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Abstract

Learning the parameters of the edit distance has
been increasingly studied during the past few years to
improve the assessment of similarities between struc-
tured data, such as strings, trees or graphs. Often
based on the optimization of the likelihood of pairs of
data, the learned models usually take the form of prob-
abilistic state machines, such as pair-Hidden Markov
Models (pair-HMM), stochastic transducers, or prob-
abilistic deterministic automata. Although the use of
such models has lead to significant improvements of edit
distance-based classification tasks, a new challenge has
appeared on the horizon: How integrating background
knowledge during the learning process? This is the sub-
ject matter of this paper in the case of (input,output)
pairs of strings. We present a generalization of the
pair-HMM in the form of a constrained state machine,
where a transition between two states is driven by con-
straints fulfilled on the input string. Experimental re-
sults are provided on a task in molecular biology, aim-
ing to detect transcription factor binding sites.

1 Introduction

The computation of similarities between data struc-
tured in the form of strings (e.g. words of a language),
trees (e.g. XML documents) or graphs (e.g. biologi-
cal molecules) requires a particular attention. Indeed,
these data can not be directly represented by numer-
ical feature vectors allowing the use of standard met-
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gramme of the European Community, under the PASCAL2 Net-
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rics, that implies the definition of specific similarity
measures. In the string case, for example, among the
existing similarity measures (see [3] for an experimental
comparison of string distances), the edit distance [18]
is probably the most used. The edit distance between
two instances is the cost of the best sequence of edit op-
erations that changes a data into another one. Typical
edit operations are symbol deletion, insertion and sub-
stitution, and to each of them is assigned a cost. The
success of this approach has lead to the design of edit
distance-based kernels for dealing more efficiently with
structured data such as convolution kernels or mapping
kernels [8, 17, 19].

However, tuning the edit costs can constitute a dif-
ficult task in many applications. Supervised learning
methods have then been used during the last decade for
learning the parameters of string edit distances. For
example, some edit kernel-based methods suggest to
directly learn the edit costs calling on an optimization
procedure (e.g. a gradient descent) that needs both
positive and negative instances [16]. Other approaches
consider a probabilistic framework (see [14] or [15]) and
learn a probability matrix associating a probability to
each possible edit operation over the alphabet. These
methods are based on the maximum likelihood princi-
ple and allow us to deal with applications that suffer
from the lack of available negative examples (e.g. in
language processing).

When there is no reason that the cost of a given edit
operation changes according to the context where the
operation occurs, the previous models are sufficient and
very efficient from an accuracy and algorithmic point
of view. However, learning a single matrix of edit costs
can be viewed as insufficient in some applications, par-
ticularly when the operation plays a part more or less
important in the string transformation according to its
location. For instance, in molecular biology, it is com-
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mon knowledge that the probability to change a symbol
s ∈ {a, c, g, t} into another one depends on its member-
ship to a transcription factor binding site. Another ex-
ample, given in [13], states that the characters in an au-
thor’s first name after the first character are more likely
to be deleted than the first character. To deal with
such situations, non-memoryless approaches have been
proposed in the literature in the form of probabilistic
state machines that are able to take into account the
string context. They are mainly based on pair-Hidden
Markov Models (pair-HMM) [2, 6], probabilistic de-
terministic automata [1], or stochastic transducers [7].
The string context is described in each state by a sta-
tistical distribution over the edit operations. Despite
their great interest, these approaches are generative
models, meaning that they do not enable the use of con-
straints or features of the input strings. Thus, they do
not allow the incorporation of background knowledge
during the learning process. For instance, we would
like to be able to integrate prior knowledge such as: “it
is (almost) impossible to have two identical successive
vowels in a french word”. To overcome this drawback,
one can learn conditional (or discriminative) models,
for instance in the form of conditional random fields
[11], that allow us to incorporate arbitrary features on
the input strings. An adaptation has even been pro-
posed in [13] in the context of the edit distance. How-
ever, this approach has two main limitations: First, it
requires the use of positive and negative pairs of exam-
ples of matches of strings. Moreover, this model does
not provide for each state a matrix of edit parameters
that reduces the possibility of knowledge extraction de-
scribing string contexts.

To recap, if each of the mentioned approaches has its
own advantages, no one possesses all the skills required
to have an efficient learned edit model: (i) adaptabil-
ity to the context, (ii) ability to take into account
background knowledge (iii) understandability of the in-
duced model. The objective of this paper is to fill this
gap. We consider a new type of state machine, where
the choice of a transition between two states is driven
by constraints fulfilled by the input string. This model
leads to the improvement of the expressiveness of stan-
dard markovian approaches. We assessed the relevance
of our method with an new experimental evaluation in
molecular biology showing that the set of matrices of
edit parameters learned by our model can constitute an
invaluable knowledge for this public health problem.

The rest of the paper is organized as follows: In
Section 2, we introduce some definitions and notations
about edit distance and edit similarities. Section 3 is
devoted to the presentation of our constrained state
machine, and the way for learning the hidden param-

eters of that model. In Section 4, we study its ex-
pressiveness in comparison with a pair-Hidden Markov
Model. Finally, Section 5 presents our experimental
study.

2 Definitions and Notations

In this section, we give some definitions and nota-
tions that will be useful to present our constrained edit
state machine. First, we suppose that strings are de-
fined over a finite alphabet Σ. λ 6∈ Σ is the empty
symbol. In the following, letters in lowercase denote
symbols of Σ ∪ {λ} while those in uppercase represent
strings built from Σ. As previously mentioned, the core
of our approach is based on the learning of the param-
eters of the string edit distance. In its classical formu-
lation, the string edit distance is evaluated by comput-
ing the minimal set of operations (insertions, deletions,
substitutions) allowing us to transform a string X into
a string Y . Learning the parameters of an edit dis-
tance requires the use of an inductive principle. In the
context of probabilistic machines, the maximization of
the likelihood is often used. In this paper, we follow
the same idea that explains why we are interested in
learning string edit similarities in a probabilistic con-
text rather than learning a true edit metric1.

In our approach, we aim to learn a conditional (or
discriminative) model that takes into account informa-
tion about the input string X . Therefore, the similarity
between two strings X and Y will be assessed from the
estimation of p(Y |X) corresponding to the probability
of generating Y given an input string X . To model this
probability in an edit context, one has to define a sta-
tistical distribution δ over the edit operations used to
transform the strings. For instance, δ(b|a) corresponds
to the probability of emitting an output symbol b of Y

given an input character a of X . If a = λ, the oper-
ation denotes an insertion; If b = λ the operation is a
deletion; The operation δ(λ|λ) is not allowed. To learn
a conditional distribution over the edit operations, the
δ function must fulfill the following condition [14]:

∀a ∈ Σ,
∑

b∈Σ∪{λ}

δ(b|a) +
∑

b∈Σ

δ(b|λ) = 1. (1)

We now focus on the computation of the probability
p(Y |X) from the edit probabilities δ(b|a). Let us first
introduce the notion of probabilistic edit script which
corresponds to the set of edit operations allowing us to
transform X into Y .

1When probabilities are used instead of edit costs, the edit
similarity obtained does not satisfy some standard properties
like symmetry or the triangular inequality.
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Definition 1 An edit script e = e1 · · · en is a sequence
of edit operations ei = (bi|ai) allowing the transforma-
tion of a string X into a string Y . A probabilistic edit
script is an edit script s.t. its probability πs(e) is the
product of the probabilities of the operations involved
in the script: πs(e) = Πn

i=1δ(ei). We define by S(Y |X)
the set of scripts allowing the emission of Y given X.

Definition 2 The probability p(Y |X) of generating a
string Y given an input X is the sum of the proba-
bilities of all the edit scripts transforming X into Y .

p(Y |X) =
∑

e∈S(Y |X) πs(e).

Using standard dynamic programming techniques,
p(Y |X) can be computed in O(|X | × |Y |). Given
p(Y |X), one can then compute an edit similarity be-
tween X and Y .

Definition 3 The edit similarity between two strings
X and Y , conditionally to X, is defined as:
sim(X, Y |X) = − log p(Y |X).

In the following section, we present our constrained
state machines (CSM) whose parameters are the edit
probability matrices. We explain how to learn them
and how to compute p(Y |X) from a CSM using dy-
namic programming procedures.

3 Constrained State Machines

3.1 General Framework

Our constrained state machine (CSM) is close to a
pair-HMM (in fact, we will show in Section 4 that it
is a strict generalization). Indeed, as for pair-HMMs,
a CSM is composed of a set of states linked by tran-
sitions, and for each state a probability distribution
over the edit operations is defined. The main differ-
ence between a CSM and a pair-HMM is the following:
The use of a transition between two states in a pair-
HMM is not conditioned by any constraint, while in
our model it depends on constraints satisfied on the in-
put string X . Each constraint can express conditions
that can be global (e.g. there is an even number

of letters in the string) or local around the let-
ter currently studied in the edit process (e.g. is the

current symbol followed by two letters a?).

In our framework, we assume that each constraint
takes the form of boolean functions; However, in or-
der to have only one possible active transition between
two states, we will impose that exactly one boolean
function is true at any time.

Definition 4 A constraint c is a finite set of boolean
functions ck : Σ∗ × N → {true, false}, 1 ≤ k ≤ m.
Each of these functions is defined over an input string
X and a position t in X. Therefore, ck(X, t) denotes
the boolean value associated by the kth function of c to
the input string X at a position t (0 ≤ t ≤ |X |). A
constraint must respect the following property: for any
X ∈ Σ∗, t ∈ N, there exists exactly one ck s.t. ck(X, t)
is true. In other words, at any moment t, only one
boolean function of c is satisfied.

In pair-HMMs, the probabilities of outgoing transi-
tions from a given state are learned without any prior
knowledge. Whatever the pair of characters treated in
the state, each outgoing transition has a priori a non-
null probability to be used. In order to improve the
expressiveness of pair-HMMs, we aim to incorporate
knowledge during the learning process in the form of
constraints. In our model, an outgoing transition from
a state will be used if and only if a boolean function
ck(X, t) of a given constraint c is satisfied at the instant
t over the string X . To achieve this task, we assign to
each state a constraint, or in other words, the outgoing
transitions from a state will be the different boolean
functions ck of a constraint c. In the following, cqi

will
denote the constraint assigned to state qi.

Definition 5 A Constrained State Machine (CSM) is
a tuple 〈Σ, Q, C, T, δ, π〉 where Σ is a finite alphabet, Q

is a set of states, C is a set of constraints and:

• T : Q × C × Q → [0, 1] defines the probability
of a transition. T (qj|qi, cqi,k(X, t)) will denote
the probability of going to state qj given that we
are currently in state qi and that the constraint
cqi,k(X, t) is satisfied. For a given state qi and a
constraint cqi,k, the outgoing transitions must ful-
fill the following condition:

∑

qj∈Q

T (qj |qi, cqi,k) = 1. (2)

• δ is a family of |Q| matrices. Each element δqi

is the matrix of edit probabilities of state qi. For
each state qi, δqi

must respect the condition (1).

• π : Q → [0, 1] is the initial probability function
which must satisfy the following statistical condi-
tion: ∑

q∈Q

π(q) = 1. (3)

Since we assign to each state one constraint, the fact
that exactly one boolean function is true at any time
allows us to ensure to define conditional distributions
over the input strings.

3



3.2 Computation ofp(Y |X) from a CSM

The computation of the probability p(Y |X) can be
achieved by the forward function described below. Let
X = x1 · · ·xT and Y = y1 · · · yV (x0 and y0 denote
the empty string). The forward function is defined re-
cursively to compute the probability of a prefix of an
output string given the prefix of an input string. This
calculation can be done from any state q ∈ Q. To
simplify the notations, cq,k(X, t) will be noted in the
following cq(xt) without mentioning the kth boolean
function that is satisfied at the tth position of X .

αq(y0|x0) = π(q),
αq(yv|xt) =
(
P

q′∈Q αq′ (yv−1|xt−1) · δq′ (yv|xt) · T (q|q′, cq′ (xt)))v≥1,t≥1

+(
P

q′∈Q αq′ (yv|xt−1) · δq′ (λ|xt) · T (q|q′, cq′∈Q(xt)))t≥1

+(
P

q′∈Q αq′ (yv−1|xt) · δq′ (yv |λ) · T (q|q′, cq′ (xt)))v≥1

Note that the forward function takes into account the
three possible edit operations (substitution, deletion,
insertion). We can also use the so-called backward func-
tion, calculated from the suffixes of X and Y .

βq(yV +1|xT+1) = 1,

βq(yv|xt) =
(δq(yv|xt) ·

P

q′ T (q′|q, cq(xt)) · βq′ (yv+1|xt+1))v≤V,t≤T

+(δq(λ|xt) ·
P

q′ T (q′|q, cq(xt)) · βq′ (yv|xt+1))t≤T

+(δq(yv|λ) ·
P

q′ T (q′|q, cq(xt)) · βq′(yv+1|xt))v≤V

In the computation of the forward and backward
functions, we have to take into account all the pos-
sible states. This implies that the dynamic program-
ming version of these functions can be computed in
O(|Y | × |X | × |Q| × f(X)), where f(X) is an upper
bound of the complexity needed for computing the
boolean functions of the constraints. This complex-
ity is supposed to be polynomial in |X | and generally
linear. Finally, p(Y |X) can be easily computed by us-
ing one of the previous two functions:

p(Y |X) =
∑

q∈Q α(yV |xT ) =
∑

q∈Q π(q)β(y1|x1).

3.3 Learning the Hidden Parameters

To learn the parameters of our model, we need to
learn one matrix δqi

for each state qi of the CSM.
Moreover, we also need to estimate the probabilities
of the transitions and the probabilities π(qi) of entry
in the CSM. To achieve these tasks, we use the well
known Expectation-Maximization (EM) algorithm [5]
that aims to iteratively learn the hidden parameters of
a probabilistic model by maximizing the likelihood of a
learning sample. In our approach, we will use pairs of
(input,output) strings as learning examples. The algo-
rithm runs in two steps. First, an expectation step esti-
mates the expectations of the number of times each edit
operation or transition has been used over the learning

set of pairs. This is done by using the α and β pro-
cedures previously defined. Then, a maximization step
is achieved by normalizing the previous expectations
under the statistical conditions (1), (2) and (3). We
describe each of these two steps below.

Expectation step

The expectation step consists of estimating the expec-
tations of the number of times each edit operation or
transition has been used on the learning set of pairs.

The expectations of the number of times a state is
initial are stored in variables γπq

:

γπq
=

βq(y1|x1).π(q)
p(Y |X) .

The expectation of an edit operation (b|a) occurring
in a state q is accumulated in the variable γδq(b|a):

γδq(yv|xt) =
αq(yv−1,xt−1)·δq(yv|xt)·

P

q′ T (q′ |q,cq(xt))·βq′ (yv+1,xt+1)

p(X,Y )
.

γδq(λ|xt) =
αq(yv,xt−1)·δq(λ|xt)·

P

q′ T (q′|q,cq(xt))·βq′ (yv+1,xt+1)

p(X,Y )
.

γδq(yv|λ) =
αq(yv−1,xt)·δq(yv |λ)·

P

q′ T (q′|q,cq(xt))·βq′ (yv+1,xt+1)

p(X,Y )
.

The expectation of the transitions are stored in vari-
ables γT (q′|q,cq,k):

γT (q′ |q,cq,k) =
αq(yv−1|xt−1)·δq(yv|xt)·

P

q′ T (q′|q,cq,k(xt))·βq′ (yv+1|xt+1)

p(Y |X)

+
αq(yv−1|xt)·δq(yv|λ)·

P

q′ T (q′|q,cq,k(xt))·βq′ (yv+1|xt+1)

p(Y |X)

+
αq(yv|xt−1)·δq(λ|xt)·

P

q′ T (q′|q,cq,k(xt))·βq′ (yv+1|xt+1)

p(Y |X)
.

Note that, for each transition from q to q′, there is
as many variables as there are boolean functions in the
constraint assigned to q.

Maximization step

The maximization step aims to find an optimal nor-
malization under the statistical condition (1). We do
not prove the optimality of this normalization in this
paper, but the principle of the proof relies on a direct
adaptation of the results obtained for the HMM in [5].
We describe below how to normalize the auxiliary vari-
ables presented in the previous section to obtain a con-
ditional distribution:

• For each state q, the initial probability is evaluated
by: π(q) =

γπq
P

q γπq
.

• The transition probabilities are computed by the
following quantity for each starting state q, for
each constraint cq,k and for each arrival state q′:

T (q′|q, cq,k) =
γT (q′|q,cq,k)

P

q′ γT (q′ |q,cq,k)
.

• We now consider the probabilities of the
edit operations in each state q. Let
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N =
∑

a∈Σ∪{λ}

∑
b∈Σ∪{λ} δq(b|a) and

N(a) =
∑

b∈Σ∪{λ} δq(b|a).

For each a ∈ Σ and each b ∈ Σ ∪ {λ}:

δq(b|a) =
γδq(b|a)

N(a) × N−N(λ)
N

.

For each b ∈ Σ, we have also:
δq(b|λ) =

γδq(b|λ)

N(λ) .

4 Expressiveness of CSMs vs pair-

HMMs

A pair-HMM is a tuple 〈Σ, Q, T, δ, π〉 with:
Σ a finite alphabet, Q a finite set of states,
T : Q × Q → [0, 1] the probability of each tran-
sition, δ : Q × Σ ∪ {λ} × Σ ∪ {λ} → [0, 1] the matrices
of edit probabilities for each state and π : Q → [0, 1]
the initial probability function. T , δ and π must fulfill
these statistical conditions:

∀qi ∈ Q,
X

qj∈Q

T (qj |qi) = 1 (4)

X

(a,b)∈(Σ∪{λ})×(Σ∪{λ})\{λ,λ}

δ(b|a) = 1 (5)

X

qi∈Q

π(qi) = 1 (6)

The probability of a pair of strings can be evaluated
by using the classical forward and backward functions.

Note that from Equation 5, in its classical formula-
tion, the edit matrices of pair-HMMs define joint distri-
butions. However, so far, the δqi

(∀qi ∈ Q) we used in
our CSM described conditional distributions over the
edit operations. This property is ensured by the M-step
of the EM algorithm that fulfills the statistical condi-
tion (1) of page 2. Following the same strategy as that
of [15] and [14] in the context of stochastic transducers,
we could also define a pair-HMM with conditional dis-
tributions in each state, and then compare it with our
CSM. Then, the statistical condition (5) is replaced by
condition (1). In a symmetric way, we would only have
to slightly modify the M-step to infer joint matrices δqi

in our CSM to be able to compare it with a standard
joint pair-HMM.

Let us now study the expressiveness of CSM. Before
the presentation of our first result, we introduce the
notion of regular constraint.

Definition 6 A regular constraint is a constraint such
that the result of each of its boolean functions can be
represented by the membership to a regular language.
In other words, each of these functions can be defined
by a finite state machine.

Theorem 1 A CSM with conditional (resp. joint)
matrices δqi

is a strict generalization of a pair-HMM
with conditional (resp. joint) matrices δqi

.

Proof 1 First, we show that any pair-HMM can be
converted in an equivalent CSM. Let A = 〈Σ, Q, T, δ, π〉
a pair-HMM, we build a CSM C = 〈Σ, Q, {c}, Tc, δ, π〉
based on the same structure. The unique constraint
c = {c1} has one unique boolean function c1 : Σ∗×N →
true and is assigned to every state. For any states
qi, qj, we define Tc(qj |qi, cqi,1) = T (qj |qi). By con-
struction, A and C have the same structure and the
same parameters, thus one can easily check that they
define the same distribution.
Second, consider a CSM calling on constraints that can
not be modeled by a regular language (e.g. ck(X, t) is
true if the prefix of size t of X belongs to a non rational
language such as the context-free language {anbn|n >

0}). By definition, these constraints can not be repre-
sented by a finite state machine and thus such a CSM
can not be equivalently represented by a pair-HMM. �

The previous theorem states that a CSM allows us to
deal with non regular constraints, that is not possible
with pair-HMMs.

On the other hand, one can wonder if we could rep-
resent a regular constraint in a pair-HMM by adding
additional states. We are going to show that this trans-
formation is not always possible with Proposition 1.
When it is feasible, we claim that the built pair-HMM
has a more complex structure in terms of both states
and transitions, leading to an increase of the number
of parameters we have to assess during the learning
process.

Proposition 1 CSMs define a more general class of
distributions than pair-HMMs.

Proof 2 By Theorem 1, we already know that any

a→a 1.0
b→b 1.01.0

λ→a 1.0

λ→b 1.0

previous letter is a

1.0

previous letter is b

1.0

Figure 1. Example of a CSM defining condi-
tional distributions not definable by any pair-
HMM. In each state, we only indicate the edit
operations with non zero probability.
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pair-HMM is a special case of CSM. Let us consider
the CSM of Figure 1 with a simple regular constraint on
the letter previously read. This model defines two con-
ditional distributions such that p(aa|a) = p(bb|b) = 1.
We will show that we can not build an equivalent pair-
HMM with conditional matrices δqi

2. Each string pair
admits a set of 5 possible edit scripts, we have respec-
tively for (aa|a) and (bb|b):
S(aa|a) = {[(a|a)(a|λ)], [(λ|a)(a|λ)(a|λ)], [(a|λ)(λ|a)(a|λ)],

[(a|λ)(a|λ)(λ|a)], [(a|λ)(a|a)]},

S(bb|b) = {[(b|b)(b|λ)], [(λ|b)(b|λ)(b|λ)], [(b|λ)(λ|b)(b|λ)],

[(b|λ)(b|λ)(λ|b)], [(b|λ)(b|b)]}.

Suppose that there exists a pair-HMM 〈Σ, Q, T, δ, π〉
that can combine these scripts to obtain the desired dis-
tribution. This would imply that:

∑

q∈Q

π(q)βq(aa|a) =
∑

q∈Q

π(q)βq(bb|b) = 1. (7)

Now, suppose that there exists qi ∈ Q with π(qi) > 0
and βqi

(aa|a) < 1, then

p(aa|a) =
P

q∈Q π(q)βq(aa|a)

= π(qi)βqi(aa|a) +
P

q∈Q\{qi}
π(q)βq(aa|a)

≤ π(qi)βqi(aa|a) +
P

q∈Q\{qi}
π(q) (0 ≤ βq(aa|a) ≤ 1)

<
P

q∈Q π(q) = 1. (βqi(aa|a) < 1 and condition (6))

This implies that p(aa|a) < 1 which contradicts the
target distribution. So, for every state qi with π(qi) > 0
we have βqi

(aa|a) = 1. Moreover, from Equation 7:∑
q∈Q π(q)(βq(aa|a) − βq(bb|b)) = 0.

Then for any qi such that π(qi) > 0, βqi
(aa|a) =

βqi
(bb|b) = 1. Thus, δqi

must have one edit opera-
tion among the first operations of the edit scripts for
each of the two string pairs. Each of these two oper-
ations must have a probability equal to one to ensure
to have the βqi

equal to one. No insertion operation
is possible otherwise condition (1) would be violated by
summing up to two. The only possibility is then to
have exactly one operation conditioned by a (i.e. (a|a)
or (λ|a)) and exactly one conditioned by b (i.e. (b|b) or
(λ|b)). Then, whatever the two edit operations chosen
for qi, it follows from the edit scripts that the next op-
eration is (a|λ) for (aa|a) and (b|λ) for (bb|b). These
two insertion operations must be of probability one in
order to maintain the βqi

equal to one. They can’t be
in the same state otherwise, as mentioned before, con-
dition (1) is violated. Then, they must be in two differ-
ent states which implies to add two different transitions
from qi. Each of these two transitions must be of prob-
ability one to ensure p(aa|a) = p(bb|b) = 1, which is
impossible according to condition (4). �

2We recall that pair-HMMs with conditional edit matrices
must respect condition (1) of page 2 for the δqi matrices, and
conditions (4) and (6) of page 5 for the transitions and the initial
states.

5 Experiments

5.1 Scientific Context

In this section, we propose to assess the relevance
of our CSM on a task in molecular biology. We pro-
pose to consider the problem of detecting Transcription
Factor Binding Sites (TFBS) in sequences of promot-
ers of orthologous genes, i.e. genes having the same
function and related by descent from a common an-
cestor. Here, our objective is to show that using our
CSM, we are able to (i) take into account contextual
information, (ii) integrate some background knowledge
and (iii) infer a stochastic model a posteriori under-
standable by the experts of the domain. It has been
demonstrated [4] that TFBS are under evolutionary
selection, that means that they should have evolved
much more slowly than other non-coding sequences.
This difference in evolution speed can be observed by
comparing sequences of orthologous genes between suf-
ficiently distant species. In terms of edit distance, this
means that such TFBS should be at a closer edit dis-
tance than other regions. Moreover, one can assume
that the edit probabilities involved in a given TFBS
do not differ a lot from another binding site. This
first background knowledge provides us a very useful
information on the structure of the CSM we will have
to build (see next section). TFBS are located within
the promoters regions of eukaryotic genes [20]. In the
present work, we decided to consider as the promoter
region the 500 base pairs (bp) located 5’ of the Tran-
scription Start Site (TSS) [10]. We focused on a list of
orthologous genes from human and mouse extracted by
the BioMart mining tool3 from the Ensembl database.
We obtained the promoter sequences of those genes by
querying the newly released database SQUAT [12] and
using additional information (including the promoter
regions of the corresponding genes) through DBTSS4.
This gave us a list of 13520 pairs of 500 bp of ortholo-
gous promoter sequences.

5.2 Experimental Setup

Using the previous background knowledge on TFBS,
we decided to build a CSM (see Figure 2(a)) with two
states: One for describing the TFBS, called match, and
one for the other regions of the sequence, called mis-
match. Note that the number of TFBS in a given pro-
moter sequence is relatively small in general. Thus, a

3http://www.ensembl.org/biomart/martview/

b0b02309a47c99f8ad5602a6ef398ce5
4http://dbtss.hgc.jp, release hg18 and mm8 for human and

mouse sequences respectively
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mismatch match

(a) CSM that models the search
for TFBS.

λ a c t g
λ 0.0 0.2 0.4 0.2
a 1.2 17.6 29.7 24.5 26.2
c 0.8 24.9 20.7 22.0 30.8
t 1.2 26.1 27.4 16.5 28.0
g 0.8 23.2 32.3 22.9 20.0

(b) Values learned for the mismatch state.

λ a c t g
λ 0.0 0.9 1.3 0.9
a 5.3 80.9 3.1 2.4 5.2
c 2.6 2.2 86.0 3.3 2.8
t 5.8 2.8 5.5 79.9 2.9
g 2.9 3.9 3.2 2.2 84.7

(c) Values learned for the match state.

Figure 2. CSM and learned edit probabilities matrices, the p robabilities were multiplied by 100 for
sake of clarity.

non constrained machine, like a two state pair-HMM,
would not naturally focus on the TFBS regions since
their low frequency will not be helpful to maximize the
likelihood of a learning sample. This leads us to de-
fine relevant constraints in order to force the model to
concentrate on potential TFBS regions. That explains
why we will not compare our CSM with other standard
methods. In order to estimate reasonable constraints
between those states, we explored some characteris-
tics of known TFBS, as found in the TRANSFAC Suite

Databases5 and MATCH [9]. We observed that the core
region of TFBS is often made from a small number of
symbols. This new information drives us to use a con-
straint that takes into account the time we stay in a
state of the CSM. More precisely, we decided to use
a set of 30 boolean constraints ck (k = 1..30), where
ck means “Are we in the current state for k times?”
(except for k = 30, for which the constraint is “Are
we in the current state for more than 30 times?”). We
learned this CSM over the alphabet Σ = {a, c, g, t},
with the EM-based algorithm of Section 3, from a
learning set of 10,000 pairs.

5.3 Result Analysis

The objective of this section is to interpret the re-
sults of our CSM in this molecular biology context.
Figure 3 shows the evolution of the probability to leave
a state according to the time spent in this current state.
The dotted curve describes the probability to go from
state match to state mismatch, the solid one represents
the opposite. We can make the following remarks:

1. First, the convexity of the dotted curve shows that
small (i.e. < 4) and large (i.e. > 27) TFBS are
not highly probable. Indeed, in this case, the prob-
ability to leave the match state is greater than 0.2.
This confirms an hypothesis in molecular biology
stating that the core region of a TFBS is at least
composed of 4 or 5 symbols while remaining a rel-
atively small sequence of symbols.

5http://www.biobase-international.com/pages/ release
2008.3

2. Between the previous two bounds, the probability
to stay in the match state is high (> 0.9). We
can even note that the average size of a TFBS
seems to be about 15 symbols that constitutes a
new interesting knowledge in this area.

3. The solid curve is a monotonic increasing function.
This means that once we are in state mismatch,
the probability to leave this state continually in-
creases. However, contrarily to the previous curve,
the waiting time before leaving does not follow any
regularity. This confirms the biological hypothesis
that regions outside of TFBS have evolved much
more quickly leading to an almost random distri-
bution over the alphabet Σ.
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Waiting time before leaving the current state
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Figure 3. Probabilities to leave match and mis-
match states.

This last remark is confirmed by Table 2(b) that
describes the edit probabilities in the mismatch state
learned after 15 iterations of EM. Indeed, we can note
that the mutations are almost randomly distributed.
Inversely, Table 2(c) shows that more than 80 percents
of the symbols in a potential TFBS are preserved. More
interestingly, we can note that symbols a and t are more
subject to mutations than c and g. Finally, beyond
all these biological considerations, we have verified the
quality of our learned CSM from a machine learning
point of view. Note that in the domain of TFBS detec-
tion, very few labeled data are available. Indeed, even
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Figure 4. Evolution of the perplexity on a test
set.

the experts in biology cannot provide TFBS locations.
Therefore, estimations of true/false rates wouldn’t be
significant. Then, in order to evaluate our model, we
calculated the perplexity on a test set composed of
3,520 pairs of sequences according to the learning set
size (from 100 to 10,000). Figure 4 clearly shows that
the use of an increasing number of learning pairs leads
to the decrease of the perplexity. Moreover, it shows
that our algorithm converges.

6 Conclusion

In this paper, we have introduced constrained state
machines which are able to integrate background
knowledge to compute an edit similarity between pairs
of (input,output) strings. This is as far as we know
the first approach proposing to take into account both
the string context with states and background knowl-
edge on the input strings by learning a conditional
probabilistic model. We think that our model offers
new challenges in many applications where the need of
similarity measures over strings is needed. Indeed, we
have shown that using constraints, we are able to char-
acterize new properties that can not be modeled by
classical pair-HMMs or memoryless transducers. The
experiments carried out on a molecular biology task
has shown the good behavior of our approach. To im-
prove the interest of our model, we plan to use machine
learning techniques to automatically learn the set C of
constraints. Another perspective is to study the adap-
tation of our model to tree-structured data.
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