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Contents

Introduction 1
Notations and conventions 3
1. The conjecture of Morel 3
1.1. The homotopy t-structure 3
1.2. Homotopy modules 4
1.3. Homotopy modules with transfers 6
2. Preparations 6
2.1. The theory of cycle modules 6
2.2. Modules and ring spectra 8
2.3. On the Gysin triangle and morphism 10
2.4. Coniveau spectral sequence 14
3. The proof 16
3.1. The (weak) H-module structure 16
3.2. The associated cycle premodule 16
3.3. The associated cycle module 19
3.4. The remaining isomorphism 21
4. Some further comments 22
4.1. Monoidal structure 22
4.2. Weakly orientable spectra 24
4.3. Coniveau spectral sequence 24
4.4. Cohomology spectral sequence and cycle classes 25
References 27

Abstract. We prove a conjecture of Morel identifying Voevodsky’s homotopy invariant sheaves
with transfers with spectra in the stable homotopy category which are concentrated in degree
zero for the homotopy t-structure and have a trivial action of the Hopf map. This is done by
relating these two kind of objects to Rost’s cycle modules. Applications to algebraic cobordism
and construction of cycle classes are given.

Introduction

In [Mor04] and [Mor06], F. Morel started a thorough analysis of the stable homotopy category
of schemes over a field culminating by computing the zero-th stable homotopy groups of the zero
sphere π0(S

0)∗ in a joint work with M. Hopkins. The result involves a mixture of the Witt ring
of the field and its Milnor K-theory. This paper is built on the idea of Morel that the Witt part
contains the obstruction to orientation in stable homotopy. Indeed, let us recall that π0(S

0)∗ is
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generated as a graded abelian group by units of the field k and the Hopf map1 η. As in topology,
the Hopf map η is the first obstruction for a ring spectrum to be oriented.2

On the other hand the units of k generates a subring of π0(S
0)∗ which turns out to be exactly

the Milnor K-theory of k, or, in contemporaneous terms, the part of motivic cohomology where
the degree is equal to the twist. It is understand now, though still conjectural, that motivic
cohomology is the universal oriented cohomlogy with additive formal group law.

To build something out of these general remarks, one has to go more deeply into the motivic
homotopy theory. The categoryDM eff (k) of V. Voevodsky’s motivic complexes over a perfect field
k is built out of the so called homotopy invariant sheaves with transfers who have the distinctive
property that their cohomology is homotopy invariant.

Starting from the point that they form the heart of a natural t-structure on DM eff (k), Morel
introduced the homotopy t-structure on the stable homotopy category SH(k), analog of the previ-
ous one, and identified its heart as some graded sheaves without transfers but still with homotopy
invariant cohomology. They are called homotopy modules by Morel (see definition 1.2.2) and we
denote their category by Π∗(k). These sheaves have to be thought as stable homotopy groups : in
fact, taking the zero-th homology of S0 with respect to the homotopy t-structure gives a homotopy
module π0(S

0)∗ whose fiber at the point k is precisely the graded abelian group π0(S
0)∗. Note

that, as a consequence, any homotopy modules has a natural action of the Hopf map η seen as an
element of π0(S

0)∗(k).
To relate these two kind of sheaves, it is more accurate to introduce the non effective (i.e.

stable) version of DM eff (k), simply denoted by DM(k). The canonical t-structure on DM eff (k)
extends to a t-structure on DM(k) whose heart Πtr

∗ (k) is now made by some graded homotopy
invariant sheaves with transfers which we call homotopy modules with transfers (see definition
1.3.2).

Then the naural map DM(k)→ SH(k) induces a natural functor

γ∗ : Πtr
∗ (k)→ Π∗(k)

which basically do nothing more than forgetting the transfers. In this article, we prove the following
conjecture of Morel:

Theorem. (1) The functor γ∗ is fully faithful and its essential image consists of the homotopy
modules on which η acts as 0.

(2) The functor γ∗ is monoidal and homotopy modules with transfers can be described as
homotopy modules with an action of the unramified Milnor K-theory sheaf.

Actually the first part was conjectured by Morel ([Mor04, conj. 3, p. 71]) and the second one
is a remark we made, deduced from the first one.

Let us now come back to the opening point of this introduction: it turns out from this theorem
that, for homotopy modules seen as objects of SH(k), η is precisely the obstruction to be orientable
(see corollary 4.1.4 for the precise statement). Moreover, the Milnor part of π0(S

0)∗ – i.e. the
unramified Milnor K-theory sheaf – is the universal homotopy module on which η acts as 0.

This theorem relies on our previous work on homotopy modules with transfers where we show
that they are completely determined by the system of their fibers over finitely generated extensions
of k, which can be described precisely as a cycle module in the sense of M. Rost. Actually, according
to [Dég09, th. 3.4], this defines in fact an equivalence of categories: this gives a way to construct
transfers on sheaves out of a more elementary algebraic structure on their fibers. The proof of our
theorem thus consists to show that the fibers of a homotopy module with trivial action of η gives
a cycle module; this was actually the original form of the conjecture of Morel.

This is done by appealing to our work on the Gysin triangle [Dég08b] in the framework of
modules over ring spectra: indeed, the main idea of the proof is that a homotopy module with
trivial action of η has a (weak) structure of a module over the motivic cohomology ring spectrum

1See paragraph 1.2.6.
2See remark 1.2.8.
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H. After having recalled the central definitions involved in the formulation of the previous theorem
in section 1, we have dedicated section 2 to recall the main technical tools which will be involved in
the proof: cycle modules, modules over ring spectra, Gysin triangles and morphisms, the coniveau
spectral sequence and the computation of its diffetential. This enables us, in section 3, to give
a neat proof of the first part of our theorem though it uses all the previous technical tools. In
the last section, we prove the additional fact made by the point (2) in the above and we collect a
few additional ones which illustrate our result. Notably, we use the coniveau spectral sequence to
obtain the following results:

• (Cor. 4.3.4) Let MGL be Voevodsky’s algebraic cobordism spectrum. Then for any
smooth connected scheme of dimension d, the canonical map

MGL2d,d(X)→ CH0(X),

with target the 0-cycles modulo rational equivalence, is an isomorphism.
• (Prop. 4.4.5) Let E be a monoid in SH(k) satisfying the following assumptions:

(a) η acts trivially on π0(E)∗.
(b) For any negative integers n,m, any smooth connected scheme X , and any cohomo-

logical class ρ ∈ En,m(X), there exists a non empty open U ⊂ X such that ρ|U = 0.
Then E admits an orientation whose associated formal group law is additive. Moreover,
for any integer n ≥ 0 and any smooth scheme X , there exists a canonical cycle class map

CHn(X)→ E2n,n(X)

which satisfies all the usual properties.

Notations and conventions

In this article, k is a perfect field. Any scheme is assumed to be a separated k-scheme unless
stated otherwise. Such a scheme will be called a smooth scheme if it is smooth of finite type. We
denote by Smk (resp. Smk,•) the category of smooth schemes (resp. pointed smooth schemes).
Given a smooth scheme X , we put X+ = X ⊔ Spec(k) considered as a pointed scheme by the
obvious k-point.

Following Morel, our convention for t-structures in triangulated categories is homological – see
in particular Definition 1.1.3.

Our monoidal categories, as well as functors between them, are always assumed to be symmetric
monoidal. Similarly, monoids are always assumed to be commutative.

In diagrams involving shifts or twists of morphisms, we do not indicate them in the label of the
arrows – this does not lead to any confusion as they are indicated in the source and target of the
arrows.

Graded (resp. bigraded) means Z-graded (resp. Z2-graded).

1. The conjecture of Morel

1.1. The homotopy t-structure.

1.1.1. We will denote by SH(k) the stable homotopy category over k of Morel and Voevodsky
(see [Mor04] and [Jar00]). Objects of SH(k) will be simply called spectra.3 It is a triangulated
category with a canonical functor:

Smk,• → SH(k), X 7→ Σ∞X.

It has a closed monoidal structure ; the tensor product denoted by ∧ is characterized by the
property: Σ∞(X ×k Y )+ = Σ∞X+ ∧ Σ∞Y+. We denote by S0 = Σ∞ Spec(k)+ the unit of this
tensor product. By construction of SH(k), the object Σ∞Gm is invertible for the tensor product.
For any integer n ∈ Z, we will denote by Sn,n its n-th tensor power. Moreover, for any couple
(i, n) ∈ Z2, we put Si,n = Sn,n[i− n].

3They are called P1-spectrum in [Mor04] because they have to be distinguished from S1-spectra. As we will not
use S1-spectra in this work, there will be no risk of confusion.
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1.1.2. Consider a spectrum E. For any smooth k-scheme X and any couple (i, n) ∈ Z2, we put
Ei,n(X) = HomSH(k)(Σ

∞X+, S
i,n ∧ E). This defines a bigraded cohomology theory on Smk. We

let πi(E)n be the Nisnevich sheaf of abelian groups on Smk associated with the presheaf:

X 7→ En−i,n(X).

For a fixed integer i ∈ Z, πi(E)∗ will be considered as an abelian Z-graded sheaf. Recall the
definition 5.2.1 of [Mor04]:

Definition 1.1.3. A spectrum E will be said to be non negative (resp. non positive) if for any
i < 0 (resp. i > 0) πi(E)∗ = 0. We let SH(k)≥0 (resp. SH(k)≤0) be the full subcategory of
SH(k) made of non negative (resp. nonpositive) objects of SH(k).

As proved in [Mor04, 5.2.3], this defines a t-structure on the triangulated category SH(k) with
homological conventions. This means the following properties:

(1) The inclusion functor o+ : SH(k)≥0 → SH(k) (resp. o− : SH(k)≤0 → SH(k)) admits a
right adjoint t+ (resp. left adjoint t−). For any spectrum E and any integer i ∈ Z, we put:

E≥0 = o+t+(E), E≤0 = o−t−(E),
E≥i = (E[−i])≥0[i], E≤i = (E[−i])≤0[i],
E>i = E≥i+1, E<i = (E)≤i−1.

(2) For any spectra E,F,

(1.1.3.1) HomSH(k)(E>0,F≤0) = 0.

(3) For any object E in SH(k), there is a unique distinguished triangle in SH(k):

(1.1.3.2) E≥0 → E→ E<0 → E≥0[1]

where the first two maps are given by the adjunctions of point (1).

Remark 1.1.4. The key point for the previous results is the stable A1-connectivity theorem of
Morel (see [Mor04, th. 4.2.10]). Recall this theorem also implies that for any smooth k-scheme X
and any pair (i, n) ∈ N×Z, the spectrum Si+n,n∧Σ∞X+ is non negative. Then, according to the
previous definition, the spectra of this shape constitute an essentially small family of generators
for the localizing subcategory SH(k)≥0 of SH(k).

1.2. Homotopy modules.

1.2.1. Given an abelian Nisnevich sheaf F on Smk, we denote by F−1(X) the kernel of the
morphism F (X ×k Gm) → F (X) induced by the unit section of Gm. Following the terminology
of Morel, we will say that F is strictly homotopy invariant if the Nisnevich cohomology presheaf
H∗

Nis(−, F ) is homotopy invariant.

Definition 1.2.2 (Morel). A homotopy module is a pair (F∗, ǫ∗) where F∗ is a Z-graded abelian
Nisnevich sheaf on Smk which is strictly homotopy invariant and ǫn : Fn → (Fn+1)−1 is an
isomorphism. A morphism of homotopy modules is a homogeneous natural transformation of
Z-graded sheaves compatible with the given isomorphisms.

We denote by Π∗(k) the category of homotopy modules.

1.2.3. For any spectrum E, π0(E)∗ has a canonical structure of a homotopy module. Moreover,
the functor E 7→ π0(E)∗ induces an equivalence of categories between the heart of SH(k) for the
homotopy t-structure and the category Π∗(k) (see [Mor04, 5.2.6]). As in loc. cit. we will denote
its quasi-inverse by:

(1.2.3.1) H : Π∗(k)→ π0(SH(k)).

Note this result implies that Π∗(k) is a Grothendieck abelian category with generators of shape

(1.2.3.2) π0(X)∗{n} = π0(S
n,n ∧ Σ∞X+)∗.

for a smooth k-scheme and an integer n ∈ Z. It admits a monoidal structure defined by

(1.2.3.3) F∗ ⊗G∗ := π0(H(F∗) ∧H(G∗))∗ ≃ (H(F∗) ∧H(G∗))≥0.
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The isomorphism follows from the fact the tensor product on SH(k) preserves non negative spectra
(according to remark 1.1.4).

Note that π0(S
0)∗ is the unit object for this monoidal structure. Given a homotopy module

F∗ = (F∗, ǫ∗) and an integer n ∈ Z, we will denote by F∗{n} the homotopy module whose i-th
graded term is (Fi+n, ǫi+n). Then:

(1.2.3.4) F∗{n} = π0(G
∧,n
m )∗ ⊗ F∗

so that this notation agrees with that of (1.2.3.2).

Remark 1.2.4. Let F∗ be a homotopy module. Then according to the construction of the spectrum
F := H(F∗), for any couple (i, n) ∈ Z2, we get an isomorphism:

(1.2.4.1) Fi,n(X) ≃ Hi−n
Nis (X,Fn),

natural in X .

Example 1.2.5. Let H be the spectrum representing motivic cohomology.4 Then the homotopy
module π0(H)∗ is the sheaf of unramified Milnor K-theory KM

∗ on Smk.
5

1.2.6. Define the Hopf map in SH(k) as the morphism η : Gm → S0 obtained by applying the
tensor product with S−2,−1 to the map induced by

A2
k − {0} → P1

k, (x, y) 7→ [x, y].

According to [Mor04, 6.2.4],6 there exists a canonical exact sequence in Π∗(k) of shape:

(1.2.6.1) π0(Gm)∗
η∗

−→ π0(S
0)∗ → KM

∗ → 0.

Definition 1.2.7. A homotopy module F∗ is said to be orientable if the map induced by η:

1⊗ η∗ : F∗{1} → F∗

is zero. We will denote by Πη=0
∗ (k) the full subcategory of Π∗(k) made by the orientable homotopy

modules.

Note that η is in fact an element of π0(S
0)−1(k). Given a homotopy module F∗, a smooth

scheme X and an integer n ≥ 0, Hn
Nis(X,F∗) has a canonical structure of a graded π0(S

0)∗(k)-
module. Then the following conditions are equivalent:

(i) F∗ is orientable.
(ii) For any smooth scheme X and any integer n ≥ 0, the action of η on Hn

Nis(X,F∗) is zero.

Remark 1.2.8. (1) Consider a linear embedding i : P1 → P2. Then from [Mor04, 6.2.1], the
sequence

Σ∞(A2 − {0})
S2,1∧η
−−−−−→ Σ∞P1 i∗−−→ Σ∞P2

is homotopy exact in SH(k). In particular, one sees that a homotopy module F∗ is
orientable if i∗ : H∗

Nis(P
2, F∗) → H∗

Nis(P
1, F∗) is split – actually the reciprocal statement

holds (see Corollary 4.1.4).
(2) Recall that modulo 2-torsion, if −1 is a sum of squares in k, any homotopy module is

orientable (see [Mor04, 6.3.5]).

4See [Voe98] or example 2.2.6.
5This follows from two arguments: the identification of the unstable motivic cohomology of bidegree (n, n) of

a field E with the n-th Milnor ring KM
n (E); the cancellation theorem of Voevodsky to identify unstable motivic

cohomology with the stable one.
6See [Mor06] for a proof (stated as Corollary 21 in the introduction, which can be deduced from the results of

section 2.3).
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1.3. Homotopy modules with transfers.

1.3.1. Recall Voevodsky has introduced the category Smcor
k whose objects are the smooth schemes

and morphisms are the finite correspondences. Taking the graph of a morphism of smooth schemes
induces a functor γ : Smk → Smcor

k . A Nisnevich sheaf with transfers is an abelian presheaf F
on Smcor

k such that F ◦ γ is a Nisnevich sheaf. Note that the construction F−1 of paragraph 1.2.1
applied to a sheaf with transfers F gives in fact a sheaf with transfers, still denoted by F−1. In
[Dég09, 1.15], we have introduced the following definition:

Definition 1.3.2. A homotopy module with transfers is a pair (F∗, ǫ∗) where F∗ is a Z-graded
abelian Nisnevich sheaf with transfers which is strictly homotopy invariant and ǫn : Fn → (Fn+1)−1

is an isomorphism of sheaves with transfers. A morphism of homotopy modules with transfers
is a homogeneous natural transformation of Z-graded sheaves with transfers compatible with the
given isomorphisms.

We denote by Πtr
∗ (k) the category of homotopy modules with transfers.

1.3.3. Let (F∗, ǫ∗) be a homotopy module with transfers. Obviously, the functor γ∗(F∗) = F∗ ◦ γ
together with the natural isomorphism ǫ∗.γ is a homotopy module.
Recall from [Dég09, 1.3] that one can attach to F∗ a cohomological functor:

ϕ : DMgm(k)
op → A b

from Voevodsky’s category of geometric motives to the category of abelian groups such that:

ϕ(M(X)(n)[n+ i]) = Hi
Nis(X,F−n).

According to remark 1.2.8, the projective bundle theorem in DMgm(k) implies that γ∗(F∗) is
orientable. Thus we have obtained a canonical functor:

(1.3.3.1) γ′∗ : Πtr
∗ (k)→ Πη=0

∗ (k).

One can see that γ′∗ is faithful. The main point of this note is the following theorem:

Theorem 1.3.4. The functor γ′∗ introduced above is an equivalence of categories.

1.3.5. This theorem is an equivalent form of the conjecture [Mor04, conj. 3, p. 160] of Morel.
Indeed, recall the main theorem of [Dég09] establishes an equivalence of categories between the
category of homotopy modules with transfers and the category MCycl(k) of cycle modules defined
by M. Rost in [Ros96]. Indeed, from [Dég09, 3.3], we get quasi-inverse equivalences of categories:

(1.3.5.1) ρ : Πtr
∗ (k) ⇆ MCycl(k) : A0.

In fact, we will prove the previous theorem by proving the following equivalent form:

Theorem 1.3.6. There exists a canonical functor

ρ̃ : Πη=0
∗ (k)→MCycl(k)

and a natural isomorphism of endofunctors of Πη=0
∗ (k):

ǫ : 1→ (γ′∗ ◦A
0 ◦ ρ̃).

2. Preparations

2.1. The theory of cycle modules. We shortly recall the theory of cycle modules by M. Rost
(see [Ros96]) in a way that will facilitate the proof of our main result.

2.1.1. Cycle premodules.

2.1.1. A function field will be an extension field E of k of finite transcendental degree. A valued
function field (E, v) will be a function field E together with a discrete valuation v : E× → Z whose
ring of integers Ov is essentially of finite type over k. In this latter situation, we will denote by
κ(v) the residue field of Ov.

Given a function field E, we will denote by KM
∗ (E) the Milnor K-theory of E. Expanding a

remark of Rost ([Ros96, (1.10)]), we introduce the additive category Ẽk as follows: its objects are
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the couples (E, n) where E is a function field and n ∈ Z an integer; the morphisms are defined by
the following generators and relations:
Generators :

(D1) ϕ∗ : (E, n)→ (L, n) for an extension field ϕ : E → L, n ∈ Z.
(D2) ϕ∗ : (L, n)→ (E, n) for a finite extension fields ϕ : E → L, n ∈ Z.
(D3) γx : (E, n)→ (E, n+ r), for any x ∈ KM

r (E), n ∈ Z.
(D4) ∂v : (E, n)→ (κ(v), n− 1), for any valued function field (E, v), n ∈ Z.

Relations :

(R0) For all x ∈ KM
∗ (E), y ∈ KM

∗ (E), γx ◦ γy = γx.y.
(R1a) (ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗.
(R1b) (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗.
(R1c) Consider finite extension fields ϕ : K → E, ψ : K → L and put R = E ⊗K L. For any

point z ∈ Spec(R), let ϕ̄z : L→ R/z and ψ̄z : E → R/z be the induced morphisms. Under
these notations, the relation (R1c) is:
ψ∗ϕ

∗ =
∑

z∈Spec(R) lg
(

Rz

)

.(ϕ̄z)
∗(ψ̄z)∗,

where lg stands for the length of an Artinian ring.
(R2a) For an extension fields ϕ : E → L, x ∈ KM

∗ (E), ϕ∗ ◦ γx = γϕ∗(x) ◦ ϕ∗.

(R2b) For a finite extension fields ϕ : E → L, x ∈ KM
∗ (E), ϕ∗ ◦ γϕ∗(x) = γx ◦ ϕ∗.

(R2c) For a finite extension fields ϕ : E → L, y ∈ KM
∗ (L), ϕ∗ ◦ γy ◦ ϕ∗ = γϕ∗(y).

(R3a) Let ϕ : E → L be a morphism, where (L, v) and (E,w) are valued function fields such
that v|E× = e.w for a positive integer e. Let ϕ̄ : κ(w) → κ(v) be the induced morphism.
Under these notations, relation (R3a) is: ∂v ◦ ϕ∗ = e.ϕ̄∗ ◦ ∂w.

(R3b) Let ϕ : E → L be a finite extension fields where (E, v) is a valued function field. For
any valuation w on L, we let ϕ̄w : κ(v)→ κ(w) be the induced morphism. Then relation
(R3b) is: ∂v ◦ ϕ∗ =

∑

w/v ϕ̄
∗
w ◦ ∂w.

(R3c) For any ϕ : E → L, any valuation v on L, trivial on E×: ∂v ◦ ϕ∗ = 0.
(R3d) For a valued function field (E, v), a prime π of v : ∂v ◦ γ{−π} ◦ ϕ∗ = ϕ̄∗.

(R3e) For a valued field (E, v) and a unit u ∈ E× : ∂v ◦ γ{u} = −γ{ū} ◦ ∂v.

Recall the following definition – [Ros96, (1.1)]:

Definition 2.1.2. A cycle premodule is an additive covariant functor M : Ẽk → A b. We denote

by A bẼk the category of such functors with natural transformations as morphisms.

2.1.2. Cycle modules.

2.1.3. Consider a cycle premodule M , a scheme X essentially of finite type over k, and an integer
p ∈ Z. According to loc. cit., §5, we set:

(2.1.3.1) Cp(X ;M) =
⊕

x∈Xp

M(κx)

where κx denotes the residue field of x in X . This is a graded abelian group and we put:
Cp(X ;M)n =

⊕

x∈Xp Mn−p(κx).
7

Consider a couple (x, y) ∈ X(p) ×X(p+1). Assume that y is a specialization of x. Let Z be the

reduced closure of x in X and Z̃
f
−→ Z be its normalization. Each point t ∈ f−1(y) corresponds

to a discrete valuation vt on κx with residue field κt. We denote by ϕt : κy → κt the morphism
induced by f . Then, we define according to [Ros96, (2.1.0)] the following homogeneous morphism
of graded abelian groups:

(2.1.3.2) ∂xy =
∑

t∈f−1(y)

ϕ∗
t ◦ ∂vt : C

p(X ;M)n → Cp+1(X ;M)n

If y is not a specialization of x, we put: ∂xy = 0.

7It is denoted by Cp(X;M,n) in loc. cit.
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Definition 2.1.4. Consider the hypothesis and notations above. We introduce the following
property of the cycle premodule M :

(FDX) For any x ∈ X and any ρ ∈M(κx), ∂
x
y (ρ) = 0 for all but finitely many y ∈ X .

Assume (FDX) is satisfied. Then for any integer p, we define according to [Ros96, (3.2)] the
following morphism:

(2.1.4.1) dpX =
∑

(x,y)∈X(p)×X(p+1)

∂xy : Cp(X ;M)n → Cp+1(X ;M)n,

and introduce the following further property of M :

(CX) For any integer p ≥ 0, dp+1
X ◦ dpX = 0.

2.1.5. Thus, under (FDX) and (CX), the map d∗X is a differential on C∗(X ;M) and we get the
complex of cycles in X with coefficients in M defined by Rost in loc. cit. In fact, the complex
C∗(X ;M) is graded according to (2.1.4.1).

In the conditions of the above definition, the following properties are clear from the definition:

• Let Y be a closed subscheme (resp. open subscheme, localized scheme) of X . Then (FDX)
implies (FDY ) and (CX) implies (CY ).
• Let X = ∪i∈IUi be an open cover of X . Then (FDX) is equivalent to (FDUi

) for any
i ∈ I.

As any affine algebraic k-scheme X can be embedded into An
k for n sufficiently large, we deduce

easily from these facts the following lemma:

Lemma 2.1.6. Let M be a cycle premodule. Then the following conditions are equivalent:

(i) M satisfies (FDX) for any X.
(ii) M satisfies (FDAn) for any integer n ≥ 0.

Assume these equivalent conditions are satisfied. Then, the following conditions are equivalent:

(iii) M satisfies (CX) for any X.
(iv) M satisfies (CAn) for any integer n ≥ 0.

The following definition is equivalent to that of [Ros96, (2.1)] (see in particular [Ros96, (3.3)]):

Definition 2.1.7. A cycle premodule M which satisfies the equivalent conditions (i)-(iv) of the
previous lemma is called a cycle module.

2.1.8. Given a cycle module M and a scheme X essentially of finite type over k, we denote by
Ap(X ;M) the p-th cohomology group of the complex C∗(X ;M). This group is graded according
to the graduation of C∗(X ;M).

Recall that according to one of the main construction of Rost, A∗(X ;M) is contravariant with
respect to morphisms of smooth schemes. Moreover, according to [Dég08c], the presheaf

X 7→ A0(X ;M)

has a canonical structure of a homotopy module with transfers (def. 1.3.2) which actually defines
the functor A0 of (1.3.5.1).

2.2. Modules and ring spectra.

2.2.1. Recall that a ring spectrum is a (commutative) monoid R of the monoidal category SH(k).
A module over the ring spectrum R is a R-module in SH(k) in the classical sense: a spectrum

E equipped with a multiplication map γE : R∧E→ E satisfying the usual identities – see [ML98].8

Given two R-modules E and F, a morphism of R-modules is a morphism f : E→ F in SH(k)
such that the following diagram is commutative:

R ∧ E
1R∧f //

γE ��

R ∧ F
γF��

E
f // F.

8As R is commutative, we will not distinguished the left and right R-modules.
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This defines an additive category denoted by R−modw.
Given any spectrum E, R ∧ E has an obvious structure of a R-module. This defines a functor

which is obviously left adjoint to the inclusion functor. Thus we get an adjunction of categories:

(2.2.1.1) Lw
R
: SH(k) ⇆ R−modw : Ow

R
.

Remark 2.2.2. The category R−modw has a poor structure. For example, it is not possible in
general to define a tensor product or a triangulated structure on R−modw. This motivates the
definitions which follow.

2.2.3. Recall also from [Jar00] that SH(k) is the homotopy category of a monoidal model category:
the category of symmetric spectra denoted by SpΣ(k). A strict ring spectrum R is a commutative
monoid object in the category SpΣ(k). Given such an object we can form the category R−modSp

of R-modules with respect to the monoidal category SpΣ(k) and consider the natural adjunction

(2.2.3.1) SpΣ(k) ⇆ R−modSp

where the right adjoint is the forgetful functor. An object of R−modSp will be called a strict
module over R.

The monoidal model category SpΣ(k) satisfies the monoid axiom of Schwede and Shipley: this
implies that the category of strict R-modules admits a (symmetric) monoidal model structure
such that the right adjoint of (2.2.3.1) preserves and detects fibrations and weak equivalences (cf
[SS00, 4.1]).

Definition 2.2.4. We denote by R−mod the homotopy category associated with the model
category R−modSp described above.

2.2.5. Note that R−mod is a monoidal triangulated category. The Quillen adjunction (2.2.3.1)
induces a canonical adjunction:

(2.2.5.1) LR : SH(k) ⇆ R−mod : OR.

By construction, the functor LR is triangulated and monoidal. Given a smooth scheme X and a
couple (i, n) ∈ Z2, we will put:

(2.2.5.2) R(X)(n)[i] := LR(Si,n ∧Σ∞X+).

Note that the R-modules of the above shape are compacts and form a family of generators for the
triangulated category R−mod.

The functor OR is triangulated and conservative. Because it is the right adjoint of a monoidal
functor, it is weakly monoidal. In other words, for any strict R-modules M and N , we get a
canonical map in SH(k):

OR(M ⊗R N)→ OR(M) ∧ OR(N).

This implies that OR maps into the subcategory R−modw giving a functor

(2.2.5.3) O′
R
: R−mod→ R−modw.

For any spectrum E, ORLR(E) = R ∧ E. Thus the following diagram commutes:

SH(k)
Lw

R

''OOOOOOOLR

xxqqqqqq

R−mod O′

R
// R−modw.

(2.2.5.4)

Example 2.2.6. The spectrum H representing motivic cohomology has a canonical structure of
a strict ring spectrum. This follows from the adjunction of triangulated categories

(2.2.6.1) γ∗ : SH(k) ⇆ DM(k) : γ∗

where DM(k) is the category of stable motivic complexes over k. In fact, by the very definition,

H = γ∗(1)
where 1 is the unit object for the monoidal structure on DM(k). To prove that H is a strict
ring spectrum, the argument is that γ∗ is induced by a monoidal left Quillen functor between the
underlying monoidal model categories (see [CD09] for details).
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Note also that any object of DM(k) admits a canonical structure of a strict H-module. In fact,
the previous adjunction induces a canonical adjunction

(2.2.6.2) γ̃∗ : H−mod⇆ DM(k) : γ̃∗

(see again [CD09]).

2.3. On the Gysin triangle and morphism.

2.3.1. The proof of theorem 3.2.2 requires some of the results of [Dég08b]. We recall them to the
reader to make the proof more intelligible.

Recall that for any smooth scheme X , we have9 an isomorphism of abelian groups:

(2.3.1.1) c1 : Pic(X)→ H2,1(X).

Considering the left adjoint of (2.2.5.1), we get a monoidal functor:

(2.3.1.2) SH(k)→ H−mod

and this functor shows the category H−mod satisfies the axioms of paragraph 2.1 in loc. cit. –
see example 2.12 of loc. cit.

Remark 2.3.2. Note that, because (2.3.1.1) is a morphism of group, the formal group law attached
to the category H−mod in [Dég08b, 3.7] is just the additive formal group law F (x, y) = x+ y. In
particular, the power series in the indeterminate x

[2]F = F (x, x), [3]F = F (x, F (x, x)), . . .

are simply given by the formula: [r]F = r.x for any integer r.

2.3.3. The Gysin triangle: For any smooth schemes X , Z and any closed immersion i : Z → X of
pure codimension c, with complementary open immersion j, there exists a canonical distinguished
triangle (see [Dég08b, def. 4.6]):

(2.3.3.1) H(Z −X)
j∗
−→ H(X)

i∗
−→ H(Z)(c)[2c]

∂X,Z

−−−→ H(X − Z)[1].

The map i∗ (resp. ∂X,Z) is called the Gysin (resp. residue) morphism associated with i. Consider
moreover a commutative square of smooth schemes

T
k //

q

��

Y

p

��
Z

i // X

(2.3.3.2)

such that i and k are closed immersions of pure codimension c and T is the reduced scheme
associated with Z ×X Y . Let h : (Y − T ) → (X − Z) be the morphism induced by p. Then the
following formulas hold:

(G1a) Assume T = Z ×X Y . Then, according to [Dég08b, prop. 4.10], the following diagram is
commutative:

H(Y )
k∗

//

p∗

��

H(T )(c)[2c]
∂Y,T //

q∗
��

H(Y − T )[1]

h∗

��
H(X)

i∗ // H(Z)(c)[2c]
∂X,Z // H(X − Z)[1].

(G1b) Assume Z ×X Y is irreducible and let e be its geometric multiplicity. Then according to
[Dég08b, 4.26] combined with remark 2.3.2, the following diagram is commutative:

H(Y )
k∗

//

p∗

��

H(T )(c)[2c]
∂Y,T //

e.q∗
��

H(Y − T )[1]

h∗

��
H(X)

i∗ // H(Z)(c)[2c]
∂X,Z // H(X − Z)[1].

9Note that, as in example 1.2.5, one uses the cancellation theorem of Voevodsky to get this isomorphism.
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Remark 2.3.4. The Gysin morphism i∗ in the triangle (2.3.3.1) induces a pushout in motivic
cohomology:

i∗ : Hn,m(Z)→ Hn+2c,m+c(X).

Considering the unit element of the graded algebra H∗,∗(Z), we define the fundamental class
associated with i as the element ηX(Z) := i∗(1) ∈ H2c,c(X).

Assume c = 1. Then Z defines an effective Cartier divisor of X which corresponds uniquely to
a line bundle L over X together with a section s : X → L. Moreover, s is transversal to the zero
section s0 and the following square is cartesian:

Z
i //

i ��
X

s��
X

s0 // L

Then according to [Dég08b, 4.21], ηX(Z) = c1(L) with the notation of (2.3.1.1).10

2.3.5. Consider a smooth scheme X such that X = X1⊔X2 and let x1 : X1 → X be the canonical
open and closed immersion. By additivity, H(X) = H(X1)⊕H(X2). Moreover, x1∗ is the obvious
split inclusion which corresponds to this decomposition. Correspondingly, it follows from (G1a)
that x∗1 is the obvious split epimorphism. One can complete [Dég08b] by the following lemma
which describes the additivity properties of the Gysin triangle:

Lemma 2.3.6. Consider smooth schemes X, Z and a closed immersion ν : Z → X of pure
codimension n.

Consider the canonical decompositions Z = ⊔i∈IZi and X = ⊔j∈JXj into connected components

and put Ẑj = Z ×X Xj. We also consider the obvious inclusions:

zi : Zi → Z, xj : Xj → X,uj : (Xj − Ẑj)→ (X − Z)

and the morphisms νji, ∂ij uniquely defined by the following commutative diagram:

H(X)
ν∗

// H(Z)(n)[2n]
∂X,Z // H(X − Z)[1]

⊕j∈JH(Xj)
(νji)j∈J,i∈I

//

∼
∑

j
xj∗

OO

⊕i∈IH(Zi)(n)[2n]
(∂ij)i∈I,j∈J

//

∼
∑

i
zi∗

OO

⊕j∈JH(Xj − Ẑj)[1].

∼
∑

j
uj∗

OO

Then, for any couple (i, j) ∈ I × J :

(1) if Zi ⊂ Xj, we let νji : Zi → Xj be the obvious inclusion and we put: Z ′
i = Ẑj − Zi.

Then νji =
(

νji
)∗

and ∂ij = ∂Xj−Z′

i
,Zi

.

(2) Otherwise, νji = 0 and ∂ij = 0.

Proof. According to the preamble 2.3.5, we get: νji = z∗i ν
∗xj∗, ∂i,j = u∗j∂X,Zzi∗.

In the respective case (1) and (2), we consider the following cartesian squares:

(1) If Zi ⊂ Xj , (2) otherwise,

Zi

νj
i //

∆1

Xj

xj

��

∆2

Ẑj

��

νj
i

ẑjoo

∆3

Zi
oo

Zi νi
// X Zν

oo Zizi
oo

∅ //

��

∆1

Xj

��

xj ∆2

Ẑj

��

νj
i

ẑjoo

∆3

∅oo

��
Zi νi

// X Zν
oo Zizi

oo

10One can prove more generally that, through the isomorphism H
2c,c(X) ≃ CHc(X) where the left hand side

denotes the Chow group of codimension c cycles, i∗ agrees with the usual pushout on Chow groups (see [Dég09,
Prop. 3.11]). Thus ηX(Z) simply corresponds to the cycle of Z in X.
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Then the result follows from the following computations:

z∗i ν
∗xj∗

(a)
= ν∗i xj∗

(b)
=

{

(νji )
∗ if Zi ⊂ Xj ,

0 otherwise.

u∗j∂X,Zzi∗
(c)
= ∂Xj ,Ẑj

ẑ∗j zi∗
(d)
=

{

∂Xj ,Ẑj
(zji )∗

(e)
= ∂Xj−Z′

i
,Zi

if Zi ⊂ Xj ,

0 otherwise.

We give the following justifications for each equality: (a) use (G2a) (νi = ν ◦ zi), (b) use (G1a)
applied to ∆1, (c) use (G2b) applied to ∆2, (d) use (G1a) applied to ∆3, (e) use (G1a). �

2.3.7. The Gysin morphism: For any smooth schemes X and Y and any projective equidimen-
sional morphism f : Y → X of dimension n, there exists (see [Dég08b, def. 5.12]) a canonical
morphism in H−mod of the form

(2.3.7.1) f∗ : H(X)(n)[2n]→ H(Y )

which coincides with the morphism of (2.3.3.1) in the case where f is a closed immersion. It
satisfies the following properties:

(G2a) Whenever it makes sense, we get (see [Dég08b, prop. 5.14]): f∗g∗ = (gf)∗.
(G2b) Consider a cartesian square of smooth schemes of shape (2.3.3.2) such that i and k (resp.

p and q) are closed immersion (resp. projective equidimensional morphisms). Assume i,
k, f , g have constant relative codimension n, m, s, t respectively. Put d = n+ t = m+ s.
Let h : (Y − T )→ (X − Z) be the morphism induced by f . Then the following square is
commutative (see [Dég08b, prop. 5.15]11):

H(Z)(n)[2n]
∂X,Z //

g∗

��

H(X − Z)[1]

h∗

��
H(T )(d)[2d]

∂Y,T // H(Y − T )(s)[2s+ 1].

(G2c) For any cartesian square of smooth schemes

T
q //

g

��
∆

Y

f
��

Z
p // X

(2.3.7.2)

such that p and q are projective equidimensional of the same dimension, we get (see
[Dég08b, 5.17(i)]):

p∗f∗ = g∗q
∗.

(G2d) Consider a commutative square of smooth schemes of shape (2.3.7.2) such that:
– p, q, f and g are finite equidimensional morphisms.
– T is equal to the reduced scheme associated with T ′ = Z ×X Y .

Let (T ′
i )i∈I be the connected components of T ′. For any index i ∈ I, we let qi : T

′
i → X ′

(resp. gi : T ′
i → Y ) be the morphism induced by q (resp. g) and we denote by ri be

the geometric multiplicity of T ′
i . Then according to [Dég08b, prop. 5.22] combined with

remark 2.3.2, we get the following formula:

p∗f∗ =
∑

i∈I

ri.gi∗q
∗
i .

Remark 2.3.8. At one point12, we will need property (G2b) when we only require that the square
(2.3.3.2) is topologically cartesian (i.e. T = (Y ×X Z)red). In fact, the proof given in [Dég08b]
requires only this assumption: one proves Proposition 5.15 by reducing to Theorem 4.32 (the case

11There is a misprint in loc. cit.: one should read n+ t = m+ s, d = n+ t.
12The proof of Proposition 3.3.4.
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where p and q are closed immersions), and the proof uses only the fact the square is topologically
cartesian (in the construction of the isomorphism denoted by p(X;Y,Y ′)).

2.3.9. Products : Let X be a smooth scheme and δ : X → X ×X the diagonal embedding. For
any morphisms a : H(X)→ E and b : H(X)→ F, we denote by a ⊠X b the composite morphism:

(2.3.9.1) H(X)
δ∗−→ H(X)⊗H H(X)

a⊗Hb
−−−−→ E⊗H F.

(G3a) For any morphism f : Y → X of smooth schemes and any couple (a, b) of morphisms in
R−mod with source H(Y ), we get (obviously):

(a ⊠X b) ◦ f∗ = (a ◦ f∗) ⊠Y (b ◦ f∗)

(G3b) For any projective morphism f : Y → X of smooth schemes and any morphism a (resp.
b) in H−mod with source H(X) (resp. H(Y )), we get (see [Dég08b, 5.18]):

[a ⊠X (b ◦ f∗)] ◦ f∗ = (a ◦ f∗) ⊠Y b.

[(b ◦ f∗) ⊠X a] ◦ f∗ = b ⊠Y (a ◦ f∗).

Remark 2.3.10. Consider a smooth scheme X and a vector bundle E/X of rank n. Let P = P(E)
be the associated projective bundle with projection p : P → X and λ the canonical line bundle
such that λ ⊂ p−1(E). Then, for any integer r ≥ 0, the r-th power of the class c = c1(λ

∨) (see
(2.3.1.1)) in motivic cohomology corresponds to a morphism in H−mod which we denote by:
cr : H(P )→ H(r)[2r]. The projective bundle theorem ([Dég08b, 3.2]) says that the map

∑

0≤r≤n

p∗ ⊠P cr : H(P )→ ⊕0≤r≤nH(X)(r)[2r].

is an isomorphism. Thus we get a canonical map ln(P ) : H(X)(n)[2n]→ H(P ).
Given a finite epimorphism f : Y → X which admits a factorization as

Y
i
−→ P

p
−→ X

where i is a closed immersion and P/X is the projective bundle considered above, we recall that
the Gysin morphism f∗ of (2.3.7.1) is defined as the composite map:

H(X)(n)[2n]
ln(P )
−−−→ H(P )

i∗

−→ H(Y )(n)[2n]

after taking the tensor product with H(−n)[−2n].
Assume Y (thus X) is connected and P/X has relative dimension 1. Consider the map f∗ :

Hn,m(Y ) → Hn,m(X) induced by f∗. According to the above description, we get a factorization
of f∗ as:

Hn,m(Y )
i∗−→ Hn+2,m+1(P )

p∗

−→ Hn,m(X).

where i∗ corresponds to the morphism of remark 2.3.4. To describe the second map, recall that any
class α ∈ Hn+2,m+1(P ) can be written uniquely as α = p∗(α0) + p∗(α1).c1(λ

∨): then p∗(α) = α1.
Thus, we now deduce from this description the following trace formula:

(2.3.10.1) f∗(1) = d

where d is the generic degree of f . In fact, according to remark 2.3.4 and its notations, i∗(1) =
c1(L). Thus the formula follows from the equality c1(L) = d.c1(λ

∨) in Pic(P ) modulo Pic(X).

2.3.11. Consider a regular invertible function x : X → Gm on a smooth scheme X . According to
the canonical decomposition H(Gm) = H⊕H(1)[1], it induces a morphism: x′ : H(X)→ H(1)[1].

Using the product (2.3.9.1), we then deduce the following morphism:

(2.3.11.1) γx = 1X∗ ⊠X x′ : H(X)→ H(X)(1)[1].

If νx : X → X×Gm denotes the graph of x, then γx is also equal to the following composite map:

(2.3.11.2) H(X)
νX∗−−→ H(X ×Gm) = H(X)⊗H H(Gm)→ H(X)(1)[1].

We will need the following properties of this particular kind of products:
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Proposition 2.3.12. Let X be a smooth scheme and i : Z → X be the immersion of a smooth
divisor. Put U = X − Z and let j : U → X be the canonical open immersion.

(1) Let x : X → Gm be a regular invertible function, ū (resp. u) its restriction to Z (resp.
U). Then the following diagram is commutative:

H(Z)(1)[1]
∂X,Z //

γū⊗HId
��

H(U)

γu

��
H(Z)(2)[2]

−∂X,Z⊗HId // H(U)(1)[1]

(2) Consider a regular function π : X → A1 such that Z = π−1(0). Write again π : U → Gm

for the obvious restriction of π. Then the following diagram is commutative:

H(Z)(1)[1]
∂X,Z //

i∗ **TTTTTTTTT
H(U)

γπ // H(U)(1)[1]

j∗ttjjjjjjjjj

H(Z)(1)[1]

Proof. (1) Let νx, νu, νū be the respective graphs of x, u and ū. Applying property (G1a), we get
a commutative square:

H(Z)(1)[1]
∂X,Z //

νū∗⊗HId
��

H(U)

νu∗

��
H(Z ×Gm)(1)[1]

∂X×Gm,Z×Gm // H(U ×Gm)

According to [Dég08b, 4.12], we get a commutative diagram:

H(Z ×Gm)(1)[1]
∂X×Gm,Z×Gm // H(U ×Gm)

H(Z)⊗H H(Gm)(1)[1]
ǫ

∼
// H(Z)(1)[1]⊗H H(Gm)

∂X,Z⊗Id // H(U)⊗H H(Gm)

where ǫ is the symmetry isomorphism for the tensor product of H−mod. The result then follows
from the fact ǫ = −1.13

(2) For this point, we refer the reader to the proof of [Dég08c, 2.6.5]. �

2.4. Coniveau spectral sequence.

2.4.1. Recall from [Dég08a, sec. 3.1.1] that a triangulated exact couple in a triangulated category
T is the data of bigraded objects D and E of T and homogeneous morphisms between them

(2.4.1.1) D
(1,−1)

α
// D

(0,0)
β

~~~~
~~

~~
~~

~

E

(−1,0)
γ

``@@@@@@@@@

with the bidegrees of each morphism indicated in the diagram and such that for any pair of integers
(p, q):

(1) Dp,q+1 = Dp,q[−1],
(2) the following sequence is a distinguished triangle:

Dp−1,q+1
αp−1,q+1
−−−−−−→ Dp,q

βp,q

−−→ Ep,q
γp,q

−−→ Dp−1,q = Dp−1,q+1[1].

13Indeed it is well known that for any classes x, y ∈ H
n,m(X) ×H

s,t(X), xy = (−1)n+syx.
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We can associate with that triangulated exact couple a differential according to the formula:
d = β ◦ γ. According to point (2) above, d2 = 0 and we have defined a complex in T :

. . .→ Ep+1,q
dp,q

−−→ Ep,q → . . .

Recall also from [Dég08a, def. 3.3] that, given a smooth scheme X , a flag of X is a decreasing
sequence (Zp)p∈Z of closed subschemes of X such that for all integer p ∈ Z, Zp is of codimension
greater than p in X if p ≥ 0 and Zp = X otherwise. We denote by D (X) the set of flags of X ,
ordered by termwise inclusion.

Consider such a flag (Zp)p∈Z. Put Up = X − Zp. By hypothesis, we get an open immersion
jp : Up−1 → Up. In the category of pointed sheaves of sets on Smk, we get an exact sequence:

0→ (Up−1)+
jp
−→ (Up)+ → Up/Up−1 → 0

because jp is a monomorphism (in the category of schemes). Then, for any pair of integers (p, q),
we deduce from that exact sequence a distinguished triangle in SH(k):

Σ∞(Up−1)+[−p− q]
jp∗
−−→ Σ∞(Up)+[−p− q] −→ Σ∞(Up/Up−1)[−p− q]

−→ Σ∞(Up−1)+[−p− q + 1],
(2.4.1.2)

which in turn gives a triangulated exact couple according to the above definition.

2.4.2. In the followings, we will not consider the preceding exact couple for only one flag. Rather,
we remark that the triangle (2.4.1.2) is natural with respect to the inclusion of flags: thus we really
get a projective system of triangles and then a projective system of triangulated exact couples.

Recall that a pro-object of a category C is a (covariant) functor F from a left filtering category
I to the category C. Usually, we will denote such a pro-object F by the intuitive notation ”lim

←−
”

i∈I

Fi

and call it the formal projective limit of the projective system (Fi)i∈I .
For any integer p ∈ Z, we introduce the following pro-objects of SH(k):

Fp(X) = ”lim
←−

”
Z∗∈D(X)

Σ∞(X − Zp)+(2.4.2.1)

Grp(X) = ”lim
←−

”
Z∗∈D(X)

Σ∞(X − Zp/X − Zp−1)(2.4.2.2)

Taking the formal projective limit of the triangles (2.4.1.2) where Z∗ runs over D (X), we get a
pro-distinguished triangle14:

Fp−1(X)[−p− q]
αp−1,q+1
−−−−−−→ Fp(X)[−p− q]

βp,q

−−→ Grp(X)[−p− q]
γp,q

−−→ Fp−1(X)[−p− q + 1],
(2.4.2.3)

Definition 2.4.3. Considering the above notations, we define the homotopy coniveau exact couple
as data for any couple of integers (p, q) of the pro-spectra:

Dp,q = Fp(X)[−p− q], Ep,q = Grp(X)[−p− q]

and that of the homogeneous morphisms of pro-objects α, β, γ appearing in the pro-distinguished
triangle (2.4.2.3).

For short, a projective system of triangulated exact couples will be called a pro-triangulated
exact couple.

Example 2.4.4. Consider a spectrum E. We extend the functor represented by E to pro-spectrum
as follows:

ϕ̄E : (Fi)i∈I 7→ lim
−→
i∈Iop

HomSH(k)(Fi,E).

14i.e. the formal projective limit of a projective system of distinguished triangles.
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Applying the funtor ϕ̄E to the homotopy coniveau exact couple gives an exact couple of abelian
groups in the classical sense (with the conventions of [McC01, th. 2.8]) whose associated spectral
sequence is:

(2.4.4.1) Ep,q
1 (X,E) = lim

−→
Z∗∈D(X)

Ep+q(X − Zp/X − Zp−1)⇒ Ep+q(X).

This is the usual coniveau spectral sequence associated with E (see [BO74], [CTHK97]). Note that
it is concentrated in the band 0 ≤ p ≤ dim(X); thus it is convergent.

Remark 2.4.5. The canonical functor

SH(k)→ DM(k),

once extended to pro-objects, sends the data defined above to the motivic coniveau exact couple
considered in [Dég08a, def. 3.5].

3. The proof

3.1. The (weak) H-module structure.

Proposition 3.1.1. Let F∗ be an orientable homotopy module.
Then the spectrum H(F∗) (see (1.2.3.2)) admits a canonical structure of H-module in SH(k).

Proof. This follows from the exact sequence (1.2.6.1), example 1.2.5 and the fact that the tensor
product on SH(k) preserves positive objects for the homotopy t-structure. �

3.1.2. In particular, the presheaf represented by the (weak) H-module H(F∗) precomposed with
the functor (2.2.5.3) induces a canonical functor:

(3.1.2.1) ϕF : (H−mod)op → A b.

According to the commutative diagram (2.2.5.4), we get a commutative diagram:

SH(k)op ϕ0
F

++XXXXXXXXXX

(LH)op

��
A b

(H−mod)op
ϕF

33fffffffff
(3.1.2.2)

where ϕ0
F is the presheaf represented by the spectrum H(F∗). According to the isomorphism

(1.2.4.1), this implies that for any smooth scheme X and any integer n ∈ Z, ϕF (H(X)(n)[n]) =
F−n(X).

3.2. The associated cycle premodule.

3.2.1. Let O be a formally smooth essentially of finite type k-algebra. A smooth model of O will
be an affine smooth scheme X = Spec(A) (of finite type) such that A is a sub-k-algebra of O.
LetMsm(O/k) be the set of such smooth models, ordered by the relation: Spec(B) ≤ Spec(A) if
A ⊂ B. As k is perfect, Msm(O/k) is a non empty left filtering ordered set. We will denote by
(O) the pro-scheme (X)X∈Msm(O/k).

Theorem 3.2.2. Consider the above notations and the category Ẽk introduced in 2.1.1. There
exists a canonical additive functor

H(0) : Ẽ
op
k → pro−(H−mod)

defined on an object (E, n) of Ẽk by the formula:

H(0)(E, n) = ”lim←−”
X∈Msm(E/k)

H(X)(−n)[−n].

Note this theorem follows directly from our previous work on generic motives [Dég08c] when k
admits resolution of singularities because the adjunction (2.2.6.2) is then an isomorphism. How-
ever, we give a proof (see paragraphs 3.2.4 and 3.2.9) which avoids this assumption. It uses the
same arguments than [Dég08c] after a generalisation of its geometric constructions to the category
H−mod (see section 2.3). But let us first state the corollary which motivates the previous result:
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Corollary 3.2.3. Let F∗ be an orientable homotopy module.
Then one associates with F∗ a canonical cycle premodule F̂∗ : Ẽk → A b defined on an object

(E, n) of Ẽk by the formula:

F̂∗(E, n) = lim
−→

X∈Msm(E/k)

F−n(X).

This defines a functor: ρ̃′ : Πη=0
∗ (k)→ A bẼk .

Proof. In fact, the functor ϕF associated with F∗ in (3.1.2.1) admits an obvious extension ϕ̄F to

pro-objects of H−mod. One simply puts: F̂∗ = ϕ̄F ◦H
(0). This is obviously functorial in F∗. �

3.2.4. Functorialities:
(D1) is induced by the natural functoriality.
(D2): A finite extension fields ϕ : E → L induces a morphism of pro-schemes (ϕ) : (L) → (E)
such that

(ϕ) = ”lim
←−

”
i∈I

(fi : Yi → Xi)

where the fi are finite surjective morphisms, whose associated generic residual extension is L/E,
and the transition morphisms in the previous formal projective limit are made by transversal
squares (see [Dég08c, 5.2] for details). One defines the map ϕ∗ : H(E)→ H(L) corresponding to
(D2) as the formal projective limit:

”lim
←−

”
i∈I

(

f∗
i : H(Xi)→ H(Yi)

)

using the Gysin morphism (2.3.7.1) and property (G2c).
(D3): According to example 1.2.5, for any function field E/k and any integer n ≥ 0,

(3.2.4.1)

(

lim−→
X∈Msm(E/k)

Hn(X)

)

≃ KM
n (E).

Thus any symbol σ ∈ KM
n (E) corresponds to a morphism of pro-objects

H(0)(E)→ H(n)[n]

still denoted by σ. For any smooth model X of E/k, we let σX : H(0)(X) → H(n)[n] the
component of σ corresponding to X . We define γσ as the formal projective limit:

”lim
←−

”
X∈Msm(E/k)

(

σX ⊠X 1X∗

)

with the definition given by formula (2.3.9.1).
(D4): Let (E, v) be a valued function field with ring of integers Ov and residue field κv. There
exists a smooth model X of Ov and a point x ∈ X of codimension 1 corresponding to the valuation
v. Let Z be the reduced closure of x in X . Given an open neighborhood U of x in X such that
Z ∩ U is smooth, we can write the corresponding Gysin triangle (2.3.3.1) as follows:

(3.2.4.2) H(Z ∩ U)(1)[1]
∂U,Z∩U

−−−−−→ H(U − Z ∩ U)
j∗
−→ H(U)→ H(Z ∩ U)(1)[2]

According to property (G1a), the morphism ∂U,Z∩U is functorial with respect to the open sub-
scheme U . Taking the formal projective limit of this morphism with respect to the neighborhoods
U as above, we obtain the desired map:

∂v : H(κv)(1)[1]→ H(E).

Remark 3.2.5. Note for future references that the triangle (3.2.4.2) being distinguished, we get
with the above notations: j∗ ◦ ∂U,Z∩U = 0.
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3.2.6. Before proving the relations, we note that one can apply the preceding construction to
obtain maps in motivic cohomology. More precisely, given any function fields E/k, we put (as in
corollary 3.2.3):

π̂0(H)n(E) := lim−→
X∈Msm(E/k)

Hn(X).

As Hn(X) = HomH−mod(H(X)(−n)[−2n],H), we thus obtain that for any extension (resp. finite
extension) of function fields ϕ : K → E, the map (D1) (resp. (D2)) induces a canonical morphism:

ϕ∗ : π̂0(H)n(K)→ π̂0(H)n(E),

resp. ϕ∗ : π̂0(H)n(E)→ π̂0(H)n(K).

We will need the following lemma concerning these maps:

Lemma 3.2.7. Consider for any function field E/k the isomorphism (3.2.4.1) of graded abelian
groups:

KM
∗ (E)

ǫE−→ π̂0(H)∗(E).

Then, the following properties hold:

(1) ǫE is an isomorphism of graded algebras.
(2) For any morphism ϕ : E → L of function fields, the following square is commutative:

KM
∗ (E)

ǫE //

ϕ∗

��

π̂0(H)∗(E)

ϕ∗

��
KM

∗ (L)
ǫL // π̂0(H)∗(L)

where the left (resp. right) vertical map corresponds to the standard functoriality of Milnor
K-theory (resp. data (D1)).

(3) For any finite morphism ϕ : E → L of function fields, the following square is commutative:

KM
∗ (E)

ǫE // π̂0(H)∗(E)

KM
∗ (L)

ǫL //

ϕ∗

OO

π̂0(H)∗(L)

ϕ∗

OO

where the left (resp. right) vertical map corresponds to the standard functoriality of Milnor
K-theory (resp. data (D2)).

Proof. Assertions (1) and (2) follow precisely from [SV00, th. 3.4]. The verification of (3) is not
easy due to the abstract nature of the Gysin morphism used to define (D2). However, we can
follow the argument of [SV00], lemmas 3.4.1 and 3.4.4: this means we are reduced to prove the
following formulas:

Lemma 3.2.8. Let ϕ : K → E and ψ : K → L be finite extensions of fields. Let [E : K] (resp.
[E : K]i) be the degree (resp. inseparable degree) of E/K. Then for any elements x ∈ π̂0(H)n(E)
and y ∈ π̂0(H)n(K), the following formulas hold:

(4) ϕ∗(x.ϕ∗(y)) = ϕ∗(x).y, ϕ∗(ϕ∗(y).x) = y.ϕ∗(x).
(5) ϕ∗ϕ∗(x) = [E : K].x.
(6) Put R = E ⊗K L. Then, ψ∗ϕ

∗(x) =
∑

z∈Spec(R) lg(Rz).ϕ̄
∗
zψ̄z∗(x), with the notations of

(R1c).
(7) Assume L/K is normal. Then, ψ∗ϕ

∗(x) = [E : K]i.
∑

j∈HomK(E,L) j∗(x).

In fact, point (7) implies point (3) for the graded part of degree 1 because according to point
(2), ψ∗ : π0(H)1(K) → π0(H)1(L) is injective. Then the proof of [SV00, lem. 3.4.4] allows to
deduce point (3): this proof indeed uses only the preceding fact together with points (4) and (5).

Let us now prove the preceding lemma. Points (4) (resp. (6)) follow from the definition of (D2)
and property (G3b) (resp. (G2d)). Point (7) is then an easy consequence of (6) using elementary
Galois theory. The difficult part is point (5).
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According to point (4), we are reduced to prove that ϕ∗(1) = [E : K]. Because of property
(G2a) of the Gysin morphism, we reduce to the case where E/K is generated by a single element.
In other words, E = K[t]/(P ) where P is a polynomial with coefficients in t. Thus we can find
a smooth model X (resp. Y ) of K/k (resp. E/k) and a finite surjective morphism f : Y → X
whose generic residual extension is E/K and which factors as:

Y
i
−→ P1

X
p
−→ X

where p is the canonical projection and i is a closed immersion of codimension 1. Thus point (5)
now follows from the definition of (D2) and the trace formula (2.3.10.1). �

3.2.9. Relations:
The relations follow from the preparatory work done in section 2.3, according to the following
table:

(R0) 3.2.7(1) (R1a) Obvious.
(R1b) (G2a) (R1c) (G2d)
(R2a) (G3a)+lem. 3.2.7(2) (R2c) (G3b)+lem. 3.2.7(2)
(R2c) (G3b)+lem. 3.2.7(3) (R3a) (G1b)
(R3b) (G2b) (R3c) rem. 3.2.5
(R3d) prop. 2.3.12(2) (R3e) prop. 2.3.12(1)

This concludes the proof of 3.2.2.

3.3. The associated cycle module.

3.3.1. Using the obvious extension of the functor (2.3.1.2) to pro-objects, the homotopy coniveau
exact couple induces a pro-triangulated exact couple in pro−(H−mod) whose graded terms are:

H(Fp(X))[−p− q] = ”lim
←−

”
Z∗∈D(X)

H(X − Zp)[−p− q]

H(Grp(X))[−p− q] = ”lim
←−

”
Z∗∈D(X)

H(X − Zp/X − Zp−1)[−p− q]
(3.3.1.1)

Given a smooth closed subscheme Z ⊂ X of pure codimension p, if we apply [Dég08b, prop. 4.3]
to the closed pair (X,Z) according to paragraph 2.3.1, we get a canonical isomorphism:

(3.3.1.2) pX,Z : H(X/X − Z)→ H(Z)(p)[2p].

Using this isomorphism, we can easily obtain the analog of [Dég08a, 3.11] in the setting of H-
modules:

Proposition 3.3.2. Consider the above notations. Let p ∈ Z be an integer and denote by X(p)

the set of codimension p points of X.15 Then there exists a canonical isomorphism:

H(GrMp (X))
ǫp

−−−−−→ ”
∏

”

x∈X(p)

H(κ(x))(p)[2p].

In particular, for any point x ∈ X(p) we get a canonical projection map:

(3.3.2.1) πx : H(Grp(X))→ H(κ(x))(p)[2p].

For the proof, we refer the reader to the proof of [Dég08a, 3.11] — the same proof works in our
case if we use the purity isomorphism (3.3.1.2).

3.3.3. Let X be a scheme essentially of finite type over k and consider a couple (x, y) ∈ X(p) ×
X(p+1).

Assume that y is a specialization of x. Let Z be the reduced closure of x in X and Z̃
f
−→ Z be

its normalization. Each point t ∈ f−1(y) corresponds to a discrete valuation vt on κx with residue

15Conventionally, it is empty if p < 0 or p > dim(X).
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field κt. We denote by ϕt : κy → κt the morphism induced by f . Then, we define the following
morphism of pro-H-modules:

(3.3.3.1) dxy =
∑

t∈f−1(y)

∂vt ◦ ϕt∗ : H(κy)(1)[1]→ H(κx)

using the notations of paragraph 3.2.4. If y is not a specialization of x, we put: ∂xy = 0.

Proposition 3.3.4. Consider the above hypothesis and notations. If X is smooth then the fol-
lowing diagram is commutative:

H(Grp+1(X))
dp+1,−p−1 //

πy

��

H(GrMp (X))[1]

πx

��
H(κy)(p+ 1)[2p+ 2]

dx
y // H(κx)(p)[2p+ 1]

where the vertical maps are defined in (3.3.2.1) and the map dp+1,−p−1 in the differential associated
with the pro-triangulated exact couple (3.3.1.1).

The proof is the same as the one of [Dég08a, 3.13] once we use the following correspondence table
for the results used in it:

[Dég08a, 3.13] Proposition 3.3.4
Proposition 1.36 Lemma 2.3.6

Theorem 1.34, relation (2) (G2b)
Proposition 2.13 Remark 2.3.8
Proposition 2.9 (G2a)

3.3.5. Consider an orientable homotopy module F∗, a smooth scheme X and an integer n ∈ Z.
Put F = H(F∗) (using the functor of (1.2.3.1)).

The coniveau spectral sequence (2.4.4.1) associated with F(n)[n] has the following shape:

Ep,q
1 (X,F(n)[n])⇒ Hp+q

Nis (X,Fn),

where we have used the isomorphism (1.2.4.1) to identify the abutment.
Consider also the commutative diagram (3.1.2.2) and the obvious extension of ϕ̄0

F (resp. ϕ̄F )
to pro-objects:

ϕ̄0
F : pro−SH(k)op → A b, resp. ϕ̄F : pro−(H−mod)op → A b.

Then the previous spectral sequence is defined by the exact couple
(

ϕ̄0
F (Dp,q), ϕ̄

0
F (Ep,q)

)

=
(

ϕ̄F (LH(Dp,q)), ϕ̄F (LH(Ep,q))
)

.

Thus, proposition 3.3.2 gives a canonical isomorphism:

Ep,q
1 (X,F(n)[n])

ǫ∗p
−→

{

Cp(X, F̂∗)n if q = 0,

0 otherwise,

where F̂∗ is the cycle premodule associated with F∗. Consider moreover, a couple (x, y) ∈ X(p) ×
X(p+1). Comparing formula (2.1.3.2) with formula (3.3.3.1), proposition 3.3.4 gives the following
commutative diagram:

Ep,0
1 (X,F(n)[n])

dp,01 // Ep+1,0
1 (X,F(n)[n])

F̂∗(κ(x))
∂x
y //

OO

F̂∗(κ(y))

OO

where the vertical maps are the canonical injections. In particular:

Corollary 3.3.6. Consider the previous notations.

(1) The cycle premodule F̂∗ satisfies properties (FDX) and (CX).
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(2) There is a canonical isomorphism of complexes:

E∗,0
1 (X,F(n)[n]) ≃ C∗(X ; F̂∗)n.

(3) For any integer p ∈ Z, there is a canonical isomorphism:

Hp
Nis(X,Fn) ≃ A

p(X ; F̂∗)n

where the right hand side is the p-th cohomology of the complex C∗(X ; F̂∗)n (notation of
paragraph 2.1.8).

(4) The cycle premodule F̂∗ is a cycle module.

The last property follows from lemma 2.1.6 and point (1) above. It implies in particular that
the functor ρ̃′ of corollary 3.2.3 induces a canonical functor

ρ̃ : Πη=0
∗ (k)→MCycl(k)

establishing the first part of Theorem 1.3.6.

3.4. The remaining isomorphism. It remains to construct the natural isomorphism which
appears in the statement of Theorem 1.3.6. Point (3) of the preceding corollary in the case p = 0
gives an isomorphism of Z-graded abelian groups:

ǫX : F∗(X)→ A0(X ; F̂∗).

According to the definition of the functor A0 of (1.3.5.1), the right hand side is the sections over
X of the homotopy module (γ∗ ◦ A0 ◦ ρ̃)(F∗). We prove that ǫX is natural in X . Explicitly, for
any morphism f : Y → X of smooth schemes, we have to prove the following diagram commutes:

F∗(X)
ǫX //

f∗

��

A0(X ; F̂∗)

f∗

��
F∗(Y )

ǫY // A0(Y ; F̂∗)

(3.4.0.1)

where the vertical map on the right hand side refers to the functoriality defined by Rost.
To prove this, we can assume by additivity thatX is connected, with function field E. According

to our definition,

F̂∗(E) = lim
−→

jU :U⊂X

F∗(U)

where the colimit runs over the non empty open subschemes of X . In particular, the colimit of
the morphism j∗U induces a canonical map ρX : F∗(X) → F̂∗(E). By definition of the coniveau
spectral sequence, the isomorphism ǫX is induced by the exact sequence:

0→ F∗(X)
ρX
−−→ F̂∗(E)

d0
X−−→ C1(X ; F̂∗)n

where d0X is the differential (2.1.4.1) associated with the cycle module F̂∗.
(1) The case of a flat morphism: Consider a flat morphism f : Y → X of connected smooth
schemes and let ϕ : E → L be the induced morphism on function fields. According to the
definition of (D1) in paragraph 3.2.4, the following square is commutative:

F∗(X)
ρX //

f∗

��

F̂∗(E)
ϕ∗��

F∗(Y )
ρY // F̂∗(L)

Thus, the commutativity of (3.4.0.1) in this case follows from the definition of flat pullbacks on
A0 (see [Ros96, 12.2, 3.4]).
(2) The general case: The morphism f can be written as the composite

Y
γ
−→ Y ×X

p
−→ X
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where γ is the graph16 of f and p is the canonical projection. To prove the commutativity of
(3.4.0.1) in the case of f , we are reduced to the cases of p and γ. The case of the smooth
morphism p follows from point (1). Thus we are reduced to the case where f = i : Z → X is a
closed immersion between smooth schemes.

Consider an open subscheme U ⊂ X such that the induced open immersion jZ : Z ∩ U → Z
is dense. Recall that the map j∗Z : A0(Z; F̂∗) → A0(Z ∩ U ; F̂∗) is injective

17. Thus, according to
case (1) when f = j and f = jZ , we are reduced to prove the commutativity of (3.4.0.1) when f
is the closed immersion Z ∩ U → U .

In particular, we can assume that i is the composition of immersions of a smooth principal
divisor. Then we are restricted to the case where Z is a smooth principal divisor.

Because Z is principal, it is parametrized by a regular function π : X → A1. One can assume
Z is connected. Then, its generic point defines a codimension 1 point of X which corresponds
to a discrete valuation v on the function field E of X . We denote by κ(v) the residue field of v.

According to the computation of i∗ : A0(X ; F̂∗)→ A0(Z; F̂∗) of [Ros96, (12.4)], the commutativity
of (3.4.0.1) in the case f = i is equivalent to the commutativity of the following diagram:

F∗(X)
ρX //

i∗
��

F̂∗(E)

∂v◦γπ��
F∗(Z)

ρZ // F̂∗(κ(v))

But this follows from point (2) of Proposition 2.3.12 and the definition of data (D3) and (D4) for

the cycle module F̂∗ (paragraph 3.2.4).
According to the construction of the structural isomorphism

A0(X ; F̂∗)n →
(

A0(.; F̂∗)n+1

)

−1
(X)

given in [Dég09, 2.8], it is now clear that ǫ : F∗ → A0(.F̂∗) is a morphism of homotopy modules.
As it is an isomorphism by construction, this concludes the proof of the main theorem 1.3.6.

4. Some further comments

4.1. Monoidal structure.

4.1.1. Recall we have defined a t-structure on the category DM(k) of motivic spectra (cf. [Dég09,
section 5.2]) called the homotopy t-structure whose heart is the category Πtr

∗ (k) of definition 1.3.2.
By the very construction, the right adjoint functor γ∗ of (2.2.6.1) is t-exact with respect to the
homotopy t-structures on SH(k) and DM(k); thus it preserves the object of the hearts. It also
follows that its left adjoint γ∗ preserves homologically positive objects and (2.2.6.1) induces an
adjunction of abelian categories:

γ∗≤0 : Π∗(k) ⇆ Πtr
∗ (k) : γ∗

where γ∗≤0 = t−γ
∗.

According to this definition the functor γ∗ is equal to the composite map:

Πtr
∗ (k)

γ′

∗−→ Πη=0
∗ (k)→ Π∗(k)

of the equivalence γ′∗ of Theorem 1.3.4 followed by the natural inclusion. Thus, it follows from
this later theorem that γ∗ is fully faithful.

Recall that the functor γ∗ is monoidal. According to the definition of the tensor products on
Π∗(k) and Πtr

∗ (k), it follows that the functor γ∗≤0 is monoidal. Thus, its right adjoint is weakly
monoidal: given any homotopy modules with transfers F∗ and G∗, we get a canonical comparison
map of homotopy modules:

νF,G : γ∗(F∗)⊗ γ∗(G∗)→ γ∗(F∗⊗
HtrG∗)

16As X/k is separated by our general assumption, γ is a closed immersion.
17This follows for example from the localization long exact sequence for Chow groups with coefficients (cf.

[Ros96, 3.10]).
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where the tensor product ⊗ (resp. ⊗Htr) refers to the natural tensor product on Π∗(k) (resp.
Πtr

∗ (k)) defined in (1.2.3.3) (resp. [Dég09, 1.17]).
The following result is a corollary of Theorem 1.3.4:

Corollary 4.1.2. For any homotopy modules with transfers F∗ and G∗, the morphism νF,G in-
troduced above is an isomorphism.

Proof. Because γ∗ is fully faithful, we can write F∗ = γ∗≤0(F
′
∗) (resp. G∗ = γ∗≤0(G

′
∗)) with

F ′
∗ = γ∗(F∗) (resp. G

′
∗ = γ∗(G∗)). Then we consider the following commutative diagram:

γ∗γ
∗
≤0(F

′
∗)⊗ γ∗γ

∗
≤0(G

′
∗)

νF,G //

a⊗a′

��

γ∗(γ
∗
≤0(F

′
∗)⊗

Htr γ∗≤0(G
′
∗))

∼ // γ∗γ∗≤0(F
′
∗ ⊗G

′
∗)

b

��
F ′
∗ ⊗G

′
∗ F ′

∗ ⊗G
′
∗

where a (resp. a′, b) stands for the natural transformation α : 1 → γ∗γ
∗
≤0 evaluated at F ′

∗ (resp.

G′
∗, F

′
∗ ⊗ G

′
∗). Applying again the fact γ∗ is fully faithful, αX is an isomorphism whenever X

belongs to the image of γ∗, which is precisely Πη=0
∗ (k). Thus a and a′ are isomorphisms. In order,

to conclude it is sufficient to prove that b is an isomorphism. This amounts to show that the
homotopy module F∗ ⊗G∗ is orientable, which is obvious from definition 1.2.7. �

4.1.3. Recall that KM
∗ , equipped with its canonical structure of a graded sheaf with transfers, is

the unit object of the monoidal category Πtr
∗ (k) (cf [Dég09, 1.15, 3.8]). As an object of Π∗(k), it

corresponds to π0(H)∗ (example 1.2.5). Note that it is a commutative monoid in the monoidal
category Π∗(k) whose multiplication (resp. unit) map is equal to

µ = π0(µH) : KM
∗ ⊗K

M
∗ → KM

∗

resp. u = π0(uH) : π0(S
0)∗ → KM

∗

where µH (resp. uH) is the multiplication (resp. unit) of the ringed spectrum H. In particular,

we can consider the category KM
∗ −mod of modules over KM

∗ in the monoidal category Π∗(k): it
is naturally a Grothendieck abelian monoidal category. As a corollary of the previous result we
get the following nice characterization of orientability for homotopy modules:

Corollary 4.1.4. Consider the above notations.

(1) The multiplication map µ is an isomorphism.
(2) Given a homotopy module F∗, the following conditions are equivalent:

(i) F∗ is an orientable homotopy module (definition 1.2.7).
(ii) F∗ as a Nisnevich sheaf admits a canonical structure of a sheaf with transfers.

(iii) The map u⊗ 1F∗
: F∗ → KM

∗ ⊗ F∗ is an isomorphism.

(iv) F∗ admits a structure of a KM
∗ -module in Π∗(k).

(v) The spectrum H(F∗) has a structure of a (strict) H-module.
(vi) The spectrum H(F∗) is orientable.

(3) The functor γ∗≤0 : Π∗(k)→ Πtr
∗ (k) can be factorized as:

Π∗(k)
KM

∗
⊗?

−−−−→ KM
∗ −mod

ǫ
−−→ Πtr

∗ (k)

and ǫ is an equivalence of abelian monoidal categories.

Proof. Point (1) follows from Corollary 4.1.2 applied in the case F = G = KM
∗ . The assertion of

point (2) follows from our previous results: (i) ⇒ (ii): 1.3.4, (ii) ⇒ (iii): Point (1) follows from

Corollary, (iii) ⇒ (iv): obvious, (iv) ⇒ (v): because KM
∗ = π0(H)∗ (see also the proof of 3.1.1),

(v) ⇒ (vi): using the morphism of ringed spectra MGL→ H corresponding to the orientarion of

H, (vi) ⇒ (i): see remark 1.2.8. According to point (1), KM
∗ −mod is a full subcategory of Π∗(k)

; thus point (2) implies point (3). �
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Remark 4.1.5. It is not true in general that the multiplication map µ : H ∧ H → H is an
isomorphism according to the non triviality of the Steenrod operations.18

4.2. Weakly orientable spectra.

4.2.1. Consider a spectrum E. The Hopf map η obviously acts on the E-cohomology of a smooth
scheme as:

γη : En,p(X)→ En−1,p−1(X), ρ 7→ η ∧ ρ.

The following lemma is obvious:

Lemma 4.2.2. Given a spectrum E, the following conditions are equivalent:

(i) For any integer n ∈ Z, πn(E)∗ is an orientable.
(ii) The map η ∧ 1E is zero.
(ii’) The map Hom(η,E) is zero.
(iii) The operation γη on E-cohomology defined above is zero.

Definition 4.2.3. A spectrum E satisfying the equivalent conditions of the preceding lemma will
be said to be weakly orientable.

Remark 4.2.4. From the second point of remark 1.2.8, if 2 is invertible in E∗∗ and (−1) is a sum
of squares in k, then E is weakly orientable.

As a corollary of our main theorem 1.3.4, we get the following way to construct cycle modules:

Proposition 4.2.5. Let E be a weakly orientable spectrum.
Then for any integer i ∈ Z, there exists a canonical cycle modules whose values on a couple

(L, n) of Ẽk is the abelian group:

Ei+n,n(L) = lim
−→

X∈Msm(E/k)op

Ei+n,n(X),

with the notations of paragraph 3.2.1.

The new example here is given by the case where E = MGL is Voevodsky’s algebraic cobordism
spectrum.

4.3. Coniveau spectral sequence. As a corollary of the detailed analysis of Proposition 3.3.4,
we get the following statement:

Proposition 4.3.1. Let E be a spectrum and q ∈ Z be an integer such that the homotopy module
π−q(E) is orientable.

Then for any smooth scheme X, there exists a canonical isomorphism of complexes of abelian
groups:

E∗,q
1 (X,E) ≃ C∗(X, π̂−q(E)∗)0

where the left hand sides refers to the q-th line of the first page of the coniveau spectral sequence
associated with E — cf. example 2.4.4.

Proof. We can obviously assume q = 0. The complex E∗,0
1 (X,E) is natural in E. Moreover, for

any spectrum F, one checks using the purity isomorphism in SH(k) ([MV99, §4, 2.23]) and the
same argument as in the proof of Proposition 3.3.2 that the induced maps:

E∗,0
1 (X,F≥0)→ E∗,0

1 (X,F), E∗,0
1 (X,F)→ E∗,0

1 (X,F≤0)

are isomorphisms. This yields an isomorphism of complexes:

E∗,0
1 (X,E) ≃ E∗,0

1 (X, π0(E)).

so that we are reduced to the case where E is an orientable homotopy module. This case is
precisely Corollary 3.3.6. �

18However, we prove in [CD09, 13.1.6] that µ⊗Z Q is an isomorphism (in SH(k)Q).
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Remark 4.3.2. The previous corollary can be applied to any weakly orientable spectrum E: we
get for any smooth scheme X and any integer n ∈ Z a convergent spectral sequence of the form:

(4.3.2.1) Ep,q
2 (X,E(n)) = Ap(X, π̂q−n(E)∗)n ⇒ Ep+q,n(X).

4.3.3. Let MGL be Voevodsky’s algebraic cobordism spectrum. According to a theorem of Morel,
there exists a canonical isomorphism of homotopy modules: π0(MGL)∗ ≃ KM

∗ .19 One deduces
from this result that the ring morphism ϕ : MGL → H corresponding to the orientation of H
given by (2.3.1.1) induces an isomorphism:

π0(MGL)∗ → π0(H)∗.

Moreover, given a smooth connected scheme X and an integer d ∈ Z, the morphism ϕ induces a
morphism of the spectral sequences of type (4.3.2.1) which, on the E2-term is equal to:

Ap(X, π̂q−d(MGL)∗)d → Ap(X, π̂q−d(H)∗)d.

In case d is the dimension of X , the terms Ep,q
2 of the respective spectral sequences for MGL and

H are concentrated in the region 0 ≤ p ≤ d, g ≤ d. Thus we get the following:

Corollary 4.3.4. Let X be a smooth scheme of pure dimension d. Then the morphism ϕ induces
an isomorphism:

MGL2d,d(X)
ϕ∗

−−→ H2d,d(X) = Ad(X,KM
∗ )d = CHd(X).

Obviously, this isomorphism is natural with respect to pullbacks. It is also compatible with
pushouts induced by the Gysin morphism of a projective morphism f : Y → X of smooth con-
nected schemes.

Remark 4.3.5. If X is projective smooth, the corollary can be reformulated using duality (see
[Dég08b, th. 5.23]) by saying that ϕ induces an isomorphism in homology:

MGL0(X)
∼
−→ CH0(X).

If X is only smooth, under the assumption of resolution of singularities, one can replace the left
hand side in the previous isomorphism by the Borel Moore algebraic cobordism:

MGLc
0(X)

∼
−→ CH0(X).

4.4. Cohomology spectral sequence and cycle classes.

4.4.1. Consider a spectrum E. The truncation functor for the homotopy t-structure gives a
canonical (functorial) tower in SH(k)(k):

. . .→ E≥p → E≥p+1 → . . .

called the Postnikov tower of E.
Then for any smooth scheme X and any integer n ∈ Z, the Postnikov tower of E(n) gives the

following spectral sequence:

(4.4.1.1) Ep,q
2,t (X,E) = Hq

Nis(X, πn−p(E)n)⇒ Ep+q,n(X)

which we simply call the cohomology spectral sequence.
Note that, when E is weakly orientable, Corollary 3.3.6 gives a canonical isomorphism between

the E2-term of the coniveau spectral sequence (4.3.2.1) and the E2-term of the cohomology spectral
sequence.

Remark 4.4.2. Using the same argument as in the proof of [Dég09, th. 6.4] and a construction of
Gillet and Soulé20, one can show that this isomorphism is compatible with the differential on each
E2-term and that they induces an isomorphism of spectral sequences. However, in the remainings,
we will only need to be able to compute the E2-term using the isomorphism of Corollary 3.3.6.

19Indeed, this follows from the exact sequence (1.2.6.1).
20More precisely, ore replaces the use of the shifted filtration of Deligne on complexes by its generalization for

spectra given in [GS99].
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4.4.3. The advantage of the spectral sequence (4.4.1.1) compared to the coniveau spectral sequence
is that it is obviously functorial in X (contravariantly).

Assume that E has the structure of a weak MGL-module. Consider smooth schemes X , Y
and a projective morphism f : Y → X equidimensional of dimension n. Then according to the
construction of [Dég08b, def. 5.12], we get a canonical morphism of MGL-modules:

f∗ : MGL(X)(n)[2n]→MGL(Y ).

Using diagram (2.2.5.4) in the case R = MGL, this map induces after applying the functor Ei,j

a canonical pushout:

(4.4.3.1) Ei,j(Y )
f∗
−→ Ei−2n,j−n(X).

Lemma 4.4.4. Consider the notations above. Then the Gysin map f∗ induces a morphism of
spectral sequences:

Ep,q
2,t (MGL(Y ),E) = Hq

Nis(Y, π−p(E)0)→ Hq−n
Nis (Y, π−p(E)−n) = Ep,q

2,t (MGL(X)(n)[2n],E)

which converges to the morphism (4.4.3.1).

Using the cohomology spectral sequence, we get the following proposition which gives mild
conditions on a spectrum E for the existence of cycle classes in E-cohomology satisfying the usual
properties:

Proposition 4.4.5. Let E be a (weak) ring spectrum such that:

(a) The homotopy module π0(E)∗ is orientable.
(b) For any function field K/k, En,m(K) = 0 if n < 0 and m < 0.

Then the following conditions hold:

(1) The spectrum E admits an orientation whose associated formal group law is additive.
(2) For any smooth scheme X and any integer n ≥ 0, there exists a canonical morphism of

abelian groups:

σX : CHn(X)→ E2n,n(X)

which is natural with respect to pullbacks, projective pushforwards and compatible with
products.

Proof. According to assumption (a) and Corollary 4.1.4, the unit map S0 → E induces a canonical
map

KM
∗ = KM

∗ ⊗ π0(S
0)∗ → KM

∗ ⊗ π0(E)∗ = π0(E)∗

which is a morphism of monoids in Πη=0
∗ (k). In particular, according to Corollary 3.3.6, we get

for any smooth scheme X and any integer n ≥ 0 a canonical morphism:

(4.4.5.1) CHn(X) = An(X,K∗)n → An(X, π̂0(E)∗)n = Hn
Nis(X, π0(E)n)

compatible with pullbacks, pushouts and products.
Applying again Corollary 3.3.6, assertion (b) implies that the term Ep,q

2,t (X,E(n)) of the coho-

mology spectral sequence is zero if p > min(q, n). Thus, we get a canonical composite map:

(4.4.5.2) En,n
2,t (X,E(n))

(1)
−−→ En,n

∞,t(X,E(n))
(2)
−−→ E2n,n(X)

where the map (1) is obtain as the sequence of epimorphism deduced from the spectral sequence
(4.4.1.1) and the map (2) is the edge morphism (which is a monomorphism). This composite map
is compatible with products and pushouts according to paragraph 4.4.3. The fact it is compatible
with products follows from the construction of products on the spectral sequence of the type
(4.4.1.1) (see [McC01]).

The composition of (4.4.5.1) and (4.4.5.2) gives the map of the point (2). In the case n = 1, we
get an orientation of E whose associated formal group law is additive because σX is a morphism
of groups. �
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Remark 4.4.6. According to a result announced by Morel and Voevodsky, at least over a field of
characteristic 0, the map induced by the morphism ϕ of paragraph 4.3.3 induces an isomorphism
of ring spectra

MGL/{aij , (i, j) ∈ N2} → H

where aij : S
2(i+j),i+j →MGL denotes the coefficients of the formal group law of MGL equipped

with its obvious orientation.
The orientation of the first point of the previous proposition corresponds to a morphism of ring

spectra
ψ : MGL→ E

such that ψ ◦ aij is zero. In particular, ψ induces a canonical morphism of ring spectra:

σ : H→ E.

which gives back the cycle class of point (2).
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