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MODULO 2 CONWAY POLYNOMIALS OF RATIONAL LINKS

P. -V. KOSELEFF AND D. PECKER

Abstract. We show that a polynomial is the modulo 2 Conway polynomial of a rational
link if and only if it is a Fibonacci polynomial modulo 2. We deduce a simple proof of the
Murasugi characterization of the modulo 2 Alexander polynomials of rational knots. We
also deduce a fast algorithm to test when the Alexander polynomial of a rational knot K is
congruent to 1 modulo 2, which is a necessary condition for K to be Lissajous.

1. Introduction

J. W. Alexander (1928), and independently K. Reidemeister, discovered the first effectively
calculable knot invariant, now called the Alexander polynomial. It is still one of the most
useful of all knot invariants.

Rational knots (or links) are a very important and simple class of knots. They are the
knots which have a representation such that the abcissa has only two local maxima and

two local minima (see figure 1). For each rational number
α

β
Schubert has constructed a

Figure 1. The Stevedore knot 61 and the Fibonacci link F
(3)
2

rational link denoted S(
α

β
). This link is a knot if α is odd, and a two component link if

α is even. Spectacularly, he proved that every rational knot (or link) is of this form (see

[16, 9, 8]). He also proved that the links S(
α

β
) and S(

α′

β ′
) are isotopic if and only if α = α′

and β ′ ≡ β±1 (mod 2) (see [16, 9, 8]).

J. H. Conway discovered a simple method to compute the Alexander polynomial of a knot
(see [3, 7]). By a simple change of variables, he deduced the Alexander polynomial from a
simpler one, now named the Conway polynomial. His method provides an easy algorithm
(theorem 8) to deduce the Conway polynomial of a rational knot (or link) from its Schubert

fraction
α

β
.

In this note, we shall study the converse problem: given a polynomial, is it the Conway
polynomial of a rational knot?
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We obtain the following result (where the Fibonacci polynomials are defined as in [19] by:

f0 = 0, f1 = 1, fn+2(z) = zfn+1(z) + fn(z), (1)

Theorem 1. Let P (z) ∈ Z[z] be the Conway polynomial of a rational knot (or link). There
exists a Fibonacci polynomial f(z) such that P (z) ≡ f(z) (mod 2).

Then, we deduce a simple proof of a beautiful criterion due to Murasugi ([14, 2])

Corollary 2 (Murasugi (1971)). Let P (t) = a0−a1(t+t−1)+a2(t
2+t−2)−· · ·+(−1)nan(t

n+
t−n) be the Alexander polynomial of a rational knot. There exists an integer k ≤ n such that
a0, a1, . . . , ak are odd, and ak+1, . . . , an are even.

Since the Conway polynomial of the torus link T(2, n) is the Fibonacci polynomial fn(z)
(see [11]), we see that these results are in fact characterizations of the modulo 2 Conway and
Alexander polynomials of rational knots.
The simplicity of our computations provide an easy algorithm for the modulo 2 Conway

(and Alexander) polynomials of rational knots.

Theorem 3. Let K be a rational link (or knot) of Schubert fraction
α

β
= [2b1, 2b2, . . . , 2bm].

Let us define the sequence ei by e0 = 0, ei = (ei−1 + 1 + bi)mod 2, i = 1, . . . , m.

Then the modulo 2 Conway polynomial of K is the Fibonacci polynomial fD(z), where

D =

∣

∣

∣

∣

∣

m
∑

i=1

(−1)ei × (bi mod2)− em

∣

∣

∣

∣

∣

.

This algorithm may be used to easily see that some rational knots cannot be Lissajous
knots.

2. The Conway and Alexander polynomials

The Conway polynomial of a knot (or link) K is denoted by ∇K(z) = c0 + c1z + · · · +
cnz

n. The Conway polynomials of knots are characterized by the fact that they are even
polynomials such that ∇K(0) = 1. The Alexander polynomial ∆K(t) is deduced from the
Conway polynomial:

∆K(t) = ∇K

(

t1/2 − t−1/2
)

.

The Alexander polynomial of a knot is a Laurent polynomial. The following result allows us
to recover the Conway polynomial of a knot from its Alexander polynomial.

Lemma 4. If z = t1/2 − t−1/2, and n ∈ Z is an integer, we have the identity

fn+1(z) + fn−1(z) = (t1/2)n + (−t−1/2)n,

where fk(z) are the Fibonacci polynomials.

Proof. Let A =
[

z 1
1 0

]

be the (polynomial) Fibonacci matrix. If z = t1/2 − t−1/2, the

eigenvalues of A are t1/2 and −t−1/2, and consequently TrAn = (t1/2)n + (−t−1/2)n. On the

other hand, we have An =

[

fn+1(z) fn(z)
fn(z) fn−1(z)

]

, and then TrAn = fn+1(z) + fn−1(z). �

From this lemma, we immediately deduce:



Corollary 5. Let the Laurent polynomial P (t) be defined by

P (t) = a0 − a1(t+ t−1) + a2(t
2 + t−2)− · · ·+ (−1)nan(t

n + t−n).

We have

P (t) =
n

∑

k=0

(−1)k(ak − ak+1)f2k+1(z),

where z = t1/2 − t−1/2, and an+1 = 0.

The following formula is an immediate consequence of this corollary:

f2k+1

(

t1/2 − t−1/2
)

= (tk + t−k)− (tk−1 + t1−k) + · · ·+ (−1)k. (2)

Example 6. Let K be a knot of Alexander polynomial ∆K(t) = 1 − (t2 + t−2) + (t3 + t−3),
(for example the 819 knot). Using the lemma, we get its Conway polynomial

∇K(z) = 1−
(

f5(z) + f3(z)
)

+
(

f7(z) + f5(z)
)

= 1− f3(z) + f7(z).

We shall use the classical notation for continued fractions:

[q1, . . . , qm] = q1 +
1

q2 +
1

q3 +
1

. . . +
1

qm

. (3)

Euclidean algorithm with even quotients provides the following continued fractions:

Proposition 7. ([4, p. 207]) Any fraction
α

β
, α 6≡ β (mod 2), has a continued fraction

expansion with even quotients:

α

β
= [2b1, 2b2, . . . , 2bm], where bi ∈ Z.

The only knot theoretic result that we need is the following remarkable theorem.

Theorem 8. [4] Let K = S(
α

β
) be a rational knot (or link), and let

α

β
= [2b1, 2b2, . . . , 2bm].

The Conway polynomial of K is

∇K(z) = [ 1 0 ]
[

−b1z 1
1 0

] [

b2z 1
1 0

]

· · ·
[

(−1)mbmz 1
1 0

] [

1
0

]

. (4)

Since it is known that S(
α

β
) = S(

α

β − α
), we can use this theorem to compute the Conway

polynomial of any rational knot (or link).

Let us consider some examples.

Example 9 (The torus links). The torus link T(2, m) is the rational link (or knot) of Schu-

bert fraction m =
m

1
. It is proved in [7] and [11] that the Conway polynomial of T(2, m) is

fm(z). If m = 2k + 1 (i.e. T(2, m) is a knot) we obtain the Alexander polynomial

∆(t) = f2k+1

(

t1/2 − t−1/2
)

= (tk + t−k)− (tk−1 + t1−k) + · · ·+ (−1)k. (5)



Example 10 ( The twist knots). The Twist knot Tn is the rational knot of Schubert fraction

n +
1

2
. We have the continued fractions

α

β
= [n, 2] = [n + 1,−2]. We immediately get its

Conway polynomial ∇(z) = 1 − (−1)n⌊n+1
2
⌋z2. It is congruent to a Fibonacci polynomial

modulo 2.

31 41 61

Figure 2. Some Twist knots, the trefoil T 1 = 31, the figure-eight knot
T2 = 41, and the stevedore knot T4 = 61.

The Fibonacci knots, introduced by J. C. Turner ([18]), are interesting examples of rational
knots. Their Alexander and Conway polynomials are studied in [11] (see also [10]).

3. Proofs

Proof of theorem 1. Let A =
[

z 1
1 0

]

, J =
[

0 1
1 0

]

. We have AJ =
[

1 z

0 1

]

, hence (AJ)2 =
[

1 2z
0 1

]

≡ Id (mod 2). We also have J2 = Id, and then JAJ ≡ A−1 (mod 2). We thus see

that the modulo 2 matrices A and J generate an infinite dihedral group G.

Consider the matrix M(b) =
[

bz 1
1 0

]

, we have M(b) ≡ A (mod 2) if b is odd, and M(b) ≡

J (mod 2) if b is even. Consequently, the matrix product of theorem 8 is equivalent modulo
2 to an element of the dihedral group G, that is to Am or AmJ.

Since Am =
[

fm+1 ∗
∗ ∗

]

and AmJ =
[

fm ∗
∗ ∗

]

, we conclude that ∇K ≡ fD (mod 2), recall

that the Fibonacci polynomials verify f−n(z) = (−1)n+1fn(z). �

Proof of corollary 2. If K is a rational knot, its Conway polynomial is an even Fibonacci
polynomial modulo 2, i.e. of the form f2k+1(z). Since f2k+1

(

t1/2 − t−1/2
)

= (tk + t−k) −

(tk−1 + t1−k) + · · ·+ (−1)k. The result follows from corollary 5. �

Proof of theorem 3. The simplicity of the computations in a dihedral group immediately
allows us to obtain the Conway and Alexander polynomials. It clearly suffices to obtain

their degrees. Let
α

β
= [2b1, . . . , 2bm]. Let us define the sequences ei and di by:

e0 = 0, ei = (ei−1 + 1 + bi)mod 2, d0 = 0, di = di−1 + (−1)ei × (bi mod 2).

Using JA ≡ A−1J (mod 2), we easily show by induction that

P = M(b1) · · ·M(bi) ≡ AdiJei (mod 2).

As in the proof of theorem 1, we deduce that ∆K ≡ fD (mod 2) whereD = |dm + 1− em|. �



Example. Consider
α

β
=

1828139

1042750
and the rational knot K = S(

α

β
). One can write

α

β
= [b1, . . . , b10] = [2,−4,−20, 2,−2,−12,−2, 4,−12,−4]

Using a formula of Stoimenow, we see that the crossing number of K is 59 (see [17]). Using
theorem 8 and a computer, we obtain the Conway polynomial of K by evaluating

P = M(b1) · · ·M(b10).

The Conway polynomial of K is:

∇K(z) = 2880 z10 + 4944 z8 + 2304 z6 + 158 z4 − 61 z2 + 1.

∇K may be expressed in terms of Fibonacci polynomials and we obtain:

∇K(z) = 2880 f11 − 20976 f9 + 68496 f7 − 128482 f5 + 140969 f3 − 62886 f1

≡ f3 (mod 2).

On the other hand we have the simpler computations:

P ≡ AJ2A2JAJ3 ≡ A3JAJ (mod 2) ≡ A2 (mod 2).

Our algorithm is a formalization of these last computations. It gives

i 0 1 2 3 4 5 6 7 8 9 10
bi 1 -2 -10 1 -1 -6 -1 2 -6 -2

bi (mod 2) 1 0 0 1 1 0 1 0 0 0
ei 0 0 1 0 0 0 1 1 0 1 0
di 0 1 1 1 2 3 3 2 2 2 2

We see that the Conway polynomial of our knot is not congruent to 1 modulo 2. Hence, by
a theorem of V. F. R. Jones, J. Przytycki and C. Lamm ([6], [12]) it cannot be a Lissajous
knot.
We easily obtain the number of knots with Conway polynomial congruent to 1 modulo 2

(compare [1]).

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
rational 1 1 2 3 7 12 24 45 91 176 352 693 1387 2752 5504 10965 21931 43776 87552 174933
∇(t) ≡ 1 0 0 1 1 2 4 8 13 26 51 97 185 365 705 1369 2675 5233 10211 20011 39221

Table 1. The number of rational knots, rational knots with Conway polyno-
mial congruent to 1 modulo 2.

4. Conclusion

We have found an elementary proof of the Murasugi criterion for rational knots. Further-
more our characterization with Conway polynomials is also valid for links.
There are other classical results on the Alexander polynomials of rational knots. K.

Murasugi (1958) showed that the signs of coefficients of Alexander polynomials of alternating
knots are alternating, which means that all the ai are non-negative ([13]). In 1979, R.
Hartley showed that the coefficient of the Alexander polynomial of rational knots satisfy the



condition a0 = . . . = ak > ak+1 > . . . > . . . > an > 0 ([5]). Y. Nakanishi and M. Suketa
(1993) obtained upper and lower bounds for |ai| in terms of |an| ([15], see also [2]).
All these results can easily be translated to similar properties of Conway polynomials.
As an application, let us mention the recent study of Lissajous knots. V. F. R. Jones, J.

Przytycki (1998)and C. Lamm (1997) showed that the Alexander polynomial of a rational
Lissajous knot must be congruent to 1 modulo 2 ([6, 12]). This property is the main tool
used by A. Boocher, J. Daigle, J. Hoste and W. Zheng (2009) to prove that some rational
knots cannot be Lissajous ([1]). Our algorithm provides a faster method to compute the
modulo 2 Alexander polynomials.
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