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Introduction

Let B = {B t , t ≥ 0} be an m-dimensional fractional Brownian motion (fBm in short) of Hurst parameter H ∈ (0, 1). That is, B is a centered Gaussian process with the covariance function E(B i s B j t ) = R H (s, t)δ ij , where

R H (s, t) = 1 2 t 2H + s 2H -|t -s| 2H . (1) 
If H = 1 2 , B is a Brownian motion. From [START_REF] Baudoin | A version of Hörmander's theorem for the fractional brownian motion[END_REF], it follows that E |B t -B s | 2 = m|t -s| H so the process B has α-Hölder continuous paths for all α ∈ (0, H). We refer to [START_REF] Nualart | Stochastic integration with respect to fractional Brownian motion and applications. 3-39[END_REF] and references therein for further information about fBm and stochastic integration with respect to this process.

In this article we fix 1 2 < H < 1 and we consider the solution {X t , t ∈ [0,T ]} of the following stochastic differential equation on R d

X i t = x i 0 + m j=1 t 0 σ ij (X s )dB j s + t 0 b i (X s )ds , t ∈ [0,T ] , (2) 
i = 1, . . . , d, where x 0 ∈ R d is the initial value of the process X.

The stochastic integral in ( 2) is a path-wise Riemann-Stieltjes integral (see Young [START_REF] Young | An inequality of the Hölder type connected with Stieltjes integration[END_REF]). Suppose that σ has bounded partial derivatives which are Hölder continuous of order λ > 1 H -1, and b is Lipschitz, then there is a unique solution to Equation (2) which has Hölder continuous trajectories of order H -ε, for any ε > 0. This result has been proved by Lyons in [START_REF] Lyons | Differential equations driven by rough signals (I): An extension of an inequality of L.C. Young[END_REF] in the case b = 0, using the p-variation norm. The theory of rough paths analysis introduced by Lyons in [START_REF] Lyons | System control and rough paths[END_REF] was used by Coutin and Qian to prove an existence and uniqueness result for Equation [START_REF] Coutin | Stochastic analysis, rough path analysis and fractional Brownian motions[END_REF] in the case H ∈ ( 1 4 , 1 2 ) (see [START_REF] Coutin | Stochastic analysis, rough path analysis and fractional Brownian motions[END_REF]). The Riemann-Stieltjes integral appearing in Equation ( 2) can be expressed as a Lebesgue integral using a fractional integration by parts formula (see Zähle [START_REF] Zähle | Integration with respect to fractal functions and stochastic calculus[END_REF]). Using this formula for the Riemann-Stieltjes integral, Nualart and Rȃşcanu have established in [START_REF] Nualart | Differential Equations driven by fractional Brownian motion[END_REF] the existence of a unique solution for a class of general differential equations that includes [START_REF] Coutin | Stochastic analysis, rough path analysis and fractional Brownian motions[END_REF].

The main purpose of our work is to study the regularity of the solution to Equation [START_REF] Coutin | Stochastic analysis, rough path analysis and fractional Brownian motions[END_REF] in the sense of Malliavin calculus, and to show the absolute continuity for the law of X t for t > 0, assuming an ellipticitity condition on the coefficient σ. First we establish a general result on the regularity with respect to the driven function for the solution of deterministic equations, using the techniques of fractional calculus developed in [START_REF] Nualart | Differential Equations driven by fractional Brownian motion[END_REF]. This allows us to deduce the differentiability of the solution to Equation [START_REF] Coutin | Stochastic analysis, rough path analysis and fractional Brownian motions[END_REF] in the direction of the Cameron-Martin space. These results are related to those proved by Lyons and Dong Li in [START_REF] Lyons | Smoothness of Itô's maps and simulated annealing on path spaces[END_REF] on the smoothness of Itô maps for such equations in term of Fréchet-Gâteaux differentiability.

The regularity results obtained here have been used in a recent paper by Baudoin and Hairer [START_REF] Baudoin | A version of Hörmander's theorem for the fractional brownian motion[END_REF] to show the smoothness of the density under a hypoellipticity Hörmander's condition. This result requires also the existence of moments for the iterated derivatives, which has been established in [START_REF] Hu | Differential equations driven by Hölder continuous functions of order greater than 1/2[END_REF]. In [START_REF] Nourdin | On the absolute continuity of one-dimensional SDEs driven by a fractional Brownian motion[END_REF], the existence of a density for the solution of a one-dimensional equation is shown.

The paper is organized as follows. In Section 2 we establish the Fréchet differentiability with respect to the input function for deterministic differential equations driven by Hölder continuous functons. Section 3 is devoted to analyze stochastic differential equations driven by a fBm with Hurst parameter H ∈ ( 1 2 , 1), the main result being the differentiability of the solution in the directions of the Cameron-Martin space. In Section 4 we prove the absolute continuity of the solution under ellipticity assumptions. The proofs of some technical results are given in the Appendix.

Deterministic differential equations driven by rough functions

We first introduce some preliminaries. Given a measurable function f : [0,T ] → R d and α ∈ (0, 1 2 ), we will make use of the notation

∆ α t (f ) = |f (t)| + t 0 |f (t) -f (s)| |t -s| α+1 ds.
We denote by W α 1 (0, T ; R d ) the space of measurable functions f :

[0,T ] → R d such that f α,1 := sup t∈[0,T ] ∆ α t (f ) < ∞ .
For any 0 < λ ≤ 1, denote by C λ (0, T ; R d ) the space of λ-Hölder continuous functions f : [0,T ] → R d , equipped with the norm

f λ := f ∞ + sup 0≤s<t≤T |f (t) -f (s)| (t -s) λ ,
where

f ∞ := sup t∈[0,T ] |f (t)|. We denote by W 1-α 2 (0, T ; R m ) the space of measurable functions g : [0,T ] → R m such that g 1-α,2 := sup 0≤s<t≤T |g(t) -g(s)| (t -s) 1-α + t s |g(y) -g(s)| (y -s) 2-α dy < ∞ .
Clearly for any ε > 0 such that 1 -α+ ε ≤ 1 we have

C α+ε (0,T ; R d ) ⊂ W α 1 (0, T ; R d ) and C 1-α+ε (0, T ; R m ) ⊂ W 1-α 2 (0, T ; R m ) ⊂ C 1-α (0, T ; R m ) .
For d = m = 1 we simply write W α 1 (0, T ), C λ (0,T ), and

W 1-α 2 (0, T ).
Suppose that g ∈ W 1-α 2 (0, T ) and f ∈ W α 1 (0, T ). In [START_REF] Zähle | Integration with respect to fractal functions and stochastic calculus[END_REF], Zähle introduced the generalized Stieltjes integral

T 0 f t dg t = (-1) α T 0 D α 0+ f (t) D 1-α T -g T -(t)dt, (3) 
defined in terms of the fractional derivative operators

D α 0+ f (x) = 1 Γ(1 -α) f (x) x α + α x 0 f (x) -f (y) (x -y) α+1 dy , and 
D α T -g T -(x) = (-1) α Γ(1 -α) g(x) -g(T ) (T -x) α + α T x g(x) -g(y) (x -y) α+1 dy .
We refer to [START_REF] Samko | Fractional integrals and derivatives, Theory and applications[END_REF] for further details on fractional operators. Zähle proved that if f ∈ C α+ε (0, T ), then this integral coincides with the Riemann-Stieltjes integral, which exists by the results of Young (see [START_REF] Young | An inequality of the Hölder type connected with Stieltjes integration[END_REF]). Using formula (3), Nualart and Rȃşcanu have derived the following estimates (see [START_REF] Nualart | Differential Equations driven by fractional Brownian motion[END_REF], Propositions 4.1 and 4.3).

Proposition 1 Fix 0 < α < 1 2 . Given two functions g ∈ W 1-α 2 (0, T ) and f ∈ W α 1 (0, T ), we denote G t (f ) = t 0 f s dg s and F t (f ) = t 0 f s ds.
(i) The function G(f ) belongs to C 1-α (0, T ) and we have

∆ α t (G(f )) ≤ c α,T g 1-α,2 t 0 (t -r) -2α + t -α ∆ α r (f )dr , (4) 
G(f ) 1-α ≤ c α,T g 1-α,2 f α,1 , (5) 
with a constant c α,T which depends only on α and T .

(ii) The function F (f ) belongs to C 1 (0, T ) and moreover

∆ α t (F (f )) ≤ c α,T t 0 |f s | (t -s) α ds , (6) 
F (f ) 1 ≤ c T f ∞ , (7) 
with a constant c α,T which depends only on α and T .

We first study deterministic differential equations driven by Hölder continuous functions of order stricktly larger that 1 2 . Fix 0

< α < 1 2 . Let g ∈ W 1-α 2 (0, T ; R m ) and consider the deterministic differential equation on R d x i t = x i 0 + t 0 b i (x s )ds + m j=1 t 0 σ ij (x s )dg j s , t ∈ [0,T ] , (8) 
i = 1, . . . , d, where

x 0 ∈ R d .
For any integer k ≥ 1 we denote by C k b the class of real-valued functions on R d which are k times continuously differentiable with bounded partial derivatives up to the kth order. We also denote by C ∞ b the class of infinitely differentiable functions on R d with bounded partial derivatives of all orders.

In [START_REF] Nualart | Differential Equations driven by fractional Brownian motion[END_REF], the authors prove that Equation (8) has a unique solution x ∈ W α 1 (0, T ; R d ) which is moreover (1 -α)-Hölder continuous, if b i , σ ij ∈ C 1 b and the partial derivatives of σ ij are Hölder contiuous of order λ > 1 H -1. In this section we will show the differentiability of the mapping g → x(g). For a function ϕ from R p to R, we set ∂ k ϕ = ∂ϕ ∂xx . The first setp is to establish the existence and uniqueness of a solution for linear equations that are generalizations of [START_REF] Lyons | Smoothness of Itô's maps and simulated annealing on path spaces[END_REF]. The iterated derivatives of the solution of Equation ( 8) satisfy these kind of equations.

Proposition 2 Fix g ∈ W 1-α 2 (0, T ; R m ) and consider the following linear equation:

y t = w t + t 0 B s y s ds + t 0 S s y s dg s , (9) 
where

w ∈ C 1-α (0, T ; R d ), S ∈ C 1-α (0, T ; R d×d×m ) and B ∈ C 1-α (0, T ; R d×d ).
There exists a unique solution y ∈ C 1-α (0, T ; R d ) of Equation ( 9) which satisfies

y α,1 ≤ c 1 w α,1 exp c 2 g 1 1-2α 1-α,2 ( B ∞ + S 1-α ) , (10) 
where c 1 and c 2 depend only on α and T .

Proof. The existence and uniqueness of a solution can be established following the same lines as in the proof of Theorem 5.1 of [START_REF] Nualart | Differential Equations driven by fractional Brownian motion[END_REF]. Let us prove the estimate [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF]. Set F B t = t 0 B s y s ds and G S t = t 0 S s y s dg s . Using (4) we have

∆ α t (G S ) ≤ c α,T g 1-α,2 t 0 (t -s) -2α + s -α ∆ α s (Sy)ds ≤ c α,T g 1-α,2 t 0 (t -s) -2α + s -α |y s | × s 0 S 1-α (s -r) 1-α (s -r) α+1 dr ds + S 1-α t 0 (t -s) -2α + s -α ∆ α s (y)ds ≤ c α,T g 1-α,2 S 1-α t 0 (t -s) -2α + s -α ∆ α s (y)ds,
where the constant c α,T may vary from line to line but depends only on α and T . On the other hand, using (6) we get

∆ α t (F B ) ≤ c α,T B ∞ t 0 |y s | (t -s) α ds .
Then the above inequalities yield that

∆ α t (y) ≤ w α,∞ + c α,T (Λ α (g) S 1-α + B ∞ ) t 0 (t -s) -2α + s -α h s ds .
Applying a Gronwall-type Lemma (see Lemma 7.6 in [START_REF] Nualart | Differential Equations driven by fractional Brownian motion[END_REF]) we derive the estimate [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF].

The following technical lemma is a basic ingredient in the proof of the Fréchet differentiability of the mapping x → x(g), where x is the solution of Equation [START_REF] Lyons | Smoothness of Itô's maps and simulated annealing on path spaces[END_REF].

Lemma 3 Let x be the solution of [START_REF] Lyons | Smoothness of Itô's maps and simulated annealing on path spaces[END_REF]. Assume b i , σ ij ∈ C 3 b . Then the mapping

F : W 1-α 2 (0, T ; R m ) × W α 1 (0, T ; R d ) → W α 1 (0, T ; R d ) defined by (h, x) → F (h, x) := x -x 0 - • 0 b(x s )ds - • 0 σ(x s )d(g s + h s ) (11) 
is Fréchet differentiable and we have for any

(h, x) ∈ W 1-α 2 (0, T ; R m )×W α 1 (0, T ; R d ), k ∈ W 1-α 2 (0, T ; R m ), v ∈ W α 1 (0, T ; R d ), and i = 1, . . . , d D 1 F (h, x)(k) i t = - m j=1 t 0 σ ij (x s )dk j s , (12) 
D 2 F (h, x)(v) i t = v i t - d k=1 t 0 ∂ k b(x s )v k s ds - d k=1 m j=1 t 0 ∂ k σ ij (x s )v k s d(g j s + h j s ). ( 13 
)
Proof. For (h, x) and ( h, x) in

W 1-α 2 (0, T ; R m ) × W α 1 (0, T ; R d ) we have F (h, x) t -F ( h, x) t = x t -xt + t 0 (b(x s ) -b(x s )) ds - t 0 (σ(x s ) -σ(x s )) (g s + h s ) - t 0 σ(x s )(h s -hs ).
Using Proposition 1 one easily deduce that

F (h, x) -F ( h, x) α,1 ≤ (1 + c α,T ∂b ∞ ) x -x α,∞ + c α,T g + h 1-α,2 σ(x) -σ(x) α,∞ + c α,T σ(x) α,∞ h -h 1-α,2
.

Since σ is a Lipschitz function we have σ(x) α,1 ≤ |σ(0)|+ ∂σ ∞ x α,1 . Using the fact that for any x 1 , x 2 , x 3 and x 4 :

|σ(x 1 ) -σ(x 2 ) -σ(x 3 ) + σ(x 4 )| ≤ ∂σ ∞ |x 1 -x 2 -x 3 + x 4 | + ∂ 2 σ ∞ |x 1 -x 3 | (|x 1 -x 2 | + |x 3 -x 4 |) , it follows that σ(x) -σ(x) α,1 ≤ ∂σ ∞ + ∂ 2 σ ∞ ( x α,1 + x α,1 ) x -x α,1 .
Consequently, there exists a constant C depending on α, T and the coefficients b and σ such that

F (h, x) -F ( h, x) α,1 ≤ (1 + C ( x α,1 + x α,1 ) g + h 1-α,2 ) x -x α,1 +C(1 + x α,1 ) h -h 1-α,2 ,
which implies that F is continuous.

We now prove that it is differentiable with respect to x. Thanks to Proposition 1, it holds that D 2 F defined in (13) satisfies

D 2 F (h, x)(v) α,1 ≤ c v α,1 ,
and, therefore, it is continuous. Let us now check that for any h ∈ W 1-α 2 (0, T ; R m ), D 2 F is the Fréchet derivative (with respect to x) of (h, x) → F (h, x). We have

F (h, x + v) t -F (h, x) t -D 2 F (h, x)(v) t = t 0 (b(x s ) -b(x s + v s ) + ∂b(x s )v s ) ds + t 0 (σ(x s ) -σ(x s + v s ) + ∂σ(x s )v s ) d(g s + h s ). ( 14 
)
By the mean value theorem we can write

|b(x s ) -b(x s + v s ) + ∂b(x s )v s | ≤ ∂ 2 b ∞ |v s | 2
and thanks to [START_REF] Lyons | System control and rough paths[END_REF] one easily remarks that

• 0 (b(x s ) -b(x s + v s ) + ∂b(x s )v s ) ds 1 ≤ c α,T ∂ 2 b ∞ v 2 α,1 .
Similar computations for the second term of the right hand side of ( 14) yield

• 0 (σ(x s ) -σ(x s + v s ) + ∂σ(x s )v s ) d(g s + h s ) α,1 ≤ c α,T ∂ 2 σ ∞ + ∂ 3 σ ∞ x α,1 g + h 1-α,2 v 2 α,1 .
Thus it follows that

F (h, x + v) -F (h, x) -D 2 F (h, x)(v) α,1 ≤ C g + h 1-α,2 v 2 α,1 ,
where

C depends on α, T , ∂ 2 b ∞ , ∂ 2 σ ∞ , ∂ 3 σ ∞ and x α,1 . Then (h, x) → F (h, x)
is Fréchet differentiable with respect to x and (13) holds. Similar arguments give the differentiability with respect to h and Formula [START_REF] Nualart | Differential Equations driven by fractional Brownian motion[END_REF].

Proposition 4 Let x be the solution of Equation [START_REF] Lyons | Smoothness of Itô's maps and simulated annealing on path spaces[END_REF].

Assume b i , σ ij ∈ C 3 b . The mapping g → x(g) from W 1-α 2 (0, T ; R m ) into W α 1 (0, T ; R d ) is Fréchet differentiable and for any h ∈ W 1-α 2 (0, T ; R m ) its derivative in the direction h is given by D h x i t = m j=1 t 0 Φ ij t (s)dh j s , (15) 
where

for i = 1, . . . , d, j = 1, . . . , m, 0 ≤ s ≤ t ≤ T , s → Φ ij t (s) satisfies: Φ ij t (s) = σ ij (x s ) + d k=1 t s ∂ k b i (x u )Φ k,j u (s)du + d k=1 m l=1 t s ∂ k σ il (x u )Φ k,j u (s)dg l u , ( 16 
) and Φ ij t (s) = 0 if s > t.
Proof. We apply the implicit function theorem to the functional F defined by [START_REF] Nualart | Stochastic integration with respect to fractional Brownian motion and applications. 3-39[END_REF] in Lemma 3. For any (h, x), F (h, x) belongs to C 1-α (0, T ; R d ) thanks to Proposition 1. Since x is a solution of ( 8), one remarks that F (0, x) = 0. Thanks to Lemma 3, the mapping F is Fréchet differentiable with first partial derivatives with respect to h given by [START_REF] Nualart | Differential Equations driven by fractional Brownian motion[END_REF] and the first partial derivative with respect to x is given by [START_REF] Samko | Fractional integrals and derivatives, Theory and applications[END_REF]. We have to check that D 2 F (0, x) is a linear homeomorphism from

W α 1 (0, T ; R d ) to C 1-α (0, T ; R d ).
By the open map theorem it suffices to show that it is bijective and continuous. We apply Proposition 2 with t → B t = ∂b(x t ) and t → S t = ∂σ(x t ) which are (1 -α)-Hölder continuous. Thus

D 2 F (0, x)(v) i t = v i t - d k=1 t 0 ∂ k b i (x s )v k s ds - d k=1 m j=1 t 0 ∂ k σ ij (x s )v k s dg j s
is a one-to-one mapping thanks to the existence and uniqueness result of Equation ( 8). Now we fix w ∈ C 1-α (0, T ; R d ). Thanks to Proposition 2, there exists

v ∈ W α 1 (0, T ; R d ) such that w = D 2 F (0, x)(v), hence D 2 F (0, x)
is onto and then it is a bijection. We already know that it is continuous. By the implicit function theorem g → x(g) is continuously Fréchet differentiable and

Dx = -D 2 F (0, x) -1 • D 1 F (0, x) . (17) 
So for any

k ∈ W 1-α 2 (0, T ; R m ), -Dx(k)
is the unique solution of the differential equation

w i t = -Dx(k) i t + d k=1 t 0 ∂ k b(x s )Dx(k) k s ds + d k=1 m j=1 t 0 ∂ k σ ij (x s )Dx(k) k s dg j s with w i t = D 1 F (0, x)(k) t = - m j=1 t 0 σ ij (x s )dk j s .
On the other hand, from Equation ( 16) we get

m j=1 t 0 Φ ij t (s)dh j s = m j=1 t 0 σ ij (x s )dh j s + m j=1 t 0 d k=1 t s ∂ k b i (x u )Φ k,j u (s)du ds + m j=1 t 0 d k=1 m l=1 t s ∂ k σ il (x u )Φ k,j u (s)dg l u dh j s . (18) 
Using Fubini's theorem we can invert the order of integration in the second integral of the right hand side of (18). The treatment of the third integral is more involved. Thanks to Proposition 9 in the Appendix, ∂ k σ il (x u )Φ k,j u (s) is Hölder continuous of order 1 -α in both variables (u, s). As a consequence, we can apply Fubini's theorem for the Riemann-Stieltjes integrals and we obtain

m j=1 t 0 Φ ij t (s)dh j s = m j=1 t 0 σ ij (x s )dh j s + d k=1 t 0 ∂ k b i (x u )   m j=1 u 0 Φ k,j u (s)ds   du + d k=1 m l=1 t 0 ∂ k σ il (x u )   m j=1 u 0 Φ k,j u (s)dh j s   dg l u . Hence t → m j=1 t 0 Φ ij t (s)dh j
s is a solution of Equation ( 16) and by uniqueness we get the result.

If the coefficients b and σ are infinitely differentiable, the mapping g → x(g) is actually infinitely Fréchet differentiable. The proof of this result uses essentially the same arguments as in the case of first order derivatives, but the notation is more involved. We state here the result and present the proof in the Appendix.

Proposition 5 Assume b i , σ ij ∈ C ∞ b .
Then the solution x to Equation ( 8) is infinitely continuously Fréchet differentiable. Moreover, for any

(h 1 , . . . , h n ) ∈ (W 1-α 1 (0, T ; R m )) n , it holds that D h1,...,hn x i t = m i1,...,in=1 t 0 . . . t 0 Φ i,i1,...,in t (r 1 , . . . , r n )dh i1 1 (r 1 )dh i2 2 (r 2 ) . . . dh in n (r n ) , (19) 
where the functions Φ i,i1,...,in t (r 1 , . . . , r n ) for t ≥ r 1 ∨ . . . ∨ r n are defined recursively by 

Φ i,i1,...,in t (r 1 , . . . , r n ) = n i0=1 A i i0,i1,...,
and 0 if t < r 1 ∨ . . . ∨ r n . We have denoted

A i j,i1,...,in (r 1 , . . . , r n ; s) = I1∪...∪Iν d k1,...,kν =1 ∂ k1 . . . ∂ kν σ ij (x s ) × Φ k1,i(I1) s (r(I 1 )) . . . Φ kν ,i(Iν ) s (r(I ν )), B i i1,...,in (r 1 , . . . , r n ; s) = I1∪...∪Iν d k1,...,kν =1 ∂ k1 . . . ∂ kν b i (x s ) × Φ k1,i(I1) s (r(I 1 )) . . . Φ kν ,i(Iν ) s (r(I ν )) ,
where the first sums are extended to the set of all partitions I 1 ∪ . . . ∪ I ν of {1, . . . , n}.

Stochastic Differential Equations driven by a fractional Brownian motion

Let Ω = C 0 ([0, T ]; R m ) be the Banach space of continuous functions, null at time 0, equipped with the supremum norm. Fix H ∈ ( 1 2 , 1). Let P be the unique probability measure on Ω such that the canonical process {B t , t ∈ [0, T ]} is an m-dimensional fractional Brownian motion with Hurst parameter H.

We denote by E the set of step functions on [0, T ] with values in R m . Let H be the Hilbert space defined as the closure of E with respect to the scalar product

1 [0,t1] , . . . , 1 [0,tm] , 1 [0,s1] , . . . , 1 [0,sm] H = m i=1 R H (t i , s i ).
We recall that

R H (t, s) = t∧s 0 K H (t, r)K H (s, r)dr,
where K H (t, s) is the square integrable kernel defined by

K H (t, s) = c H s 1 2 -H t s (u -s) H-3 2 u H-1 2 du for t > s, where c H = H(2H-1) β(2-2H,H-1
2 ) and β denotes the Beta function. We put

K H (t, s) = 0 if t ≤ s.
The mapping 1 [0,t1] , ..., 1 [0,tm] → m i=1 B i ti can be extended to an isometry between H and the Gaussian space H 1 (B) spanned by B. We denote this isometry by ϕ → B(ϕ).

We introduce the operator K * H : E → L 2 (0, T ; R m ) defined by:

K * H 1 [0,t1] , ..., 1 [0,tm] = (K H (t 1 , .), ..., K H (t m , .)) .
For any ϕ, ψ ∈ E, ϕ, ψ

H = K * H ϕ, K * H ψ L 2 (0,T ;R m ) = E (B(ϕ)B(ψ)) and then K *
H provides an isometry between the Hilbert space H and a closed subspace of L 2 (0, T ; R m ).

We denote

K H : L 2 (0, T ; R m ) → H H := K H L 2 (0, T ; R m ) the operator defined by (K H h)(t) := t 0 K H (t, s)h(s)ds .
The space H H is the fractional version of the Cameron-Martin space. In the case of a classical Brownian motion,

K H (t, s) = 1 [0,t] (s), K *
H is the identity map on L 2 (0, T ; R m ), and H H is the space of continuous functions, vanishing at zero, with a square integrable derivative.

We finally denote by

R H = K H • K * H : H → H H the operator R H ϕ = • 0 K H (•, s) (K * H ϕ) (s)ds .
We remark that for any ϕ ∈ H, R H ϕ is Hölder continuous of order H. Indeed,

(R H ϕ) i (t) = T 0 K * H 1 [0,t] i (s) (K * H ϕ) i (s)ds = E B i t B i (ϕ) ,
and consequently 

(R H ϕ) i (t) -(R H ϕ) i (s) ≤ E |B i t -B i s | 2 1/2 ϕ H ≤ ϕ H |t -s| H . Notice also that R H 1 [0,t] = R H (t, •),
E e i B,ϕ = exp - 1 2 ϕ 2 H .
As a consequence, (Ω, H, P) is an abstract Wiener space in the sense of Gross.

Notice that the choices of the Hilbert space and its embedding into Ω are not unique and in [START_REF] Decreusefond | Stochastic Analysis of the Fractional Brownian Motion[END_REF] the authors have made another (but equivalent) choice for the underlying Hilbert space. Let {X t , t ∈ [0,T ]} be the solution of the stochastic differential equation ( 2), and assume that the coefficients are infinitely differentiable which are bounded together with all their derivatives. Fix 1 -H < α < 1 2 . Then the trajectories of the fractional Brownian motion belong almost surely to

C 1-α+ε (0, T ; R m ) ⊂ W 1-α 2 (0, T ; R m ) if ε < H +α-1. Therefore, by Proposition 5, the mapping ω → X(ω) is infinitely Fréchet differentiable from W 1-α 2 (0, T ; R m ) into W α 1 (0, T ; R d ).
On the other hand, we have seen that

H H ⊂ C H (0, T ; R m ) ⊂ W 1-α 2 (0, T ; R m ).
As a consequence, the following iterated derivatives exists

D R H ϕ1,...,R H ϕ1 X i t = d dε 1 • • • d dε n X i t (ω + ε 1 R H ϕ 1 + • • • + ε n R H ϕ n )| ε1=•••=εn=0 ,
for all ϕ i ∈ H. In this way we have proved the following result.

Theorem 6 Let H > 1/2 and assume that b i , σ ij ∈ C 3 b . Then the stochastic process X solution of the stochastic differential equation ( 2) is almost surely differentiable in the directions of the Cameron-Martin space. If b i , σ ij ∈ C ∞ b , then X is almost surely infinitely differentiable in the directions of the Cameron-Martin space.

The iterated derivative D R H ϕ1,...,R H ϕ1 X i t coincides with D n X i t , ϕ 1 ⊗ • • • ⊗ ϕ n H ⊗
, where D n is the iterated derivative in the Malliavin calculus sense. In fact, if F is a smooth cylindrical random variable of the form

F = f (B(ϕ 1 ), . . . , B(ϕ m )) with f ∈ C ∞ b (R m ), ϕ i ∈ H, then the Malliavin derivative DF is the H-valued random variable defined by DF, h H = m i=1 ∂ i f (B(ϕ 1 ), . . . , B(ϕ m )) ϕ i , h H = d dε f (B(ϕ 1 ) + ε ϕ 1 , h H , . . . , B(ϕ m ) + ε ϕ m , h H ) ε=0 ,
and one can easily see that

B(ϕ 1 )(ω + εR H h) = B(ϕ 1 )(ω) + ε ϕ 1 , h H .
We recall here that D k,p is the closure of the space of smooth and cylindrical random variable with respect to the norm

F k,p =   E(|F | p ) + k j=1 E( D j F p H ⊗j )   1 p
, and D k,p loc is the set of random variables F such that there exist a sequence

{(Ω n , F n ), n ≥ 1} such that Ω n ↑ Ω a.s, F n ∈ D k,p and F = F n a.s. on Ω n .
By the results of Kusuoka (see [START_REF] Kusuoka | The non-linear transformation of Gaussian measure on Banach space and its absolute continuity (I)[END_REF], Theorem 5.2 or [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF], Proposition 4.1.3), Theorem 6 implies that X i t belongs to the space D k,p loc for all p > 1 and any integer k. Now we give the equations satisfied by the derivatives of the process X.

Proposition 7 If we denote (i 1 , . . . , i n ) ∈ {1, . . . , m} n a multi-index, the nth derivative in the sense of Malliavin calculus satisfies the following linear equation a.s.: 

D i1,...,
if t ≥ r 1 ∨ . . . ∨ r n , and D i1,...,in r1,...,rn X i t = 0 otherwise. In the above equation, we have denoted

α i j,i1,...,in (r 1 , . . . , r n ; s) = I1∪...∪Iν d k1,...,kν =1 ∂ k1 . . . ∂ kν σ ij (X s ) D i(I1) r(I1) X k1 s . . . D i(Iν ) r(Iν ) X kν s , β i i1,...,in (r 1 , . . . , r n ; s) = I1∪...∪Iν d k1,...,kν =1 ∂ k1 . . . ∂ kν b i (X s ) D i(I1) r(I1) X k1 s . . . D i(Iν ) r(Iν ) X kν s ,
where the first sums are extended to the set of all partitions I 1 ∪ . . . ∪ I ν of {1, . . . , n} and for any subset K = {i 1 , . . . , i η } of {1, . . . , n}, we put D i(K) r(K) the derivative operator D i1,...,iη ri 1 ,...,ri η . For the first order derivative, Equation (21) reads as follows: for i = 1, . . . , d, j = 1, . . . , m,

D j s X i t = σ ij (X s )+ d k=1 t s ∂ k b i (X u )D j s X k u du+ d k=1 m l=1 t s ∂ k σ il (X u )D j s X k u dB l u ,
if s ≤ t and 0 if s > t.

Proof. We use the representation result on the deterministic equation given by (19) in Proposition 5. For any h = (h 1 , . . . , h n ) with h i ∈ H, we have

D R H h1,...,R H hn X i t = m i1,...,in=1 t 0 . . . t 0 Φ i,i1,...,in t (r 1 , . . . , r n ) ×d(R H h 1 ) i1 (r 1 ) • • • d(R H h n ) in (r n ). ( 22 
)
We denote K * ⊗n

H the map from H ⊗n into L 2 (0, T ; R m ) ⊗n defined for ϕ ∈ H ⊗n by K * ⊗n H ϕ (s 1 , . . . , s n ) = T s1 . . . T sn ϕ(r 1 , . . . , r n ) ∂K H ∂r 1 (r 1 , s 1 ) • • • ∂K H ∂r n (r n , s n )dr 1 . . . dr n . It holds that ϕ, ψ H ⊗n = ξ∈{1,...,m} n [0,T ] n K * ⊗n H ϕ ξ (s 1 , . . . , s n ) K * ⊗n H ψ ξ (s 1 , . . . , s n )ds 1 . . . ds n .

Thanks to

Step 3 in the proof Proposition 5, for any 1

≤ k ≤ n, s k → [0,t] k-1 Φ i,i1,...,in t (s 1 , ..., s k-1 , s k , s k+1 , . . . , s n )dh i1 1 (s 1 ) • • • dh i k-1 k-1 (s k-1 )
belongs to C 1-α (0, T ) and we can apply n times Lemma 11 from Appendix. This yields that almost surely

D R H h1,...,R H hn X i t = m i1,...,in=1 t 0 . . . t 0 Φ i,i1,...,in t (r 1 , . . . , r n ) r1 0 ∂K H ∂r 1 (r 1 , u) (K * H h 1 ) i1 (u)du × • • • × rn 0 ∂K H ∂r n (r n , u) (K * H h 1 ) in (u)du dr 1 • • • dr n = m i1,...,in=1 T 0 • • • T 0 K * ⊗n H Φ i t i1,...,in (s 1 , . . . , s n ) × n l=1 (K * H h l ) i l (s i )ds 1 . . . ds n = Φ i t , h 1 ⊗ ... ⊗ h n ⊗n
, and the result is proved.

Absolute continuity of the law of the solution

The fact that for H > 1 2 , the solution of Equation ( 8) belongs to the localized domain of the Malliavin derivative operator D will imply the absolute continuity of the law of X t for all T > 0 under suitable nondegeneracy conditions.

Theorem 8 Let H > 1/2 and assume that b i , σ ij ∈ C 3 b . Suppose that the following nondegeneracy condition on the coefficient σ holds:

(H) The vector space spanned by σ 1j (x 0 ), . . . ,

σ dj (x 0 ) , 1 ≤ j ≤ m is R d .
Then for any t > 0, the law of the random vector X t is absolutely continuous with respect to the Lebesgue measure on R d .

Proof. We already know by Theorem 6 that X i t belongs to D 1,2 loc for all t ∈ [0, T ] and for i = 1, ..., d. Then, thanks to [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF], Theorem 2.1.2, it suffices to show that the Malliavin covariance matrix of X t defined by

Q ij t = DX i t , DX j t H
is invertible almost surely. We first deduce another expression for the matrix Q t . We stress the fact that K * H is an isometry between H and a closed subspace of L 2 (0, T ; R m ). Let {e n , n ≥ 1} be a complete orthonormal system in this closed subspace. The elements f n = (K * H ) -1 (e n ) for a complete orthonormal system of H. Then it holds almost surely that

DX i t = n≥1 DX i t , f n H f n ,
and consequently

Q ij t = n≥1 DX i t , f n H DX j t , f n H .
Suppose now that the Malliavin covariance matrix is not almost surely invertible, that is P(det Q t = 0) > 0. Then there exists a vector v ∈ R d , v = 0, such that v T Q t v = 0. Our aim is to prove that condition (H) cannot be satisfied. One may write

v T Q t v = n≥1 DX t , f n H , v R d 2 .
From (22) it follows that

DX i t , f n H = D R H fn X i t ,
and thanks to the representation ( 17), the directional derivative

D R H fn X i t sat- isfies D R H fn X i t = D 2 F (0, X) -1 • D 1 F (0, X) (R H f n ) i t . It follows that 0 = D 2 F (0, X) -1 • D 1 F (0, X) (R H f n ) t , v R d . Since D 2 F (0, X) -1 is a linear homeomorphism, there exists v 0 ∈ R d , v 0 = 0, such that 0 = D 1 F (0, X)(R H f n ) t , v 0 R d = d i=1   m j=1 t 0 σ ij (X s )d(R H f n ) j s   v i 0 = d i=1 v i 0 σ i (X)1 [0,t] , f n H
holds true for any n ≥ 1 (where σ i denotes the ith row of the matrix σ). Then

0 = d i=1 v i 0 σ i (X)1 [0,t]
H and this yields that for all j = 1, ..., m and s ∈ [0, t]

d i=1 v i 0 σ ij (X s ) = 0.
Taking s = 0 we get d i=1 v i 0 σ ij (x 0 ) = 0 for all j = 1, ..., m and this contradicts (H). Then the law of the solution of the stochastic differential equation ( 2) at any time t > 0 is absolutely continuous with respect to the Lebesgue measure on R d .

Appendix

The next proposition provides the joint continuity property of the solution of the equations similar to Equation ( 16) satisfied by the kernel of the derivative.

Proposition 9 Fix γ, B, S ∈ C 1-α (0, T ) and g ∈ W 1-α 2 (0, T ) and consider the equation

ρ t (s) = γ(s) + t s B u ρ u (s)du + t s S u ρ u (s)dg u (23) if s ≤ t and ρ t (s) = 0 if s > t.
Then the solution is a Hölder continuous function of order 1 -α in both variables.

Proof. First notice that ρ • (s) α,1 is uniformly bounded in s, by the estimate [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF]. Hence, the function ρ t (s) is Hölder continuous in t, uniformly in s by ( 5) and [START_REF] Lyons | System control and rough paths[END_REF]. On the other hand, for s ≤ s ≤ t we have

ρ t (s) -ρ t (s ) = |w(s, s ) + t s B u (ρ u (s) -ρ u (s )) du + t s S u (ρ u (s) -ρ u (s )) dg u , (24) 
where

w(s, s ) = γ(s) -γ(s ) + s s B u ρ u (s)du + s s S u ρ u (s)dg u . (25) 
Proposition 2 yields the estimate

sup s∈[0,T ] ρ • (s) α,1 ≤ c 1 γ α,1 exp c 2 g 1 1-2α 1-α,2 ( B ∞ + S 1-α ) . (26) 
Substituting ( 26) into (25) yields

|w(s, s )| ≤ γ 1-α (s -s ) 1-α + B ∞ sup s ρ • (s) α,1 (s -s ) + c S α,1 g 1-α,2 sup s ρ • (s) α,1 (s -s ) 1-α ≤ c 1 (s -s ) 1-α . (27) 
Then Proposition 2 applied to Equation (24) and the Estimate (27) imply that

ρ • (s) -ρ • (s ) α,1 ≤ c 1 (s -s ) 1-α exp c 2 g 1 1-2α 1-α,2 ( B ∞ + S 1-α ) .
Therefore, ρ t (s) is Hölder continuous in the variable s, uniformly in t. This completes the proof of the proposition.

For the proof of Proposition 5 we need the following technical lemma.

Lemma 10 Suppose that we are given a mapping g

→ v g from W 1-α 2 (0, T ; R m ) to W α 1 (0, T ; R M ) which is continuously Fréchet differentiable.
Consider five bounded differentiable functions a 0 , . . ., a 4 from R d to R d×m×M , R d×M , R d×d , R d×m×M and R d×m×d , respectively. We moreover assume that these functions have bounded derivatives up to order two. Let y ∈ W α 1 (0, T ; R d ) be the solution of the following equation

y t = t 0 a 0 (x g r )v g r dk r + t 0 {a 1 (x g r )v g r + a 2 (x g r )y r } dr+ t 0 {a 3 (x g r )v g r + a 4 (x g r )y r } dg r , (28) 
where k ∈ W 1-α 2 (0, T ; R m ) and x g is the unique solution of (8) which is already continuously Fréchet differentiable.

Then g → y is continuously Fréchet differentiable and the directional derivative in the direction h ∈ W 1-α 2 (0, T ; R m ) is the unique solution of

D h y t = t 0 {∂a 0 (x r )D h x r v r + a 0 (x r )D h v r } dk r + t 0 {a 3 (x r )v r + a 4 (x r )y r } dh r + t 0 {∂a 1 (x r )D h x r v r + a 1 (x r )D h v r + ∂a 2 (x r )D h x r y r + a 2 (x r )D h y r } dr + t 0 {∂a 3 (x r )D h x r v r + a 3 (x r )D h v r + ∂a 4 (x r )D h x r y r + a 4 (x r )D h y r } dg r . (29)
Proof. We introduce the map One has F (0, y) = 0 since y is the solution of (28). As in Lemma 3 we can show that F is Fréchet differentiable and

W 1-α 2 (0, T ; R m ) × W α 1 (0, T ; R d ) → C 1-α (0, T ; R d ) ⊂ W α 1 (0, T ; R d ) (h, y) → F (h, y)(t) := y t -
D 1 F (0, y) t = - t 0 {∂a 0 (x r )Dx(h) r v r + a 0 (x r )Dv(h) r } dk r - t 0 {a 3 (x r )v r + a 4 (x r )y r } dh r - t 0 {∂a 1 (x r )Dx(h) r v r + a 1 (x r )Dv(h) r + ∂a 2 (x r )Dx(h) r y r } dr - t 0 {∂a 3 (x r )Dx(h) r v r + a 3 (x r )Dv(h) r + ∂a 4 (x r )Dx(h) r y r } dg r D 2 F (0, y)(z) t = z t - t 0 a 4 (x r )z r dg r - t 0 a 2 (x r )z r dr ,
for any z ∈ W α 1 (0, T ; R d ). Then, using Proposition 2 and the same arguments as in the proof of Proposition 4 we conclude that g → y is continuously Fréchet differentiable and it has a directional derivative in the direction h satisfying (29).

Proof of Proposition 5. The proof of Proposition 5 is divided into several steps. We begin by proving that x is infinitely Fréchet differentiable. Then we show that Equation (20) has a unique solution and derive some of its properties. Finally we prove that (19) holds.

Step 1 We begin by proving by induction that x is infinitely Fréchet continuously differentiable. We introduce some notation in order to write the equations satisfied by the higher order directional derivatives.

Let n ≥ 1 and for i = 1, . . . , n, h i = (h 1 i , . . . , h m i ) ∈ W 1-α 2 (0, T ; R m ). For any subset K = {ε 1 , . . . , ε η } of {1, . . . , n}, we denote by D j(K) the iterated directional derivative x kν s for all the partitions I 1 ∪ . . . ∪ I ν with ν ≥ 2 and with appropriate functions a i , i = 0, . . . , 4. This lemma yields that g → D h1,...,hn x is continuously Fréchet differentiable and the directional derivative of order n + 1 is solution of (30) at the rank n + 1.

D j(K) x = D hε 1 ,...,hε η x = D η x(
Let us now prove by induction that the map (h 1 , . . . , h n ) → D (h1,...,hn) x is multi-linear and continuous. By Proposition 4 this is true for n = 1. Suppose it holds up to n -1, that is, for any subset {ε 1 , . . . , ε n0 } of {1, . . . , n} with n 0 < n, the maps (h ε1 , . . . , h εn 0 ) → D hε 1 ,...,hε n 0 x are multi-linear and continuous. We denote

w i (h 1 , . . . , h n ; g) t = n j0=1 m j=1 t 0 α ij (h 1 , . . . , h j0-1 , h j0+1 , . . . , h n ; s)dh j j0 (s) + t 0    I 1 ∪...∪Iν ν>1 d k1,...,kν =1 ∂ k1 . . . ∂ kν b i (x s ) D j(I1) x k1 s . . . D j(Iν ) x kν s    ds + m j=1 t 0    I 1 ∪...∪Iν ν>1 d k1,...,kν =1 ∂ k1 . . . ∂ kν σ i (x s ) D j(I1) x k1 s . . . D j(Iν ) x kν s    dg j s ,
and using [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF] we have the following estimate

D h1,...,hn x α,1 ≤ C w α,1 ,
where the constant C do not depend on (h 1 , ..., h n ). Using the induction hypothesis, we easily deduce that for any i 0 ∈ {1, . . . , n} w α,1 ≤ C h1,...,hi 0 -1,hi 0 +1,...,hn h i0 1-α,2 .

So the map h i0 → D h1,...,hi 0 ,...,hn x . is continuous for any i 0 ∈ {1, . . . , n}. This map is clearly linear thanks to the induction hypothesis and the existence and uniqueness result of Proposition 2.

It only remains to prove that g → D n x(g), from W 1-α 2 (0, T ; R d ) to the space of multi-linear continuous applications on W 1-α 2 (0, T ; R m ), is continuous. We proceed again by induction. We write the difference between the two equations satisfied respectively by D h1,...,hn x(g) and D h1,...,hn x(g) (with b = 0 for reading facilities) D h1,...,hn x(g) t -D h1,...,hn x(g) t = w(h 1 , ..., h n ; g) t -w(h 1 , ..., h n ; g) t

+ d k=1 m j=1 t 0 ∂ k σ ij (x(g) s ) -∂ k σ ij (x(g) s ) D h1,...,hn x(g) s dg s + d k=1 m j=1 t 0 ∂ k σ ij (x(g) s )D h1,...,hn x(g) s d(g s -gs ) + d k=1 m j=1 t 0 ∂ k σ ij (x(g) s ) (D h1,...,hn x(g) s -D h1,...,hn x(g) s ) dg s ,
with w(h 1 , ..., h n ; g) defined above. Using [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF] and the induction hypothesis, we deduce easily that the map g → D n x is continuous, and the map g → x is n times Fréchet differentiable.

Step 2 Equation (20) can be written in the following way Φ i,i1,...,in t (r 1 , . . . , r n ) = γ i,i1,...,in t (r 1 , . . . , r n )

+ d k1=1 t r1∨...∨rn ∂ k1 b i (x s )Φ i,i1,...,in s (r 1 , . . . , r n )ds + d k1=1 m l=1 t r1∨...∨rn ∂ k1 σ il (x s )Φ i,i1,...,in s (r 1 , . . . , r n )dg l s , (31) 
where 

γ i,i1,...,in t (r 1 , . . . , r n ) = n i0=1 A i i0,i1,...,
∂ k1 . . . ∂ kν b i (x s ) Φ k1,i(I1) s (r(I 1 )) . . . Φ kν ,i(Iν ) s (r(I ν ))ds.
Notice that the function Φ i,i1,...,in t (r 1 , . . . , r n ) is symmetric in (i 1 , r 1 ), . . . , (i n , r n ) for any t, i. As we did it for Equation (23) (see Proposition 9), we can show by induction that there exists a unique solution of (31) which is Hölder continuous of order 1 -α in all its variables.

Step 3 Let us show Equation (19).We again proceed by induction. ( 19) is true for n = 1 by [START_REF] Young | An inequality of the Hölder type connected with Stieltjes integration[END_REF]. Assume that it is true up to the rank n -1. For any subset K = {i 1 , . . . , i ν } of {1, . . . , n}, we denote |K| its cardinal and dh K (r(K)) = dh i1 (r i1 ) • • • dh iν (r iν ). Using Fubini's theorem (by the previous step, the integrals are Riemann-Stieltjes ones) and the induction hypothesis we have is a solution of (30) and then it is equal to D h1,...,hn x i t by the existence and uniqueness result for such equations. 

An integration by parts formula

Proof. Assume m = 1. Since R H ϕ is H-Hölder continuous, the left-hand side of (32) is well defined as a Riemann-Stieltjes integral. Let {0 := x 0 ≤ x * 0 ≤ x 1 ≤ . . . ≤ x n ≤ x * n ≤ x n+1 := T } a finite partition such that max i (x i+1 -x i ) < ∆. We write 

T 0 f (r)d(R H ϕ) r = lim ∆→0 i f (x * i ) [(R H ϕ)(x i+1 ) -(R H ϕ)(x i )] = lim ∆→0 i f (x * i ) xi+1 0 [K H (x i+1 , t) -K H (x i , t)] (K * H ϕ) (t)dt = lim ∆→0 i f (x * i ) xi+1 0 ∂K H (
A 2 i .
We subtract A 1 i to A 2 i and we get that

|A 1 i -A 2 i | = f (x * i ) xi+1 x * i ∂K H (r, t) ∂r (x * i ,t)
-∂K H (r, t) ∂r 

(x * i ,t) (K * H ϕ) (t)dt (x i+1 -x i ) ≤ f ∞ K * H ϕ ∞ (x i+1 -x i ) xi+1 x * i ∂K H (
(t -x i ) H-3 2 dt ≤ C(x i+1 -x i ) H-1 2 .
We report the above estimate in (33) 

|A 2 i -A 1 i | ≤ C (x i+1 -x i ) H-

+ a 4

 4 (x g+h r )y r d(g r + h r ) .

∂∂(r 1

 1 ..,in (r 1 , . . . , r n ; s)dh i11 (r 1 ) • • • dh in n (r n ) ds k1 . . . ∂ kν b i (x s ) [0,T ] |I 1 | Φ k1,i(I1) s (r(I 1 ))dh i(I1) (r(I 1 )) • • • • • • × [0,T ] |Iν | Φ kν ,i(Iν ) s (r(I ν ))dh i(Iν ) (r(I ν )) k1 . . . ∂ kν b i (x s )D i(I1) x k1 s • • • D i(Iν ) x kν s , . . . , r n )dh i1 1 (r 1 )dh i2 2 (r 2 ) • • • dh in n (r n )

Lemma 11

 11 Let λ such that λ + H > 1, f ∈ C λ (0, T ) and h ∈ H. Then it holds that T 0 f (r)d(R H ϕ) r = t) (K * H ϕ) (t)dt dr .

  and, as a consequence, H H is the Reproducing Kernel Hilbert Space associated with the Gaussian process B.The injection R H : H → Ω embeds H densely into Ω and for any ϕ ∈ Ω * ⊂ H we have

  h ε1 , ..., h εη ), where D η denotes the iterated Fréchet derivative of order η. Define for i = 1, ..., d and j = 1, ..., mα ij (h 1 , . . . , h n ; s) = k1 . . . ∂ kν b i (x s ) D j(I1) x k1 s . . . D j(Iν ) x kν s ,where the first sums are extended to the set of all partitions I 1 ∪ . . . ∪ I ν of {1, . . . , n}. The n-th iterated derivative satisfies the following linear equation: Now we prove by induction that x is infinitely Fréchet differentiable and (30) holds. The result is true for n = 1 thanks to Proposition 4. Suppose that these properties hold up to the index n. Observe that α ij (h 1 , . . . , h n ; s) is equal to the term corresponding to ν = 1, namelyd k=1 ∂ k σ ij (x s )D h1,...,hn x k s ,plus a polynomial function on the derivatives ∂ k1 . . . ∂ kν σ ij (x s ) with ν ≥ 2, and the functions D j(I) x s , with card(I) ≤ n -1. Therefore, we can apply Lemma 10 with y = D h1,...,hn x, v the vector function whose entries are the products D j(I1) x k1 s . . . D j(Iν )

				d
				∂ k1 . . . ∂ kν σ ij (x s ) D j(I1) x k1 s . . . D j(Iν ) x kν s ,
	I1∪...∪Iν	k1,...,kν =1
				d
	β i (h 1 , . . . , h n ; s) =		
	I1∪...∪Iν	k1,...,kν =1
	n	m	t
	D h1,...,hn x i t =			α ij (h 1 , . . . , h j0-1 , h j0+1 , . . . , h n ; s)dh j j0 (s)
	j0=1	j=1	0
		t		m	t
	+	β i (h 1 , . . . , h n ; s)ds +	α ij (h 1 , . . . , h n ; s)dg j s . (30)
	0			j=1	0
	for i = 1, . . . , n.		

∂

  i0-1,i0+1,...,in (r i0 , r 1 , . . . , , r i0-1 , r i0+1 , . . . , r n )

		d	m	t
	+			∂ k1 . . . ∂ kν σ ij (x s ) Φ k1,i(I1) s	(r(I 1 )) . . . Φ kν ,i(Iν ) s	(r(I ν ))dg j s ,
	ν≥2 I 1 ∪...∪Iν	k1,...,kν =1	j=1	r1∨...∨rn
		d	t	
	+			
	ν≥2 I 1 ∪...∪Iν	k1,...,kν =1	r1∨...∨rn

  r, t) ∂r

									(x i+1 -x i ) (K * H ϕ) (t)dt
									(xi+1,t)
						:= lim ∆→0	i	A 1 i .
	One also have			
	0	T	f (r)	0	r	∂K H ∂r	(r, t) (K * H ϕ) (t)dt dr
							= lim ∆→0	i	f (x * i )	0	x * i	∂K H (r, t) ∂r	(x * i ,t)	(K * H ϕ) (t)dt (x i+1 -x i )
						:= lim ∆→0	i

  1/2+1 ,

	and then				
	0	T	f (r)	0	r	∂K H ∂r	(r, t) (K

* H ϕ) (t)dt dr -T 0 f (r)d( H h) r ≤ C lim ∆→0 i (x i+1 -x i ) H+ 1 2 ≤ C T lim ∆→0 ∆ H-1 2 = 0 , so

(32)

is proved.
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