease onset [116] and increased 

activity in advanced stages and bad prognosis groups [117]. Telomeres are shorter in B-CLL 

cells versus normal B cells and especially short in patients with bad prognosis. These 

observations make that telomerase activity and telomere length can be used as new 

prognostic markers in this disease. A recent transcriptome analysis of the telomere 

components, the shelterin proteins and multifactorial proteins involved in telomere 

maintenance shows both telomerase downregulation and changes in telomeric protein 

compositions in peripheral B cells from 42-B-CLL patients. However these changes have to 

be confirmed at the protein level [118]. 

 A relevant role of Epstein-Barr virus (EBV) in the pathogenesis of B-cell malignancies, 

including post-transplant lymphoproliferative disorders and immunoblastic lymphoma, is 

strongly suggested. Transformation of primary B-lymphocytes by EBV requires the 

expression of several latent viral proteins that include six nuclear antigens (EBNAs) and 

three latent membrane proteins (LMP1, LMP2A, LMP2B). Among them LMP1 is considered 
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as the strongest oncoprotein, being essential for B cells immortalization. It has been 

demonstrated that activation of hTERT was associated with the progressive increase of 

LMP1 expression and inhibition of viral lytic replication [119] favoring the induction and 

latency in B lymphocytes. The contribution of hTERT to EBV-driven B cell immortalization 

resulted not only from preventing telomere erosion but also from playing a crucial role in the 

establishment and maintenance of a latent infection. Although the molecular mechanisms 

underlying the interplay between EBV and hTERT need further investigation, these results 

support the notion that hTERT may constitute a relevant therapeutic target for EBV-

associated B cell lymphomas. 

             

4. Antitelomerase strategies for leukemia 

In most hematological cancers, telomere lengths are generally shortened and 

telomerase deregulated. These observations are indications that telomere length and 

telomerase expression and activity can serve as molecular markers of the clinical 

progression and prognosis of most leukemia. Furthermore, they raise the possibility that anti-

telomerase strategies may provide novel approaches in the treatment of leukemia.  

 Since telomerase and telomere maintenance play a key role in hematological 

malignancies, several approaches can be developed. The telomerase protein complex offers 

multiple potential inhibitory sites, including hTR and hTERT at both transcriptional and post-

transcriptional levels. Furthermore, strategies targeting telomeres as well as approaches 

targeting telomerase positive cells have also been developed. They have already been 

described [11] and are summarized in Table 2. Some of these antitelomerase strategies 

proved to be promising in some types of leukemia. They include both specific compounds 

designed to target specifically the components of telomerase/telomeres and already clinically 

relevant drugs with telomerase-modulating properties. They will be developed below. 

4.1. Drugs targeting specifically telomere/telomerase 

 The small molecule BIBR1532 (2-[(E)-3 naphtalen-2-yl-but-2 enoylamino]-benzoic 

acid), a selective, non-nucleosidic inhibitor of the catalytic component hTERT has been 
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shown to have direct cytotoxic effect against primary leukemic cells from AML, CML, and 

CLL patients  but not against normal hematopoietic stem cells [120]. In addition to 

telomerase inhibition, this compound can exert a direct cytotoxic effect by compromising the 

binding of protein partners of telomerase and telomeres resulting in their dysfunction. 

However, despite initially promising this compound has not progressed into clinical trials. 

 The use of specific ligands leading to G quadruplex telomeric structure stabilization 

appears as a promising area of development as they produce an anticancer effect by 

inhibiting the capping and catalytic functions of telomerase and inducing the dysfunction of 

telomeres by destabilizing the shelterin [121, 122]. A subset of them has been investigated in 

vitro on leukemic cell lines. Among them telomestatin has been tested in acute leukemia. 

Decreased tumor telomerase levels, reduced tumor volumes and marked apoptosis in tumor 

tissue have been observed after systemic intraperitoneal administration of this agent in U937 

xenografts [123]. BRACO-19 is a 3, 6, 9-trisubstituted acridine compound which is shown to 

produce short- and long-term growth arrest in cancer cell lines and to reduce telomerase 

activity leading to long-term telomere length attrition [124, 125]. RHSP4 is a pentacyclic 

acridine that binds G quadruplex DNA and inhibits telomerase activity at submicromolar 

levels [126, 127]. Long-term exposure of cells to low RHSP4 concentration causes an 

irreversible growth arrest and telomere erosion demonstrating that this compound possesses 

classical telomerase inhibitory properties. However, used at higher doses, RHSP4 triggers 

short-term apoptosis or senescence without telomere shortening. This effect suggests that 

this compound is more than a simple telomerase inhibitor. The short-term effect results from 

telomere dysfunction [128]. This effect appears to be selective on transformed and cancer 

cells as RHSP4 appears safe on normal cells. These findings validate telomere as promising 

targets for future anticancer therapies and open the door to future clinical development of this 

new class of antitumor agents. 

 A telomere substrate antagonist, GRN163 an oligonucleotide complementary to the 

telomerase RNA, and its lipid-conjugated derivative GRN163L, inhibit telomerase activity and 
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are active against multiple myeloma and lymphoma [129, 130]. GRN163L enters into clinical 

trials in chronic lymphocytic leukemia and multiple myeloma. 

  Human hTERT specific epitopes are expressed on cancer cells and not on normal 

cells. Owing to its expression in almost all cancers, telomerase can thus be considered as a 

potential molecular target for immunotherapy. Several therapeutic vaccines offer the potential 

to stimulate the rapid killing of tumor cells by enhancing the activity of telomerase specific 

cytotoxic T cells [131]. Trials have been initiated in several types of solid tumors and in AML. 

To date no significant toxicity to normal tissues has been seen. 

4.2. Already clinically relevant drugs 

 Since complete remission has been described in acute ATLL patients after receiving 

a combination therapy including  interferon (IFN) and a reverse transcriptase inhibitor,  

azidothymidine (AZT) [132], it can be suggested that drugs designed to target the reverse 

transcriptase activity of hTERT may be effective for the treatment of ATLL.  

 Among acute myeloid leukemia, APL was found to be particularly sensitive to 

differentiation therapy using ATRA (all-trans retinoic acid). This drug induces remission of 

APL patients by stimulating differentiation of leukemic cells [133, 134] and is currently used 

in clinic. In our laboratory, using the NB4 cell model for APL pathology [135], we showed that 

ATRA not only transcriptionally repressed hTERT in differentiation-associated pathway, as 

already demonstrated in myeloid HL60 cells [136] but also independently of differentiation. 

Indeed, in a maturation-resistant NB4-LR1 cells, we showed that ATRA exerts an anti-

proliferative activity through hTERT downregulation, which leads to telomere shortening and 

cell death [137]. It requires the co-activation of the retinoic acid receptor alpha (RAR alpha) 

and the retinoic X receptor (RXR) [138]. These results have been confirmed also in cells, not 

only from patients with APL but also with other myeloid leukemia including CML [139]. These 

findings are of importance for therapy of APL but also of other leukemias because they show 

that a telomerase-dependent mechanism can be targeted by retinoids in maturation-resistant 

cells. However, it has been also shown that resistance could emerge from such a 

telomerase-based therapy [140]. Interestingly, this resistance can be relieved by the 
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synergistic effect of ATRA/Arsenic trioxide, a treatment that triggers downregulation of 

hTERT followed by telomere shortening and subsequent cell death [141]. This observation 

could explain at least partly the success of this combination therapy in APL patients. In 

contrast with other antitelomerase strategies that are currently developed (see Table 2), this 

telomerase based antitumor response operates at the level of hTERT gene transcription, 

therefore possibly targeting more than one telomerase function. 

 Given the pathogenesis of CML, telomerase inhibition may represent an attractive 

therapeutic approach. Recently the introduction of imatinib mesylate (Gleevec), an inhibitor 

of the BCR-ABL tyrosine kinase activity, has strongly improved the therapy of CML leading to 

significant hematological and cytogenetic remissions and to the increase of the mean 

survival time [97]. One study has demonstrated that the ectopic expression of dominant 

negative hTERT in K562 cells enhanced apoptosis of cells compared to control treated with 

imatinib [142].  It would be interesting to determine if in imatinib resistant cell lines the 

expression of this hTERT isoforms could overpass imatinib resistance. Furthermore, results 

obtained in cell lines, although they do not allow to tell if the effect on telomerase was direct 

or not, suggest that hTERT overexpression may be associated with a partial escape from 

imatinib-induced apoptosis and that resistance may be mediated via telomerase activation 

[143].  Interestingly, long-term inhibition of BCR-ABL/ABL synthesis by antisens induced 

telomerase activity and telomere lengthening [144]. It is therefore not excluded that this 

activation can be partly responsible for the development of resistance to BCR-ABL drugs 

even though this issue has never been explored. Taken together, the role of telomerase 

expression in disease progression, and imatinib resistance in CML, including analysis of 

telomeres requires further investigation.  

 

5. Conclusion 

 Given that deregulation of hTERT expression seems to be a general mechanism in 

leukemia it is worth considering treatments targeting telomere/ telomerase biology. However, 
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while many advances in telomere/telomerase biology have been uncovered and many efforts 

have been done to discover new anti-telomere/anti-telomerase drugs, very few compounds 

are to date exploitable in clinic for reasons of low effectiveness or toxicity in vivo and also 

because of our partial knowledge on telomere and telomerase regulation and functions. It is 

also becoming clear that focusing solely on a relative inhibition of telomerase activity may 

misjudge the therapeutic efficiency of some telomerase inhibitors. Indeed, it has been 

reported in some case that a very high inhibition of telomerase activity or expression is 

needed to affect telomere shortening and cell viability [145]. This requirement is not always 

fulfilled. This feature has to be taken into account for the development of telomerase 

inhibitors. Furthermore, the complexity of telomerase regulation and malignant 

transformation, as well as the variation in the clinical response from patient to patient, show 

clearly that the use of a single agent could not be of therapeutic benefit. Consequently an 

attractive strategy would be to associate, in combinatorial treatments, both conventional 

chemotherapy and specific drugs targeting telomere/ telomerase biology. Furthermore, it 

would be also relevant to investigate whether clinically approved drugs can also influence 

telomerase in a convergent manner. A theoretical disadvantage of telomerase-based 

strategies lies in the presence of telomerase activity in stem cells and germ cells and also in 

the identification of very low levels of telomerase activity in somatic cells raising the 

possibility of side effects. This is why investigation of telomerase expression and regulation 

during a stem cell development process like hemopoiesis can definitely help to determine the 

conditions for a physiological regulation of telomerase, exploiting phenotypic variations 

between differentiation stages and cell lineages. Hemopoietic tumor cells, particularly in the 

APL cells model, have proved to encompass enough phenotypic plasticity to make these 

subtle differences therapeutically exploitable. Finally, as it now emerges that telomerase 

plays additional roles independent of telomere maintenance, like anti-apoptotic functions 

possibly involved in cancer drug resistance, the clarification of these telomerase functions in 

hematopoietic cells is becoming an urgent task. 
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Table 1: Transcriptional and non-transcriptional factors controlling the expression of 

hTERT

Regulators Impact on hTERT expression Mode of action References

Transcription factors
c-Fos/c-Jun/JunD - Direct [146]

c-Myc + Direct [147, 148]
Mad-1 - Direct [149-152]
Sp1 + Direct [151, 153]

USF-1/2 -
+

Direct
Direct

[154]
[155]

WT1 - Direct [156]

Ets +
-

Direct
Direct

[157]
[158]

HIF-1 +
-

Direct
c-Myc

[159, 160]
[161]

NF-KB + Direct [162, 163]
E2F-1 +

-
Direct
Sp1

[164]
[165]

P53 - Sp1
P21/E2F

[166, 167]
[168]

P73 - c-Myc/Sp1 [169]
Rb - E2F-1/cdk2/cdk4 [170]
Hormones
Estrogen + c-Myc

Direct 
[171]
[172, 173]

Progesterone +
-

MAP kinase [174]

Other factors 
TGF - Smad3/c-Myc [175-177]
Bmi-1 + P16 [178, 179]
IRF-1 - ? [180]
P16INK4a - Sp1 [181]

P27KIP1 - cMyc/Sp1
IFN/IFR-1

[182]
[183]

Survivin + c-Myc/Sp1 [184]
HPV E6 + c-Myc/Sp1 [185, 186]
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Table 2: Antitelomerase strategies

Therapeutic strategies Name of the drug Applications tested Type of cells References
Oligonucleotides template 

antagonist
GRN163/ GRN163L Myeloma cells INA6, ARP, MM1S, OPM1, xenografts [187]

Renal and prostatic cells lines Caki-1, DU145 [188]

Hammerhead ribozymes Human and mouse cancer cells
Ovarian cancer cells
Breast tumor cells MCF-7

[189]
[190]
[191]

hTERT mutant Dominant Negative -hTERT CML K562, OM9;22 [142, 192]
ALL HAL-01 [193]
AML primary cells of AML patients [192]

Stabilizing G-quadruplex Telomestatine (STO-095) Human Leukemic Monocyte lymphoma U937 [194]
AML NB4, U937 [123, 194]
Multiple myeloma ARD, ARP, MM1S [195]
CML K562 [196]

BRACO-19 Uterus carcinoma cell line UXF1138L [124, 125]
RHSP4 Breast tumor cells, Vulva tumor cells 21NT, A431, xenografts [126-128]

Immunotherapy:vaccines 
targeting telomerase

(GRNVAC1, GV1001, p540-
548,Vx01)

Breast, prostate, pancreas, kidney, colon, 
lung

Patients with advanced or metastatic 
cancers

[131, 197]

Small molecules AZT (3-azido-2',3'-
dideoxythymidine)

Adult T-cell lymphoma HTLV-1 cell line, Patients [198]

B and T lymphoma JY616, Jurkat E6-1 [199]
BIBR 1532 AML, CCL, CML HL60, JVM13, Nalm1 [120]

AML, CML Patient cells [120]

Differentiation-inducing agents ATRA APL Patients [139]
CML Patients [139]

9cUAB30 AML HL60 [200]
As2O3 APL NB4 [141]


