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1. Introduction

1.1 General Introduction
In a wide variety of industrial applications, an increasing demand exists to improve the re-
liability and availability of electrical systems. Popular examples include systems in aircraft,
electric railway traction, power plant cooling or industrial production lines. A sudden failure
of a system in these examples may lead to cost expensive downtime, damage to surrounding
equipment or even danger to humans. Monitoring and failure detection improves the relia-
bility and availability of an existing system. Since various failures degrade relatively slowly,
there is potential for fault detection followed by corrective maintenance at an early stage. This
avoids the sudden, total system failure which can have serious consequences.
Electric machines are a key element in many electrical systems. Amongst all types of electric
motors, induction motors are a frequent example due to their simplicity of construction, ro-
bustness and high efficiency. Common failures occurring in electrical drives can be roughly
classified into:

Electrical faults: stator winding short circuit, broken rotor bar, broken end-ring, inverter fail-
ure

Mechanical faults: rotor eccentricity, bearing faults, shaft misalignment, load faults (unbal-
ance, gearbox fault or general failure in the load part of the drive)

A reliability survey on large electric motors (>200 HP) revealed that most failures are due to
bearing (≈ 44%) and winding faults (≈ 26%) IEEE motor reliability working group (1985a)
Engelmann & Middendorf (1995). Similar results were obtained in an EPRI (Electric Power
Research Institute) sponsored survey Albrecht et al. (1987). These studies concerned only the
electric motor and not the whole drive including the load, but they show that mechanical fault
detection is of great concern in electric drives.



A growing number of induction motors operates in variable speed drives. In this case, the
motor is no more directly connected to the power grid but supplied by an inverter. The in-
verter provides voltage of variable amplitude and frequency in order to vary the mechanical
speed.
Therefore, this work addresses the problem of condition monitoring of mechanical faults in
variable speed induction motor drives. A signal based approach is chosen i.e. the fault detec-
tion and diagnosis is only based on processing and analysis of measured signals and not on
real-time models.

1.2 Motor Current Signature Analysis
A common approach for monitoring mechanical failures is vibration monitoring. Due to the
nature of mechanical faults, their effect is most straightforward on the vibrations of the af-
fected component. Since vibrations lead to acoustic noise, noise monitoring is also a possible
approach. However, these methods are expensive since they require costly additional trans-
ducers. Their use only makes sense in case of large machines or highly critical applications.
A cost effective alternative is stator current based monitoring since a current measurement is
easy to implement. Moreover, current measurements are already available in many drives for
control or protection purposes. However, the effects of mechanical failures on the motor sta-
tor current are complex to analyze. Therefore, stator current based monitoring is undoubtedly
more difficult than vibration monitoring.
Another advantage of current based monitoring over vibration analysis is the limited number
of necessary sensors. An electrical drive can be a complex and extended mechanical systems.
For complete monitoring, a large number of vibration transducers must be placed on the dif-
ferent system components that are likely to fail e.g. bearings, gearboxes, stator frame, load.
However, a severe mechanical problem in any component influences necessarily the electric
machine through load torque and shaft speed. This signifies that the motor can be consid-
ered as a type of intermediate transducer where various fault effects converge together. This
strongly limits the number of necessary sensors. However, since numerous fault effects come
together, fault diagnosis and discrimination becomes more difficult or is sometimes even im-
possible.
A literature survey showed a lack of analytical models that account for the mechanical fault ef-
fect on the stator current. Most authors simply give expressions of additional frequencies but
no precise stator current signal model. In various works, numerical machine models account-
ing for the fault are used. However, they do not provide analytical stator current expressions
which are important for the choice of suitable signal analysis and detection strategies.
The most widely used method for stator current processing in this context is spectrum estima-
tion. In general, the stator current power spectral density is estimated using Fourier transform
based techniques such as the periodogram. These methods require stationary signals i.e. they
are inappropriate when frequencies vary with respect to time such as during speed transients.
Advanced methods for non-stationary signal analysis are required.
The organization of the present work is the following. Section 2 analyses the effects of load
torque oscillations and dynamic eccentricity on the stator current. In section 3 suitable signal
processing methods for stator current analysis are introduced. Experimental results under
laboratory conditions are presented in section 4. Section 5 examines the detection of misalign-
ment faults in electric winches including analysis of experimental data from a real winch.
Bearing faults are investigated apart in section 6 from a theoretical and practical point of view
since they can introduce particular eccentricities and load torque oscillations.



2. Theoretical study of mechanical fault effects on stator current

The key assumption for the development of the theoretical models is that mechanical faults
mainly produce two effects on induction machines: additional load torque oscillations at char-
acteristic frequencies and/or airgap eccentricity.
Load torque oscillations can be caused by the following faults:

• load unbalance (not necessarily a fault but can also be inherent to the load type)

• shaft misalignment

• gearbox fault e.g. broken tooth

• bearing faults

Airgap eccentricity i.e. a non-uniform airgap can be for example the consequence of bearing
wear or bearing failure, bad motor assembly with rotor unbalance or a rotor which is not
perfectly centered. In general, eccentricity will be a sign for a mechanical problem within the
electric motor whereas load torque oscillations point to a fault that is located outside of the
motor.
The method used to study the influence of the periodic load torque variation and the rotor
eccentricity on the stator current is the magnetomotive force (MMF) and permeance wave
approach Yang (1981) Timár (1989) Heller & Hamata (1977). This approach is traditionally
used for the calculation of the magnetic airgap field with respect to rotor and stator slotting or
static and dynamic eccentricity Cameron & Thomson (1986) Dorrell et al. (1997).
First, the rotor and stator MMF are calculated which are directly related to the current flowing
in the windings. The second important quantity is the airgap permeance Λ which is directly
proportional to the inverse of the airgap length g. The magnetic field in the airgap can then
be determined by multiplying the permeance by the sum of rotor and stator MMFs. The
equivalent magnetic flux in one phase is obtained by integration of the magnetic field in each
turn of the phase winding. The induced phase voltage, related to the current by the stator
voltage equation, is then deduced from the magnetic flux.
As this work also considers variable speed drives, the supply frequency fs and the character-
istic fault frequency fc may vary. Note that fc can be for example the time-varying rotational
frequency fr. The theoretical stator current analysis during transients, however, is identical to
the steady state if relatively slow frequency variations of fs and fc are considered.

2.1 Load torque oscillations
The influence of load torque oscillations on the stator current has been published for a general
case by the authors in Blödt, Chabert, Regnier & Faucher (2006) Blödt (2006). The development
will be shortly resumed in the following.

2.1.1 Effect on Rotor and Stator MMF
Under a mechanical fault, the load torque as a function of time is modeled by a constant com-
ponent Γconst and an additional component varying at the characteristic frequency fc, depend-
ing on the fault type. It can be for example the rotational frequency fr with load unbalance
or a particular gearbox frequency in case of a gearbox fault. The first term of the variable
component Fourier series is a cosine with frequency fc. For the sake of clarity and since they
are usually of smaller amplitude, higher order terms at k fc are neglected in the following and
only the fundamental term is considered. The load torque can therefore be described by:

Γload(t) = Γconst + Γc cos (ωct) (1)
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Fig. 1. Stator (S) and rotor (R) reference frame

where Γc is the amplitude of the load torque oscillation and ωc = 2π fc.
The machine mechanical equation relates the torque oscillation to the motor speed ωr and to
the mechanical rotor position θr as follows:

∑Γ(t) =Γmotor(t)− Γload(t) = J
dωr

dt
= J

d2θr

dt2
(2)

where Γmotor is the electromagnetic torque produced by the machine, J is the total inertia of
the machine and the load.
After integrating twice, θr(t) is obtained as:

θr (t) =
∫ t

t0

ωr (τ)dτ =
Γc

Jω2
c

cos (ωct) + ωr0t (3)

where ωr0 is the constant part of the motor speed. This equation shows that in contrast to the
healthy machine where θr (t) = ωr0t, oscillations at the characteristic frequencies are present
on the mechanical rotor position.
The oscillations of the mechanical rotor position θr act on the rotor MMF. In a healthy state
without faults, the fundamental rotor MMF in the rotor reference frame (R) is a wave with p
pole pairs and frequency s fs, given by:

F(R)
r (θ′, t) = Fr cos

(
pθ′ − sωst

)
(4)

where θ′ is the mechanical angle in the rotor reference frame (R) and s is the motor slip.
Higher order space and time harmonics are neglected.
Figure 1 illustrates the transformation between the rotor and stator reference frame, defined
by θ = θ′ + θr . Using (3), this leads to:

θ′ = θ −ωr0t− Γc

Jω2
c

cos (ωct) (5)

Thus, the rotor MMF given in (4) can be transformed to the stationary stator reference frame
using (5) and the relation ωr0 = ωs(1− s)/p :

Fr(θ, t) = Fr cos (pθ −ωst− βcos (ωct)) (6)



with:
β = p

Γc

Jω2
c

(7)

Equation (6) clearly shows that the torque oscillations at frequency fc lead to a phase modu-
lation of the rotor MMF in the stator reference frame. This phase modulation is characterized
by the introduction of the term βcos(ωct) in the phase of the MMF wave. The parameter β
is generally called the modulation index. For physically reasonable values J, Γc and ωc, the
approximation β� 1 holds in most cases.
The fault has no direct effect on the stator MMF and so it is considered to have the following
form:

Fs(θ, t) = Fs cos
(

pθ −ωst− ϕs
)

(8)

ϕs is the initial phase difference between rotor and stator MMF. As in the case of the rotor
MMF, only the fundamental space and time harmonic is taken into account; higher order
space and time harmonics are neglected.

2.1.2 Effect on Flux Density and Stator Current
The airgap flux density B(θ, t) is the product of total MMF and airgap permeance Λ. The
airgap permeance is supposed to be constant because slotting effects and eccentricity are not
taken into account for the sake of clarity and simplicity.

B (θ, t) = [Fs(θ, t) + Fr(θ, t)]Λ

= Bs cos
(

pθ −ωst− ϕs
)

+ Br cos
(

pθ −ωst− βcos (ωct)
) (9)

The phase modulation of the flux density B(θ, t) exists for the flux Φ(t) itself, as Φ(t) is ob-
tained by simple integration of B(θ, t) with respect to the winding structure. The winding
structure has only an influence on the amplitudes of the flux harmonic components, not on
their frequencies. Therefore, Φ(t) in an arbitrary phase can be expressed in a general form:

Φ(t) = Φs cos
(
ωst + ϕs

)
+ Φr cos

(
ωst + βcos (ωct)

)
(10)

The relation between the flux and the stator current in a considered phase is given by the
stator voltage equation:

V(t) = Rs I(t) +
dΦ(t)

dt
(11)

With V(t) imposed by the voltage source, the resulting stator current will be in a linear relation
to the time derivative of the phase flux Φ(t) and will have an equivalent frequency content.
Differentiating (10) leads to:

d
dt

Φ(t) = − ωsΦs sin
(
ωst + ϕs

)
− ωsΦr sin

(
ωst + βcos (ωct)

)
+ ωcβ Φr sin

(
ωst + βcos (ωct)

)
sin(ωct)

(12)

The amplitude of the last term is smaller than the amplitude of the other terms because β� 1.
Thus, the last term in (12) will be neglected in the following.
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Fig. 2. Schematic representation of static, dynamic and mixed eccentricity. × denotes the rotor
geometrical center, ∗ the rotor rotational center

As a consequence, the stator current in an arbitrary phase can be expressed in a general form:

Ito(t) = ist(t) + irt(t)

= Ist sin (ωst + ϕs) + Irt sin
(
ωst + βcos (ωct)

) (13)

Therefore the stator current I(t) can be considered as the sum of two components: the term
ist(t) results from the stator MMF and it is not modulated. The term irt(t) which is a direct
consequence of the rotor MMF shows the phase modulation due to the considered load torque
oscillations. The healthy case is obtained for β = 0.
In this study, the time harmonics of rotor MMF and the non-uniform airgap permeance have
not been considered. However, the harmonics of supply frequency fs and the rotor slot har-
monics will theoretically show the same phase modulation as the fundamental component.

2.2 Airgap Eccentricity
Airgap eccentricity leads to an airgap length that is no longer constant with respect to the
stator circumference angle θ and/or time. In general, three types of airgap eccentricity can be
distinguished (see Fig. 2):

Static eccentricity: The rotor geometrical and rotational centers are identical, but different
from the stator center. The point of minimal airgap length is stationary with respect to
the stator.

Dynamic eccentricity: The rotor geometrical center differs from the rotational center. The
rotational center is identical with the stator geometrical center. The point of minimal
airgap length is moving with respect to the stator.

Mixed eccentricity: The two effects are combined. The rotor geometrical and rotational cen-
ter as well as the stator geometrical center are different.

In the following theoretical development, static and dynamic eccentricity will be considered.
The airgap length g(θ, t) can be approximated for a small airgap and low levels of static or
dynamic eccentricity by the following expression Dorrell et al. (1997):

gse(θ, t) ≈ g0(1− δs cos(θ))
gde(θ, t) ≈ g0(1− δd cos(θ −ωrt))

(14)



where δs, δd denote the relative degrees of static or dynamic eccentricity and g0 the mean
airgap length without eccentricity. Note that static eccentricity can be considered as a special
case of dynamic eccentricity since gse(θ, t) corresponds to gde(θ, t) with ωr = 0, i.e. the point
of minimum airgap length is stationary. Since dynamic eccentricity is more general, it will
mainly be considered in the following.
The airgap permeance Λ(θ, t) is obtained as the inverse of g(θ, t) multiplied by the perme-
ability of free space µ0. Following a classical approach, the permeance is written as a Fourier
series Cameron & Thomson (1986):

Λde(θ, t) = Λ0 +
∞

∑
iecc=1

Λiecc cos(ieccθ − ieccωrt) (15)

where Λ0 = µ0/g0 is the permeance without eccentricity. The higher order coefficients of the
Fourier series can be written as Cameron & Thomson (1986):

Λiecc =
2µ0(1−

√
1− δ2)iecc

g0δiecc
d

√
1− δ2

(16)

Dorrell has shown in Dorrell (1996) that the coefficients with iecc ≥ 2 are rather small for δd <
40%. For the sake of simplicity, they are neglected in the following considerations.
The airgap flux density is the product of permeance with the magnetomotive force (MMF).
The total fundamental MMF wave can be written as:

Ftot(θ, t) = F1 cos(pθ −ωst− ϕt) (17)

with ϕt the initial phase. Hence, the flux density in presence of dynamic eccentricity is:

Bde(θ, t) ≈ B1
[
1 + 2

Λ1
Λ0

cos(θ −ωrt)
]

cos(pθ −ωst− ϕt) (18)

with B1 = Λ0F1
The fraction 2Λ1/Λ0 equals approximately δd for small levels of eccentricity. The airgap flux
density can therefore be written as:

Bde(θ, t) = B1
[
1 + δd cos(θ −ωrt)

]
cos(pθ −ωst− ϕt) (19)

This equation shows the fundamental effect of dynamic eccentricity on the airgap magnetic
flux density : the modified airgap permeance causes an amplitude modulation of the fun-
damental flux density wave with respect to time and space. The AM modulation index is
approximately the degree of dynamic eccentricity δ.
In case of static eccentricity, the fundamental flux density expresses as:

Bse(θ, t) = B1
[
1 + δs cos(θ)

]
cos(pθ −ωst− ϕt) (20)

which shows that static eccentricity leads only to flux density AM with respect to space.
Consequently, the amplitude modulation can also be found on the stator current I(t) (see
section 2.1.2) that expresses as follows in case of dynamic eccentricity:

Ide(t) = I1
[
1 + αcos(ωrt)

]
cos (ωst− ϕi) (21)

In this expression, I1 denotes the amplitude of the stator current fundamental component,
α the AM modulation index which is proportional to the degree of dynamic eccentricity δd.
Static eccentricity does not lead to frequencies different from ωs since the corresponding ad-
ditional flux density waves are also at the supply pulsation ωs. It can be concluded that
theoretically, pure static eccentricity cannot be detected by stator current analysis.



3. Signal processing tools for fault detection and diagnosis

The previous section has shown that load torque oscillations cause a phase modulation on one
stator current component according to (13). On the other hand, dynamic airgap eccentricity
leads to amplitude modulation of the stator current (see (21). In this section, signal processing
methods for detection of both modulation types in the stator current will be presented and
discussed.
In order to simplify calculations, all signals will be considered in their complex form, the so-
called analytical signal Boashash (2003) Flandrin (1999). The analytical signal z(t) is related to
the real signal x(t) via the Hilbert Transform H{.}:

z(t) = x(t) + jH {x(t)} (22)

The analytical signal contains the same information as the real signal but its Fourier transform
is zero at negative frequencies.

3.1 Power Spectral Density
3.1.1 Definition
The classical method for signal analysis in the frequency domain is the estimation of the Power
Spectral Density (PSD) based on the discrete Fourier transform of the signal x[n]. The PSD in-
dicates the distribution of signal energy with respect to the frequency. The common estimation
method for the PSD is the periodogram Pxx( f ) Kay (1988), defined as the square of the signal’s
N-point Fourier transform divided by N:

Pxx( f ) =
1
N

∣∣∣∣∣N−1

∑
n=0

x(n)e−j2π f n

∣∣∣∣∣
2

(23)

3.1.2 Application
The PSD represents the basic signal analysis tool for stationary signals i.e. it can be used in
case of a constant or quasi-constant supply frequency during the observation interval.
The absolute value of the Fourier transform |I( f )| of the stator current PM signal (13) is ob-
tained as follows (see Blödt, Chabert, Regnier & Faucher (2006) for details):

|Ito( f )| = (Ist + Irt J0(β)) δ( f − fs)

+ Irt

+∞

∑
n=−∞

Jn(β)δ
(

f − ( fs ± n fc)
) (24)

where Jn denotes the n-th order Bessel function of the first kind and δ( f ) is the Dirac delta
function. For small modulation indexes β, the Bessel functions of order n ≥ 2 are very small
and may be neglected (the so-called narrowband approximation). It becomes clear through
this expression that the fault leads to sideband components of the fundamental at fs ± n fc.
When the modulation index β is small, only the first order sidebands at fs ± fc will be visible
and their amplitudes will be approximately J1(β)Irt ≈ 0.5βIrt.
The Fourier transform magnitude of the AM stator current signal according to (21) is:

|Ide( f )| = I1 δ ( f − fs) +
1
2

αI1δ ( f − ( fs ± fc)) (25)

The amplitude modulation leads to two sideband components at fs± fc with equal amplitude
αI1/2. Therefore, the spectral signature of the AM and PM signal is identical if the modulation



frequency is equal and the PM modulation index small. This can be the case when e.g. load
unbalance and dynamic rotor eccentricity are considered as faults.
It can be concluded that the PSD is a simple analysis tool for stationary drive conditions. It is
not suitable for analysis when the drive speed is varying. Moreover, another drawback is that
PM and AM cannot be clearly distinguished.

3.2 Instantaneous Frequency
3.2.1 Definition
For a complex monocomponent signal z(t) = a(t)ejϕ(t), the instantaneous frequency fi(t) is
defined by (Boashash (2003)):

fi(t) =
1

2π

d
dt

ϕ(t) (26)

where ϕ(t) is the instantaneous phase and a(t) the instantaneous amplitude of the analytical
signal z(t).

3.2.2 Application
The instantaneous frequency (IF) of a monocomponent phase modulated signal can be calcu-
lated using the definition (26). For the phase modulated stator current component irt(t) (see
second term of equation (13)), it can be expressed as:

fi,irt (t) = fs − fcβsin(ωct) (27)

The fault has therefore a direct effect on the IF of the stator current component irt(t). In the
healthy case, its IF is constant; in the faulty case, a time varying component with frequency fc
appears.
If the complex multicomponent PM signal according to (13) is considered, the calculation of
its IF leads to the following expression:

fi,I(t) = fs − fcβsin(ωct)
1

1 + a(t)
(28)

with

a(t) =
I2
st + Ist Irt cos (βcos (ωct)− ϕs)

I2
rt + Ist Irt cos (βcos (ωct)− ϕs)

(29)

Using reasonable approximations, it can be shown that 1/ (1 + a(t)) is composed of a constant
component with only small oscillations. Hence, the IF of (13) may be approximated by:

fi,I(t) ≈ fs − C fcβsin(ωct) (30)

where C is a constant, C < 1. Numerical evaluations confirm this approximation. It can there-
fore be concluded, that the multicomponent PM signal IF corresponding to the stator current
also shows fault-related oscillations at fc which may be used for detection.
The IF of an AM stator current signal according to (21) is simply a constant at frequency fs.
In contrast to the PM stator current signal, no time-variable component is present. The AM
modulation index α is not reflected in the IF. Consequently, the stator current IF cannot be
used for amplitude modulation detection i.e. airgap eccentricity related faults.



3.3 Wigner Distribution
The Wigner Distribution (WD) belongs to the class of time-frequency signal analysis tools. It
provides a signal representation with respect to time and frequency which can be interpreted
as a distribution of the signal energy.

3.3.1 Definition
The WD is defined as follows Flandrin (1999):

Wx(t, f ) =
∫ +∞

−∞
x
(

t +
τ

2

)
x∗
(

t− τ

2

)
e−j2π f τd τ (31)

This formula can be seen as the Fourier transform of a kernel Kx(τ, t) with respect to the delay
variable τ. The kernel is similar to an autocorrelation function.
An interesting property of the WD is its perfect concentration on the instantaneous frequency
in the case of a linear frequency modulation. However, other types of modulations (e.g. in
our case sinusoidal phase modulations) produce so-called inner interference terms in the dis-
tribution Mecklenbräuker & Hlawatsch (1997). Note that the interferences may however be
used for detection purposes as it will be shown in the following.
Another important drawback of the distribution is its non-linearity due to the quadratic na-
ture. When the sum of two signals is considered, so-called outer interference terms appear in
the distribution at time instants or frequencies where there should not be any signal energy
Mecklenbräuker & Hlawatsch (1997). The interference terms can be reduced by using e.g.
the Pseudo Wigner Distribution which includes an additional smoothing window (see section
3.4).

3.3.2 Application
The stator current in presence of load torque oscillations can be considered as the sum of
a pure frequency and a phase modulated signal (see (13)). The detailed calculations of the
stator current WD can be found in Blödt, Chabert, Regnier & Faucher (2006). The following
approximate expression is obtained for small β:

Wipm (t, f ) ≈
(

I2
rt + I2

st

)
δ( f − fs)

− I2
rtβsin (ωct) δ( f − fs −

fc

2
)

+ I2
rtβsin (ωct) δ( f − fs +

fc

2
)

(32)

The WD of the PM stator current is therefore a central frequency at fs with sidebands at fs ±
fc/2. These components have time-varying amplitudes at frequency fc. It is important to note
that the lower sideband has the opposed sign to the upper sideband for a given point in time
i.e. a phase shift of π exists theoretically between the two sidebands.
The WD of the AM signal according to (21) is calculated in details in Blödt, Regnier & Faucher
(2006). The following approximate expression is obtained for small modulation indices α:

Wiam (t, f ) ≈ I2
1 δ ( f − fs) + αcos (ωrt) I2

1 δ

(
f − fs ±

fr

2

)
(33)

The AM signature on the WD is therefore sidebands at fs ± fr/2. The sidebands oscillate at
shaft rotational frequency fr, their amplitude is αI2

1 . It should be noted that the signature is
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Fig. 3. Power spectral density of synthesized PM and AM signals.

similar to the PM signal but with the important difference that the upper and lower sideband
oscillations have the same amplitudes for a given point in time i.e. they are in phase.

3.4 Illustration with Synthesized Signals
In order to validate the preceding theoretical considerations, the periodogram and WD of
AM and PM signals are calculated numerically with synthesized signals. The signals are dis-
crete versions of the continuous time signals in (13) and (21) with the following parameters:
Ist = Irt =

√
2/2, I1 =

√
2, α = β = 0.1, ϕs = −π/8, fs = 0.25 and fc = fr = 0.125 normalized

frequency. These parameters are coherent with a realistic application, apart from the strong
modulation indices which are used for demonstration purposes. White zero-mean Gaussian
noise is added with a signal to noise ration of 50 dB. The signal length is N = 512 samples.
First, the periodogram of both signals is calculated (see Fig. 3). Both spectra show the funda-
mental component with sidebands at fs ± fr. The higher order sidebands of the PM signal are
buried in the noise floor so that both spectral signatures are identical.
The WD is often replaced in practical applications with the Pseudo Wigner Distribution
(PWD). The PWD is a smoothed and windowed version of the WD, defined as follows: Flan-
drin (1999):

PWx(t, f ) =
∫ +∞

−∞
p(τ)x

(
t +

τ

2

)
x∗
(

t− τ

2

)
e−j2π f τd τ (34)

where p(τ) is the smoothing window. In the following, a Hanning window of length N/4
is used. The time-frequency distributions are calculated using the Matlab R© Time-Frequency
Toolbox Auger et al. (1995/1996). The PWD of the PM and AM stator current signals is dis-
played in Fig. 4. A constant frequency at fs = 0.25 is visible in each case. Sidebands resulting
from modulation appear at fs ± fr/2 in both cases. The zoom on the interference structure
shows that the sidebands are oscillating at fr. According to the theory, the sidebands are
phase-shifted by approximately π in the PM case whereas they are in phase with the AM
signal.
For illustrating the stator current IF analysis, a simulated transient stator current signal is
used. The supply frequency fs(t) is varying from 0.05 to 0.25 normalized frequency. The
modulation frequency fc(t) is half the supply frequency. The IF of the transient PM and AM
stator current signal is shown in Fig. 5. The linear evolution of the supply frequency is clearly



Time [s]

Fr
eq

ue
nc

y
[H

z]

100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

(a) PM signal

Time [s]

Fr
eq

ue
nc

y
[H

z]

100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

(b) AM signal

Time [s]

Fr
eq

ue
nc

y
[H

z]

200 205 210 215 220
0.15

0.2

0.25

0.3

0.35

(c) Zoom on PM signal

Time [s]

Fr
eq

ue
nc

y
[H

z]

200 205 210 215 220
0.15

0.2

0.25

0.3

0.35

(d) Zoom on AM signal

Fig. 4. Pseudo Wigner Distribution of synthesized PM and AM signals with zoom on interfer-
ence structure.
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Fig. 5. Instantaneous frequency of simulated transient PM and AM signals.

visible apart from border effects. With the PM signal, oscillations at varying fault frequency
fc(t) can be recognized. In case of the AM signal, no oscillations are present. Further IF
and PWD analysis with automatic extraction of fault indicators is described in Blödt, Bonacci,
Regnier, Chabert & Faucher (2008).

3.5 Summary
Several signal processing methods suitable for the detection of mechanical faults by stator
current analysis have been presented. Classical spectral analysis based on the PSD can give a
first indication of a possible fault by an increase of sidebands at fs ± fr. This method can only
be applied in case of stationary signal without important variations of the supply frequency.
The IF can be used to detect phase modulations since they lead to a time-varying IF. A global
time-frequency signal analysis is possible using the WD or PWD where a characteristic in-
terference structure appears in presence of the phase or amplitude modulations. The three
methods have been illustrated with simulated signals.

4. Detection of dynamic airgap eccentricity and load torque oscillations under lab-
oratory conditions

4.1 Experimental Setup
Laboratory tests have been performed on an experimental setup (see Fig.6) with a three phase,
400 V, 50 Hz, 5.5 kW Leroy Somer induction motor (motor A). The motor has p = 2 pole pairs
and its nominal torque Γn is about 36 Nm. The machine is supplied by a standard industrial
inverter operating in open-loop condition with a constant voltage to frequency ratio. The
switching frequency is 3 kHz.
The load is a DC motor with separate, constant excitation connected to a resistor through a
DC/DC buck converter. A standard PI controller regulates the DC motor armature current.
Thus, using an appropriate current reference signal, a constant torque with a small additional
oscillating component can be introduced. The sinusoidal oscillation is provided through a
voltage controlled oscillator (VCO) linked to a speed sensor.
Since the produced load torque oscillations are not a realistic fault, load unbalance is also
examined. Thereto, a mass is fixed on a disc mounted on the shaft. The torque oscillation pro-
duced by such a load unbalance is sinusoidal at shaft rotational frequency. With the chosen
mass and distance, the torque oscillation amplitude is Γc = 0.04 Nm. If the motor bearings are
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healthy, the additional centrifugal forces created by the mass will not lead to airgap eccentric-
ity.
A second induction motor with identical parameters has been modified to introduce dynamic
airgap eccentricity (motor B). Therefore, the bearings have been replaced with bearings having
a larger inner diameter. Then, eccentrical fitting sleeves have been inserted between the shaft
and the inner race. The obtained degree of dynamic eccentricity is approximately 40%.
Measured quantities in the experimental setup include the stator voltages and currents, torque
and shaft speed. The signals are simultaneously acquired through a 24 bit data acquisition
board at 25 kHz sampling frequency. Further signal processing is done off-line with Matlab R©.

4.2 Stator Current Spectrum Analysis
For illustration purposes, the stator current spectral signatures of a machine with dynamic
eccentricity (motor B) are compared to an operation with load torque oscillations at frequency
fc = fr (motor A). In Fig. 7 the current spectrum of a motor with 40% dynamic eccentricity is
compared to an operation with load torque oscillations of amplitude Γc=0.14 Nm. This cor-
responds to only 0.4% of the nominal torque. The healthy motor spectrum is also displayed
and the average load was 10% of nominal load during this test. The stator current spectra
show identical fault signatures around the fundamental frequency i.e. an increasing ampli-
tude of the peaks at fs ± fr ≈ 25 Hz and 75 Hz. This behavior is identical under different load
conditions.
The stator current with load unbalance is analyzed in Fig. 8. A small weight has been fixed on
the disc on the shaft and the amplitude of the introduced torque oscillation is Γc = 0.04 Nm.
The load unbalance as a realistic fault also leads to a rise in sideband amplitudes at fs ± fr.
These examples show that a monitoring strategy based on the spectral components fs ± fr
can be used efficiently for detection purposes. In all three cases, these components show a
considerable rise. However, this monitoring approach cannot distinguish between dynamic
eccentricity and load torque oscillations.
In the following, transient stator current signals are also considered. They are obtained during
motor startup between standstill and nominal supply frequency. The frequency sweep rate
is 10 Hz per second i.e. the startup takes 5 seconds. For the following analysis, the transient
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between fs = 10 Hz and 48 Hz is extracted. The PSD of a healthy and faulty transient signal are
displayed in Fig. 9. This example illustrates that classic spectral estimation is not appropriate
for transient signal analysis. The broad peak due to the time-varying supply frequency masks
all other phenomena. The faulty and healthy case cannot be distinguished.

4.3 Stator Current Instantaneous Frequency Analysis
In this section, instantaneous frequency analysis will be applied to the stator current signals.
The original signal has been lowpass filtered and downsampled to 200 Hz in order to remove
high frequency content before time-frequency analysis. Only the information in a frequency
range around the fundamental is conserved.
First, a transient stator current IF is shown in Fig. 10 for the healthy case and with a load torque
oscillation Γc = 0.5 Nm. When load torque oscillations are present, the IF oscillations increase.
The oscillation frequency is approximately half the supply frequency which corresponds to
the shaft rotational frequency fr.
For further analysis, the IF spectrogram can be employed. The spectrogram is a time-
frequency signal analysis based on sliding short time Fourier transforms. More information
can be found in Boashash (2003) Flandrin (1999). The two spectrograms depicted in Fig. 11
analyze the stator current IF during a motor startup with a small oscillation of Γc = 0.22 Nm
and 10% average load. Besides the strong DC level at 0 Hz in the spectrogram, time varying
components can already be noticed in the healthy case (a). They correspond to the supply
frequency fs(t) and its second harmonic. Comparing the spectrogram of the healthy IF to
the one with load torque oscillations (b), a fault-related component at fr(t) becomes clearly
visible. More information about IF analysis can be found in Blödt (2006).

4.4 Pseudo Wigner Distribution of Stator Current
The previously considered transient signals are also analyzed with the PWD. Figure 12 shows
an example of the stator current PWD during a motor startup. Comparing the healthy case
to 0.22 Nm load torque oscillations, the characteristic interference signature becomes visible
around the time-varying fundamental frequency. Since the fault frequency is also time vari-
able, the sideband location and their oscillation frequency depend on time Blödt et al. (2005).
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Fig. 12. PWD of transient stator current in healthy case and with load torque oscillation, 10%
average load.
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Fig. 13. Detail of stator current PWD with 40% dynamic eccentricity (B) and 0.14 Nm load
torque oscillation (A) at small average load

It is thereafter verified if dynamic eccentricity and load torque oscillations can be distin-
guished through the stator current PWD. The stator current PWDs with dynamic eccentricity
and with 0.14 Nm load torque oscillation are shown in Fig. 13 for 10% average load. The char-
acteristic fault signature is visible in both cases at fs ± fr/2 = 37.5 Hz and 62.5 Hz. The phase
shift between the upper and lower sideband seems closer to zero with eccentricity whereas
with torque oscillations, it is closer to π. Anyhow, it is difficult to determine the exact value
from a visual analysis. However, the phase difference between the upper and lower sidebands
can be automatically extracted from the PWD (see Blödt, Regnier & Faucher (2006)). The result
is about 125◦ with load torque oscillations and around 90◦ with dynamic eccentricity. These
values differ from the theoretical ones (180◦ and 0◦ respectively) but this can be explained
with load torque oscillations occurring as a consequence of dynamic eccentricity. A detailed
discussion can be found in Blödt, Regnier & Faucher (2006). However, the phase shifts are
sufficient to distinguish the two faults.

5. Detection of shaft misalignment in electric winches

5.1 Problem statement
Electric winches are widely used in industrial handling systems such has cranes, overhead
cranes or hoisting gears. As described in Fig. 14, they are usually composed of an induction
machine driving a drum through gears. Different faults can occur on such systems, leading
to performance, reliability, and safety deterioration. A usual fault is the misalignment be-
tween the induction machine and the drum, generally due to strong radial forces applied to
the drum by the handled load. Theoretical and experimental studies (see for example Xu &
Marangoni (1994a;b)) show that such misalignments produce mechanical phenomena, which
lead to torque oscillations and dynamic airgap eccentricity in the induction machine. It has
been shown in section 2 that such phenomena generate amplitude and phase modulations in
the supply currents of the machine. The goal of this part is then to apply to these currents
some of the signal processing tools presented in section 3 in order to detect a mechanical mis-
alignment in the system. Therefore, this part is organized as follows : section 5.2 describes
more precisely the fault and the necessary signal processing tools, and experimental results
are finally presented in section 5.3.
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Fig. 14. Schematic representation of an electric winch.

5.2 Misalignment detection by stator current analysis
5.2.1 Shaft misalignment
Shaft misalignment is a frequent fault in rotating machinery, for which the shafts of the driv-
ing and the driven parts are not in the same centerline. The most general misalignment is a
combination of angular misalignement (shaft centerlines do meet, but are not parallel) and
offset misalignement (shaft centerlines are parallel, but do not meet). This type of fault gener-
ates reaction forces and torques in the coupling, and finally torque oscillations and dynamic
airgap eccentricity in the driving machine. Moreover, these mechanical phenomena appears
at even harmonics of the rotational frequencies of the driven parts Xu & Marangoni (1994a) Xu
& Marangoni (1994b) Sekhar & Prabhu (1995) Goodwin (1989). For example, in the case of a
misalignment of the winch shafts described in Fig. 14, torque oscillations and dynamic eccen-
tricity are generated at even harmonics of the rotational frequencies of the induction machine,
the gearbox and also the drum.
The theoretical model developed in sections 2.1 and 2.2 describes how mechanical phenomena
are "seen" by an induction machine sign in its supply currents. More precisely, it has been
shown that torque oscillations cause phase modulation of the stator current components (see
Eq. (13)), while airgap eccentricity causes amplitude modulation (see Eq. (21)).
Therefore, in the case of a shaft misalignment in a system similar to Fig. 14, amplitude and
phase modulations appear in the supply currents of the induction machine, and these modu-
lations have frequencies equal to even harmonics of the rotational frequencies of the driving
machine, the gearbox and the drum. Finally, the modulations generated by the drum are much
more easy to detect since its rotational frequency is generally much lower than the supply and
rotational frequencies of the machine fs and fr. In the following, only such low frequency
modulations will be detected.

5.2.2 Shaft misalignment detection
The previous section has described that it should be possible to detect a shaft misalignment in
an electric winch by analyzing its supply currents. Indeed, one only has to detect a significant
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Fig. 15. Stator current analysis method for shaft misalignment detection.

increase in the amplitude and phase modulations of their fundamental component. A sim-
ple possibility is to analyze the variations of its instantaneous amplitude and instantaneous
frequency, defined in part 3. These quantities can be easily real-time estimated as shown in
A. Reilly & Boashash (1994), and Fig. 15 briefly describes the principle of this approach.
First of all, one of the stator currents is filtered by a bandpass filter in order to obtain the funda-
mental component only, without any other component. The filter used in this application has
a passband only situated in the positive frequency domain around + fs with fs = 45.05 Hz (see
the transfer function in Fig. 15) in order to directly obtain the analytical part of the analyzed
signal, as explained in A. Reilly & Boashash (1994). The transfer function H( f ) of this filter is
therefore not hermitian (H( f ) 6= H∗(− f )), and its impulse response is complex-valued. This
particularity is not problematic concerning the real-time implementation of this filter, since its
finite impulse response only needs twice as many coefficients as a classical real-valued finite
impulse response filter. Finally, the output of this filter is a complex-valued monocomponent
signal z(t) which represents the analytical part of the supply current fundamental component.
In a second time, the modulus and the phase derivative of this complex signal lead to the in-
stantaneous amplitude and frequency to estimate. Once their mean value substracted, these
quantities are called amplitude modulation function (AMF) and frequency modulation func-
tion (FMF). They correspond to instantaneous amplitude and frequency variations of the cur-
rent fundamental component, and contain the modulations which have to be detected. Finally,
power spectral densities of the AMF and FMF are therefore estimated in order to detect and
identify such modulations.

5.3 Experimental results
5.3.1 Test bench and operating conditions
A test bench has been designed by the CETIM (French CEntre Technique des Industries Mé-
caniques) in order to simulate different types of faults occuring in industrial handling systems
Sieg-Zieba & Tructin (2008). It is composed of two 22 kW Potain electric winches, and one ca-
ble winding up from one winch to the other through a pulley as shown in Fig. 16.
The two winches are constituted as shown in Fig. 14, and the winch A is controlled through
an inverter as a driving winch, while the winch B is only used to apply a predetermined
mechanical load. The winch A is equipped with current probes in order to measure the stator
currents of its induction machine. Moreover, an angular misalignment can be obtained on the
same winch by inserting a shim with a slope between the motor flange and the drum bearing
housing, thus creating an angle of 0.75◦ while the tolerance of the coupling is 0.5◦.
During the experiments, the signals were recorded during 80 s at a sampling frequency of
25 kHz under stationary working conditions with and without misalignment. The constant
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Fig. 17. Power spectral density of the AMF with (-) and without (- -) misalignment.

mechanical load applied by the winch B was 2000 daN, and the rotational frequency reference
value of the induction machine of the winch A was fr = 23 Hz. These conditions resulted in
a fundamental supply frequency of fs = 45.05 Hz, and a drum rotational frequency of frd =
0.29 Hz.

5.3.2 Results
Experimental results presented in this section have been obtained by applying the method de-
veloped in section 5.2 to a supply current measured under the operating conditions described
in the previous section. The proposed method leads to the estimation of the AMF and FMF of
the stator current fundamental component, and the performance of this method is illustrated
by the power spectral densities of these two functions. Low-frequency spectral contents of the
AMF and FMF are respectively represented in Fig. 17 and 18. The power spectral densities
obtained without any misalignment are in dashed line, while they are in solid line in case of
misalignment.
As expected, amplitude and frequency modulations strongly increase in the low-frequency
range when a shaft misalignment occurs, and more precisely at even harmonics of the drum
rotational frequency (see arrows in Fig. 17 and 18 around 2 × frd = 0.58 Hz and 4 × frd =
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Fig. 18. Power spectral density of the FMF with (-) and without (- -) misalignment.

1.16 Hz). These results clearly show that a potential misalignment in an electric winch can be
detected by analyzing its supply currents.
Furthermore, a simple and efficient misalignment detector can be derived from AMF and FMF
power spectral densities. For example, the power increase of AMF and FMF in a frequency
band corresponding to the expected fault can easily be estimated from these quantities by
integration. In the present case, the power of these two modulation functions between 0.25 Hz
and 1.25 Hz (a frequency band containing 2 × frd and 4 × frd) increases of about 80% (for
AMF) and 120% (for FMF) when a misalignment occurs. Finally, it can be noted that such a
detector can be easily real-time implemented since it is based on real-time operations only (see
Fig. 15).

5.4 Conclusion
This section has shown that a shaft misalignment in an electric winch can be detected by
analyzing its supply currents. Experimental results confirm that a misalignment generates
additional amplitude and frequency modulations in stator currents. These phenomena can
be easily detected and characterized by analyzing the spectral content of amplitude and fre-
quency modulation functions of the stator current fundamental component. For example,
Fig. 17 and 18 show that these additional modulations occur at even harmonics of the drum
rotational frequency, i.e. in a very low-frequency range. Finally, a simple and efficient real-
time detector has been proposed, based on the integration of the power spectral densities of
the AMF and FMF.

6. Detection of single point bearing defects

The following section considers the detection of single point bearing defects in induction mo-
tors. Bearing faults are the most frequent faults in electric motors (41%) according to an IEEE
motor reliability study for large motors above 200 HP IEEE Motor reliability working group
(1985b), followed by stator (37%) and rotor faults (10%). Therefore, their detection is of great
concern. First, some general information about bearing geometry and characteristic frequen-
cies will be given. Then, a theoretical study of bearing fault effects on the stator current is
presented (see Blödt, Granjon, Raison & Rostaing (2008)). Finally, experimental results illus-
trate and validate the theoretical approach.



6.1 Bearing Fault Types
This paper considers rolling-element bearings with a geometry shown in Fig. 19. The bearing
consists mainly of the outer and inner raceway, the balls and the cage which assures equidis-
tance between the balls. The number of balls is denoted Nb, their diameter is Db and the pitch
or cage diameter is Dc. The point of contact between a ball and the raceway is characterized
by the contact angle β.
Bearing faults can be categorized into distributed and localized defects Tandon & Choud-
hury (1997) Stack et al. (2004b). Distributed defects affect a whole region and are difficult to
characterize by distinct frequencies. In contrast, single-point defects are localized and can be
classified according to the affected element:

• outer raceway defect

• inner raceway defect

• ball defect

A single point defect could be imagined as a small hole, a pit or a missing piece of material on
the corresponding element. Only these are considered in the following.

6.2 Characteristic Fault Frequencies
With each type of bearing fault, a characteristic fault frequency fc can be associated. This
frequency is equivalent to the periodicity by which an anomaly appears due to the existence
of the fault. Imagining for example a hole on the outer raceway: as the rolling elements move
over the defect, they are regularly in contact with the hole which produces an effect on the
machine at a given frequency.
The characteristic frequencies are functions of the bearing geometry and the mechanical rotor
frequency fr. A detailed calculation of these frequencies can be found in Li et al. (2000). For
the three considered fault types, fc takes the following expressions:

Outer raceway: fo =
Nb
2

fr

(
1− Db

Dc
cos β

)
(35)

Inner raceway: fi =
Nb
2

fr

(
1 +

Db
Dc

cos β

)
(36)

Ball: fb =
Dc

Db
fr

(
1−

D2
b

D2
c

cos2 β

)
(37)

It has been statistically shown in Schiltz (1990) that the vibration frequencies can be approxi-
mated for most bearings with between six and twelve balls by :

fo = 0.4 Nb fr (38)

fi = 0.6 Nb fr (39)

6.3 Short Literature Survey on Bearing Fault Detection by Stator Current Analysis
Vibration measurement is traditionally used to detect bearing defects. Analytical models de-
scribing the vibration response of bearing with single point defects can be found in Tandon
& Choudhury (1997) MacFadden & Smith (1984) Wang & Kootsookos (1998). The most often
quoted model studying the influence of bearing damage on the induction machine’s stator
current was proposed by R. R. Schoen et al. in Schoen et al. (1995). The authors consider the
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Fig. 19. Geometry of a rolling-element bearing.

generation of rotating eccentricities at bearing fault characteristic frequencies fc which leads
to periodical changes in the machine inductances. This should produce additional frequencies
fbf in the stator current given by:

fbf = | fs ± k fc| (40)

where fs is the electrical stator supply frequency and k = 1,2,3, . . . .
Stack examines in Stack et al. (2004b) single point defects and generalized roughness. In Stack
et al. (2004a), the stator current is analyzed using parametric spectrum analysis such as autore-
gressive modelling. Neural network techniques and the wavelet transform are used in Eren
et al. (2004) for bearing fault detection. In the following, a detailed theoretical study will be
conducted to analyze the physical effects of bearing faults on the induction machine and the
stator current. This will yield additional stator current frequencies with respect to the existing
model and will give insight on the modulation type.

6.4 Theoretical Study of Single Point Bearing Defects
Two physical effects are considered in the theoretical study when the single point defect comes
into contact with another bearing element:

1. the introduction of a radial movement of the rotor center,

2. the apparition of load torque variations.

The method used to study influence of the rotor displacement on the stator current is again
based on the MMF (magnetomotive force) and permeance wave approach (see section 2). The
following model is based on several simplifying assumptions. First, load zone effects in the
bearing are not considered. The fault impact on the airgap length is considered by a series of
Dirac generalized functions. In reality, the fault generates other pulse shapes, but this alters
only the harmonic amplitudes. Since this modeling approach focusses on the frequency com-
binations and modulation types and not on exact amplitudes, this assumption is reasonable.
The calculation of the airgap magnetic field does not take into account higher order space and
time harmonics for the sake of simplicity. However, the calculated modulation effects affect
higher harmonics in the same way as the fundamental. As before, higher order armature
reactions are also neglected.
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6.4.1 Airgap Length Variations
The first step in the theoretical analysis is the determination of the airgap length g as a function
of time t and angular position θ in the stator reference frame. The radial rotor movement
causes the airgap length to vary as a function of the defect, which is always considered as a
hole or a point of missing material in the corresponding bearing element.

6.4.1.1 Outer Race Defect
Without loss of generality, the outer race defect can be assumed to be located at the angular
position θ = 0. When there is no contact between a ball and the defect, the rotor is perfectly
centered. In this case, the airgap length g is supposed to take the constant value g0, neglecting
rotor and stator slotting effects. On the contrary, every t = k/ fo (with k integer), the contact
between a ball and the defect leads to a small movement of the rotor center in the stator
reference frame (see Fig. 20). In this case, the airgap length can be approximated by g0(1−
eo cosθ), where eo is the relative degree of eccentricity. In order to model the fault impact on
the airgap length as a function of time, a series of Dirac generalized functions can then be used
as it is common in models for vibration analysis MacFadden & Smith (1984).
These considerations lead to the following expression for the airgap length:

go (θ, t) = g0

[
1− eo cos (θ)

+∞

∑
k=−∞

δ

(
t− k

fo

)]
(41)

where eo is the relative degree of eccentricity introduced by the outer race defect. This
equation can be interpreted as a temporary static eccentricity of the rotor, appearing only
at t = k/ fo. The function go(θ, t) is represented in Fig. 21 for θ = 0 as an example.

6.4.1.2 Inner Race Defect
In this case, the situation is slightly different from the outer race defect. The fault occurs at
the instants t = k/ fi. As the defect is located on the inner race, the angular position of the
minimal airgap length moves with respect to the stator reference frame as the rotor turns at
the angular frequency ωr (see Fig. 22). Between two contacts with the defect, the defect itself
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Fig. 21. Airgap length g and permeance Λ in the presence of an outer bearing raceway defect
for θ = 0.

has moved by an angle described by:

∆θi = ωr∆t =
ωr

fi
(42)

Hence, equation (41) becomes:

gi (θ, t) = g0

[
1− ei

+∞

∑
k=−∞

cos (θ + k∆θi)δ

(
t− k

fi

)]
(43)

where ei is the relative degree of eccentricity introduced by the inner race defect.
This equation can be simplified for further calculations by extracting the cosine-term of the
sum so that the series of Dirac generalized functions may be later developed into a Fourier
series. One fundamental property of the Dirac generalized function is given by the following
equation Max & Lacoume (2000):

h (k) · δ
(

t− k
fi

)
= h (t fi) · δ

(
t− k

fi

)
(44)

This formula becomes obvious when one considers that δ (t− k/ fi) always equals 0, except
for t = k/ fi. After combining (44), (43) and (42), the airgap length becomes:

gi (θ, t) = g0

[
1− ei cos (θ + ωrt)

+∞

∑
k=−∞

δ

(
t− k

fi

)]
(45)

6.4.1.3 Ball Defect
In presence of ball defect, the defect location moves in a similar way as the inner raceway fault.
The fault causes an anomaly on the airgap length at the instants t = k/ fb. The angular position
of minimal airgap length changes in function of the cage rotational frequency. Actually, the
balls are all fixed in the cage which rotates at the fundamental cage frequency ωcage, given by
Li et al. (2000):

ωcage =
1
2

ωr

(
1− Db

Dc
cos β

)
(46)

The angle ∆θb by which the fault location has moved between two fault impacts becomes:

∆θb = ωcage∆t =
ωcage

fb
(47)
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Fig. 22. Radial rotor movement due to an inner bearing raceway defect.

By analogy with (45), the expression of airgap length in presence of a ball defect becomes:

gb (θ, t) = g0

[
1− eb cos

(
θ + ωcaget

) +∞

∑
k=−∞

δ

(
t− k

fb

)]
(48)

where eb is the relative degree of eccentricity introduced by the ball defect.

6.4.1.4 Generalization
In order to simplify the following considerations, equations (41), (45) and (48) can be com-
bined in a generalized expression for the airgap length g in presence of a bearing fault:

g (θ, t) = g0

[
1− ecos

(
θ + ψ (t)

) +∞

∑
k=−∞

δ

(
t− k

fc

)]
(49)

where fc is the characteristic bearing fault frequency given by (35), (36) or (37), and ψ (t) is
defined as follows:

ψ (t) =


0 for an outer race defect
ωrt for an inner race defect
ωcaget for a ball defect

(50)

6.4.2 Airgap Permeance
The airgap permeance Λ is proportional to the inverse of the airgap length g and is defined as
follows:

Λ =
µ

g
(51)

where µ = µrµ0 is the magnetic permeability of the airgap. In the case of a bearing fault, the
permeance becomes with (49):

Λ(θ, t) = Λ0
1[

1− ecos
(
θ + ψ (t)

) +∞
∑

k=−∞
δ
(

t− k
fc

)] (52)



where Λ0 = µ/g0. The relationship between airgap length g(θ, t) and airgap permeance Λ(θ, t)
is illustrated on Fig. 21 at the position θ = 0 for an outer raceway defect.
Firstly, in order to simplify this expression, the fraction 1/(1− x) is approximated for small
airgap variations by the first order term of its series development:

1
1− x

= 1 + x + x2 + x3 + . . . for |x| < 1

≈ 1 + x
(53)

The condition |x| < 1 is always satisfied because the degree of eccentricity verifies |e| < 1 in
order to avoid contact between rotor and stator.
Secondly, the series of Dirac generalized functions is expressed as a complex Fourier series
development Max & Lacoume (2000):

+∞

∑
k=−∞

δ

(
t− k

fc

)
=

+∞

∑
k=−∞

cke−j2πk fct

= c0 + 2
+∞

∑
k=1

ck cos (2πk fct)

(54)

with the Fourier series coefficients ck = fc ∀k.
Equations (52), (53) and (54) can be combined into a simplified expression for the airgap per-
meance wave:

Λ(θ, t) ≈ Λ0

{
1 + ec0 cos

(
θ + ψ (t)

)
+ e

+∞

∑
k=1

ck cos
(
θ + ψ (t) + kωct

)
+ e

+∞

∑
k=1

ck cos
(
θ + ψ (t)− kωct

)}
(55)

6.4.3 Airgap Flux Density
The total fundamental MMF wave Ftot is assumed:

Ftot(θ, t) = F cos(pθ −ωst + ϕ) (56)

Multiplication of (55) and (56) leads to the expression of the flux density distribution Btot(θ, t):

Btot (θ, t) = Ftot(θ, t) ·Λ(θ, t)
= FΛ0 cos (pθ −ωst + ϕ)

+
∞

∑
k=0

Bk

[
cos
(
(p± 1)θ ± ψ (t)± kωct−ωst + ϕ

)] (57)

where Bk are the amplitudes of the fault-related flux density waves. The notation ± is used to
write all possible frequency combinations in a compact form.



Equation (57) clearly shows the influence of the rotor displacement caused by the bearing fault
on the flux density. In addition to the fundamental sine wave (term B0), a multitude of fault-
related sine waves appear in the airgap. These supplementary waves have p ± 1 pole pairs
and a frequency content fecc given by:

fecc =
1

2π

(
± dψ (t)

dt
± kωc −ωs

)
(58)

6.4.4 Stator Current
The additional flux density components according to (57) are equivalent to an additional mag-
netic flux Φ(θ, t). By considering the realization of the winding and the geometry of the ma-
chine, the additional flux Φ(t) in each stator phase can be obtained. If the stator voltages
are imposed, the time varying flux causes additional components in the motor stator current
according to the stator voltage equation for the phase m:

Vm(t) = Rs Im(t) +
dΦm(t)

dt
(59)

The frequency content of the flux in each phase is supposed to be equal to the frequency
content of the airgap field according to (58). Under the hypothesis of imposed stator voltages,
the stator current in each phase is given by the derivative of the corresponding flux. This leads
to the following expression for the stator current Im(t) with ωr supposed constant:

Im(t) =
∞

∑
k=0

Ik cos
[
± ψ (t)± kωct−ωst + ϕm

]
(60)

It becomes thus obvious, that the radial rotor movement due to the bearing fault results in
additional frequencies in the stator current. With the three fault types, these frequencies are
obtained from (50) and (60):

Outer race defect: fecc or = fs ± k fo (61)

Inner race defect: fecc ir = fs ± fr ± k fi (62)

Ball defect: fecc ball = fs ± fcage ± k fb (63)

where k = 1,2,3, . . . . In terms of signal processing, it can be noticed that the effect of the fault
related rotor movement on the stator current is an amplitude modulation of the fundamental
sine wave, due to the effect of the modified permeance on the fundamental MMF wave.

6.4.5 Load torque oscillations
In this section, the second considered effect of a bearing fault on the machine is studied. Imag-
ining for example a hole in the outer race: each time a ball passes in a hole, a mechanical re-
sistance will appear when the ball tries to leave the hole. The consequence is a small increase
of the load torque at each contact between the defect and another bearing element. The bear-
ing fault related torque variations appear at the previously mentioned characteristic vibration
frequencies fc (see section 6.2) as they are both of same origin: a contact between the defect
and another element.
The effect of load torque oscillations on the stator current has already been studied in section
2.1. The torque oscillations resulting from single point bearing defects will result in the same
stator current phase modulations as described in equation (13). Note that the fault character-
istic frequency fc will be take values depending on the fault type defined in section 6.2.



Table 1. Summary of bearing fault related frequencies in the stator current spectrum
Eccentricity Torque oscillations

Outer raceway fs ± k fo fs ± k fo
Inner raceway fs ± fr ± k fi fs ± k fi

Ball defect fs ± fcage ± k fb fs ± k fb

(a) outer raceway defect (b) inner raceway defect

Fig. 23. Photo of bearings with single point defects

6.5 Summary
The results from the preceding theoretical study enlarge the existing model of the effects of
bearing faults on stator current. The frequencies that can be found when the stator current
PSD is analyzed, are resumed in Table 1.

6.6 Experimental Results
6.6.1 Description of Experimental Setup
The experimental tests were carried out on a test rig with a standard 1.1 kW, 2-pole pair, Y-
coupled induction motor. A DC-machine was used to simulate different load levels. In order
to reduce harmonic content in the supply voltage, the induction motor is directly fed by a
synchronous generator (100 kVA) working as a generator. Measured quantities are the three
line currents, the stator voltages, motor speed, torque and two vibration signals issued from
piezoelectric accelerometers mounted on the stator core. Data are sampled at 16 kHz and
processed using Matlab R©.
Two classes of faulty bearings (NSK 6205) are available. Firstly, new bearings have been dam-
aged artificially to produce defects on the outer and inner raceway. The defects consist of
holes that have been drilled axially through the raceways (see Fig. 23). Secondly, bearings
with realistic damage were tested, issued from industrial maintenance. The faulty bearings
are mounted at the load-end of the induction machine.
The characteristic vibration frequencies take the following values at no-load operation: outer
raceway frequency fo = 89.6 Hz, inner raceway frequency fi = 135.4 Hz, ball frequency fb =
58.8 Hz. The contact angle has been assumed to be β = 0.

6.6.2 Outer Raceway Defect
The defect on the outer raceway has already been experimentally studied in Schoen et al.
(1995), so that it will be discussed very shortly. During the tests, the characteristic vibration
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Fig. 24. Stator current spectrum of loaded machine with outer raceway defect.

frequency and its multiples were clearly visible on the vibration spectrum of the machine.
There also appeared torque oscillations at the characteristic vibration frequencies.
The current spectrum shows a characteristic component at 125 Hz which corresponds to the
frequency combination | fs− 2 fo| (see Fig. 24). It is interesting to note, that the same frequency
combination appeared in Bonaldi et al. (2002) where a bearing with an outer race defect was
tested experimentally.

6.6.3 Inner Raceway Defect
In a first step, the vibration signal is analyzed. A logarithmic plot of the vibration spectrum
with a damaged bearing in comparison with the healthy machine condition is shown in Fig.
25. The characteristic frequency of the inner raceway defect fi and its multiples (e.g. 2 fi) are
the components with the largest magnitude. Multiple tests with different load levels permit-
ted to observe slight variations of the characteristic vibration frequency according to equation
(36). Additional components due to other mechanical effects e.g. the cage rotational frequency
(≈ 10 Hz) and a general rise of the vibration level can also be noticed on the vibration spec-
trum.
A spectral analysis of the measured load torque is shown in Fig. 26. The characteristic fault
frequency fi clearly appears on the torque spectrum with an amplitude of +15 dB in com-
parison to the healthy case. This validates the proposed theoretical approach which assumes
torque variations at the characteristic frequency as a consequence of the bearing fault. Higher
harmonics of fi can also be observed. In addition to the mentioned components, other fre-
quencies appear in the torque spectrum at e.g. 110 and 115 Hz, but they have no direct link to
a predicted characteristic frequency.
The stator current spectrum (see Fig. 27) shows, on the one hand, a rise of eccentricity related
components. The frequency components at 5 fs + fr and 7 fs − fr are already present in the
spectrum of the healthy machine due to an inherent level of dynamic eccentricity. The fault
related eccentricity increases these components according to (62) (with k=0). The component
at fs − fr + 2 fi does not appear in the healthy spectrum but in case of the fault as it is the
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Fig. 25. Vibration spectrum of unloaded machine with inner raceway defect.
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Fig. 26. Torque spectrum of unloaded machine with inner raceway defect.
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Fig. 27. Stator current spectrum of unloaded machine with inner raceway defect.
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Fig. 28. Torque spectrum of loaded machine with realistic bearing fault.

consequence of the particular form of eccentricity introduced by the inner raceway fault. An-
other fault related component at 2 fi can be noticed. The obtained results for this fault validate
therefore the precedent theoretical development.

6.6.4 Realistic bearing fault
After artificially produced single point bearing defects, tests were conducted with industrially
used bearings that have been changed due to a problem for with an unknown fault type. The
tested bearing shows only small effects on the vibration spectrum such as a small peak at 33
Hz and a slight general increase of the vibration level for frequencies higher than 150 Hz.
Characteristic vibration frequencies could not have been clearly identified.
However, the measured machine torque shows considerable changes in comparison to the
healthy case (see Fig. 28). At nominal load level, torque oscillations of great amplitude can be
identified at 33 Hz and its multiples.
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Fig. 29. Stator current spectrum of loaded machine with realistic bearing fault.
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Fig. 30. Spectrum of stator current instantaneous frequency, loaded machine with realistic
bearing fault.

These torque variations have a considerable effect on the stator current. In Fig. 29, the stator
current spectrum with the faulty bearing can be compared to the healthy machine. Sideband
components to the fundamental appear at 50± k · 33 Hz. This is the characteristic signature
on the spectrum of a phase modulation of the fundamental component (see (24)).
In order to analyze the phase modulation, the stator current IF is computed. In Fig. 30, the
power spectral density (PSD) of the stator current IF is shown for the healthy and faulty case.
The significant difference is a component at 33 Hz in the faulty case. The spectral peak at
this frequency indicates IF oscillations at 33 Hz. These IF oscillations are a sign of phase
modulations present in the faulty case. Considering the measured torque oscillations with the
faulty bearing (see Fig. 28), it can be concluded that the observed phase modulation is the
consequence of the recognized torque oscillations as it has been developed in section 2.1.

6.6.5 Summary of Experimental Results
The previous experimental results have validated several theoretical aspects. The produced
single point defects showed the expected effects on the vibration spectrum i.e. the apparition
of the characteristic vibration frequencies. In case of inner and outer race faults, the measured



load torque showed variations at these frequencies confirming that the assumption of bearing
fault-related torque oscillations is valid. Furthermore, significant effects could be observed in
the stator current spectrum i.e. the apparition of some of the theoretically predicted frequen-
cies.
Moreover, low frequency load torque oscillations have been observed with a realistic bearing
fault. The resulting stator current shows phase modulations which validates the second part
of the theoretical study.
However, it must be noted that the amplitudes of the additional stator current frequencies
may depend heavily on the considered bearing and the load condition. Therefore, a system-
atic bearing monitoring using only the stator current is difficult to realize. Nevertheless, in
some cases, the stator current showed more significant effects than the vibration data which
suggests that a combined approach using vibration and current analysis could be reasonable.

7. Conclusion

This work has investigated mechanical fault detection in induction motors by stator current
monitoring. Through a theoretical approach, stator current models were derived that contain
different modulations, AM and PM, caused by eccentricity and torque oscillations. Three sig-
nal processing methods suitable for stator current analysis and fault detection were described:
classical spectrum analysis, suitable only for stationary signals, instantaneous frequency anal-
ysis and the Wigner distributions as time-frequency analysis methods that can also be applied
with varying supply frequency as can be found with variable-speed drives. It was also demon-
strated that the Wigner distribution is a tool for distinguishing eccentricity related faults from
faults causing load torque oscillation.
The theoretically derived fault signatures are then validated in experimental setups: first, dy-
namic eccentricity and load torque oscillations are investigated under laboratory conditions.
Then, the detection of misalignment faults in electric winches was presented as an example in
a realistic drive system.
As a particular class of fault, bearing faults were also considered. A theoretical development
has shown that these faults lead to particular forms of eccentricity and load torque oscillations.
After deriving the fault frequencies and modulation types, faulty bearing were examined un-
der laboratory conditions. The obtained results are examples that bearing faults can lead to
detectable changes in the stator current.
It can be concluded, that stator current monitoring is a suitable tool for mechanical fault de-
tection in electrical drives. Stator current analysis is certainly more complex than traditional
vibration signal analysis due to the fact that the vibration signals are physically closer to the
fault. However, it offers advantages over vibration analysis in terms of cost and possibilities
of application.

8. References

A. Reilly, G. F. & Boashash, B. (1994). Analytic signal generation ? tips and traps, IEEE Trans.
on Signal Processing 42(11): 3241–3245.

Albrecht, P. F., Appiairius, J. C., Cornell, E. P., Houghtaling, D. W., McCoy, R. M., Owen, E. L.
& Sharma, D. K. (1987). Assessment of the reliability of motors in utility applications
- part 1, EC-2(3): 396–406.



Auger, F., Flandrin, P., Gonçalvès, P. & Lemoine, O. (1995/1996). Time-frequency toolbox,
CNRS / Rice University, France.
URL: http://tftb.nongnu.org

Blödt, M. (2006). Condition Monitoring of Mechanical Faults in Variable Speed Induction Motor
Drives - Application of Stator Current Time-Frequency Analysis and Parameter Estimation
(available online), PhD thesis, Institut National Polytechnique de Toulouse, Toulouse,
France.

Blödt, M., Bonacci, D., Regnier, J., Chabert, M. & Faucher, J. (2008). On-line monitoring of
mechanical faults in variable-speed induction motor drives using the wigner distri-
bution, IEEE Transactions on Industrial Electronics 55(2).

Blödt, M., Chabert, M., Regnier, J. & Faucher, J. (2006). Mechanical load fault detection in
induction motors by stator current time-frequency analysis, IEEE Transactions on In-
dustry Applications 42(6): 1454 – 1463.

Blödt, M., Chabert, M., Regnier, J., Faucher, J. & Dagues, B. (2005). Detection of mechanical
load faults in induction motors at variable speed using stator current time-frequency
analysis, Proc. IEEE International Symposium on Diagnostics for Electric Machines, Power
Electronics and Drives (SDEMPED ’05), Vienna, Austria.

Blödt, M., Granjon, P., Raison, B. & Rostaing, G. (2008). Models for bearing damage detection
in induction motors using stator current monitoring, IEEE Transactions on Industrial
Electronics 55(4): 1813 – 1822.

Blödt, M., Regnier, J. & Faucher, J. (2006). Distinguishing load torque oscillations and eccen-
tricity faults in induction motors using stator current wigner distribution, Proc. IEEE
Industry Applications Society Annual Meeting 2006, Tampa, Florida.

Boashash, B. (2003). Time Frequency Signal Analysis and Processing - A Comprehensive Reference,
first edn, Elsevier, Oxford, UK.

Bonaldi, E. L., da Silva, L. E. B., Lambert-Torres, G., Oliveira, L. E. L. & Assuncao, F. O. (2002).
Using rough sets techniques as a fault diagnosis classifier for induction motors, Proc.
IEEE IECON’02, Vol. 4, Sevilla, Spain, pp. 3383–3388.

Cameron, J. R. & Thomson, W. T. (1986). Vibration and current monitoring for detecting airgap
eccentricities in large induction motors, IEE Proceedings 133(3): 155–163.

Dorrell, D. G. (1996). Calculation of unbalanced magnetic pull in small cage induction mo-
tors with skewed rotors and dynamic rotor eccentricity, IEEE Transactions on Energy
Conversion 11(3): 483–488.

Dorrell, D. G., Thomson, W. T. & Roach, S. (1997). Analysis of airgap flux, current, and vibra-
tion signals as a function of the combination of static and dynamic airgap eccentricity
in 3-phase induction motors, IEEE Transactions on Industry Applications 33(1): 24–34.

Engelmann, R. H. & Middendorf, W. H. (1995). Handbook of Electric Motors, Marcel Dekker,
New York.

Eren, L., Karahoca, A. & Devaney, M. J. (2004). Neural network based motor bearing fault de-
tection, Proc. Instrumentation and Measurement Technology Conference (IMTC ’04), Vol. 3,
Como, Italy, pp. 1657–1660.

Flandrin, P. (1999). Time-Frequency/Time-Scale Analysis, Academic Press, San Diego.
Goodwin, M. J. (1989). Dynamics of rotor-bearing systems, Unwin Hyman, London.
Heller, B. & Hamata, V. (1977). Harmonic Field Effects in Induction Machines, Elsevier, Amster-

dam, Netherlands.
IEEE motor reliability working group (1985a). Report on large motor reliability survey of

industrial and commercial installations, IA-21(4): 853–872.



IEEE Motor reliability working group (1985b). Report on large motor reliability survey of
industrial and commercial installations, IA-21(4): 853–872.

Kay, S. M. (1988). Modern Spectral Estimation: Theory and Application, Prentice Hall, Englewood
Cliffs, New Jersey.

Li, B., Chow, M., Tipsuwan, Y. & Hung, J. (2000). Neural-network based motor rolling bearing
fault diagnosis, 47(5): 1060–1069.

MacFadden, P. D. & Smith, J. D. (1984). Model for the vibration produced by a single point
defect in a rolling element bearing, Journal of Sound and Vibration 96(1): 69–82.

Max, J. & Lacoume, J.-L. (2000). Méthodes et techniques de traitement du signal, 5th edn, Dunod,
Paris.

Mecklenbräuker, W. & Hlawatsch, F. (eds) (1997). The Wigner Distribution — Theory and Appli-
cations in Signal Processing, Elsevier, Amsterdam (The Netherlands).

Schiltz, R. L. (1990). Forcing frequency identification of rolling element bearings, Sound and
Vibration pp. 16–19.

Schoen, R. R., Habetler, T. G., Kamran, F. & Bartheld, R. (1995). Motor bearing damage de-
tection using stator current monitoring, IEEE Transactions on Industry Applications
31(6): 1274–1279.

Sekhar, A. S. & Prabhu, B. S. (1995). Effects of coupling misalignment on vibrations of rotating
machinery, Journal of Sound and Vibrations 185(4): 655–671.

Sieg-Zieba, S. & Tructin, E. (2008). Handling systems condition monitoring using vibrations
and motor current, Proc. Condition Monitoring, Edinburgh, Scotland.

Stack, J., Habetler, T. G. & Harley, R. G. (2004a). Bearing fault detection via autoregressive
stator current modeling, IEEE Transactions on Industry Applications 40(3): 740–747.

Stack, J., Habetler, T. G. & Harley, R. G. (2004b). Fault classification and fault signature produc-
tion for rolling element bearings in electric machines, IEEE Transactions on Industry
Applications 40(3): 735–739.

Tandon, N. & Choudhury, A. (1997). An analytical model for the prediction of the vibration
response of rolling element bearings due to a localized defect, Journal of Sound and
Vibration 205(3): 275–292.

Timár, P. L. (1989). Noise and Vibration of Electrical Machines, Elsevier, North-Holland.
Wang, Y. F. & Kootsookos, P. J. (1998). Modeling of low shaft speed bearing faults for condition

monitoring, Mechanical Systems and Signal Processing 12(3): 415–426.
Xu, M. & Marangoni, R. D. (1994a). Vibration analysis of a motor-flexible coupling-rotor sys-

tem subject to misalignment and unbalance, part i: theoretical model and analysis,
Journal of Sound and Vibrations 176(5): 663–679.

Xu, M. & Marangoni, R. D. (1994b). Vibration analysis of a motor-flexible coupling-rotor sys-
tem subject to misalignment and unbalance, part ii: experimental validation, Journal
of Sound and Vibrations 176(5): 681–691.

Yang, S. J. (1981). Low-noise electrical motors, Clarendon Press, Oxford.


	Introduction
	General Introduction
	Motor Current Signature Analysis

	Theoretical study of mechanical fault effects on stator current
	Load torque oscillations
	Effect on Rotor and Stator MMF
	Effect on Flux Density and Stator Current

	Airgap Eccentricity

	Signal processing tools for fault detection and diagnosis
	Power Spectral Density
	Definition
	Application

	Instantaneous Frequency
	Definition
	Application

	Wigner Distribution
	Definition
	Application

	Illustration with Synthesized Signals
	Summary

	Detection of dynamic airgap eccentricity and load torque oscillations under laboratory conditions
	Experimental Setup
	Stator Current Spectrum Analysis
	Stator Current Instantaneous Frequency Analysis
	Pseudo Wigner Distribution of Stator Current

	Detection of shaft misalignment in electric winches
	Problem statement
	Misalignment detection by stator current analysis
	Shaft misalignment
	Shaft misalignment detection

	Experimental results
	Test bench and operating conditions
	Results

	Conclusion

	Detection of single point bearing defects
	Bearing Fault Types
	Characteristic Fault Frequencies
	Short Literature Survey on Bearing Fault Detection by Stator Current Analysis
	Theoretical Study of Single Point Bearing Defects
	Airgap Length Variations
	Outer Race Defect
	Inner Race Defect
	Ball Defect
	Generalization

	Airgap Permeance
	Airgap Flux Density
	Stator Current
	Load torque oscillations

	Summary
	Experimental Results
	Description of Experimental Setup
	Outer Raceway Defect
	Inner Raceway Defect
	Realistic bearing fault
	Summary of Experimental Results


	Conclusion
	References

