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Introduction

These notes present a description of quantum chaotic eigenstates, that is bound states of a quantum dynamical system, the classical limit of which is chaotic. The classical dynamical systems we will be dealing with are mostly of two types: geodesic flows on euclidean domains ("billiards") or compact riemannian manifolds, and canonical transformations on a compact phase space; the common feature is the "chaoticity" of the dynamics. The corresponding quantum systems will always be considered in the semiclassical (or high-frequency) régime, in order to establish a link with the classical dynamics. As a first illustration, we plot below two eigenstates of a paradigmatic system, the Laplacian on the stadium billiard, with Dirichlet boundary conditions 1 .

The study of chaotic eigenstates makes up a large part of the field of quantum chaos. It is somewhat complementary with the contribution of J.Keating, who will focus on the statistical properties of quantum spectra, another major topic in quantum chaos. I do not include the study of eigenstates of quantum graphs (a recent interesting development in the field), since this question should be addressed in U.Smilansky's lecture. Although these notes are purely theoretical, H.-J. Stöckmann's lecture will show that the questions raised here have direct experimental applications (his lecture should present experimentally measured eigenmodes of 2and 3-dimensional "quantum billiards").

One common feature of the chaotic eigenfunctions (except in some very specific systems) is the absence of explicit (or even approximate) formulas for them. One then has to resort to indirect, rather unprecise approaches to describe these eigenstates. We will use various analytic tools or points of view: deterministic/statistical, macro/microscopic, pointwise/global properties, generic/specific systems. The level of rigour in the results varies from mathematical proofs to heuristics, generally supported by numerical experiments. The necessary selection of results reflects my personal view or knowledge of the subject, it omits several important developments, and is more "historical" than sharply up-to-date. The list of references is qisw but in no way exhaustive. [START_REF] Bäcker | On the number of bouncing ball modes in billiards[END_REF]). Large values of |ψ(x)| 2 correspond to dark regions, while nodal lines are white. While the left eigenfunction looks relatively "equidistributed", the right one is scarred by two symmetric periodic orbits (see §4.2).

These notes are organized as follows. We introduce in section 2 the classical dynamical systems we will focus on (mostly geodesic flows and maps on the 2dimensional torus), mentioning their degree of "chaos". We also sketch the quantization procedures leading to quantum Hamiltonians or propagators, the eigenstates of which we want to understand. We also mention some properties of the semiclassical/high-frequency limit. In section 3 we describe the macroscopic properties of the eigenstates in the semiclassical limit, embodied by their semiclassical measures. These properties include the quantum ergodicity property, which for some systems (with arithmetic symmetries) can be improved to quantum unique ergodicity, namely the fact that all high-frequency eigenstates are "flat" at the macroscopic scale; on the opposite, some specific systems allow the presence of exceptionally localized eigenstates. In section 4 we focus on more refined properties of the eigenstates, many of statistical nature (value distribution, correlation functions). Very little is known rigorously, so one has to resort to heuristical models of random wavefunctions to describe these statistical properties. The large values of the wavefunctions or Husimi densities are discussed, including the scar phenomenon. Section 5 discusses the most "quantum" or microscopic aspect of the eigenstates, namely their nodal sets, both in position and phase space (Husimi) representations. Here as well, the random state models are helpful, and lead to interesting questions in probability theory.

2 What is a quantum chaotic eigenstate?

In this section we first present a general definition of the notion of "chaotic eigenstate". We then focus our attention to geodesic flows in euclidean domains or on compact riemannian manifolds of negative curvature, which form the simplest systems proved to be chaotic. Finally we present some discrete time dynamics (chaotic canonical maps on the 2-dimensional torus).

A short review of quantum mechanics

Let us start by recalling that classical mechanics on the phase space T * R d can be defined, in the Hamiltonian formalism, by a real valued function H(x, p) on that phase space, called the Hamiltonian. We will always assume the system to be autonomous, namely the function H to be independent of time. This function then generates the flow2 x(t) def = (x(t), p(t)) = Φ t H (x(0)), t ∈ R , x(t) ∈ T * R d , by solving Hamilton's equations (as usual ḟ is the time derivative): ẋj (t) = ∂H ∂p j (x(t)), ṗj (t) = -∂H ∂x j (x(t)), j = 1, . . . , d .

This flow preserves the symplectic form j dp j ∧ dx j , and the energy shells

E E = H -1 (E).
The corresponding quantum mechanical system is defined by an operator Ĥ acting on the (quantum) Hilbert space H = L 2 (R d , dx). This operator can be formally obtained by replacing coordinates x, p by operators:

Ĥ = H(x , p ), ( 2 
)
where x is the operator of multiplication by x, while the momentum operator p = i ∇ is conjugate to x through the -Fourier transform F . The notation [START_REF] Anantharaman | Entropy of Semiclassical Measures of the Walsh-Quantized Baker's Map[END_REF] assumes that one has selected a certain ordering between the operators x and p ; in physics one usually chooses the fully symmetric ordering, also called the Weyl quantization: it has the advantage to make Ĥ formally self-adjoint on L 2 (R d ). Quantization procedures can also be defined when the euclidean space R d is replaced by a compact manifold M, by gluing together quantizations defined on different coordinate patches. The quantum dynamics, which governs the evolution of the wavefunction ψ(t) ∈ H describing the system, is then given by the Schrödinger equation:

i ∂ψ(t) ∂t = [ Ĥ ψ](t) . (3) 
Solving this linear equation produces the propagator, that is the family of unitary operators on L 2 (R d ), U t = exp(-i Ĥ / ) , t ∈ R .

Remark 1 In physical systems, Planck's constant is a fixed number, which is of order 10 -34 in standard units. However, if the system (atom, molecule, "quantum dot") is itself microscopic, the value of may be comparable with the typical action of the system, in which case it is more natural to select units in which = 1. Our point of view throughout this work will be the opposite: we will assume that is (very) small compared with the typical action of the system, and most results will be valid asymptotically, in the semiclassical limit → 0.

Quantum-classical correspondence

At this point, let us introduce the crucial semiclassical property of the quantum evolution: it is called (in the physics literature) the quantum-classical correspondence, while in mathematics this result is known as Egorov's theorem. This property states that the evolution of observables approximately commutes with quantization. For us, a (classical) observable is a smooth, compactly supported function on phase space f ∈ C ∞ c (T * R d ), while the corresponding quantum observable f is obtained through the above mentioned quantization procedure. The evolution of classical and quantum evolutions are defined by duality with that of particles/wavefunctions:

f (t) = f • Φ t H , f (t) = U -t f U t .
The quantum-classical correspondence connects these two evolutions:

∀t ∈ R, f (t) = f (t) + O L 2 →L 2 (e Γ|t| ) , (4) 
where the exponent Γ > 0 depends on the instability of the classical flow.

The most common form of dynamics is the motion of a scalar particle in an electric potential V (x). It corresponds to the Hamiltonian

H(x, p) = |p| 2 2m + qV (x), quantized into Ĥ = - 2 ∆ 2m + qV (x) . (5) 
We will usually scale the mass and electric charge to m = q = 1, keeping small. Since the Hamilton flow (1) leaves each energy energy shell E E invariant, we may restrict our attention to the flow on a single shell. We will be interested in cases where 1. the energy shell E E is bounded in phase space (that is, both the positions and momenta of the particles remain finite at all times). This is the case if

V (x) is confining (V (x) → ∞ as |x| → ∞).
2. the flow on E E is chaotic (and this is also the case on the neighbouring shells E E+ǫ ). "Chaos" is a vague word, which we will make more precise below.

The first condition implies that, provided is small enough, the spectrum of Ĥ is purely discrete near the energy E, with eigenstates ψ ,j ∈ L 2 (R d ) (bound states).

Besides, fixing some small ǫ > 0 and letting → 0, the number of eigenvalues E ,j ∈ [Eǫ, E + ǫ] typically grows like C -d . Under the second condition, the eigenstates with energies in this interval can be called quantum chaotic eigenstates.

Below we describe several degrees of "chaos", which regard the long time properties of the classical flow. These properties are relevant when describing the eigenstates of the quantum system, which form the "backbone" of the long time quantum dynamics. The main objective of quantum chaos consists in connecting, in a precise way, the classical and quantum long time (or time independent) properties.

Various levels of chaos

For most Hamiltonians of the form (5) (e.g. the physically relevant case of a hydrogen atom in a constant magnetic field), the classical dynamics on bounded energy shells E E involves both regular and chaotic regions of phase space; one then speaks of a mixed dynamics on E E . The regular region is composed of a number of "islands of stability", made of quasiperiodic motion structured around stable periodic orbits; these islands are embedded in a "chaotic sea" where trajectories are unstable (they have a positive Lyapunov exponent). These notions of "island of stability" versus "chaotic sea" are rather poorly understood mathematically, but have received compelling numerical evidence [START_REF] Lichtenberg | Regular and chaotic dynamics, 2d edition[END_REF]. The main conjecture concerning the corresponding quantum system, is that most eigenstates are either localized in the regular region, or in the chaotic sea [START_REF]Regular and irregular spectra[END_REF]. To my knowledge this conjecture remains fully open at present, in part due to our lack of understanding of the classical dynamics.

For this reason, I will restrict myself (as most researches in quantum chaos do) to the case of systems admitting a purely chaotic dynamics on E E . I will allow various degrees of chaos, the minimal assumption being the ergodicity of the flow Φ t H on E E , with respect to the natural (Liouville) measure on E E . This assumption means that, for almost every initial point x 0 ∈ E E , the time averages of any observable f converge to its phase space average: lim

T →∞ 1 2T T -T f (Φ t H (x 0 )) dt = E E f (x) dµ L (x) def = f (x) δ(H(x) -E) dx δ(H(x) -E) dx . (6) 
A stronger chaotic property is the mixing property, or decay of time correlations between two observables f, g:

C f,g (t) def = E E g × (f • Φ t ) dµ L -f dµ L g dµ L t→∞ ---→ 0 . (7) 
The decay rate of C f,g (t) (or mixing rate) depends on both the flow Φ t and the regularity of the observables f, g. For very chaotic flows (Anosov flows, see §2.4.2) and smooth observables, the decay is exponential.

Geometric quantum chaos

In this section we give explicit examples of chaotic flows, namely the geodesic flows in certain euclidean billiards compact riemannian manifolds. The dynamics is then induced by the geometry, rather than by a potential. Both the classical and quantum properties of these systems have been investigated a lot in the past 30 years.

Billiards

The simplest form of ergodic system occurs when the potential V (x) is an infinite barrier delimiting a bounded domain Ω ⊂ R d (say, with piecewise smooth boundary), so that the particle moves freely inside Ω and bounces specularly at the boundaries. For obvious reasons, such a system is called a euclidean billiard. All positive energy shells are equivalent to one another, up to a rescaling of the velocity, so we may restrict our attention to the shell E = {(x, p), x ∈ Ω, |p| = 1}. The long time dynamical properties only depend on the shape of the domain. For instance, in 2 dimensions, rectangular, circular or elliptic billiards lead to integrable dynamics: the flow admits two independent integrals of motion -in the case of the circle, the energy and the angular momentum. A convex billiard with a smooth boundary will always admit "whispering gallery" stable orbits, so such billiards cannot be fully chaotic. On the opposite, the famous stadium billiard (see Fig. 2) was proved to be ergodic by Bunimovich [START_REF] Bunimovich | On the ergodic properties of nowhere dispersing billiards[END_REF]. Historically, the first euclidean billiard proved to be ergodic was the Sinai billiard, composed of one or several circular obstacles inside a square (or torus) [START_REF] Sinai | Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards[END_REF]. These billiards also have positive Lyapunov exponents (meaning that almost all trajectories are exponentially unstable, see the left part of Fig. 2). It has been shown more recently that these billiards are mixing, but with correlations decaying at polynomial or subexponential rates [START_REF] Chernov | A stretched exponential bound on time correlations for billiard flows[END_REF][START_REF] Bàlint | Decay of correlations and invariance principles for dispersing billiards with cusps, and related planar billiard flows[END_REF][START_REF] Melbourne | Decay of correlations for slowly mixing flows[END_REF]. The quantization of the broken geodesic flow inside Ω is the (semiclassical) Laplacian with Dirichlet boundary conditions:

Ĥ = - 2 ∆ Ω 2 . (8) 
Obviously, the parameter only amounts to a rescaling of the spectrum: an eigenstate ψ of ( 8) with energy E ≈ 1/2 is also an eigenstate of -∆ Ω with eigenvalue k 2 ≈ -2 . Hence, represents the wavelength of ψ , the inverse of its wavevector k.

Fixing E = 1/2 and taking the semiclassical limit → 0 is equivalent with studying the high-frequency or high-wavevector spectrum of -∆ Ω .

The system (8) is often called a quantum billiard, although this operator is not only relevant in quantum mechanics, but in all sorts of wave mechanics (see H.-J. Stöckmann's lecture). Indeed, the scalar Helmholtz equation

∆ψ j + k 2 j ψ j = 0 , (9) 
may describe stationary acoustic waves in a cavity, and is also relevant to describe electromagnetic waves in a quasi-2D cavity, provided one is allowed to separate the different polarization components of the electric field. Euclidean billiards thus form the simplest realistic quantized chaotic systems, for which the classical dynamics is well understood at the mathematical level. Besides, the spectrum of the Dirichlet Laplacian can be numerically computed up to large values of k using methods specific to the euclidean geometry, like the scaling method [100]. For these reasons, these billiards have become a paradigm of quantum chaos studies.

Anosov geodesic flows

The strongest form of chaos occus in systems (maps or flows) with the Anosov property, also called uniformly hyperbolic systems [START_REF] Anosov | Geodesic flows on closed Riemannian manifolds of negative curvature[END_REF]. The first (and main) example of an Anosov flow is given by the geodesic flow on a compact riemannian manifold (M, g) of negative curvature, generated by the free particle Hamiltonian H(x, p) = |p| 2 g /2. Uniform hyperbolicity -which is induced by the negative curvature of the manifold -means that at each point x ∈ E the tangent space T x E splits into the vector X x generating the flow, the unstable subspace E + x and the stable subspace E -

x . The stable (resp. unstable) subspace is defined by the property that the flow contracts vectors exponentially in the future (resp. in the past), see Fig. 3: for some

C > 0, λ > 0 independent of x ∈ E, ∀v ∈ E ± x , ∀t > 0, dΦ ∓t x v ≤ C e -λt v . ( 10 
)
Anosov systems present the strongest form of chaos, but their ergodic properties are (paradoxically) better understood than for the billiards of the previous section.

The flow has a positive complexity, reflected in the exponential proliferation of long periodic geodesics. For this reason, this geometric model has been at the center of the mathematical investigations of quantum chaos, in spite of its minor physical relevance. Generalizing the case of the euclidean billiards, the quantization of the
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Figure 3: Top left: geodesic flow on a surface of negative curvature (such a surface has a genus ≥ 2). Right: fundamental domain for an "octagon" surface Γ\H of constant negative curvature (the figure is due to C. McMullen) Botton left: a phase space trajectory and two nearby trajectories approaching it in the future or past. The stable/unstable directions at x and Φ t (x) are shown. The red lines feature the expansion along the unstable direction, measured by the unstable Jacobian

J u t (x) = det(dΦ t ↾ E + x ).
geodesic flow on (M, g) is given by the (semiclassical) Laplace-Beltrami operator

Ĥ = - 2 ∆ g 2 (11) 
acting on the Hilbert space L 2 (M, dg) associated with the Lebesgue measure. The eigenstates of Ĥ with eigenvalues ≈ 1/2 (equivalently, the high-frequency eigenstates of -∆ g ) constitute a class of quantum chaotic eigenstates, the study of which is not impeded by boundary problems present in billiards.

The spectral properties of this Laplacian have interested mathematicians working in riemannian geometry, PDEs, analytic number theory, representation theory, for at least a century, while the specific "quantum chaotic" aspects have emerged only in the last 30 years.

The first example of a manifold with negative curvature is the Poincaré halfspace H with its hyperbolic metric dx 2 +dy 2 y 2 , on which the group SL 2 (R) acts isometrically by Moebius transformations (H is often represented by the equivalent hyperbolic disk, like in Fig. 3). For certain discrete subgroups Γ of P SL 2 (R) (called co-compact lattices), the quotient M = Γ\H is a smooth compact surface. This group structure provides detailed information on the spectrum of the Laplacian (for instance, the Selberg trace formula explicitly connects the spectrum of ∆ g with the periodic geodesics on M, which are themselves represented by the conjugacy classes of Γ).

Furthermore, for some of these discrete subgroups Γ (called arithmetic), one can construct a commutative algebra of Hecke operators on L 2 (M), which also commute with the Laplacian; it then make sense to study in priority the joint eigenstates of ∆ and of these Hecke operators, which we will call the Hecke eigenstates. This arithmetic structure allows to obtain extra nontrivial information on these eigenstates (see §3.3.3), so the latter will appear several times along these notes. Their study composes a part of arithmetic quantum chaos, a lively field of research.

Classical and quantum chaotic maps

Beside the Hamiltonian or geodesic flows, another model system has attracted much attention in the dynamical systems community: chaotic maps on some compact phase space P. Instead of a flow, the dynamics is given by a discrete time transformation κ : P → P. Because we want to quantize these maps, we require the phase space P to have a symplectic structure, and the map κ to preserve this structure (in other words, κ is an invertible canonical transformation on P). The advantage of studying maps instead of flows is multifold. Firstly, a map can be easily constructed from a flow by considering a Poincaré section Σ transversal to the flow; the induced return map κ Σ : Σ → Σ, together with the return time, contain all the dynamical information on the flow. Ergodic properties of chaotic maps are usually easier to study than their flow counterpart. For billiards, the natural Poincaré map to consider is the boundary map κ Σ defined on the phase space associated with the boundary, T * ∂Ω. The ergodic properties of this boundary map were understood, and used to address the case of the billiard flow itself [START_REF] Bàlint | Decay of correlations and invariance principles for dispersing billiards with cusps, and related planar billiard flows[END_REF].

Secondly, simple chaotic maps can be defined on low-dimensional phase spaces, the most famous ones being the hyperbolic symplectomorphisms on the 2-dimensional torus. These are defined by the action of a matrix S = a b c d with integer entries, determinant unity and trace a + d > 2 (equivalently, S is unimodular and hyperbolic). Such a matrix obviously acts on x = (x, p) ∈ T 2 linearly, through

κ S (x) = (ax + bp, cx + dp) mod 1 . (12) 
A schematic view of κ S for the famous Arnold's cat map S cat = 1 1 1 2 is displayed in Fig. 5. The hyperbolicity condition implies that the eigenvalues of S are of the form {e ±λ } for some λ > 0. As a result, κ S has the Anosov property: at each point x, the tangent space T x T 2 splits into stable and unstable subspaces, identified with the eigenspaces of S, and ±λ are the Lyapunov exponents. Many dynamical properties of κ S can be explicitly computed. For instance, every rational point x ∈ T 2 is periodic, and the number of periodic orbits of period ≤ n grows like e λn (thus λ also measures the complexity of the map). This linearity also results in the fact that the decay of correlations (for smooth observables) is superexponential. To obtain a generic Anosov diffeomorphism of the 2-torus, one can smoothly perturb the linear map κ S : given a Hamiltonian H ∈ C ∞ (T 2 ), the composed map Φ ǫ H • κ S remains Anosov if ǫ is small enough, due to the structural stability of Anosov diffeomorphisms. For any such Anosov diffeomorphism, the decay of correlations is exponential. Another family of canonical maps on the torus was also much investigated, namely the socalled baker's maps, which are piecewise linear. The simplest (symmetric) baker's Séminaire Poincaré map is defined by

κ B (x, p) = (2x mod 1, p 2 ), 0 ≤ x < 1/2, (2x mod 1, p+1 2 ), 1/2 ≤ x < 1. ( 13 
)
This map is conjugate to a very simple symbolic dynamics, namely the shift on two symbols. Consider the binary expansions of the coordinates

x = 0.α 1 α 2 • • • , p = 0.β 1 β 2 • • • . Then the map (x, p) → κ B (x, p) is equivalent with the shift to the left on the bi-infinite sequence • • • β 2 β 1 • α 1 α 2 • • • .
This conjugacy allows to easily identify all periodic orbits, construct a large set of nontrivial invariant probability measures, and prove that the map is ergodic and mixing w.r.t. these measures. All trajectories not meeting the discontinuity lines are uniformly hyperbolic. Simple canonical maps have also be defined on the 2-sphere phase space (like the kicked top), but their chaotic properties have, to my knowledge, not been rigorously proven. Their quantization has been intensively investigated, mostly numerically [START_REF] Haake | Quantum Signatures of Chaos[END_REF].

Quantum maps on the 2-dimensional torus

As opposed to the case of Hamiltonian flows, there is no natural rule to quantize a canonical map on a compact phase space P. Already, associating a quantum Hilbert space to this phase space is not obvious. Therefore, from the very beginning, quantum maps have been defined through somewhat arbitrary (or rather, ad hoc) procedures, often specific to the considered map κ : P → P. Still these recipes are always required to satisfy a certain number of properties:

• one needs a sequence of Hilbert spaces (H N ) N ∈N of dimensions N. Here N is interpreted as the inverse of Planck's constant, in agreement with the heuristics that each quantum state occupies a volume d in phase space. We also want to quantize observables f ∈ C(P) into hermitian operators fN on H N .

• For each N ≥ 1, the quantization of κ is given by a unitary propagator U N (κ) acting on H N . The whole family (U N (κ)) N ≥1 is called the quantum map associated with κ.

• in the semiclassical limit N ∼ -1 → ∞, this propagator satisfies some form of quantum-classical correspondence. Namely, for some (large enough) family of observables f on P, we should have

∀n ∈ Z, U -n N fN U n N = (f • κ n ) N + O n (N -1 ) as N → ∞. (14) 
The condition ( 14) is the analogue of the Egorov property (4) satisfied by the propagator U associated with a quantum Hamiltonian, which quantizes the stroboscopic map x → Φ 1 H (x). Let us briefly summarize the explicit construction of the quantizations U N (κ), for the maps κ : T 2 → T 2 presented in the previous section. Let us start by constructing the quantum Hilbert space. One can see T 2 as the quotient of the phase space T * R = R 2 by the discrete tranlations x → x+n, n ∈ Z 2 . Hence, it is natural to construct quantum states on T 2 by starting from states ψ ∈ S ′ (R), and requiring the following periodicity properties

ψ(x + n 1 ) = ψ(x), (F ψ)(p + n 2 ) = (F ψ)(p), n 1 , n 2 ∈ Z.
It turns out that these two conditions can be satisfied only if = (2πN) -1 , N ∈ N, and the corresponding distributions then form a vector space H N of dimension N. A basis of this space is given by the Dirac combs

e ℓ (x) = 1 √ N ν∈Z δ(x - ℓ N -ν), ℓ = 0, . . . , N -1 . (15) 
It is natural to equip H N with the hermitian structure for which the basis {e ℓ , ℓ = 0, . . . , N -1} is orthonormal. The components of a vector ψ ∈ H N in this "position basis" will be denoted by ψ(ℓ/N) = e ℓ , ψ .

Let us now explain how the symplectomorpisms κ S are quantized [START_REF] Hannay | Quantization of linear maps -Fresnel diffraction by a periodic grating[END_REF]. Given a unimodular matrix S, its action on R 2 can be generated by a quadratic polynomial H S (x, p); this action can thus be quantized into the unitary operator U (S) = exp(-i ĤS, / ) on L 2 (R). This operator also acts on distributions S ′ (R), and in particular on the finite subspace H N . Provided the matrix S satisfies some "checkerboard condition", one can show (using group theory) that the action of U (S) on H N preserves that space, and acts on it through a unitary matrix U N (S). The family of matrices (U N (S)) N ≥1 defines the quantization of the map κ S on T 2 . Group theory also implies that an exact quantum-classical correspondence holds (that is, the remainder term in ( 14) vanishes), and has other important consequences regarding the operators U N = U N (κ S ) (for each N the matrix U N is periodic, of period T N ≤ 2N). Explicit expressions for the matrices U N (S) can be worked out, they depends sensitively on the factorization into primes of the integer N.

The construction of the quantized baker's map (13) proceeds differently. An Ansatz was proposed by Balasz-Voros [START_REF] Balasz | The quantized baker's transformation[END_REF], which takes the following form in the basis (15)3 :

U N (κ B ) = F * N F N/2 F N/2 , ( 16 
)
where F N is the N-dimensional discrete Fourier transform. This Ansatz is obviously unitary. It was obtained by discretizing the phases e iϕ(p ′ ,x)/ , where the function ϕ(p ′ , x) locally generates4 the map [START_REF] Balasz | The quantized baker's transformation[END_REF]. A proof that the matrices U N (κ B ) satisfy the Egorov property ( 14) was given in [START_REF] Degli Esposti | Quantum variance and ergodicity for the baker's map[END_REF].

Once we have constructed the matrices U N (κ) associated with a chaotic map κ, their eigenstates {ψ N,j , j = 1, . . . , N} enjoy the rôle of quantum chaotic eigenstates. They are of quite different nature from the eigenstates of the Laplacian on a manifold or a billiard: while the latter belong to L 2 (M) or L 2 (Ω) (and are actually smooth functions), the eigenstates ψ N,j are N-dimensional vectors. Still, part of "quantum chaos" has consisted in developing common tools to analyze these eigenstates, in spite of the different functional settings.

Macroscopic description of the eigenstates

In this section we study the macroscopic localization properties of chaotic eigenstates. Most of the results are mathematically rigorous. In the case of the semiclassical Laplacian (8) on a billiard Ω we ask the following question: Consider a sequence (ψ ) →0 of normalized eigenstates of Ĥ , with energies E ≈ 1/2. For A ⊂ Ω a fixed subdomain, what is the probability that the particle described by the stationary state ψ lies inside A? How do the probability weights A |ψ (x)| 2 dx behave when → 0? This question is quite natural, when contemplating eigenstate plots like in Fig. 1.

Here, by macroscopic we mean that the domain A is kept fixed while → 0.

One can obviously generalize the question to integrals of the type Ω f (x) |ψ (x)| 2 dx, with f (x) a continuous test function on Ω. Assuming the volume of Ω is normalized, this integral can be interpreted as the quantum average5 ψ , f ψ , where the quantum observable f is just the multiplication operator by f (x). It proves useful to extend the question to phase space observables f (x, p) 6 : what is the behaviour of the quantum averages

µ W ψ (f ) def = ψ , f ψ , f ∈ C ∞ (T * Ω) , in the limit → 0? (17) 
Since the quantization procedure f → f is linear, these averages define a distribution µ W ψ = W ψ (x) dx on T * Ω, called the Wigner distribution of the state ψ (the density W ψ (x) is called the Wigner function). Although this distribution is generally not positive, it is interpreted as a quasi-probability density describing the state ψ in phase space.

On the euclidean space, one can define a nonnegative phase space density associated to the state ψ : the Husimi measure (and function):

µ H ψ = H ψ (x) dx, H ψ (x) = (2π ) -d/2 | ϕ x , ψ | 2 , ( 18 
)
where the Gaussian wavepackets ϕ x ∈ L 2 (R d ) are defined in [START_REF] Bleher | Universality and scaling of correlations between zeros on complex manifolds[END_REF]. This measure can also be obtained by convolution of µ W ψ with the Gaussian kernel e -|x-y| 2 / . In these notes our phase space plots show Husimi functions.

These questions lead us to the notion of phase space localization, or microlocalization 7 . We will say that the family of states (ψ ) is microlocalized inside a set B ⊂ T * Ω if, for any smooth observable f (x, p) vanishing near B, the quantum averages ψ , f ψ decrease faster than any power of when → 0.

Microlocal properties are not easy to guess from plots of the spatial density |ψ j (x)| 2 like in Fig. 1, but they are natural to study if we want to connect quantum to classical mechanics, since the latter takes place in phase space rather than in position space. Indeed, the major tool we will use is the quantum-classical correspondence (4); for all the flows we consider, a generic spatial test function f (x) evolves through Φ t into a genuine phase space function f t (x, p). Microlocal properties are easier to visualize on 2-dimensional phase spaces (see below the figures on the 2-torus).

The case of completely integrable systems

In order to motivate our further discussion of chaotic eigenstates, let us first recall a few facts about the antipodal systems, namely completely integrable Hamiltonian flows. For such systems, the energy shell E E is foliated by d-dimensional invariant Lagrangian tori. Each such torus is characterized by the values of d independent invariant actions I 1 , . . . , I d , so let us call such a torus T I . The WKB theory allows one to explicitly construct, in the semiclassical limit, precise quasimodes of Ĥ associated with some of these tori8 , that is normalized states

ψ I = ψ , I satisfying Ĥ ψ I = E I ψ I + O( ∞ ), (19) 
with energies E I ≈ E. Such a Lagrangian (or WKB) state ψ I takes the following form (away from caustics):

ψ I (x) = L ℓ=1 A ℓ (x; ) exp(iS ℓ (x)/ ) . ( 20 
)
Here the functions S ℓ (x) are (local) generating functions9 for T I , and each

A ℓ (x; ) = A 0 ℓ (x) + A 1 ℓ (x) + • • • is a smooth amplitude.
From this explicit expression one can check that the state ψ I is microlocalized on T I . On the other hand, our knowledge of ψ is much more precise than the latter fact; indeed, one can easily construct states microlocalized on T I , which are very different from the Lagrangian states ψ I . For instance, for any point x 0 = (x 0 , p 0 ) ∈ T I the Gaussian wavepacket (or coherent state)

ϕ x 0 (x) = (π ) -1/4 e -|x-x 0 | 2 /2 e ip 0 •x/ (21)
is microlocalized on the single point x 0 , and therefore on T I . This example just reflects the fact that a statement about microlocalization of a sequence of states provides much less information than a formula like [START_REF] Berry | Statistics of nodal lines and points in chaotic quantum billiards: perimeter corrections, fluctuations, curvature[END_REF]. 

Quantum ergodicity

In the case of a fully chaotic system, there is no explicit formula describing the eigenstates, or even the quasimodes, of Ĥ . However, macroscopic informations on the eigenstates can be obtained indirectly, using the quantum-classical correspondence.

The main result on this question is a quantum analogue of the ergodicity property (6) of the classical flow, and it is a consequence of this property. For this reason, it has been named Quantum Ergodicity by Zelditch. Loosely speaking, this property states that almost all eigenstates ψ with E ≈ E will become equidistributed on the energy shell E E , in the semiclassical limit, provided the classical flow on E E is ergodic. We give below the version of the theorem in the case of the Laplacian on a compact riemannian manifold, using the notations of (9).

Theorem 1 [Quantum ergodicity] Assume the geodesic flow on (M, g) is ergodic w.r.to the Liouville measure. Then, for any orthonormal eigenbasis (ψ j ) j≥0 of the Laplacian, there exists a subsequence S ⊂ N of density 1 (that is, lim J→∞

#(S∩[1,J]) J = 1), such that ∀f ∈ C ∞ c (M), lim j∈S,j→∞ ψ j , f j ψ j = E f (x, p) dµ L (x, p) ,
where µ L is the normalized Liouville measure on E = E 1/2 , and j = k -1 j the inverse wavevector of ψ j .

The statement of this theorem was first given by Schnirelman (using test functions f (x)) [START_REF] Schnirelman | Ergodic properties of eigenfunctions[END_REF], the complete proof was obtained by Zelditch in the case of manifolds of constant negative curvature Γ\H [START_REF] Zelditch | Uniform distribution of the eigenfunctions on compact hyperbolic surfaces[END_REF], and the general case was then proved by Colin de Verdière [START_REF] De Verdière | Ergodicité et fonctions propres du Laplacien[END_REF]. This theorem is "robust": it has been extended to • quantum ergodic billiards [START_REF] Gérard | Ergodic properties of eigenfunctions for the Dirichlet problem[END_REF][START_REF] Zelditch | Ergodicity of eigenfunctions for ergodic billiards[END_REF] • quantum Hamiltonians Ĥ , such that the flow Φ t H is ergodic on E E in some energy interval [START_REF] Helffer | Ergodicité et limite semi-classique[END_REF] • quantized ergodic diffeomorphisms on the torus [START_REF] Bouzouina | Equipartition of the eigenfunctions of quantized ergodic maps on the torus[END_REF] or on more general compact phase spaces [START_REF] Zelditch | Index and dynamics of quantized contact transformations[END_REF] • a general framework of C * dynamical systems [START_REF] Zelditch | Quantum ergodicity of C* dynamical systems[END_REF] • a family of quantized ergodic maps with discontinuities [START_REF] Marklof | Weyl's law and quantum ergodicity for maps with divided phase space; appendix by S. Zelditch Converse quantum ergodicity[END_REF], in particular the baker's map [START_REF] Degli Esposti | Quantum variance and ergodicity for the baker's map[END_REF] • certain quantum graphs [START_REF] Berkolaiko | Quantum ergodicity for graphs related to interval maps[END_REF] Let us sketch the proof of the above theorem. We want to study the statistical distribution of the matrix elements µ W j (f ) = ψ j , f j ψ j in the range {k j ≤ K}, with K ≫ 1. The first step is to estimate the average of this distribution. It is estimated by the generalized Weyl law:

k j ≤K µ j (f ) ∼ Vol(M)σ d (2π) d K d E f dµ L , K → ∞ , (22) 
where σ d is the volume of the unit ball in R d [START_REF] Hörmander | The spectral function for an elliptic operator[END_REF]. In particular, this asymptotics allows to count the number of eigenvalues k j ≤ K:

#{k j ≤ K} ∼ Vol(M)σ d (2π) d K d , K → ∞, (23) 
and shows that the average of the distribution {µ W j (f ), k j ≤ K} converges to the phase space average µ L (f ) when K → ∞. Now, we want to show that the distribution is concentrated around its average. This can be done by estimating its variance

Var K (f ) def = 1 #{k j ≤ K} k j ≤K | ψ j , ( f j -µ L (f ))ψ j | 2 ,
which is often called the quantum variance. Because the ψ j are eigenstates of the propagator U t , we may replace f j by its time average up to some large time T ,

fT, j = 1 2T T -T U -t j f j U t j dt ,
without modifying the matrix elements. Then we apply the Cauchy-Schwarz inequality:

| ψ j , Aψ j | 2 ≤ ψ j , A * Aψ , for any bounded operator A,
to get the following upper bound for the variance:

Var K (f ) ≤ 1 #{k j ≤ K} k j ≤K ψ j , ( fT, j -µ L (f )) * ( fT, j -µ L (f ))ψ j .
The Egorov theorem [START_REF] Anantharaman | Entropy of eigenfunctions[END_REF] shows that the product operator on the right hand side is approximatly equal to the quantization of the function

|f T -µ L (f )| 2
, where f T is the time average of the classical observable f . Applying the generalized Weyl law [START_REF] Blum | Nodal Domains Statistics: a criterium for quantum chaos[END_REF] to this function, we get

Var K (f ) ≤ µ L (|f T -µ L (f )| 2 ) + O T (K -1 ) , K → ∞.
Finally, the ergodicity of the classical flow implies that µ L (|f Tµ L (f )| 2 ) converges to zero when T → ∞. By taking T , and then K, large enough, the above right hand side can be made arbitrary small. This proves that the quantum variance Var K (f ) converges to zero when K → ∞. A standard Chebychev argument is then used to extract a dense subsequence such that ψ , f ψ → µ L (f ), and a final diagonal extraction procedure yields a dense subsequence enjoying the same property for all smooth observables. A more detailed discussion on the quantum variance and the distribution of matrix elements {µ j (f ), k j ≤ K} will be given in §4.1.3. Quantum ergodicity can be conveniently expressed by using the concept of semiclassical measure. Remember that, using a duality argument, we associate to each eigenstates ψ j a Wigner distribution µ W j on phase space. The quantum ergodicity theorem 1 can be rephrased as follows:

There exists a density-1 subsequence S ⊂ N, such that the sequences of Wigner distributions (µ W j ) j∈S weak- * (or vaguely) converges to the Liouville measure on E.

For any compact riemannian manifold (M, g), the sequence of Wigner distributions (µ W j ) j∈N remains in a compact set in the weak- * topology, so it is always possible to extract an infinite subsequence (µ j ) j∈S vaguely converging to a limit distribution µ sc , that is

∀f ∈ C ∞ c (T * M), lim j∈S,j→∞ f dµ W j = f dµ sc .
Such a limit distribution is necessarily a probability measure on E, and is called a semiclassical measure of the manifold M. The quantum-classical correspondence implies that µ sc is invariant through the geodesic flow: (Φ t ) * µ sc = µ sc . The semiclassical measure µ sc represents the asymptotic (macroscopic) phase space distribution of the eigenstates (ψ j ) j∈S . It is the major tool used in the mathematical literature on chaotic eigenstates (see below). The definition can be obviously generalized to any quantized Hamiltonian flow or canonical map.

Quantum Unique Ergodicity conjecture

The quantum ergodicity theorem provides an incomplete information, which leads to the following question:

Question 1 Do all eigenstates become equidistributed in the semiclassical limit? Equivalently, is the Liouville measure the unique semiclassical measure for the manifold M? On the opposite, are there exceptional subsequences converging to a semiclassical measure µ sc = µ L ?

This question makes sense if the geodesic flow admits invariant measures different from µ L (that is, the flow is not uniquely ergodic). Our central example, manifolds of negative curvature, admit many different invariant measures, e.g. the singular measures µ γ supported on each of the (countably many) periodic geodesics γ.

This question was already raised in [START_REF] De Verdière | Ergodicité et fonctions propres du Laplacien[END_REF], where the author conjectured that no subsequence of eigenstates can concentrate along a single periodic geodesic, in other words µ γ cannot be a semiclassical measure. Such an unlikely subsequence was later called a strong scar by Rudnick and Sarnak [START_REF] Rudnick | The behaviour of eigenstates of arithmetic hyperbolic manifolds[END_REF], in reference to the scars discovered by Heller on the stadium billiard (see §4.2). In the same paper the authors formulated a stronger conjecture:

Conjecture 1 [Quantum unique ergodicity] Let (M, g) be a compact riemannian manifold with negative sectional curvature. Then all high-frequency eigenstates of the Laplacian become equidistributed with respect to the Liouville measure. Equivalently, the latter is the unique semiclassical measure of M.

The term quantum unique ergodicity refers to the notion of unique ergodicity in ergodic theory: a system is uniquely ergodic system if it admits unique invariant probability measure. The geodesic flow we are considering admits many invariant measures, but the conjecture states that the corresponding quantum system selects only one of them.

Arithmetic quantum unique ergodicity

The QUE conjecture was motivated by the following result obtained in the cited article. Let us recall that any invariant measure can be decomposed into a convex combination of ergodic invariant measures:

µ = Erg µ e dν(e) , (24) 
where {µ e , e ∈ Erg} span the set of ergodic probability measure, and ν is a probability measure over this set. The authors specifically considered arithmetic surfaces, obtained by quotienting the Poincaré disk H by certain congruent co-compact lattices Γ. As explained in §2.4.2, on such a surface it is natural to consider Hecke eigenstates, which are joint eigenstates of the Laplacian and the (countably many) Hecke operators 10 . It was shown in [START_REF] Rudnick | The behaviour of eigenstates of arithmetic hyperbolic manifolds[END_REF] that for any semiclassical measure µ sc associated with a sequence of Hecke eigenstates, the ergodic decomposition (24) of µ sc does not charge any ergodic component µ γ associated with a periodic geodesic. The methods of [START_REF] Rudnick | The behaviour of eigenstates of arithmetic hyperbolic manifolds[END_REF] were refined by Bourgain and Lindenstrauss [START_REF] Bourgain | Entropy of quantum limits[END_REF], who showed that the measure µ sc of an ǫ-thin tube along any geodesic segment is bounded from above by C ǫ 2/9 ; this bound implies that the Kolmogorov-Sinai entropy11 of almost every ergodic component of µ sc is bounded from below by 2/9. Finally, using advanced ergodic theory methods, Lindenstrauss completed the proof of the QUE conjecture in the arithmetic context.

Theorem 2 [Arithmetic QUE][72]

Let M = Γ\H be an arithmetic12 surface of constant negative curvature. Consider an eigenbasis (ψ j ) j∈N of Hecke eigenstates of ∆ M . Then, the only semiclassical measure associated with this sequence is the Liouville measure.

Lindenstrauss and Brooks recently improved this theorem [START_REF] Brooks | Graph Eigenfunctions and Quantum Unique Ergodicity C[END_REF][START_REF] Brooks | Joint Quasimodes, Positive Entropy, and Quantum Unique Ergodicity[END_REF]: the QUE result holds true, assuming the (ψ j ) are joint eigenstates of the Laplacian and of a (nonelementary) single Hecke operator. Their proof uses a new delocalization estimate for regular graphs [START_REF] Brooks | Non-localization of eigenfunctions on large regular graphs[END_REF], which yields the same positive entropy results as in [START_REF] Bourgain | Entropy of quantum limits[END_REF].

This arithmetic QUE result was preceded by a similar statement for the hyperbolic symplectomorphisms on T 2 introduced in §2.5.1. These quantum maps U N (S 0 ) have the nongeneric property to be periodic, so one has an explicit expression for their eigenstates. It was shown in [START_REF] Degli Esposti | Classical limit of the quantized hyperbolic toral automorphisms[END_REF] that for a certain family hyperbolic matrices S 0 and certain sequences of prime values of N, all the eigenstates of U N (S 0 ) become equidistributed in the semiclassical limit, with an explicit bound on the rate of equidistribution; they used explicit expressions for the eigenstates, in terms of certain exponential sums. Some eigenstates, corresponding to the matrix S DEGI = 2 1 3 2 are plotted in Fig. 8, using the Husimi representation on T 2 . A few years later, Kurlberg and Rudnick [START_REF] Kurlberg | On quantum ergodicity for linear maps of the torus[END_REF]showed that this equidistribution holds true provided the period of the propagator U N (S 0 ) is large enough 13 , which happens to be the case for almost all integers N in the limit N → ∞.

A little earlier [START_REF] Kurlberg | Hecke theory and equidistribution for the quantization of linear maps of the torus[END_REF], they had constructed, attached to a given symplectomorphism S 0 and any value of N, a finite commutative family of operators {U N (S ′ )S ′ ∈ C(S 0 , N)} including U N (S 0 ), which they called "Hecke operators" by analogy with the case of arithmetic surfaces. They then considered specifically the joint ("Hecke") eigenbases of this family, and proved QUE in this "arithmetic setting":

Theorem 3 [START_REF] Kurlberg | Hecke theory and equidistribution for the quantization of linear maps of the torus[END_REF] Let S 0 ∈ SL 2 (Z) be a quantizable symplectic matrix. For each N > 0, consider a Hecke eigenbasis (ψ N,j ) j=1,...,N of the quantum map U N (S 0 ). Then, for any observable f ∈ C ∞ (T 2 ) and any ǫ > 0, we have

ψ N,j , fN ψ N,j = f dµ L + O f,ǫ (N -1/4+ǫ ),
where µ L is the Liouville (or Lebesgue) measure on T 2 .

The eigenstates considered in [START_REF] Degli Esposti | Classical limit of the quantized hyperbolic toral automorphisms[END_REF] were already particular instances of these Hecke eigenstates.

In view of these positive results, it is tempting to generalize the QUE conjecture to other chaotic systems.

Conjecture 2 [Generalized QUE] Let Φ t H be an ergodic Hamiltonian flow on some energy shell E E . Then, all eigenstates ψ ,j of Ĥ of energies E ,j ≈ E become equidistributed when → 0.

Let κ be a canonical ergodic map on T 2 , and (U N (κ)) N ∈N an associated quantum map. Then, all the eigenstates of U N (κ) become equidistributed on T 2 when N → ∞.

An intensive numerical study for eigenstates of a Sinai-like billiard was carried on by Barnett [START_REF] Barnett | Asymptotic rate of quantum ergodicity in chaotic Euclidean billiards[END_REF]. It seems to confirm QUE for this system.

In the next subsection we will exhibit particular systems for which this conjecture fails. In this section we will exhibit sequences of eigenstates of certain quantized chaotic maps, converging to semiclassical measures different from µ L , thus disproving the above conjecture.

Let us continue our discussion of symplectomorphisms on T 2 . We recall that for any N ≥ 1, the quantized symplectomorphism U N (S 0 ) is periodic (up to a global phase) of period T N ≤ 3N, so that its eigenvalues are essentially T N -roots of unity. For values of N such that T N ≪ N, the spectrum of U N (S 0 ) is very degenerate, in which case imposing the eigenstates to be of Hecke type becomes a strong requirement. We already mentioned that, provided the period is not too small (namely, T N ≫ N 1/2+ǫ , which is the case for almost all values of N), then QUE holds for any eigenbasis [START_REF] Kurlberg | On quantum ergodicity for linear maps of the torus[END_REF]. On the opposite, there exist (sparse) values of N, for which the period can be as small as T N ∼ C log N, so that the eigenspaces have huge dimensions ∼ C -1 N/ log N. This freedom allowed Faure, De Bièvre and the author to explicitly construct eigenstates with different localization properties [START_REF] Faure | Scarred eigenstates for quantum cat maps of minimal periods[END_REF][START_REF] Faure | On the maximal scarring for quantum cat map eigenstates[END_REF].

Theorem 4 Take S 0 ∈ SL 2 (Z) a (quantizable) hyperbolic matrix. Then, there exists an infinite (sparse) sequence S ⊂ N such that, for any periodic orbit γ of κ S 0 , one can construct a sequence of eigenstates (ψ N ) N ∈S of U N (S 0 ) associated with the semiclassical measure

µ sc = 1 2 µ γ + 1 2 µ L . ( 25 
)
More generally, for any κ S 0 -invariant measure µ inv , one can construct sequences of ). Center, right: two eigenstates of the Walsh-quantized baker's map (we plot their "Walsh-Husimi density"); the corresponding semiclassical measures are purely fractal (Repr. from [START_REF] Anantharaman | Entropy of Semiclassical Measures of the Walsh-Quantized Baker's Map[END_REF]).

eigenstates associated with the semiclassical measure

µ sc = 1 2 µ inv + 1 2 µ L .
This result provided the first counterexample to the generalized QUE conjecture. The eigenstates "converging to" 1 2 µ γ + 1 2 µ L can be called half-scarred. The coefficient 1/2 in front of the singular component of µ γ was shown to be optimal [START_REF] Faure | On the maximal scarring for quantum cat map eigenstates[END_REF], a phenomenon which was then better understood when considering the entropy of µ sc (see §3.4).

Let us briefly explain the construction of eigenstates half-scarred on a fixed point γ = {x 0 } of κ S 0 . They are obtained by projecting on any eigenspace the Gaussian wavepacket ϕ x 0 (see [START_REF] Bleher | Universality and scaling of correlations between zeros on complex manifolds[END_REF]). Each spectral projection can be expressed as a linear combination of the evolved states U N (S 0 ) n ϕ x 0 , for n ∈ [-T N /2, T N /2 -1]. Now, we use the fact that, for N in an infinite subsequence S ⊂ N, the period T N of the operator U N (S 0 ) is approximately the double of the Ehrenfest time

T E = log -1 λ , (26) 
(here λ is the positive Lyapunov exponent). The above linear combination can be split in two components: during the time range n ∈ [-T E /2, T E /2] the states U N (S 0 ) n ϕ x 0 remain microlocalized at the origin; on the opposite, for times T E /2 < |n| ≤ T E , these states expand along long stretches of stable/unstable manifolds, and densely fill the torus. As a result, the sum of these two components is half-localized, half-equidistributed. In Fig. 9 (left) we plot the Husimi density associated with one half-localized eigenstate of the quantum cat map U N (S cat ).

A nonstandard (Walsh-) quantization of the 2-baker's map was constructed in [START_REF] Anantharaman | Entropy of Semiclassical Measures of the Walsh-Quantized Baker's Map[END_REF], with properties similar to the above quantum cat map. It allows to exhibit semiclassical measures 1 2 µ γ + 1 2 µ L as in the above case, but also purely fractal semiclassical measures void of any Liouville component (see Fig. 9).

Studying hyperbolic toral symplectomorphisms on T 2d for d ≥ 2, Kelmer [START_REF] Kelmer | Arithmetic quantum unique ergodicity for symplectic linear maps of the multidimensional torus[END_REF] identified eigenstates microlocalized on a proper subtorus of dimension ≥ d. He extended his analysis to certain nonlinear perturbations of κ S 0 . Other very explicit counterexamples to generalized QUE were constructed in [START_REF] Chang | Quantisations of Piecewise Parabolic Maps on the Torus and their Quantum Limits[END_REF], based on intervalexchange maps of the interval (such maps are ergodic, but have zero Lyapunov exponents). The only counterexample to (generalized) QUE in the case of a chaotic flow concerns the stadium billiard, or surfaces with similar dynamical properties. This billiard admits a 1-dimensional family of marginally stable periodic orbits, the so-called bouncing-ball orbits hitting the horizontal sides of the stadium orthogonally (these orbits form a set of Liouville measure zero, so they do not prevent the flow from being ergodic). In 1984 Heller [START_REF] Heller | Bound-state eigenfunctions of classically chaotic hamiltonian systems: scars of periodic orbits[END_REF] had observed that some eigenstates are concentrated in the rectangular region (see Fig. 10). These states were baptized bouncing-ball modes, and studied both numerically and theoretically [START_REF] Heller | Quantum localization for a strongly classically chaotic system[END_REF][START_REF] Bäcker | On the number of bouncing ball modes in billiards[END_REF]. In particular, the relative number of these modes becomes negligible in the limit K → ∞, so they are still compatible with quantum ergodicity. Yet, no rigorous existence result of these modes was known, until Hassell proved that some high-frequency eigenstates of (some) stadia indeed have a positive mass on the bouncing ball orbits. To state his result, let us parametrize the shape of a stadium billiard by the ratio β between the length and the height of the rectangle.

Theorem 5 [START_REF] Hassell | Ergodic billiards that are not quantum unique ergodic, with an appendix by A[END_REF] For any ǫ > 0, there exists a subset B ǫ ⊂ [1, 2] of measure ≥ 1 -4ǫ and a number m(ǫ) > 0 such that, for any β ∈ B ǫ , the β-stadium admits a semiclassical measure with a weight ≥ m(ǫ) on the bouncing-ball orbits.

Although the theorem only guarantees that a fraction m(ǫ) of the semiclassical measure is localized along the bouncing-ball orbits, the numerical studies suggest that some modes are asymptotically fully concentrated on these orbits. Besides, such modes are expected to exist for all ratios β > 0. 

Entropy of the semiclassical measures

To end this section on the macroscopic properties of eigenfunctions, let us mention a recent approach allowing to constrain the semiclassical measures occurring in a chaotic system. This approach, initiated by Anantharaman [START_REF] Anantharaman | Entropy and the localization of eigenfunctions[END_REF], consists in proving nontrivial lower bounds for the Kolmogorov-Sinai (KS) entropy of semiclassical measures, using the dispersion property of the Schrödinger equation induced by the hyperbolicity of the geodesic flow. The KS entropy is a common tool in classical dynamical systems [START_REF] Katok | Introduction to the modern theory of dynamical systems[END_REF]. To be brief, the entropy H KS (µ) of a Φ t -invariant probability measure µ is a nonnegative number which quantifies the information-theoretic complexity of µ-typical trajectories. As such it does not direcly measure the localization of µ, but gives some information about it. Here are some relevant properties:

• the measure µ γ supported on a single periodic orbit γ has entropy zero.

• for an Anosov system (flow or diffeomorphism), the entropy is connected to the unstable Jacobian J u (x) (see Fig. 3) through the Ruelle-Pesin formula:

∀µ invariant, H KS (µ) ≤ log J u (x) dµ(x), (27) 
with equality iff µ is the Liouville measure.

• the entropy is an affine function on the set of probability measures:

H KS αµ 1 + (1 -α)µ 2 = αH KS (µ 1 ) + (1 -α)H KS (µ 2 ).
In particular, the invariant measure αµ γ + (1α)µ L of a hyperbolic symplectomorphism S has entropy (1α)λ, where λ is the positive Lyapunov exponent.

Anantharaman considered the case of geodesic flows on manifolds M of negative curvature, see §2.4.2. She proved the following constraint on the semiclassical measures of M:

Theorem 6 [START_REF] Anantharaman | Entropy and the localization of eigenfunctions[END_REF] Let (M, g) be a smooth compact riemannian manifold of negative sectional curvature. Then there exists c > 0 such that any semiclassical measure µ sc of (M, g) satisfies H KS (µ sc ) ≥ c.

In particular, this result forbids semiclassical measures from being convex combinations of measures µ γ i supported on periodic geodesics. A more quantitative lower bound was obtained in [START_REF] Anantharaman | Entropy of Semiclassical Measures of the Walsh-Quantized Baker's Map[END_REF][START_REF] Anantharaman | Entropy of eigenfunctions[END_REF], related with the instability of the flow.

Theorem 7 [START_REF] Anantharaman | Entropy of eigenfunctions[END_REF]Under the same assumptions as above, any semiclassical measure must satisfy

H KS (µ sc ) ≥ log J u dµ sc - (d -1)λ max 2 , (28) 
where d = dim M and λ max is the maximal expansion rate of the flow.

This lower bound was generalized to the case of the Walsh-quantized baker's map [START_REF] Anantharaman | Entropy of Semiclassical Measures of the Walsh-Quantized Baker's Map[END_REF], and the hyperbolic symplectomorphisms on T 2 [START_REF] Brooks | On the entropy of quantum limits for 2-dimensional cat maps[END_REF][START_REF] Nonnenmacher | Entropy of chaotic eigenstates[END_REF], where it takes the form H KS (µ sc ) ≥ λ 2 . For these maps, the bound is saturated by the half-localized semiclassical measures 1 2 (µ γ + µ L ). The bound (28) is certainly not optimal in cases of variable curvature. Indeed, the right hand side may become negative when the curvature varies too much. A more natural lower bound has been obtained by Rivière in two dimensions:

Theorem 8 [START_REF] Rivière | Entropy of semiclassical measures in dimension 2[END_REF][START_REF] Rivière | Entropy of semiclassical measures for nonpositively curved surfaces[END_REF]Let (M, g) be a compact riemannian surface of nonpositive sectional curvature. Then any semiclassical measure satisfies

H KS (µ sc ) ≥ 1 2 λ + dµ sc , (29) 
where λ + is the positive Lyapunov exponent.

The same lower bound was obtained by Gutkin for a family of nonsymmetric baker's map [START_REF] Gutkin | Entropic bounds on semiclassical measures for quantized onedimensional maps[END_REF]; he also showed that the bound is optimal for that system. The lower bound ( 29) is also expected to hold for ergodic billiards, like the stadium; it would not contradict the existence of semiclassical measures supported on the bouncing ball orbits.

For higher dimensional Anosov systems, one may conjecture [START_REF] Anantharaman | Entropy and the localization of eigenfunctions[END_REF][START_REF] Anantharaman | Half-delocalization of eigenfunctions of the laplacian on an Anosov manifold[END_REF] the lower bound

H KS (µ sc ) ≥ 1 2 log J u dµ sc . (30) 
Kelmer's counterexamples [START_REF] Kelmer | Arithmetic quantum unique ergodicity for symplectic linear maps of the multidimensional torus[END_REF] show that this bound may be saturated for certain Anosov diffeomorphisms on T 2d . In the case of quantized symplectomorphisms on T 2d (nonnecessarily hyperbolic ones), Rivière [START_REF] Rivière | Entropy of semiclassical measures for symplectic linear maps of the multidimensional torus[END_REF] recently obtained a lower bound of the form

H KS (µ sc ) ≥ β∈Spec S max log |β| -λ max /2, 0 ,
which is sharper than ( 28), but generally weaker than the conjectured bound [START_REF] Brooks | Non-localization of eigenfunctions on large regular graphs[END_REF] in the hyperbolic (Anosov) case.

In view of the Pesin-Ruelle inequality [START_REF] Bourgain | Entropy of quantum limits[END_REF], we notice that the QUE conjecture 1 amounts to improving the entropic lower bound [START_REF] Bouzouina | Equipartition of the eigenfunctions of quantized ergodic maps on the torus[END_REF], or even the conjecture [START_REF] Brooks | Non-localization of eigenfunctions on large regular graphs[END_REF], to H KS (µ sc ) ≥ log J u dµ sc .

Statistical description

The macroscopic distribution properties described in the previous section give a poor description of the eigenstates, compared with our knowledge of eigenmodes of integrable systems. At the practical level, one is interested in quantitative properties of the eigenmodes at finite values of . It is also desirable to understand their structure at the microscopic scale (the scale of the wavelength R ∼ ), or at least some mesoscopic scale ( ≪ R ≪ 1).

The results we will present are of two types. On the one hand, individual eigenfunctions will be analyzed statistically, e.g. by computing correlation functions or value distributions of various representations (position density, Husimi density). On the other hand, one can also perform a statistical study of a bunch of eigenfunctions (around some large wavevector K), for instance by studying how global indicators of localization (e.g. the norms ψ j L p ) are distributed. We will not attempt to review all possible statistical indicators, but only some "popular" ones.

Chaotic eigenstates as random states?

It has been realized quite early that the statistical properties of chaotic eigenstates (computed numerically) could be reproduced by considering instead random states. The latter are, so far, the best Ansatz we have to describe chaotic eigenstates. Yet, one should keep in mind that this Ansatz is of a different type from the WKB Ansatz pointwise describing individual eigenstates of integrable systems. By definition, random states only have a chance to capture the statistical properties of the chaotic eigenstates, but have no chance to approximate (in L 2 ) any individual eigenfunction. This "typicality" of chaotic eigenstates should of course be put in parallel with the typicality of spectral correlations, embodied by the Random matrix conjecture (see J.Keating's lecture).

A major open problem in quantum chaos is to prove this "typicality" of chaotic eigenstates. The question seems as open and difficult as the Random Matrix conjecture.

Spatial correlations

Let us now introduce the ensembles of random states. For simplicity we consider the Laplacian on a euclidean planar domain Ω with chaotic geodesic flow (say, the stadium billiard). As in [START_REF] Bäcker | On the number of bouncing ball modes in billiards[END_REF], we denote by k 2 j the eigenvalue of -∆ corresponding to the eigenmode ψ j .

Let us recall some history. Facing the absence of explicit expression for the eigenstates, Voros [101, §7] and Berry [START_REF] Berry | Regular and irregular semiclassical wave functions[END_REF] proposed to (brutally) approximate the Wigner measures µ W j of high-frequency eigenstates ψ j by the Liouville measure µ L on E. We've seen that this approximation is justified by the quantum ergodicity theorem, as long as one investigates macroscopic properties of this Wigner function. However, Berry [START_REF] Berry | Regular and irregular semiclassical wave functions[END_REF] also showed that this approximation provides nontrivial predictions for the microscopic correlations of the eigenfunctions ψ j . Indeed, a partial Fourier transform of the Wigner function leads to the autocorrelation function describing the short-distance oscillations of ψ. Let us define the correlation function by averaging over some distance R: in 2 dimensions,

C ψ,R (x, r) def = 1 πR 2 |y-x|≤R dy ψ * (y-r/2)ψ(y+r/2) = 1 πR 2 |y-x|≤R dy dp e -irp/ dµ W ψ (y, p) ,
and take R to be a mesoscopic scale k -1 j ≪ R ≤ 1 in order to average over many oscillations of ψ. Inserting µ L in the place of µ W ψ then provides a simple expression for this function in the range 0 ≤ |r| ≪ 1:

C ψ,R (x, r) ≈ J 0 (k|r|) Vol(Ω) . ( 31 
)
Such a homogeneous and isotropic expression could be expected from our approximation. Replacing the Wigner distribution by µ L suggests that, near each point x ∈ Ω, the eigenstate ψ is an equal mixture of particles of energy k 2 travelling in all possible directions.

A random state Ansatz

Yet, the Liouville measure µ L is NOT the Wigner distribution of any quantum state 14 . The next question is thus [START_REF] Voros | Asymptotic -expansions of stationary quantum states[END_REF]: can one exhibit a family of quantum states, the Wigner measures of which resemble µ L ? Equivalently, the microscopic correlations of which behave like (31)? To account for these isotropic correlations, Berry proposed the Ansatz of a random superposition of isoenergetic plane waves. One form of this Ansatz reads

ψ rand,k (x) = 2 N Vol(Ω) 1/2 ℜ N j=1 a j exp(kn j • x) , (32) 
where (n j ) j=1,...,N are unit vectors randomly distributed on the unit circle, while the coefficients (a j ) j=1,...,N are independent identically distributed (i.i.d.) complex normal Gaussian random variables. In order to span all possible velocity directions (within the uncertainty principle), one should include N ≈ k directions nj The normalization ensures that ψ rand,k L 2 (Ω) ≈ 1 with high probability when k ≫ 1.

Alternatively, one can replace the plane waves in (32) by circular-symmetric waves, namely Bessel functions. The random state then reads

ψ rand,k (r, θ) = (Vol(Ω)) -1/2 M m=-M b m J |m| (kr) e imθ , ( 33 
)
where the coefficients b m are i.i.d. complex Gaussian satisfying the symmetry b m = b * -m , and M ≈ k. Both these random ensembles asymptotically produce the same statistical results when k → ∞.

The random state ψ rand,k satisfies the equation (∆ + k 2 )ψ = 0 in the interior of Ω. Furthermore, it satisfies a "local quantum ergodicity" property: for any observable f (x, p) supported in the interior of T * Ω, the quantum average ψ rand,k , fk -1 ψ rand,k ≈ µ L (f ) with high probability (more is known about the statistics of these arerages, see §4. 1.3).

The stronger claim is that, in the interior of Ω, the local statistical properties of ψ rand,k , including microscopic ones, should be similar with those of the eigenstates ψ j with wavevectors k j ≈ k.

The correlation functions of eigenstates of chaotic planar billiards have been numerically studied, and compared with the random models, see e.g. [START_REF] Mcdonald | Wave chaos in the stadium: statistical properties of short-wave solutions of the Helmholtz equation[END_REF][START_REF] Bäcker | Autocorrelation function for eigenstates in chaotic and mixed systems[END_REF]. The agreement with [START_REF] Brooks | Graph Eigenfunctions and Quantum Unique Ergodicity C[END_REF] is fair for some eigenmodes, but not so good for others; in particular the authors observed some anisotropy in the "true" correlation functions, which may be related to some form of scarring (see §4.2), or to the bouncing-ball modes of the stadium billiard.

The value distribution of the random wavefunction [START_REF] Brooks | Joint Quasimodes, Positive Entropy, and Quantum Unique Ergodicity[END_REF] is Gaussian, and compares very well with numerical studies of eigenmodes of chaotic billiards [START_REF] Mcdonald | Wave chaos in the stadium: statistical properties of short-wave solutions of the Helmholtz equation[END_REF]. A similar analysis has been performed for eigenstates of the Laplacian on a compact surface of constant negative curvature [START_REF] Aurich | Statistical properties of highly excited quantum eigenstates of a strongly chaotic system[END_REF]. In this geometry the random Ansatz was defined in terms of adapted circular hyperbolic waves. The authors checked that the coefficients of the individual eigenfunctions, when expanded in these hyperbolic waves, are indeed Gaussian distributed. They also checked that the value distribution of individual eigenfunctions ψ j (x) is Gaussian to a good accuracy, without any exceptions.

On the distribution of quantum averages

The random state model also predicts the statistical distribution of the quantum averages ψ j , f ψ j , namely the average of the observable f w.r.to the Wigner distributions, µ W j (f ). The quantum variance estimate in the proof of Thm. 1 shows that the distribution of these averages becomes semiclassically concentrated around the classical value µ L (f ). Using a mixture of semiclassical and random matrix theory arguments, Feingold and Peres [START_REF] Feingold | Distribution of matrix elements of chaotic systems[END_REF] conjectured that, in the semiclassical limit, the quantum averages of eigenstates in a small energy window k j ∈ [1ǫ, 1 + ǫ] should be Gaussian distributed, with mean µ L (f ) and variance related with the classical variance of f . The latter is defined as the integral of the autocorrelation function C f,f (t) (see [START_REF] Aurich | On the rate of quantum ergodicity on hyperbolic surfaces and for billiards[END_REF]):

Var cl (f ) = R C f,f (t) dt .
A more precise semiclassical derivation [START_REF] Ekhardt | Approach to ergodicity in quantum wave functions[END_REF], using the Gutzwiller trace formula, and supported by numerical computations on several chaotic systems, confirmed both the Gaussian distribution of the quantum averages, and showed the following connection between quantum and classical variances (expressed in semiclassical notations):

Var (f ) ∼ g Var cl (f ) T H . ( 34 
)
Here g is a symmetry factor (g = 2 in presence of time reversal symmetry, g = 1 otherwise), and T H = 2π ρ is the Heisenberg time, where ρ is the smoothed density of states. In the case of the semiclassical Laplacian on a compact surface or a planar domain, the mean density ρ is drawn from Weyl's law ( 23), so we get

Var (f ) ∼ g Var cl (f )/ Vol(Ω)
Equivalently, the quantum variance corresponding to wavevectors k j ∈ [K, K + 1] is predicted to take the value (when K ≫ 1):

Var K (f ) ∼ g K Var cl (f ) Vol(Ω) . ( 35 
)
Successive numerical studies on chaotic euclidean billiards [START_REF] Bäcker | Rate of quantum ergodicity in Euclidean billiards[END_REF][START_REF] Barnett | Asymptotic rate of quantum ergodicity in chaotic Euclidean billiards[END_REF] and manifolds or billiards of negative curvature [START_REF] Aurich | On the rate of quantum ergodicity on hyperbolic surfaces and for billiards[END_REF] globally confirmed this prediction for the quantum variance, as well as the Gaussian distribution of the quantum averages at high frequency. Still, the convergence to this law can be slowed down for billiards admitting bouncing-ball eigenmodes, like the stadium billiard [START_REF] Bäcker | Rate of quantum ergodicity in Euclidean billiards[END_REF].

For a generic chaotic system, rigorous semiclassical methods could only prove logarithmic upper bounds for the quantum variance [START_REF] Schubert | Upper bounds on the rate of quantum ergodicity[END_REF],

Var (f ) ≤ C/| log | .
Schubert showed that this slow decay can be sharp for certain eigenbases of the quantum cat map, in the case of large spectral degeneracies [START_REF] Schubert | On the rate of quantum ergodicity for quantised maps[END_REF] (as we have seen in §3.3.4, such degeneracies are also responsible for the existence exceptionally localized eigenstates, so a large variance is not surprising).

The only systems for which an algebraic decay is proved are of arithmetic nature. Luo and Sarnak [START_REF] Luo | Quantum variance for Hecke eigenforms[END_REF], and then Zhao [START_REF] Zhao | Quantum Variance of Maass-Hecke cusp forms[END_REF] proved that, in the case of the modular domain M = SL 2 (Z)\H (a noncompact, finite volume arithmetic surface for which the Laplacian admits many L 2 eigenstates), the quantum variance corresponding to high-frequency Hecke eigenfunctions is of the form Var K (f ) = B(f ) K : the polynomial decay is the same as in [START_REF] Chang | Quantisations of Piecewise Parabolic Maps on the Torus and their Quantum Limits[END_REF], but the coefficient B(f ) is equal the classical variance "decorated" by an extra factor of arithmetic nature.

More precise results were obtained for quantum symplectomorphisms on the 2-torus. Kurlberg and Rudnick [START_REF] Kurlberg | On the distribution of matrix elements for the quantum cat map[END_REF] studied the distribution of quantum averages { √ N ψ N,j , fN ψ N,j , j = 1, . . . , N}, where the (ψ N,j ) form a Hecke eigenbasis of U N (S) (see §3.3.3). In the semiclassical limit N ≫ 1, the variance is asymptotically of the form B(f ) N , with B(f ) an "arithmetically decorated" classical variance. They also computd the fourth moment of the distribution, which suggests that the latter is not Gaussian, but given by a combination of several semicircle laws on [-2, 2] (or Sato-Tate distributions). The fifth moment was recently computed by Rosenzweig, and shown compatible with this conjecture [START_REF] Rosenzweig | On the Fluctuations of Matrix Elements of the Quantum Cat Map[END_REF]. The same semicircle law had been shown in [START_REF] Kurlberg | Value distribution for eigenfunctions of desymmetrized quantum maps[END_REF] to correspond to the asymptotic distribution of the (position) coefficients of the Hecke eigenstates, at least for N along a subsequence of "split primes".

Maxima of eigenfunctions

Another interesting quantity is the statistics of the maximal values of eigenfunctions, that is their L ∞ norms, or more generally their L p norms for p ∈ (2, ∞] (we always assume the eigenfunctions to be L 2 -normalized). The maxima belong to the far tail of the value distribution, so their behaviour is a priori uncorrelated with the Gaussian nature of the latter.

The random wave model gives the following estimate [START_REF] Aurich | Maximum norms of chaotic quantum eigenstates and random waves[END_REF]: for C > 0 large enough,

ψ rand,k ∞ ψ rand,k 2 ≤ C log k with high probability when k → ∞ (36) 
Numerical tests on some euclidean chaotic billiards and a surface of negative curvature show that this order of magnitude is correct for chaotic eigenstates [START_REF] Aurich | Maximum norms of chaotic quantum eigenstates and random waves[END_REF]. Small variations were observed between arithmetic/non-arithmetic surfaces of constant negative curvature, the sup-norms appearing slightly larger in the arithmetic case, but still compatible with [START_REF] Chernov | A stretched exponential bound on time correlations for billiard flows[END_REF]. For the euclidean billiards, the largest maxima occured for states scarred along a periodic orbit (see §4.2).

Mathematical results concerning the maxima of eigenstates of generic manifolds of negative curvature are scarce. A general upper bound

ψ j ∞ ≤ C k (d-1)/2 j (37)
holds for arbitrary compact manifolds [START_REF] Hörmander | The spectral function for an elliptic operator[END_REF], and is saturated in the case of the standard spheres. On a manifold of negative curvature, this upper bound can be improved by a factor (log k j ) -1 , taking into account a better bound on the remainder in Weyl's law.

Once again, more precise results have been obtained only in the case of Hecke eigenstates on arithmetic manifolds. Iwaniec and Sarnak [START_REF] Iwaniec | L ∞ norms of eigenfunctions of arithmetic surfaces[END_REF] showed that, for a certain family of arithmetic surfaces, the Hecke eigenstates satisfy the bound

ψ j ∞ ≤ C ǫ k 5/12+ǫ j ,
and conjecture a bound

ψ j ∞ ≤ C ǫ k ǫ j , (38) 
slightly larger than for the random wave model. More recently, Milićević [START_REF] Milićević | Large values of eigenfunctions on arithmetic hyperbolic surfaces[END_REF] showed that, on certain arithmetic surfaces, a subsequence of Hecke eigenstates satisfies a lower bound

ψ j ∞ ≥ C exp log k j log log k j 1/2 (1 + o(1)) ,
thereby violating the random wave model, but still compatible with the conjecture [START_REF] Courant | Methoden der mathematischen Physik[END_REF]. The large values are reached on specific CM-points of the surface, of arithmetic nature.

On certain higher dimensional arithmetic manifolds, Rudnick and Sarnak [START_REF] Rudnick | The behaviour of eigenstates of arithmetic hyperbolic manifolds[END_REF] had already identified some Hecke eigenstates with larger values, namely

ψ j ∞ ≥ C k 1/2 j .
A general discussion of this phenomenon appears in the recent work of Milićević [START_REF] Milićević | Large values of eigenfunctions on arithmetic hyperbolic 3manifolds[END_REF]; the author presents a larger family of arithmetic 3-manifolds featuring eigenstates with abnormally large values, and conjectures that his list is exhaustive. The data are compared with the values for maximally localized states (Fig. 7, right), lagrangian states (Fig. 7, center), random states (Fig. 8, bottom right) and the maximally delocalized state. (Repr. from [START_REF] Nonnenmacher | Chaotic eigenfunctions in phase space[END_REF]).

Random states on the torus

In the case of quantized chaotic maps on T 2 , one can easily setup a model of random states mimicking the statistics of eigenstates. The choice is particularly simple when the map does not possess any particular symmetry: the ensemble of random states in H N is then given by

ψ rand,N = 1 √ N N ℓ=1 a ℓ e ℓ , (39) 
where (e ℓ ) ℓ=1,...,N is the orthonormal basis (15) of H N , and the (a ℓ ) are i.i.d. normal complex Gaussian variables. This random ensemble is U(N)-invariant, so it takes the same form w.r.to any orthonormal basis of H N . For this ensemble, the Husimi function H ψ rand,N (x) admits, at each point x ∈ T 2 , an exponential value distribution with average 1 + f N (x), where f N is exponentially small when N → ∞. This random model, and some variants taking into account symmetries, have been used to describe the spatial, but also the phase space distributions of eigenstates of quantized chaotic maps. In [START_REF] Nonnenmacher | Chaotic eigenfunctions in phase space[END_REF], various indicators of localization of the Husimi densities (18) 15 have been computed for this random model, and compared with numerical results for the eigenstates of the quantized "cat" and baker's maps (see Fig. 11). The distributions seem compatible with the random state model, except for the large deviations of the sup-norms of the Husimi densities, due to eigenstates "scarred" at the fixed point at the origin (see Fig. 8).

In [START_REF] Kurlberg | Value distribution for eigenfunctions of desymmetrized quantum maps[END_REF] the Hecke eigenstates of U N (S), expressed in the position basis (e ℓ ) as in [START_REF] Crespi | Quantum Poincaré sections for twodimensional billiards[END_REF], were shown to satisfy nontrivial ℓ ∞ bounds16 :

ψ N,j ∞ = sup ℓ |a ℓ | ≤ C ǫ N 3/8+ǫ .
For N along a subsequence of "split primes", the description of the individual Hecke eigenstates is much more precise. Their position coefficients are uniformly bounded, ψ N,j ∞ ≤ 2, and the value distribution of individual eigenstates {|ψ N,j (ℓ/N)|, ℓ = 0, . . . , N -1|} is asymptotically given by the semicircle law on [0, 2], showing that these eigenstates are very different from Gaussian random states. In spite of this fact, the value distribution of the Husimi function H ψ N,j (x), which, at each x involves ≈ √ N position coefficients, appears to be exponential, like in the random state model.

Scars of periodic orbits

Around the time the quantum ergodicity theorem was proved, an interesting phenomenon was observed by Heller in numerical studies on the stadium billiard [START_REF] Heller | Bound-state eigenfunctions of classically chaotic hamiltonian systems: scars of periodic orbits[END_REF]. He noticed that for certain eigenfunctions, the spatial density |ψ j (x)| 2 is abnormally enhanced along one or several unstable periodic geodesics. He called such an enhancement a scar of the periodic orbit on the eigenstate ψ j . See Fig. 10 (left) and Fig. 12 for scars at low and relatively high frequencies.

This phenomenon was observed to persist at higher and higher frequencies for various euclidean billiards [100, 8], but was not detected on manifolds of negative curvature [START_REF] Aurich | Statistical properties of highly excited quantum eigenstates of a strongly chaotic system[END_REF]. Could scarred states represent counterexamples to quantum unique ergodicity? More precise numerics [START_REF] Barnett | Asymptotic rate of quantum ergodicity in chaotic Euclidean billiards[END_REF] showed that the weights of these enhancements near the relevant periodic orbit decay in the high-frequency limit, because the areas covered by these enhancements decay faster than their intensities. As a result, a sequence of scarred states may still become equidistributed in the classical limit [START_REF] Kaplan | Linear and nonlinear theory of eigenfunction scars[END_REF][START_REF] Barnett | Asymptotic rate of quantum ergodicity in chaotic Euclidean billiards[END_REF].

In order to quantitatively characterize the scarring phenomenon, it appeared more convenient to switch to phase space representations, in particular the Husimi density of the boundary function Ψ(q) = ∂ ν ψ(q), which lives on the phase space T * ∂Ω of the billiard map [START_REF] Crespi | Quantum Poincaré sections for twodimensional billiards[END_REF][START_REF] Tualle | Normal modes of billiards portrayed in the stellar (or nodal) representation[END_REF]. In this representation, scars were detected as enhancements of the Husimi density H Ψ j (x) on periodic phase space points x ∈ T * ∂Ω of the billiard map (see Fig. 4, bottom). Similar studies were performed in the case of quantum chaotic maps on the torus, like the baker's map [START_REF]Saraceno Classical structures in the quantized baker transformation[END_REF] or hyperbolic symplectomorphisms [START_REF] Nonnenmacher | Chaotic eigenfunctions in phase space[END_REF]. The scarred state showed in Fig. 8 (left) has the largest value of the Husimi density among all eigenstates of U N (S DEGI ), but it is nevertheless a Hecke eigenstate, so that its Husimi measure should be (macroscopically) close to µ L . In this example, the scarring phenomenon is a microscopic (or mesoscopic) phenomenon, compatible with quantum unique ergodicity. This sequence of scarred eigenstates also featured abnormally large values of the Husimi density (see Fig. 11, left).

A statistical theory of scars

Heller first tried to explain the scarring phenomenon using the smoothed local density of states

S χ,x 0 (E) = j χ(E -E j )| ϕ x 0 , ψ j | 2 = ϕ x 0 , χ(E -Ĥ )ϕ x 0 , (40) 
where ϕ x 0 is a Gaussian wavepacket [START_REF] Bleher | Universality and scaling of correlations between zeros on complex manifolds[END_REF] sitting on a point of the periodic orbit, and χ ∈ C ∞ c (R) an energy cutoff. The function χ is constrained by the fact that this expression is estimated through its Fourier transform, namely the time autocorrelation function

t → ϕ x 0 , U t ϕ x 0 χ(t) , ( 41 
)
where χ is the -Fourier transform of χ. Because we can control the evolution of ϕ x 0 only up to the Ehrenfest time [START_REF] Bogomolny | Random wave functions and percolation[END_REF], we must take χ supported on the interval [-T E /2, T E /2], so that χ is essentially supported on an interval of width | log | . Since U t ϕ x 0 comes back to the point x 0 at each period T , S χ,x (E) has peaks at the Bohr-Sommerfeld energies of the orbit, separated by 2π /T from one another. However, due to the hyperbolic spreading of the wavepacket, these peaks have widths ∼ λ /T , where λ is the Lyapunov exponent of the orbit. Hence, the peaks can only be significant for small enough λ, that is weakly unstable orbits. Even if λ is small, the width λ /T becomes much larger than the mean level spacing 1/ρ ∼ C d in the semiclassical limit, so that each peak encompasses many eigenvalues. In particular, this mechanism can not predict which individual eigenstate will show an enhancement at x 0 , nor can it predict the value of the enhancements. Following Heller's work, Bogomolny [START_REF] Bogomolny | Smoothed wave functions of chaotic quantum systems[END_REF] and Berry [START_REF] Berry | Quantum Scars of Classical Closed Orbits in Phase Space[END_REF] showed that certain linear combinations of nearby eigenstates have an "extra intensity" in the spatial density (resp. "oscillatory corrections" in the Wigner density) around a certain number of closed geodesics. In the semiclassical limit, these combinations also involve many eigenstates in some energy window.

A decade later, Heller and Kaplan developed a "nonlinear" theory of scarring, which proposes a statistical definition of this phenomenon [START_REF] Kaplan | Linear and nonlinear theory of eigenfunction scars[END_REF]. They noticed that, given an energy interval I of width 2 ≪ |I| ≪ , the distribution of the overlaps {| ϕ x , ψ j | 2 , E j ∈ I} depends on the phase point x: if x lies on a (mildly unstable) periodic orbit, the distribution is spread between some large values (scarred states) and some low values (antiscarred states). On the opposite, if x is a "generic" point, the distribution of the overlaps is narrower.

This remark was made quantitative by defining a stochastic model for the unsmoothed local density of states S x (E) (that is, taking χ in [START_REF] Degli Esposti | Classical limit of the quantized hyperbolic toral automorphisms[END_REF] to be a delta function), as an effective way to take into account the (uncontrolled) long time recurrences in the autocorrelation function [START_REF] Degli Esposti | Quantum variance and ergodicity for the baker's map[END_REF]. According to this model, the overlaps |ϕ x , ψ j | 2 in an energy window I should behave like random exponential variables, of expectation given by the smoothed local density S χ,x (E). Hence, if x lies on a short periodic orbit, the eigenstates of energies close to the Bohr-Sommerfeld energies (where S χ,x (E) is maximal) statistically have larger overlaps with ϕ x , while states with energies close to the anti-Bohr-Sommerfeld energies statistically have smaller overlaps. The concatenation of these exponential random variables with smoothly varying expectations produces a non-exponential distribution, with a tail larger than the one predicted by Berry's random model. On the opposite, if x is a "generic" point, the expectation should not depend on the energy, and the full distribution of the |ϕ x , ψ j | 2 remains exponential.

Although not rigorously justified, this statistical definition of scarring gives quantitative predictions, and can be viewed as an interesting "dynamical correction" of the random state model [START_REF] Brooks | Joint Quasimodes, Positive Entropy, and Quantum Unique Ergodicity[END_REF].

Nodal structures

For a moment let us focus on the case of a Laplacian ∆ Ω on a euclidean billiard, or a compact riemannian manifold. After having described the "macroscopic skeleton" of the eigenfunctions ψ j , namely their semiclassical measures, and the possible large values taken by |ψ j (x)| near a periodic orbit or elsewhere, we now focus on the opposite feature of these eigenfunctions, namely their nodal sets N ψ j = {x ∈ Ω, ψ j (x) = 0}. Since the eigenfunctions ψ j can be chosen real, their nodal set is a union of hypersurfaces (in 2 dimensions, nodal lines), which sometimes intersect each other, or intersect the boundary ∂Ω. This set separates the connected domains where ψ j (x) has a definite sign, called nodal domains. The nodal set can be viewed as a microscopic skeleton of the eigenfunction ψ j : it fully determines the function (up to a global factor), and the typical scale separating two nearby hypersurfaces is the wavelength k -1 j (or j in the semiclassical formalism). [START_REF] Brüning | Über Knoten von Eigenfunktionen des Laplace-Beltrami-Operators[END_REF] with k = 100 (Repr. from [START_REF] Bogomolny | Random wave functions and percolation[END_REF]).

The study of the nodal patterns of eigenfunctions has a long history in mathematical physics and riemannian geometry. Except for integrable systems 17 , we have no explicit knowledge of these sets. However, some global properties are known, independently on any assumption on the geometry. In 1923 Courant [START_REF] Courant | Methoden der mathematischen Physik[END_REF] showed that, for the Dirichlet Laplacian on a planar domain Ω ⊂ R 2 , the number of nodal domains ν j of the j-th eigenstate (counted with multiplicities) satisfies ν j ≤ j, an inequality which is an equality in dimension 1. This upper bound was sharpened by Pleijel [START_REF] Pleijel | Remarks on Courant's nodal line theorem[END_REF] for high-frequency eigenstates: lim sup j→∞ ν j j ≤ 0.692 .

Nodal count statistics for chaotic eigenstates

The specific study of nodal structures of eigenstates for chaotic billiards is more recent. Blum, Gnutzmann and Smilansky [START_REF] Blum | Nodal Domains Statistics: a criterium for quantum chaos[END_REF] seem to be the first authors using nodal statistics to differentiate regular from chaotic wavefunctions. They compared the nodal count sequence (ξ j = ν j j ) j≥1 for separable vs. chaotic planar domains, and observed different statistical behaviours. In the separable case the nodal lines can be explicitly computed: they form a "grid", defined in terms of the two independent invariant actions I 1 , I 2 . The distribution of the sequence is peaked near some value ξ m depending on the geometry. near each crossing creates an avoided crossing. Right: the resulting positive and negative nodal domains can be described by drawing bonds (thick/dashed lines) between adjacent sites (reprinted from [START_REF] Bogomolny | Percolation model for nodal domains of chaotic wave functions[END_REF]).

In the chaotic case, the authors found that very few nodal lines intersect each other, and conjectured that the sequence should have the same statistics as in the case of the random models [START_REF] Brooks | Joint Quasimodes, Positive Entropy, and Quantum Unique Ergodicity[END_REF][START_REF] Brüning | Über Knoten von Eigenfunktionen des Laplace-Beltrami-Operators[END_REF], therefore showing some universality. The numerical plot of Fig. 13 perfectly illustrates this assertion. In the random model, the random variable corresponding to

ξ j = ν j j should be ν(k) N (k) , k ≫ 1 , (42) 
where ν(k) is the number of nodal domains in Ω for the random state [START_REF] Brooks | Joint Quasimodes, Positive Entropy, and Quantum Unique Ergodicity[END_REF], and

N (k) = Vol(Ω)k 2 4π
is the integrated density of states in Ω. Motivated by these observations, Bogomolny and Schmit proposed a heuristic percolation model to compute the nodal count statistics in random or chaotic wavefunctions [START_REF] Bogomolny | Percolation model for nodal domains of chaotic wave functions[END_REF]. Their model starts from a separable eigenfunction, of the form ψ 0 (x, y) = cos(kx/ √ 2) cos(ky/ √ 2), for which nodal lines form a grid; they perturb this function near each intersection, so that each crossing becomes an avoided crossing (see Fig. 14). Although the length of the nodal set is almost unchanged, the structure of the nodal domains is drastically modified by this perturbation. Assuming these local perturbations are uncorrelated, they obtain a representation of the nodal domains as clusters of a critical bond percolation model, a well-known model in 2-dimensional statistical mechanics.

The (somewhat amazing) claim made in [START_REF] Bogomolny | Percolation model for nodal domains of chaotic wave functions[END_REF] is that such a perturbation of the separable wavefunction has the same nodal count statistics as a random function, eventhough the latter is very different from the former in many respects (e.g their value distribution). The underlying idea is the following: the uncorrelated local perturbations δψ(x, y) instantaneously transform the microscopic square nodal domains into mesoscopic (sometimes macroscopic) "fractal" domains, which then do not vary too much upon strengthening the perturbation such as to reach a typical random state. The high-frequency limit (k → ∞) for the random state [START_REF] Brooks | Joint Quasimodes, Positive Entropy, and Quantum Unique Ergodicity[END_REF][START_REF] Brüning | Über Knoten von Eigenfunktionen des Laplace-Beltrami-Operators[END_REF] corresponds to the thermodynamic limit in the percolation model, a limit in which the statistical properties of percolation clusters have been much investigated. The nodal count ratio [START_REF] Ekhardt | Approach to ergodicity in quantum wave functions[END_REF] counts the number of clusters on a lattice of N tot = 2 π N (k) sites. The distribution of the number of domains/clusters ν(k) was computed in this limit [START_REF] Bogomolny | Percolation model for nodal domains of chaotic wave functions[END_REF]: it is a Gaussian with asymptotic properties

ν(k) N (k) k→∞ ---→ 0.0624, Var(ν(k)) N(k) k→∞ ---→ 0.0502 . (43) 
Nazarov and Sodin [START_REF] Nazarov | On the number of nodal domains of random spherical harmonics[END_REF] have considered random spherical harmonics on the 2-sphere (namely, Gaussian random states within each 2n + 1-dimensional eigenspace), and proved that when n → ∞ the distribution of the number of nodal domains of ψ rand,n becomes peaked near the value a n 2 , for some constant a > 0. Although they compute neither the constant a, nor the variance of the distribution, this result indicates that the percolation model may indeed correctly predict the nodal count statistics for Gaussian random states.

Remark 2 We now have two levels of modelization. First, the chaotic eigenstates are statistically modelled by the random states [START_REF] Brooks | Joint Quasimodes, Positive Entropy, and Quantum Unique Ergodicity[END_REF][START_REF] Brüning | Über Knoten von Eigenfunktionen des Laplace-Beltrami-Operators[END_REF]. Second, the nodal structure of random states is modelled by critical percolation. These two conjectures appeal to different methods: the second one is a purely statistical problem, while the first one belongs to the "chaotic=random" meta-conjecture.

Other nodal observables

According to the Bogomolny-Schmit percolation mode, the statistical distribution of the areas of nodal domains has the form P(A) ∼ A -187/91 . Of course, this scaling can only hold in the mesoscopic range k -2 ≪ A ≪ 1, since any domain has an area ≥ C/k 2 . The number νj of nodal lines of ψ j touching the boundary ∂Ω is also an interesting observable. The random state model [START_REF] Brüning | Über Knoten von Eigenfunktionen des Laplace-Beltrami-Operators[END_REF] was used in [START_REF] Blum | Nodal Domains Statistics: a criterium for quantum chaos[END_REF] to predict the following properties:

ν(k) k k→∞ ---→ |∂Ω| 2π , Var(ν(k)) k k→∞ ---→ 0.0769 |∂Ω| .
The above expectation value was rigorously proved by Toth and Wigman [START_REF] Toth | Counting open nodal lines of random waves on planar domains[END_REF] within the following random model: they considered the eigenstates of the Laplacian ∆ Ω on some planar domain Ω, and defined random linear combinations in frequency intervals k j ∈ [K, K + 1]:

ψ rand,K = k j ∈[K,K+1] a j ψ j , (44) 
with the a j i.i.d. normal Gaussians.

Macroscopic distribution of the nodal set

The volume (or length) of the nodal set of eigenfunctions is another interesting quantity. A priori, it should be less sensitive to perturbations than the nodal count ν j . Several rigorous results have been obtained for this quantity. Donnelly and Fefferman [START_REF] Donnelly | Nodal sets of eigenfunctions on Riemannian manifolds[END_REF] showed that, for any d-dimensional compact real-analytic manifold, the (d -1)dimensional volume of the nodal set of any Laplacian eigenstate ψ j satisfies the bounds

C -1 k j ≤ Vol d-1 N (ψ j ) ≤ C k j ,
for some C > 0 depending on the manifold. The statistics of this volume has been investigated for various ensembles of random states [START_REF] Bérard | Volume des ensembles nodaux des fonctions propres du laplacien, séminaire Bony-Sjöstrand-Meyer[END_REF][START_REF] Berry | Statistics of nodal lines and points in chaotic quantum billiards: perimeter corrections, fluctuations, curvature[END_REF][START_REF] Rudnick | On the volume of nodal sets for eigenfunctions of the Laplacian on the torus[END_REF]. The average volume grows like c M k, with a constant c M > 0 depending on the manifold. Estimates for the variance are more difficult to obtain. Berry [START_REF] Berry | Statistics of nodal lines and points in chaotic quantum billiards: perimeter corrections, fluctuations, curvature[END_REF] argued that for the 2-dimensional random model [START_REF] Brooks | Joint Quasimodes, Positive Entropy, and Quantum Unique Ergodicity[END_REF], the variance should be of order log(k), showing an unusually strong concentration property for this random variable. Such a logarithmic variance was recently proved by Wigman in the case of random spherical harmonics of the 2-sphere [102].

Counting or volume estimates do not provide any information on the spatial localization of the nodal set. At the microscopic level, Brüning [START_REF] Brüning | Über Knoten von Eigenfunktionen des Laplace-Beltrami-Operators[END_REF] showed that for any compact riemannian manifold, the nodal set N (ψ j ) is "dense" at the scale of the wavelength: for some constant C > 0, any ball B(x, C/k j ) intersects N (ψ j ).

One can also study the "macroscopic distribution" of the zero set, by considering the (d -1)-dimensional riemannian measure on N (ψ j ):

∀f ∈ C 0 (M), μZ ψ j (f ) def = N (ψ j ) f (x) d Vol d-1 (x) . (45) 
Similarly with the case of the density |ψ j (x)| 2 or its phase space cousins, the spatial distribution of the nodal set can then be described by the weak- * limits of the renormalized measures µ Z ψ j = μZ ψ j μZ ψ j (M ) in the high-frequency limit. In the case of chaotic eigenstates, the following conjecture18 seems a reasonable "dual" to the QUE conjecture: Conjecture 3 Let (M, g) be a compact smooth riemannian manifold, with an ergodic geodesic flow. Then, for any orthonormal basis (ψ j ) j≥1 , the probability measures µ z ψ j weak- * converge to the Lebesgue measure on M, in the limit j → ∞. This conjecture is completely open. One slight weakening would be to request that the convergence holds for a density 1 subsequence of eigenstates, like in Thm. 1. A similar property can be proved in a complex analytic setting (see §5.5). For M a real analytic manifold, eigenfunctions ψ j can be analytically continued into holomorphic functions ψ C j in some complex neighbourhood M C of M. For (ψ j ) j∈S a sequence of ergodic eigenfunctions (i.e., admitting the Liouville measure as sole semiclassical measure), Zelditch has shown [START_REF] Zelditch | Complex zeros of real ergodic eigenfunctions[END_REF] that the measures associated with the (complex) nodal set of ψ C j converge to some limit measure on M C ; however, his result says nothing about the distribution of the real zeros (that is, of the set N (ψ C j ) ∩ M). Once more, it is easier to deal with some class of random states than with eigenstates. In the case of random spherical harmonics on the sphere, the random ensemble is rotation invariant, so for each level n the expectation of the measure µ Z ψ rand,n is equal to the (normalized) Lebesgue measure. Zelditch [START_REF] Zelditch | Real and complex zeros of Riemannian random waves[END_REF] generalized this result to arbitrary compact riemannian manifolds M, by considering random superpositions of eigenstates of the type (44): he showed that the expectation of µ Z ψ rand,K converges to the Legesgue measure in the limit K → ∞.

At the moment the study of nodal sets of random wavefunctions represents lively field of research in probability theory [START_REF] Nazarov | Random Complex Zeroes and Random Nodal Lines[END_REF][START_REF] Wigman | On the nodal lines of random and deterministic Laplace eigenfunctions[END_REF], so the above results are certainly not exhaustive.

Nodal sets for eigenstates of quantum maps on the torus

So far we have only considered the nodal set for the eigenfunctions ψ j of the Laplacian, viewed in their spatial representation ψ ∈ L 2 (Ω). These eigenfunctions are real valued, due to the fact that ∆ is a real operator. At the classical level, this reality corresponds to the fact that the classical flow is time reversal invariant.

In the case of quantized maps on the torus with time reversal symmetry, the eigenvectors ψ j also have real position components ψ j (ℓ/N) = e ℓ , ψ j , ℓ = 0, . . . , N-1. Keating, Mezzadri and Monastra [START_REF] Keating | Nodal domain distributions for quantum maps[END_REF] have defined the nodal domains of such states as the intervals {ℓ 1 , ℓ 1 + 1, . . . , ℓ 2 -1} on which ψ j (ℓ/N) has a constant sign. Using this definition, they computed the exact nodal statistics for a random state (39) (with real Gaussian coefficients a j ), and numerically showed that these statistics are satisfied by eigenstates of a generic quantized Anosov map (namely, a perturbation of the symplectomorphism S DEGI ).

In a further publication [START_REF] Keating | Nodal domain statistics for quantum maps, percolation, and stochastic Loewner evolution[END_REF], these ideas are extended to chaotic maps on the 4dimensional torus. In this setting, they show that the random state Ansatz directly leads to a percolation model on a triangular lattice, with the same thermodynamic behaviour as the model of [START_REF] Bogomolny | Percolation model for nodal domains of chaotic wave functions[END_REF]. From this remark, they conjecture that, in the appropriate scaling limit, the boudaries of the nodal domains for chaotic eigenstates belong to the universality class of SLE 6 curves, and support this claim by some numerics.

Husimi nodal sets

The position representation ψ(x) is physically natural, but it is not always the most appropriate to investigate semiclassical properties: phase space representations of the quantum states offer valuable informations, and are more easily compared with invariant sets of the classical flow. We have singled out two such phase space representations: the Wigner function and the Bargmann-Husimi representation. Both can be defined on T * R d , but also on the tori T 2d . The Wigner function is real and changes sign, so its nodal set is an interesting observable. However, in this section we will focus on the nodal sets of the Husimi (or Bargmann) functions.

The Gaussian wavepackets (21) can be appropriately renormalized into states φx ∝ ϕ x depending antiholomorphically on the complex variable z = xip. As a result, the Bargmann function associated with ψ ∈ L 2 (R d ), z → Bψ(z) = ϕ z , ψ , is an entire function of z. In dimension d = 1, the nodal set of Bψ(z) is thus a discrete set of points in C, which we will denote by Z ψ . More interestingly, through Hadamard's factorization one can essentially recover the Bargmann function Bψ from its nodal set, and therefore the quantum state ψ. Assuming 0 ∈ Z ψ , we have

Bψ(z) = e αz 2 +βz+γ 0 =z i ∈Z ψ (1 -z/z i ) e z z i + 1 2 z 2 z 2 i ,
leaving only 3 undetermined parameters. Leboeuf and Voros [START_REF] Leboeuf | Chaos-revealing multiplicative representation of quantum eigenstates[END_REF] called the set Z ψ the stellar representation of ψ, and proposed to characterize the chaotic eigenstates using this representation. This idea is especially appealing in the case of a compact phase space like the 2-torus: in that case the Bargmann function Bψ of a state ψ N ∈ H N is an entire function on C satisfying quasiperiodicity conditions, so that its nodal set is Z 2 -periodic and contains exactly N zeros in each fundamental cell. One can then reconstruct the state ψ N from this set of N points on T 2 (which we denote by Z T 2 ψ N ):

Bψ N (z) = e γ z i ∈Z T 2 ψ N θ(z -z i ) ,
where θ(z) is a fixed Jacobi theta function vanishing on Z+iZ, and γ a normalization constant. This stellar representation is exact, minimal (N complex points represent ψ ∈ H N ≡ C N ) and lives in phase space. The conjugation of these three properties makes it interesting from a semiclassical point of view.

In [START_REF] Leboeuf | Chaos-revealing multiplicative representation of quantum eigenstates[END_REF] the authors noticed a stark difference between the nodal patterns of integrable vs. chaotic eigenstates. In the integrable case, zeros are regularly aligned along certain curves, which were identified as anti-Stokes lines in the complex WKB formalism. Namely, the Bargmann function can be approximated by a WKB Ansatz similar with [START_REF] Berry | Statistics of nodal lines and points in chaotic quantum billiards: perimeter corrections, fluctuations, curvature[END_REF] with holomorphic phase functions S j (z), and anti-Stokes lines are defined by the equations ℑ(S j (z) -S k (z)) = 0 in regions where e iS j (z)/ and e iS k (z)/ dominate the other terms. These anti-Stokes lines are sitting at the "antipodes" of the lagrangian curve on which the Husimi density is concentrated (for an example of such a state, see Fig. 7, center).

On the opposite, the zeros of chaotic eigenstates appear to be equidistributed across the whole torus (see Fig. 15), like the Husimi density itself. This fact was checked on other systems, e.g. planar billiards, for which the stellar representations of the boundary functions ∂ n ψ j (x) were investigated in [START_REF] Tualle | Normal modes of billiards portrayed in the stellar (or nodal) representation[END_REF], leading to similar conclusions. This observation was followed by a rigorous statement, which we express by defining (using the same notation as in the previous section) the "stellar measure" of a state ψ N ∈ H N :

µ Z ψ N def = N -1 z i ∈Z T 2 ψ N δ z i .
Theorem 9 [START_REF] Nonnenmacher | Chaotic eigenfunctions in phase space[END_REF] Assume that a sequence of normalized states (ψ N ∈ H N ) N ≥1 becomes equidistributed on T 2 in the limit N → ∞ (that is, their Husimi measures µ H ψ N weak- * converge to the Liouville measure µ L ).

Then, the corresponding stellar measures µ Z ψ N also weak- * converge to µ L . Using the quantum ergodicity theorem (or quantum unique ergodicity when available), one deduces that (almost) all sequences of chaotic eigenstates have asymptotically equidistributed Husimi nodal sets.

This result was proved independently, and in greater generality, by Shiffman and Zelditch [START_REF] Shiffman | Distribution of zeros of random and quantum chaotic sections of positive line bundles[END_REF]. It was also extended by Rudnick to the case of holomorphic cusp forms on the modular surface [START_REF] Rudnick | On the asymptotic distribution of zeros of modular forms[END_REF]. The strategy is to first show that the electrostatic potential u ψ N (x) = N -1 log H ψ N (x) = 2N -1 log |Bψ N (z)| -π|z| 2 decays (in L 1 ) in the semiclassical limit, and then use the fact that µ Z ψ N = 4π∆u ψ N . This use of potential theory (specific to the holomorphic setting) explains why such a corresponding statement has not been proved yet for the nodal set of real eigenfunctions (see the discussion at the end of §5.3). To my knowledge, this result is the only rigorous one concerning the stellar representation of chaotic eigenstates.

In parallel, many studies have been devoted to the statistical properties of stellar representation of random states [START_REF] Crespi | Quantum Poincaré sections for twodimensional billiards[END_REF], which can then be compared with those of chaotic eigenstates. Zeros of random entire functions (e.g. random polynomials) have a long history in probability theory, see e.g. the recent review [START_REF] Nazarov | Random Complex Zeroes and Random Nodal Lines[END_REF], which mentions the works of Kac, Littlewood, Offord, Rice. The topic has been revived in the years 1990 through questions appearing in quantum chaos [START_REF] Leboeuf | Universal tluctuations of zeros of chaotic wavefunctions[END_REF][START_REF] Bogomolny | Quantum chaotic dynamics and random polynomials[END_REF][START_REF] Hannay | Chaotic analytic zero points: exact statistics for those of a random spin state[END_REF].

For a Gaussian ensemble of random states like [START_REF] Crespi | Quantum Poincaré sections for twodimensional billiards[END_REF], one can explicitly compute the n-point correlation functions of the zeros: besides being equidistributed, the zeros statistically repel each other quadratically on the microscopic scale N -1/2 (the typical distance between nearby zeros), but are uncorrelated at larger distances. Such a local repulsion (which imposes a certain rigidity of random nodal sets) holds in great generality, showing a form of universality at the microscopic scale [START_REF] Bleher | Universality and scaling of correlations between zeros on complex manifolds[END_REF][START_REF] Nazarov | Random Complex Zeroes and Random Nodal Lines[END_REF].

The study of [START_REF] Nonnenmacher | Chaotic eigenfunctions in phase space[END_REF] suggested that the localization properties of the Husimi measure (e.g. a scar on a periodic orbit) could not be directly visualized in the distribution of the few zeros near the scarring orbit, but rather in the collective distribution of all zeros. We thus studied in detail the Fourier coefficients of the stellar measures,

µ Z ψ (e 2iπk•x ), 0 = k ∈ Z 2 .
In the case of the random model [START_REF] Crespi | Quantum Poincaré sections for twodimensional billiards[END_REF], the variance of the Fourier coefficients could be explicitly computed: for fixed k = 0 and N ≫ 1, the variance is ∼ π 2 ζ(3)|k| 4 /N 3 , showing that typical Fourier coefficients are of size ∼ N -3/2 . In the case of chaotic eigenstates, we conjectured for each fixed k = 0 an absolute upper bound µ Z ψ j,N (e 2iπk•x ) = o(N -1 ) , while the equidistribution of Thm. 9 only forces these coefficients to be o(1). We also argued that the presence of scars in individual eigenfunctions could be detected through the abnomally large values of a few low-k coefficients.

To finish this section, let us mention a few recent rigorous results concerning zeros of random holomorphic functions, after [80]:

• central limit theorems and large deviation estimates for the "linear statistics" µ Z (f ), with f a fixed test function (including the characteristic function on a bounded domain)

• comparison with other point processes: the Ginibre ensemble obtained by the spectrum of random Gaussian complex matrices; ensembles of randomly deformed lattices. Here comes the question of the "best matching" between a random set of points with a square lattice.

• how to use a set of random zeros to partition the plane into cells.

To my knowledge these properties have not been studied in the framework of Husimi functions of chaotic eigenstates.

To summarize, the stellar representation provides complementary (dual) information to the macroscopic features of the Husimi measures. The very nonlinear relation with the wavefunction makes its study difficult, but at the same time interesting.

Figure 1 :

 1 Figure 1: Two eigenfunctions of the Dirichlet Laplacian in the stadium billiard, with wavevectors k = 60.196 and k = 60.220 (see (9)). Large values of |ψ(x)| 2 correspond to dark regions, while nodal lines are white. While the left eigenfunction looks relatively "equidistributed", the right one is scarred by two symmetric periodic orbits (see §4.2).

Figure 2 :

 2 Figure 2: Left: two trajectories in the stadium billiard, initially very close to one another, and then diverging fast (the red arrow shows the initial point). Right: long evolution of one of the trajectories.

Figure 4 :

 4 Figure 4: Top: Poincaré section and the associated return map constructed from a Hamiltonian flow on E E . Bottom: boundary map associated with the stadium billiard.

Figure 5 :

 5 Figure 5: Construction of Arnold's cat map κ Scat on the 2-torus, obtained by periodizing the linear transformation on R 2 . The stable/unstable directions are shown (kindly provided by F. Faure).

Figure 6 :

 6 Figure 6: Schematic view of the baker's map (13). The arrows show the contraction/expansion directions.

Figure 7 :

 7 Figure 7: Left: one eigenmode of the circle billiard, microlocalized on a torus T I (the invariants I 1 , I 2 can be taken to be the energy and the angular momentum). Center: Husimi density of a simple Lagrangian state on T 2 , a momentum eigenstate microlocalized on the lagrangian {ξ = ξ 0 }. Right: Husimi density of the Gaussian wavepacket (21). Stars denote the zeros of the Husimi density. (reprinted from [82])

3. 3

 3 Beyond QE: Quantum Unique Ergodicity vs. strong scarring 3.3.1 Semiclassical measures

Figure 8 :

 8 Figure 8: Husimi functions of various states in H N (large values=dark regions). Top: 3 (Hecke) eigenstates of the quantum cat map U N (S DEGI ), for N = 107. Bottom left, center: 2 eigenstates of the quantum baker U N (κ B ) scarred on the period-2 orbit, for N = 48 and N = 128. Bottom right: random state (39) for N = 56. (Reprinted from [82])

Figure 9 :

 9 Figure 9: Left: Husimi density of an eigenstate of U N (S cat ), half-scarred on a fixed point. Notice the hyperbolic structure around the fixed point (Repr. from[START_REF] Faure | Scarred eigenstates for quantum cat maps of minimal periods[END_REF]). Center, right: two eigenstates of the Walsh-quantized baker's map (we plot their "Walsh-Husimi density"); the corresponding semiclassical measures are purely fractal (Repr. from[START_REF] Anantharaman | Entropy of Semiclassical Measures of the Walsh-Quantized Baker's Map[END_REF]).
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 35 Counterexamples to QUE: bouncing-ball modes of the stadium billiard

Figure 10 :

 10 Figure 10: Two eigenstates of the stadium billiard (β = 1). Left (k = 39.045): the mode has a scar along the unstable horizontal orbit. Right (k = 39.292): the mode is localized in the bouncing-ball region.

Figure 11 :

 11 Figure 11: L ∞ (left) and L 2 (right) norms of the Husimi densities for eigenstates of the quantum symplectomorphism U N (S DEGI ) (crosses; the dots indicate the states maximally scarred at the origin). The data are compared with the values for maximally localized states (Fig.7, right), lagrangian states (Fig.7, center), random states (Fig.8, bottom right) and the maximally delocalized state. (Repr. from[START_REF] Nonnenmacher | Chaotic eigenfunctions in phase space[END_REF]).

Figure 12 :

 12 Figure 12: A high-energy eigenmode of the stadium billiard (k ≈ 130). Do you see any scar?

Figure 13 :

 13 Figure 13: Left: nodal domains of an eigenfunction of the quarter-stadium with k ≈ 100.5 (do you see the boundary of the stadium?). Right: nodal domains of a random state[START_REF] Brüning | Über Knoten von Eigenfunktionen des Laplace-Beltrami-Operators[END_REF] with k = 100 (Repr. from[START_REF] Bogomolny | Random wave functions and percolation[END_REF]).

Figure 14 :

 14 Figure14: Construction of the random-bond percolation model. Left: starting from a square grid where ψ(x) alternatively takes positive (+) and negative (-) values, a small perturbation δψ(x, y) near each crossing creates an avoided crossing. Right: the resulting positive and negative nodal domains can be described by drawing bonds (thick/dashed lines) between adjacent sites (reprinted from[START_REF] Bogomolny | Percolation model for nodal domains of chaotic wave functions[END_REF]).

Figure 15 :

 15 Figure 15: Stellar representation for 3 eigenstates of the quantum cat map U N (S DEGI ), the Husimi densities of which were shown in Fig. 8, top, in a different order. Can you guess the permutation?

We always assume that the flow is complete, that is it does not blow up in finite time.

We assume that N is an even integer

This means that, in some region, (x ′ , p ′ ) = κ B (x, p) is defined by solving x ′ = ∂ p ′ ϕ(p ′ , x), p = ∂xϕ(p ′ , x).

These are also referred to as the (diagonal) matrix elements for the "matrix" f .

If Ω ⊂ R d is replaced by a compact riemannian manifold M , we use some quantization scheme f → f .

The prefix micro mustn't mislead us: we are still dealing with macroscopic localization properties of ψ !

The "quantizable" tori T I satisfy Bohr-Sommerfeld conditions I i = 2π (n i + α i ), with n i ∈ Z arbitrary and α i ∈ [0, 1] fixed Maslov indices.

Above some neighbourhood U ∈ R d , the torus T I is the union of L lagrangian leaves {(x, ∇S ℓ (x)), x ∈ U }, ℓ = 1, . . . , L

The spectrum of the Laplacian on such a surface is believed to be simple; if this is the case, then an eigenstate of ∆ is automatically a Hecke eigenstate.

The notion of KS entropy will be explained in §3.4.

For the precise definition of these surfaces, see[START_REF] Lindenstrauss | Invariant measures and arithmetic quantum unique ergodicity[END_REF].

basically, the period needs to be larger than N 1/2+ǫ for some ǫ > 0.

Characterizing the function on T * R d which are Wigner functions of individual quantum states is a nontrivial question.

By construction the Husimi densities are L 1 -normalized.

In the chosen normalization, the trivial bound reads ψ ∞ ≤ N 1/2 .

To my knowledge, this conjecture was first stated by S. Zelditch

* I am grateful to E.Bogomolny, who allowed me to reproduce several plots from [26]. The author has been partially supported by the Agence Nationale de la Recherche under the grant ANR-09-JCJC-0099-01. These notes were written while he was visiting the Institute of Advanced Study in Princeton, supported by the National Science Foundation under agreement No. DMS-0635607.

1 stadium plotted in this article were computed using a code nicely provided to me by E. Vergini, which uses the scaling method invented in [100].