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1. Introduction J. W. Alexander (1928), and independently K. Reidemeister, discovered the first effectively calculable knot invariant, now called the Alexander polynomial. It is still one of the most useful of all knot invariants. Rational knots (or links) are a very important and simple class of knots. They are the knots which have a representation such that the abcissa has only two local maxima and two local minima (see figure 1). For each rational number α β Schubert has constructed a ). This link is a knot if α is odd, and a two component link if α is even. Spectacularly, he proved that every rational knot (or link) is of this form (see [START_REF] Schubert | Knoten mit zwei Brücken[END_REF][START_REF] Kawauchi | A survey of knot theory[END_REF][START_REF] Kauffman | On the classification of rational knots[END_REF]). He also proved that the links S( α β ) and S( α ′ β ′ ) are isotopic if and only if α = α ′ and β ′ ≡ β ±1 (mod 2) (see [START_REF] Schubert | Knoten mit zwei Brücken[END_REF][START_REF] Kawauchi | A survey of knot theory[END_REF][START_REF] Kauffman | On the classification of rational knots[END_REF]).

J. H. Conway discovered a simple method to compute the Alexander polynomial of a knot (see [START_REF] Conway | An enumeration of knots and links, and some of their algebraic properties[END_REF][START_REF] Kauffman | On knots[END_REF]). By a simple change of variables, he deduced the Alexander polynomial from a simpler one, now named the Conway polynomial. His method provides an easy algorithm (theorem 8) to deduce the Conway polynomial of a rational knot (or link) from its Schubert fraction α β .

In this note, we shall study the converse problem: given a polynomial, is it the Conway polynomial of a rational knot?

We obtain the following result (where the Fibonacci polynomials are defined as in [START_REF] Webb | Divisibility of Fibonacci polynomials[END_REF] by:

f 0 = 0, f 1 = 1, f n+2 (z) = zf n+1 (z) + f n (z), (1) 
Theorem 1. Let P (z) ∈ Z[z] be the Conway polynomial of a rational knot (or link). There exists a Fibonacci polynomial f (z) such that P (z) ≡ f (z) (mod 2).

Then, we deduce a simple proof of a beautiful criterion due to Murasugi ( [START_REF] Murasugi | On peridic knots[END_REF][START_REF] Burde | Das Alexanderpolynom der Knoten mit zwei Brücken[END_REF])

Corollary 2 (Murasugi (1971)). Let P (t) = a 0 -a 1 (t+t -1 )+a 2 (t 2 +t -2 )-• • •+(-1) n a n (t n + t -n
) be the Alexander polynomial of a rational knot. There exists an integer k ≤ n such that a 0 , a 1 , . . . , a k are odd, and a k+1 , . . . , a n are even.

Since the Conway polynomial of the torus link T(2, n) is the Fibonacci polynomial f n (z) (see [START_REF] Koseleff | On Fibonacci knots[END_REF]), we see that these results are in fact characterizations of the modulo 2 Conway and Alexander polynomials of rational knots.

The simplicity of our computations provide an easy algorithm for the modulo 2 Conway (and Alexander) polynomials of rational knots. Theorem 3. Let K be a rational link (or knot) of Schubert fraction

α β = [2b 1 , 2b 2 , . . . , 2b m ].
Let us define the sequence e i by e 0 = 0, e i = (e i-1

+ 1 + b i ) mod 2, i = 1, . . . , m.
Then the modulo 2 Conway polynomial of K is the Fibonacci polynomial f D (z), where

D = m i=1 (-1) e i × (b i mod 2) -e m .
This algorithm may be used to easily see that some rational knots cannot be Lissajous knots.

The Conway and Alexander polynomials

The Conway polynomial of a knot (or link) K is denoted by

∇ K (z) = c 0 + c 1 z + • • • + c n z n .
The Conway polynomials of knots are characterized by the fact that they are even polynomials such that ∇ K (0) = 1. The Alexander polynomial ∆ K (t) is deduced from the Conway polynomial:

∆ K (t) = ∇ K t 1/2 -t -1/2 .
The Alexander polynomial of a knot is a Laurent polynomial. The following result allows us to recover the Conway polynomial of a knot from its Alexander polynomial.

Lemma 4. If z = t 1/2 -t -1/2
, and n ∈ Z is an integer, we have the identity

f n+1 (z) + f n-1 (z) = (t 1/2 ) n + (-t -1/2 ) n ,
where f k (z) are the Fibonacci polynomials.

Proof. Let A = z 1 1 0 be the (polynomial) Fibonacci matrix. If z = t 1/2t -1/2 , the eigenvalues of A are t 1/2 and -t -1/2 , and consequently Tr A n = (t 1/2 ) n + (-t -1/2 ) n . On the other hand, we have

A n = f n+1 (z) f n (z) f n (z) f n-1 (z)
, and then Tr

A n = f n+1 (z) + f n-1 (z).
From this lemma, we immediately deduce:

Corollary 5. Let the Laurent polynomial P (t) be defined by

P (t) = a 0 -a 1 (t + t -1 ) + a 2 (t 2 + t -2 ) -• • • + (-1) n a n (t n + t -n ).
We have

P (t) = n k=0 (-1) k (a k -a k+1 )f 2k+1 (z),
where z = t 1/2t -1/2 , and a n+1 = 0.

The following formula is an immediate consequence of this corollary:

f 2k+1 t 1/2 -t -1/2 = (t k + t -k ) -(t k-1 + t 1-k ) + • • • + (-1) k . ( 2 
) Example 6. Let K be a knot of Alexander polynomial ∆ K (t) = 1 -(t 2 + t -2 ) + (t 3 + t -3 ),
(for example the 8 19 knot). Using the lemma, we get its Conway polynomial

∇ K (z) = 1 -f 5 (z) + f 3 (z) + f 7 (z) + f 5 (z) = 1 -f 3 (z) + f 7 (z).
We shall use the classical notation for continued fractions:

[q 1 , . . . , q m ] = q 1 + 1

q 2 + 1 q 3 + 1 . . . + 1 q m . (3) 
Euclidean algorithm with even quotients provides the following continued fractions: The only knot theoretic result that we need is the following remarkable theorem.

Theorem 8. [4] Let K = S( α β
) be a rational knot (or link), and let

α β = [2b 1 , 2b 2 , . . . , 2b m ].
The Conway polynomial of K is

∇ K (z) = [ 1 0 ] -b 1 z 1 1 0 b 2 z 1 1 0 • • • (-1) m b m z 1 1 0 1 0 . ( 4 
) Since it is known that S( α β ) = S( α β -α
), we can use this theorem to compute the Conway polynomial of any rational knot (or link).

Let us consider some examples.

Example 9 (The torus links). The torus link T(2, m) is the rational link (or knot) of Schubert fraction m = m 1 . It is proved in [START_REF] Kauffman | On knots[END_REF] and [START_REF] Koseleff | On Fibonacci knots[END_REF] that the Conway polynomial of T(2, m) is

f m (z). If m = 2k + 1 (i.e. T(2, m
) is a knot) we obtain the Alexander polynomial

∆(t) = f 2k+1 t 1/2 -t -1/2 = (t k + t -k ) -(t k-1 + t 1-k ) + • • • + (-1) k . ( 5 
)
Example 10 ( The twist knots). The Twist knot T n is the rational knot of Schubert fraction n + 1 2 . We have the continued fractions

α β = [n, 2] = [n + 1, -2]. We immediately get its Conway polynomial ∇(z) = 1 -(-1) n ⌊ n+1 2 ⌋z 2 .
It is congruent to a Fibonacci polynomial modulo 2. The Fibonacci knots, introduced by J. C. Turner ( [START_REF] Turner | On a class of knots with Fibonacci invariant numbers[END_REF]), are interesting examples of rational knots. Their Alexander and Conway polynomials are studied in [START_REF] Koseleff | On Fibonacci knots[END_REF] (see also [START_REF] Koseleff | Chebyshev knots[END_REF]).

Proofs

Proof of theorem 1. Let

A = z 1 1 0 , J = 0 1 1 0 . We have AJ = 1 z 0 1 , hence (AJ) 2 = 1 2z 0 1
≡ Id (mod 2). We also have J 2 = Id, and then JAJ ≡ A -1 (mod 2). We thus see that the modulo 2 matrices A and J generate an infinite dihedral group G.

Consider the matrix M(b) = bz 1 1 0 , we have M(b) ≡ A (mod 2) if b is odd, and M(b) ≡ J (mod 2) if b is even. Consequently, the matrix product of theorem 8 is equivalent modulo 2 to an element of the dihedral group G, that is to A m or A m J.

Since A m = f m+1 * * * and A m J = f m * * * , we conclude that ∇ K ≡ f D (mod 2), recall that the Fibonacci polynomials verify f -n (z) = (-1) n+1 f n (z).
Proof of corollary 2. If K is a rational knot, its Conway polynomial is an even Fibonacci polynomial modulo 2, i.e. of the form f 2k+1 (z). Since 

f 2k+1 t 1/2 -t -1/2 = (t k + t -k ) - (t k-1 + t 1-k ) + • • • + (-1) k . The
e 0 = 0, e i = (e i-1 + 1 + b i ) mod 2, d 0 = 0, d i = d i-1 + (-1) e i × (b i mod 2).
Using JA ≡ A -1 J (mod 2), we easily show by induction that

P = M(b 1 ) • • • M(b i ) ≡ A d i J e i (mod 2).
As in the proof of theorem 1, we deduce that ∆ K ≡ f D (mod 2) where Using a formula of Stoimenow, we see that the crossing number of K is 59 (see [START_REF] Stoimenow | Generating functions, Fibonacci numbers and rational knots[END_REF]). Using theorem 8 and a computer, we obtain the Conway polynomial of K by evaluating

D = |d m + 1 -e m |.
P = M(b 1 ) • • • M(b 10 ).
The Conway polynomial of K is:

∇ K (z) = 2880 z 10 + 4944 z 8 + 2304 z 6 + 158 z 4 -61 z 2 + 1.
∇ K may be expressed in terms of Fibonacci polynomials and we obtain:

∇ K (z) = 2880 f 11 -20976 f 9 + 68496 f 7 -128482 f 5 + 140969 f 3 -62886 f 1 ≡ f 3 (mod 2).
On the other hand we have the simpler computations:

P ≡ AJ 2 A 2 JAJ 3 ≡ A 3 JAJ (mod 2) ≡ A 2 (mod 2).
Our algorithm is a formalization of these last computations. It gives i 0 1 2 3 4 5 6 7 8 9 10

b i 1 -2 -10 1 -1 -6 -1 2 -6 -2 b i (mod 2)
1 0 0 1 1 0 1 0 0 0 e i 0 0 1 0 0 0 1 1 0 1 0

d i 0 1 1 1 2 3 3 2 2 2 2
We see that the Conway polynomial of our knot is not congruent to 1 modulo 2. Hence, by a theorem of V. F. R. Jones, J. Przytycki and C. Lamm ([6], [START_REF] Lamm | There are infinitely many Lissajous knots[END_REF]) it cannot be a Lissajous knot.

We easily obtain the number of knots with Conway polynomial congruent to 1 modulo 2 (compare [START_REF] Boocher | Sampling Lissajous and Fourier knots[END_REF]). 1. The number of rational knots, rational knots with Conway polynomial congruent to 1 modulo 2.

Conclusion

We have found an elementary proof of the Murasugi criterion for rational knots. Furthermore our characterization with Conway polynomials is also valid for links.

There are other classical results on the Alexander polynomials of rational knots. K. Murasugi (1958) showed that the signs of coefficients of Alexander polynomials of alternating knots are alternating, which means that all the a i are non-negative ( [START_REF] Murasugi | Knot Theory and its Applications[END_REF]). In 1979, R. Hartley showed that the coefficient of the Alexander polynomial of rational knots satisfy the condition a 0 = . . . = a k > a k+1 > . . . > . . . > a n > 0 ( [START_REF] Hartley | On two-bridged knot polynomials[END_REF]). Y. Nakanishi and M. Suketa (1993) obtained upper and lower bounds for |a i | in terms of |a n | ( [START_REF] Nakanishi | Alexander polynomials of two-bridge knots[END_REF], see also [START_REF] Burde | Das Alexanderpolynom der Knoten mit zwei Brücken[END_REF]).

All these results can easily be translated to similar properties of Conway polynomials. As an application, let us mention the recent study of Lissajous knots. V. F. R. Jones, J. Przytycki (1998)and C. [START_REF] Lamm | There are infinitely many Lissajous knots[END_REF] showed that the Alexander polynomial of a rational Lissajous knot must be congruent to 1 modulo 2 ( [START_REF] Jones | Lissajous knots and billiard knots[END_REF][START_REF] Lamm | There are infinitely many Lissajous knots[END_REF]). This property is the main tool used by A. Boocher, J. Daigle, J. Hoste and W. Zheng (2009) to prove that some rational knots cannot be Lissajous ( [START_REF] Boocher | Sampling Lissajous and Fourier knots[END_REF]). Our algorithm provides a faster method to compute the modulo 2 Alexander polynomials.
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 1 Figure 1. The Stevedore knot 6 1 and the Fibonacci link F (3) 2 rational link denoted S( α β). This link is a knot if α is odd, and a two component link if
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 12 Figure 2. Some Twist knots, the trefoil T 1 = 3 1 , the figure-eight knot T 2 = 4 1 , and the stevedore knot T 4 = 6 1 .

result follows from corollary 5 .

 5 Proof of theorem 3. The simplicity of the computations in a dihedral group immediately allows us to obtain the Conway and Alexander polynomials. It clearly suffices to obtain their degrees. Let α β = [2b 1 , . . . , 2b m ]. Let us define the sequences e i and d i by:

  1 , . . . , b 10 ] = [2, -4, -20, 2, -2, -12, -2, 4, -12, -4]

Table

  

	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	18	19	20	21	22
	rational 1 1 2 3 7 12 24 45 91 176 352 693 1387 2752 5504 10965 21931 43776 87552 174933
	∇(t) ≡ 1 0 0 1 1 2 4 8 13 26 51 97 185 365 705 1369 2675 5233 10211 20011 39221