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ABSTRACT
Network traffic anomaly detection and analysis has been a
hot research topic for many years. Current detection sys-
tems employ two different approaches to tackle the prob-
lem, even using signature-based detection methods or su-
pervised machine-learning techniques. However, both ap-
proaches present serious ground limitations. The former
fails to detect new unknown anomalies, the latter highly
relies on labeled data for training, which is difficult and ex-
pensive to produce. These limitations become highly re-
strictive in current Internet traffic scenario, characterized
by emerging network applications and new variants of net-
work attacks. In this paper, we introduce a novel approach
to detect network traffic attacks in a completely unsuper-
vised fashion. The proposed method does not assume any
anomaly signature or particular model for anomaly-free traf-
fic, which allows for detection of previously unseen attacks.
By combining the multiple evidence of traffic structure pro-
vided by sub-space clustering techniques, we show that our
method can efficiently isolate and extract unknown anoma-
lies buried inside large amounts of traffic. Apart from discov-
ering new anomalies, the method automatically generates a
new and easy-to-interpret signature for the novel detected
anomaly, easing network administrator tasks. This new un-
supervised anomaly detection method is a powerful means
to detect zero-day attacks in a changing environment, where
signature-based or supervised learning may fail. We evalu-
ate the ability of our promising proposal to discover a dis-
tributed attack in real traffic from the public MAWI traffic
repository, discussing future directions and ongoing work.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations - Network monitoring ; G.3 [Probability and

Statistics]: Time series analysis; I.5.3 [Artificial Intelli-

gence]: Clustering - Algorithms, Similarity measures.
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1. INTRODUCTION
Network traffic anomaly detection has become a vital com-

ponent of any IP network in today’s Internet. Ranging from
non-malicious unexpected events such as flash-crowds and
failures, to network attacks such as denials-of-service and
network scans, network traffic anomalies can have serious
detrimental effects on the performance and integrity of the
network. This is why anomaly detection and analysis is
currently one of the main tasks for every network adminis-
trator. The principal challenge in automatically detecting
and analyzing traffic anomalies is that these are a moving
target. It is difficult to precisely and permanently define the
set of possible anomalies, especially in the case of network
attacks, because new attacks as well a new variants to al-
ready known attacks are continuously emerging. A general
anomaly detection and analysis system should therefore be
able to detect a range of anomalies with diverse structure,
using the least amount of previous information.

The problem of anomaly detection in IP networks has
been extensively studied during the last decade. Two differ-
ent approaches are by far dominant in current research lit-
erature and commercial detection systems: signature-based
detection and supervised machine-learning-based detection.
Signature-based detection methods have been widely used in
Intrusion Detection Systems (IDSs). When an attack is dis-
covered, generally after its occurrence in a diagnosis phase,
the associated anomalous traffic pattern is coded as a sig-
nature by human experts, and it is then used to detect a
new occurrence of the same attack. Signature-based detec-
tion methods cannot defend the network against zero-day
attacks, i.e., new unknown attacks for which there are no
signatures to search for yet. Additionally, as the number of
signatures grows, the efficiency and cost of detection raise,
becoming a difficult-to-avoid bottleneck. Even more, defin-
ing new signatures is a resources-consuming task, because
they involve deep traffic inspection by human experts.

To alleviate these problems, supervised machine-learning
techniques have been extensively applied to the detection
problem. Supervised learning-based methods use labeled
traffic data to build and train a model for normal-operation
traffic (i.e., traffic free of anomalies), detecting traffic anoma-



lies as patterns that deviate from this anomaly-free model.
Such methods can detect new types of network attacks not
seen before, basically because these new attacks will natu-
rally deviate from what the normal-operation traffic model
dictates. Nevertheless, supervised learning requires a set of
purely anomaly-free traffic, which is generally unavailable.
Labeling traffic as anomaly-free is not only time consuming
and expensive, but also very hard to achieve in practice,
since it is difficult to guarantee that there are no attacks
buried inside the collected data. Additionally, it is not easy
to maintain an accurate and up-to-date model for anomaly-
free traffic, particularly when new services and applications
are constantly appearing.

In this paper, we introduce a novel approach to detect
network traffic anomalies without relying on signatures or
labeled traffic data for training issues. Our approach falls
within the Unsupervised Anomaly Detection (UAD) domain,
a new research area that has drawn quite a lot of inter-
est in the research community, but that still represents a
rather immature field. The proposed method permits to
detect traffic anomalies and to automatically produce easy-
to-interpret signatures both in an on-line fashion, analyzing
traffic in a temporal sliding-window basis. The anomaly de-
tection and analysis is performed in three consecutive steps:
(i) the first step consists in a sliding-window-based change
detection algorithm, which marks traffic from a certain tem-
poral bin as anomalous, using the notions of absolute del-
toids [1]; (ii) in the second step, robust clustering techniques
based on sub-space clustering [9] and evidence accumulation
clustering [19] are applied to the traffic inside this anoma-
lous bin, blindly extracting the anomalous traffic instances
that raised the alarm in the first step; (iii) finally, the evi-
dence of traffic structure provided by the second step is fur-
ther used to produce filtering rules for the detected anomaly,
which are ultimately combined into a new anomaly signa-
ture, easy-to-visualize and to interpret by a human network
administrator.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the state of the art in the Unsupervised
Anomaly Detection field and describes our main contribu-
tions. Section 3 briefly describes the first part of our algo-
rithm, originally introduced in [25]. In section 4 we intro-
duce the core of the proposal, presenting an in depth de-
scription of the different clustering techniques used by our
algorithm. Section 5 presents the automatic generation rules
algorithm, which builds easy-to-interpret signatures for the
detected anomaly. Section 6 presents a primary validation of
the proposed algorithm on real traffic data from the WIDE
project [28], showing how it can accurately detect and isolate
a distributed network attack without any prior knowledge
of its existence. Finally, section 7 concludes this paper and
presents ongoing work for what we believe is a promising
approach.

2. RELATED WORK & CONTRIBUTIONS
Most work on unsupervised anomaly detection in data

networks has been devoted to the IDS field, generally tar-
geting the detection of network intrusions in the well known
KDD’99 dataset [27]. The majority of the detection schemes
proposed in the literature so far are based on clustering tech-
niques and outliers detection [10–15]. The objective of clus-
tering is to partition a set of unlabeled patterns into homo-
geneous groups of “similar” characteristics, based on some

similarity measure. Outliers detection consists in identify-
ing those patterns that do not belong to any of these groups
or “clusters” produced by the clustering algorithm.

In [10], authors use a simple single-linkage hierarchical
clustering method to cluster data from the KDD’99 dataset,
based on the standard Euclidean distance for inter-pattern
similarity. [11] reports improved results in the same dataset,
using three different clustering algorithms: the Fixed-Width
clustering algorithm, an optimized version of the k-Nearest
Neighbors algorithm, and the one class Support Vector Ma-
chine algorithm. [12] carried out further research in the same
direction, presenting an extension of the Fixed-With cluster-
ing algorithm to handle time-varying traffic patterns. In
[13], authors introduce another method for unsupervised
anomaly detection, using an extension of an existing cluster-
ing method for large datasets proposed in [22]. [14] presents
a combined density-based and grid-based clustering algo-
rithm to improve computational complexity w.r.t. previous
works, obtaining similar detection results. More recent work
proposed in [15] uses an extension of the celebrated k-means
clustering algorithm, using a Gaussian mixture model and
the Expectation-Maximization algorithm to estimate the op-
timal number of clusters to use.

Our Unsupervised Anomaly Detection and Analysis method
presents several advantages w.r.t. current state of the art.
Firstly, we perform anomaly detection based on small-clusters
identification, rather than conducting outliers detection. This
can be simply achieved by using different levels of traffic ag-
gregation, transforming outliers in small clusters. Results
based on outliers detection are more difficult to generalize
and to extend for future analysis, as outliers represent, by
definition, few isolated patterns. Secondly, we avoid the
lack of robustness of general clustering approaches, by com-
bining the notions of sub-space clustering and multiple evi-
dence accumulation. In particular, our algorithm is immune
to general clustering problems like sensitivity to initializa-
tion, fixed specification of number of clusters, or structure-
masking by irrelevant features. Thirdly, the algorithm per-
forms clustering in low-dimensional feature spaces, avoiding
the well known “curse” of high-dimensional data. Addition-
ally, it permits to automatically generate a compact and
easy-to-interpret signature for the detected anomaly, allevi-
ating network administration tasks. Finally, the algorithm
is designed to work in an on-line fashion, and rather than
testing its performance off-line in an out-of-date and simu-
lated dataset, we detect real network attacks in real network
traffic. This work is still under development, but the nov-
elty of the proposal as well as the primary results reported
in this paper are exciting and promising.

3. DELTOIDS FOR CHANGE DETECTION
The first part of our unsupervised anomaly detection al-

gorithm was originally introduced in a previous work of our
own [25], and consists basically in abrupt change-detection
in time-series. The algorithm works as follows. Network
traffic is constantly captured and analyzed in temporal con-
secutive bins of length ∆T , using a temporal sliding-window.
Every ∆T seconds, three different volume attributes defined
as zi = {#SYNi, #pktsi, #bytesi} are computed for the
traffic lying inside temporal bin i, corresponding to traffic
captured between times ti and ti + ∆T . These three at-
tributes correspond to the number of SYN packets, the to-
tal number of packets, and the total number of bytes found



in temporal bin i. Additionally, the absolute deltoids [1]
di = zi − zi−1 are computed for current temporal bin i.
The anomaly detection algorithm flags an anomalous traffic
behavior at temporal bin i if any of the deltoids associated
to the three volume attributes exceeds a detection threshold
λd. A different detection threshold λj

d, j = 1, . . . , 3 is built
for each volume attribute, using the standard deviation of
the corresponding deltoid, obtained from a set of N past
measurements:
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where k is a scaling factor that permits to adjust the sen-
sitivity of detection. Our choice of volume metrics is based
on [2], but the algorithm can be used with any other traffic
metric sensitive to anomalies. In order to cope with normal
traffic variations, each detection threshold λj

d is periodically
updated: if no anomalous behavior was flagged during the
last N temporal bins, the variance of each deltoid is recom-
puted from these N measurements.

In order to detect low intensity anomalies buried in highly
aggregated traffic, we apply the detection algorithm to dif-
ferent aggregation levels at the same time. Aggregation is
done based on destination IP address and network mask. In
this paper we shall use four different aggregation levels: /0
(i.e., whole traffic), /8, /16, and /24. As with any other
detection algorithm, this increase in sensitivity generates a
higher rate of false positives. Although this would generally
be overkilling for any anomaly detection approach, this is
not a serious issue for our method, because the final anomaly
decision is taken at the second stage of the process, which
is described next.

4. UNSUPERVISED AD
The unsupervised anomaly detection step begins immedi-

ately after an anomalous traffic behavior is detected. This
step takes as input all the traffic that belongs to the tem-
poral bin flagged as anomalous. Without loss of generality,
let X = {x1, x2, . . . ,xn} be a representation of the n traffic
patterns Y = {y1, y2, . . . , yn} found in this temporal bin.
We use the generic term pattern because its exact nature
will depend on the particular level of aggregation that we
shall use for the traffic analysis in this particular bin. For
example, yi can represent all the IP packets with the same
origin or destination IP address or IP network. Each vector
xi ∈ R

d is a d-dimensional vector of traffic attributes or fea-

tures that describe yi. Examples of standard traffic features
are the number of different origin or destination hosts (i.e.,
IP address /32 in IPv4), or the number of different destina-
tion ports. We shall refer to the d-dimensional space defined
by the d traffic features as the feature space.

Our algorithm makes three assumptions about network
traffic: (i) The majority of the network traffic corresponds to
normal-operation traffic [10], (ii) the attack traffic is statis-
tically different from normal-operation traffic [26], and (iii)
it is possible to find a traffic aggregation in which anoma-
lous traffic lies in small-size clusters. If any of these three
assumptions fail, the performance of the algorithm will de-
teriorate.

Our unsupervised algorithm is based on data clustering,
an extremely challenging problem. While hundreds of clus-

tering algorithms exist [3–8], it is very difficult to find a
single clustering algorithm that can handle all types of clus-
ter shapes and sizes, or even decide which algorithm would
be the best one for a particular data set [16, 17]. Different
clustering algorithms produce different partitions of data,
and even the same clustering algorithm produces different
results when using different initializations and/or different
algorithm parameters. This is in fact one of the major draw-
backs in current cluster analysis techniques: the lack of ro-
bustness.

To circumvent the limitations of current clustering tech-
niques, we integrate in our algorithm a multiple clustering
combination approach, via the notion of clustering ensem-

ble [20]. A clustering ensemble consists in a set of multiple
partitions produced for the same data. The idea is to com-
bine the multiple partitions into a single data partition, ob-
taining more consistent and robust clustering results. Each
partition of the clustering ensemble provides an independent
evidence of data organization, which can be exploited to find
a proper separation between normal traffic and anomalies.

There are many different ways of producing a clustering
ensemble. For example, multiple data partitions can be gen-
erated by using different clustering algorithms, or by apply-
ing the same clustering algorithm with different values of
parameters and/or initializations. There are also many dif-
ferent ways of combining the information provided by the
different partitions. In our particular problem, we generate
multiple partitions by modifying the feature space used to
represent the traffic patterns, applying the same clustering
algorithm on each of the modified spaces. In order to pre-
serve the meaning of the different traffic features, we shall
modify the feature space using Sub-Space Clustering (SSC)
techniques [9].

4.1 Clustering Ensemble and SSC
Any general clustering algorithm takes X as input and or-

ganizes the n patterns into different clusters, forming a data
partition P . In multiple clustering combination, we gener-
ate N different partitions of the same n patterns, building
a cluster ensemble P = {P1, P2, . . . , PN}. Producing a clus-
tering ensemble leads to an exploration of distinct views of
inter-pattern relationships. From a computational perspec-
tive, multiple partitions produced in an independent way
facilitate efficient data analysis. In our algorithm, the N
partitions are generated by applying a particular clustering
algorithm to each of the sub-spaces Xi ⊂ X that result from
the combinations of k attributes taken from the d original
attributes. N is therefore the number of k-combinations
obtained from d. Each partition Pi is obtained by apply-
ing DBSCAN [21] to sub-space Xi. DBSCAN is a powerful
density-based clustering algorithm, which permits to accu-
rately discover clusters of arbitrary shapes [4]. The reader
should note that in our sub-space approach we do not loose
the meaning of each of the dimensions of the feature space,
keeping tractable attributes to facilitate traffic analysis and
comprehension of results.

Using small values for k provides several advantages: do-
ing clustering in low-dimensional data is more efficient and
less time-consuming than clustering in bigger dimensions,
which partially reduces the increased cost of multiple clus-
tering. Additionally, density-based clustering algorithms
such as DBSCAN provide better results in low-dimensional
feature spaces [23], simply because high-dimensional feature



spaces are usually sparse, making it difficult to distinguish
between high and low density regions. In this sense, we can
avoid the well known “curse of dimensionality” problem.

However, there is a clear trade-off between data dimen-
sionality d, sub-spaces dimension k, and computational cost:
the bigger the value of d and the lower the value of k, the
bigger the cluster ensemble P becomes. This trade-off may
render the problem computationally infeasible, but for the
values of d and k we shall work on, this is not really an issue.
For example, if we consider the complete list of attributes
defined in [25], we have an initial dimension d = 20. To set
the value of k, we take into account a very useful property
of monotonicity in clustering sets, known as the downward
closure property: “if a collection of points is a cluster in
a k-dimensional space, then it is also part of a cluster in
any (k − 1) projections of this space” [23]. This directly
implies that, if there exists any evidence of density in the
data Y, we are sure that this evidence will be present in
low-dimensional spaces. For this reason, we have decided to
use a small value of k, usually k = 2. For d = 20 and k = 2,
the number of partitions N is equal to 190, i.e., a reason-
ably small cluster ensemble. Additionally, the computation
of multiple partitions can be done in paralel, which certainly
speeds-up analysis.

4.2 Evidence Accumulation Clustering for AD
In [18, 19], authors introduced the idea of Evidence Ac-

cumulation Clustering (EAC). EAC is a multiple clustering
combination algorithm that uses the clustering results of
the multiple partitions Pi to produce a new inter-patterns
similarity measure which better reflects their natural group-
ings. The EAC algorithm follows a split-combine-merge ap-
proach to discover the underlying structure of data. In the
split step, the N partitions of the clustering ensemble P

are generated, which in our case corresponds to the multi-
ple sub-space clustering result. In the combine step, a new
measure of similarity between patterns is produced, using a
simple voting mechanism to combine the multiple clustering
results. The underlying assumption in EAC is that patterns
belonging to a “natural” cluster are very likely to be co-
located in the same cluster in different partitions. Taking
the co-occurrences of pairs of patterns in the same cluster as
votes for their association, the N partitions are mapped into
a n× n co-association matrix A, such that A(i, j) = nij/N .
The value nij simply corresponds to the number of times
that pattern pair (yi,yj) was assigned to the same cluster
through the N partitions.

This voting mechanism for evidence accumulation can be
improved for our particular task of unsupervised anomaly
detection. In fact, according to our assumptions, traffic
anomalies lie in small-size clusters. In this sense, it would
be beneficial to assign a different weight to the vote that a
pattern pair {yi,yj} gets, taking into account not only the
membership to the same cluster, but also the size of the clus-
ter where both patterns lie together. Given a certain parti-
tion Pi formed by k = 1, . . . , K clusters, and defining n(k)
as the number of patterns inside cluster Ck, we shall use the
evidence importance function wk(n(k)) as a weighting func-
tion that takes bigger values for small values of n(k), and
tends to zero for large values of n(k). Using this function,
we modify the voting mechanism described before, multiply-
ing the assigned vote by weight wk when two patterns are
found in the same cluster Ck of size n(k). The pseudo-code

for our evidence accumulation voting mechanism depicted in
algorithm 1 better explains this simple idea. The parameter
nmin simply specifies the minimum number of patterns that
can be classified as a cluster by the DBSCAN algorithm.
The parameter γ permits to set the slope of wk. Even tune-
able, we shall work with fixed values for nmin and γ. The
final part of the combine step consists in transforming the
co-association matrix A into a similarity matrix S, which is
simply its complement to 1 in the off-diagnoal values.

Algorithm 1 Evidence Accumulation for UAD

1: Initialization:

2: Set co-association matrix A to a null n× n matrix.
3: Set minimum cluster size nmin and slope γ.
4: for t = 1 : N do

5: Pt = DBSCAN (Xt, nmin)

6: Update A(i, j), ∀ pair {yi,yj} ∈ Ck and ∀Ck ∈ Pt:

7: wk ← e
−γ

(nt(k)− nmin)

n

8: A(i, j) = A(i, j) + wk

N
9: end for

10: Compute a similarity matrix S from A: S ← 1− A

In the last merge step, any clustering algorithm can be
used on the new similarity matrix S so as to obtain a fi-
nal data partition P ∗. In our case, we are only interested
in finding a small cluster, which by assumption will repre-
sent a traffic anomaly. Therefore, the detection consists in
finding those pattern pairs {yi,yj} that have the smallest
dissimilarity, according to S.

5. SIGNATURES GENERATION
Selecting the best attributes for sub-space clustering is

a difficult task. Many papers in the literature attempt to
do so by using extensive search heuristics through data [24]
(greedy forward and greedy backward, pruning, bottom-up,
iterative top-down, etc.), additionally using some measure
of goodness of clustering to assess the relevance of a par-
ticular feature. In our case, we do not intend to perform
attributes selection for the sub-space clustering step, but
for automatically generating filtering rules that permit to
clearly identify the anomalous cluster detected by EAC. The
basic idea is to combine these filtering rules into an easy-to-
interpret anomaly signature which helps the network admin-
istrator, and that could be eventually used to easily detect
this anomaly in the future. We follow a similar approach to
those proposed in the feature selection literature, but using
the already generated clustering ensemble P. Basically, we
select those partitions Pi in which the anomalous cluster is
clearly isolated from the rest of the traffic patterns.

We shall define two different types of filtering rules: abso-

lute rules and splitting rules. Absolute rules do not depend
on the relative separation between clusters. This kind of
rules corresponds to the presence of dominant attributes in
the patterns of the anomalous cluster. For example, if one of
the attributes in X corresponds to a strong presence of SYN
packets in a certain traffic aggregation specified for Y (e.g.,
90% of the packets are SYN packets), it is likely that the
majority of the patterns in the anomalous cluster of a SYN
scan attack will have a value equal to 1 for this attribute.
Absolute rules are rules of type (attribute == value). On



the other hand, splitting rules consist in isolation rules that
depend on the relative separation between clusters. Briefly
speaking, if the anomalous cluster is well separated from
the rest of the clusters in a certain partition Pi, then the
attributes of the corresponding sub-space Xi are good can-
didates for defining a filtering rule. Splitting rules are rules
of type (attribute </> threshold).

Absolute rules are important rules, because they define
inherent characteristics of the anomaly. As regards splitting
rules, it is clear that some of them will be more important
than others, based on the degree of separation between clus-
ters. In order to assess the importance of splitting rules, we
use the notions of Linear Discriminant Analysis, through the
computation of the Fisher Score (FS). The FS is a measure
of separation between clusters, relative to the total variance
within each cluster. Given two clusters C1 and C2, the FS
F (i) for attribute i can be computed as follows:

F (i) =
(x̄1(i)− x̄2(i))

2

σ1(i)2 + σ2(i)2
(1)

where x̄j(i) and σj(i)
2 are the mean and variance of at-

tribute i in cluster Cj . Therefore, in order to select the most
important splitting rules, we shall keep those features with
largest Fisher score.

6. EXPERIMENTAL EVALUATION
We shall evaluate the ability of our Unsupervised Anomaly

Detection algorithm to detect and to automatically gener-
ate a signature for a distributed network attack in real traf-
fic data from the Japanese MAWI traffic repository [28].
This real-traffic dataset comes from the WIDE Internet op-
erational network, a test-bed network developed under the
WIDE project (http://www.wide.ad.jp/). The WIDE net-
work provides interconnection between different research in-
stitutions in Japan, as well as connection to different com-
mercial ISPs and universities in the U.S. The MAWI traffic
repository consists of 15-minutes-long raw packet traces col-
lected daily at 14:00 (Japan time) since 1999. These traces
are provided publicly after being anonymized and stripped of
payload data. The trace we shall work with consists in traf-
fic captured in January 2004 at one of the trans-pacific links
between Japan and the U.S., measured at sample point-B.
The line is a 100-Mbps link with 18-Mbps CAR.

In this evaluation, traffic is aggregated on a destination
IP address /24 basis. The sliding-window time-scale granu-
larity used by the change-detection deltoid-based algorithm
is 20 seconds. Absolute-deltoids are computed for the three
volume metrics previously described, namely #SYN, #pkts,
and #bytes. The network attack that we shall analyze con-
sists in a distributed network SYN scan directed to many
victim hosts under IP network address 162.225.0.0/16, origi-
nated at an attacker host with origin IP address 204.243.26.29.
The attack starts at time 14:06:43 and it is directed towards
multiple hosts. Figure 1 depicts this situation.

The change-detection algorithm detects an anomalous tem-
poral bin at time 14:07:00 due to an anomalous absolute
deltoid in the three volume metrics. Figure 2 depicts the
brutal modification in all of the metrics when the attack is
deployed. The Unsupervised Anomaly Detection algorithm
is therefore fed with all the traffic that belongs to the 21-
th sliding-window. Given the traffic aggregation level used,
each pattern yi ∈ Y consists of all the IP packets directed

Attacker Host

Network SYN Scan

Victim Network /24

Victim Network /24

Victim Network /24

Traffic Monitoring
Sample-Point B

Figure 1: Network SYN Scan Attack in WIDE.

to a certain IP network destination address /24. To describe
each of these patterns, we shall use some of the attributes
that were used in [25] to classify general network attacks
(DoS, DDoS, and Scans). The idea is to show that our un-
supervised algorithm can automatically detect and build a
signature without any previous knowledge about the attack
under analysis. The list of d = 8 attributes includes the no of
different source and destination IP addresses (nSrcs and nD-
sts), as well as the proportion of SYN packets (nSYN/nPkts)
among others.

5 10 15 20 25
0

2000

# SYN deltoid

5 10 15 20 25
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# packets deltoid
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0

2

4
x 10

5 # bytes deltoid

Figure 2: Anomaly detection based on absolute-

deltoids change-detection in WIDE.

In order to appreciate the great advantage of using our
sub-space and EAC algorithm w.r.t. a traditional clustering
approach, based on the information provided by the com-
plete feature space of 8 attributes, we shall compute a sim-
ilarity matrix Stra for the n patterns in X. Each element
(i, j) in Stra represents inter-patterns similarity by means
of the Euclidean distance between patterns i and j. Fig-
ure 3 depicts a two-dimensional plot of the information pro-
vided by both similarity matrices S and Stra, using a Multi-
Dimensional Scaling analysis. In order to assess the power
of discrimination provided by each similarity matrix, we as-
sume that the anomalous patterns are known in advance. In
the case of Stra, we can appreciate that the anomalous pat-
terns are mixed-up with the normal ones, and the discrim-
ination using all the attributes at the same time becomes
difficult. In the case of S, the anomalous patterns are per-
fectly isolated from the rest of the patterns, providing a
powerful discrimination measure of similarity.

As we explained before, the anomaly detection simply con-
sists in identifying the most similar patterns in S. Figure 4
shows a histogram on the distribution of inter-pattern sim-

http://www.wide.ad.jp/
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Figure 3: MDS for Traditional and EA Clustering.
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Figure 4: Anomaly detection in S.

ilarity, according to S. Selecting the most similar group of
patterns results in a compact cluster of 53 patterns. A fur-
ther analysis of the IP packets that compose each of these
patterns reveals the same origin IP address, which corre-
sponds to the attacker’s host. Each individual pattern corre-
sponds to a flow of SYN packets directed towards a different
destination IP network address /24 in 162.225.0.0/16.

The last step of the algorithm consists in automatically
building easy-to-understand and easy-to-visualize discrimi-
nation rules that can be combined into a signature for the
anomaly that has been detected. Figure 5 depicts some
of the partitions where both absolute and splitting rules
where found. The partition depicted in figure 5.a presents
three clusters, one of them exclusively composed of anoma-
lous patterns. This partition builds two rules; the former
is a splitting rule of the form <nDsts > λ1>, relative to the
number of different destination IP addresses found in the IP
packets aggregated into each pattern. Given the distributed
nature of the network scan attack, it is clear that the num-
ber of destination IPs must be much larger than in the case
of normal-operation traffic. The latter is an absolute rule
<nSYN/nPkts == 1>, in which almost every pattern of the
anomalous cluster has the SYN flag activated for all of its
IP packets. This rule makes perfect sense, because the net-
work scan uses SYN packets. The partition depicted in fig-
ure 5.b shows two clusters, but in this case the smallest one
contains not only anomalous patterns but also some other
patterns not identified as such. Given that the filtering rules
are defined in a per-cluster basis, a new splitting rule to sep-
arate both clusters is generated for attribute nSYN/nPkts,
which permits to relax the absolute rule previously defined.
The new rule for nSYN/nPkts is therefore <nSYN/nPkts >

λ2>. Given that this new rule covers the previous one, the
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Figure 5: Filtering rules for automatic anomaly sig-

nature generation.

absolute rule is discarded. Another rule is also identified
in this partition, consisting in an absolute rule for attribute
nSrcs. This absolute rule specifies that all the packets come
from the same origin IP address, which corresponds to the
attacker’s IP address. Adding this rule to both previously
generated rules finally produces a new anomaly signature
that can be expressed as:

<(nDsts > λ1) & (nSYN/nPkts > λ2) & (nSrcs == 1)>

The most interesting observation of this step of the algo-
rithm is that the generated anomaly signature permits to
effectively isolate all of the patterns that conform the net-
work SYN scan, correctly classifying all the corresponding
IP packets that are aggregated into each pattern.

7. CONCLUSIONS & PERSPECTIVES
The Unsupervised Anomaly Detection algorithm that we

have proposed presents many interesting advantages w.r.t.
previous proposals in the field of Anomaly Detection. It uses
exclusively unlabelled data to detect traffic anomalies, with-
out assuming any particular model or any canonical data dis-
tribution. This allows to detect new previously unseen net-
work attacks. Despite using ordinary clustering techniques
to identify traffic anomalies, the algorithm avoids the lack
of robustness of general clustering approaches, by combin-
ing the notions of sub-space clustering and multiple evidence
accumulation. The sub-space clustering approach also per-
mits to obtain easy-to-interpret and tractable results, pro-
viding insight and explanations about the detected anoma-
lies to a human network manager. Additionally, clustering
in low-dimensional feature spaces provides results that can
be visualized by standard techniques, which improves the
assimilation of results.

We have verified the effectiveness of this unsupervised de-
tection approach to detecte and isolate a real distributed
network attack in a completely blind fashion, without as-
suming any particular traffic model, detection threshold,
significant clustering parameters, or even clusters structure
beyond a basic definition of what an anomaly is. However,
this is an on-going work which still requires validation as re-
gards the detection of a larger variety of network attacks. A
comprehensive evaluation of the algorithm is part of current
on-going work. As regards computational speed of the ap-
proach, both SSC and EAC can run in a paralel basis, and
thus we are implementing both in a distributed framework.
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