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1 Introduction

Let B = {Bt , t ≥ 0} be an m−dimensional fractional Brownian motion (fBm
in short) of Hurst parameter H ∈ (0, 1). That is, B is a centered Gaussian
process with the covariance function E(Bi

sB
j
t ) = RH(s, t)δij , where

RH(s, t) =
1
2
(
t2H + s2H − |t− s|2H

)
. (1)

If H = 1
2 , B is a Brownian motion. From (1), it follows that E

(
|Bt −Bs|2

)
=

m|t − s|H so the process B has α-Hölder continuous paths for all α ∈ (0,H).
We refer to [11] and references therein for further information about fBm and
stochastic integration with respect to this process.

In this article we fix 1
2 < H < 1 and we consider the solution {Xt, t ∈ [0,T ]}

of the following stochastic differential equation on Rd

Xi
t = xi

0 +
m∑

j=1

∫ t

0

σij(Xs)dBj
s +

∫ t

0

bi(Xs)ds , t ∈ [0,T ] , (2)

i = 1, . . . , d, where x0 ∈ Rd is the initial value of the process X.
∗Partially supported by the NSF Grant DMS 0604207
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The stochastic integral in (2) is a path-wise Riemann-Stieltjes integral (see
Young [15]). Suppose that σ has bounded partial derivatives which are Hölder
continuous of order λ > 1

H −1, and b is Lipschitz, then there is a unique solution
to Equation (2) which has Hölder continuous trajectories of order H − ε, for
any ε > 0. This result has been proved by Lyons in [6] in the case b = 0, using
the p-variation norm. The theory of rough paths analysis introduced by Lyons
in [7] was used by Coutin and Qian to prove an existence and uniqueness result
for Equation (2) in the case H ∈ ( 1

4 ,
1
2 ) (see [2]).

The Riemann-Stieltjes integral appearing in Equation (2) can be expressed
as a Lebesgue integral using a fractional integration by parts formula (see
Zähle [16]). Using this formula for the Riemann-Stieltjes integral, Nualart and
Răşcanu have established in [12] the existence of a unique solution for a class of
general differential equations that includes (2).

The main purpose of our work is to study the regularity of the solution
to Equation (2) in the sense of Malliavin calculus, and to show the absolute
continuity for the law of Xt for t > 0, assuming an ellipticitity condition on the
coefficient σ. First we establish a general result on the regularity with respect
to the driven function for the solution of deterministic equations, using the
techniques of fractional calculus developed in [12]. This allows us to deduce the
differentiability of the solution to Equation (2) in the direction of the Cameron-
Martin space. These results are related to those proved by Lyons and Dong Li in
[8] on the smoothness of Itô maps for such equations in term of Fréchet-Gâteaux
differentiability.

The regularity results obtained here have been used in a recent paper by Bau-
doin and Hairer [1] to show the smoothness of the density under a hypoellipticity
Hörmander’s condition. This result requires also the existence of moments for
the iterated derivatives, which has been established in [4]. In [9], the existence
of a density for the solution of a one-dimensional equation is shown.

The paper is organized as follows. In Section 2 we establish the Fréchet
differentiability with respect to the input function for deterministic differential
equations driven by Hölder continuous functons. Section 3 is devoted to analyze
stochastic differential equations driven by a fBm with Hurst parameter H ∈
( 1
2 , 1), the main result being the differentiability of the solution in the directions

of the Cameron-Martin space. In Section 4 we prove the absolute continuity of
the solution under ellipticity assumptions. The proofs of some technical results
are given in the Appendix.

2 Deterministic differential equations driven by
rough functions

We first introduce some preliminaries. Given a measurable function f : [0,T ] →
Rd and α ∈ (0, 1

2 ), we will make use of the notation

∆α
t (f) = |f(t)|+

∫ t

0

|f(t)− f(s)|
|t− s|α+1

ds.
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We denote by Wα
1 (0, T ; Rd) the space of measurable functions f : [0,T ] → Rd

such that
‖f‖α,1 := sup

t∈[0,T ]

∆α
t (f) <∞ .

For any 0 < λ ≤ 1, denote by Cλ(0, T ; Rd) the space of λ-Hölder continuous
functions f : [0,T ] → Rd, equipped with the norm

‖f‖λ := ‖f‖∞ + sup
0≤s<t≤T

|f(t)− f(s)|
(t− s)λ

,

where ‖f‖∞ := supt∈[0,T ] |f(t)|. We denote by W 1−α
2 (0, T ; Rm) the space of

measurable functions g : [0,T ] → Rm such that

‖g‖1−α,2 := sup
0≤s<t≤T

(
|g(t)− g(s)|
(t− s)1−α

+
∫ t

s

|g(y)− g(s)|
(y − s)2−α

dy

)
<∞ .

Clearly for any ε > 0 such that 1− α+ ε ≤ 1 we have

Cα+ε(0,T ; Rd) ⊂Wα
1 (0, T ; Rd)

and
C1−α+ε(0, T ; Rm) ⊂W 1−α

2 (0, T ; Rm) ⊂ C1−α(0, T ; Rm) .

For d = m = 1 we simply write Wα
1 (0, T ), Cλ(0,T ), and W 1−α

2 (0, T ).

Suppose that g ∈ W 1−α
2 (0, T ) and f ∈ Wα

1 (0, T ). In [16], Zähle introduced
the generalized Stieltjes integral∫ T

0

ftdgt = (−1)α

∫ T

0

(
Dα

0+f
)
(t)
(
D1−α

T− gT−
)
(t)dt, (3)

defined in terms of the fractional derivative operators

Dα
0+f(x) =

1
Γ(1− α)

(
f(x)
xα

+ α

∫ x

0

f(x)− f(y)
(x− y)α+1

dy

)
,

and

Dα
T−gT−(x) =

(−1)α

Γ(1− α)

(
g(x)− g(T )
(T − x)α

+ α

∫ T

x

g(x)− g(y)
(x− y)α+1

dy

)
.

We refer to [13] for further details on fractional operators. Zähle proved that if
f ∈ Cα+ε(0, T ), then this integral coincides with the Riemann-Stieltjes integral,
which exists by the results of Young (see [15]). Using formula (3), Nualart and
Răşcanu have derived the following estimates (see [12], Propositions 4.1 and
4.3).

Proposition 1 Fix 0 < α < 1
2 . Given two functions g ∈ W 1−α

2 (0, T ) and
f ∈Wα

1 (0, T ), we denote Gt(f) =
∫ t

0
fsdgs and Ft(f) =

∫ t

0
fsds.
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(i) The function G(f) belongs to C1−α(0, T ) and we have

∆α
t (G(f)) ≤ cα,T ‖g‖1−α,2

∫ t

0

[
(t− r)−2α + t−α

]
∆α

r (f)dr , (4)

‖G(f)‖1−α ≤ cα,T ‖g‖1−α,2 ‖f‖α,1 , (5)

with a constant cα,T which depends only on α and T .

(ii) The function F (f) belongs to C1(0, T ) and moreover

∆α
t (F (f)) ≤ cα,T

∫ t

0

|fs|
(t− s)α

ds , (6)

‖F (f)‖1 ≤ cT ‖f‖∞ , (7)

with a constant cα,T which depends only on α and T .

We first study deterministic differential equations driven by Hölder con-
tinuous functions of order stricktly larger that 1

2 . Fix 0 < α < 1
2 . Let

g ∈ W 1−α
2 (0, T ; Rm) and consider the deterministic differential equation on

Rd

xi
t = xi

0 +
∫ t

0

bi(xs)ds+
m∑

j=1

∫ t

0

σij(xs)dgj
s , t ∈ [0,T ] , (8)

i = 1, . . . , d, where x0 ∈ Rd.
For any integer k ≥ 1 we denote by Ck

b the class of real-valued functions on
Rd which are k times continuously differentiable with bounded partial deriva-
tives up to the kth order. We also denote by C∞b the class of infinitely differen-
tiable functions on Rd with bounded partial derivatives of all orders.

In [12], the authors prove that Equation (8) has a unique solution x ∈
Wα

1 (0, T ; Rd) which is moreover (1 − α)-Hölder continuous, if bi, σij ∈ C1
b and

the partial derivatives of σij are Hölder contiuous of order λ > 1
H − 1.

In this section we will show the differentiability of the mapping g → x(g).
For a function ϕ from Rp to R, we set ∂kϕ = ∂ϕ

∂xx
.

The first setp is to establish the existence and uniqueness of a solution for
linear equations that are generalizations of (8). The iterated derivatives of the
solution of Equation (8) satisfy these kind of equations.

Proposition 2 Fix g ∈W 1−α
2 (0, T ; Rm) and consider the following linear equa-

tion:

yt = wt +
∫ t

0

Bsysds+
∫ t

0

Ssysdgs , (9)

where w ∈ C1−α(0, T ; Rd), S ∈ C1−α(0, T ; Rd×d×m) and B ∈ C1−α(0, T ; Rd×d).
There exists a unique solution y ∈ C1−α(0, T ; Rd) of Equation (9) which satisfies

‖y‖α,1 ≤ c1 ‖w‖α,1 exp
(
c2 ‖g‖

1
1−2α

1−α,2 (‖B‖∞ + ‖S‖1−α)
)
, (10)

where c1 and c2 depend only on α and T .
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Proof. The existence and uniqueness of a solution can be established fol-
lowing the same lines as in the proof of Theorem 5.1 of [12]. Let us prove the
estimate (10). Set FB

t =
∫ t

0
Bsysds and GS

t =
∫ t

0
Ssysdgs. Using (4) we have

∆α
t (GS) ≤ cα,T ‖g‖1−α,2

∫ t

0

[
(t− s)−2α + s−α

]
∆α

s (Sy)ds

≤ cα,T ‖g‖1−α,2

(∫ t

0

[
(t− s)−2α + s−α

]
|ys|

×
(∫ s

0

‖S‖1−α(s− r)1−α

(s− r)α+1
dr

)
ds

+ ‖S‖1−α

∫ t

0

[
(t− s)−2α + s−α

]
∆α

s (y)ds

)

≤ cα,T ‖g‖1−α,2 ‖S‖1−α

∫ t

0

[
(t− s)−2α + s−α

]
∆α

s (y)ds,

where the constant cα,T may vary from line to line but depends only on α and
T . On the other hand, using (6) we get

∆α
t (FB) ≤ cα,T ‖B‖∞

∫ t

0

|ys|
(t− s)α

ds .

Then the above inequalities yield that

∆α
t (y) ≤ ‖w‖α,∞ + cα,T (Λα(g) ‖S‖1−α + ‖B‖∞ )

∫ t

0

[
(t− s)−2α + s−α

]
hsds .

Applying a Gronwall-type Lemma (see Lemma 7.6 in [12]) we derive the estimate
(10).

The following technical lemma is a basic ingredient in the proof of the Fréchet
differentiability of the mapping x → x(g), where x is the solution of Equation
(8).

Lemma 3 Let x be the solution of (8). Assume bi, σij ∈ C3
b . Then the mapping

F : W 1−α
2 (0, T ; Rm)×Wα

1 (0, T ; Rd) →Wα
1 (0, T ; Rd)

defined by

(h, x) 7→ F (h, x) := x− x0 −
∫ ·

0

b(xs)ds−
∫ ·

0

σ(xs)d(gs + hs) (11)

is Fréchet differentiable and we have for any (h, x) ∈W 1−α
2 (0, T ; Rm)×Wα

1 (0, T ; Rd),
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k ∈W 1−α
2 (0, T ; Rm), v ∈Wα

1 (0, T ; Rd), and i = 1, . . . , d

D1F (h, x)(k)i
t = −

m∑
j=1

∫ t

0

σij(xs)dkj
s , (12)

D2F (h, x)(v)i
t = vi

t −
d∑

k=1

∫ t

0

∂kb(xs)vk
sds−

d∑
k=1

m∑
j=1

∫ t

0

∂kσ
ij(xs)vk

sd(g
j
s + hj

s).

(13)

Proof. For (h, x) and (h̃, x̃) in W 1−α
2 (0, T ; Rm)×Wα

1 (0, T ; Rd) we have

F (h, x)t − F (h̃, x̃)t = xt − x̃t +
∫ t

0

(b(xs)− b(x̃s)) ds

−
∫ t

0

(σ(xs)− σ(x̃s)) (gs + hs)−
∫ t

0

σ(x̃s)(hs − h̃s).

Using Proposition 1 one easily deduce that∥∥∥F (h, x)− F (h̃, x̃)
∥∥∥

α,1
≤ (1 + cα,T ‖∂b‖∞) ‖x− x̃‖α,∞

+ cα,T ‖g + h‖1−α,2 ‖σ(x)− σ(x̃)‖α,∞

+ cα,T ‖σ(x)‖α,∞

∥∥∥h− h̃
∥∥∥

1−α,2
.

Since σ is a Lipschitz function we have ‖σ(x)‖α,1 ≤ |σ(0)|+‖∂σ‖∞‖x‖α,1. Using
the fact that for any x1, x2, x3 and x4:

|σ(x1)− σ(x2)− σ(x3) + σ(x4)| ≤ ‖∂σ‖∞ |x1 − x2 − x3 + x4|
+ ‖∂2σ‖∞|x1 − x3| (|x1 − x2|+ |x3 − x4|) ,

it follows that

‖σ(x)− σ(x̃)‖α,1 ≤
(
‖∂σ‖∞ + ‖∂2σ‖∞ (‖x‖α,1 + ‖x̃‖α,1)

)
‖x− x̃‖α,1 .

Consequently, there exists a constant C depending on α, T and the coefficients
b and σ such that∥∥∥F (h, x)− F (h̃, x̃)

∥∥∥
α,1

≤ (1 + C (‖x‖α,1 + ‖x̃‖α,1) ‖g + h‖1−α,2) ‖x− x̃‖α,1

+C(1 + ‖x‖α,1) ‖h− h̃‖1−α,2,

which implies that F is continuous.
We now prove that it is differentiable with respect to x. Thanks to Propo-

sition 1, it holds that D2F defined in (13) satisfies

‖D2F (h, x)(v)‖α,1 ≤ c ‖v‖α,1 ,
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and, therefore, it is continuous. Let us now check that for any h ∈W 1−α
2 (0, T ; Rm),

D2F is the Fréchet derivative (with respect to x) of (h, x) 7→ F (h, x). We have

F (h, x+ v)t − F (h, x)t −D2F (h, x)(v)t

=
∫ t

0

(b(xs)− b(xs + vs) + ∂b(xs)vs) ds

+
∫ t

0

(σ(xs)− σ(xs + vs) + ∂σ(xs)vs) d(gs + hs). (14)

By the mean value theorem we can write

|b(xs)− b(xs + vs) + ∂b(xs)vs| ≤ ‖∂2b‖∞|vs|2

and thanks to (7) one easily remarks that∥∥∥∥∫ ·

0

(b(xs)− b(xs + vs) + ∂b(xs)vs) ds
∥∥∥∥

1

≤ cα,T ‖∂2b‖∞ ‖v‖2
α,1 .

Similar computations for the second term of the right hand side of (14) yield∥∥∥∥∫ ·

0

(σ(xs)− σ(xs + vs) + ∂σ(xs)vs) d(gs + hs)
∥∥∥∥

α,1

≤ cα,T

(
‖∂2σ‖∞ + ‖∂3σ‖∞‖x‖α,1

)
‖g + h‖1−α,2 ‖v‖

2
α,1 .

Thus it follows that

‖F (h, x+ v)− F (h, x)−D2F (h, x)(v)‖α,1 ≤ C ‖g + h‖1−α,2 ‖v‖2
α,1 ,

where C depends on α, T , ‖∂2b‖∞, ‖∂2σ‖∞, ‖∂3σ‖∞ and ‖x‖α,1. Then (h, x) 7→
F (h, x) is Fréchet differentiable with respect to x and (13) holds. Similar argu-
ments give the differentiability with respect to h and Formula (12).

Proposition 4 Let x be the solution of Equation (8). Assume bi, σij ∈ C3
b .

The mapping g → x(g) from W 1−α
2 (0, T ; Rm) into Wα

1 (0, T ; Rd) is Fréchet
differentiable and for any h ∈ W 1−α

2 (0, T ; Rm) its derivative in the direction h
is given by

Dhx
i
t =

m∑
j=1

∫ t

0

Φij
t (s)dhj

s , (15)

where for i = 1, . . . , d, j = 1, . . . ,m, 0 ≤ s ≤ t ≤ T , s 7→ Φij
t (s) satisfies:

Φij
t (s) = σij(xs) +

d∑
k=1

∫ t

s

∂kb
i(xu)Φk,j

u (s)du+
d∑

k=1

m∑
l=1

∫ t

s

∂kσ
il(xu)Φk,j

u (s)dgl
u ,

(16)
and Φij

t (s) = 0 if s > t.
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Proof. We apply the implicit function theorem to the functional F defined
by (11) in Lemma 3. For any (h, x), F (h, x) belongs to C1−α(0, T ; Rd) thanks to
Proposition 1. Since x is a solution of (8), one remarks that F (0, x) = 0. Thanks
to Lemma 3, the mapping F is Fréchet differentiable with first partial derivatives
with respect to h given by (12) and the first partial derivative with respect to x is
given by (13). We have to check that D2F (0, x) is a linear homeomorphism from
Wα

1 (0, T ; Rd) to C1−α(0, T ; Rd). By the open map theorem it suffices to show
that it is bijective and continuous. We apply Proposition 2 with t 7→ Bt = ∂b(xt)
and t 7→ St = ∂σ(xt) which are (1− α)- Hölder continuous. Thus

D2F (0, x)(v)i
t = vi

t −
d∑

k=1

∫ t

0

∂kb
i(xs)vk

sds−
d∑

k=1

m∑
j=1

∫ t

0

∂kσ
ij(xs)vk

sdg
j
s

is a one-to-one mapping thanks to the existence and uniqueness result of Equa-
tion (8).

Now we fix w ∈ C1−α(0, T ; Rd). Thanks to Proposition 2, there exists
v ∈ Wα

1 (0, T ; Rd) such that w = D2F (0, x)(v), hence D2F (0, x) is onto and
then it is a bijection. We already know that it is continuous. By the implicit
function theorem g 7→ x(g) is continuously Fréchet differentiable and

Dx = −D2F (0, x)−1 ◦D1F (0, x) . (17)

So for any k ∈W 1−α
2 (0, T ; Rm), −Dx(k) is the unique solution of the differential

equation

wi
t = −Dx(k)i

t +
d∑

k=1

∫ t

0

∂kb(xs)Dx(k)k
sds+

d∑
k=1

m∑
j=1

∫ t

0

∂kσ
ij(xs)Dx(k)k

sdg
j
s

with wi
t = D1F (0, x)(k)t = −

∑m
j=1

∫ t

0
σij(xs)dkj

s.
On the other hand, from Equation (16) we get

m∑
j=1

∫ t

0

Φij
t (s)dhj

s =
m∑

j=1

∫ t

0

σij(xs)dhj
s +

m∑
j=1

∫ t

0

(
d∑

k=1

∫ t

s

∂kb
i(xu)Φk,j

u (s)du

)
ds

+
m∑

j=1

∫ t

0

(
d∑

k=1

m∑
l=1

∫ t

s

∂kσ
il(xu)Φk,j

u (s)dgl
u

)
dhj

s . (18)

Using Fubini’s theorem we can invert the order of integration in the second
integral of the right hand side of (18). The treatment of the third integral is
more involved. Thanks to Proposition 9 in the Appendix, ∂kσ

il(xu)Φk,j
u (s) is

Hölder continuous of order 1−α in both variables (u, s). As a consequence, we
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can apply Fubini’s theorem for the Riemann-Stieltjes integrals and we obtain

m∑
j=1

∫ t

0

Φij
t (s)dhj

s =
m∑

j=1

∫ t

0

σij(xs)dhj
s +

d∑
k=1

∫ t

0

∂kb
i(xu)

 m∑
j=1

∫ u

0

Φk,j
u (s)ds

 du

+
d∑

k=1

m∑
l=1

∫ t

0

∂kσ
il(xu)

 m∑
j=1

∫ u

0

Φk,j
u (s)dhj

s

 dgl
u .

Hence t 7→
∑m

j=1

∫ t

0
Φij

t (s)dhj
s is a solution of Equation (16) and by uniqueness

we get the result.
If the coefficients b and σ are infinitely differentiable, the mapping g →

x(g) is actually infinitely Fréchet differentiable. The proof of this result uses
essentially the same arguments as in the case of first order derivatives, but the
notation is more involved. We state here the result and present the proof in the
Appendix.

Proposition 5 Assume bi, σij ∈ C∞b . Then the solution x to Equation (8) is
infinitely continuously Fréchet differentiable. Moreover, for any (h1, . . . , hn) ∈
(W 1−α

1 (0, T ; Rm))n, it holds that

Dh1,...,hn
xi

t =
m∑

i1,...,in=1

∫ t

0

. . .

∫ t

0

Φi,i1,...,in

t (r1, . . . , rn)dhi1
1 (r1)dhi2

2 (r2) . . . dhin
n (rn) ,

(19)
where the functions Φi,i1,...,in

t (r1, . . . , rn) for t ≥ r1 ∨ . . . ∨ rn are defined recur-
sively by

Φi,i1,...,in

t (r1, . . . , rn) =
n∑

i0=1

Ai
i0,i1,...,i0−1,i0+1,...,in

(ri0 , r1, . . . , , ri0−1, ri0+1, . . . , rn)

+
∫ t

r1∨...∨rn

Bi
i1,...,in

(r1, . . . , rn; s)ds

+
m∑

l=1

∫ t

r1∨...∨rn

Ai
l,i1,...,in

(r1, . . . , rn; s)dgl
s , (20)

and 0 if t < r1 ∨ . . . ∨ rn. We have denoted

Ai
j,i1,...,in

(r1, . . . , rn; s) =
∑

I1∪...∪Iν

d∑
k1,...,kν=1

∂k1 . . . ∂kν
σij(xs)

× Φk1,i(I1)
s (r(I1)) . . .Φkν ,i(Iν)

s (r(Iν)),

Bi
i1,...,in

(r1, . . . , rn; s) =
∑

I1∪...∪Iν

d∑
k1,...,kν=1

∂k1 . . . ∂kν
bi(xs)

× Φk1,i(I1)
s (r(I1)) . . .Φkν ,i(Iν)

s (r(Iν)) ,

where the first sums are extended to the set of all partitions I1 ∪ . . . ∪ Iν of
{1, . . . , n}.
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3 Stochastic Differential Equations driven by a
fractional Brownian motion

Let Ω = C0([0, T ]; Rm) be the Banach space of continuous functions, null at time
0, equipped with the supremum norm. Fix H ∈ ( 1

2 , 1). Let P be the unique
probability measure on Ω such that the canonical process {Bt, t ∈ [0, T ]} is an
m-dimensional fractional Brownian motion with Hurst parameter H.

We denote by E the set of step functions on [0, T ] with values in Rm. Let
H be the Hilbert space defined as the closure of E with respect to the scalar
product

〈(
1[0,t1], . . . ,1[0,tm]

)
,
(
1[0,s1], . . . ,1[0,sm]

)〉
H =

m∑
i=1

RH(ti, si).

We recall that

RH(t, s) =
∫ t∧s

0

KH(t, r)KH(s, r)dr,

where KH(t, s) is the square integrable kernel defined by

KH(t, s) = cHs
1
2−H

∫ t

s

(u− s)H− 3
2uH− 1

2 du

for t > s, where cH =
√

H(2H−1)

β(2−2H,H− 1
2 )

and β denotes the Beta function. We put
KH(t, s) = 0 if t ≤ s.

The mapping
(
1[0,t1], ...,1[0,tm]

)
7→
∑m

i=1B
i
ti

can be extended to an isometry
between H and the Gaussian space H1(B) spanned by B. We denote this
isometry by ϕ 7→ B(ϕ).

We introduce the operator K∗
H : E → L2(0, T ; Rm) defined by:

K∗
H

((
1[0,t1], ...,1[0,tm]

))
= (KH(t1, .), ...,KH(tm, .)) .

For any ϕ,ψ ∈ E , 〈ϕ,ψ〉H = 〈K∗
Hϕ,K

∗
Hψ〉L2(0,T ;Rm) = E (B(ϕ)B(ψ)) and then

K∗
H provides an isometry between the Hilbert space H and a closed subspace of

L2(0, T ; Rm).
We denote KH : L2(0, T ; Rm) → HH := KH

(
L2(0, T ; Rm)

)
the operator

defined by

(KHh)(t) :=
∫ t

0

KH(t, s)h(s)ds .

The space HH is the fractional version of the Cameron-Martin space. In the
case of a classical Brownian motion, KH(t, s) = 1[0,t](s), K∗H is the identity map
on L2(0, T ; Rm), and HH is the space of continuous functions, vanishing at zero,
with a square integrable derivative.

We finally denote by RH = KH ◦ K∗H : H → HH the operator

RHϕ =
∫ ·

0

KH(·, s) (K∗Hϕ) (s)ds .

10



We remark that for any ϕ ∈ H, RHϕ is Hölder continuous of order H. Indeed,

(RHϕ)i (t) =
∫ T

0

(
K∗H1[0,t]

)i (s) (K∗Hϕ)i (s)ds = E
(
Bi

tB
i(ϕ)

)
,

and consequently∣∣∣(RHϕ)i (t)− (RHϕ)i (s)
∣∣∣ ≤ (E (|Bi

t −Bi
s|2
))1/2 ‖ϕ‖H ≤ ‖ϕ‖H |t− s|H .

Notice also that RH1[0,t] = RH(t, ·), and, as a consequence, HH is the Repro-
ducing Kernel Hilbert Space associated with the Gaussian process B.

The injection RH : H → Ω embeds H densely into Ω and for any ϕ ∈ Ω∗ ⊂
H we have

E
(
ei〈B,ϕ〉

)
= exp

(
−1

2
‖ϕ‖2

H

)
.

As a consequence, (Ω,H,P) is an abstract Wiener space in the sense of Gross.
Notice that the choices of the Hilbert space and its embedding into Ω are not
unique and in [3] the authors have made another (but equivalent) choice for the
underlying Hilbert space.

Let {Xt, t ∈ [0,T ]} be the solution of the stochastic differential equation (2),
and assume that the coefficients are infinitely differentiable which are bounded
together with all their derivatives. Fix 1−H < α < 1

2 . Then the trajectories
of the fractional Brownian motion belong almost surely to C1−α+ε(0, T ; Rm) ⊂
W 1−α

2 (0, T ; Rm) if ε < H+α−1. Therefore, by Proposition 5, the mapping ω 7→
X(ω) is infinitely Fréchet differentiable fromW 1−α

2 (0, T ; Rm) intoWα
1 (0, T ; Rd).

On the other hand, we have seen thatHH ⊂ CH(0, T ; Rm) ⊂W 1−α
2 (0, T ; Rm).

As a consequence, the following iterated derivatives exists

DRHϕ1,...,RHϕ1X
i
t =

d

dε1
· · · d

dεn
Xi

t(ω + ε1RHϕ1 + · · ·+ εnRHϕn)|ε1=···=εn=0,

for all ϕi ∈ H. In this way we have proved the following result.

Theorem 6 Let H > 1/2 and assume that bi, σij ∈ C3
b . Then the stochastic

process X solution of the stochastic differential equation (2) is almost surely
differentiable in the directions of the Cameron-Martin space. If bi, σij ∈ C∞b ,
then X is almost surely infinitely differentiable in the directions of the Cameron-
Martin space.

The iterated derivativeDRHϕ1,...,RHϕ1X
i
t coincides with

〈
DnXi

t , ϕ1 ⊗ · · · ⊗ ϕn

〉
H⊗ ,

where Dn is the iterated derivative in the Malliavin calculus sense. In fact, if F
is a smooth cylindrical random variable of the form

F = f(B(ϕ1), . . . , B(ϕm))

11



with f ∈ C∞b (Rm), ϕi ∈ H, then the Malliavin derivative DF is the H-valued
random variable defined by

〈DF, h〉H =
m∑

i=1

∂if(B(ϕ1), . . . , B(ϕm))〈ϕi, h〉H

=
d

dε
f (B(ϕ1) + ε〈ϕ1, h〉H , . . . , B(ϕm) + ε〈ϕm, h〉H)

∣∣∣∣
ε=0

,

and one can easily see that

B(ϕ1)(ω + εRHh) = B(ϕ1)(ω) + ε〈ϕ1, h〉H.

We recall here that Dk,p is the closure of the space of smooth and cylindrical
random variable with respect to the norm

‖F‖k,p =

E(|F |p) +
k∑

j=1

E(
∥∥DjF

∥∥p

H⊗j )

 1
p

,

and Dk,p
loc is the set of random variables F such that there exist a sequence

{(Ωn, Fn), n ≥ 1} such that Ωn ↑ Ω a.s, Fn ∈ Dk,p and F = Fn a.s. on Ωn.

By the results of Kusuoka (see [5], Theorem 5.2 or [10], Proposition 4.1.3),
Theorem 6 implies that Xi

t belongs to the space Dk,p
loc for all p > 1 and any

integer k.

Now we give the equations satisfied by the derivatives of the process X.

Proposition 7 If we denote (i1, . . . , in) ∈ {1, . . . ,m}n a multi-index, the n-
th derivative in the sense of Malliavin calculus satisfies the following linear
equation a.s.:

Di1,...,in
r1,...,rn

Xi
t =

n∑
i0=1

αi
i0,i1,...,i0−1,i0+1,...,in

(ri0 , r1, . . . , , ri0−1, ri0+1, . . . , rn)

+
∫ t

r1∨...∨rn

βi
i1,...,in

(r1, . . . , rn; s)ds

+
m∑

l=1

∫ t

r1∨...∨rn

αi
l,i1,...,in

(r1, . . . , rn; s)dBl
s , (21)

if t ≥ r1 ∨ . . . ∨ rn, and Di1,...,in
r1,...,rn

Xi
t = 0 otherwise. In the above equation, we

have denoted

αi
j,i1,...,in

(r1, . . . , rn; s) =
∑

I1∪...∪Iν

d∑
k1,...,kν=1

∂k1 . . . ∂kν
σij(Xs) D

i(I1)
r(I1)

Xk1
s . . . D

i(Iν)
r(Iν)X

kν
s ,

βi
i1,...,in

(r1, . . . , rn; s) =
∑

I1∪...∪Iν

d∑
k1,...,kν=1

∂k1 . . . ∂kν b
i(Xs) D

i(I1)
r(I1)

Xk1
s . . . D

i(Iν)
r(Iν)X

kν
s ,
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where the first sums are extended to the set of all partitions I1 ∪ . . . ∪ Iν of
{1, . . . , n} and for any subset K = {i1, . . . , iη} of {1, . . . , n}, we put Di(K)

r(K) the

derivative operator Di1,...,iη
ri1 ,...,riη

.

For the first order derivative, Equation (21) reads as follows: for i = 1, . . . , d,
j = 1, . . . ,m,

Dj
sX

i
t = σij(Xs)+

d∑
k=1

∫ t

s

∂kb
i(Xu)Dj

sX
k
udu+

d∑
k=1

m∑
l=1

∫ t

s

∂kσ
il(Xu)Dj

sX
k
udB

l
u ,

if s ≤ t and 0 if s > t.
Proof. We use the representation result on the deterministic equation given

by (19) in Proposition 5. For any h = (h1, . . . , hn) with hi ∈ H, we have

DRHh1,...,RHhn
Xi

t =
m∑

i1,...,in=1

∫ t

0

. . .

∫ t

0

Φi,i1,...,in

t (r1, . . . , rn)

×d(RHh1)i1(r1) · · · d(RHhn)in(rn). (22)

We denote K∗ ⊗n
H the map from H⊗n into

(
L2(0, T ; Rm)

)⊗n defined for ϕ ∈ H⊗n

by(
K∗ ⊗n

H ϕ
)
(s1, . . . , sn) =

∫ T

s1

. . .

∫ T

sn

ϕ(r1, . . . , rn)
∂KH

∂r1
(r1, s1) · · ·

∂KH

∂rn
(rn, sn)dr1 . . . drn .

It holds that

〈ϕ,ψ〉H⊗n =
∑

ξ∈{1,...,m}n

∫
[0,T ]n

(
K∗ ⊗n

H ϕ
)ξ

(s1, . . . , sn)
(
K∗ ⊗n

H ψ
)ξ

(s1, . . . , sn)ds1 . . . dsn .

Thanks to Step 3 in the proof Proposition 5, for any 1 ≤ k ≤ n,

sk 7→
∫

[0,t]k−1
Φi,i1,...,in

t (s1, ..., sk−1, sk, sk+1, . . . , sn)dhi1
1 (s1) · · · dh

ik−1
k−1 (sk−1)

belongs to C1−α(0, T ) and we can apply n times Lemma 11 from Appendix.
This yields that almost surely

DRHh1,...,RHhn
Xi

t =
m∑

i1,...,in=1

∫ t

0

. . .

∫ t

0

Φi,i1,...,in

t (r1, . . . , rn)
(∫ r1

0

∂KH

∂r1
(r1, u) (K∗Hh1)

i1 (u)du
)

× · · · ×
(∫ rn

0

∂KH

∂rn
(rn, u) (K∗Hh1)

in (u)du
)
dr1 · · · drn

=
m∑

i1,...,in=1

∫ T

0

· · ·
∫ T

0

(
K∗ ⊗n

H Φi
t

)i1,...,in (s1, . . . , sn)

×
n∏

l=1

(K∗Hhl)
il (si)ds1 . . . dsn

=
〈
Φi

t, h1 ⊗ ...⊗ hn

〉
⊗n ,

and the result is proved.
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4 Absolute continuity of the law of the solution

The fact that for H > 1
2 , the solution of Equation (8) belongs to the localized

domain of the Malliavin derivative operator D will imply the absolute continuity
of the law of Xt for all T > 0 under suitable nondegeneracy conditions.

Theorem 8 Let H > 1/2 and assume that bi, σij ∈ C3
b . Suppose that the

following nondegeneracy condition on the coefficient σ holds:
(H) The vector space spanned by

{(
σ1j(x0), . . . , σdj(x0)

)
, 1 ≤ j ≤ m

}
is Rd.

Then for any t > 0, the law of the random vector Xt is absolutely continuous
with respect to the Lebesgue measure on Rd.

Proof. We already know by Theorem 6 that Xi
t belongs to D1,2

loc for all
t ∈ [0, T ] and for i = 1, ..., d. Then, thanks to [10], Theorem 2.1.2, it suffices to
show that the Malliavin covariance matrix of Xt defined by

Qij
t =

〈
DXi

t , DX
j
t

〉
H

is invertible almost surely. We first deduce another expression for the matrix Qt.
We stress the fact that K∗H is an isometry between H and a closed subspace of
L2(0, T ; Rm). Let {en, n ≥ 1} be a complete orthonormal system in this closed
subspace. The elements fn = (K∗H)−1 (en) for a complete orthonormal system
of H. Then it holds almost surely that

DXi
t =

∑
n≥1

〈
DXi

t , fn

〉
H fn ,

and consequently

Qij
t =

∑
n≥1

〈
DXi

t , fn

〉
H

〈
DXj

t , fn

〉
H
.

Suppose now that the Malliavin covariance matrix is not almost surely invertible,
that is P(detQt = 0) > 0. Then there exists a vector v ∈ Rd, v 6= 0, such that
vTQtv = 0. Our aim is to prove that condition (H) cannot be satisfied. One
may write

vTQtv =
∑
n≥1

∣∣〈〈DXt, fn〉H , v〉Rd

∣∣2 .

From (22) it follows that 〈
DXi

t , fn

〉
H = DRHfn

Xi
t ,

and thanks to the representation (17), the directional derivative DRHfn
Xi

t sat-
isfies

DRHfnX
i
t =

(
D2F (0, X)−1 ◦D1F (0, X)

)
(RHfn)i

t .

It follows that

0 =
〈(
D2F (0, X)−1 ◦D1F (0, X)

)
(RHfn)t , v

〉
Rd .
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Since D2F (0, X)−1 is a linear homeomorphism, there exists v0 ∈ Rd, v0 6= 0,
such that

0 = 〈D1F (0, X)(RHfn)t , v0〉Rd =
d∑

i=1

 m∑
j=1

∫ t

0

σij(Xs)d(RHfn)j
s

 vi
0

=

〈
d∑

i=1

vi
0 σ

i(X)1[0,t], fn

〉
H

holds true for any n ≥ 1 (where σi denotes the ith row of the matrix σ). Then

0 =

∥∥∥∥∥
d∑

i=1

vi
0 σ

i(X)1[0,t]

∥∥∥∥∥
H

and this yields that for all j = 1, ...,m and s ∈ [0, t]

d∑
i=1

vi
0 σ

ij(Xs) = 0.

Taking s = 0 we get
∑d

i=1 v
i
0 σ

ij(x0) = 0 for all j = 1, ...,m and this contradicts
(H). Then the law of the solution of the stochastic differential equation (2) at
any time t > 0 is absolutely continuous with respect to the Lebesgue measure
on Rd.

5 Appendix

The next proposition provides the joint continuity property of the solution of
the equations similar to Equation (16) satisfied by the kernel of the derivative.

Proposition 9 Fix γ,B, S ∈ C1−α(0, T ) and g ∈W 1−α
2 (0, T ) and consider the

equation

ρt(s) = γ(s) +
∫ t

s

Buρu(s)du+
∫ t

s

Suρu(s)dgu (23)

if s ≤ t and ρt(s) = 0 if s > t. Then the solution is a Hölder continuous
function of order 1− α in both variables.

Proof. First notice that ‖ρ·(s)‖α,1 is uniformly bounded in s, by the esti-
mate (10). Hence, the function ρt(s) is Hölder continuous in t, uniformly in s
by (5) and (7). On the other hand, for s′ ≤ s ≤ t we have

ρt(s)− ρt(s′) = |w(s, s′) +
∫ t

s

Bu (ρu(s)− ρu(s′)) du

+
∫ t

s

Su (ρu(s)− ρu(s′)) dgu, (24)
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where
w(s, s′) = γ(s)− γ(s′) +

∫ s

s′
Buρu(s)du+

∫ s

s′
Suρu(s)dgu. (25)

Proposition 2 yields the estimate

sup
s∈[0,T ]

‖ρ·(s)‖α,1 ≤ c1 ‖γ‖α,1 exp
(
c2 ‖g‖

1
1−2α

1−α,2 ( ‖B‖∞ + ‖S‖1−α)
)
. (26)

Substituting (26) into (25) yields

|w(s, s′)| ≤ ‖γ‖1−α(s− s′)1−α + ‖B‖∞
(

sup
s
‖ρ·(s)‖α,1

)
(s− s′)

+ c‖S‖α,1 ‖g‖1−α,2

(
sup

s
‖ρ·(s)‖α,1

)
(s− s′)1−α

≤ c1 (s− s′)1−α . (27)

Then Proposition 2 applied to Equation (24) and the Estimate (27) imply that

‖ρ·(s)− ρ·(s′)‖α,1 ≤ c1 (s− s′)1−α exp
(
c2 ‖g‖

1
1−2α

1−α,2 ( ‖B‖∞ + ‖S‖1−α)
)
.

Therefore, ρt(s) is Hölder continuous in the variable s, uniformly in t. This
completes the proof of the proposition.

For the proof of Proposition 5 we need the following technical lemma.

Lemma 10 Suppose that we are given a mapping g 7→ vg from W 1−α
2 (0, T ; Rm)

to Wα
1 (0, T ; RM ) which is continuously Fréchet differentiable. Consider five

bounded differentiable functions a0, . . ., a4 from Rd to Rd×m×M , Rd×M , Rd×d,
Rd×m×M and Rd×m×d, respectively. We moreover assume that these functions
have bounded derivatives up to order two. Let y ∈Wα

1 (0, T ; Rd) be the solution
of the following equation

yt =
∫ t

0

a0(xg
r)v

g
rdkr+

∫ t

0

{a1(xg
r)v

g
r + a2(xg

r)yr} dr+
∫ t

0

{a3(xg
r)v

g
r + a4(xg

r)yr} dgr ,

(28)
where k ∈W 1−α

2 (0, T ; Rm) and xg is the unique solution of (8) which is already
continuously Fréchet differentiable.

Then g 7→ y is continuously Fréchet differentiable and the directional deriva-
tive in the direction h ∈W 1−α

2 (0, T ; Rm) is the unique solution of

Dhyt =
∫ t

0

{∂a0(xr)Dhxr vr + a0(xr)Dhvr} dkr +
∫ t

0

{a3(xr)vr + a4(xr)yr} dhr

+
∫ t

0

{∂a1(xr)Dhxr vr + a1(xr)Dhvr + ∂a2(xr)Dhxr yr + a2(xr)Dhyr} dr

+
∫ t

0

{∂a3(xr)Dhxr vr + a3(xr)Dhvr + ∂a4(xr)Dhxr yr + a4(xr)Dhyr} dgr .

(29)

16



Proof. We introduce the map

W 1−α
2 (0, T ; Rm)×Wα

1 (0, T ; Rd) → C1−α(0, T ; Rd) ⊂Wα
1 (0, T ; Rd)

(h, y) 7→ F (h, y)(t) := yt −
∫ t

0

a0(xg+h
r )vg+h

r dkr

−
∫ t

0

{
a1(xg+h

r )vg+h
r + a2(xg+h

r )yr

}
dr

−
∫ t

0

{
a3(xg+h

r )vg+h
r + a4(xg+h

r )yr

}
d(gr + hr) .

One has F (0, y) = 0 since y is the solution of (28). As in Lemma 3 we can show
that F is Fréchet differentiable and

D1F (0, y)t = −
∫ t

0

{∂a0(xr)Dx(h)r vr + a0(xr)Dv(h)r} dkr

−
∫ t

0

{a3(xr)vr + a4(xr)yr} dhr

−
∫ t

0

{∂a1(xr)Dx(h)r vr + a1(xr)Dv(h)r + ∂a2(xr)Dx(h)r yr} dr

−
∫ t

0

{∂a3(xr)Dx(h)r vr + a3(xr)Dv(h)r + ∂a4(xr)Dx(h)r yr} dgr

D2F (0, y)(z)t = zt −
∫ t

0

a4(xr)zrdgr −
∫ t

0

a2(xr)zrdr ,

for any z ∈ Wα
1 (0, T ; Rd). Then, using Proposition 2 and the same arguments

as in the proof of Proposition 4 we conclude that g 7→ y is continuously Fréchet
differentiable and it has a directional derivative in the direction h satisfying
(29).

Proof of Proposition 5. The proof of Proposition 5 is divided into several
steps. We begin by proving that x is infinitely Fréchet differentiable. Then we
show that Equation (20) has a unique solution and derive some of its properties.
Finally we prove that (19) holds.

Step 1 We begin by proving by induction that x is infinitely Fréchet continu-
ously differentiable. We introduce some notation in order to write the equations
satisfied by the higher order directional derivatives.

Let n ≥ 1 and for i = 1, . . . , n, hi = (h1
i , . . . , h

m
i ) ∈ W 1−α

2 (0, T ; Rm). For
any subset K = {ε1, . . . , εη} of {1, . . . , n}, we denote by Dj(K) the iterated
directional derivative

Dj(K)x = Dhε1 ,...,hεη
x = Dηx(hε1 , ..., hεη

),
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where Dη denotes the iterated Fréchet derivative of order η. Define for i =
1, ..., d and j = 1, ...,m

αij(h1, . . . , hn; s) =
∑

I1∪...∪Iν

d∑
k1,...,kν=1

∂k1 . . . ∂kνσ
ij(xs) Dj(I1)x

k1
s . . . Dj(Iν)x

kν
s ,

βi(h1, . . . , hn; s) =
∑

I1∪...∪Iν

d∑
k1,...,kν=1

∂k1 . . . ∂kν
bi(xs) Dj(I1)x

k1
s . . . Dj(Iν)x

kν
s ,

where the first sums are extended to the set of all partitions I1 ∪ . . . ∪ Iν of
{1, . . . , n}. The n-th iterated derivative satisfies the following linear equation:

Dh1,...,hnx
i
t =

n∑
j0=1

m∑
j=1

∫ t

0

αij(h1, . . . , hj0−1, hj0+1, . . . , hn; s)dhj
j0

(s)

+
∫ t

0

βi(h1, . . . , hn; s)ds+
m∑

j=1

∫ t

0

αij(h1, . . . , hn; s)dgj
s . (30)

for i = 1, . . . , n. Now we prove by induction that x is infinitely Fréchet dif-
ferentiable and (30) holds. The result is true for n = 1 thanks to Proposi-
tion 4. Suppose that these properties hold up to the index n. Observe that
αij(h1, . . . , hn; s) is equal to the term corresponding to ν = 1, namely

d∑
k=1

∂kσ
ij(xs)Dh1,...,hnx

k
s ,

plus a polynomial function on the derivatives ∂k1 . . . ∂kνσ
ij(xs) with ν ≥ 2, and

the functions Dj(I)xs, with card(I) ≤ n − 1. Therefore, we can apply Lemma
10 with y = Dh1,...,hn

x, v the vector function whose entries are the products
Dj(I1)x

k1
s . . . Dj(Iν)x

kν
s for all the partitions I1 ∪ . . . ∪ Iν with ν ≥ 2 and with

appropriate functions ai, i = 0, . . . , 4. This lemma yields that g 7→ Dh1,...,hn
x is

continuously Fréchet differentiable and the directional derivative of order n+ 1
is solution of (30) at the rank n+ 1.

Let us now prove by induction that the map (h1, . . . , hn) 7→ D(h1,...,hn)x is
multi-linear and continuous. By Proposition 4 this is true for n = 1. Suppose it
holds up to n−1, that is, for any subset {ε1, . . . , εn0} of {1, . . . , n} with n0 < n,
the maps (hε1 , . . . , hεn0

) 7→ Dhε1 ,...,hεn0
x are multi-linear and continuous. We

18



denote

wi(h1, . . . , hn; g)t =
n∑

j0=1

m∑
j=1

∫ t

0

αij(h1, . . . , hj0−1, hj0+1, . . . , hn; s)dhj
j0

(s)

+
∫ t

0

 ∑
I1∪...∪Iν

ν>1

d∑
k1,...,kν=1

∂k1 . . . ∂kν
bi(xs) Dj(I1)x

k1
s . . . Dj(Iν)x

kν
s

 ds

+
m∑

j=1

∫ t

0

 ∑
I1∪...∪Iν

ν>1

d∑
k1,...,kν=1

∂k1 . . . ∂kν
σi(xs) Dj(I1)x

k1
s . . . Dj(Iν)x

kν
s

dgj
s ,

and using (10) we have the following estimate

‖Dh1,...,hnx‖α,1 ≤ C ‖w‖α,1 ,

where the constant C do not depend on (h1, ..., hn). Using the induction hy-
pothesis, we easily deduce that for any i0 ∈ {1, . . . , n}

‖w‖α,1 ≤ Ch1,...,hi0−1,hi0+1,...,hn
‖hi0‖1−α,2 .

So the map hi0 7→ Dh1,...,hi0 ,...,hn
x. is continuous for any i0 ∈ {1, . . . , n}. This

map is clearly linear thanks to the induction hypothesis and the existence and
uniqueness result of Proposition 2.

It only remains to prove that g 7→ Dnx(g), from W 1−α
2 (0, T ; Rd) to the space

of multi-linear continuous applications on W 1−α
2 (0, T ; Rm), is continuous. We

proceed again by induction. We write the difference between the two equations
satisfied respectively by Dh1,...,hn

x(g) and Dh1,...,hn
x(g̃) (with b = 0 for reading

facilities)

Dh1,...,hn
x(g)t −Dh1,...,hn

x(g̃)t = w(h1, ..., hn; g)t − w(h1, ..., hn; g̃)t

+
d∑

k=1

m∑
j=1

∫ t

0

(
∂kσ

ij(x(g)s)− ∂kσ
ij(x(g̃)s)

)
Dh1,...,hnx(g̃)sdgs

+
d∑

k=1

m∑
j=1

∫ t

0

∂kσ
ij(x(g̃)s)Dh1,...,hn

x(g̃)sd(gs − g̃s)

+
d∑

k=1

m∑
j=1

∫ t

0

∂kσ
ij(x(g)s) (Dh1,...,hnx(g)s −Dh1,...,hnx(g̃)s) dgs ,

with w(h1, ..., hn; g) defined above. Using (10) and the induction hypothesis, we
deduce easily that the map g 7→ Dnx is continuous, and the map g 7→ x is n
times Fréchet differentiable.
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Step 2 Equation (20) can be written in the following way

Φi,i1,...,in

t (r1, . . . , rn) = γi,i1,...,in

t (r1, . . . , rn)

+
d∑

k1=1

∫ t

r1∨...∨rn

∂k1b
i(xs)Φi,i1,...,in

s (r1, . . . , rn)ds

+
d∑

k1=1

m∑
l=1

∫ t

r1∨...∨rn

∂k1σ
il(xs)Φi,i1,...,in

s (r1, . . . , rn)dgl
s ,

(31)

where

γi,i1,...,in

t (r1, . . . , rn) =
n∑

i0=1

Ai
i0,i1,...,i0−1,i0+1,...,in

(ri0 , r1, . . . , , ri0−1, ri0+1, . . . , rn)

+
∑

I1∪...∪Iν
ν≥2

d∑
k1,...,kν=1

m∑
j=1

∫ t

r1∨...∨rn

∂k1 . . . ∂kνσ
ij(xs) Φk1,i(I1)

s (r(I1)) . . .Φkν ,i(Iν)
s (r(Iν))dgj

s,

+
∑

I1∪...∪Iν
ν≥2

d∑
k1,...,kν=1

∫ t

r1∨...∨rn

∂k1 . . . ∂kν b
i(xs) Φk1,i(I1)

s (r(I1)) . . .Φkν ,i(Iν)
s (r(Iν))ds.

Notice that the function Φi,i1,...,in

t (r1, . . . , rn) is symmetric in (i1, r1), . . . , (in, rn)
for any t, i. As we did it for Equation (23) (see Proposition 9), we can show by
induction that there exists a unique solution of (31) which is Hölder continuous
of order 1− α in all its variables.

Step 3 Let us show Equation (19).We again proceed by induction. (19) is
true for n = 1 by (15). Assume that it is true up to the rank n − 1. For
any subset K = {i1, . . . , iν} of {1, . . . , n}, we denote |K| its cardinal and
dhK(r(K)) = dhi1(ri1) · · · dhiν (riν

). Using Fubini’s theorem (by the previous
step, the integrals are Riemann-Stieltjes ones) and the induction hypothesis we
have∫ t

0

{∫ t

0

. . .

∫ t

0

Bi
i1,...,in

(r1, . . . , rn; s)dhi1
1 (r1) · · · dhin

n (rn)
}
ds

=
∫ t

r1∨...∨rn

 ∑
I1∪...∪Iν

d∑
k1,...,kν=1

∂k1 . . . ∂kν b
i(xs)

(∫
[0,T ]|I1|

Φk1,i(I1)
s (r(I1))dhi(I1)(r(I1))

)
· · ·

· · · ×

(∫
[0,T ]|Iν |

Φkν ,i(Iν)
s (r(Iν))dhi(Iν)(r(Iν))

)}
ds

=
∫ t

r1∨...∨rn

 ∑
I1∪...∪Iν

d∑
k1,...,kν=1

∂k1 . . . ∂kν b
i(xs)Di(I1)xk1

s · · ·Di(Iν)xkν
s

 ds .
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Similar computations for the other terms of (20) yield that

t 7→
m∑

i1,...,in=1

∫ t

0

. . .

∫ t

0

Φi,i1,...,in

t (r1, . . . , rn)dhi1
1 (r1)dhi2

2 (r2) · · · dhin
n (rn)

is a solution of (30) and then it is equal to Dh1,...,hn
xi

t by the existence and
uniqueness result for such equations.

An integration by parts formula

Lemma 11 Let λ such that λ+H > 1, f ∈ Cλ(0, T ) and h ∈ H. Then it holds
that ∫ T

0

f(r)d(RHϕ)r =
∫ T

0

f(r)
(∫ r

0

∂KH

∂r
(r, t) (K∗Hϕ) (t)dt

)
dr . (32)

Proof. Assume m = 1. Since RHϕ is H-Hölder continuous, the left-hand
side of (32) is well defined as a Riemann-Stieltjes integral. Let {0 := x0 ≤ x∗0 ≤
x1 ≤ . . . ≤ xn ≤ x∗n ≤ xn+1 := T} a finite partition such that maxi(xi+1−xi) <
∆. We write∫ T

0

f(r)d(RHϕ)r = lim
∆→0

∑
i

f(x∗i ) [(RHϕ)(xi+1)− (RHϕ)(xi)]

= lim
∆→0

∑
i

f(x∗i )
∫ xi+1

0

[KH(xi+1, t)−KH(xi, t)] (K∗Hϕ) (t)dt

= lim
∆→0

∑
i

f(x∗i )
∫ xi+1

0

∂KH(r, t)
∂r

∣∣∣∣
(x̃i+1,t)

(xi+1 − xi) (K∗Hϕ) (t)dt

:= lim
∆→0

∑
i

A1
i .

One also have∫ T

0

f(r)
(∫ r

0

∂KH

∂r
(r, t) (K∗Hϕ) (t)dt

)
dr

= lim
∆→0

∑
i

f(x∗i )

(∫ x∗i

0

∂KH(r, t)
∂r

∣∣∣∣
(x∗i ,t)

(K∗Hϕ) (t)dt

)
(xi+1 − xi)

:= lim
∆→0

∑
i

A2
i .

We subtract A1
i to A2

i and we get that

|A1
i −A2

i | =

∣∣∣∣∣f(x∗i )

(∫ xi+1

x∗i

{
∂KH(r, t)

∂r

∣∣∣∣
(x̃∗i ,t)

− ∂KH(r, t)
∂r

∣∣∣∣
(x∗i ,t)

}
(K∗Hϕ) (t)dt

)
(xi+1 − xi)

∣∣∣∣∣
≤ ‖f‖∞ ‖K∗Hϕ‖∞(xi+1 − xi)

∫ xi+1

x∗i

∣∣∣∣∣ ∂KH(r, t)
∂r

∣∣∣∣
(x̃∗i ,t)

− ∂KH(r, t)
∂r

∣∣∣∣
(x∗i ,t)

∣∣∣∣∣ dt .
(33)
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Since
∂KH(r, t)

∂r
= cH

(r
t

)H− 1
2

(r − t)H− 3
2 ,

one has∫ xi+1

x∗i

∣∣∣∣∣ ∂KH(r, t)
∂r

∣∣∣∣
(x̃∗i ,t)

− ∂KH(r, t)
∂r

∣∣∣∣
(x∗i ,t)

∣∣∣∣∣ dt ≤ C

∫ xi+1

xi

(xi+1 − t)H− 3
2 dt

+ C

∫ xi+1

xi

(t− xi)H− 3
2 dt

≤ C(xi+1 − xi)H− 1
2 .

We report the above estimate in (33)

|A2
i −A1

i | ≤ C (xi+1 − xi)H−1/2+1 ,

and then∣∣∣∣∣
∫ T

0

f(r)
(∫ r

0

∂KH

∂r
(r, t) (K∗Hϕ) (t)dt

)
dr −

∫ T

0

f(r)d(Hh)r

∣∣∣∣∣ ≤ C lim
∆→0

∑
i

(xi+1 − xi)H+ 1
2

≤ C T lim
∆→0

∆H− 1
2 = 0 ,

so (32) is proved.
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