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Abstract

This paper deals with the scalability of a time-space multiscale domain decomposition method in the
framework of time-dependent nonlinear problems. The strategy which is being studied is the multiscale
LATIN method, whose scalability was shown in previous works when the distinction between macro and
micro parts is made on the spatial level alone. The objective of this work is to propose an explanation
of the loss-of-scalability phenomenon, along with a remedy which guarantees full scalability provided
a suitable macro time part is chosen. This technique, which is quite general, is based on an adaptive
separation of scales which is achieved by adding the most relevant functions to the temporal macrobasis
automatically. When this method is used, the numerical scalability of the strategy is confirmed by the
examples presented.

Key words: scalability, multiscale in time and space, domain decomposition, parallel computing,
model reduction

1. Introduction

In computational mechanics, the simulation of
the behavior of complex structures in which two
or more very different scales can be present in
both space and time is a challenging question. A
typical engineering example is that of a relatively
large structure in which local cracking or local
buckling occurs [11]. Another typical engineer-
ing problem is related to today’s deep interest in
material models described on a scale smaller than
that of the macroscopic structural level, such as
composite materials [26]. In such situations, the
local solution involves short-wavelength phenom-
ena in both space and time which require the use
of complex models describing the material on a
very refined scale. As a result, classical finite ele-
ment codes lead to systems with very large num-
bers of degrees of freedom whose resolution would
generally be excessively expensive. Therefore, one

of today’s main challenges is to derive computa-
tional strategies capable of solving such engineer-
ing problems through true interaction among the
scales, both in space and in time.

As far as space is concerned, one of the earli-
est strategies consisted in applying the theory of
the homogenization of periodic media initiated by
Sanchez-Palencia [40]. Similar computational ap-
proaches can be found in [12, 17, 38, 15, 42]. First,
the macroproblem leads to effective values of the
unknowns; then, the microsolution must be cal-
culated locally using localization operators. The
fundamental assumption, besides periodicity—which
is not required, thanks to thermodynamical argu-
ments such as Hill-Mandel’s criterion—, is that
the ratio of the two scales is small. The boundary
zones, in which the material cannot be homog-
enized, can be treated using specific techniques
[12]. Another type of approach uses the macroscale
as the reference scale, and requires the microscale
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to enrich the model only where the macroscale is
not sufficient. The microscale may be associated
with a more refined description [21], a different
model [3], or even an analytical approach [20].
Space can also be enriched using some a priori

knowledge of the solution [34, 35, 41]. The last
family of methods, which includes domain decom-
position methods [33, 14, 24, 1, 39] and multigrid
methods [6, 16], starts from the microscale and
uses the larger scales to accelerate the convergence
of an iterative algorithm.

Among the relatively few works which have
been devoted to multi-time-scale computational
strategies, one can find multi-time-step methods
[18, 10] and parallel time integrators [2, 4, 13],
which deal with different time discretizations and
integration schemes. For multiphysics problems,
coupling among time grids has been proposed in
[36]. In these approaches, each region of space
or each physics is described using a single scale.
Other approaches involve a true two-scale descrip-
tion of time phenomena through the introduc-
tion of “micro–macro projectors” [32]. Time ho-
mogenization methods have been introduced for
dealing with periodic loading histories [19, 9] and
time-space homogenization for analyzing multiple
physical processes interacting at multiple tempo-
ral and spatial scales [43].

This paper focuses on the separability of scales,
especially time scales. The method which serves
as the starting point of this discussion is a mixed,
multilevel domain decomposition method based
on the LATIN method [28]. This method leads
to resolutions both on the refined scale (the mi-
croscale) and on the coarse scale (the macroscale)
with respect to time as well as space. The prob-
lem on the microscale is solved using the iterative
LATIN solver while the purpose of the macroreso-
lutions is to accelerate the convergence of this iter-
ative algorithm. The choice of the definition of the
macro description has no influence on the solution
after convergence, but affects the convergence rate
alone. Besides, different time discretizations can
be used from a subdomain to another.

Regarding the space variable, the choice of the
macrospace proposed in [24] was found to be op-
timal from a numerical scalability point of view.

Indeed, the spatial macrobasis contains the resul-
tants and moments of the connecting forces at the
interface, and due to Saint Venant’s principle the
microcomplement (whose resultant and moment
are zero) has only a local incidence in the few
substructures surrounding that interface. Thus,
the spatial macrospace, in spite of being associ-
ated with a very small number of unknowns at
each interface, has a strong physical meaning and
leads to a numerically scalable algorithm (as long
as, regarding time, the scales reduce to the mi-
croscale).

Regarding time, the natural choice which con-
sists in defining a priori the macroscale as the
slow scale and the microscale as the rapidly evolv-
ing scale in time fails to preserve that optimal-
ity, which makes the method nonscalable in the
general case. A seemingly natural improvement
would be to enrich the macrobasis using an h or
p method, but we will see on some examples that
that is not sufficient to restore the numerical scal-
ability property.

The objective of the paper is not to compare
the LATIN method to other multiscale strategies,
but to find a remedy for this scalability problem.
In order to do that, we propose to introduce an
adaptive approach to time scale separation which
consists in enriching the temporal macrobasis us-
ing the most suitable modes. The idea is to view
the macro time part of a quantity as its projection
onto a reduced basis whose vectors are not neces-
sarily known at the beginning of the calculation.
Thus, the basis is generated automatically. It de-
pends on the problem and on the loading, and it
can also evolve during the iterative resolution of
a given problem.

Indeed, an automatic enrichment technique en-
ables one to update this basis during the calcu-
lation. This enrichment technique consists, at a
particular iteration of the algorithm, in selecting
a set of microresiduals whose resultants and mo-
ments are nonzero. According to Saint Venant’s
principle, these functions are representative of mi-
crophenomena which have global influence, but
are not taken into account by the macroproblem.
All these functions could a priori be added to
the temporal macrobasis, but this would lead to
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prohibitive computation costs. A technique based
on the Proper Orthogonal Decomposition (POD)
method ([7]) is used to extract from these func-
tions the most representative elements in order to
add them to the temporal macrobasis. Thus, the
space of the macro time fields is improved and
adapted to the problem as the iterations go on.

The article is structured as follows. In Section
2, the reference problem is introduced along with
a brief review of the main aspects of the mul-
tiscale method which serves as the reference for
the work presented here. In Section 3, the choice
of the spatial macrobasis is reviewed and the nu-
merical scalability issue is explained and studied
through an example. In Section 4, we show that
in some cases the natural choice of the macro time
space is not optimum and that h-adaptivity or p-
adaptivity of the macrospace fails to solve that
problem, which shows that, in the general case
the method is not numerically scalable. In Sec-
tion 5, we introduce our proposed adaptive tech-
nique in order to update the temporal macrobasis.
We also present the selection technique which en-
sures that the additional cost associated with our
method remains small. Finally, in Section 6, the
numerical scalability of the adaptive method is
illustrated using a 3D viscoelastic problem with
frictional contact.

2. The time-space multiscale LATIN method

This section gives a brief review of the main
aspects of the multiscale computational strategy.
Further details can be found in [23, 27].

2.1. The reference problem

Let us consider the evolution of a structure
defined over a time-space domain I×Ω, where I =
[0, T ]. The structure is subjected to prescribed
body forces f

d
, traction forces F d, and prescribed

displacements Ud.
The structure is viewed as an assembly of sub-

structures and interfaces. Similarly, the time do-
main I is divided into a small number of coarse in-
tervals IC

i = [tCi , tCi+1], each in turn being divided

into more refined subintervals If
j = [tfj , t

f
j+1].

Let ΦEE′ denote the interface between sub-
structures ΩE and ΩE′

1. This interface is char-
acterized by the restriction to ΦEE′ of the dis-
placement fields (WE,WE′) and the force fields
(FE, FE′).

The behavior of the interface is characterized
by the introduction of a relation among these quan-
tities which is detailed in [23]. (For frictional con-
tact, see [29].)

2.2. Two-scale description of the unknowns

The scale separation between a micro part ¤m

and a macro part ¤M takes place only at the in-
terfaces and, ∀FM⋆ ∈ FM

E , is defined by:

∫

IC
i ×∂ΩE

(Ẇ
M

E − ẆE) · FM⋆dSdt = 0

and Ẇ
m

E = ẆE − Ẇ
M

E (1)

The spaces FM
E and WM

E can be chosen arbitrar-
ily. This choice, which will be discussed in Sec-
tions 3 and 4, has a strong influence on the scal-
ability of the method.

A major point of the strategy, which grants
it its multiscale character, is that the set of the
macro forces FM = (FM

E )ΩE⊂Ω is required to ver-
ify the transmission conditions at the interfaces a

priori at each iteration.

2.3. The algorithm

This problem is solved using the LATIN method
[23], a general iterative nonlinear resolution tech-
nique for time-dependent problems which oper-
ates globally over the entire time-space domain.
One iteration consists of two stages, called the
“local stage” and the “linear stage”, in which solu-
tions verifying the nonlinear constitutive relation
(defined by a space Γ) and a group of admissibil-
ity equations called Ad are built alternatively. In
order to close the problem, one needs to introduce
what we call the “search directions” E+ and E−,
which are detailed in the above references.

1The notation ¤E denotes the restriction of a quantity
¤ to substructure ΩE
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The local stage consists in a set of nonlinear
problems which are solved independently at each
point of the discretization of each subdomain ΩE

and each interface ΦEE′ , and for each integration
point of the time domain I. The resolution of
that stage is straightforward and leads to a solu-
tion ŝ = {ŝE}E.

In the linear stage, one seeks a solution which
verifies the admissibility conditions over each ΩE

by following the search direction, which involves
an operator which can be interpreted as a lin-
earized constitutive relation. Therefore, the prob-
lem is linear, but not independent within each
substructure because the admissibility of the macro-
forces couples all the subdomains. This problem
leads to a solution s = {sE}E. The admissibility
conditions are written in the weak sense, using

Lagrange multiplier
˙̃

W
M

E whose admissibility is

expressed, ∀
˙̃

W
M⋆

∈ WM⋆
E , by:

∑

ΩE⊂Ω

{∫

IC
i ×∂ΩE

˙̃
W

M⋆

E · FEdSdt

∫

IC
i ×∂ΩE∩∂2Ω

−
˙̃

W
M⋆

E · F ddSdt

}
= 0 (2)

For the sake of simplicity, let us introduce the
linear operator LE, associated with the resolution
of the microproblem, which maps its right-hand
side to solution sE, e.g.:

sE = LE(ŝE +
˙̃

W
M

E ) (3)

At this stage,
˙̃

W
M

E is unknown, but since this
microproblem is linear its resolution can be di-
vided into two parts. First, one can calculate s1

E,
the solution of the microproblem associated with
the known solution of the previous local stage ŝE.
The microproblems in this first set can be calcu-
lated independently.

s1
E = LE(ŝE) (4)

Knowing s1
E, one can calculate the macro part

of the corresponding force distribution FM,1. We

will see that this quantity is used to assemble
the right-hand side of the macroproblem. The
remainder of the microproblem is:

s2
E = LE(

˙̃
W

M

E ) (5)

If solution s2
E is known (which is not yet the

case), one can calculate the associated macro force
distribution FM,2. In particular, Problem (5) can
be written for the macro part of the forces alone:

FM,2 = LF
E(

˙̃
W

M

E ) (6)

Since Equation (6) maps a small-dimension
space to the same space of macro fields, operator
LF

E is discrete by nature, LF
E, and can be calcu-

lated explicitly at reasonable cost.

FM,2 = LF
E

˙̃
W

M

E (7)

Operator LF
E, called the homogenized operator

over the time-space subdomain ΩE × IC
i , can be

viewed as a time-space macro/mixed Schur com-
plement of subdomain ΩE × IC

i . Its calculation
requires a series of resolutions of Problem (5) in

which
˙̃

W
M

E takes the values of each basis vec-
tor of WM

E successively. This operator depends
only on the choice of the macrobases and on the
parameters of the search directions. Therefore,
it can be constant over a large number of itera-
tions provided that the search directions remain
unchanged.

Now the solution of the linear stage as a func-
tion of the macroforces is:

FM = FM,1 + FM,2 = FM,1 + LF
E

˙̃
W

M

E (8)

Finally, the macroproblem is obtained by in-
troducing Form (8) of the macro forces field into
Relation (2). This linear time-space problem is
defined over the whole set of interfaces and the
entire coarse subinterval IC

i . One can prove that
this problem has a unique solution. The macro-

problem leads to
˙̃

W
M

and, through another set
of micro resolutions (3), to s2

E. Then, one can
determine sE completely.
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Initialization: s0 ∈ Ad

while η > tol. do
• Local stage: ŝ ∈ Γ

Nonlinear problems solved locally at

each point of the discretization of Ω and

I.
• Possible recalculation of the search
directions
• The linear stage: s ∈ Ad

→ The microproblem (1st set)
linear predictions defined

independently over ΩE × IC
i , ∀E.

→ The macroproblem
a time-space homogenized problem

defined over Ω × IC
i

→ The micro problem (2nd set)
linear predictions defined

independently over ΩE × IC
i , ∀E.

• Convergence criterion
η = ‖s − ŝ‖

end
Algorithm 1: The multiscale LATIN method

Algorithm 1 summarizes the organization of
the different stages of the method. For further
details, see [28, 27, 30].

The efficiency of this method in terms of com-
puting time compared with classical approaches
is discussed in [23, 25].

Another important aspect of the LATIN method
which is not presented here is the use of Proper
Generalized Decomposition (PGD) methods ([30,
8, 37]) which enable a drastic reduction of the
amount of data to be handled and the number of
calculations. For further information, the reader
can refer to [30].

3. Choice of the spatial macrobasis

3.1. Scalability

Domain decomposition methods were initially
developed in order to take advantage of parallel
computer architectures. The idea is simple: if a
single processor is capable of solving a problem of
up to size N , using n processors and an appropri-

ate method, one can hope to solve a problem of
size N × n.

The speedup, denoted s(n), is defined as the
ratio of the sequential execution time to the par-
allel execution time. The efficiency, denoted e(n),
is the ratio of the speedup to the number of pro-
cessors n:

e(n) =
s(n)

n

An algorithm is considered to be efficient if
e(n) is close to 1. If the efficiency of an algo-
rithm is stable when n increases, that algorithm is
said to be numerically scalable. Scalability char-
acterizes the robustness of the approach when the
number of processors (i.e. the number of sub-
structures) increases. In order to deal with large
problems, it is absolutely necessary to use a scal-
able method. In the context of domain decom-
position methods, scalability is linked to the de-
pendence of the convergence rate on the number
of substructures. This paper deals with the in-
fluence of the choice of the spatial and temporal
macrospaces (i.e. the macrobases) on scalability.
First, we consider a 3D example in order to help
show that scalability is verified when the micro
time scale and the macro time scales are identi-
cal. However, when the temporal macrobasis de-
fined in [28] is used, scalability is not always com-
pletely guaranteed. We present a reasoning which
shows that classical (h or p) refinement methods
of the temporal macrospace do not solve that is-
sue. Then, we propose a general technique for
the enrichment of the temporal macrospace which
grants the method robustness.

3.2. The spatial macrobasis

No condition is required a priori on the spatial
macrobasis defining FM

E (see [30]). However, in
order to ensure numerical scalability, the resultant
forces and moments at interface ΦEE′ must belong
to the macro part of the forces (see [24]). With
such a choice, thanks to Saint-Venant’s Princi-
ple, the micro complements have only local ef-
fect. Therefore, there exists a small macrobasis
capable of uncoupling the global and local contri-
butions of each quantity. The resolution of the
macroproblem consists in enforcing continuity of
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the macroforces at each iteration, which propa-
gates the most relevant information throughout
the structure.

e
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M e
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M e
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M

e
4

M

e
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M
e
6

M

e
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M e
8

M e
9

M
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N2N1

Figure 1: The spatial macrobasis

In practice, the macro part of an interface
quantity consists of its linear part alone. In 3D,
this leads us to consider a macrobasis of dimen-
sion 12. Naturally, in the case of a plane inter-
face (and, more generally, of slightly curved inter-
faces), the three out-of-plane modes can be disre-
garded, which reduces the dimension of the basis
to 9 (see Figure 1).

In order to illustrate the fact that with respect
to space such a macro separation is optimal, as
proved in [24], let us consider the evolution over
[0, 10s] of the heterogeneous cube-shaped struc-
ture of Figure 2, made of two Maxwell-type vis-
coelastic materials with Young’s moduli E1i, Pois-
son’s ratios νi and viscosities ηi. The constitutive
relations are such that Bi = 1

ηi
Ki. The struc-

ture is made of a matrix (E1 = 50GPa, ν1 =
0.3 and η1 = 10s) with fiber inclusions (E2 =
250GPa, ν2 = 0.2 and η2 = 1000s). This struc-
ture, subjected to prescribed forces F d on its up-
per face and clamped at its base Ud (Figure 2),
was meshed with hexahedra, leading to a problem
of approximately 100, 000 DOFs. Three studies
were performed, in which the structure was di-
vided into 8, 27 and 216 subdomains respectively
(see Figure 3).

In order to emphasize the optimality of the
spatial basis presented before, we first studied a

ud=0

0 10

0

||F||max

time /s

Fd

Figure 2: Definition of the problem

8 sd 27 sd 216 sd

Figure 3: the different decompositions of the structure

time-dependent problem using a computational
strategy which was multiscale only in space. In
order to do that, we divided the time interval [0,
10s] into 20 coarse intervals, each of which con-
sisted of a single micro subinterval IC

i = If
j . The

temporal macrobasis was defined as a constant
function over IC

i , so the macrodescription and the
microdescription would match. In the following
development, this multi-space-scale, single-time-
scale approach will be denoted SMu.

The problem of Figure 2 was solved with SMu

using the three different decompositions of Figure
3. The corresponding evolutions of the conver-
gence indicator η presented before are shown in
Figure 4. One can observe that the curves are
identical, which means that the convergence of
SMu is independent of the decomposition and,
therefore, is scalable. The choice of the spatial
macrofields has a clear mechanical meaning due
to the fact that Saint-Venant’s principle ensures
the uncoupling of the different scales with a re-
duced basis.

Remark. When the number of subdomains in-
creases, the size of the macroproblem, which is
global with respect to the entire set of interfaces,
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Figure 4: Convergence of SMu for different domain decom-
positions

also increases. Scalability could be affected if the
resolution cost of the macroproblem became pro-
hibitive. For such situations, alternative tech-
niques for the resolution of the macroproblem in-
volving the introduction of a third scale have been
developed [28, 22].

4. Choice of the temporal macrobasis

When using the multiscale-in-space-only (SMu)
approach, each coarse interval consists of a sin-
gle micro subinterval IC

i = If
j and one needs to

solve one macroproblem for each interval of the
refined time discretization. For time-dependent
problems, this stage can represent a significant
computation cost, especially if there are many
subdomains.

The principle of the time-space multiscale ap-
proach, hereafter denoted TSMu, consists in ap-
proximating the evolution of the spatial macro-
quantities over [0, T ]. Then, the macroproblem
is no longer solved for each micro time step, but
solved “on average” over the coarse grid.

Classically, for the temporal macrobasis, one
uses polynomial functions. In order for the macro-
problem to remain small, that basis is usually lim-
ited to quadratic functions [28] (see Figure 5). In
practice, the temporal macrobasis is orthonormal-
ized in the sense of the scalar product:

〈a(t), b(t)〉IC
i

=

∫

IC
i

a(t)b(t)dt (9)

The problem of Figure 2 was solved using TSMu.
In order to do that, we considered that the time

f
1

M

t
i
C t

i+1
C

f
2

M

t
i
C t

i+1
C

f
3

M

t
i
C t

i+1
C

ttt

Figure 5: The current choice of the temporal macrobasis

interval [0, T ] consisted of a single coarse inter-
val IC

0 = [0, T ], which was divided into 20 micro
subintervals {If

i }16i620, and we used a quadratic
macrobasis in time. Figure 6 shows a comparison
of the convergence curves obtained with TSMu

and SMu for the three domain decompositions.
The fact that the convergence curves are iden-

0 10 20 30 40 50
10-4

10-3

10-2

10-1

iterations

SMu ; 8sd
SMu ; 27sd
SMu ; 216sd
TSMu ; 8sd
TSMu ; 27sd
TSMu ; 216sd

er
ro

r 
in

d
ic

a
to

r 
η

Figure 6: Convergence of TSMu and SMu for different
domain decompositions

tical seems to indicate that in this case TSMu is
scalable. The major advantage of this approach is
that at each iteration the resolution of 20 global
problems homogenized only in space is replaced
by the resolution of a single global time-space ho-
mogenized problem without affecting the conver-
gence of the method. According to the tests we
performed, this scalability property is often veri-
fied, but a partial loss of scalability has been ob-
served in some more complex cases. The objective
of this paper is to pinpoint this problem and at-
tempt to provide a means to circumvent it.

4.1. The partial scalability issue

The part of the forces which, according to
Saint-Venant’s Principle, propagate throughout the
whole structure is associated at each time step
with the resultant and moment of the forces at
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the interface. Due to the fact that the macro part
of the forces is an average in time, the resultant
and moment of the micro part are nonzero at the
interfaces and need to propagate throughout the
structure. This cannot be taken into account in
the homogenized problem and must be dealt with
through a single-scale treatment, which results in
a partial loss of scalability. Most of the time,
when the macrospace is well-adapted to the prob-
lem, as in the previous example, this phenomenon
does not occur.

Here, in order to highlight the problem using a
relatively artificial problem in which the time evo-
lution of the prescribed force is not represented
exactly by the temporal macrobasis of TSMu, let
us consider the evolution of the viscoelastic het-
erogeneous structure of Figure 7(a). The struc-
ture is clamped at the base and subjected to a
traction force at the top. The materials are the
same as in the previous example. The time in-
terval is divided into 60 microintervals If

j . Figure

Fd

(a) The structure and boundary condi-
tions

0 10
0

100 F (t)d

F  (t)d
M

P
re

sc
ri

b
ed

 f
o

rc
e 

/ 
M

P
a

Time /s

(b) Temporal evolution of the
loading

Figure 7: A problem with a macrobasis incompatible with
the loading

7(b) shows the evolution of the prescribed force

F d and its projection FM
d onto the temporal mac-

robasis of TSMu. One can immediately see that
the resultant of the micro part of the loading is
nonzero, which leads one to imagine that the ho-
mogenized problem of TSMu cannot propagate
the loading properly.

The problem was solved using successively SMu,
TSMu and the full single-scale approach, denoted
Mo, in which the method is applied without solv-
ing a homogenized problem. Since SMu has been
proven to be optimal and scalable [24, 25], and
since the homogenized problem of TSMu is an ap-
proximation of the problem of SMu, SMu will be
used as the reference for TSMu.

Figure 8 shows the convergence curves of the
three methods. One can observe that even though

0 5 10 15 20 25 30 35 40 45 50

iterations

10-1

10-2

10-3

10-4

10-5

er
ro

r 
in

d
ic

a
to

r 
η

loss of

scalability

Mo

TSMu

SMu

Figure 8: Convergence of the SMu, TSMu and Mo methods

TSMu shows significant improvement compared
to the single-scale approach Mo, it suffers from
a significant loss of scalability, as quantified by
the distance between its convergence curve and
that of our reference SMu. Indeed, the oscilla-
tions which are part of the loading are not taken
into account by the macroproblem and propagate
thanks to the single-scale process alone, which is
known not to be scalable. This artificial example
shows that in some cases TSMu can become only
partially multiscale, which is a drawback regard-
ing the robustness of the method.

Later, we will attempt to develop a technique
for making TSMu scalable, but first let us study
some classical refinement techniques.
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4.2. Classical refinement techniques

In this section, we will study some simple re-
finement techniques which consist in enriching the
space of the temporal macrofields while keeping
the target microscale fixed. Therefore, the con-
verged solution remains the same, and only the
convergence rate changes. There are two possible
options: a p-refinement option, which consists in
increasing the degree of the polynomial functions
of the temporal macrobasis (i.e. increasing the
frequency bandwidth that the temporal basis can
take into account); and an h-refinement option,
which consists in decreasing the size of the sup-
port of these functions (i.e. increasing the number
of coarse intervals IC

i making up I = [0, T ]).

4.2.1. The p-refinement option

Here we will consider only the case of poly-
nomial functions, but it would be possible to use
more complex families of functions, such as Fourier
series or wavelet functions. Problem 7 was solved
using TSMu with different polynomial degrees p
of the temporal macrobasis, starting from the pre-
vious quadratic basis p = 2 and increasing the
degree p gradually (p = 3, 5, 7, 9, 11 and 13) until
the method became close to SMu. Figure 9 shows
the corresponding convergence curves (in black)
superimposed on those of Figure 8 (in grey). One
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Figure 9: p-refinement applied to the temporal macro ap-
proximation

can see from that figure that a polynomial basis
of at least degree p = 13 is required to come close
to the convergence of the reference method SMu.
In 3D, the use of such a technique would lead

for each interface to a basis of dimension 9 (for
the spatial functions) ×14 (for the temporal func-
tions) = 126, compared to 27, which would lead
to a much too expensive macroproblem. That,
plus the fact that for a more complex problem
degree 13 would certainly be insufficient, makes
that option clearly inappropriate.

4.2.2. The h-refinement option

Now, let us set the degree of the polynomial
functions equal to p = 2 and look at the effect of a
refinement of the coarse grid. We divided the time
interval [0, T ] into nh = 1 coarse intervals IC

i , then
gradually increased nh (nh = 2, 3, 6 and 12) until
the method came close to SMu, keeping the total
number of microintervals If

j the same. Figure 10
shows the corresponding convergence curves (in
black). As with the previous case, this technique
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Figure 10: h-refinement applied to the temporal macro
approximation

requires a rather large number of coarse intervals
nh = 12, and the associated cost is close to that
of SMu. In this case, the microdescription and
the macrodescription are quasi identical. How-
ever, contrary to the p-refinement approach, the
advantage of this technique is that it converges
because the asymptotic case is quasi equivalent
to the reference method SMu.

In conclusion, these simple refinement tech-
niques are unsuitable because they require such
a level of enrichment that the computation costs
become prohibitive. In addition, these techniques
are absolutely not predictive because parameters
h and p must be known a priori and there is no
criterion which can help with their choice.
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In the next section, we propose an automatic
and adaptive enrichment procedure which over-
comes that difficulty.

5. An automatic enrichment technique

In this section, we describe a technique which
consists in enriching the temporal macrobasis au-
tomatically in order to make it as compatible as
possible with the linear part (i.e. the spatial macro
part) of the interface’s force and velocity fields for
each substructure.

5.1. Extraction of the enrichment functions

At the end of the linear stage of an iteration,
the projections of the microresiduals Fm

EE(x, t)
and Ẇ

m

EE(x, t) onto the spatial macrobasis func-
tions eM

k for each microinterval If
j are extracted.

These projections, denoted rF (t) and rW (t), are
defined by:

rF (t) =

∫

ΦEE′

eM
k (x) · Fm

EE′(x, t)dΦ

rW (t) =

∫

ΦEE′

eM
k (x) · Wm

EE′(x, t)dΦ

These time functions, defined on the refined
temporal grid, correspond to the evolution of mi-
crophenomena which have nonzero resultants and
moments (or rigid body modes) at the interface.
According to Saint-Venant’s principle, these mi-
crophenomena have a global effect, yet they are
not taken into account by the macroproblem. Thus,
the macro procedure is not applied to the en-
tire resultant and moment forces at the interfaces,
which is the reason why scalability is partially
lost.

The principle of the method proposed here
is to enrich the temporal macrobasis with these
residual functions. However, these functions are
not sufficient to restore scalability. An impor-
tant condition is also that the enrichment of the
temporal macrobasis be consistent with the ma-

terial model being used. The temporal macroba-
sis is common to both forces and velocities. If a
function rF (t) extracted from the force fields is

capable of enriching the macrobasis and improv-
ing the representation of the evolution of the re-
sultant forces and moments in the solution, the
same function is not necessarily capable of im-
proving the representation of the evolution of the
corresponding displacements. For example:

• For a linear elastic material, stress and strain
are proportional:

σ = Kε

Then, a function rF (t) is sufficient to im-
prove the representation of both stress and
strain.

• for a viscoelastic material such as in our ex-
amples, the model is based on a duality be-
tween the strain rate and a combination of
the stress and its time derivative:

ε̇ = K−1
σ̇ + B(σ)

Thus, when a time function capable of en-
riching the temporal macrobasis is extracted
from the stresses, its time derivative is added,
too. More generally, the derivatives of the
functions in the temporal macrobasis must
also belong to that macrobasis. This makes
the initial choice of a basis of polynomials a
good choice.

Remark. Here, for the sake of simplicity, we
chose to use the same temporal macrobasis for the
velocities and for the forces. One could consider
using different bases. This would certainly lead to
a reexamination of our choice: for example, one
could enrich the force basis using one function and
the velocity basis using a sort of “dual” function.
This possibility needs to be studied in a future
work.

5.2. Selection of the most relevant functions

If nM
esp denotes the number of spatial macro-

functions and nΦ the number of interfaces, there
are m = 2 × nM

esp × nΦ such functions which can
be added to the temporal macrobasis. Of course,

10



should the temporal macrobasis be enriched us-
ing all these residual functions, the size of the
macroproblem would explode and its resolution
cost would be prohibitive. Therefore, it is neces-
sary to find a way to rank these functions in order
to select only the most relevant ones.

The objective is to find a relatively small num-
ber of functions whose linear combination could
approximate the whole set of m functions as well
as possible. A convenient way to do that consists
in calculating a truncated Proper Orthogonal De-
composition2 (POD, see [7]) of these functions.

Let nf
i be the number of refined subintervals

of the coarse interval IC
i . We now have at our

disposal m residual functions {rj(t)}16j6m (r in

their discrete form) arranged in a m × nf
i matrix

A, such that Aij is the value of the jth function
for the ith refined subinterval.

A =

[[
...

][
rj

][
...

]]

The calculation of a truncated proper orthog-
onal decomposition of A comes down to the cal-
culation of the first few eigenfunctions of the co-
variance matrix C of A (see [7]):

C = AAT

Let us note that in our case, since nf
i ≪ m, C

is a small nf
i × nf

i symmetric matrix. The calcu-
lation of the eigenvectors of that matrix is rela-
tively inexpensive and independent of the number
of residual functions m. Let us sort the eigenval-
ues λi in ascending order:

|λ0| > . . . |λi| . . . > |λ
n

f
i
|

The eigenfunctions associated with the first n
eigenvalues (λi)06i6n constitute the best basis of
size m, i.e. one whose linear combination leads to
the best approximation of the complete m func-
tions in the sense of the Frobenius norm, which is
a discrete version of the L2 norm:

‖A‖2
f = tr(AAT )

2Also known as Singular Value Decomposition, Princi-
pal Component Analysis or Karhunen Loeve Expansion,
see [31]

This means that the proper orthogonal modes
are optimal and orthogonal in the sense of the
L2 norm. Let us recall that the macrobasis must
be orthonormal in the sense of the scalar prod-
uct 〈·, ·〉IC

i
defined by Equation (9), which is more

relevant physically. Therefore, the proper orthog-
onal modes should be optimal in the sense of the
following metrics:

‖ri(t)‖
2
IC
i ,m

=
m∑

i=1

〈ri(t), ri(t)〉IC
i

(10)

In the case of heterogeneous partitions of IC
i , the

calculation of the POD must be modified slightly.
Let us introduce the nf

i × nf
i diagonal matrix D

whose elements are equal to the sizes Djj = tfj+1−

tfj of the refined intervals If
j . The POD must be

carried out in the sense of the following modified
Frobenius norm:

‖A‖2
mf = tr(AT DA)

= tr

(
m∑

i=1

rT
i Dri

)

=
m∑

i=1

tr(rT
i Dri)

=
m∑

i=1

rT
i Dri

which is the the discrete version of Norm (10).
Calculating the POD with such a norm is equiv-

alent to seeking the eigenvalues and eigenvectors
of the following modified covariance matrix C̃:

C̃ = AAT D

Indeed, let us consider a first-order POD ap-
proximation λuvT of A, where λ is a scalar and

u ∈ R
n

f
i and v ∈ R

m are normalized vectors. λ, u
and v are unknowns, which are sought in order to
minimize the following metrics:

‖A − λuvT‖2
mf =

tr(AT DA) − 2λtr(AT DuvT ) + λ2tr(vuT DuvT )

We seek v which minimizes the previous metrics
over R

m, leading to ∀v⋆ ∈ R
m:

−λtr(AT DuvT⋆) + λ2tr(vuT DuvT⋆) = 0

11



which is equivalent to:

AT Du

uT Du
= λv (11)

We proceed in the same way with u, which leads
to:

Av

vT v
= λu (12)

Equations (11) and (12) yield:

AAT Du

vT v uT Du
= λ2u (13)

Let us recall that u and v are normalized, i.e.,
for example, vT v = uT Du = 1. Equation (13) is

an eigenvalue problem of C̃ = AAT D in which u
is an eigenvector and λ2 the corresponding eigen-
value. Finally, v can be calculated a posteriori

thanks to (11). A study of the properties of such
an eigenvalue problem is given in [23].

The resulting eigenfunctions {ui}1...n
f
i

of C̃ are

orthonormal in the sense of:

〈ri, rj〉 = rT
i Drj (14)

Indeed, let (u1, u2) ∈ (Rn
f
i )2 be two eigenvec-

tors of C̃ associated with the eigenvalues (λ2
1, λ

2
2) ∈

R
2 such that λ1 6= λ2. Then, one has:

uT
1 DAAT Du2 = λ2

1 uT
1 Du2 = λ2

2 uT
1 Du2

Since λ1 6= λ2, one has:

uT
1 Du2 = 0

(14) is the discrete version of the scalar prod-
uct (9) which enables one to add the eigenfunc-
tions u directly to the temporal macrobasis.

As we will see in the example, the eigenval-
ues of C (or C̃) decrease rapidly, so the first few
eigenfunctions are the dominant ones. For exam-
ple, one can use the following indicator to select
the most relevant functions:

|λi|

|λ0|
< ǫλ (15)

These eigenfunctions are suitable functions to
add to the temporal macrobasis. In order to keep
the macroproblem small, one must limit the en-
richment to the first few functions, but thanks to
the POD, these first functions are the most rele-
vant ones.

5.3. Back to the example

This automatic enrichment technique (which
will be denoted aTSMu) was applied to the previ-
ous problem of Figure 7. The temporal macrospace
was characterized by a single macrointerval and
the initial basis consisted of only 3 quadratic poly-
nomials. The number of functions which could be
added to that basis was limited to 3. This stage
was carried out every 10 iterations and the trunca-
tion criterion was chosen to be equal to ǫλ = 10−4.
The corresponding convergence curve (in black)
is shown in Figure 11. One can observe on that
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Figure 11: Convergence of the aTSMu method

figure that with only a few additional functions
the convergence can be accelerated significantly.
These additional functions, which do not require
any a priori information and are calculated auto-
matically during the iterations, grant the method
a convergence rate which is close to that of SMu,
which is scalable.

Remark. Since the temporal macrobasis has been
modified, the homogenized operators need to be
updated. The associated computation cost is sig-
nificant, but one does not need to use this auto-
matic enrichment procedure at each iteration. In-
deed, in Figure 11, the discontinuous black curve
corresponds to one enrichment per iteration, while
the continuous black curve corresponds to one en-
richment every ten iterations. The fact that these
two curves are similar means that the frequency
with which the basis is updated influences the ef-
fectiveness of the technique only slightly. Thus,
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the cost of the process can be easily reduced. Fur-
thermore, in the case of nonlinear behavior, the
homogenized operators need to be updated from
time to time as well because of the modification
of the search directions. In that case, one should
update the temporal macrobasis and the search
directions simultaneously, which makes the addi-
tional cost of the automatic enrichment technique
very affordable.

5.4. When the macrospace is compatible with the

data

The objective of the previous example was to
make the procedure easily understandable, but
the problem is somewhat artificial. In general, it
is necessary to verify that the temporal macrospace
(the macrobasis and the h and p parameters) is
compatible with the data. In particular, the entire
resultant forces and moments of the loading must
belong to the macro part. In the previous exam-
ple, this would have consisted in introducing, for
example, the sinusoidal functions of the perturba-
tion into the macrobasis. Even in this case, the
evolution of the resultant forces and moments at
the interfaces may be very different from that of
the loading, for example in the context of nonlin-
earities.

Let us consider the problem of Figure 12(a)
where the same structure as before is subjected
to a lateral force (left) in the presence of a rigid
solid (right). The rigid solid was modeled using an
interface with special frictionless contact behav-
ior and a gap g = 1% of the size of the domain.
Since the time evolution of the loading (Figure
12(b)) is quite simple, the quadratic temporal ba-
sis was compatible with the data. Figure 13 shows
the convergence of methods SMu, TSMu, Mo and
aTSMu using the same parameters as in the pre-
vious example.

However, although the macrospace was com-
patible with the data, it was insufficient to take
into account the temporal phenomena in the vicin-
ity of the contact. These phenomena were dealt
with in the single-scale process, which resulted in
a degradation of the overall convergence of the
method. Nevertheless, in that example, thanks
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Figure 12: The frictionless contact problem (with a mac-
robasis compatible with the data)
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Figure 13: The convergence curves of methods SMu,
TSMu, aTSMu and Mo

to the automatic enrichment phase, aTSMu con-
verged very rapidly and required 10 times fewer
iterations than the standard TSMu to bring the
error down to η = 10−3, which corresponds to a
convergence rate comparable to that of the refer-
ence SMu.
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6. A three-dimensional example with fric-
tional contact

In order to illustrate the strategy on a more
difficult example, let us consider the quasi-static
evolution over [0, 10s] of the viscoelastic 3D struc-
ture of Figure 14 containing a crack over 4/5th of
its length. The structure is made of a Maxwell-

perfect frictional contact

P

F

Figure 14: Definition of the problem

type viscoelastic material whose constitutive re-
lation is such that B = 1

η
K, where K is Hooke’s

tensor with Young’s modulus E = 100GPa, Pois-
son’s ratio ν = 0.3 and viscosity η = 10. The
structure is clamped at the base and subjected
to a preloading force at the top and a traction
force along the upper lip of the crack. The do-
main was meshed with hexahedra with approx-
imately 100, 000 DOFs. The time interval con-
sisted of a single coarse interval divided into 60
refined subintervals. The domain was divided into
10 substructures and 47 interfaces. Using a classi-
cal choice for the macrobases (linear in space and
quadratic in time) the macrospace was compati-
ble with the data. The crack was modeled by a
frictional contact interface whose formulation can
be found in [5].

The loading was chosen such that all possi-
ble scenarios would be encountered at the con-
tact interface (see Figure 15(b)). The problem

(a) Magnitude of the stress

perfect

interface

contact:

sticking

contact:

sliding open

(b) State of the contact

Figure 15: The solution of the frictional contact problem

was solved using Mo, SMu, TSMu and aTSMu

successively. In the case of aTSMu, the enrich-
ment phase was carried out every 10 iterations,
the truncation criterion was taken to be equal
to ǫλ = 10−4 and the maximum number of addi-
tional functions in the basis was set to 3. Figure
16 shows the corresponding convergence curves.
In this example, one can observe that the stan-
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Figure 16: Convergence curves for SMu, TSMu, aTSMu
and Mo
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dard time-space multiscale approach TSMu was
penalized by the time approximation of the evo-
lution of the resultant forces and moments to the
point that the convergence indicator was similar
to that of the full single-scale approach Mo. As in
the previous example, the automatic enrichment
technique made the convergence of aTSMu similar
to that of the reference SMu, in which the tem-
poral macrospace contains the entire fine descrip-
tion and which is scalable. Thus, the proposed
approach seems to be robust even in the case of
more complex problems. It also seems to give the
time-space approach quasi full scalability thanks
to the adaptation of the temporal macrobasis.

7. Conclusions

In this paper, using several examples, we showed
that in some cases the seemingly most natural
separation a priori of the temporal scales— slow
scale / rapid scale —is not always optimal and
leads to a nonscalable LATIN algorithm. Refine-
ment techniques of the h-type (which refine the
temporal macrospace) and of the p-type (which
introduce higher frequencies) were found to be
relatively ineffective and, moreover, too problem-
dependent. Therefore, we raised the question of
the separability of the scales. We proposed a vi-
sion which consists in considering the macro part
of a quantity to be its projection onto a reduced
basis. This choice leads to a smaller temporal
macrospace, which is well-adapted to the prob-
lem and its loading. This reduced basis, which is
unknown a priori, is adapted automatically dur-
ing the iterations of the calculation and leads to a
negligible increase in resolution cost in the general
case of nonlinear evolution laws.

The technique consists in selecting a set of
temporal residuals which reflect the high-frequency
phenomena which have a global influence on the
spatial level. Since these phenomena are micro-
scopic, they cannot be taken into account in the
macroproblem, which affects the scalability of the
method. However, a technique based on the POD
approach enables one to select only the dominant
functions from that set, leading to an enrichment
of reasonable size. This time-adaptive separation

leads to a numerically scalable calculation method
regardless of the frequency content of the loading.

One of the consequences of this work could be
the modification of the current algorithm, lead-
ing to a macroproblem which could be solved us-
ing Proper Generalized Decomposition [30, 8, 37].
Thus, the reduced basis could be generated a pri-

ori at each iteration without resorting to POD.
This would also enable the extension of this type
of reduced-basis micro/macro decomposition to
the spatial variable, which could probably lead
to a reduction of the spatial macrospace, which
in some three-dimensional cases can be more ex-
tensive than strictly necessary.
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[36] D. Néron and D. Dureisseix. A computational strat-
egy for poroelastic problems with a time interface be-
tween coupling physics. International Journal for Nu-
merical Methods in Engineering, 73(6):783–804, 2008.

[37] A. Nouy. A generalized spectral decomposition tech-
nique to solve a class of linear stochastic partial dif-
ferential equations. Computer Methods in Applied
Mechanics and Engineering, 196(45-48):4521–4537,
2007.

[38] J. T. Oden, K. Vemaganti, and N. Moës. Hierarchical
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