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ABSTRACT: The productivity and quality requirements have conducted the manufacturing systems to be more and 
more complex. Indeed, many sub-systems are in interaction such that the process system, the control system and the 
supervision or diagnosis system. The dependability and availability analysis in those systems is of a major importance, 
since they impact directly on system’s productivity and safety.  
The aim of this paper is to present a modelling framework based on an extension of Petri nets called Stochastic Activity 
Networks (SANs) that systematically includes the diagnosis performance for the dependability evaluation. The major 
advantage of such formalism is that it allows the modelling of dynamic systems by modelling all their possible states. 
And unlike tools such as automata and Markov processes, the modelling can be done simply and in a compact manner. 
Fault-tolerant systems are considered in here. That is systems including a diagnosis system to allow fault detection, and 
backup system(s) to allow fault-recovery. The systems under study are considered repairable. Monte-Carlo simulation 
study is conducted to show the impact of the diagnosis performance and corrective maintenance actions on the system’s 
availability. 
 
KEYWORDS:  Dependability, Diagnosis, Reconfiguration, Stochastic Activity Networks (SAN). 
 

1 INTRODUCTION 

Dependability analysis is an important problem to deal 
with in modern industrial systems. It is becoming a more 
and more difficult task due to the rapid technology evo-
lution and increasing complexity of the systems, which 
often cause the increase of failures occurrence in the 
system. For manufacturing systems for example, an im-
portant failure rate will induce the availability of the 
system to be low which, at its turn, will reduce the sys-
tem productivity and throughput.  
This is why some sub-systems are added to improve the 
system’s dependability, such that supervision or diagno-
sis systems, and backup systems. The overall system (i.e. 
the one including the process, supervision and backup 
systems) is called fault-tolerant system. The supervision 
system allows the diagnosis of faults. That is the detec-
tion and localization of system’s faults. However backup 
systems allow the reconfiguration of the system when 
faults occur. Obviously, those systems are not com-
pletely reliable. Thus, their performances should be in-
cluded when dealing with the dependability of the over-
all system.  
 
Indeed, the fault detection is based on some diagnosis 
algorithm which defines a procedure to detect a failure 
based on some parameters, called design parameters. The 
choice of those parameters impacts the performance of 
the diagnosis algorithm, and thus the quality of the de-
tection, and thus the actions that will be taken to recover 
from the faults. So these parameters act directly on the 

system’s performance such that availability. This means 
that in one hand, the performance of diagnosis systems 
should be considered explicitly when evaluating sys-
tem’s dependability. On the other hand, the objectives in 
term of system’s availability, safety, etc should be con-
sidered to constrain upstream the diagnosis problem by 
choosing correctly its design parameters. 
 
The diagnosis problem and dependability analysis and 
design problem should be considered jointly in order to 
improve the system’s performances. There are only few 
papers in the literature that deal with the interaction be-
tween supervision and dependability analysis and design. 
For example, Weber et al in (Weber et al., 2007) propose 
a new approach that improves the performance of the 
decision making in fault diagnosis by taking into account 
a priori knowledge of the system/components’ reliabil-
ity.  Aslund et al in (Aslund et al., 2005 and 2007), con-
sider the safety study of fault tolerant control systems 
that include diagnosis subsystem. They propose an ap-
proach allowing the inclusion of diagnosis performance 
in the fault-tree analysis in order to evaluate its impact 
on the overall system’s safety. In the same way, 
Gustafsson et al, propose a method to optimize the detec-
tion threshold based on the previously cited approach 
(Gustafsson et al., 2008). Bonivento et al (Bonivento et 
al., 2006) propose a procedure for evaluating reliability 
of diagnostic systems in terms of capability of not gener-
ating false alarms and missed diagnosis using statistical 
tools. Castaneda et al in (Castaneda et al., 2009) address 
the problem of dynamic reliability estimation of hybrid 
systems modelled by stochastic hybrid Automata. Some 
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diagnosis performances amounts are included in their 
simulation study. Guenab et al in (Guenab et al., 2009) 
deal with the fault tolerant control systems and their re-
configuration. They propose a control strategy that in-
corporates both reliability and dynamic performance of 
the system for control reconfiguration. 
 
In this paper, we propose a method to include systemati-
cally the diagnosis performance when evaluating sys-
tem’s dependability parameters like the availability. The 
systems under study are repairable and fault-tolerant. We 
propose to use the stochastic activity networks (SANs) to 
model the supervised fault-tolerant system, and the 
Monte-Carlo simulation to evaluate the system’s avail-
ability. 
 
This paper is organized as follows: 
In section 2, some tools for the dependability analysis 
are briefly and formally presented. Section 3 presents the 
principle of detection in diagnosis systems and expresses 
the performance amounts that will be used later in the 
paper. Section 4 deals with the inclusion of diagnosis 
performance in the dependability analysis. Static and 
dynamic modeling methods are presented. Section 5 is 
devoted to the simulation study. The model used in 
simulation will be presented and explained. Some simu-
lation results will be reported and discussed. We con-
clude the paper in section 6, where many perspectives of 
our work are given. 

2 DEPENDABILITY ANALYSIS 

The dependability of a system is described by various 
non-functional properties of that system such as, reliabil-
ity, availability, safety and security (Laprie, 1992). It can 
be defined as a property that allows its users to have a 
justified reliance on the service they are delivered. In this 
paper, we are dealing with the availability factor. It is 
defined as the probability that a system is operational at 
the time of interest. 

A variety of classical methods for dependability analysis 
exist (Villemeur, 1988). These include reliability block 
diagrams (RBDs), Markov processes, failure mode and 
effect analysis (FMEA), fault-trees analysis (FTA), Petri 
nets (PNs), Monte- Carlo simulation, etc. Some of these 
methods are static (such as RBDs and FTA) since they 
allow the representation of logic relations. Others are 
dynamic (such as Markov processes, PNs and Monte-
Carlo simulation) and allow the modelling of system 
dynamic states and events. For our needs, only FTA and 
PNs will be briefly presented. 
 
2.1 Static methods: Fault-tree analysis 

A fault-tree arises from the logic diagram that is used to 
analyze the probabilities associated with various causes 
and their effects. FTA starts by identifying a problem 
(catastrophic accident or other undesirable result) and all 
possible ways that a failure occurs. FTA has been widely 

used for the safety and reliability assessment. It is 
equivalent to the structure function which defines for a 
system the set of all components whose failures lead to 
the failure of the global system. Both FTA and the struc-
ture function express the logical relationship between the 
event “failure of the system” and the events “failure of 
component j”. Then, the probability of the first event can 
be easily calculated from the probability of the other 
events (i.e. the failure of its components). An example is 
shown and explained in paragraph (4.1). 
 
2.2 Dynamics methods: Petri nets 

2.2.1 General definitions  
Petri nets are used for the modelling and validation of 
discrete event systems in which concurrency, 
communication, and synchronisation play a major role. 
They are widely used as a tool for analyzing the safety 
and dependability of complex systems. First developed 
by Adam Petri in the 1960s, Petri nets have become a 
powerful and generic tool for modelling and simulation 
(Cassandras and Lafortune, 1999).  
Formally, a Petri net structure is a directed weighted 
bipartite graph defined by a 4-tuple N=(P, T, Pre, Post), 
where T and P are two distinct sets of vertexes (see fig-
ure 1). T={t1, t2,…tn} is a set of transitions, and P={p1, 
p2, …pk} is a set of places. A transition can be seen as an 
event or an action, and a place represents the condition 
for the event or the consequence of it. Pre and Post are 
two applications, defined from the set of arcs to the set 
of natural numbers :  
pre (Pi, Tj):  PxT   and post (Ti, Pj): TxP   . 
They define the valuation of arcs relating places to tran-
sitions (Pre) and transitions to places (Post). If 
pre (Pi,Tj)=0 (resp. post (Ti,Pj)=0) there is no arc relat-
ing Pi to Tj (resp. Ti to Pj). Arcs from P to T are called 
input arcs and arcs from T to P are called output arcs. A 
marked Petri net is a 5-tuple Nm=(P, T, Pre, Post, M0), 
where M0 is the initial marking of the Petri net represent-
ing the initial state of the system. It is a k-dimension 
vector, where k is the number of places. A marking vec-
tor could be written as: M=(m1, m2, …mk)`, where mi is 
the marking of the place i and indicates the number of 
tokens in that place. A place with (or without) a token 
indicates that the state represented by the place is true (or 
false). 
 
 
 
 
 
 
 
 
 
 
Figure 1: An example of Petri net with three places and 

transitions (k=3 and n=3) 
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2.2.2 Stochastic activity networks  
Stochastic activity networks (SANs) are stochastic ex-
tensions to Petri nets. They were first introduced by 
Mogavar et al., (Mogavar et al., 1984). SANs have the 
modelling power of Petri nets and allow a compact rep-
resentation of systems. They consist of: places, activi-
ties, input gates and output gates.  
- Places can be seen as a state of the modelled system. 
Each place of a SAN contains a certain number of tokens 
which represents the marking of the place. Places are 
represented graphically by circles. 
- Activities represent actions of the modelled system that 
could take some specified amount of time to complete. 
They are similar to transitions in ordinary Petri nets, and 
are of two types: timed and instantaneous. Timed activi-
ties have durations that impact the performance of the 
modelled system such as a packet transmission time. 
This duration can be stochastic. Instantaneous activities 
represent actions that complete or fire immediately when 
enabled in the system. Activities are graphically repre-
sented by thick lines for the timed ones, and thin lines 
for the instantaneous ones. Unlike autonomous Petri 
nets, SANs allow the use of uncertainties associated with 
the completion of an activity. It is called Case probabili-
ties, and is reprensented graphically by small circles on 
the right side of an activity (see Figure 2). Each case 
stands for a possible outcome, such as a routing choice 
in a network, or a failure mode in a faulty system. So 
each activity in the SAN can have a probability distribu-
tion associated with its cases. Moreover, this distribution 
can depend on the marking of the network at the moment 
of completion of an activity. This shows how SAN could 
be a high level modelling formalism. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
- Input gates are used to control the “enabling” of activi-
ties. An activity is enabled when the conditions, called 
predicates, of all input gates connected the activity are 
true. They are graphically represented by triangles, with 

the flat side inside connected to the activity via its input 
arc (figure 2). 
- Output gates are used to change the state of the system 
when an activity “completes” by defining the marking 
change that will occur. They are graphically represented 
by triangles, with the flat side inside connected to the 
activity via its output arc (Figure 2). 

3 DIAGNOSIS PERFORMANCE 

The diagnosis system is a key component in fault-
tolerant control system. Indeed, it allows the detection of 
abnormal functioning of components which is in charge 
of. One common way in performing diagnosis is the use 
of a set of tests ri, called residuals, and to compare them 
to a threshold Ji. These residuals are fault indicators and 
are defined as the difference between the measured 
values of some system’s variables and the expected ones, 
estimated from the system’s fault-free model (Figure 3). 
 
 
 
 
 
 
 
 
 
 
Several methods to perform residual generation and fault 
detection are proposed in literature (Weber et al., 2007). 
A residual ri is designed such that ri is small if the system 
to be diagnosed is okay (OK) and large otherwise. This 
test quantity is compared to a predefined threshold Ji and 
if then the test is said to alarm and the process to 

be diagnosed is said to be not okay and will be denoted 
“KO”. Otherwise the system will be considered OK.  

ii Jr 

The residuals are always corrupted by noise, which 
affects the decision making. The performance of such 
tests and the efficiency of detection are related to the 
probability of two events: false alarm (FAi) and missed 
detection (MDi). 
In statistical theory, the hypothesis “the component i is 
OK” is called the null hypothesis of a test and is 

denoted . Its complementary hypothesis, i.e. “the 

component i is KO” is denoted . The events: good 

detection (D), false alarm (FA) and missed detection are 
related to the residuals value and whether the null 
hypothesis is true or not as depicted in table 1: 

0
iH

1
iH

 
 
 
 
 
 
 
 
 
 

System 
Inputs Outputs 

Residuals 
generator 

ri 

Figure 3: Example illustrating the residuals generator 

0
iH is accepted : ii Jr   

0
iH is rejected : r  ii J

0
iH is true 1

iH is true 

Ok MDi 

FAi Di 

Table 1: Definition of FA and MD events 

Place Instantaneous 
activity 

Timed 
activity 

Case probability 
activity (2 cases)

Input gate Output gate

(a) SAN’s elements 

(b) An example of SAN model 

Figure 2: Presentation of stochastic activity networks 
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The probability of the events FAi and MDi is: 
)()( 0 trueHJrPFAP iiii   

)()( 0 falseHJrPMDP iiii   

A typical example of the evolution of FA and MD 
probabilities according to the threshold is given in Figure 
4. 
 
 
 
 
 
 
 
 
 
 
 
The choice of threshold adjusts the compromise between 
a small FA probability and a small MD probability. 
 

4 DEPENDABILITY OF FAULT TOLERANT 
SYSTEMS INCLUDING DIAGNOSIS 
PERFORMANCE 

From the preceding section, it appears clearly that the 
diagnosis performances should be considered when 
evaluating the system’s dependability parameters since 
decisions are taken according to diagnosis resulting 
events (reconfiguration when D and FA, corrective 
maintenance actions, etc.) 

4.1 Static modeling 

In (Aslund et al., 2007), the authors propose a method to 
include the diagnosis performances when evaluating the 
safety of a fault-tolerant system. They propose the use of 
fault-tree analysis, which is a systematic way to investi-
gate credible causes for an undesired event in a system to 
happen. As said before, a fault-tree presents the logical 
relationships between the undesired event and the basic 
events leading to it (Figure 5).  
 
 
 
 
 
 
 
 
 
 
 
 
 
In the example of Figure 5, the system fails if its compo-
nent C1 and one of the components C2 or C3 fail to-
gether. The probability of the top event (system failure) 
to occur can be computed if the probabilities of the basic 

events are known. Here, events ei (i=1,3) represent the 
failure of component Ci. 
In order to improve system’s reliability by decreasing the 
probability of system’s failure, diagnostic and backup 
systems are always added. Hence, the system is OK if 
the original one is OK, or if the backup system is 
switched on and is OK. The switching depends on the 
diagnosis results. Hence, the probabilities of D, FA and 
MD, the same as the failure probability of the backup 
system could be added into the fault-tree of the overall 
system as depicted in the example of Figure 6. In this 
example, the component under diagnosis study is C2 and 
the backup system is C4. When an alarm A occurs, the 
system switches from the original one to C4. 

Fig

An alarm will occur if C2 fails and the diagnosis will 

succeed in detecting it (i.e. we have )( 2 MDe  ), or C2 is 

okay and the diagnosis algorithm detects a failure (i.e. 

we have )( 2 FAe  ). 

ure 4: The probabilities of FA and MD as func
tions of the threshold size 

-

The global system will fail if the original one fails and 
no alarm is generated, or when an alarm is generated, the 
backup system is switched on but it is out of service 
(Figure 6). 
 
The probability of the top event depends now on the di-
agnosis performances. When evaluating this probability, 
the repeated events in the tree should be considered care-
fully. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 6: The fault-tree of the preceding example 

including diagnosis performances  
 
 
4.2 Dynamic modelling 

The major drawback of the preceding method is that it is 
suitable only for un-repairable systems and uses a static 
model. Also, it is only suitable for systems whose 
backups are in active or hot redundancy, i.e. they operate 
simultaneously with the original ones from time zero.  
Static fault-trees are not suitable to model components 
that are in cold standby redundancy since they are 
sequentially used in the system at failure times (Kuo et 
al, 2001). Sequential or dynamic models should then be 
used. In what follows, we propose a dynamic model 
based on stochastic activity networks, to model the 

Figure 5: An example of a fault-tree of a three 
components system 
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system’s behavior including the diagnosis and backup 
systems. The SAN have the advantage of being able to 
model dynamic behaviors, various redundancy 
arrangements and maintenance actions when the 
considered systems are repairable.  
The proposed method will be explained on the example 
presented previously in Figures 5 and 6. 
Basically, a Petri net or a SAN can be built based on the 
system’s fault-tree. The following guidelines allow the 
systematic construction of a SAN model based on the 
logical relationship between the failure of a system and 
the failure of its components: 
Step 1: each component Cj can be represented with a set 
of two places: {Cj_OK, Cj_KO}, where a token on place 
“Cj_OK” (resp. “Cj_KO”) means that component Cj is 
OK (resp. not okay or KO). These two places are related 
to each other by a timed transition or activity called 
“Panne j” representing the failure of component j. 
“Panne j” is represented in Figure 7 with a bold line. The 
duration could be stochastic (according to an exponential 
distribution function for example). 
 
 
 
  

 
Figure 7: the modeling of a physical component 

 
The marking of those places is binary (i.e. one token at 
most) and are mutually exclusive since a component is in 
one state or another (i.e. okay or failed). 
Step 2: when the failure of two components or more is 
necessary to conduct the system S to fail, which could be 
represented by an AND logic gate, an activity with 
several input places will be used as depicted in Figure 8. 
 
 
 
 
 
 
 
 
 

Figure 8: Petri net modeling the logic operator AND 
 
Step 3: when the failure of one component in a set of 
components is sufficient for the system to fail, which 
could be represented by an OR logic gate, a place 
modeling the failure of a system with many input 
transitions is used as shown in Figure 9. 
 
 
 
 
 
 
 
 

Figure 9: Petri net modeling the logic operator OR 

Step 4: the diagnostic system is considered as a system 
which will deliver three possible events: D for good 
detection of faults, FA for false alarm and MD for 
missed detection. It could be modeled by a place, called 
“ALGO”, having an initial marking of one token, and 
three output transitions. Each transition will be given 
some firing rate based on the probabilities of D, FA and 
MD events. Only one transition should be enabled and 
can fire at a time since all these transitions are in a 
conflict. The autonomous Petri nets and their 
corresponding software tools cannot handle conflicts but 
fortunately the SAN does. In fact, when a structural 
conflict is modeled in a Petri net, this latter must be 
assorted with a policy to handle this conflict. However, 
with stochastic Petri nets, such policy is not necessary 
since the conflict is cleared up thanks to the stochastic 
aspect. Indeed, in stochastic Petri nets, the events that are 
associated with the conflicting transitions form a 
complete system of events, i.e. they are mutually 
exclusive (Cf. law of total probability). Thus, when 
enabled only one of them will be fired. With SANs, the 
three previous transitions associated to the mutual 
exclusive events D, FA and MD, can be replaced by one 
activity having several cases and thus, several output 
arcs (see section 2). Each output arc will be related to an 
output place representing the fact that: a default is well 
detected (place Detect), or missed (place MD) or 
detected however it doesn’t exist (place Alarm). Each 
case is given a probability to be chosen to fire (and the 
corresponding output arc to be selected) such that the 
sum of all cases probabilities is 1 (see Figure 10). 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: The modeling of the diagnosis system and its 

performance 
 
Each of the places {MD, Alarm, Detect} are related to 
some activities of some sub-models to contribute to their 
enabling. 
Step 5: the backup system BS is also modeled by a set of 
two places {BS_OK, BS_KO} modeling the fact that it 
could be okay or failed, as described in step 1. The only 
difference with the components of step 1, is that the 
initial marking of the preceding places depends on the 
redundancy policy of the backup system.  
If the backup system is used in an active redundancy 
with the original system, then the place BS_OK will 
have an initial marking of one token (see step 1). 
Otherwise, if passive redundancy is used, the initial 
marking of the both places is zero. A token will be added 
to BS_OK only when the diagnosis system detect a fault 

C1 C2 

S 
S_Ko 

C1_Ko C2_Ko

  

  

S_Ko 

C1_Ko C2_Ko 
C1 C2 

S 

ALGO

MD 

Alarm

Detect 

P(MD) 

P(FA) 

1-P(MD)-P(FA) 

Cj_OK 

Panne j 

Cj_KO
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whether the detection is good or not (i.e. the place Detect 
or Alarm is marked). Then, the marking of “BS_OK” 
could change to zero if the backup system fails, or if 
some corrective maintenance actions are undertaken. 
Indeed, if the component which is considered by the 
diagnosis system is repaired after fault detection, then 
the backup system could be switched off.  
These last remarks, define in some way how the place 
BS_OK should be related to some output activities other 
than the failure transition “Panne BS”. This situation is 
illustrated in the simulation model of the next section.  
Step 6: The models of components, including the 
diagnosis system, are combined with each other 
according to steps 2 and 3, in order to form the overall 
system. 
 
Our procedure is a generic one and can be used to derive 
a a SAN model of any fault tolerant system including a 
diagnosis subsystem. This is possible for example using 
FMEA method to describe the way that the elementary 
events like components failures propagate through the 
system to give a rise to the undesired event: the system’s 
failure. However, the dynamic aspect of these events can 
be modeled with Petri nets thanks to the markings and 
the temporal dimension.  

5 SIMULATION STUDY 

To drive our simulation study, we used Möbius 
software tool developed at university of Illinois for 
modeling complex systems behavior. It is a successor of 
UltraSAN tool and was originally developed for studying 
the reliability, availability and performance of computer 
and network systems. After that, its use has expanded 
rapidly. The Möbius tool is an environment that supports 
multiple modeling formalisms such as fault-trees and 
stochastic activity networks. All our models were 
developed using Möbius tool. 
 

5.1 Description of the SAN model 

The system considered in our simulation study is the one 
used in (Aslund et al., 2007) and presented in section 3.  
We developed a stochastic activity network associated to 
this system according to our algorithm explained in the 
paragraph (3.2). Each couple of places (Ci, CiKo) is 
associated to component Ci to describe its two states: 
okay and failed (i=1, 4). In this example, C2 is the 
component supervised by the diagnosis system. The 
diagnosis system is modeled here by 4-tuple of places 
(Diagnostic, MD_C2, Alarme, Detect) constructed as 
previously explained (§3.2). the performances of the 
diagnosis algorithm (i.e. P(MD), P(FA) and P(D)) are 
defined in the Case probabilities of the instantaneous 
activity called “algo”. The marking of the place “Detect” 
models the fact the C2 fails and the failure is well 
detected by the diagnosis system. Marking the place 
“Alarme” implies that a failure on C2 was detected 
however it is okay. Place “MD_C2” marked implies that 
C2 is failed and it wasn’t detected by the diagnosis 

system. But the failure of C2, even if it’s not detected, 
will contribute to the failure of the original system if C1 
fails too. This is why the place “MD_C2” is related to 
the activity named “Panne12”. This activity has also the 
place “C1Ko” as an input place. The place “Sys_Orig” 
models the failure of the original system as shown in the 
fault-tree of Figure 5. It will be marked when “Panne12” 
or “Panne13” completes. The notation “Panneij” means 
that “Ci” and “Cj” are both failed.  
When an alarm is produced by the diagnosis system, 
whether the system is okay or not, will conduct the 
original system to switch into its backup system C4. In 
that case, there are two possibilities: C4 is in an active 
redundancy with the original system, or in passive 
redundancy. Also, when an alarm occurs and the backup 
system is switched-on, corrective maintenance actions 
could be undertaken on the component C2 considered as 
failed. So there are 4 possible solutions according to 
whether C2 is maintained or not, and C4 is in active or 
passive redundancy. We have derived 4 different SAN 
models to describe each solution. The model of Figure 
11 is the one where C4 is in passive redundancy and C2 
is repaired. This is modeled by the place “maint_C2” and 
there are two ways for a token to arrive there: by the 
firing of the activities “maintenir1” if good detection, or 
“maintenir2” if false alarm. 
Since C4 is considered in passive redundancy, no one of 
its associated places “C4” and “C4Ko” is initially 
marked. Place “C4” will be marked to model the 
switching to the backup system when an alarm is 
produced, that is by firing “maintenir1” or “maintenir2”. 
Therefore, “C4” is also an output place for those two 
activities. Place “C4” has two output activities: “Panne4” 
modeling the failure of C4 and “maintC2” modeling the 
end of the reparation procedure on C2. If “maintC2” 
fires before “Panne4”, then the token in “C4” will be 
removed to model the switching-off of component C4. 
Otherwise, this token is removed from “C4” and is added 
to “C4Ko” modeling the failure of C4. This will lead 
obviously to the failure of the system (firing of 
“Panne24”). Notice that there are two input gates “I1” 
and “I2” on arcs relating places “C1” and “C3” to their 
output activities “Panne1” and “Panne3”. These input 
gates allow the enabling of their associated activities 
only when the backup system is switched off (i.e. the 
currently running system is the original one). The 
predicate (i.e. the logical condition) defined in those 
input gates is that the marking of “C4” and “C4Ko” is 
null. Since we are interested in repairable systems, a 
place modeling the maintenance actions on the global 
system called “Panne” is defined in the SAN model (see 
Figure 11). It has a timed output activity called 
“Reparation” which models actually the maintenance 
actions. This activity is related to an output gate called 
“alimentation_en_jetons” which defines the way the 
tokens are added to all the output places. When place 
“Panne” is marked, it means that the system or its 
backup is out of service. Then, maintenance actions are 
undertaken to repair the overall system, by repairing all 
its failed components.  
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To model that, tokens will be added only to places “Ci” 
where the couple (Ci, CiKo) is not marked (i=1, 4). This 
is the output condition defined in the preceding output 
gate. 
Notice that activities “Pannej” (j=1, 4), “maintC2” and 
“reparation” are all timed. We choose exponential 
distribution for the delays of “Pannej” of a constant rate 
j, and a uniform distribution for “maintC2” and 
“reparation”. 
 
5.2 Simulation results 

To evaluate the impact of diagnosis performance on 
some performance amounts of the system such as its 
availability, we conducted a Monte Carlo simulation on 
the SAN model described before and another model 
where C2 is not maintained if an alarm is generated. This 
last one is not presented here. Only its simulation results 
will be given. 
Planning Monte Carlo simulations with Möbius is easy. 
There is a solving interface which allows the definition 
of the simulation parameters such that the number of 
histories to be simulated, the stopping criterion… 
The stopping criterion that we used is an upper bound on 
the discrepancy between the results of the simulations (in 
our study, it is fixed to 10-3). We also chose to simulate 
at least 50000 histories and at most 800000 histories. 
This means that the simulator will stop if one of the two 
preceding conditions is fulfilled. The time duration of 
each history Th is 20000 time units. 
Table 2 shows the values of the timed-activities 
distribution function parameters used in our simulation 
study. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: The SAN model of the fault tolerant system of [Aslund] including maintenance actions 

 

 
Table 2: Distribution functions of the timed activities 

 
In table 2, 1 and 1 (resp. 2 and 2) denote the lower 
and upper bound of the uniform distribution associated 
with the timed activity “maintC2” (resp. “reparation”).  
 
Many simulations were conducted with different values 
of the probabilities FA, MD and D (good detection). For 
that, we fixed the probability of detecting successfully an 
alarm (event D) to 80% and we varied the values of 
P(FA) and P(MD). We also considered the case where 
the hypothesis that the failure detection is done with 
certainty (i.e. P(D)=1). Even if it’s false, this hypothesis 
is still widely used in the literature.  
The simulation results are reported in table 3. 
 
The statistics collected in table 3 are: 
- The average of the time occupation Tpanne of place 
“Panne” in the SAN model, calculated over 50000 
histories. It is reported in each cellule of the table in 
black thin line. 
- The system’s mean availability A, calculated 

according to the relation: 100)1( 
h

panne

T

T
A , where Th 

is the simulation duration (equal to 20000). The system 
availability is reported in each cellule of the table in red 
bold line. 
 

Exponential distribution Uniform distribution 

1 2 3 4 1 1 2 2 

0.0009 0.009 0.0005 0.004 5 20 10 50 



MOSIM’10 - May 10-12, 2010 - Hammamet - Tunisia 

 
Table 3: The results of Monte-Carlo simulation for 

different diagnosis performance values 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12: Availability evolution according to the false 

alarm rate 
 
From table 3 and Figure 12, many remarks can be done: 
First, we can clearly see that if the probability of good 
detection is set to a fix value (here 80%), when the 
probability of false alarm increases, the system’s 
availability decreases since the time occupation of place 
“Panne” increases. This can be seen for both models (i.e. 
with and without maintenance on C2). This can be 
explained by the fact that a great rate of false alarms will 
lead the system to switch a lot to its backup system. This 
makes the system more vulnerable since if the backup 
system fails, the system does too, while the original 
system is switched-off but is actually okay. Notice also 
that the backup system is less reliable than the original 
system (see table 2 and the fault-tree of Figure 5). 

Second, if we compare the fourth and fifth columns to 
each other, it can be seen that the availability of the 
second model is greater to the one of the first model. 
This is due to the fact that each time an alarm occurs, the 
backup system is turned-on and a corrective maintenance 
action on C2 is rapidly undertaken. And when C2 is 
repaired, the system switches from the backup system to 
the original one. This policy increases the system 
availability compared to the one of not maintaining C2. 
Notice however that when the false alarm rate is 
important (19%), the two models availabilities are quite 
close. In fact, when the false alarm rate is important, 
maintaining C2 will not improve the system’s 
availability greatly in comparison to the first model. 
Indeed, the system will already switch to the backup one 
and much time will be spent trying to repair C2 even if 
it’s okay.  
Third, we can see clearly that the generally used 
hypothesis that considers that failure detection is done 
with certainty is too optimistic provided that the system 
availability is greater than in any other cases and this, for 
both models.   
In this paper, we are not interested in the cost of 
maintenance, but it could be integrated in the model and 
may offer a good performance indicator. 
The simulation run time varies from few seconds for the 
SAN model with no maintenance actions on C2 (model 
1) to few minutes for one where C2 is maintained (model 
2). For example, when P(FA)=P(MD)=10%, the run time 
is of 71.148 seconds for the model 1 and 171.486 
seconds for model 2. The model 2 takes more time in 
execution since some transitions are fired much more 
times than the ones in model 1 and thus, these models 
don’t behave similarly. For example, the transition 
“Maintenir1” is fired in average 22.48 times in model 1 
and 120.36 times in model 2 that is at least five times 
more. The same thing can be said for transition 
“Maintenir2”. This is due to the fact that C2 is 
maintained each time an alarm is generated and the more 
it is repaired, the more it is prone to fail again. These 
simulations were done on an Intel® core™ Duo CPU 
with a clock speed of 2.26 Ghz.  

6 CONCLUSION 

The aim of this paper was to propose a modelling 
framework based on stochastic activity networks (SAN) 
to model a fault-tolerant system in order to evaluate its 
dependability parameters. We showed how the 
performances of diagnosis system could be taken into 
account when constructing a dynamic model for a fault-
tolerant system. We proposed a method for model 
construction which systematically includes diagnosis 
performances when the system’s structure function is 
known. This implies of course that a dependability 
analysis should be done upstream.  
We presented also our simulation model for a fault-
tolerant system, where two policies were applied: 
maintenance and no maintenance on the supervised 
component. Monte-Carlo simulations were conducted in 

P(FA) P(MD) P(D) 
C4 in passive 

redundancy & No 
maintenance on C2 

C4 in passive 
redundancy & 

maintenance on 
C2 

1627.90006 498.80672 
0% 0% 

100
% 91.860 % 97.500 % 

1874.97116 712.11297 
1% 19% 

80
% 90.625 % 96.439 % 

2040.36759 928.01575 
10% 10% 

80
% 89.798 % 95.359 % 

2135.33026 1404.29971 
15% 5% 

80
% 89.323 % 92.978 % 

2204.40272 2092.47972 
19% 1% 

80
% 88.977 % 89.537 % 
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both models to evaluate the average of the system’s time 
duration failure and the system’s mean availability.  
Some simulation results were reported in the paper and 
show the impact of each policy on the overall system’s 
availability. As predicted, corrective maintenance actions 
on the supervised component improve the availability of 
the system. 
The simulation results show also that when the 
probability of false alarm increases, the availability of 
the system decreases, and thus for both models. This is 
due to the fact that detecting a fault falsely will conduct 
the system to switch to its backup system which makes 
the system less reliable. It also means that it is better to 
miss the detection of some faults than to detect them 
wrongly.  
There are many perspectives to this work that we intend 
to work on. For example, since we are using the Petri 
nets (or SANs) formalism which is a very flexible 
modelling way, states other than “Ok” and “not Ok” 
could be considered to take into account some degrading 
modes of components/system.  
Also, the cost analysis study could and should be 
considered when maintenance actions are provided. 
Components time degradation could be also considered. 
We also generally suppose that the switching on and off 
is done instantaneously and with certainty however, this 
isn’t always true. Thus, a probability of successful 
switching could be considered in the model.  
Another perspective of this work is to make a feedback 
from such a dependability evaluation to the diagnosis 
problem in order to constraint the design of the diagnosis 
threshold J based on its impact, via FA and MD, on the 
system’s performance such that availability. We are also 
planning to evaluate with numerical simulation the 
impact of the threshold (instead of FA and MD events) 
on the dependability factors. 
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