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ABSTRACT 

In this work a simple cylindrical structure with a stiff needle-like inclusion embedded 

within a much softer matrix is presented and analysed with the aim of obtaining a 

system with tuneable thermal expansion properties. It is shown that by the correct 

combination of the thermal and mechanical properties of the matrix and inclusion, it is 

possible to design a system which can be tailor-made to exhibit particular values of the 

coefficient of thermal expansion (CTE) in the radial direction and also negative thermal 

expansion (NTE). In particular an analytical model to quantify the radial strain with 

changes in temperature is derived and verified through finite element analysis. The 

model is used to find correct property combinations which lead to particular values of 

thermal expansion which could also be negative or zero. 

 

Keywords: B: mechanical properties; B: thermal properties; C: Finite Element Analysis 

(FEA); OTHER: negative thermal expansion 
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Introduction 

It is a well known fact that most materials which we encounter in everyday life expand 

on heating and contract when cooled, a property which may be explained by looking at 

interatomic distances [1-2]. This subject of thermal expansion is one of great practical 

importance and has been studied for many years since miscalculations of the 

temperature effects may lead to disastrous consequences.  

 

Expansion in a material may be one of two forms: isotropic or anisotropic. In isotropic 

expansion, the material expands by the same extent in any direction (isotropically) upon 

heating whilst if the extent of expansion is dependent on the particular direction where 

the measurement is taken, then the expansion is referred to as anisotropic expansion. To 

quantify thermal expansion in some particular direction one may make use of the linear 

coefficient of thermal expansion, henceforth referred to as CTE which may be defined 

as α which relates the resultant strain ε as a result of a change in temperature of dT 

through dTε α=  

 

As noted above, in most cases, materials expand when heated, i.e., ε  is positive for a 

positive dT  (i.e. as T increases) with the result that the CTE is positive. However, it 

should be noted that materials which defy common expectation and contract when 

heated do exist [3-19]. It should also be noted that for anisotropic systems, different 

values for the CTE will exist, depending on the direction of measurement and it is 

possible that a system exhibits negative thermal expansion (NTE) in some but not all 

directions. Over the years, there have been various studies aimed at designing, 

analysing, manufacturing and/or testing of materials and structures having very 
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particular CTE values, in particular, studies looking at systems, including composites 

exhibiting NTE [3-21]. Some of these studies have considered the possibility of 

generating very low or negative thermal expansion in structures constructed from 

conventional materials. These systems, which are constructible at any lengthscale, 

include those proposed by Clegg et al. [17-20] and Lakes et al. [21] and have the 

advantage that they are relatively easy to construct at reasonable costs and thus have 

excellent potential for commercialisation. Alderson et al. [22] have also proposed a 

method for achieving these effects using auxetic materials (i.e. materials exhibiting 

negative Poisson’s ratio). Normally, such systems also offer the added advantage that 

they can be tailor-made to exhibit any desired thermal expansion properties (positive, 

negative or near zero) through careful choice of the geometric parameters and/or 

materials used in the construction. Furthermore, such systems are also of interest in 

view of the fact that they can be engineered to exhibit other interesting macroscopic 

properties, e.g. negative Poisson’s ratio [23-25] with the result that one achieves 

multifunctional systems with obvious added value.   

 

In this paper we propose and discuss a novel system constructible at any lengthscale 

including the microscale from conventional components having different mechanical 

and thermal properties which may be combined to form composite systems which 

exhibit any desired CTE values, in particular negative ones (NTE).  

 

2. The Concept 

For simplicity, to illustrate how systems operating through the proposed mechanism can 

be designed to exhibit NTE, we shall first consider a simple and basic system and 
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predict the optimal requirements for it to exhibit this effect. The system which is shown 

in Fig.1 consists of a cylindrical rod of length l and radius r made of a material B which 

is embedded inside another cylindrical shell of thickness t made from a material A 

having different thermal and mechanical properties with all dimensions being measured 

at a reference temperature T.  

 

--- Insert Fig. 1 here --- 

 

Assuming that materials A and B are perfectly bound to each other at the interface and 

that they are isotropic with respect to their thermal and mechanical properties, when the 

system is subjected to a change in temperature ∆T, both materials expand or contract in 

volume accordingly, each at a different rate. Since the materials are bound to each other, 

they cannot expand freely and as a result, each of them exerts forces on the other. In 

particular, the material with the higher CTE exerts a tensile force in the longitudinal 

direction on the material having the lower CTE and conversely the latter exerts a 

compressive force on the former resulting in a mechanical strain. This strain in turn 

gives rise to an additional strain in the radial direction, the magnitude of which is 

dependent on the Poisson’s ratio (henceforth referred to as the Poisson’s effect). This 

causes a contraction (or an expansion) in this direction and unless the Poisson’s ratio of 

the materials is zero, this Poisson’s effect may have significant contributions to the 

overall radial strain and therefore should not be neglected. 

 

In addition, to further simplify our analysis, we shall also assume that: 
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(1) the inclusion has a needle shape, i.e. the length is much larger compared to its 

thickness so that changes in dimension arising from the Poisson’s effect due to 

expansion in the radial direction can be ignored since they are negligible when 

compared to that resulting from a longitudinal expansion; 

(2) the Young’s modulus of the outer cylinder (i.e. the matrix) is much smaller than 

that of the inclusion and thus additional mechanical strains in the radial 

direction arising due to mismatch of the CTEs can be neglected.  

(3) No necking effects occur during deformation. 

Thus, in the analytical model it is being assumed that the strain at the interface is only 

dependent on the thermal expansion and Poisson’s effect of material B i.e. the inner 

circumference of material A expands accordingly to accommodate the changes in the 

outer circumference of material B thereby satisfying the boundary condition of the 

interface (and therefore eliminating gaps or unrealistic overlaps). 

 

In this way, it is possible to derive a simple expression for the radial strain by taking 

into consideration only the radial thermal strain and the additional radial mechanical 

strain arising from the Poisson’s effect due to expansion in the longitudinal direction. 

Taking first the longitudinal strain lε  into consideration, it can be quantified through the 

following equation: 

A B
l A B

A A B B

F F
dT dT

a E a E
ε α α= + = +  (1) 

where α is the CTE of the material, E its Young’s modulus, a its area, F the force 

exerted by the other material and the subscript refers to the material (material A and B). 

At equilibrium, B AF F F= − =  so that solving for F, the following expression is obtained: 
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( )A B A B A B

B B A A

a a E E
F dT

a E a E

α α−
=

+
 (2) 

The mechanical strain on material A arising from this force is therefore: 

( )l B B A B

A

A A B B A A

a EF
dT

a E a E a E

α α
ε

−−= = −
+

 (3) 

so that the induced radial strain arising from the Poisson’s effect can be given by: 

( )r A B B A B

A

B B A A

a E
dT

a E a E

ν α α
ε

−
=

+
 (4) 

and similarly for material B: 

( )r B A A A B

B

B B A A

a E
dT

a E a E

ν α α
ε

−
= −

+
 (5) 

 

Therefore, the total strain rε  in the radial direction, taking also into account the thermal 

expansion of both materials can be given by: 

 

( )
( )

( )
( ) ( )

( )( )

2 2 2

2

d

r r

A B A B
r

A B A B B B A AA B

B B A A

t r dT t r

r t

t a E r a Et r
T

t r a E a E t r

α α ε ε
ε

α α ν να α

+ + +
=

+

� �− −+= +� �+ + +� �� �

 (6) 

 

Thus defining rα  as the thermal expansion coefficient in the radial direction, we note 

that: 

( )
( )( )

( )( )
A B A B B B A AA B

r

B B A A

t a E r a Et r
t r a E a E t r

α α ν να αα
− −+= +

+ + +
 (7) 
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Since ia , iE , t and r are all positive quantities, it follows that the rα  and the radial strain 

is negative if: 

( )1A A
A B B B A A

B B

t r t a E r a E
α α ν ν
α α

� �
+ < − −	 


� �
 (8) 

 

This inequality suggests that for a system with A BE E<  as in our earlier assumptions the 

NTE effect can be enhanced by decreasing A Bα α . This ensures that thermal expansion 

in the radial direction of the thicker material is minimal so that the main contribution 

comes from the Poisson’s effect which can be enhanced by using a soft matrix with a 

high Poisson’s ratio and a much stiffer inclusion with a low or negative Poisson’s ratio. 

In this way, the matrix has very little effect on the inclusion, i.e. the degree by which 

material A is stretched is much higher than that by which B is compressed. This in turn 

means that the decrease in thickness of A is much larger than the increase in thickness 

of B (if 0Bν > ) making NTE possible. If the inclusion is auxetic, the change in its radial 

dimension due to compression will further contribute to a more negative thermal 

expansion (and also have the additional advantage of a larger pull-out resistance 

[26,27]). For example for a system with 0.5mmr = , 50mmt = , 0.01GPaAE = , 200GPaBE = , 

0.49Aν = , 0.3Bν = , 6 115 10 KAα − −= ×  and 6 1324 10 KBα − −= ×  the strain in the radial dimension 

for a 100K increase in temperature is predicted to be 38.09 10−− ×  and 38.15 10−− ×  if an 

auxetic inclusion ( 0.3Bν = − ) is used. It is also interesting to note that zero thermal 

expansion is also predicted if 0.091Aν = . 

 

3.  Simulations  
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In an attempt to obtain further evidence that what is proposed here can indeed result in a 

method for controlling the thermal expansion in the radial direction which could also 

lead to NTE, we used the Finite Elements (FE) software package ANSYS Academic 

Research V. 12.0 to construct this most basic system. In the simulation, we used two 

elastic materials A and B which were perfectly bonded together and meshed using the 2-

D, 8-node, coupled-field PLANE223 plane element with axisymmetric behaviour where 

the z-axis is the axisymmetric axis while symmetric boundary conditions were applied 

along the r-axis (Fig. 2). The nodal degrees of freedom (DOF) are translations in the z- 

and r-directions and temperature where Table 1 lists the nodal constraints. As regards 

loading, a uniform temperature rise of 100K was applied on all the nodes. 

 

--- Insert Fig. 2 here --- 

--- Insert Table 1 here --- 

 

Two sets of simulations were performed. In the first, this system was solved linearly for 

the geometry corresponding to l = 500mm, t = 50mm and r = 0.5mm. The material was 

modelled as perfectly elastic and isotropic with EA = 0.01 GPa, EB = 200 GPa, �B = 0.3, 

�A = 15 × 10-6 K-1 and �B = 324 × 10-6 K-1 while the Poisson's ratio of the matrix (�A) 

was varied from -1.0 < �A < 0.5 subjected to a temperature rise of 100 K. In the second 

set, �A was set at 0.49 whilst the thickness t was allowed to vary from 100 > t > 0 with 

all the other parameters set as before. It should be emphasised that although the 

simulations performed here are in the mm range, the effect is scale independent and can 

also be exhibited at smaller or larger scales. 
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As post-processing, for both sets of simulations, the radial strain �r was recorded as �A 

or t were varied from which we calculated the thermal expansion coefficient αr in the 

radial direction as αr= �r ∆T-1. The results of these two sets of simulations are shown in 

Fig. 3 and Fig. 4 which compare the FE results with those predicted by the analytical 

model.  

 

--- Insert Fig. 3 here --- 

--- Insert Fig. 4 here --- 

 

 

These results clearly show that in accordance to what is predicted by the analytical 

model, the systems presented here can exhibit a wide range of thermal expansion 

properties which can be varied by varying either the types of materials used (something 

which may be limited by the availability of materials having the required properties) or 

the geometric parameters, such as the thickness of the outer material. In particular, the 

simulations confirm that in the radial direction, the system can indeed exhibit not only 

negative linear thermal expansion, a property which is exhibited best when the outer 

material (the matrix) has high positive Poisson’s ratios but also zero linear thermal 

expansion. This property is highly desirable in applications where a system has to 

maintain its structural integrity while subjected to significant changes in temperature 

which would otherwise lead to changes in the geometrical features of the structure, for 

example, in the construction of railway tracks, bridges, Bragg gratings [28] and 

satellites [29]. It is also interesting to note when auxetic materials are used, the 
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Poisson’s ratio (mechanical properties contribution) makes it possible to get volumetric 

thermal expansion which is higher than what could have been achieved when one 

considers only thermal expansion effects. All this is very significant as it confirms that 

the setup proposed here may indeed be used as a mechanism to achieve any pre-desired 

thermal expansion properties.  

 

Let us now intercompare the predictions made by the analytical and FE models. Both 

Fig. 3 and Fig. 4 show that the analytical model does indeed predict, to a first 

approximation, the magnitude of the thermal expansion in the radial direction, thus 

adding confidence in the analytical model. In particular we note that in cases when t >> 

r, the analytical model predicts the thermal expansion in the radial direction to a high 

degree of accuracy. Also interesting to note is that both analytical and FE models 

suggest a similar profile for the variation of αr vs. t which suggest that there is an 

optimal thickness t of the outer material (for a fixed inclusion thickness r) which 

optimises the magnitude of NTE. 

 

The main discrepancies between the analytical and FE models seem to occur at low 

values of t and these are evident in the plots of αr against the thickness t of the 

surrounding material where at low values of t, the analytical model underestimates the 

extent of NTE. The most likely reason for this underestimation is due to the fact that at 

small values of t, the Poisson’s effect as a result of an increase in the thickness r (and 

hence the circumference) of the needle shaped inclusion are not insignificant. Such 

increase in the circumference will cause an additional thinning of the outer material, 

which thinning has not been accounted for in the analytical model. All this suggests that 
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although there is a need to fine-tune the analytical model so as to take into account this 

effect (something which unfortunately will decrease the simplicity of the analytical 

model), the analytical model as presented here already can already provide a reasonable 

estimate of the thermal expansion properties of such systems  

 

Before we conclude, it is important to note that the concepts presented here may be used 

in the design and manufacture of real composites exhibiting such NTE properties or for 

controlling the thermal expansion of composites (which may not necessarily have to 

exhibit NTE). For example, an easily constructible but more complex system based on 

the same mechanism is illustrated in Fig. 5 which shows a cross-section of a possible 

composite where the highly expanding and hard needle shaped inclusions are moulded 

inside the matrix in a random but aligned manner. Other systems which could be 

modified to exhibit these effects include fibre-reinforced composites which if 

constructed using the right component materials would also be able to exhibit these 

unusual properties. In such systems, one would assume that the CTE will also be 

affected by other factors such as the degree of perfection in the alignment of the needle 

shaped inclusions, the packing, etc., but the principles which may lead to the unusual 

thermal effects presented in this paper, including the ability to exhibit NTE, remain the 

same. It is also important to note that although materials which have the thermal and 

mechanical properties required to achieve this NTE effect in a very significant manner 

are not currently in abundance, the effect may be obtained by building micro 

mechanical systems (e.g. using syringe-like structures filled with a highly expanding 

fluid embedded within a soft material) or having the components themselves being man-

made composites which are tailor-made to have the required properties. 
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--- Insert Fig. 5 here --- 

 

 

 

4. Conclusion 

This work presented a concept for controlling the thermal expansion through the 

introduction of highly expanding and hard needle shaped inclusions into a soft matrix. 

In particular, we derived an analytical model for a simple cylindrical system containing 

a needle-like inclusion which can be tailor-made to exhibit any pre-desired positive or 

negative thermal expansion coefficient in radial directions. In fact, the derived 

expression for the radial strain showed that by the correct combination of the materials’ 

thermal and mechanical properties, NTE and zero thermal expansion in the radial 

direction are possible, with the NTE effect being further enhanced by the use of auxetic 

inclusions. The validity of the model under the made assumptions has also been verified 

using finite element analysis. 

 

 

We hope that the models presented and discussed here will encourage experimentalists 

to manufacture and commercialize new materials which can be tailor-made to have 

properties to fit particular practical applications based on the concepts presented here. 

Given the simplicity of our systems and their adjustability, we envisage materials based 

on what is proposed should find extensive use in many practical applications where 
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negative or zero thermal expansion is required, or where the thermal expansion needs to 

controlled in a cost-effective manner. 
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Figure Captions: 

 

Fig. 1: (a) A cylindrical structure consisting of a needle-like inclusion of material B 

embedded in a matrix of material A and (b) a cross-section showing its dimensions.  

 

Fig. 2:  (a) Line numbers showing the respective nodes. (b) 3/4 of the composite in 3D. 

 

Fig. 3: Plot of the radial CTE αr versus the Poisson's ratio of the matrix �A for both the 

FE and analytical results. 

 

Fig. 4: Plot of the radial CTE αr versus the matrix thickness t for both the FE and 

analytical results. 

 

Fig. 5:  An example of a realistic but more complex system which can be built to exhibit 

particular CTE properties using the principles presented here. 
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Table Captions: 

 

Table 1.  Translational nodal constraints applied on the nodes lying on the 

lines shown in Fig. 2, where Ur and Uz denote displacements in the r- and 

z- directions respectively. 
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Fig. 1 
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Fig. 2 
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Fig 3 
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Fig 4 
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Fig 5 
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Table 1: 

 

DOFs Constraints 
Line 

Ur Uz 

1 0 - 

2 - 0 

3 Coupleda - 

4 - Coupleda 

5 - Coupleda 

a The DOF is equal for all the nodes 

 


