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Preface

This catalog presents a list of global constraints. It contains about 235 constraints,
which are explicitly described in terms of graph properties and/or automata.

This Global Constraint Catalog is an expanded version of the list of global con-
straints presented in [1]. The principle used for describing global constraints has been
slightly modified in order to deal with a larger number of global constraints. Since
2003, we try to provide an automaton that recognizes the solutions associated with a
global constraint.

Writing a dictionary is a long process, especially in a field where new words are
defined every year. In this context, one difficulty has been related to the fact that we
want to express explicitly the meaning of global constraints in terms of meta-data.
Finding an appropriate description that easily captures the meaning of most global
constraints seems to be a tricky task.

Goal of the catalog. This catalog has four main goals. First, it provides an overview
of most of the different global constraints that were gradually introduced in the area
of constraint programming since the work of Jean-Louis Laurière on ALICE [2]. It
also identifies new global constraints for which no existing published work exists. The
global constraints are arranged in alphabetic order, and for all of them a description and
an example are systematically provided. When available, it also presents some typical
usage as well as some pointers to existing filtering algorithms.

Second, the global constraints described in this catalog are not only accessible to
humans, who can read the catalog for searching for some information. It is also avail-
able to machines, which can read and interpret it. This is why there exists an electronic
version of this catalog where one can get, for most global constraints, a complete de-
scription in terms of meta-data. In fact, most of this catalog and its figures were auto-
matically generated from this electronic version by a computer program. This descrip-
tion is based on two complementary ways to look at a global constraint. The first one
defines a global constraint as searching for a graph with specific properties [3], while
the second one characterizes a global constraint in terms of an automaton that only rec-
ognizes the solutions associated to that global constraint [4, 5]. The key point of these
descriptions is their ability to define explicitly in a concise way the meaning of most
global constraints. In addition these descriptions can also be systematically turned into
polynomial filtering algorithms.

i
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Third, we hope that this unified description of apparently diverse global constraints
will allow for establishing a systematic link between the properties of basic concepts
used for describing global constraints and the properties of the global constraints as a
whole.

Finally, we also hope that it will attract more people from the algorithmic
community into the area of constraints. To a certain extent this has already started at
places like CWI in Amsterdam, the Max-Planck für Informatik (Saarbrücken) or the
university of Waterloo.

Use of the catalog. The catalog is organized into four chapters:

• Chapter 1 explains how the meaning of global constraints is described in terms
of graph-properties or in terms of automata. On the one hand, if one wants
to consult the catalog for getting the informal definition of a global constraint,
examples of use of that constraint or pointers to filtering algorithms, then one
only needs to read the first section of Chapter 1: Describing the arguments of a
global constraint, page 3 . On the other hand, if one wants to understand those
entries describing explicitly the meaning of a constraint then all the material of
Chapter 1 is required.

• Chapter 2 describes the content of the catalog as well as different ways for
searching through the catalog. This material is essential.

• Chapter 3 covers additional topics such as the differences from the 2000 re-
port [1] on global constraints, the generation of implied constraints that are sys-
tematically linked to the graph-based description of a global constraint, and the
electronic version of the catalog. The material describing the format of the en-
tries of a global constraint is mandatory for those who want to exploit the elec-
tronic version in order to write preprocessors for performing various tasks for a
global constraint.

• Finally, Chapter 4 corresponds to the catalog itself, which gives the global
constraints in alphabetical order.

Acknowledgments. Nicolas Beldiceanu was the principal investigator and main ar-
chitect of the constraint catalog, provided the main ideas, and wrote a checker for the
constraint descriptions and the figure generation program for the constraint descrip-
tions.

Jean-Xavier Rampon provided the proofs for the graph invariants.
Mats Carlsson contributed to the design of the meta-data format, generated some

of the automata, and wrote the program that created the LATEX version of this catalog
from the constraint descriptions.

The idea of describing explicitly the meaning of global constraints in a declarative
way has been inspired by the work on meta-knowledge of Jacques Pitrat.
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Describing global constraints
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We first motivate the need for an explicit description of global constraints and then
present the graph-based as well as the automaton-based descriptions used throughout
the catalog. On the one hand, the graph-based representation considers a global con-
straint as a subgraph of an initial given graph. This subgraph has to satisfy a set of

1



2 CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS

required graph properties. On the other hand, the automaton-based representation de-
notes a global constraint as a hypergraph constructed from a given constraint checker1.
Both, the initial graph of the graph-based representation, as well as the hypergraph of
the automaton-based representation have a very regular structure, which should give
the opportunity for efficient filtering algorithms taking advantage of this structure.

We now present our motivations for an explicit description of the meaning of global
constraints. The current trend2 is to first use natural language for describing the mean-
ing of a global constraint and second to work out a specialized filtering algorithm.
Since we have a huge number of potential global constraints that can be combined in
a lot of ways, this is an immense task. Since we are also interested in providing other
services such as visualization [6], explanations [7], cuts for linear programming [8],
moves for local search [9], soft global constraints [10, 11, 12], specialized heuristics
for each global constraint this is even worse. One could argue that a candidate for
describing explicitly the meaning of global constraints would be second order predi-
cates calculus. This could perhaps solve our description problem but would, at least
currently, not be useful for deriving any filtering algorithm. For a similar reason Pro-
log was restricted to Horn clauses for which one had a reasonable solving mechanism.
What we want to stress through this example is the fact that a declarative description is
really useful only if it also provides some hints about how to deal with that description.
Our first choice of a graph-based representation has been influenced by the following
observations:

• The concept of graph takes its roots in the area of mathematical recreations (see
for instance L. Euler [13], H. E. Dudeney [14], E. Lucas [15] and T. P. Kirk-
man [16]), which was somehow the ancestor of combinatorial problems. In this
perspective a graph-based description makes sense.

• In one of the first book introducing graph theory [17], C. Berge presents graph
theory as a way of grouping apparently diverse problems and results. This was
also the case for global constraints.

• The characteristics associated with graphs are concrete and concise.

• Finally, it is well known that graph theory is an important tool with respect to the
development of efficient filtering algorithms [18, 19, 20, 21, 22, 23, 24, 25, 26,
27].

Our second choice of an automaton-based representation has been motivated by the
following observation. Writing a constraint checker is usually a straightforward task.
The corresponding program can usually be turned into an automaton. Of course an
automaton is typically used on a fixed sequence of symbols. But, within the context
of filtering algorithms, we have to deal with a sequence of variables. For this purpose
we have shown [4] for some automata how to decompose them into a conjunction of
smaller constraints. In this context, a global constraint can be seen as a hypergraph
corresponding to its decomposition.

1A constraint checker is a program that takes an instance of a constraint for which all variables are fixed
and tests whether the constraint is satisfied or not.

2This can be observed in all constraint manuals where the description of the meaning is always informal.
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1.1 Describing the arguments of a global constraint
Since global constraints have to receive their arguments in some form, no matter
whether we use the graph-based or the automaton-based description, we start by de-
scribing the abstract data types that we use in order to specify the arguments of a
global constraint. These abstract data types are not related to any specific program-
ming language like Caml, C, C++, Java or Prolog. If one wants to focus on a specific
language, then one has to map these abstract data types to the data types that are avail-
able within the considered programming language. In a second phase we describe all
the restrictions that one can impose on the arguments of a global constraint. Finally, in
a third phase we show how to use these ingredients in order to declare the arguments
of a global constraint.

1.1.1 Basic data types
We provide the following basic data types:

• atom corresponds to an atom. Predefined atoms are MININT and MAXINT, which
respectively correspond to the smallest and to the largest integer.

• int corresponds to an integer value.

• dvar corresponds to a domain variable. A domain variable is a variable that will
be assigned an integer value taken from an initial finite set of integer values.

• sint corresponds to a finite set of integer values.

• svar corresponds to a set variable. A set variable is a variable that will be
assigned to a finite set of integer values.

• mint corresponds to a multiset of integer values.

• mvar corresponds to a multiset variable. A multiset variable is a variable that
will be assigned to a multiset of integer values.

• flt corresponds to a float number.

• fvar corresponds to a float variable. A float variable is a variable that will be
assigned a float number taken from an initial finite set of intervals.
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1.1.2 Compound data types

We provide the following compound data types:

• list(T ) corresponds to a list of elements of type T , where T is a basic or a
compound data type.

• c : collection(A1, A2, . . . , An) corresponds to a collection c of ordered
items, where each item consists of n > 0 attributes A1, A2, . . . , An. Each at-
tribute is an expression of the form a − T , where a is the name of the attribute
and T the type of the attribute (a basic or a compound data type). All names
of the attributes of a given collection should be distinct and different from the
keyword key, which corresponds to an implicit3 attribute. Its value corresponds
to the position of an item within the collection. The first item of a collection is
associated with position 1.

The following notations are used for instantiated arguments:

• A list of elements e1, e2, . . . , en is denoted [e1, e2, . . . , en].

• A finite set of integers i1, i2, . . . , in is denoted {i1, i2, . . . , in}.

• A multiset of integers i1, i2, . . . , in is denoted {{i1, i2, . . . , in}}.

• A collection of n items, each item having m attributes, is denoted by
{a1−v11 . . .am−v1m, a1−v21 . . .am−v2m, . . . , a1−vn1 . . .am−vnm}.
Each item is separated from the previous item by a comma.

• The ith item of a collection c is denoted c[i].

• The number of items of a collection c is denoted |c|.

3This attribute is not explicitly defined.
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EXAMPLE: Let us illustrate with three examples, the types one can create. These
examples concern the creation of a collection of variables, a collection of tasks and a
collection of orthotopesa.

• In the first example we define VARIABLES so that it corresponds to a collection
of variables. VARIABLES is for instance used in the alldifferent constraint.
The declaration VARIABLES : collection(var − dvar) defines a collection of
items, each of which having one attribute var that is a domain variable.

• In the second example we define TASKS so that it corresponds to a collection
of tasks, each task being defined by its origin, its duration, its end and its re-
source consumption. Such a collection is for instance used in the cumulative

constraint. The declaration TASKS : collection(origin− dvar, duration−
dvar, end− dvar, height− dvar) defines a collection of items, each of which
having the four attributes origin, duration, end and height which all are
domain variables.

• In the last example we define ORTHOTOPES so that is corresponds to a collection
of orthotopes. Each orthotope is described by an attribute orth. Unlike the
previous examples, the type of this attribute does not correspond any more to a
basic data type but rather to a collection of n items, where n is the number of
dimensions of the orthotopeb. This collection, named ORTHOTOPE, defines for a
given dimension the origin, the size and the end of the object in this dimension.
This leads to the two declarations:

– ORTHOTOPE − collection(ori− dvar, siz − dvar, end − dvar),

– ORTHOTOPES − collection(orth − ORTHOTOPE).

ORTHOTOPE is for instance used in the diffn constraint.
aAn orthotope corresponds to the generalization of a segment, a rectangle and a box to the

n-dimensional case.
b1 for a segment, 2 for a rectangle, 3 for a box, . . . .

1.1.3 Restrictions
When defining the arguments of a global constraint, it is often the case that one needs to
express additional conditions that refine the type declaration of its arguments. For this
purpose we provide restrictions that allow for specifying these additional conditions.
Each restriction has a name and a set of arguments and is described by the following
items:

• A small paragraph first describes the effect of the restriction,

• An example points to a constraint using the restriction,

• Finally, a ground instance, preceded by the symbolB, which satisfies the restric-
tion is given. Similarly, a ground instance, preceded by the symbol I, which
violates the restriction is proposed. In this latter case, a bold font may be used
for pointing to the source of the problem.

Currently the list of restrictions is:
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• in list(Arg, ListAtoms):

– Arg is an argument of type atom,

– ListAtoms is a non-empty list of distinct atoms.

This restriction forces Arg to be one of the atoms specified in the list ListAtoms.

EXAMPLE: An example of use of such restriction can be found in the
change(NCHANGE, VARIABLES, CTR) constraint: in list(CTR, [=, 6=, <,≥, >,≤])
forces the last argument CTR of the change constraint to take its value in the list of
atoms [=, 6=, <,≥, >,≤].
B change(1, {var − 4, var − 4, var − 4, var − 6}, 6=)
I change(1, {var − 4, var − 4, var − 4, var − 6}, 3)

• in list(Arg, Attr, ListInt):

– Arg is an argument of type collection,

– Attr is an attribute of type int of the collection denoted by Arg,

– ListInt is a non-empty list of integers.

This restriction enforces for all items of the collection Arg, the attribute Attr to
take its value within the list of integers ListInt.

EXAMPLE: An example of use of such restriction can be found in the one tree con-
straint: in list(NODES, type, [2, 3, 6]) forces the attribute type of the NODES collec-
tion to take its value in the list of integers [2, 3, 6].
Bone tree({ id− a index − 1 type − 2 father − 1 depth1 − 1 depth2 − 0,

id − b index − 2 type − 2 father − 2 depth1 − 0 depth2 − 0,
id − c index − 3 type − 3 father − 2 depth1 − 0 depth2 − 0,
id − d index − 4 type − 3 father − 2 depth1 − 0 depth2 − 0})

Ione tree({ id− a index − 1 type − 9 father − 1 depth1 − 1 depth2 − 0,
id − b index − 2 type − 2 father − 2 depth1 − 0 depth2 − 0,
id − c index − 3 type − 3 father − 2 depth1 − 0 depth2 − 0,
id − d index − 4 type − 3 father − 2 depth1 − 0 depth2 − 0})

• in attr(Arg1, Attr1, Arg2, Attr2):

– Arg1 is an argument of type collection,

– Attr1 is an attribute of type dvar of the collection denoted by Arg1,

– Arg2 is an argument of type collection,

– Attr2 is an attribute of type int of the collection denoted by Arg2.

Let S2 denote the set of values assigned to the Attr2 attributes of the items of
the collection Arg2. This restriction enforces the following condition: For all
items of the collection Arg1, the attribute Attr1 takes its value in the set S2.
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EXAMPLE: An example of use of such restriction can be found in the
cumulatives(TASKS, MACHINES, CTR) constraint: in attr(TASKS, machine,
MACHINES, id) enforces that the machine attribute of each task of the TASKS collection
correspond to a machine identifier (i.e. an id attribute of the MACHINES collection).
Bcumulatives({ machine − 1 origin − 2 duration − 2 end − 4 height − 2,

machine − 1 origin − 2 duration − 2 end − 4 height − 2,
machine − 2 origin − 1 duration − 4 end − 5 height − 5,
machine − 1 origin − 4 duration − 2 end − 6 height − 1},
{id − 1 capacity − 9, id− 2 capacity − 8}, ≤)

Icumulatives({ machine − 5 origin − 2 duration − 2 end − 4 height − 2,
machine − 1 origin − 2 duration − 2 end − 4 height − 2,
machine − 2 origin − 1 duration − 4 end − 5 height − 5,
machine − 1 origin − 4 duration − 2 end − 6 height − 1},
{id − 1 capacity − 9, id − 2 capacity − 8}, ≤)

• distinct(Arg, Attrs):

– Arg is an argument of type collection,

– Attrs is an attribute of type int or a list of distinct attributes of type int
of the collection denoted by Arg.

For all pairs of distinct items of the collection Arg this restriction enforces that
there be at least one attribute specified by Attrs with two distinct values.

EXAMPLE: An example of use of such restriction can be found in the
cycle(NCYCLE, NODES) constraint: distinct(NODES, index) enforces that all index
attributes of the NODES collection take distinct values.
Bcycle(2, {index − 1 succ − 2, index − 2 succ − 1, index − 3 succ − 3})
Icycle(2, {index − 1 succ − 2, index − 1 succ − 1, index − 3 succ − 3})

• increasing seq(Arg, Attrs):

– Arg is an argument of type collection,

– Attrs is an attribute of type int or a list of distinct attributes of type int
of the collection denoted by Arg.

Let n and m respectively denote the number of items of the collection Arg, and
the number of attributes of Attrs. For the ith item of the collection Arg let
ti denote the tuple of values 〈vi,1, vi,2, . . . , vi,m〉 where vi,j is the value of the
jth attribute of Attrs of the ith item of Arg. The restriction enforces a strict
lexicographical ordering on the tuples t1, t2, . . . , tn.
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EXAMPLE: An example of use of such restriction can be found in the
element matrix(MAX I, MAX J, INDEX I, INDEX J, MATRIX, VALUE) constraint:
increasing seq(MATRIX, [i, j]) enforces that all items of the MATRIX collection be
sorted in strictly increasing lexicographic order on the pair (i, j).
B element matrix(2, 2, 1, 2, {i − 1 j − 1 v− 4, i − 1 j − 2 v− 7,

i− 2 j− 1 v − 1, i− 2 j− 2 v − 1}, 7)
I element matrix(2, 2, 1, 2, {i − 1 j − 2 v − 4, i− 1 j− 1 v− 7,

i− 2 j− 1 v − 1, i− 2 j− 2 v − 1}, 7)

• required(Arg, Attrs):

– Arg is an argument of type collection,

– Attrs is an attribute or a list of distinct attributes of the collection denoted
by Arg.

This restriction enforces that all attributes denoted by Attrs be explicitly used
within all items of the collection Arg.

EXAMPLE: An example of use of such restriction can be found in the
cumulative(TASKS, LIMIT) constraint: required(TASKS, height) enforces that all
items of the TASKS collection mention the height attribute.
Bcumulative({ origin − 2 duration − 2 end− 4 height − 2,

origin − 2 duration − 2 end − 4 height − 2,
origin − 1 duration − 4 end − 5 height − 5,
origin − 4 duration − 2 end − 6 height − 1}, 12)

Icumulative({ origin− 2 duration − 2 end− 4,
origin − 2 duration − 2 end − 4 height − 2,
origin − 1 duration − 4 end − 5 height − 5,
origin − 4 duration − 2 end − 6 height − 1}, 12)

The required restriction is usually systematically used for every attribute of a
collection. It is not used when some attributes may be implicitly defined accord-
ing to other attributes. In this context, we use the require at least restriction,
which we now introduce.

• require at least(Atleast, Arg, Attrs):

– Atleast is a positive integer,

– Arg is an argument of type collection,

– Attrs is a non-empty list of distinct attributes of the collection denoted by
Arg. The length of this list should be strictly greater than Atleast.

This restriction enforces that at least Atleast attributes of the list Attrs be
explicitly used within all items of the collection Arg.
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EXAMPLE: An example of use of such restriction can be found in the
cumulative(TASKS, LIMIT) constraint:
require at least(2, TASKS, [origin, duration, end]) enforces that all items of
the TASKS collection mention at least two attributes from the list of attributes
[origin, duration, end]. In this context, this stems from the fact that we have the
equality origin + duration = end. This allows for retrieving the third attribute from
the values of the two others.
Bcumulative({ origin − 2 duration − 2 height − 2,

origin − 2 end − 4 height − 2,
duration − 4 end − 5 height − 5,
origin − 4 duration − 2 end − 6 height − 1}, 12)

Icumulative({ origin − 2 height − 2,
origin − 2 duration − 2 end − 4 height − 2,
origin − 1 duration − 4 end − 5 height − 5,
origin − 4 duration − 2 end − 6 height − 1}, 12)

• same size(Arg, Attr):

– Arg is an argument of type collection,

– Attr is an attribute of the collection denoted by Arg. This attribute should
be of type collection.

This restriction enforces that all collections denoted by Attr have the same num-
ber of items.

EXAMPLE: An example of use of such restriction can be found in the
diffn(ORTHOTOPES) constrainta: same size(ORTHOTOPES, orth) forces all the items
of the ORTHOTOPES collection to be constituted from the same number of items (of type
ORTHOTOPE). From a practical point of view, this forces the diffn constraint to take as
its argument a set of points, a set of rectangles, a set of parallelepipeds, . . . .
Bdiffn({ {orth − {ori − 2 siz − 2 end − 4, ori − 1 siz − 3 end− 4},

orth − {ori − 4 siz − 4 end− 8, ori − 3 siz− 3 end − 3},
orth − {ori − 9 siz − 2 end− 11, ori − 4 siz − 3 end− 7}}

Idiffn({ {orth − {ori − 2 siz − 2 end − 4},
orth − {ori − 4 siz − 4 end− 8, ori − 3 siz− 3 end − 3},
orth − {ori − 9 siz − 2 end− 11, ori − 4 siz − 3 end− 7}}

aORTHOTOPES corresponds to the third item of the example presented at page 5.

• Term1 Comparison Term2:

– Term1 is a term. A term is an expression that can be evaluated to one or
possibly several integer values. The expressions we allow for a term are
defined in the next paragraph.

– Comparison is one of the following comparison operators≤, ≥, <, >, =,
6=.

– Term2 is a term.
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Let v1,1, v1,2, . . . , v1,n1 and v2,1, v2,2, . . . , v2,n2 be the values respectively asso-
ciated with Term1 and with Term2. The restriction Term1 Comparison Term2

forces v1,i Comparison v2,j to hold for every i ∈ [1, n1] and every j ∈ [1, n2].
A term is one of the following expressions:

– e, where e is an integer. The corresponding value is e.
– |c|, where c is an argument of type collection. The value of |c| is the

number of items of the collection denoted by c.

EXAMPLE: This kind of expression is for instance used in the restrictions of the
atleast(N, VARIABLES, VALUE) constraint: N ≤ |VARIABLES| restricts N to be
less than or equal to the number of items of the VARIABLES collection.
Batleast(2, {var − 5, var− 8, var− 5}, 5)
Iatleast(4, {var − 5, var − 8, var − 5}, 5)

– min size(c, a), where c is an argument of type collection and a an
attribute of c of type collection. The value of min size(c, a) is the
smallest number of items over all collections denoted by a.

EXAMPLE: This kind of expression is for instance used in the restric-
tions of the in relation(VARIABLES, TUPLES OF VALS) constraint:
min size(TUPLES OF VALS, tuple) = |VARIABLES| forces the smallest
number of items associated with the tuple attribute to equal the number of items
of the VARIABLES collection.
Bin relation({{var − 5, var− 3, var − 3},

{tuple − {val − 5, val − 2, val− 3},
tuple − {val − 5, val − 2, val− 6},
tuple − {val − 5, val − 3, val− 3}})

Iin relation({{var − 5, var− 3, var − 3},
{tuple− {val − 5, val − 2},
tuple − {val − 5, val − 2, val− 6},
tuple − {val − 5, val − 3, val− 3}})

– max size(c, a), where c is an argument of type collection and a an
attribute of c of type collection. The value of max size(c, a) is the
largest number of items over all collections denoted by a.

EXAMPLE: This kind of expression is for instance used in the re-
strictions of the in relation(VARIABLES, TUPLES OF VALS) constraint:
max size(TUPLES OF VALS, tuple) = |VARIABLES| forces the largest number
of items associated with the tuple attribute to equal the number of items of the
VARIABLES collection.
Bin relation({{var − 5, var− 3, var − 3},

{tuple − {val − 5, val − 2, val− 3},
tuple − {val − 5, val − 2, val− 6},
tuple − {val − 5, val − 3, val− 3}})

Iin relation({{var − 5, var− 3, var − 3},
{tuple− {val − 5, val − 2, val − 8, val − 2},
tuple − {val − 5, val − 2, val− 6},
tuple − {val − 5, val − 3, val− 3}})
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– t, where t is an argument of type int. The value of t is the value of the
corresponding argument.

EXAMPLE: This kind of expression is for instance used in the restrictions of the
atleast(N, VARIABLES, VALUE) constraint: N ≥ 0 forces the first argument of
the atleast constraint to be greater than or equal to 0.
Batleast(2, {var − 5, var − 8, var − 5}, 5)
Iatleast(−1, {var − 5, var− 8, var − 5}, 5)

– v, where v is an argument of type dvar. The value of v will be the value
assigned to variable v 4.

EXAMPLE: This kind of expression is for instance used in the restrictions of the
among(NVAR, VARIABLES, VALUES) constraint: NVAR ≥ 0 forces the first argu-
ment of the among constraint to be greater than or equal to 0.
Bamong(2, {var − 5, var− 8, var − 5}, {val − 1, val− 5})
Iamong(−9, {var − 5, var − 8, var − 5}, {val − 1, val − 5})

– c.a, where c is an argument of type collection and a an attribute of c of
type int or dvar. The values denoted by c.a are all the values correspond-
ing to attribute a for the different items of c. When c.a designates a domain
variable we consider the value assigned to that variable.

EXAMPLE: This kind of expression is for instance used in the restrictions of the
cumulative(TASKS, LIMIT) constraint: TASKS.duration ≥ 0 enforces for all
items of the TASKS collection that the duration attribute be greater than or equal
to 0.
Bcumulative({ origin − 2 duration − 2 end − 4 height − 2,

origin − 2 duration − 2 end− 4 height − 2,
origin − 1 duration − 4 end− 5 height − 5,
origin − 4 duration − 2 end− 6 height − 1}, 12)

Icumulative({ origin − 2 duration −−2 end− 4 height − 2,
origin − 2 duration − 2 end− 4 height − 2,
origin − 1 duration − 4 end− 5 height − 5,
origin − 4 duration − 2 end− 6 height − 1}, 12)

– c.a, where c is an argument of type collection and a an attribute of c of
type sint or svar. The values denoted by c.a are all the values belonging
to the sets corresponding to attribute a for the different items of c. When
c.a designates a set variable we consider the values that finally belong to
that set.

4This stems from the fact that restrictions are defined on the ground instance of a global constraint.
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EXAMPLE: This kind of expression is for instance used in the restrictions of the
inverse set(X, Y) constraint: X.x ≥ 1 enforces for all items of the X collection
that all the potential elements of the set variable associated with the x attribute be
greater than or equal to 1.
Binverse set({ index − 1 x − {2, 4}, index − 2 x− {4},

index − 3 x− {1}, index − 4 x− {4} },
index − 1 y− {3}, index − 2 y− {1},
index − 3 y− {}, index − 4 y− {1, 2, 4},
index − 5 y− {} })

Iinverse set({ index − 1 x − {0, 2, 4}, index − 2 x − {4},
index − 3 x− {1}, index − 4 x− {4} },
index − 1 y− {3}, index − 2 y− {1},
index − 3 y− {}, index − 4 y− {1, 2, 4},
index − 5 y− {} })

– min(t1, t2) or max(t1, t2), where t1 and t2 are terms. Let V1 and V2 de-
note the sets of values respectively associated with the terms t1 and t2.
Let min(V1), max(V1) and min(V2), max(V2) denote the minimum and
maximum values of V1 and V2. The value associated with min(t1, t2) is
min(min(V1),min(V2)), while the value associated with max(t1, t2) is
max(max(V1),max(V2)).

EXAMPLE: This kind of expression is for instance used in the restrictions
of the ninterval(NVAL, VARIABLES, SIZE INTERVAL) constraint: NVAL ≥
min(1, |VARIABLES|) forces NVAL to be greater than or equal to the minimum
of 1 and the number of items of the VARIABLES collection.
B ninterval(2, {var − 3, var− 1, var− 9, var − 1, var − 9}, 4)
I ninterval(0, {var − 3, var − 1, var− 9, var− 1, var− 9}, 4)

– t1 op t2, where t1 and t2 are terms and op one of the operators +, −, ∗
or / 5. Let V1 and V2 denote the sets of values respectively associated
with the terms t1 and t2. The set of values associated with t1 op t2 is
V12 = {v : v = v1 op v2, v1 ∈ V1, v2 ∈ V2}.

EXAMPLE: This kind of expression is for instance used in the restrictions of
the relaxed sliding sum(ATLEAST, ATMOST, LOW, UP, SEQ, VARIABLES) con-
straint: ATMOST ≤ |VARIABLES| − SEQ + 1 forces ATMOST to be less than or
equal to an arithmetic expression that corresponds to the number of sequences of
SEQ consecutive variables in a sequence of |VARIABLES| variables.
B relaxed sliding sum(3, 4, 3, 7, 4, {var − 2, var − 4, var − 2, var− 0,

var − 0, var − 3, var − 4})
I relaxed sliding sum(3, 9, 3, 7, 4, {var − 2, var − 4, var − 2, var − 0,

var − 0, var − 3, var − 4})

• Finally, we can also use a constraint C of the catalog for expressing a restriction
as long as that constraint is not defined according to the constraint under con-
sideration. The constraint C should have a graph-based or an automaton-based
description so that its meaning is explicitly defined.

5/ denotes an integer division, a division in which the fractional part is discarded.
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EXAMPLE: An example of use of such restriction can be found in the
sort permutation(FROM, PERMUTATION, TO) constraint: alldifferent(PERMUTA-
TION) is used to express the fact that the variables of the second argument of the
sort permutation constraint should take distinct values.

1.1.4 Declaring a global constraint
Declaring a global constraint consists of providing the following information:

• A term ctr(A1, A2, . . . , An), where ctr corresponds to the name of the global
constraint and A1, A2, . . . , An to its arguments.

• A possibly empty list of type declarations, where each declaration has the form
type:type declaration; type is the name of the new type we define and
type declaration is a basic data type, a compound data type or a type pre-
viously defined.

• An argument declaration A1:T1, A2:T2, . . . , An:Tn giving for each argument
A1, A2, . . . , An of the global constraint ctr its type. Each type is a basic data
type, a compound data type, or a type that was declared in the list of type decla-
rations.

• A possibly empty list of restrictions, where each restriction is one of the restric-
tions described in Section 1.1.3 (page 5).

EXAMPLE: The arguments of the all differ from at least k pos constraint are de-
scribed by:

Constraint all differ from at least k pos(K, VECTORS)

Type(s) VECTOR − collection(var − dvar)

Argument(s) K − int

VECTORS − collection(vec − VECTOR)

Restriction(s) required(VECTOR, var)

K ≥ 0

required(VECTORS, vec)

same size(VECTORS, vec)

The first line indicates that the all differ from at least k pos constraint has two ar-
guments: K and VECTORS. The second line declares a new type VECTOR, which corresponds
to a collection of variables. The third line indicates that the first argument K is an integer,
while the fourth line tells that the second argument VECTORS corresponds to a collection
of vectors of type VECTOR. Finally the four restrictions respectively enforce that:

• All the items of the VECTOR collection mention the var attribute,

• K be greater than or equal to 0,

• All the items of the VECTORS collection mention the vec attribute,

• All the vectors have the same number of components.
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1.2 Describing global constraints in terms of graph
properties

Through a practical example, we first present in a simplified form the basic principles
used for describing the meaning of global constraints in terms of graph properties. We
then give the full details about the different features used in the description process.

1.2.1 Basic ideas and illustrative example

Within the graph-based representation, a global constraint is represented as a digraph
where each vertex corresponds to a variable and each arc to a binary arc constraint be-
tween the variables associated with the extremities of the corresponding arc. The main
difference with classical constraint networks [28], stems from the fact that we don’t
force any more all arc constraints to hold. We rather consider this graph from which
we discard all the arc constraints that do not hold and impose one or several graph prop-
erties on this remaining graph. These properties can for instance be a restriction on the
number of connected components, on the size of the smallest connected component or
on the size of the largest connected component.

number of connected
components = 5

1 1

1

2

2

3

3

6 8

8

8

8

smallest connected component
(1 vertex)

largest connected component
(4 vertices)

Figure 1.1: Illustration of the link between graph-properties and global constraints
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EXAMPLE: We give an example of interpretation of such graph properties in terms
of global constraints. For this purpose we consider the sequence s of values
1 3 1 1 2 8 8 2 3 6 8 8 3 from which we construct the following graph G:

• To each value associated with a position in s corresponds a vertex of G,

• There is an arc from a vertex v1 to a vertex v2 if these vertices correspond to the
same value.

Figure 1.1 depicts graph G. Since G is symmetric, we omit the directions of the arcs.
We have the following correspondence between graph properties and constraints on the
sequence s:

• The number of connected components of G corresponds to the number of distinct
values of s.

• The size of the smallest connected component of G is the smallest number of oc-
currences of the same value in s.

• The size of the largest connected component of G is the largest number of occur-
rences of the same value in s.

As a result, in this context, putting a restriction on the number of connected components
of G can been seen as a global constraint on the number of distinct values of a sequence of
variables. Similar global constraints can be associated with the two other graph properties.

We now explain how to generate the initial graph associated with a global constraint.
A global constraint has one or more arguments, which usually correspond to an integer
value, to one variable or to a collection of variables. Therefore we have to describe the
process that allows for generating the vertices and the arcs of the initial graph from the
arguments of a global constraint under consideration. For this purpose we will take a
concrete example.

Consider the constraint nvalue(NVAL, VARIABLES) where NVAL and VARIABLES

respectively correspond to a domain variable and to a collection of domain variables
{var− V1, var − V2, . . . , var− Vm}6. This constraint holds if NVAL is equal to the
number of distinct values assigned to the variables V1, V2, . . . , Vm. We first show how
to generate the initial graph associated with the nvalue constraint. We then describe
the arc constraint associated with each arc of this graph. Finally, we give the graph
characteristic we impose on the final graph.

To each variable of the collection VARIABLES corresponds a vertex of the initial
graph. We generate an arc between each pair of vertices. To each arc, we associate
an equality constraint between the variables corresponding to the extremities of that
arc. We impose that NVAL, the variable corresponding to the first argument of nvalue,
be equal to the number of strongly connected components of the final graph. This
final graph consists of the initial graph from which we discard all arcs such that the
corresponding equality constraint does not hold.

Part (A) of Figure 1.2 shows the graph initially generated for the constraint nvalue
(NVAL, {var−V1, var−V2, var−V3, var−V4}), where NVAL, V1, V2, V3 and V4 are
domain variables. Part (B) presents the final graph associated with the ground instance
nvalue(3, {var−5, var−5, var−1, var−8}). For each vertex of the initial and final

6var corresponds to the name of the attribute used in the collection of variables.
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graph we respectively indicate the corresponding variable and the value assigned to that
variable. We have removed from the final graph all the arcs associated to equalities that
do not hold. The constraint nvalue(3, {var−5, var−5, var−1, var−8}) holds since
the final graph contains three strongly connected components, which, in the context of
the definition of the nvalue constraint, can be reinterpreted as the fact that NVAL is the
number of distinct values assigned to variables V1, V2, V3, V4.

1V

2V 3V

4V 5

5 1

8

(A) (B)

Figure 1.2: Initial and final graph associated with nvalue

Now that we have illustrated the basic ideas for describing a global constraint in
terms of graph properties, we go into more details.

1.2.2 Ingredients used for describing global constraints
We first introduce the basic ingredients used for describing a global constraint and
illustrate them shortly on the example of the nvalue constraint introduced in the pre-
vious section (page 15). We then go through each basic ingredient in more detail. The
graph-based description is founded on the following basic ingredients:

• Data types and restrictions used in order to describe the arguments of a global
constraint. Data types and restrictions were already described in the previous
section (from page 3 to page 13).

• Collection generators used in order to derive new collections from the arguments
of a global constraint for one of the following reasons:

– Collection generators are sometimes required since the initial graph of a
global constraint cannot always be directly generated from the arguments
of the global constraint. The nvalue(NVAL, VARIABLES) constraint did not
require any collection generator since the vertices of its initial graph were
directly generated from the VARIABLES collection.

– A second use of collection generators is for deriving a collection of items
for different set of vertices of the final graph. This is sometimes required
when we use set generators (see the last item of the enumeration).

• Elementary constraints associated with the arcs of the initial and final graph of
a global constraint. The nvalue constraint was using an equality constraint, but
other constraints are usually required.
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• Graph generators employed for constructing the initial graph of a global con-
straint. In the context of the nvalue constraint the initial graph was a clique. As
we will see later, other patterns are needed for generating an initial graph.

• Graph characteristics used for constraining the final graph we want to obtain.
In the context of the nvalue constraint we were using the number of strongly
connected components for expressing the fact that we want to count the number
of distinct values.

• Set generators which may be used for generating specific sets of vertices of the
final graph on which we want to enforce a given constraint. Since the nvalue

constraint enforces a graph property on the final graph (and not on subparts of
the final graph) we did not use this feature.

We first start to explain each ingredient separately and then show how one can
describe most global constraints in terms of these basic ingredients.

Collection generators

The vertices of the initial graph are usually directly generated from collections of items
that are arguments of the global constraint G under consideration. However, it some-
times happens that we would like to derive a new collection from existing arguments
of G in order to produce the vertices of the initial graph.

EXAMPLE: This is for instance the case of the element(INDEX, TABLE, VALUE) con-
straint, where INDEX and VALUE are domain variables that we would like to group as a
single item I (with two attributes) of a new derived collection. This is in fact done in order
to generate the following initial graph:

• The item I as well as all items of TABLE constitute the vertices,

• There is an arc from I to each item of the TABLE collection.
We provide the following mechanism for deriving new collections:

• In a first phase we declare the name of the new collection as well as the names
of its attributes and their respective types. This is achieved exactly in the same
way as those collections that are used in the arguments of a global constraint (see
page 4).

EXAMPLE: Consider again the example of the element(INDEX, TABLE, VALUE) con-
straint. The declaration ITEM − collection(index − dvar, value − dvar) intro-
duces a new collection called ITEM where each item has an index and a value attribute.
Both attributes correspond to domain variables.

• In a second phase we give a list of patterns that are used for generating the items
of the new collection. A pattern o − item(a1 − v1, a2 − v2, . . . , an − vn) or
item(a1 − v1, a2 − v2, . . . , an − vn) specifies for each attribute ai(1 ≤ i ≤ n)
of the new collection how to fill it7. This is done by providing for each attribute
ai one of the following element vi:

7o is one of the comparison operators =, 6=, <,≥,>,≤. When omitted its default value is =.
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– A constant,

– A parameter of the global constraint G,

– An attribute of a collection that is a parameter of the global constraint G,

– An attribute of a derived collection that was previously declared.

This element vi must be compatible with the type declaration of the correspond-
ing attribute of the new collection.

EXAMPLE: We continue the example of the element(INDEX, TABLE, VALUE) constraint
and the derived collection ITEM− collection(index − dvar, value − dvar). The
pattern item(index − INDEX, value − VALUE) indicates that:

• The index attribute of the ITEM collection will be generated by using the INDEX

argument of the element constraint. Since INDEX is a domain variable, it is com-
patible with the declaration ITEM − collection(index − dvar, value − dvar)
of the new collection.

• The value attribute of the ITEM collection will be generated by using the VALUE

argument of the element constraint. VALUE is also compatible with the declaration
statement of the new collection.

We now describe how we use the pattern for generating the items of a derived collec-
tion. We have the following two cases:

• If the pattern o − item(a1 − v1, a2 − v2, . . . , an − vn) does not contain any
reference to an attribute of a collection then we generate one single item for
such pattern8. In this context the value vi of the attribute ai (1 ≤ i ≤ n)
corresponds to a constant, to an argument of the global constraint or to a new
derived collection.

• If the pattern o − item(a1 − v1, a2 − v2, . . . , an − vn), where o is one of the
comparison operators =, 6=, <,≥, >,≤, contains one or several references to an
attribute of a collection9 we denote by:

– k1, k2, . . . , km the indices of the positions corresponding to the attribute of
a collection within item(a1 − v1, a2 − v2, . . . , an − vn),

– cα1 , cα2 , . . . , cαm the corresponding collections,

– aα1 , aα2 , . . . , aαm the corresponding attributes.

For each combination of items cα1 [i1], cα2 [i2], . . . , cαm [im] such that:

i1 ∈ [1, |cα1 |], i2 ∈ [1, |cα2 |], . . . , im ∈ [1, |cαm |] and i1 o i2 o . . . o in

we generate an item of the new derived collection (a1−w1 a2−w2 . . . an−wn)
defined by:

wj(1 ≤ j ≤ n) =

{
cαp [ip].aαp ifj ∈ {k1, k2, . . . , km}, j = kp

vj ifj /∈ {k1, k2, . . . , km} .

8In this first case the value of o is irrelevant.
9This collection is a parameter of the global constraint or corresponds to a newly derived collection.
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We illustrate this generation process on a set of examples. Each example is de-
scribed by providing:

• The global constraint and its arguments,

• The declaration of the new derived collection,

• The pattern used for creating an item of the new collection,

• The items generated by applying this pattern to the global constraint,

• A comment about the generation process.

We first start with four examples that don’t mention any references to an attribute of a
collection. A box surrounds an argument of a global constraint that is mentioned in a
generated item.

EXAMPLE

CONSTRAINT : element( INDEX , TABLE, VALUE )

DERIVED COLLECTION: ITEM − collection(index − dvar, value − dvar)

PATTERN(S) : item(index − INDEX, value − VALUE)

GENERATED ITEM(S) : {index− INDEX value− VALUE }
We generate one single item where the two attributes index and value respectively take
the first argument INDEX and the third argument VALUE of the element constraint.

EXAMPLE

CONSTRAINT : lex lesseq(VECTOR1, VECTOR2)

DERIVED COLLECTION: DESTINATION − collection(index − int, x− int, y − int)

PATTERN(S) : item(index − 0, x− 0, y − 0)

GENERATED ITEM(S) : {index − 0 x − 0 y− 0}
We generate one single item where the three attributes index, x and y take value 0.

EXAMPLE

CONSTRAINT : in relation( VARIABLES , TUPLES OF VALS)

DERIVED COLLECTION: TUPLES OF VARS − collection(vec − TUPLE OF VARS)

PATTERN(S) : item(vec − VARIABLES)

GENERATED ITEM(S) : {vec− VARIABLES }
We generate one single item where the unique attribute vec takes the first argument of the
in relation constraint as its value.
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EXAMPLE

CONSTRAINT : domain constraint( VAR , VALUES)

DERIVED COLLECTION: VALUE − collection(var01 − int, value − dvar)

PATTERN(S) : item(var01 − 1, value − VAR)

GENERATED ITEM(S) : {var01 − 1 value− VAR }
We generate one single item where the two attributes var01 and value respectively take
value 1 and the first argument of the domain constraint constraint.

We continue with three examples that mention one or several references to an at-
tribute of some collections. We now need to explicitly give the items of these collec-
tions in order to generate the items of the derived collection.

EXAMPLE

CONSTRAINT : lex lesseq( VECTOR1 , VECTOR2 )

VECTOR1 : {var − 5, var − 2, var − 3, var − 1}
VECTOR2 : {var − 5, var − 2, var − 6, var − 2}
DERIVED COLLECTION: COMPONENTS − collection(index − int,

x− dvar, y − dvar)

PATTERN(S) : item(index − VECTOR1.keya,

x− VECTOR1.var, y− VECTOR2.var)

GENERATED ITEM(S) : {index − 1 x− 5 y− 5, index − 2 x− 2 y− 2,

index − 3 x − 3 y − 6, index − 4 x− 1 y− 2}
The pattern mentions three references VECTOR1.key, VECTOR1.var and VECTOR2.var to
the collections VECTOR1 and VECTOR2 used in the arguments of the lex lesseq con-
straint. ∀i1 ∈ [1, |VECTOR1|], ∀i2 ∈ [1, |VECTOR2|] such that i1 = i2

b we generate an item
index − v1 x − v2 y− v3 where:

v1 = i1, v2 = VECTOR1[i1].var, v3 = VECTOR2[i1].var.
This leads to the four items listed in the GENERATED ITEM(S) field.

aAs defined in Section 1.1.2 page 4, key is an implicit attribute corresponding to the position of
an item within a collection.

bWe use an equality since this is the default value of the comparison operator o when we don’t use
a pattern of the form o− item(. . .).
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EXAMPLE

CONSTRAINT : cumulatives( TASKS , MACHINES, CTR)

TASKS : {machine − 1 origin − 1 duration − 4 end − 5 height − 1,

machine − 1 origin − 4 duration − 2 end − 6 height − 3,

machine − 1 origin − 2 duration − 3 end − 5 height − 2,

machine − 2 origin − 5 duration − 2 end − 7 height − 2}
DERIVED COLLECTION: TIME POINTS − collection(idm − int,

duration − dvar, point − dvar)

PATTERN(S) : item(idm − TASKS.machine,

duration − TASKS.duration, point − TASKS.origin)

item(idm − TASKS.machine,

duration − TASKS.duration, point − TASKS.end)

GENERATED ITEM(S) : {idm − 1 duration − 4 point − 1,

idm − 1 duration − 2 point − 4,

idm − 1 duration − 3 point − 2,

idm − 2 duration − 2 point − 5,

idm − 1 duration − 4 point − 5,

idm − 1 duration − 2 point − 6,

idm − 1 duration − 3 point − 5,

idm − 2 duration − 2 point − 7}
The two patterns mention the references TASKS.machine, TASKS.duration,
TASKS.origin and TASKS.end of the TASKS collection used in the arguments
of the cumulatives constraint. ∀i ∈ [1, |TASKS|], we generate two items
idm − u1 duration − u2 point − u3 , idm − v1 duration − v2 point − v3

where:
u1 = TASKS[i].machine, u2 = TASKS[i].duration, u3 = TASKS[i].origin,
v1 = TASKS[i].machine, v2 = TASKS[i].duration, v3 = TASKS[i].end.

This leads to the eight items listed in the GENERATED ITEM(S) field.
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EXAMPLE

CONSTRAINT : golomb( VARIABLES )

VARIABLES : {var − 0, var − 1, var − 4, var − 6}
DERIVED COLLECTION: PAIRS − collection(x − dvar, y− dvar)

PATTERN(S) : > −item(x − VARIABLES.var, y− VARIABLES.var)

GENERATED ITEM(S) : {x− 1 y− 0,

x − 4 y − 0, x − 4 y − 1,

x − 6 y − 0, x − 6 y − 1, x− 6 y− 4}
The pattern mentions two references VARIABLES.var and VARIABLES.var to the
VARIABLES collection used in the arguments of the golomb constraint. ∀i1 ∈
[1, |VARIABLES|], ∀i2 ∈ [1, |VARIABLES|] such that i1 > i2

a we generate the item
x− u1 y − u2 where:

u1 = VARIABLES[i1].var, u2 = VARIABLES[i2].var.
This leads to the six items listed in the GENERATED ITEM(S) field.

aWe use the comparison operator > since we have a pattern of the form > −item(. . .).

Elementary constraints attached to the arcs

This section describes the constraints that are associated with the arcs of the initial
graph of a global constraint. These constraints are called arc constraints. To each
arc one can associate one or several arc constraints. An arc will belong to the final
graph if and only if all its arc constraints hold. An arc constraint from a vertex v1 to a
vertex v2 mentions variables and/or values associated with v1 and v2. Before defining
an arc constraint, we first need to introduce simple arithmetic expressions as well as
arithmetic expressions. Simple arithmetic expressions and arithmetic expressions are
defined recursively.

Simple arithmetic expressions A simple arithmetic expression is defined by one of
the five following expressions.

• I : I is an integer.

• Arg: Arg is an argument of the global constraint of type int or dvar.

• Arg: Arg is a formal parameter provided by the arc generator10 of the graph-
constraint.

• Col.Attr: Col is a formal parameter provided by the arc generator or the col-
lection used in the For all items of iterator11. Attr is an attribute of the col-
lection referenced by Col.

10Arc generators are described in Section 1.2.2 (page 26).
11The For all items of iterator is described in Section 1.2.3 (page 43).
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EXAMPLE: As an example consider the first graph-constraint associated with the
global cardinality with costs(VARIABLES, VALUES, MATRIX, COST) constraint
and its arc constraint variables.var = VALUES.val. Both, variables.var as well
as VALUES.val are simple arithmetic expressions of the form Col.Attr:

– In variables.var, variables corresponds to the formal parameter provided by
the arc generator SELF 7→ collection(variables), while var is an attribute
of the VARIABLES collection.

– In VALUES.val, VALUES corresponds to the collection denoted by the For

all items of iterator, while val is an attribute of the VALUES collection.

• Col[Expr].Attr: Col is an argument of type collection, Attr one attribute
of Col and Expr an arithmetic expression.

Col[Expr].Attr denotes the value of attribute Attr of the Exprth item of the
collection denoted by Col.

EXAMPLE: As an example consider the global cardinality with costs(
VARIABLES, VALUES, MATRIX, COST) constraint and its second graph-constraint, which
defines the COST variable. The expression MATRIX[(variables.key − 1) ∗ |VALUES|+
values.key].c is a simple arithmetic expression of the form Col[Expr].Attr:

– MATRIX is a collection of items collection(i − int, j− int, c− int) where
all items are sorted in increasing order on attributes i, j (because of the restriction
increasing seq(MATRIX, [i, j])).

– MATRIX[(variables.key − 1) ∗ |VALUES| + values.key].c denotes the value
of attribute c of an item of the MATRIX collection. The position of this item within
the MATRIX collection depends on the position of a variable of the VARIABLES

collection a as well as on the position of a value of the VALUES collection b.

aThis position is denoted by the expression variables.key. As defined in Section 1.1.2 page
4, key is an implicit attribute corresponding to the position of an item within a collection.

bThis position is denoted by the expression values.key.

Arithmetic expressions An arithmetic expression is recursively defined by one of
the following expressions:

• A simple arithmetic expression.

• Exp1 Op Exp2:

– Exp1 is an arithmetic expression,

– Op is one of the following symbols +, −, ∗, / 12,

– Exp2 is an arithmetic expression.

• |Collection|:
– Collection is an argument of type collection and |Collection| de-

notes the number of items of that collection.
12/ denotes an integer division, a division in which the fractional part is discarded.
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• |Exp|:

– Exp is an arithmetic expression, and |Exp| denotes the absolute value of
this expression.

• sign(Exp):

– Exp is an arithmetic expression, and sign(Exp) the sign of Exp (−1 if Exp
is negative, 0 if Exp is equal to 0, 1 if Exp is positive).

EXAMPLE: An example of use of sign can be found in the last part of the arc con-
straint of the crossing constraint:
sign((s2.ox − s1.ex) ∗ (s1.ey − s1.oy) − (s1.ex − s1.ox) ∗ (s2.oy − s1.ey)) 6=
sign((s2.ex − s1.ex) ∗ (s2.oy − s1.oy) − (s2.ox − s1.ox) ∗ (s2.ey − s1.ey))

• card set(Set):

– Set is a reference to a set of integers or to a set variable. card set(Set)
denotes the number of elements of that set.

EXAMPLE: An example of use of card set can be found in the symmetric gcc

constraint: vars.nocc = card set(vars.var).

• SimpleExp1 mod SimpleExp2,

min(SimpleExp1, SimpleExp2) or max(SimpleExp1, SimpleExp2):

– SimpleExp1 is a simple arithmetic expression,

– SimpleExp2 is a simple arithmetic expression.

Arc constraints Now that we have introduced simple arithmetic expressions as well
as arithmetic expressions we define an arc constraint. An arc constraint is recursively
defined by one of the following expressions:

• TRUE:

This stands for an arc constraint that always holds. As a result, the corresponding
arc always belongs to the final graph.

EXAMPLE: An example of use of TRUE can be found in the sum ctr(VARIABLES, CTR,
VAR) constraint, where it is used in order to enforce keeping all items of the VARIABLES
collection in the final graph.

• Exp1 Comparison Exp2:

– Exp1 is an arithmetic expression,

– Comparison is one of the comparison operators≤, ≥, <, >, =, 6=,

– Exp2 is an arithmetic expression.
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EXAMPLE: As an example of such arc constraint, the second graph-constraint of the
cumulative(TASKS, LIMIT) constraint uses the following arc constraints:

– tasks1.duration > 0,

– tasks2.origin ≤ tasks1.origin,

– tasks1.origin < tasks2.end.

The conjunction of these three arc constraints can be interpreted in the following way:
An arc from a task tasks1 to a task tasks2 will belong to the final graph if and only if
tasks2 overlaps the origin of tasks1.

• Exp1 SimpleCtr Exp2:

– Exp1 is an arithmetic expression,

– SimpleCtr is an argument of type atom that can only take one of the values
≤, ≥, <, >, =, 6=,

– Exp2 is an arithmetic expression.

EXAMPLE: An example of use of such an arc constraint can be found
in the change(NCHANGE, VARIABLES, CTR) constraint: variables1.var CTR

variables2.var. Within this expression, variables1 and variables2 correspond
to consecutive items of the VARIABLES collection.

• Exp1 ¬SimpleCtr Exp2:

– Exp1 is an arithmetic expression,

– SimpleCtr is an argument of type atom that can only take one of the values
≤, ≥, <, >, =, 6=,

– Exp2 is an arithmetic expression.

EXAMPLE: An example of use of such an arc constraint can be found
in the change continuity(NB PERIOD CHANGE, NB PERIOD CONTINUITY,
MIN SIZE CHANGE, MAX SIZE CHANGE, MIN SIZE CONTINUITY,
MAX SIZE CONTINUITY, NB CHANGE, NB CONTINUITY, VARIABLES, CTR) constraint:
variables1.var ¬CTR variables2.var. Within this expression, variables1 and
variables2 correspond to consecutive items of the VARIABLES collection.

• Ctr(Exp1, . . . , Expn):

– Ctr is a global constraint defined in the catalog for which there exists a
graph-based and/or an automaton-based representation,

– Exp1, . . . , Expn correspond to the arguments of the global constraint Ctr.
Each argument should be a simple arithmetic expression that is compatible
with the type declaration of the argument of Ctr.
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EXAMPLE: An example of such arc constraint can be found in the definition
of diffn: diffn(ORTHOTOPES) uses the two orth do not overlap(ORTHOTOPE1,
ORTHOTOPE2) global constraint for defining its arc constraint. Since ORTHOTOPES is
a collection of type collection(ori − dvar, siz− dvar, end− dvar) and since
both ORTHOTOPE1 and ORTHOTOPE2 correspond to items of ORTHOTOPES there is no
type compatibility problem between the call to two orth do not overlap and its def-
inition.

• ArcCtr1 LogicalConnector ArcCtr2:

– ArcCtr1 is an arc constraint,

– LogicalConnector is one of the logical connectors ∨, ∧,⇒,⇔,

– ArcCtr2 is an arc constraint.

EXAMPLE: As shown by the following example, minimum(MIN, VARIABLES) uses
this kind of arc constraint: variables1 = variables2 ∨ variables1.var <
variables2.var, where variables1 and variables2 correspond to items of the
VARIABLES collection, holds if and only if one of the following conditions holds:

– variables1 and variables2 correspond to the same item of the VARIABLES

collection,

– The var attribute of variables1 is strictly less than the var attribute of
variables2.

Graph generators

This section describes how to generate the initial graph associated with a global con-
straint. Initial graphs correspond to directed hypergraphs [29], which have a very reg-
ular structure. They are defined in the following way:

• The vertices of the directed hypergraph are generated from collections of items
such that each item corresponds to one vertex of the directed hypergraph. These
collections are either collections that arise as arguments of the global constraint,
or collections that are derived from one or several arguments of the global con-
straint. In this latter case these derived collections are computed by using the
collection generators previously introduced (see Section 1.2.2, page 17).

• To all arcs of the directed hypergraph corresponds the same arc constraint that
involves vertices in a given order13. These arc constraints, which are mainly
unary and binary constraints, were described in the previous section (see Sec-
tion 1.2.2, page 22). We describe all the arcs of an initial graph with a set of
predefined arc generators, which correspond to classical regular structures one
can find in the graph literature [30, pages 140–153]. An arc generator of arity a

13Usually the edges of a hypergraph are not oriented [29, pages 1–2]. However for our purpose we need
to define an order on the vertices of an edge since the corresponding arc constraint takes its arguments in a
given order.
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takes n collections of items, denoted ci(1 ≤ i ≤ n), as input and returns the cor-
responding hypergraph where the vertices are the items of the input collections
ci(1 ≤ i ≤ n) and where all arcs involve a vertices. Specific arc generators al-
low for giving an a-ary constraint for which a is not fixed, which means that the
corresponding hypergraph contains arcs involving various number of vertices.

Each arc generator has a name and takes one or several collections of items as input
and generates a set of arcs. Each arc is made from a sequence of items i1 i2 . . . ia and
is denoted by (i1, i2, . . . , ia). a is called the arity of the arc generator. We have the
following types of arc generators:

• Arc generators with a fixed predefined arity. In fact most arc generators have a
fixed predefined arity of 2. The graphs they generate correspond to digraphs.

• Arc generators that can be used with any arity a greater than or equal to 1. These
arc generators generate directed hypergraphs where all arcs consist of a items.

• Arc generators that generate arcs that don’t involve the same number of items.

We now give the list of arc generators, listed in alphabetic order, and the arcs they
generate. For each arc generator we point to a global constraint where it is used in
practice. Finally, Figure 1.4 illustrates the different arc generators. At present the
following arc generators are in use:

• CHAIN has a predefined arity of 2. It takes one collection c and generates the
following arcs14:

– ∀i ∈ [1, |c| − 1]: (c[i], c[i+ 1]), – ∀i ∈ [1, |c| − 1]: (c[i+ 1], c[i]).

EXAMPLE: The arc generator CHAIN is for instance used in the
group skip isolated item constraint.

• CIRCUIT has a predefined arity of 2. It takes one collection c and generates
the following arcs:

– ∀i ∈ [1, |c| − 1]: (c[i], c[i+ 1]), – (c[|c|], c[1]).

EXAMPLE: The arc generator CIRCUIT is for instance used in the
circular change constraint.

• CLIQUE can be used with any arity a greater than or equal to 2. It takes
one collection c and generates the arcs: ∀i1 ∈ [1, |c|], ∀i2 ∈ [1, |c|], . . . , ∀ia ∈
[1, |c|] : (c[i1], c[i2], . . . , c[ia]).

EXAMPLE: The arc generator CLIQUE is usually used with an arity a = 2. This is
for instance the case of the alldifferent constraint.

14As defined in Section 1.1.2 (page 4) we use the following notation: For a given collection c, |c| and c[i]
respectively denote the number of items of c and the ith item of c.
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• CLIQUE (Comparison) , where Comparison is one of the comparison opera-
tors ≤, ≥, <, >, =, 6=, can be used with any arity a greater than or equal to 2. It
takes one collection c and generates the arcs:

∀i1 ∈ [1, |c|],
∀i2 ∈ [1, |c|] such that i1 Comparison i2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

∀ia ∈ [1, |c|] such that ia−1 Comparison ia : (c[i1], c[i2], . . . , c[ia]).

EXAMPLE: The orchard(TREES) constraint is an example of constraint that uses the
CLIQUE(<) arc generator with an arity a = 3. It generates an arc for each set of three
trees.

• GRID([d1, d2, . . . , dn]) takes a collection c consisting of d1 ·d2 · · · · ·dn items
and generates the arcs (c[i], c[j]) where i and j satisfy the following condition.
There exists a natural number α (0 ≤ α ≤ n− 1) such that (1) and (2) hold:

(1) |i− j| = ∏
1≤k≤α dk (when α = 0 we have

∏
1≤k≤α = 1),

(2) b iQ
1≤k≤α+1 dk

c = b jQ
1≤k≤α+1 dk

c.

EXAMPLE: The connect points constraint uses the GRID arc generator.

• LOOP has a predefined arity of 2. It takes one collection c and generates the
arcs: ∀i ∈ [1, |c|]: (c[i], c[i]). LOOP is usually used in order to generate a loop
on some vertices, so that they don’t disappear from the final graph.

EXAMPLE: The global contiguity(VARIABLES) constraint is an example of con-
straint that uses the LOOP arc generator so that each variable of the VARIABLES col-
lection belongs to the final graph.

• PATH can be used with any arity a greater than or equal to 1. It takes one
collection c, and generates the following arcs: ∀i ∈ [1, |c| − a+ 1] : (c[i], c[i+
1], . . . , c[i+ a− 1]).

EXAMPLE: PATH is for instance used in the sliding sum(LOW, UP, SEQ,
VARIABLES) constraint with an arity SEQ, where SEQ is an argument of the
sliding sum constraint.

• PATH 1 generates arcs that don’t involve the same number of items. It takes
one collection c, and generates the following arcs: (c[1]), (c[1], c[2]), . . . ,
(c[1], c[2], . . . , c[|c|]).

EXAMPLE: PATH 1 is used in the
size maximal starting sequence alldifferent constraint.
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• PATH N generates arcs that don’t involve the same number of items. It takes
one collection c, and generates the following arcs: ∀i ∈ [1, |c|], ∀j ∈ [i, |c|] :
(c[i], c[i+ 1], . . . , c[j]).

EXAMPLE: PATH N is for instance used in the
size maximal sequence alldifferent constraint.

• PRODUCT has a predefined arity of 2. It takes two collections c1, c2 and
generates the arcs: ∀i ∈ [1, |c1|], ∀j ∈ [1, |c2|] : (c1[i], c2[j]).

EXAMPLE: PRODUCT is for instance used in the same(VARIABLES1,
VARIABLES2) constraint for generating an arc from every item of the VARIABLES1

collection to every item of the VARIABLES2 collection.

• PRODUCT (Comparison) , where Comparison is one of the comparison op-
erators ≤, ≥, <, >, =, 6=, has a predefined arity of 2. It takes two collec-
tions c1, c2 and generates the arcs: ∀i ∈ [1, |c1|], ∀j ∈ [1, |c2|] such that
i Comparison j : (c1[i], c2[j]).

EXAMPLE: PRODUCT (=) is for instance used in the
differ from at least k pos(K, VECTOR1, VECTOR2) constraint in order to generate
an arc between the ith component of VECTOR1 and the ith component of VECTOR2.

• SELF has a predefined arity of 1. It takes one collection c and generates the
arcs: ∀i ∈ [1, |c|]: (c[i]).

EXAMPLE: SELF is for instance used in the among(NVAR, VARIABLES, VALUES) con-
straint in order to generate a unary arc constraint in(variables.var, VALUES) for each
variable of the VARIABLES collection.

• SYMMETRIC PRODUCT has a predefined arity of 2. It takes two collec-
tions c1, c2 and generates the following arcs: ∀i ∈ [1, |c1|], ∀j ∈ [1, |c2|] :
(c1[i], c2[j]) and (c2[j], c1[i]). SYMMETRIC PRODUCT is currently not
used.

• SYMMETRIC PRODUCT (Comparison) , where Comparison is one of the
comparison operators≤,≥, <, >, =, 6=, has a predefined arity of 2. It takes two
collections c1, c2 and generates the arcs: ∀i ∈ [1, |c1|], ∀j ∈ [1, |c2|] such that
i Comparison j : (c1[i], c2[j]) and (c2[j], c1[i]).

EXAMPLE: The two orth do not overlap constraint is an example of constraint
that uses the SYMMETRIC PRODUCT (=) arc generator.

• VOID takes one collection and does not generate any arc.

EXAMPLE: VOID is for instance used in the lex lesseq constraint.
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Finally, we can combine the PRODUCT arc generator with the arc generators
from the following set Generator = {CIRCUIT , CHAIN , CLIQUE , LOOP ,
PATH , VOID}. This is achieved by using the construction PRODUCT (G1, G2)
where G1 and G2 belong to Generator . It applies G1 to the first collection c1 passed
to PRODUCT and G2 to the second collection c2 passed to PRODUCT . Finally, it
applies PRODUCT on c1 and c2. In a similar way the PRODUCT (Comparison)
arc generator is extended to PRODUCT (G1, G2, Comparison).

EXAMPLE: As an illustrative example, consider the
alldifferent same value(NSAME, VARIABLES1, VARIABLES2) constraint, which
uses the arc generator PRODUCT (CLIQUE ,LOOP ,=) on the collections
VARIABLES1 and VARIABLES2. It generates the following arcs:

• Since the first argument of PRODUCT is CLIQUE it generates an arc between
each pair of items of the VARIABLES1 collection.

• Since the second argument of PRODUCT is LOOP it generates a loop for each
item of the VARIABLES2 collection.

• Since the third argument is the comparison operator = it finally generates an arc
between an item of the VARIABLES1 collection and an item of the VARIABLES2

collection when the two items have the same position.

Figure 1.3 shows the generated graph under the hypothesis that VARIABLES1 and
VARIABLES2 have respectively 3 and 3 items.

1i

2i

3i

j1

VARIABLES2VARIABLES1

j2

j3

Figure 1.3: Example of initial graph generated by PRODUCT (CLIQUE ,LOOP ,=)

Figure 1.4 illustrates the different arc generators. On the one hand, for those arc
generators that take one single collection, we apply them on the collection of items
{i − 1, i − 2, i − 3, i − 4}. On the other hand, for those arc generators that take two
collections, we apply them on {i− 1, i− 2} and {i− 3, i− 4}. We use the following
pictogram for the graphical representation of a constraint network:

• A line for an arc constraint of arity 1,

• An arrow for an arc constraint of arity 2,

• A closed line for an arc constraint with an arity strictly greater than 2. In this
last case, since the vertices of an arc are ordered, a black circle at one of the
extremities indicates the direction of the closed line. For instance consider the
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example of PATH 1 in Figure 1.4. The closed line that contains vertices 1, 2
and 3 means that a 3-ary arc constraint involves items 1, 2, and 3 in this specific
order.

Dotted circles represent vertices that don’t belong to the graph. This stems from
the fact that the arc generator did not produce any arc involving these vertices. The
leftmost lowest corner indicates the arity of the corresponding arc generator:

• An integer if it has a fixed predefined arity,

• n if it can be used with any arity greater than or equal to 1,

• ∗ if it generates arcs that don’t necessarily involve the same number of items.

Graph properties

We represent a global constraint as the search of a subgraph (i.e. a final graph) of a
known initial graph, so that this final graph satisfies a given set of graph properties.
Most graph properties have the form Char Comparison Exp or the form Char /∈
[Exp1, Exp2], where Char is a graph characteristic [17], [31], Comparison is one of
the comparison operators =, <, ≥, >, ≤, 6=, and Exp, Exp1, Exp2 are expressions
that can be evaluated to an integer. Before defining each graph characteristic, let’s first
introduce some basic vocabulary on graphs.

Graph terminology and notations A digraph G = (V (G), E(G)) is a pair where
V (G) is a finite set, called the set of vertices, and where E(G) is a set of ordered
pairs of vertices, called the set of arcs. The arc, path, circuit and strongly connected
component of a graph G correspond to oriented concepts, while the edge, chain, cycle
and connected component are non-oriented concepts. However, as reported in [17,
page 6] an undirected graph can be seen as a digraph where to each edge we associate
the corresponding two arcs. Parts (A) and (B) of Figure 1.5 respectively illustrate the
terms for undirected graphs and digraphs.

• We say that e2 is a successor of e1 if there exists an arc that starts from e1 and
ends at e2. In the same way, we say that e2 is a predecessor of e1 if there exists
an arc that starts from e2 and ends at e1.

• A vertex of G that does not have any predecessor is called a source. A vertex of
G that does not have any successor is called a sink.

• A sequence (e1, e2, . . . , ek) of edges of G such that each edge has a common
vertex with the previous edge, and the other vertex common to the next edge is
called a chain of length k. A chain where all vertices are distinct is called an
elementary chain. Each equivalence class of the relation ”ei is equal to ej or
there exists a chain between ei and ej” is a connected component of the graph
G.
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Figure 1.4: Examples of arc generators
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(A)  Undirected graph (B)  Digraph

Figure 1.5: Graph terminology for an undirected graph and a digraph

• A sequence (e1, e2, . . . , ek) of arcs ofG such that for each arc ei (1 ≤ i < k) the
end of ei is equal to the start of the arc ei+1 is called a path of length k. A path
where all vertices are distinct is called an elementary path. Each equivalence
class of the relation ”ei is equal to ej or there exists a path between ei and ej” is
a strongly connected component of the graph G.

• A chain (e1, e2, . . . , ek) of G is called a cycle if the same edge does not occur
more than once in the chain and if the two extremities of the chain coincide. A
cycle (e1, e2, . . . , ek) of G is called a circuit if for each edge ei (1 ≤ i < k), the
end of ei is equal to the start of the edge ei+1.

• Given a graph G, we define the reduced graph R(G) of G as follows: To each
strongly connected component of G corresponds a vertex of R(G). To each arc
of G that connects different strongly connected components corresponds an arc
in R(G).

• The rank function associated with the vertices V (G) of a graph G that does not
contain any circuit is defined in the following way:

– The rank of the vertices that do not have any predecessor (i.e. the sources)
is equal to 0,

– The rank r of a vertex v that is not a source is the length of longest path
(e1, e2, . . . , er) such that the start of the arc e1 is a source and the end of
arc er is the vertex v.

We now present the different notations used in the catalog:

• [k] corresponds to {1, · · · , k} for k any positive integer.

• Given a set X , |X | is the number of its elements.

• Given two sets X and Y , X
⊎
Y denotes the union of the two sets when they are

disjoint.

• Given a digraph G and x ∈ V (G), d+
G(x) = |{y : y ∈ V (G) : (x, y) ∈ E(G)}|

and d−G(x) = |{y : y ∈ V (G) : (y, x) ∈ E(G)}|.
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• Given a digraph G and X a subset of V (G), the subdigraph of G induced by X
is the digraphG[X ] where V (G[X ]) = X andE(G[X ]) = X2∩E(G). By aim
of simplicity, we denote G[V (G) −X ] by G −X . Moreover, if X = {x}, we
use G− x instead of G− {x}.
• Given two digraphG1 and G2 such that V (G1)∩ V (G2) = ∅, G1 ⊕G2 denotes

the graph whose vertices set is V (G1) ∪ V (G2) and whose arcs set is E(G1) ∪
E(G2).

• Given a graph characteristic CH ∈ {NCC,NSCC}, a digraph G and an inte-
ger k, CH(G, k) is the number of connected components (respectively strongly
connected components) of G with cardinal k.

Given a graph characteristics, for instance the number of connected components,
NCCINITIAL will denote the number of connected components of the initial graph (i.e.
the graph induced by the constraint under consideration), NCC will denote the number
of connected components of the final graph (i.e. a subgraph of the initial graph). The
use of NCC(G) will denote the number of connected components of the digraph G.

Given a global constraintC, and a graph characteristics GC used in the description
of C, GC (resp. GC) denotes a lower bound (resp. upper bound) of GC among all
possible final graphs compatible with the current status of C.

Graph characteristics We list in alphabetic order the different graph characteris-
tics we consider for a final graph Gf = (V (Gf ), E(Gf )) associated with a global
constraint and give an example of constraint where they are used:

• MAX DRG : largest distance between sources and sinks in the reduced graph
associated with Gf (adjacent vertices are at a distance of 1).

EXAMPLE: We don’t provide any example since MAX DRG is currently not used.

• MAX ID : number of predecessors of the vertex of Gf that has the maximum
number of predecessors without counting an arc from a vertex to itself.

EXAMPLE: The circuit constraint uses the graph property MAX ID = 1 in order
to force each vertex of the final graph to have at most one predecessor.

• MAX NCC : number of vertices of the largest connected component of Gf .

EXAMPLE: The longest change(SIZE, VARIABLES, CTR) constraint uses the graph
property MAX NCC = SIZE in order to catch in SIZE the maximum number of
consecutive variables of the VARIABLES collection for which constraint CTR holds.
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• MAX NSCC : number of vertices of the largest strongly connected compo-
nent of Gf .

EXAMPLE: The tree constraint covers a digraph by a set of trees in such a way that
each vertex belongs to a distinct tree. It uses the graph-property MAX NSCC ≤ 1 in
order to avoid to have any circuit involving more than one vertex.

• MAX OD : number of successors of the vertex of Gf that has the maximum
number of successors without counting an arc from a vertex to itself.

EXAMPLE: The tour constraint enforces to cover a graph with a Hamiltonian cycle.
It uses the graph-property MAX OD = 2 to enforce that each vertex of Gf have at
most twoa successors.

aSince the tour constraint uses the CLIQUE(6=) arc generator the vertices of Gf don’t have
any loop.

• MIN DRG : smallest distance between sources and sinks in the reduced graph
associated with Gf (adjacent vertices are at a distance of 1).

EXAMPLE: We don’t provide any example since MIN DRG is currently not used
by any constraint.

• MIN ID : number of predecessors of the vertex of Gf that has the minimum
number of predecessors without counting an arc from a vertex to itself.

EXAMPLE: The tour constraint enforces to cover a graph with a Hamiltonian cycle.
It uses the graph-property MIN ID = 2 to enforce that each vertex ofGf have at most
twoa predecessors.

aSince the tour constraint uses the CLIQUE(6=) arc generator the vertices of Gf don’t have
any loop.

• MIN NCC : number of vertices of the smallest connected component of Gf .

EXAMPLE: Within the group constraint, each connected component of Gf corre-
sponds to a maximum sequence of consecutive variables that take their value in a given
set of values. Therefore, the graph-property MIN NCC = MIN SIZE enforces that
the smallest sequence of such variables consist of MIN SIZE variables.
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• MIN NSCC : number of vertices of the smallest strongly connected compo-
nent of Gf .

EXAMPLE: The circuit(NODES) constraint enforces covering a digraph with one
circuit visiting once all its vertices. The graph-property MIN NSCC = |NODES|
enforces that the smallest strongly connected component ofGf contain |NODES| vertices.
Since |NODES| also corresponds to the number of vertices of the initial graph this means
that Gf is a strongly connected component involving all the vertices. This is clearly a
necessary conditiona for having a circuit visiting once all vertices.

aOf course, this is not enough, and the description of the circuit constraint asks for some
other properties.

• MIN OD : number of successors of the vertex of Gf that has the minimum
number of successors without counting an arc from a vertex to itself.

EXAMPLE: The tour constraint enforces to cover a graph with a Hamiltonian cycle.
It uses the graph-property MIN OD = 2 to enforce that each vertex of Gf have at
most twoa successors.

aSince the tour constraint uses the CLIQUE(6=) arc generator the vertices of Gf don’t have
any loop.

• NARC : cardinality of the set E(Gf ).

EXAMPLE: The disjoint(VARIABLES1, VARIABLES2) constraint enforces that each
variable of the collection VARIABLES1 take a value that is distinct from all the values
assigned to the variables of the collection VARIABLES2.
This is imposed by creating an arc from each variable of VARIABLES1 to each variable
of VARIABLES2. To each arc corresponds an equality constraint involving the variables
associated to the extremities of the arc. Finally, the graph property NARC = 0 forces
Gf to be empty so that no value is both assigned to a variable of VARIABLES1 as well
as to a variable of VARIABLES2.

• NARC NO LOOP : cardinality of the set E(Gf ) without considering the
arcs linking the same vertex (i.e. a loop).

EXAMPLE: The constraint alldifferent same value uses the
NARC NO LOOP graph-property.
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• NCC : number of connected components of Gf .

EXAMPLE: The tree constraint covers a digraph by NTREES trees in such a way that
each vertex belongs to a distinct tree. It uses the graph-property NCC = NTREES in
order to state that Gf is made up from NTREES connected components.

• NSCC : number of strongly connected components of Gf .

EXAMPLE: The constraint nvalue(NVAL, VARIABLES) forces NVAL to be equal to the
number of distinct values assigned to the variables of the collection VARIABLES. This
is enforced by using the graph-property NSCC = NVAL. Each strongly connected
component of the final graph corresponds to the variables that are assigned to the same
value.

• NSINK : number of vertices of Gf that do not have any successor.

EXAMPLE: The same(VARIABLES1, VARIABLES2) enforces that the variables of the
VARIABLES1 collection correspond to the variables of the VARIABLES2 collection ac-
cording to a permutation.
We first create an arc from each variable of VARIABLES1 to each variable of
VARIABLES2. To each arc corresponds an equality constraint involving the variables
associated with the extremities of the arc. We use the graph-property NSINK =
|VARIABLES2| in order to express the fact that each value assigned to a variable of
VARIABLES2 should also be assigned to a variable of VARIABLES1.

• NSINK NSOURCE : sum over the different connected components of Gf
of the minimum of the number of sinks and the number of sources of a connected
component.

EXAMPLE: The soft same var(C, VARIABLES1, VARIABLES2) constraint enforces C
to be the minimum number of values to change in the VARIABLES1 and the VARIABLES2
collections of variablesa, so that the variables of VARIABLES2 correspond to the vari-
ables of VARIABLES1 according to a permutation.
A connected component Cval of the final graph Gf corresponds to all variables that are
assigned to the same value val : the sources and the sinks of Cval respectively correspond
to the variables of VARIABLES1 and to the variables of VARIABLES2 that are assigned to
val . For a connected component, the minimum of the number of sources and sinks ex-
presses the number of variables for which we don’t need to make any change. Therefore
we use the graph-property NSINK NSOURCE = |VARIABLES1| − C for encoding
the meaning of the soft same var constraint.

aBoth collections have the same number of variables.
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• NSOURCE : number of vertices of Gf that do not have any predecessor.

EXAMPLE: The same(VARIABLES1, VARIABLES2) enforces that the variables of the
VARIABLES1 collection correspond to the variables of the VARIABLES2 collection ac-
cording to a permutation.
We first create an arc from each variable of VARIABLES1 to each variable of
VARIABLES2. To each arc corresponds an equality constraint involving the variables
associated with the extremities of the arc. We use the graph-property NSOURCE =
|VARIABLES1| in order to express the fact that each value assigned to a variable of
VARIABLES1 should also be assigned to a variable of VARIABLES2.

• NTREE : number of vertices of Gf that do not belong to any circuit and for
which at least one successor belongs to a circuit. Such vertices can be interpreted
as root nodes of a tree.

EXAMPLE: The cycle(NCYCLE, NODES) enforces that NCYCLE equal the number of
circuits for covering an initial graph in such a way that each vertex belongs to one single
circuit.
The graph-property NTREE = 0 enforces that all vertices of the final graph belong to
a circuit.

• NVERTEX : cardinality of the set V (Gf ).

EXAMPLE: The cutset(SIZE CUTSET, NODES) constraint considers a digraph with n
vertices described by the NODES collection. It enforces that the subset of kept vertices
of cardinality n − SIZE CUTSET and their corresponding arcs form a graph without a
circuit. It uses the graph-property NVERTEX = n − SIZE CUTSET for enforcing
that the final graph Gf contain the required number of vertices.

• RANGE DRG : difference between the largest distance between sources and
sinks in the reduced graph associated withGf and the smallest distance between
sources and sinks in the reduced graph associated with Gf .

EXAMPLE: The tree range constraint enforces to cover a digraph in such a way that
each vertex belongs to a distinct tree. In addition it forces the difference between the
longest and the shortest paths of Gf to be equal to the variable R. For this purpose it
uses the graph-property RANGE DRG = R.
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• RANGE NCC : difference between the number of vertices of the largest
connected component ofGf and the number of vertices of the smallest connected
component of Gf .

EXAMPLE: We don’t provide any example since RANGE NCC is currently not
used by any constraint.

• RANGE NSCC : difference between the number of vertices of the largest
strongly connected component of Gf and the number of vertices of the smallest
strongly connected component of Gf .

EXAMPLE: The balance(BALANCE, VARIABLES) constraint forces BALANCE to be
equal to the difference between the number of occurrence of the value that occurs the
most and the value that occurs the least within the collection of variables VARIABLES.
Each strongly connected component ofGf corresponds to the variables that are assigned
to the same value. The graph property RANGE NSCC = BALANCE allows for ex-
pressing this definition.

• ORDER(rank, default, attr) :

– rank is an integer or an argument of type integer of the global constraint,

– default is an integer,

– attr is an attribute corresponding to an integer or to a domain variable that
occurs in all the collections that were used for generating the vertices of the
initial graph.

We explain what is the value associated with ORDER(rank, default, attr).
Let V denote the vertices of rank rank of Gf from which we remove any loops.

– When V is not empty, it corresponds to the values of attribute attr of the
items associated with the vertices of V ,

– Otherwise, when V is empty, it corresponds to the default value default.

EXAMPLE: The minimum(MIN, VARIABLES) forces MIN to be the minimum value
of the collection of domain variables VARIABLES. There is an arc from a vari-
able var1 to a variable var2 if and only if var1 < var2. The graph-property
ORDER(0, MAXINT, var) = MIN expresses the fact that MIN is equal to the value
of the source of Gf (since rank = 0).

• PATH FROM TO(attr, from, to) :
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– attr is an attribute corresponding to an integer or to a domain variable that
occurs in all the collections that were used for generating the vertices of the
initial graph,

– from is an integer or an argument of type integer of the global constraint,

– to is an integer or an argument of type integer of the global constraint.

Let F (respectively T ) denote the vertices ofGf such that attr is equal to from

(respectively to). PATH FROM TO(attr, from, to) is equal to 1 if there
exists a path between each vertex of F and each vertex of T , and 0 otherwise.

EXAMPLE: The constraint lex lesseq uses the PATH FROM TO graph-
property.

• PRODUCT(col, attr)

– col is a collection that was used for generating the vertices of the initial
graph,

– attr is an attribute corresponding to an integer or to a domain variable of
the collection col.

Let V be the set of vertices of Gf that were generated from the items of the
collection col.

– If V is not empty, PRODUCT(col, attr) corresponds to the product of
the values of attribute attr associated with the vertices of V ,

– Otherwise, if V is empty, PRODUCT(col, attr) is equal to 1.

EXAMPLE: The constraint product ctr(VARIABLES, CTR, VAR) forces the product
of the variables of the VARIABLES collection to be equal, less than or equal, . . . to a
given domain variable VAR.
To each variable of VARIABLES corresponds a vertex of the initial graph. Since we want
to keep all the vertices of the initial graph we use the SELF arc generator together with
the TRUE arc constraint. Finally, PRODUCT(VARIABLES, var) CTR VAR expresses
the required condition. In this expression var and CTR respectively corresponds to the
attribute of the collection VARIABLES (a domain variable) and to the condition we want
to enforce. Since the final graph Gf contains all the vertices of the initial graph, the
expression PRODUCT(VARIABLES, var) corresponds to the product of the variables
of the VARIABLES collection.

• RANGE(col, attr) :

– col is a collection that was used for generating the vertices of the initial
graph,
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– attr is an attribute corresponding to an integer or to a domain variable of
the collection col.

Let V be the set of vertices of Gf that were generated from the items of the
collection col.

– If V is not empty, RANGE(col, attr) corresponds to the difference be-
tween the maximum and the minimum values of attribute attr associated
with the vertices of V ,

– Otherwise, if V is empty, RANGE(col, attr) is equal to 0.

EXAMPLE: The constraint range ctr(VARIABLES, CTR, VAR) forces the difference
between the maximum value and the minimum value of the variables of the VARIABLES
collection to be equal, less than or equal, . . . to a given domain variable VAR.
To each variable of VARIABLES corresponds a vertex of the initial graph. Since we want
to keep all the vertices of the initial graph we use the SELF arc generator together with
the TRUE arc constraint. Finally, RANGE(VARIABLES, var) CTR VAR expresses the
required condition. In this expression var and CTR respectively corresponds to the at-
tribute of the collection VARIABLES (a domain variable) and to the condition we want to
enforce. Since the final graphGf contains all the vertices of the initial graph, the expres-
sion RANGE(VARIABLES, var) corresponds to the difference between the maximum
value and the minimum value of the variables of the VARIABLES collection.

• SUM(col, attr) :

– col is a collection that was used for generating the vertices of the initial
graph,

– attr is an attribute corresponding to an integer or to a domain variable of
the collection col.

Let V be the set of vertices of Gf that were generated from the items of the
collection col.

– If V is not empty, SUM(col, attr) corresponds to the sum of the values
of attribute attr associated with the vertices of V ,

– Otherwise, if V is empty, SUM(col, attr) is equal to 0.
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EXAMPLE: The constraint sum ctr(VARIABLES, CTR, VAR) forces the sum of the vari-
ables of the VARIABLES collection to be equal, less than or equal, . . . to a given domain
variable VAR.
To each variable of VARIABLES corresponds a vertex of the initial graph. Since we want
to keep all the vertices of the initial graph we use the SELF arc generator together
with the TRUE arc constraint. Finally, SUM(VARIABLES, var) CTR VAR expresses the
required condition. In this expression var and CTR respectively correspond to the at-
tribute of the collection VARIABLES (a domain variable) and to the condition we want to
enforce. Since the final graphGf contains all the vertices of the initial graph, the expres-
sion SUM(VARIABLES, var) corresponds to the sum of the variables of the VARIABLES
collection.

• SUM WEIGHT ARC(Expr) : Expr is an arithmetic expression.
For each arc a of E(Gf ), let f(a) denote the value of Expr.
SUM WEIGHT ARC(Expr) is equal to

∑
a∈E(Gf ) f(a). The value of

Expr usually depends on the attributes of the items located at the extremities
of an arc.

EXAMPLE: The constraint global cardinality with costs(VARIABLES,
VALUES, MATRIX, COST) enforces that each value VALUES[i].val be assigned to exactly
VALUES[i].noccurrence variables of the VARIABLES collection. In addition the COST

of an assignment is equal to the sum of the elementary costs associated with the fact
that we assign the ith variable of the VARIABLES collection to the jth value of the
VALUES collection. These elementary costs are given by the MATRIX collection.
The graph-property SUM WEIGHT ARC(MATRIX[(variables.key−1)∗size(VALUES)+
values.key].c) = COST expresses the fact that the COST variable is equal to the sum of
the elementary costs associated with each variable-value assignment. All these elemen-
tary costs are recorded in the MATRIX collection. More precisely, the cost cij is recorded
in the attribute c of the ((i− 1) ∗ |VALUES)|+ j)th entry of the MATRIX collection.

A last graph characteristic, DISTANCE , is computed on two final graphsG1 and
G2 that have the same set V of vertices and the sets E(G1) and E(G2) of arcs. This
graph characteristic is the cardinality of the set (E(G1)−E(G2))∪(E(G2)−E(G1)).
This corresponds to the number of arcs that belong to E(G1) but not to E(G2), plus
the number of arcs that are in E(G2) but not in E(G1).

1.2.3 Graph constraint
A global constraint can be defined as a conjunction of several simple or dynamic graph
constraints15 that all share the same name, the same arguments and the same argument
restrictions16. This section first describes simple graph constraints and then dynamic
graph constraints, which are an extension of simple graph constraints.

15For an example of global constraint that is defined by more than one graph constraint see for instance
the sort constraint and its two graph constraints.

16The arguments and the argument restrictions were described in Section 1.1.4, page 13.
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Simple graph constraint

To a simple graph constraint correspond several initial graphs, usually one, where all
the initial graphs have the same vertices and arcs. Specifying more than one initial
graph is achieved by using the FOR ALL ITEMS OF iterator, which takes a collection
C and generates an initial graph Gi(t) for each item t of C. In this context, the arc
constraints and/or graph properties of an initial graph may depend of the attributes of
the item t of C from which they were generated. All arc constraints attached to a given
arc17 have to be pairwise mutually incompatible18.

The graphs of a simple graph constraint are defined by the following fields:

• An Arc input(s) field, which consists of a sequence of collections
C1, C2, . . . , Cd (d ≥ 1). To each item of these collections corresponds a vertex
of the initial graph.

• An Arc generator field, which can be one or several expressions19 of the fol-
lowing forms:

– ARC GENERATOR 7→ collection(item1, item2, . . . , itema),
where ARC GENERATOR is one of the arc generators with a fixed ar-
ity20 defined in Section 1.2.2 page 26, and itemi (1 ≤ i ≤ a) denotes the
ith item associated with the ith vertex of an arc. These items correspond
to formal parameters21 which can be used within an arc constraint. When
the Arc input(s) field consists of one single collection (d = 1), itemi
(1 ≤ i ≤ a) represents an item of the collection C1. Otherwise, when
d > 1, we must have a = d and, in this context, itemi (1 ≤ i ≤ a)
represents an item of Ci.

EXAMPLE: The alldifferent(VARIABLES) constraint has the following Arc
input(s) and Arc generator fields:

∗ Its Arc input(s) field refers only to the collection VARIABLES (i.e. d = 1).

∗ Its Arc generator field consists of
CLIQUE 7→ collection (variables1, variables2) (i.e. a = 2).

In this context, where d = 1, both variables1 and variables1 are items of the
VARIABLES collection.

17As we previously said, even if we have more than one initial graph, all vertices and arcs of the different
initial graphs are identical.

18Two arc constraints ctr1(X1,X2, . . . ,Xn) and ctr2(X1,X2, . . . ,Xn) are incompatible if there
does not exist any tuple of values 〈v1, v2, . . . , vn〉 such that both ctr1(X1,X2, . . . , Xn) and
ctr2(X1,X2, . . . ,Xn) hold.

19Usually one single expression.
20Any arc generator different from PATH 1 and PATH N .
21See the description of simple arithmetic expressions page 22.
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EXAMPLE: The same(VARIABLES1, VARIABLES2) constraint has the following
Arc input(s) and Arc generator fields:

∗ Its Arc input(s) field refers to the collections VARIABLES1 and
VARIABLES2 (i.e. d = 2).

∗ Its Arc generator field consists of
PRODUCT 7→ collection(variables1, variables2) (i.e. a = 2).

In this context, where d > 1, variables1 and variables1 respectively corre-
spond to items of the VARIABLES1 and the VARIABLES2 collections.

– ARC GENERATOR 7→ collection, where ARC GENERATOR
is one of the arc generators PATH 1 or PATH N . In this context,
collection denotes a collection of items corresponding to the vertices
of an arc of the initial graph. An arc constraint enforces a restriction on the
items of this collection.

EXAMPLE:
The size maximal sequence alldifferent (SIZE, VARIABLES) constraint
has the following Arc input(s) and Arc generator fields:

∗ Its Arc input(s) field refers to the VARIABLES collection.

∗ Its Arc generator field consists of PRODUCT 7→ collection.

In this context, collection is a collection of the same type as the VARIABLES

collection. It corresponds to the variables associated with an arc of the initial
graph.

When the Arc generator field consists of n (n > 1) expressions then these
expressions have the form:

ARC GENERATOR1 7→ collection(item1, item2, . . . , itema)

ARC GENERATOR2 7→ collection(item1, item2, . . . , itema)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ARC GENERATORn 7→ collection(item1, item2, . . . , itema)

All leftmost part of the expressions must be the same since they will be involved
in one single Arc constraint(s) field. The global contiguity constraint is an
example of global constraint where more than one arc generator is used.

• An Arc arity field, which corresponds to the number of vertices a of each
arc of the initial graph. a is either a strictly positive integer, an argument
of the global constraint of type int, or the character *. In this last case,
this is used for denoting the fact that all the arc constraints don’t involve
the same number of vertices. This is for instance the case when we use
the arc generators PATH 1 or PATH N as in the arith sliding or the
size maximal sequence alldifferent constraints.

• An Arc constraint(s) field, which corresponds to a conjunction of arc con-
straints22 those were introduced in Section 1.2.2 page 22.

22Usually this conjunction consists of one single arc constraint.
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• A Graph property(ies) field, which corresponds to one or several graph prop-
erties (see Section 1.2.2 page 31) to be satisfied on the final graphs associated
with an instantiated solution of the global constraint. To each initial graph corre-
sponds one final graph obtained by removing all arcs for which the corresponding
arc constraints do not hold as well as all vertices that don’t have any arc.

We now give several examples of descriptions of simple graph constraints, start-
ing from the nvalue constraint, which was introduced as a first example of global
constraint that can be modeled by a graph property in Section 1.2.1 page 14.

EXAMPLE: The constraint nvalue(NVAL, VARIABLES) restricts NVAL to be the number
of distinct values taken by the variables of the collection VARIABLES. Its meaning is
described by a simple graph constraint corresponding to the following items:

Arc input(s) : VARIABLES

Arc generator : CLIQUE 7→ collection(variables1, variables2)

Arc arity : 2

Arc constraint(s) : variables1.var = variables2.var

Graph property(ies): NSCC = NVAL

Since this description does not use the FOR ALL ITEMS OF iterator we generate one single
initial graph. Each vertex of this graph corresponds to one item of the VARIABLES col-
lection. Since we use the CLIQUE arc generator we have an arc between each pair of
vertices. An arc constraint corresponds to an equality constraint between the two variables
that are associated with the extremities of the arc. Finally, the Graph property(ies) field
forces the final graph to have NVAL strongly connected components.
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EXAMPLE: The constraint global contiguity(VARIABLES) forces all variables of the
VARIABLES collection to be assigned to 0 or 1. In addition, all variables assigned to value 1
appear contiguously. Its meaning is described by a simple graph constraint corresponding
to the following items:

Arc input(s) : VARIABLES

Arc generator : PATH 7→ collection(variables1, variables2)

LOOP 7→ collection(variables1, variables2)

Arc arity : 2

Arc constraint(s) : variables1.var = variables2.var

variables1.var = 1

Graph property(ies): NCC ≤ 1

Since this description does not use the FOR ALL ITEMS OF iterator we generate one single
initial graph. Each vertex of this graph corresponds to one item of the VARIABLES collec-
tion. Since we use the PATH arc generator we generate an arc from item VARIABLES[i] to
item VARIABLES[i+ 1] (1 ≤ i < |VARIABLES|). In addition, since we use the LOOP arc
generator, we generate also an arc from each item of the VARIABLES collection to itselfa.
The effect of the arc constraint is to keep in the final graph those vertices for which the
corresponding variable is assigned to 1. Adjacent variables assigned to 1 form a connected
component of the final graph and the graph property NCC ≤ 1 enforces to have at most
one such group of adjacent variables assigned to 1.

aWe use the LOOP arc generator in order to keep in the final graph those isolated variables
assigned to 1. This is because isolated vertices with no arcs are always removed from the final graph.

EXAMPLE:
The global cardinality(VARIABLES, VALUES) constraint enforces that each value
VALUES[i].val (1 ≤ i ≤ |VALUES|) be taken by exactly VALUES[i].noccurrence vari-
ables of the VARIABLES collection. Its meaning is described by a simple graph constraint
corresponding to the following items:

For all items of VALUES:

Arc input(s) : VARIABLES

Arc generator : SELF 7→ collection(variables)

Arc arity : 1

Arc constraint(s) : variables.var = VALUES.val

Graph property(ies): NVERTEX = VALUES.noccurrence

Since this description uses the For all items of VALUES iterator on the VALUES collection
we generate an initial graph for each item of the VALUES collection (i.e. one graph for
each value). Each vertex of an initial graph corresponds to one item of the VARIABLES

collection. Since we use the SELF arc generator we have an arc for each vertex. For an
initial graph associated with a value val an arc constraint on a vertex v corresponds to an
equality constraint between the variable associated with v and the value val . Finally, the
Graph property(ies) field forces the final graph to have a given number of vertices (i.e.
associated with the attribute val ).
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Dynamic graph constraint

The purpose of a dynamic graph constraint is to enforce a condition on different subsets
of variables, not known in advance. This situation occurs frequently in practice and is
hard to express since one cannot use a classical constraint for which it is required
to provide all variables right from the beginning. One good example of such global
constraint is the cumulative constraint where one wants to force the sum of some
variables to be less than or equal to a given limit. In the context of the cumulative

constraint, each set of variables is defined by the height of the different tasks that
overlap a given instant i. Since the origins of the tasks are not initially fixed, we don’t
know in advance which task will overlap a given instant and so, we cannot state any
sum constraint initially.

A dynamic graph constraint is defined in exactly the same way as a simple graph
constraint, except that we may omit the Graph property(ies) field, and that we have
to provide the two following additional fields:

• The Set field denotes a generator of sets of vertices. Such a generator takes as
argument a final graph and produces different sets of vertices. In order to have
something tractable, we force the total number of generated sets to be polynomial
in the number of vertices.

In practice each set of vertices is represented by a collection of items. The type
of this collection corresponds either to the type of the items associated with the
vertices, or to the type of a new derived collection. This is achieved by providing
an expression of the form name or name-derived collection, where name

represents a formal parameter, and derived collection a declaration of a new
derived collection (as specified in Section 1.2.2, page 17).

• The Constraint(s) on sets field provides a global constraint defined in the cata-
log that has to hold for each set created by the previous generator.

We now describe the different generators of sets of vertices currently available:

• ALL VERTICES generates one single set containing all the vertices of the final
graph. It is specified by a declaration of the form

ALL VERTICES>> [vertices]

where vertices represents all the vertices of the final graph.

• CC generates one set of vertices for each connected component of the final
graph. These sets correspond to all the vertices of a given connected component.
It is specified by a declaration of the form

CC>> [connected component]

where connected component represents the vertices of a connected component
of the final graph.
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• PATH LENGTH(L) generates all elementary paths23 of L vertices of the final
graph such that, discarding loops, all vertices of a path have no more than one
successor and one predecessor in the final graph. It is specified by a declaration
of the form

PATH LENGTH(L)>> [path]

where path represents the vertices of an elementary path, ordered according to
their occurrence in the path.

• PRED generates the non-empty sets corresponding to the predecessors of each
vertex of the final graph. It is specified by a declaration of the form

PRED>> [predecessor, destination]

where destination represents a vertex of the final graph and predecessor its
predecessors.

• SUCC generates the non-empty sets corresponding to the successors of each
vertex of the final graph. It is specified by a declaration of the form

SUCC>> [source, successor]

where source represents a vertex of the final graph and successor its succes-
sors.

As an illustrative example of dynamic graph constraint we now consider the
cumulative constraint.

23A path where all vertices are distinct is called an elementary path.
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EXAMPLE: The cumulative(TASKS, LIMIT) constraint, where TASKS is a col-
lection of the form collection(origin − dvar, duration − dvar, end − dvar,
height − dvar), and where LIMIT is a non-negative integer, holds if, for any point the
cumulated height of the set of tasks that overlap that point, does not exceed LIMIT.

The first graph constraint of cumulative enforces for each task of the TASKS collection
the equality origin + duration = end. We focus on the second graph constraint,
which uses a dynamic graph constraint described by the following items:

Arc input(s) : TASKS TASKS

Arc generator : PRODUCT 7→ collection(tasks1, tasks2)

Arc arity : 2

Arc constraint(s) : tasks1.duration > 0

tasks2.origin ≤ tasks1.origin

tasks1.origin ≤ tasks2.end

Sets : SUCC>>

[source,

variables − col(VARIABLES − collection(var − dvar),

[item(var − TASKS.height)])]

Constraint(s) on sets: sum ctr(variables,≤, LIMIT)

The second graph constraint is defined by:

• To each item of the TASKS collection correspond two vertices of the initial graph.

• The arity of the arc constraint is 2.

• The arcs of the initial graph are constructed with the PRODUCT arc generator
between the TASKS collection and the TASKS collection. Therefore, each vertex
associated with a task is linked to all the vertices related to the different tasks.

• The arc constraint that is associated with an arc between a task tasks1 and a task
tasks2 is an overlapping constraint that holds if both, the duration of tasks1
is strictly greater than zero, and if the origin of tasks1 is overlapped by task
tasks2.

• The set generator is SUCC. The final graph will consist of those tasks for which
the origin is covered by at least one task and of those corresponding tasks.

• The dynamic constraint on a set forces the sum of the heights of the tasks that
belong to a successor set to not exceed LIMIT.
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Figure 1.6: Initial and final graph of an instance of the cumulative constraint

Parts (A) and (B) of Figure 1.6 respectively show the initial and the final graph corre-
sponding to the following instance:
cumulative({origin − 1 duration − 3 height − 1,

origin − 2 duration − 9 height − 2,
origin − 3 duration − 10 height − 1,
origin − 6 duration − 6 height − 1,
origin − 7 duration − 2 height − 3}, 8).

We label the vertices of the initial and final graph by giving the keya of the correspond-
ing task. On both graphs the edges are oriented from left to right. On the final graph we
consider the sets that consist of the successors of the different vertices; those are the sets
of tasks {1}, {1, 2}, {1, 2, 3}, {2, 3, 4} and {2, 3, 4, 5}. Since the SUCC set generator
uses a derived collection that only considers the height attribute of a task, these sets
respectively correspond to the following collection of items:

• {var − 1},
• {var − 1, var − 2},
• {var − 1, var − 2, var − 1},
• {var − 2, var − 1, var − 1},
• {var − 2, var − 1, var − 1, var − 3}.

The cumulative constraint holds since, for each successors set, the corresponding con-
straint holds:

• sum ctr({var − 1}, ≤, 8),

• sum ctr({var − 1, var − 2}, ≤, 8),

• sum ctr({var − 1, var − 2, var − 1}, ≤, 8),

• sum ctr({var − 2, var − 1, var − 1}, ≤, 8),

• sum ctr({var − 2, var − 1, var − 1, var − 3}, ≤, 8).

The sum ctr(VARIABLES, CTR, VAR) constraint holds if the sum S of the variables of the
VARIABLES collection satisfies S CTR VARIABLES, where CTR is a comparison operator.

akey is an implicit attribute corresponding to the position of an item within a collection that
was introduced in Section 1.1.2, page 4.
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1.3 Describing global constraints in terms of automata
This section is based on the paper describing global constraint in terms of automata [4].
The main difference with the original paper is the introduction of array of counters
within the description of an automaton. We consider global constraints for which any
ground instance can be checked in linear time by scanning once through their variables
without using any data structure, except counters or arrays of counters. In order to
concretely illustrate this point we first select a set of global constraints and write down
a checker for each of them. Finally, we give for each checker a sketch of the corre-
sponding automaton. Based on these observations, we define the type of automaton we
use in the catalog.

1.3.1 Selecting an appropriate description
As we previously said, we focus on those global constraints that can be checked by
scanning once through their variables. This is for instance the case of:

• element [32],

• minimum [33],

• pattern [34],

• global contiguity [35],

• lex lesseq [36],

• among [37],

• inflexion [3],

• alldifferent [18].

Since they illustrate key points needed for characterizing the set of solutions asso-
ciated with a global constraint, our discussion will be based on the last five constraints
for which we now recall the definition:

• The global contiguity(vars) constraint forces the sequence of 0-1 variables
vars to have at most one group of consecutive 1. For instance, the constraint
global contiguity([0, 1, 1, 0]) holds since we have only one group of con-
secutive 1.

• The lexicographic ordering constraint−→x≤lex
−→y (see lex lesseq) over two vec-

tors of variables −→x = 〈x0, . . . , xn−1〉 and −→y = 〈y0, . . . , yn−1〉 holds iff n = 0
or x0 < y0 or x0 = y0 and 〈x1, . . . , xn−1〉≤lex〈y1, . . . , yn−1〉.

• The among(nvar, vars, values) constraint restricts the number of variables of
the sequence of variables vars that take their value in a given set values, to be
equal to the variable nvar. For instance, among(3, [4, 5, 5, 4, 1], [1, 5, 8]) holds
since exactly 3 values of the sequence 45541 are located in {1, 5, 8}.

• The inflexion(ninf, vars) constraint forces the number of inflexions of the
sequence of variables vars to be equal to the variable ninf. An inflexion is de-
scribed by one of the following patterns: a strict increase followed by a strict de-
crease or, conversely, a strict decrease followed by a strict increase. For instance,
inflexion(4, [3, 3, 1, 4, 5, 5, 6, 5, 5, 6, 3]) holds since we can extract from the
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sequence 33145565563 the four subsequences 314, 565, 6556 and 563, which
all follow one of these two patterns.

• The alldifferent(vars) constraint forces all pairs of distinct variables of the
collection vars to take distinct values. For instance alldifferent([6, 1, 5, 9])
holds since we have four distinct values.

x[i]=y[i]

1 BEGIN
2  i=0;
3  WHILE i<n AND vars[i]=0 DO i++;
4  WHILE i<n AND vars[i]=1 DO i++;
5  WHILE i<n AND vars[i]=0 DO i++;
6  RETURN (i=n);
7 END.

global_contiguity(vars[0..n−1]):BOOLEAN

1 BEGIN
2  i=0;
3  WHILE i<n AND x[i]=y[i] DO i++;
4  RETURN (i=n OR x[i]<y[i]);
5 END.

among
1 BEGIN
2  i=0; c=0;
3  WHILE i<n DO
4   IF vars[i] in values THEN c++;

6  RETURN (nvar=c);
5   i++;

7 END.

(nvar,vars[0..n−1],values):BOOLEAN
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vars[i]=1
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$

$

vars[i]=1

$
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vars[i]>vars[i+1],

vars[i]<vars[i+1],
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(B1)

(C1)

(A2)

(D2)

07    IF vars[i]>vars[i+1] THEN c++; less=FALSE;

lex_lesseq(x[0..n−1],y[0..n−1]):BOOLEAN x[i]<y[i] $

$

vars[i]
notin values

vars[i]
in values,
c++

t nvar=c
t:

among

(B2) (C2)

lex_lesseq

01 BEGIN
alldifferent(vars[0..n−1]):BOOLEAN

02  u=vars[0]; v=vars[0]; i=1;

04   IF vars[i]<u THEN u=vars[i];
03  WHILE i<n DO

01 BEGIN
02  i=0; c=0;
03  WHILE i<n−1 AND vars[i]=vars[i+1] DO i++;
04  IF i<n−1 THEN less=(vars[i]<vars[i+1]);
05  WHILE i<n−1 DO
06   IF less THEN

08   ELSE

10   i++;
11  RETURN (ninf=c);
12 END.

(D1)

09    IF vars[i]<vars[i+1] THEN c++; less=TRUE;

inflection(ninf,vars[0..n−1]):BOOLEAN

$

t:

c[vars[i]]=c[vars[i]]+1

(E2)

c[_]<2

<>$,

s

s s

{c=0}

s

{c=0}inflection

s

{c[_]=0}

alldifferent

05   IF vars[i]>v THEN v=vars[i];
06   i++;
07  FOR i=u TO v DO c[i]=0;
08  FOR i=0 TO n−1 DO c[vars[i]]=c[vars[i]]+1;
09  FOR i=u TO v DO
10    IF c[i]>1 THEN RETURN FALSE;
11  RETURN TRUE;
12 END.

(E1)

Figure 1.7: Five checkers and their corresponding automata

Parts (A1), (B1), (C1), (D1) and (E1) of Figure 1.7 depict the five checkers re-
spectively associated with global contiguity, with lex lesseq, with among, with
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inflexion and with alldifferent. For each checker we observe the following facts:

• Within the checker depicted by part (A1) of Figure 1.7, the values of the sequence
vars[0], . . . , vars[n− 1] are successively compared against 0 and 1 in order to
check that we have at most one group of consecutive 1. This can be translated to
the automaton depicted by part (A2) of Figure 1.7. The automaton takes as input
the sequence vars[0], . . . , vars[n−1], and triggers successively a transition for
each term of this sequence. Transitions labeled by 0, 1 and $ are respectively
associated with the conditions vars[i] = 0, vars[i] = 1 and i = n. Transitions
leading to failure are systematically skipped. This is why no transition labeled
with a 1 starts from state z.

• Within the checker given by part (B1) of Figure 1.7, the components of vectors−→x and −→y are scanned in parallel. We first skip all the components that are
equal and then perform a final check. This is represented by the automaton
depicted by part (B2) of Figure 1.7. The automaton takes as input the sequence
〈x[0], y[0]〉, . . . , 〈x[n − 1], y[n − 1]〉 and triggers a transition for each term of
this sequence. Unlike the global contiguity constraint, some transitions now
correspond to a condition (e.g. x[i] = y[i], x[i] < y[i]) between two variables of
the lex lesseq constraint.

• Note that the among(nvar, vars, values) constraint involves a variable nvar

whose value is computed from a given collection of variables vars. The
checker depicted by part (C1) of Figure 1.7 counts the number of variables of
vars[0], . . . , vars[n − 1] that take their value in values. For this purpose it
uses a counter c, which is eventually tested against the value of nvar. This con-
vinced us to allow the use of counters in an automaton. Each counter has an
initial value, which can be updated while triggering certain transitions. The final
state of an automaton can force a variable of the constraint to be equal to a given
counter. Part (C2) of Figure 1.7 describes the automaton corresponding to the
code given in part (C1) of the same figure. The automaton uses the counter vari-
able c initially set to 0 and takes as input the sequence vars[0], . . . , vars[n−1].
It triggers a transition for each variable of this sequence and increments c when
the corresponding variable takes its value in values. The final state returns a
success when the value of c is equal to nvar. At this point we want to stress the
following fact: It would have been possible to use an automaton that avoids the
use of counters. However, this automaton would depend on the effective value of
the argument nvar. In addition, it would require more states than the automaton
of part (C2) of Figure 1.7. This is typically a problem if we want to have a fixed
number of states in order to save memory as well as time.

• As the among constraint, the inflexion(ninf, vars) constraint involves a vari-
able ninf whose value is computed from a given sequence of variables vars[0],
. . . , vars[n − 1]. Therefore, the checker depicted in part (D1) of Figure 1.7
uses also a counter c for counting the number of inflexions, and compares its
final value to the ninf argument. The automaton depicted by part (D2) of
Figure 1.7 represents this program. It takes as input the sequence of pairs
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〈vars[0], vars[1]〉, 〈vars[1], vars[2]〉 , . . . , 〈vars[n − 2], vars[n − 1]〉 and
triggers a transition for each pair. Note that a given variable may occur in more
than one pair. Each transition compares the respective values of two consecutive
variables of vars[0..n−1] and increments the counter c when a new inflexion is
detected. The final state returns a success when the value of c is equal to ninf.

• The checker associated with alldifferent is depicted by part (E1) of Fig-
ure 1.7. It first initializes an array of counters to 0. The entries of the array
correspond to the potential values of the sequence vars[0], . . . , vars[n − 1].
In a second phase the checker computes for each potential value its number of
occurrences in the sequence vars[0], . . . , vars[n − 1]. This is done by scan-
ning this sequence. Finally in a third phase the checker verifies that no value
is used more than once. These three phases are represented by the automaton
depicted by part (E2) of Figure 1.7. The automaton depicted by part (E2) takes
as input the sequence vars[0], . . . , vars[n − 1]. Its initial state initializes an
array of counters to 0. Then it triggers successively a transition for each element
vars[i] of the input sequence and increments by 1 the entry corresponding to
vars[i]. The final state checks that all entries of the array of counters are strictly
less than 2, which means that no value occurs more than once in the sequence
vars[0], . . . , vars[n− 1].

Synthesizing all the observations we got from these examples leads to the following
remarks and definitions for a given global constraint C:

• For a given state, no transition can be triggered indicates that the constraint C
does not hold.

• Since all transitions starting from a given state are mutually incompatible all
automata are deterministic. LetM denote the set of mutually incompatible con-
ditions associated with the different transitions of an automaton.

• Let S0, . . . ,Sm−1 denote the sequence of subsets of variables of C on which the
transitions are successively triggered. All these subsets contain the same num-
ber of elements and refer to some variables of C. Since these subsets typically
depend on the constraint, we leave the computation of S0, . . . ,Sm−1 outside the
automaton. To each subset Si of this sequence corresponds a variable Si with an
initial domain ranging over [min,min + |M| − 1], where min is a fixed inte-
ger. To each integer of this range corresponds one of the mutually incompatible
conditions ofM. The sequences S0, . . . , Sm−1 and S0, . . . ,Sm−1 are respec-
tively called the signature and the signature argument of the constraint. The
constraint between Si and the variables of Si is called the signature constraint
and is denoted by ΨC(Si,Si).

• From a pragmatic point the view, the task of writing a constraint checker is nat-
urally done by writing down an imperative program where local variables, ar-
rays, assignment statements and control structures are used. This suggested us
to consider deterministic finite automata augmented with local variables and as-
signment statements on these variables. Regarding control structures, we did not
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introduce any extra feature since the deterministic choice of which transition to
trigger next seemed to be good enough.

• Many global constraints involve a variable whose value is computed from a given
collection of variables. This convinced us to allow the final state of an automaton
to optionally return a result. In practice, this result corresponds to the value of a
local variable of the automaton in the final state.

1.3.2 Defining an automaton
An automatonA of a global constraint C is defined by

〈Signature , SignatureDomain , SignatureArg , SignatureArgPattern,
Counters, Arrays , States , T ransitions〉

where:

• Signature is the sequence of variables S0, . . . , Sm−1 corresponding to the sig-
nature of the constraint C.

• SignatureDomain is an interval that defines the range of possible values of the
variables of Signature .

• SignatureArg is the signature argument S0, . . . ,Sm−1 of the constraint C. The
link between the variables of Si and the variable Si (0 ≤ i < m) is done by
writing down the signature constraint ΨC(Si,Si).

• When used, SignatureArgPattern defines a symbolic name for each term of
SignatureArg . These names can be used within the description of a transition
for expressing an additional condition for triggering the corresponding transition.

• Counters is the, possibly empty, list of all counters used in the automaton A.
Each counter is described by a term t(Counter , InitialValue , FinalVariable)
where Counter is a symbolic name representing the counter, InitialValue is an
integer giving the value of the counter in the initial state ofA, and FinalVariable
gives the variable that should be unified with the value of the counter in the final
state of A.

• Arrays is the, possibly empty, list of all arrays used in the automaton A.
Each array is described by a term t(Array , InitialValue , FinalConstraint)
where Array is a symbolic name representing the array, InitialValue is an in-
teger giving the value of all the entries of the array in the initial state of A.
FinalConstraint denotes an existing constraint of the catalog that should hold
in the final state of A. Arguments of this constraint correspond to collections of
variables that are bound to array of counters, or to variables that are bound to
counters declared in Counters. For an array of counters we only consider those
entries that are located between the first and the last entries that were modified
while triggering a transition ofA.
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• States is the list of states of A, where each state has the form source(id ),
sink(id ) or node(id). id is a unique identifier associated with each state. Fi-
nally, source(id ) and sink(id ) respectively denote the initial and the final state
of A.

• T ransitions is the list of transitions ofA. Each transition t has the form arc(id 1,
label , id 2) or arc(id1, label , id 2, counters). id 1 and id 2 respectively corre-
spond to the state just before and just after t, while label denotes the value that
the signature variable should have in order to trigger t. When used, counters
gives for each counter of Counters its value after firing the corresponding tran-
sition. This value is specified by an arithmetic expression involving counters,
constants, as well as usual arithmetic functions such as +, −, min or max. The
order used in the counters list is identical to the order used in Counters.

EXAMPLE: As an illustrative example we give the description of the automaton asso-
ciated with the inflexion(ninf , vars) constraint. We have:

• Signature = S0, S1, . . . , Sn−2,

• SignatureDomain = 0..2,

• SignatureArg = 〈vars [0], vars [1]〉, . . . , 〈vars [n − 2], vars [n− 1]〉,
• SignatureArgPattern is not used,

• Counters = t(c, 0, ninf ),

• States = [source(s), node(i), node(j), sink(t)],

• T ransitions = [arc(s, 1, s), arc(s, 2, i), arc(s, 0, j), arc(s, $, t), arc(i, 1, i),
arc(i, 2, i), arc(i, 0, j, [c + 1]), arc(i, $, t), arc(j, 1, j), arc(j, 0, j),
arc(j, 2, i, [c + 1]), arc(j, $, t)].

The signature constraint relating each pair of variables 〈vars [i], vars [i + 1]〉 to the
signature variable Si is defined as follows: Ψinflexion(Si, vars [i], vars [i + 1]) ≡
vars [i] > vars [i + 1] ⇔ Si = 0 ∧ vars [i] = vars [i + 1] ⇔ Si = 1 ∧ vars [i] <
vars [i + 1] ⇔ Si = 2. The sequence of transitions triggered on the ground in-

stance inflexion(4, [3, 3, 1, 4, 5, 5, 6, 5, 5, 6, 3]) is s
c=0

3=3⇔S0=1−−−−−−−→ s
3>1⇔S1=0−−−−−−−→

j
1<4⇔S2=2−−−−−−−→

c=1
i

4<5⇔S3=2−−−−−−−→ i
5=5⇔S4=1−−−−−−−→ i

5<6⇔S5=2−−−−−−−→ i
6>5⇔S6=0−−−−−−−→

c=2
j

5=5⇔S7=1−−−−−−−→

j
5<6⇔S8=2−−−−−−−→

c=3
i

6>3⇔S9=0−−−−−−−→
c=4

j
$−→ t

ninf =4
. Each transition gives the corresponding

condition and, possibly, the value of the counter c just after firing that transition.
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2.1 Which global constraints are included?
The global constraints of this catalog come from the following sources:

• Existing constraint systems like:

– Alice [2],

– CHARME in C,

– CHIP [38] in Prolog, C and C++ http://www.cosytec.com

– CHOCO [39] in Java http://choco.sourceforge.net/

– ECLAIR [40] in Claire,

– ECLiPSe [41] in Prolog http://www-icparc.doc.ic.ac.uk/eclipse

– FaCile in OCaml http://www.recherche.enac.fr/opti/facile/

57
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– IF/PROLOG in Prolog
http://www.ifcomputer.com/IFProlog/Constraints/home\_en.html

– Ilog Solver [42] in C++ and later in Java http://www.ilog.com

– Koalog in Java http://www.koalog.com/php/index.php

– Mozart [43] in Oz http://www.mozart-oz.org/

– SICStus [44] in Prolog http://www.sics.se/sicstus/

• Constraint programming papers mostly from conferences like:

– The Principles and Practice of Constraint Programming (CP)
http://www.informatik.uni-trier.de/˜ley/db/conf/cp/index.html

– The International Joint Conference on Artificial Intelligence (IJCAI)
http://www.informatik.uni-trier.de/˜ley/db/conf/ijcai/index.html

– The National Conference on Artificial Intelligence (AAAI)
http://www.informatik.uni-trier.de/˜ley/db/conf/aaai/index.html

– The International Conference on Logic Programming (ICLP)
http://www.informatik.uni-trier.de/˜ley/db/conf/iclp/index.html

– The International Conference of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems (CPAIOR)
http://www.informatik.uni-trier.de/˜ley/db/conf/cpaior/

• New constraints inspired by variations of existing constraints, practical applica-
tions, combinatorial problems, puzzles or discussions with colleagues.

2.2 Which global constraints are missing?
Constraints with too many arguments (like for instance the original cycle [45] con-
straint with 16 arguments), which are in fact a combination of several constraints,
were not directly put into the catalog. Constraints that have complex arguments were
also omitted. Beside this, the following constraints should be added in some fu-
ture version of the catalog: case [46], choquet, cumulative trapeze [47, 48],
inequality sum [49], no cycle [50], range [51], regular [5], roots [51],
soft gcc [12], soft regular [12]. Finally we only consider a restricted number of
constraints involving set variables since this is a relatively new area, which is currently
growing rapidly since 2003.

2.3 Searching in the catalog

2.3.1 How to see if a global constraint is in the catalog?
Searching a given global constraint through the catalog can be achieved in the following
ways:
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• If you have an idea of the name of the global constraint you are looking for,
then put all its letters in lower case, separate distinct words by an underscore and
search the resulting name in the index. The entry where the constraint is defined
is shown in bold. Common abbreviations or synonyms found in papers have also
been put in the index.

• You can also search a global constraint through the list of keywords that is at-
tached to each global constraint. All available keywords are listed alphabetically
in Section 2.5 page 62. For each keyword we give the list of global constraints
using the corresponding keyword as well as the definition of the keyword.

2.3.2 How to search for all global constraints sharing the same
structure

Since we have two ways of defining global constraints (e.g. searching for a graph with
specific properties or coming up with an automaton that only recognizes the solutions
associated with the global constraint) we can look to the global constraints from these
two perspectives.

Searching from a graph property perspective

The index contains all the arc generators as well as all the graph properties and the
pages where they are mentioned1. This allows for finding all global constraints that
use a given arc generator or a given graph property in their definition. You can fur-
ther restrict your search to those global constraints using a specific combination of arc
generators and graph properties. All these combinations are listed at the ”signature”
entry of the index. Within these combinations, a graph property with an underline
means that the constraint should be evaluated each time the minimum of this graph
property increases. Similarly a graph property with an overline indicates that the con-
straint should be evaluated each time the maximum of this graph property decreases.
For instance if we look for those constraints that both use the CLIQUE arc generator
as well as the NARC graph-property we find the inverse and place in pyramid

constraints. Since NARC is underlined and overlined these constraints will have to
be woken each time the minimum or the maximum of NARC changes. The signa-
ture associated with a global constraint is also shown in the header of the even pages
corresponding to the description of the global constraint.

Searching from an automaton perspective

We have created the following list of keywords, which allow for finding all global
constraints defined by a specific type of automaton that recognizes its solutions2:

• ”automaton” indicates that the catalog provides a deterministic automaton,
1Arc generators and graph properties are introduced in the section ”Describing Explicitly Global Con-

straints”.
2Automata that recognize the solutions of a global constraint were introduced in the section ”Describing

Explicitly Global Constraints”.
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• ”automaton without counters” indicates that the catalog provides a deter-
ministic automaton without counters as well as without array of counters,

• ”automaton with counters” indicates that the catalog provides a determinis-
tic automaton with counters but without array of counters,

• ”automaton with array of counters” indicates that the catalog provides a
deterministic automaton with array of counters and possibly with counters.

In addition we also provide a list of keywords that characterize the structure of the
hypergraph associated with the decomposition of the automaton of a global constraints.
Note that, when a global constraint is defined by several graph properties it is also
defined by several automata (usually one automata for each graph property). This is
for instance the case of the change continuity constraint. Currently we have these
keywords:

• ”Berge-acyclic constraint network”,

• ”alpha-acyclic constraint network(2)”,

• ”alpha-acyclic constraint network(3)”,

• ”alpha-acyclic constraint network(4)”,

• ”sliding cyclic(1) constraint network(1)”,

• ”sliding cyclic(1) constraint network(2)”,

• ”sliding cyclic(1) constraint network(3)”,

• ”sliding cyclic(2) constraint network(2)”,

• ”circular sliding cyclic(1) constraint network(2)”,

• ”centered cyclic(1) constraint network(1)”,

• ”centered cyclic(2) constraint network(1)”,

• ”centered cyclic(3) constraint network(1)”.

When a global constraint is only defined by one or several automaton its signature is
set to the keyword AUTOMATON.

2.3.3 Searching all places where a global constraint is referenced
Beside the page where a global constraint is defined (in bold), the index also gives all
the pages where a global constraint is referenced. Since a global constraint can also
be used for defining another global constraint the item Used in of the description of a
global constraint provides this information.
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2.4 Figures of the catalog
The catalog contains the following types of figures:

• Figures that illustrate a global constraint or a keyword,

• Figures that depict the initial as well as the final graphs associated with a global
constraint,

• Figures that provide an automaton that only recognizes the solutions associated
with a given global constraint,

• Figures that give the hypergraph associated with the decomposition of an au-
tomaton in terms of signature and transition constraints.

Most of the graph figures that depict the initial and final graph of a global constraint
of this catalog were automatically generated by using the open source graph drawing
software Graphviz available from AT&T3.

3http://www.research.att.com/sw/tools/graphviz
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2.5 Keywords attached to the global constraints

This section explains the meaning of the keywords attached to the global constraints
of the catalog. For each keyword it first gives the list of global constraints using
the corresponding keyword and then defines the keyword. At present the following
keywords are in use.

Acyclic:

• alldifferent on intersection ,

• among low up,

• arith or,

• cardinality atleast,

• cardinality atmost,

• cardinality atmost partition,

• change,

• change continuity,

• change pair,

• change partition,

• common,

• common interval,

• common modulo,

• common partition,

• correspondence,

• counts,

• cyclic change,

• cyclic change joker.

Denotes the fact that a constraint is defined by one single graph constraint for
which the final graph doesn’t have any circuit.

All different:

• alldifferent,

• alldifferent between sets,

• alldifferent except 0,

• alldifferent interval,

• alldifferent modulo,

• alldifferent on intersection ,

• alldifferent partition,

• soft alldifferent ctr,

• soft alldifferent var,

• symmetric alldifferent,

• weighted partial alldiff.

Denotes the fact that we have a clique of disequalities or that a con-
straint is a variation of the alldifferent constraint. Variations may be re-
lated to relaxations (e.g. alldifferent except 0, soft alldifferent ctr,
soft alldifferent var), or to specializations (e.g. symmetric alldifferent),
of the alldifferent constraint. Variations may also result from an extension of
the notion of disequality (e.g.alldifferent interval, alldifferent modulo,
alldifferent partition).
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Alignment:

• orchard.

Denotes the fact that a constraint enforces the alignment of different sets of points.

Alpha-acyclic constraint network(2):

• among,

• among diff 0,

• among interval,

• among low up,

• among modulo,

• atleast,

• atmost,

• count,

• counts,

• differ from at least k pos,

• exactly,

• group,

• group skip isolated item,

• sliding card skip0.

Before defining alpha-acyclic constraint network(2) we first need to introduce the
following notions:

• The dual graph of a constraint network N is defined in the following way: To
each constraint ofN corresponds a vertex in the dual graph and if two constraints
have a non-empty set S of shared variables, there is an edge labeled S between
their corresponding vertices in the dual graph.

• An edge in the dual graph of a constraint network is redundant if its variables are
shared by every edge along an alternative path between the two end points [52].

• If the subgraph resulting from the removal of the redundant edges of the dual
graph is a tree the original constraint network is called α-acyclic [53].

Alpha-acyclic constraint network(2) denotes an α-acyclic constraint network such
that for any pair of constraints the two sets of involved variables share at most two
variables.

Alpha-acyclic constraint network(3):

• group,
• group skip isolated item,

• ith pos different from 0.

Alpha-acyclic constraint network(3) denotes an α-acyclic constraint network (see
alpha-acyclic constraint network(2)) such that for any pair of constraints the two sets
of involved variables share at most three variables.
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Alpha-acyclic constraint network(4):

• max index, • min index.

Alpha-acyclic constraint network(4) denotes an α-acyclic constraint network (see
alpha-acyclic constraint network(2)) such that for any pair of constraints the two sets
of involved variables share at most four variables.

Apartition:

• change continuity.

Denotes the fact that a constraint is defined by two graph constraints having the
same initial graph, where each arc of the initial graph belongs to one of the final graph
(but not to both).

Arithmetic constraint:

• product ctr,

• range ctr,

• sum ctr,

• sum set.

An arithmetic constraint involving a sum, a product, or a difference between a
maximum and a minimum value. Such constraints were introduced within the catalog
since they are required for defining a given global constraint. For instance the sum ctr

constraint is used within the definition of the cumulative constraint.

Array constraint:

• elem,

• element,

• element lesseq,

• element greatereq,

• element matrix,

• element sparse.

A constraint that allows for expressing simple array equations.

Assignment:

• assign and counts,

• assign and nvalues,

• balance,

• balance interval,

• balance modulo,

• balance partition,

• bin packing,

• cardinality atleast,

• cardinality atmost,

• global cardinality,

• global cardinality low up,

• global cardinality with costs,

• indexed sum,

• interval and count,

• interval and sum,

• max nvalue,

• min nvalue,
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• min size set consecutive var,
• minimum weight alldifferent,
• same and global cardinality,
• sum of weights of distinct values,

• symmetric cardinality,

• symmetric gcc,

• weighted partial alldiff.

A constraint putting a restriction on all items that are assigned to the same
equivalence class or on all equivalence classes that are effectively used. Usually an
equivalence class corresponds to one single value (e.g. balance, bin packing,
global cardinality, sum of weights of distinct values), to an inter-
val of consecutive values (e.g. balance interval, interval and count,
interval and sum) or to all values that are congruent modulo a given num-
ber (e.g. balance modulo). The restriction on all items that are assigned to the
same equivalence class can for instance be a constraint on the number of items
(e.g. cardinality atleast,
cardinality atmost, global cardinality, global cardinality low up) or
a constraint on the sum of a specific attribute (e.g. bin packing, interval and sum).

At least:

• atleast, • cardinality atleast.

A constraint enforcing that one or several values occur a minimum number of time
within a given collection of domain variables.

At most:

• atmost,
• cardinality atmost,

• cardinality atmost partition.

A constraint enforcing that one or several values occur a maximum number of time
within a given collection of domain variables.

Automaton:

• alldifferent,

• alldifferent except 0,

• alldifferent interval,

• alldifferent modulo,

• alldifferent on intersection,

• alldifferent same value,

• among,

• among diff 0,

• among interval,

• among low up,

• among modulo,

• arith,

• arith or,

• arith sliding,

• assign and counts,

• atleast,

• atmost,

• balance,

• balance interval,

• balance modulo,

• bin packing,

• cardinality atleast,

• cardinality atmost,
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• change,

• change continuity,

• change pair,

• circular change,

• count,

• counts,

• cumulative,

• cyclic change,

• cyclic change joker,

• decreasing,

• deepest valley,

• differ from at least k pos,

• disjoint,

• distance change,

• domain constraint,

• elem,

• element,

• element greatereq,

• element lesseq,

• element matrix,

• element sparse,

• exactly,

• global cardinality,

• global contiguity,

• group,

• group skip isolated item,

• heighest peak,

• in,

• in same partition,

• increasing,

• inflexion,

• int value precede,

• int value precede chain,

• interval and count,

• interval and sum,

• inverse,

• ith pos different from 0,

• lex between,

• lex different,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq,

• longest change,

• max index,

• max nvalue,

• maximum,

• min index,

• min n,

• min nvalue,

• minimum,

• minimum except 0,

• minimum greater than,

• next element,

• no peak,

• no valley,

• not all equal,

• not in,

• nvalue,

• peak,

• same,

• sequence folding,

• sliding card skip0,

• smooth,

• stage element,

• strictly decreasing,

• strictly increasing,

• two orth are in contact,

• two orth do not overlap,

• used by,

• valley.

A constraint for which the catalog provides a deterministic automaton for the
ground case. This automaton can usually be used for deriving mechanically a filter-
ing algorithm for the general case. We have the following three types of deterministic
automata:

• Deterministic automata without counters and without array of counters,
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• Deterministic automata with counters but without array of counters,

• Deterministic automata with array of counters and possibly with counters.

VAR <>VALUEi
VAR =VALUE,i
{C=C+1} {c[VAR ]=c[VAR ]+1}   i       i

1,

VAR =0i

VAR =1i

VAR =1i

VAR =0i

VAR =0i

global_contiguity exactly alldifferent

$

N=C

t:

$

t:
arith(C,<,2)

s

n

z

t

$

$

$

s s

{C=0} {C[_]=0}

Figure 2.1: Examples of automata

Figure 2.1 shows three automata respectively associated with the
global contiguity, the exactly and the alldifferent constraints. These
automata correspond to the three types we described above.

Automaton with array of counters:

• alldifferent,

• alldifferent except 0,

• alldifferent interval,

• alldifferent modulo,

• alldifferent on intersection,

• alldifferent same value,

• assign and counts,

• balance,

• balance interval,

• balance modulo,

• bin packing,

• cardinality atleast,

• cardinality atmost,

• cumulative,

• disjoint,

• global cardinality ,

• interval and count,

• interval and sum,

• inverse,

• max nvalue,

• min n,

• min nvalue,

• nvalue,

• same,

• used by.

A constraint for which the catalog provides a deterministic automaton with array
of counters and possibly with counters.
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Automaton with counters:

• among,

• among diff 0,

• among interval,

• among low up,

• among modulo,

• arith sliding,

• atleast,

• atmost,

• change,

• change continuity,

• change pair,

• circular change,

• count,

• counts,

• cyclic change,

• cyclic change joker,

• deepest valley,

• differ from at least k pos,

• distance change,

• exactly,

• group,

• group skip isolated item,

• heighest peak,

• inflexion,

• ith pos different from 0,

• longest change,

• max index,

• min index,

• peak,

• sliding card skip0,

• smooth,

• valley.

A constraint for which the catalog provides a deterministic automaton with
counters but without array of counters.

Automaton without counters:

• arith,

• arith or,

• decreasing,

• domain constraint,

• elem,

• element,

• element greatereq,

• element lesseq,

• element matrix,

• element sparse,

• global contiguity,

• in,

• in same partition,

• increasing,

• int value precede,

• int value precede chain,

• lex between,

• lex different,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq,

• maximum,

• minimum,

• minimum except 0,

• minimum greater than,

• next element,

• no peak,

• no valley,

• not all equal,

• not in,

• sequence folding,

• stage element,

• strictly decreasing,

• strictly increasing,

• two orth are in contact,

• two orth do not overlap.
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A constraint for which the catalog provides a deterministic automaton without
counters and without array of counters.

Balanced tree:

• tree range.

A constraint that allows for expressing the fact that we want to cover a digraph by
one (or more) balanced tree. A balanced tree is a tree where no leaf is much farther
away than a given threshold from the root than any other leaf. The distance between
a leaf and the root of a tree is the number of vertices on the path from the root to the leaf.

Balanced assignment:

• balance,

• balance interval,

• balance modulo,

• balance partition.

A constraint that allows for expressing a restriction on the maximum value of the
difference between the maximum number of items assigned to the same equivalence
class and the minimum number of items assigned to the same equivalence class.

Berge-acyclic constraint network:

• int value precede,

• int value precede chain,

• global contiguity,

• lex between,

• lex different,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq,

• two orth are in contact,

• two orth do not overlap.

A constraint for which the decomposition associated with its counter-free au-
tomaton is Berge-acyclic. Arc-consistency for a Berge-acyclic constraint network is
achieved by making each constraint of the corresponding network arc-consistent. A
constraint network for which the corresponding intersection graph does not contain
any cycle and such that for any pair of constraints the two sets of involved variables
share at most one variable is so-called Berge-acyclic. The intersection graph of a con-
straint network is built in the following way: to each vertex corresponds a constraint
and there is an edge between two vertices if and only if the sets of variables involved
in the two corresponding constraints intersect.

Parts (A), (B) and (C) of Figure 2.2 provide three examples of constraint networks,
while parts (D), (E) and (F) give their corresponding intersection graph. The constraint
network corresponding to part (A) is Berge-acyclic, while the constraint network
associated with (B) is not (since its corresponding intersection graph (E) contains a
cycle). Finally the constraint network depicted by (C) is also not Berge-acyclic since
its third and fourth constraints share more than one variable.
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Figure 2.2: Illustration of Berge-acyclic constraint network

Binary constraint:

• element greatereq,

• element lesseq,

• element sparse,

• eq set,

• stage element,

• sum set.

A constraint involving only two variables.

Bioinformatics:

• all differ from at least k pos,
• one tree,

• sequence folding.

Denotes the fact that, for a given constraint, either there is a reference to its uses in
Bioinformatics, or it was inspired by a problem from the area of Bioinformatics.

Bipartite:

• alldifferent on intersection ,

• among low up,

• arith or,

• cardinality atleast,

• cardinality atmost,

• cardinality atmost partition,

• common,

• common interval,

• common modulo,

• common partition,

• correspondence,

• counts.

Denotes the fact that a constraint is defined by one graph constraint for which the
final graph is bipartite.
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Bipartite matching:

• alldifferent,

• alldifferent between sets,

• disjoint,

• lex alldifferent.

(A) (B)

Figure 2.3: A bipartite graph and one of its bipartite matching

Denotes the fact that, for a given constraint, a bipartite matching algorithm can be
used within its filtering algorithm. A bipartite matching is a subgraph that pairs every
vertex of a bipartite graph with exactly one other vertex. A bipartite graph is a graph
for which the set of vertices can be partitioned in two parts such that no two vertices
in the same part are joined by an edge. Part (A) of Figure 2.3 shows a bipartite graph
with a possible division of the vertices in black and white, while part (B) depicts with
a thick line a bipartite matching of this graph.

Boolean channel:

• domain constraint.

A constraint that allows for making the link between a set of 0-1 variables
B1, B2, . . . , Bn and a domain variable V . It enforces a condition of the form
V = i⇔ Bi = 1.

Border:

• period.

A constraint that can be related to the notion of border, which we define now.
Given a sequence s = urv, r is a prefix of s when u is empty, r is a suffix of s when v
is empty, r is a proper factor of s when r 6= s. A border of a non-empty sequence s is
a proper factor of s, which is both a prefix and a suffix of s. We have that the smallest
period of a sequence s is equal to the size of s minus the length of the longest border
of s.
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Bound-consistency:

• alldifferent,

• global cardinality,

• same,

• used by.

Denotes the fact that, for a given constraint, there is a filtering algorithm that
ensures bound-consistency for its variables. A filtering algorithm ensures bound-
consistency for a given constraint ctr if and only if for every variable V of ctr:

• There exists at least one solution for ctr such that V = min(V ) and every other
variable W of ctr is assigned to a value located in its range min(W )..max(W ),

• There exists at least one solution for ctr such that V = max(V ) and every other
variable W of ctr is assigned to a value located in its range min(W )..max(W ).

One interest of this definition is that it sometimes gives the opportunity to come up
with a filtering algorithm that has a lower complexity than the algorithm that achieves
arc-consistency. Discarding holes from the variables usually leads to graphs with a
specific structure for which one can take advantage in order to derive more efficient
graph algorithms. Filtering algorithms that achieve bound-consistency can also be
used in a preprocessing phase before applying a more costly filtering algorithm that
achieves arc-consistency. Note that there is a second definition of bound-consistency
where the range min(W )..max(W ) is replaced by the domain of the variable W .
However within the context of global constraints all current filtering algorithms don’t
refer to this second definition.

Centered cyclic(1) constraint network(1):

• domain constraint,

• in,

• maximum,

• minimum,

• minimum except 0,

• not in.

... ... ... ...

Figure 2.4: Hypergraph associated with a centered cyclic(1) constraint network(1)

A constraint network corresponding to the pattern depicted by Figure 2.4. Circles
depict variables, while arcs are represented by a set of variables. Gray circles
correspond to optional variables. All pairs of constraints have at most one variable in
common.
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Centered cyclic(2) constraint network(1):

• elem,

• element,

• element greatereq,

• element lesseq,

• element sparse,

• in same partition,

• minimum greater than,

• stage element.

... ... ... ...

Figure 2.5: Hypergraph associated with a centered cyclic(2) constraint network(1)

A constraint network corresponding to the pattern depicted by Figure 2.5. Circles
depict variables, while arcs are represented by a set of variables. Gray circles
correspond to optional variables.

Centered cyclic(3) constraint network(1):

• element matrix, • next element.

... ... ... ...

Figure 2.6: Hypergraph associated with a centered cyclic(3) constraint network(1)

A constraint network corresponding to the pattern depicted by Figure 2.6. Circles
depict variables, while arcs are represented by a set of variables. Gray circles
correspond to optional variables.
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Channel routing:

• connect points.

A constraint that can be used for modeling channel routing problems. Channel
routing consists of creating a layout in a rectangular region of a VLSI chip in order to
link together the terminals of different modules of the chip. Connections are usually
made by wire segments on two different layers: Horizontal wire segments on the first
layer are placed along lines called tracks, while vertical wire segments on the second
layer connect terminals to the horizontal wire segments, with vias at the intersection.

Channeling constraint:

• domain constraint,
• inverse,
• inverse set,

• link set to booleans,

• same.

Constraints that allow for linking two models of the same problem. Usually chan-
neling constraints show up in the following context:

• When a problem can be modeled by using different types of variables (e.g. 0-1
variables, domain variables, set variables),

• When a problem can be modeled by using two distinct matrices of variables
representing the same information redundantly,

• When, in a problem, the roles of the variables and the values can be inter-
changed. This is typically the case when we have a bijection between a set of
variables and the values they can take.

Circuit:

• circuit,

• cutset,

• cycle,

• symmetric alldifferent.

A constraint such that its initial or its final graph corresponds to zero (e.g. cutset),
one (e.g. circuit) or several (e.g. cycle, symmetric alldifferent) vertex-
disjoint circuits.

Circular sliding cyclic(1) constraint network(2):

• circular change.

A constraint network corresponding to the pattern depicted by Figure 2.7. Circles
depict variables, while arcs are represented by a set of variables.
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These two circles correspond to the same variable

Figure 2.7: Hypergraph corresponding to a circular sliding cyclic(1) constraint net-
work(2)

Cluster:

• circuit cluster.

A constraint that partitions the vertices of an initial graph into several clusters.

Coloured:

• assign and counts,
• coloured cumulative,
• coloured cumulatives,

• cycle card on path,

• interval and count.

A constraint with a collection where one of the attributes is a color.

Conditional constraint:

• size maximal sequence alldifferent , • size maximal starting sequence alldifferent .

A constraint that allows for expressing the fact that some constraints can be
enforced during the enumeration phase.

Connected component:

• alldifferent on intersection,

• binary tree,

• change continuity,

• circuit cluster,

• cycle,

• cycle card on path,

• cycle resource,

• global contiguity,

• group,

• k cut,

• map,

• nvalue on intersection,

• temporal path,

• tree,

• tree range,

• tree resource.

Denotes the fact that a constraint uses in its definition a graph property (e.g.
MAX NCC, MIN NCC, NCC) constraining the connected components of its
associated final graph.
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Consecutive loops are connected:

• group.

Denotes the fact that the graph constraints of a global constraint use only the
PATH and the LOOP arc generators and that their final graphs do not contain
consecutive vertices that have a loop and that are not connected together by an arc.

Consecutive values:

• max size set of consecutive var,
• min size set of consecutive var,

• nset of consecutive values.

A constraint for which the definition involves the notion of consecutive values
assigned to the variables of a collection of domain variables.

Constraint between two collections of variables:

• common,

• common interval,

• common modulo,

• common partition,

• same,

• same and global cardinality,

• same intersection,

• same interval,

• same modulo,

• same partition,

• soft same interval var,

• soft same modulo var,

• soft same partition var,

• soft same var,

• soft used by interval var,

• soft used by modulo var,

• soft used by partition var,

• soft used by var,

• sort,

• used by,

• used by interval,

• used by modulo,

• used by partition.

A constraint involving only two collections of domain variables in its arguments.

Constraint between three collections of variables:

• correspondence, • sort permutation.

A constraint involving only three collections of domain variables in its arguments.

Constraint involving set variables:

• alldifferent between sets,

• clique,

• eq set,

• in set,

• inverse set,

• k cut,

• link set to booleans,

• path from to,
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• set value precede,

• strongly connected,

• sum set,

• symmetric cardinality,

• symmetric gcc,

• tour.

A constraint involving set variables in its arguments.

Constraint on the intersection:

• alldifferent on intersection,
• nvalue on intersection ,

• same intersection .

Denotes the fact that a constraint involving two collections of variables imposes a
restriction on the values that occur in both collections.

Contact:

• orths are connected, • two orth are in contact.

A constraint enforcing that some orthotopes touch each other. Part (A) of
Figure 2.8 shows two orthotopes that are in contact while parts (B) and (C) give two
examples of orthotopes that are not in contact.

(A) (B) (C)

Figure 2.8: Illustration of the notion of contact

Convex:

• global contiguity.

A constraint involving the notion of convexity. A subset S of the plane is called
convex if and only if for any pair of points p, q of this subset the corresponding
line-segment is contained in S. Part (A) of Figure 2.9 gives an example of convex set,
while part (B) depicts an example of non-convex set.

(B)(A)

p

q p q

Figure 2.9: A convex set and a non-convex set
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Convex hull relaxation:

• sum.

Given a non-convex set S, R is a convex outer approximation of S if:

• R is convex,

• If s ∈ S, then s ∈ R.

Given a non-convex set S, R is the convex hull of S if:

• R is a convex outer approximation of S,

• For every T where T is a convex outer approximation of S, R ⊆ T .

Part (A) of Figure 2.10 depicts a non-convex set, while part (B) gives its corresponding
convex hull.

(A) (B)

Figure 2.10: Convex hull of a non-convex set

Within the context of linear programming the convex hull relaxation of a non-
convex set S corresponds to the set of linear constraints characterizing the convex hull
of S.

Cost filtering constraint:

• global cardinality with costs,

• minimum weight alldifferent,

• sum of weights of distinct values,

• weighted partial alldiff.

A constraint that has a set of decision variables as well as a cost variable and
for which there exists a filtering algorithm that restricts the state variables from the
minimum or maximum value of the cost variable.

Cost matrix:

• global cardinality with costs, • minimum weight alldifferent.

A constraint for which a first argument corresponds to a collection of variables
Vars, a second argument to a cost matrix M, and a third argument to a cost variable C.
Let Vals denote the set of values that can be assigned to the variables of Vars. The
cost matrix defines for each pair v, u (v ∈ Vars, u ∈ Vals) an elementary cost, which
is used for computing C when value u is assigned to variable v.
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Counting constraint:

• among,

• among diff 0,

• among interval,

• among low up,

• among modulo,

• count,

• counts,

• discrepancy,

• exactly,

• nclass,

• nequivalence,

• ninterval,

• npair,

• nvalue,

• nvalue on intersection,

• nvalues,

• nvalues except 0.

A constraint restricting the number of occurrences of some values (respectively
some pairs of values) within a given collection of domain variables (respectively pairs
of domain variables).

Cycle:

• cycle, • symmetric alldifferent .

A constraint that can be used for restricting the number of cycles of a permutation
or for restricting the size of the cycles of a permutation.

Cyclic:

• circular change,

• cyclic change,

• cyclic change joker,

• stretch circuit.

A constraint that involves a kind of cyclicity in its definition. It either uses the arc
generator CIRCUIT or an arc constraint involving mod .

Data constraint:

• elem,

• element,

• element greatereq,

• element lesseq,

• element matrix,

• element sparse,

• elements,

• elements alldifferent ,

• elements sparse,

• in relation,

• ith pos different from 0,

• next element,

• next greater element,

• stage element,

• sum.

A constraint that allows for representing an access to an element of a data structure
(e.g. a table, a matrix, a relation) or to compute a value from a given data structure.
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Decomposition:

• all min dist ,

• all differ from at least k pos,

• among seq ,

• arith ,

• arith or ,

• arith sliding ,

• decreasing ,

• diffn ,

• diffn column ,

• diffn include ,

• disjunctive ,

• domain constraint ,

• increasing ,

• lex alldifferent ,

• lex chain less ,

• lex chain lesseq ,

• link set to booleans ,

• orth link ori siz end ,

• sequence folding ,

• sliding distribution ,

• sliding sum ,

• strictly decreasing ,

• strictly increasing ,

• symmetric cardinality ,

• symmetric gcc .

A constraint for which the catalog provides a description in terms of a conjunction
of more elementary constraints. This is the case when the constraint is described by
one or several graph constraints that all satisfy the following property: The description
uses the NARC graph property and forces all arcs of the initial graph to belong to
the final graph. Most of the time we have only one single graph constraint. But some
constraints (e.g. diffn) use more than one. Note that the arc constraint can some-
times be a logical expression involving several constraints (e.g. domain constraint).

Decomposition-based violation measure:

• soft alldifferent ctr.

A soft constraint associated to a constraint which can be described in terms of a
conjunction of more elementary constraints for which the violation cost is the number
of violated elementary constraints.

Demand profile:

• cumulatives, • same and global cardinality.

A constraint that allows for representing problems where one has to allocate
resources in order to cover a given demand. A profile specifies for each instant the
minimum, and possibly maximum, required demand.
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Derived collection:

• assign and counts,

• correspondence,

• cumulative two d,

• cumulative with level of priority,

• cumulatives,

• cycle resource,

• domain constraint,

• element,

• element matrix,

• element sparse,

• elements sparse,

• golomb,

• in,

• in relation,

• in same partition,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq,

• link set to booleans,

• minimum greater than,

• next element,

• next greater element,

• not in,

• sliding time window from start,

• sort permutation,

• track,

• tree resource,

• two layer edge crossing.

A constraint that uses one or several derived collections.

Difference:

• golomb.

Denotes the fact that the definition in terms of graph property of a constraint
involves a difference between two variables within its arc constraint.

Directed acyclic graph:

• cutset.

A constraint that forces the final graph to be a directed acyclic graph. A directed
acyclic graph is a digraph with no path starting and ending at the same vertex.

Disequality:

• all differ from at least k pos,

• alldifferent,

• alldifferent between sets,

• disjoint,

• elements alldifferent ,

• golomb,

• lex different,

• not all equal,

• not in,

• soft alldifferent ctr,

• soft alldifferent var,

• symmetric alldifferent .

Denotes the fact that a disequality between two domain variables, one domain
variable and a fixed value, or two set variables is used within the definition of
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a constraint. Denotes also the fact that the notion of disequality can be used
within the informal definition of a constraint. This is for instance the case for
the relaxation of the alldifferent constraint (i.e. soft alldifferent ctr,
soft alldifferent var), which do not strictly enforce a disequality.

Domain channel:

• domain constraint.

A constraint that allows for making the link between a domain variable V and a set
of 0-1 variables B1, B2, . . . , Bn. It enforces a condition of the form V = i⇔ Bi = 1.

Domain definition:

• arith,
• in,

• not in.

A constraint that is used for defining the initial domain of one or several domain
variables or for removing some values from the domain of one or several domain
variables.

Domination:

• nvalue, • sum of weights of distinct values.

A constraint that can be used for expressing directly the fact that we search for a
dominating set in an undirected graph. Given an undirected graph G = (V,E) where
V is a finite set of vertices and E a finite set of unordered pairs of distinct elements
from V , a set S is a dominating set if for every vertex u ∈ V − S there exists a vertex
v ∈ S such that u is adjacent to v. Part (A) of Figure 2.11 gives an undirected graph
G, while part (B) depicts a dominating set S = {e, f, g} in G.

(A) (B)
S= {e,f,g }

a b c d

e
f

g

h i j k

a b c d

e
f

g

h i j k

Figure 2.11: A graph and one of its dominating set
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Dual model:

• inverse, • inverse set.

A constraint that can be used as a channeling constraint in a problem where the
roles of the variables and the values can be interchanged. This is for instance the case
when we have a bijection between a set of variables and the values they can take.

Duplicated variables:

• global cardinality,
• lex greater,
• lex greatereq,

• lex less,

• lex lesseq.

A constraint for which the situation where the same variable can occur more
than once was considered in order to derive a better filtering algorithm or to prove a
complexity result for achieving arc-consistency.

Empty intersection:

• disjoint.

A constraint that enforces an empty intersection between two sets of variables.

Equality:

• eq set.

Denotes the fact that the notion of equality can be used within the informal
definition of a constraint.

Equality between multisets:

• same, • same and global cardinality.

A constraint that can be used for modeling an equality constraint between two
multisets.

Equivalence:

• balance interval,

• balance modulo,

• balance partition,

• balance,

• max nvalue,

• min nvalue,

• nclass,

• nequivalence,

• ninterval,

• not all equal,

• npair,
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• nvalue,
• nvalues,

• soft alldifferent var.

Denotes the fact that a constraint is defined by a graph constraint for which the
final graph is reflexive, symmetric and transitive.

Euler knight:

• cycle.

Denotes the fact that a constraint can be used for modeling the Euler knight
problem. The Euler knight problem consists of finding a sequence of moves on a
chessboard by a knight such that each square of the board is visited exactly once.

Excluded:

• not in.

A constraint that prevents certain values to be taken by a variable.

Extension:

• in relation.

A constraint that is defined by explicitly providing all its solutions.

Facilities location problem:

• cycle or accessibility , • sum of weights of distinct values.

A constraint that allows for modeling a facilities location problem. In a facilities
location problem one has to select a subset of locations from a given initial set so that
a given set of conditions holds.

Flow:

• global cardinality,
• global cardinality low up,
• same,
• soft alldifferent ctr,

• symmetric cardinality,

• symmetric gcc,

• used by.

A constraint for which there is a filtering algorithm based on an algorithm that
finds a feasible flow in a graph. This graph is constructed from the variables of the
constraint as well as from their potential values.
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Frequency allocation problem:

• all min dist.

A constraint that was used for modeling frequency allocation problems.

Functional dependency:

• elem,
• element,
• elements,

• elements alldifferent,

• stage element.

A constraint that allows for representing a functional dependency between two
domain variables. A variable X is said to functionally determine another variable Y if
and only if each potential value of X is associated with exactly one potential value of
Y .

Geometrical constraint:

• connect points,

• crossing,

• cumulative two d,

• cycle or accessibility ,

• diffn,

• diffn column,

• diffn include,

• graph crossing,

• orchard,

• orth on the ground,

• orth on to of orth,

• orths are connected,

• place in pyramid,

• polyomino,

• sequence folding,

• two layer edge crossing,

• two orth are in contact,

• two orth column,

• two orth do not overlap,

• two orth include.

A constraint between geometrical objects (e.g. points, line-segments, rectangles,
parallelepipeds, orthotopes) or a constraint selecting a subset of points so that a given
geometrical property holds (e.g. distance).

Golomb ruler:

• golomb.

A constraint that allows for expressing the Golomb ruler problem. A Golomb ruler
is a set of integers (marks) a1 < · · · < ak such that all the differences ai − aj (i > j)
are distinct.
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Graph constraint:

• binary tree,

• circuit,

• circuit cluster,

• clique,

• cutset,

• cycle,

• cycle card on path,

• cycle or accessibility ,

• cycle resource,

• derangement,

• inverse,

• k cut,

• map,

• one tree,

• path from to,

• strongly connected,

• symmetric alldifferent,

• temporal path,

• tour,

• tree,

• tree range,

• tree resource.

A constraint that selects a subgraph from a given initial graph so that this subgraph
satisfies a given property.

Graph partitioning constraint:

• binary tree,

• circuit,

• cycle,

• cycle resource,

• map,

• symmetric alldifferent,

• temporal path,

• tree,

• tree range,

• tree resource.

A constraint that partitions the vertices of a given initial graph and that keeps one
single successor for each vertex so that each partition corresponds to a specific pattern.

Guillotine cut:

• diffn column, • two orth column.

A constraint that can enforce some kind of guillotine cut. In a lot of cutting
problems the stock sheet as well as the pieces to be cut are all shaped as rectangles.
In a guillotine cutting pattern all cuts must go from one edge of the rectangle
corresponding to the stock sheet to the opposite edge.
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Hall interval:

• alldifferent, • global cardinality .

A constraint for which some filtering algorithms take advantage of Hall intervals.
Given a set of domain variables, a Hall set is a set of values H = {v1, v2, . . . , vh}
such that there are h variables whose domains are contained in H . A Hall interval is
a Hall set that consists of an interval of values (and can therefore be specified by its
endpoints).

Hamiltonian:

• circuit, • tour.

A constraint enforcing to cover a graph with one Hamiltonian circuit or cycle. This
corresponds to finding a circuit (respectively a cycle) passing all the vertices exactly
once of a given digraph (respectively undirected graph).

Heuristics:

• discrepancy.

A constraint that was introduced for expressing a heuristics.

Hypergraph:

• among seq,

• arith sliding,

• orchard,

• relaxed sliding sum,

• size maximal sequence alldifferent,

• size maximal starting sequence alldifferent ,

• sliding distribution,

• sliding sum.

Denotes the fact that a constraint uses in its definition at least one arc constraint
involving more than two vertices.

Included:

• in, • in set.

Enforces that a domain or a set variable take a value within a list of values (possibly
one single value).
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Inclusion:

• used by,

• used by interval,

• used by modulo,

• used by partition.

Denotes the fact that a constraint can model the inclusion of one multiset within
another multiset. Usually we consider multiset of values (e.g. used by) but this can
also be multisets of equivalence classes (e.g. used by interval,used by modulo,
used by partition).

Indistinguishable values:

• int value precede,
• int value precede chain,

• set value precede.

A constraint which can be used for breaking symmetries of indistinguishable
values. Indistinguishable values in a solution of a problem can be swapped to construct
another solution of the same problem.

Interval:

• alldifferent interval,

• among interval,

• balance interval,

• common interval,

• interval and count,

• interval and sum,

• ninterval,

• same interval,

• soft same interval var,

• soft used by interval var,

• used by interval.

Denotes the fact that a constraint puts a restriction related to a set of fixed intervals
(or on one fixed interval).

Joker value:

• alldifferent except 0,
• among diff 0,
• connect points,
• cyclic change joker,
• ith pos different from 0,

• minimum except 0,

• nvalues except 0,

• period except 0,

• weighted partial alldiff.

Denotes the fact that, for some variables of a given constraint, there exist specific
values that have a special meaning: for instance they can be assigned without breaking
the constraint. As an example consider the alldifferent except 0 constraint,
which forces a set of variables to take distinct values, except those variables that are
assigned to 0.
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Lexicographic order:

• allperm,

• lex2,

• lex between,

• lex chain less,

• lex chain lesseq,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq,

• strict lex2.

A constraint involving a lexicographic ordering relation in its definition.

Limited discrepancy search:

• discrepancy.

A constraint for simulating limited discrepancy search. Limited discrepancy
search is useful for problems for which there is a successor ordering heuristics
that usually leads directly to a solution. It consists of systematically searching all
paths that differ from the heuristic path in at most a very small number of discrepancies.

Linear programming:

• circuit,

• cumulative,

• domain constraint,

• element greatereq,

• element lesseq,

• k cut,

• link set to booleans,

• path from to,

• strongly connected,

• sum,

• tour.

A constraint for which a reference provides a linear relaxation (e.g. cumulative,
sum) or a constraint that was also proposed within the context of linear programming
(e.g. circuit, domain constraint).

Line-segments intersection:

• crossing,
• graph crossing,

• two layer edge crossing.

A constraint on the number of line-segment intersections.
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Magic hexagon:

• global cardinality with costs.

A constraint that can be used for modeling the magic hexagon problem. The magic
hexagon problem consists of finding an arrangement of n hexagons, where an integer
from 1 to n is assigned to each hexagon so that:

• Each integer from 1 to n occurs exactly once,

• The sum of the numbers along any straight line is the same.

Figure 2.12 shows a magic hexagon.

9
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18 7 16
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Figure 2.12: A magic hexagon

Magic series:

• global cardinality.

A constraint that allows for modeling the magic series problem with one single
constraint. A non-empty finite series S = (s0, s1, . . . , sn) is magic if and only if there
are si occurrences of i in S for each integer i ranging from 0 to n. 3, 2, 1, 1, 0, 0, 0 is
an example of such a magic series for n = 6.

Magic square:

• global cardinality with costs.

A constraint that can be used for modeling the magic square problem. The magic
square problem consists in filling an n by n square with n2 distinct integers so that the
sum of each row and column and of both main diagonals be the same.
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Matching:

• symmetric alldifferent.

A constraint that allows for expressing the fact that we want to find a perfect
matching on a graph with an even number of vertices. A perfect matching on a graph
G with n vertices is a set of n/2 edges of G such that no two edges have a vertex in
common.

Matrix:

• allperm,
• colored matrix,
• element matrix,

• lex2,

• strict lex2.

A constraint on a matrix of domain variables (e.g. allperm, colored matrix,
lex2, strict lex2) or a constraint that allows for representing the access to an
element of a matrix (e.g. element matrix).

Matrix model:

• allperm,

• colored matrix,

• lex2,

• strict lex2.

A constraint on a matrix of domain variables. A matrix model is a model involving
one matrix of domain variables.

Matrix symmetry:

• lex2,
• lex chain less,
• lex chain lesseq,
• lex greater,

• lex greatereq,

• lex less,

• lex lesseq.

A constraint that can be used for breaking certain types of symmetries within a
matrix of domain variables.

Maximum:

• max index,

• max n,

• max nvalue,

• max size set of consecutive var,

• maximum,

• maximum modulo.

A constraint for which the definition involves the notion of maximum.



92 CHAPTER 2. DESCRIPTION OF THE CATALOG

Maximum clique:

• clique.

A constraint that can be used for searching for a maximum clique in a graph. A
maximum clique is a clique of maximum size, a clique being a subset of vertices such
that each vertex is connected to all other vertices of the clique.

Maximum number of occurrences:

• max nvalue.

A constraint that restricts the maximum number of times that a given value is taken.

maxint:

• deepest valley,
• min n,
• minimum,

• minimum except 0,

• minimum modulo.

A constraint that uses maxint in its definition in terms of graph properties or in
terms of automata. maxint is the largest integer that can be represented on a machine.

Minimum:

• min index,

• min n,

• min nvalue,

• min size set of consecutive var,

• minimum,

• minimum except 0,

• minimum greater than,

• minimum modulo,

• next element,

• next greater element.

A constraint for which the definition involves the notion of minimum.

Minimum number of occurrences:

• min nvalue.

A constraint that restricts the minimum number of times that a given value is taken.

Modulo:

• alldifferent modulo,

• among modulo,

• balance modulo,

• common modulo,

• maximum modulo,

• minimum modulo,

• same modulo,

• soft same modulo var,

• soft used by modulo var,

• used by modulo.
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Denotes the fact that the arc constraint associated with a given constraint mentions
the function mod .

Multiset:

• same, • same and global cardinality.

A constraint using domain variables that can be used for modeling some constraint
between multisets.

Multiset ordering:

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq.

Similar constraints exist also within the context of multisets.

no loop:

• alldifferent on intersection,

• all differ from at least k pos,

• among low up,

• arith or,

• cardinality atleast,

• cardinality atmost partition,

• cardinality atmost,

• change continuity,

• change pair,

• change partition,

• change,

• common interval,

• common modulo,

• common partition,

• common,

• correspondence,

• counts,

• crossing,

• cyclic change joker,

• cyclic change.

Denotes a constraint defined by a graph constraint for which the final graph doesn’t
have any loop.

n-queen:

• alldifferent, • inverse.

A constraint that can be used for modeling the n-queen problem. Place n queens
on a n by n chessboard in such a way that no queen attacks another. Two queens
attack each other if they are located on the same column, on the same row or on the
same diagonal.
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Non-overlapping:

• diffn,
• disjoint tasks,
• orth on top of orth,
• orths are connected,

• place in pyramid,

• two orth are in contact,

• two orth do not overlap.

A constraint that forces a collection of geometrical objets to not pairwise overlap.

Number of changes:

• change,
• change pair,
• change partition,
• circular change,

• cyclic change,

• cyclic change joker,

• smooth.

A constraint restricting the number of times that a given binary constraint holds on
consecutive items of a given collection.

Number of distinct equivalence classes:

• nclass,

• nequivalence,

• ninterval,

• npair,

• nvalue,

• nvalues.

A constraint on the number of distinct equivalence classes assigned to a collection
of domain variables.

Number of distinct values:

• assign and nvalues,
• coloured cumulative,
• coloured cumulatives,
• nvalue,

• nvalue on intersection ,

• nvalues,

• nvalues except 0.

A constraint on the number of distinct values assigned to one or several set of
variables.

Obscure:

• one tree.

A constraint for which a better description is needed.
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One succ:

• alldifferent between sets,

• alldifferent except 0,

• alldifferent interval,

• alldifferent modulo,

• alldifferent partition,

• alldifferent,

• binary tree,

• circuit cluster,

• circuit,

• cycle card on path,

• cycle,

• minimum weight alldifferent .

Denotes the fact that a constraint is defined by one single graph constraint such
that:

• All the vertices of its initial graph belong to the final graph,

• All the vertices of its final graph have exactly one successor.

Order constraint:

• allperm,

• decreasing,

• increasing,

• int value precede,

• int value precede chain,

• lex2,

• lex between,

• lex chain less,

• lex chain lesseq,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq,

• max index,

• max n,

• maximum,

• maximum modulo,

• min index,

• min n,

• minimum,

• minimum except 0,

• minimum greater than,

• minimum modulo,

• next greater element,

• set value precede,

• strict lex2,

• strictly decreasing,

• strictly increasing.

A constraint involving an ordering relation in its definition. An ordering relation
R on a set S is a relation such that, for every a, b, c ∈ S:

• a R b or b R a,

• If a R b and b R c, then a R c,

• If a R b and b R a then a = b.
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Orthotope:

• diffn,

• diffn column,

• diffn include,

• orth link ori siz end,

• orth on the ground,

• orth on top of orth,

• orths are connected,

• place in pyramid,

• two orth are in contact,

• two orth column,

• two orth do not overlap,

• two orth include.

A constraint involving orthotopes. An orthotope corresponds to the generalization
of the rectangle and box to the n-dimensional case.

Pair:

• change pair, • npair.

A constraint involving a collection of pairs of variables.

Partition:

• alldifferent partition,

• balance partition,

• cardinality atmost partition,

• change partition,

• common partition,

• in same partition,

• nclass,

• same partition,

• soft same partition var,

• soft used by partition var,

• used by partition.

A constraint involving in one of its argument a partitioning of a given finite set of
integers.

Path:

• path from to, • temporal path.

A constraint allowing for expressing the fact that we search for one or several
vertex-disjoint simple paths. Within a digraph a simple path is a set of links that are
traversed in the same direction and such that each vertex of the simple path is visited
exactly once.

Pentomino:

• polyomino.

Can be used to model a pentomino. A pentomino is an arrangement of five unit
squares that are joined along their edges.
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Periodic:

• period, • period except 0.

A constraint that can be used for modeling the fact that we are looking for a
sequence that has some kind of periodicity.

Permutation:

• alldifferent,

• change continuity,

• circuit,

• correspondence,

• cycle,

• derangement,

• elements alldifferent ,

• inverse,

• same,

• same and global cardinality,

• same interval,

• same modulo,

• same partition,

• sort,

• sort permutation,

• symmetric alldifferent .

A constraint that can be used for modeling a permutation or a specific type or
characteristic of a permutation. A permutation is a rearrangement of elements, where
none are changed, added or lost.

Permutation channel:

• inverse.

A constraint that allows for modeling the link between a permutation and its
inverse permutation. A permutation is a rearrangement of n distinct integers between
1 and n, where none are changed, added or lost. An inverse permutation is a
permutation in which each number and the number of its position are swapped.

Phylogeny:

• one tree.

A constraint inspired by the area of phylogeny. Phylogeny is concerned by the
classification of organism based on genetic connections between species.

Pick-up delivery:

• cycle.

A constraint that was used for modeling a pick-up delivery problem. In a pick-up
delivery problem, vehicles have to transport loads from origins to destinations without
any transshipment at intermediate locations.
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Polygon:

• diffn.

A constraint that can be generalized to handle polygons.

Positioning constraint:

• diffn column,

• diffn include,

• two orth column,

• two orth include.

A constraint restricting the relative positioning of two or more geometrical objects.

Predefined constraint:

• allperm,

• colored matrix,

• eq set,

• in set,

• lex2,

• pattern,

• period,

• period except 0,

• set value precede,

• strict lex2.

A constraint for which the meaning is not explicitly described in terms of graph
properties or in terms of automata.

Producer-consumer:

• cumulative, • cumulatives.

A constraint that can be used for modeling problems where a first set of tasks
produces a resource, while a second set of tasks consumes this resource. The constraint
allows for imposing a limit on the minimum or the maximum stock at each instant.

Product:

• cumulative product, • product ctr.

A constraint involving a product in its definition.

Proximity constraint:

• alldifferent same value,
• distance between,

• distance change.

A constraint restricting the distance between two collections of variables according
to some measure.
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Range:

• range ctr.

An arithmetic constraint involving a difference between a maximum and a
minimum value.

Rank:

• max n, • min n.

A positioning constraint according to an ordering relation.

Relation:

• in relation,
• symmetric cardinality,

• symmetric gcc.

A constraint that allows for representing the access to an element of a relation or
to model a relation. A relation is a subset of the product of several finite sets.

Relaxation:

• alldifferent except 0,

• relaxed sliding sum,

• soft alldifferent ctr,

• soft alldifferent var,

• soft same interval var,

• soft same modulo var,

• soft same partition var,

• soft same var,

• soft used by interval var,

• soft used by modulo var,

• soft used by partition var,

• soft used by var,

• sum of weights of distinct values,

• weighted partial alldiff.

Denotes the fact that a constraint allows for specifying a partial degree of satisfac-
tion.

Resource constraint:

• bin packing,

• coloured cumulative,

• coloured cumulatives,

• cumulative,

• cumulative product,

• cumulative with level of priority,

• cumulatives,

• cycle resource,

• disjunctive,

• interval and count,

• interval and sum,

• track,

• tree resource.

A constraint restricting the utilization of a resource. The utilization of a resource
is computed from all items that are assigned to that resource.
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Run of a permutation:

• change continuity.

A constraint that can be used for putting a restriction on the size of the longest
run of a permutation. A run is a maximal increasing contiguous subsequence in a
permutation.

Scalar product:

• global cardinality with costs.

A constraint that can be used for modeling a scalar product constraint.

Sequence:

• among seq,

• arith sliding,

• cycle card on path,

• deepest valley,

• heighest peak,

• inflexion,

• no peak,

• no valley,

• peak,

• period,

• period except 0,

• relaxed sliding sum,

• sequence folding,

• size maximal sequence alldifferent ,

• size maximal starting sequence alldifferent ,

• sliding card skip0,

• sliding distribution,

• sliding sum,

• valley.

Constrains consecutive variables (possibly not all) of a given collection of domain
variables or consecutive vertices of a simple path or a simple circuit. Also a constraint
restricting a variable (when fixed to 0 the variable may be omitted) according to
consecutive variables of a given collection of domain variables.

Set channel:

• inverse set, • link set to booleans.

A channeling constraint involving one or several set variables.

Scheduling constraint:

• coloured cumulative,

• coloured cumulatives,

• cumulative,

• cumulative product,

• cumulative with level of priority,

• cumulatives,

• disjoint tasks,

• disjunctive,

• period,

• period except 0,
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• shift.

A constraint useful for the area of scheduling. Scheduling is concerned with the
allocation or assignment of resources (e.g. manpower, machines, money), over time,
to a set of tasks.

Shared table:

• elements, • elements sparse.

A constraint for which the same table is shared by several element constraints.

Sliding cyclic(1) constraint network(1):

• decreasing,
• increasing,
• no peak,
• no valley,

• not all equal,

• strictly decreasing,

• strictly increasing.

A constraint network corresponding to the pattern depicted by Figure 2.13. Circles
depict variables, while arcs are represented by a set of variables.

Figure 2.13: Hypergraph associated with a sliding cyclic(1) constraint network(1)

Sliding cyclic(1) constraint network(2):

• change,

• change continuity,

• cyclic change,

• cyclic change joker,

• deepest valley,

• heighest peak,

• inflexion,

• peak,

• smooth,

• valley.

A constraint network corresponding to the pattern depicted by Figure 2.14. Circles
depict variables, while arcs are represented by a set of variables.
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Figure 2.14: Hypergraph associated with a sliding cyclic(1) constraint network(2)

Sliding cyclic(1) constraint network(3):

• change,
• change continuity,

• longest change.

A constraint network corresponding to the pattern depicted by Figure 2.15. Circles
depict variables, while arcs are represented by a set of variables.

Figure 2.15: Hypergraph associated with a sliding cyclic(1) constraint network(3)

Sliding cyclic(2) constraint network(2):

• change pair, • distance change.

Figure 2.16: Hypergraph associated with a sliding cyclic(2) constraint network(2)

A constraint network corresponding to the pattern depicted by Figure 2.16. Circles
depict variables, while arcs are represented by a set of variables.
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Sliding sequence constraint:

• among seq,

• arith sliding,

• cycle card on path,

• pattern,

• relaxed sliding sum,

• sliding card skip0,

• sliding distribution,

• size maximal sequence alldifferent ,

• size maximal starting sequence alldifferent ,

• sliding sum,

• sliding time window,

• sliding time window from start,

• sliding time window sum,

• stretch circuit,

• stretch path.

A constraint enforcing a condition on sliding sequences of domain variables that
partially overlap or a constraint computing a quantity from a set of sliding sequences.
These sliding sequences can be either initially given or dynamically constructed. In
the latter case they can for instance correspond to adjacent vertices of a path that has
to be built.

Soft constraint:

• relaxed sliding sum,

• soft alldifferent ctr,

• soft alldifferent var,

• soft same interval var,

• soft same modulo var,

• soft same partition var,

• soft same var,

• soft used by interval var,

• soft used by modulo var,

• soft used by partition var,

• soft used by var,

• weighted partial alldiff.

A constraint that is a relaxed form of one other constraint.

Sort:
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• sort, • sort permutation.

A constraint involving the notion of sorting in its definition.

Sparse functional dependency:

• element sparse, • elements sparse.

A constraint that allows for representing a functional dependency between two
domain variables, where both variables have a restricted number of values. A variable
X is said to functionally determine another variable Y if and only if each potential
value of X is associated with exactly one potential value of Y .

Sparse table:

• element sparse, • elements sparse.

An element constraint for which the table is sparse.

Sport timetabling:

• symmetric alldifferent.

A constraint used for creating sports schedules.

Squared squares:

• cumulative, • diffn.

A constraint that can be used for modeling the squared squares problem: It
consists of tiling a square with smaller squares such that each of the smaller squares
has a different integer size.

Strongly connected component:

• connect points,

• cycle,

• cycle or accessibility ,

• cycle resource,

• group skip isolated item,

• nclass,

• nequivalence,

• ninterval,

• npair,

• nset of consecutive values,

• nvalue,

• nvalues,

• nvalues except 0,

• polyomino,

• soft alldifferent var,

• strongly connected.

Denotes the fact that a constraint restricts the strongly connected components
of its associated final graph. This is usually done by using a graph property like
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MAX NSCC, MIN NSCC or NSCC.

Sum:

• sliding sum,
• sliding time window sum,
• sum,

• sum ctr,

• sum set.

A constraint involving one or several sums.

Sweep:

• diffn.

A constraint for which the filtering algorithm may use a sweep algorithm. A sweep
algorithm solves a problem by moving an imaginary object (usually a line or a plane).
The object does not move continuously, but only at particular points where we actually
do something. A sweep algorithm uses the following two data structures:

• A data structure called the sweep status, which contains information related to
the current position of the object that moves,

• A data structure named the event point series, which holds the events to process.

The algorithm initializes the sweep status for the initial position of the imaginary
object. Then the object jumps from one event to the next event; each event is handled
by updating the status of the sweep.

Symmetry:

• allperm,

• int value precede,

• int value precede chain,

• lex2,

• lex between,

• lex chain less,

• lex chain lesseq,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq,

• set value precede,

• strict lex2.

A constraint that can be used for breaking certain types of symmetries.

Symmetric:

• connect points.

Denotes the fact that a constraint is defined by a graph constraint for which the
final graph is symmetric.
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Table:

• elem,

• element,

• element greatereq,

• element lesseq,

• element sparse,

• elements,

• elements alldifferent ,

• elements sparse,

• ith pos different from 0,

• next element,

• next greater element,

• stage element.

A constraint that allows for representing the access to an element of a table.

Temporal constraint:

• coloured cumulative,

• coloured cumulatives,

• cumulative,

• cumulative product,

• cumulative with level of priority,

• cumulatives,

• disjoint tasks,

• interval and count,

• interval and sum,

• shift,

• sliding time window,

• sliding time window from start,

• sliding time window sum,

• track.

A constraint involving the notion of time.

Ternary constraint:

• element matrix.

A constraint involving only three variables.

Timetabling constraint:

• change,

• change continuity,

• change pair,

• change partition,

• circular change,

• colored matrix,

• cyclic change,

• cyclic change joker,

• group,

• group skip isolated item,

• interval and count,

• interval and sum,

• longest change,

• pattern,

• period,

• period except 0,

• shift,

• sliding card skip0,

• smooth,

• stretch circuit,

• stretch path,

• symmetric alldifferent,

• symmetric cardinality,

• symmetric gcc,

• track.
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A constraint that can occur in timetabling problems.

Time window:

• sliding time window sum.

A constraint involving one or several date ranges.

Touch:

• orths are connected, • two orth are in contact.

A constraint enforcing that some orthotopes touch each other (see Contact).

Tree:

• binary tree,
• one tree,
• tree,

• tree range,

• tree resource.

A constraint that partitions the vertices of a given initial graph and that keeps one
single successor for each vertex so that each partition corresponds to one tree. Each
vertex points to its father or to itself if it corresponds to the root of a tree.

Tuple:

• in relation, • vec eq tuple.

A constraint involving a tuple. A tuple is an element of a relation, where a relation
is a subset of the product of several finite sets.

Unary constraint:

• in, • not in.

A constraint involving only one variable.

Undirected graph:

• tour.

A constraint that deals with an undirected graph. An undirected graph is a graph
whose edges consist of unordered pairs of vertices.
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Value constraint:

• all min dist ,

• alldifferent ,

• alldifferent except 0 ,

• alldifferent interval ,

• alldifferent modulo ,

• alldifferent on intersection ,

• alldifferent partition ,

• among ,

• among diff 0 ,

• among interval ,

• among low up ,

• among modulo ,

• arith ,

• arith or ,

• atleast ,

• atmost ,

• balance ,

• balance interval ,

• balance modulo ,

• balance partition ,

• cardinality atleast ,

• cardinality atmost ,

• cardinality atmost partition ,

• count ,

• counts ,

• differ from at least k pos ,

• discrepancy ,

• disjoint ,

• exactly ,

• global cardinality ,

• global cardinality low up ,

• in ,

• in same partition ,

• in set ,

• link set to booleans ,

• max nvalue ,

• max size set of consecutive var,

• min nvalue ,

• min size set of consecutive var,

• not all equal ,

• not in ,

• nset of consecutive values ,

• same and global cardinality ,

• soft alldifferent ctr ,

• soft alldifferent var ,

• vec eq tuple .

A constraint that puts a restriction on how values can be assigned to usually one
or several collections of variables, or possibly one or two variables. These variables
usually correspond to domain variables but can sometimes be set variables.

Value partitioning constraint:

• nclass,
• nequivalence,
• ninterval,
• npair,

• nvalue,

• nvalues,

• nvalues except 0.

A constraint involving a partitioning of values in its definition.
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Value precedence:

• int value precede,
• int value precede chain,

• set value precede.

A constraint that allows for expressing symmetries between values that are
assigned to variables.

Variable-based violation measure:

• soft alldifferent var,
• soft same interval var,
• soft same modulo var,
• soft same partition var,
• soft same var,

• soft used by interval var,

• soft used by modulo var,

• soft used by partition var,

• soft used by var.

A soft constraint for which the violation cost is the minimum number of variables
to unassign in order to get back to a solution.

Variable indexing:

• indexed sum,

• elem,

• element,

• element greatereq,

• element lesseq,

• element sparse.

A constraint where one or several variables are used as an index into an array.

Variable subscript:

• indexed sum,
• elem,
• element,

• element greatereq,

• element lesseq.

A constraint that can be used to model one or several variables that have a variable
subscript.

Vector:

• all differ from at least k pos,

• differ from at least k pos,

• lex alldifferent,

• lex between,

• lex chain less,

• lex chain lesseq,

• lex different,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq.

Denotes the fact that one (or more) argument of a constraint corresponds to a
collection of vectors that all have the same number of components.
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Vpartition:

• group.

Denotes the fact that a constraint is defined by two graph constraints C1 and C2 such
that:

• The two graph constraints have the same initial graph Gi,

• Each vertex of the initial graph Gi belongs to exactly one of the final graphs
associated with C1 and C2.

Weighted assignment:

• global cardinality with costs,

• minimum weight alldifferent,

• sum of weights of distinct values,

• weighted partial alldiff.

A constraint expressing an assignment problem such that a cost can be computed
from each solution.

Workload covering:

• cumulatives.

A constraint that can be used for modeling problems where a first set of tasks T1

has to cover a second set of tasks T2. Each task of T1 and T2 is defined by an origin, a
duration and a height. At each point in time t the sum of the heights of the tasks of the
first set T1 that overlap t has to be greater than or equal to the sum of the heights of the
tasks of the second set T2 that also overlap t.
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3.1 Differences from the 2000 report
This section summarizes the main differences with the SICS report [3] as well as of the
corresponding paper [1]. The main differences are listed below:

• We have both simplified and extended the way to generate the vertices of the
initial graph and we have introduced a new way of defining set of vertices. We

111
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have also removed the CLIQUE(MAX) set of vertices generator since it can-
not in general be evaluated in polynomial time. Therefore, we have modified
the description of the constraints assign and counts, assign and nvalues,
interval and count, interval and sum, bin packing, cumulative,
cumulatives, coloured cumulative, coloured cumulatives,
cumulative two d, which all used this feature.

• We have introduced the new arc generators PATH 1 and PATH N , which al-
low for specifying an n-ary constraint for which n is not fixed.
The size maximal starting sequence alldifferent and the
size maximal sequence alldifferent are examples of global constraints
that use these arc generators in order to generate a set of sliding
alldifferent constraints.

• In addition to traditional domain variables we have introduced float, set and
multiset variables as well as several global constraints mentioning float and set
variables (see for instance the choquet and the alldifferent between sets

constraints). This decision was initially motivated by the fact that several con-
straint systems and papers mention global constraints dealing with these types
of variables. Later on, we realized that set variables also greatly simplify the
interface of existing global constraints. This was especially true for those global
constraints that explicitly deal with a graph, like clique or cutset. In this con-
text, using a set variable for catching the successors of a vertex is quite natural.
This is especially true when a vertex of the final graph can have more than one
successor since it allows for avoiding a lot of 0-1 variables.

• We have introduced the possibility of using more than one graph constraint for
defining a given global constraint (see for instance the cumulative or the sort
constraints). Therefore we have removed the notion of dual graph, which was
initially introduced in the original report. In this context, we now use two graph
constraints (see for instance change continuity).

• On the one hand, we have introduced the following new graph characteristics:

– MAX DRG,

– MAX OD,

– MIN DRG,

– MIN ID,

– MIN OD,

– NTREE,

– PATH FROM TO,

– PRODUCT,

– RANGE,

– RANGE DRG,

– RANGE NCC,

– SUM,

– SUM WEIGHT ARC.

On the other hand, we have removed the following graph characteristics:

– NCC(COMP, val),

– NSCC(COMP, val),
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– NTREE(ATTR, COMP, val),

– NSOURCE EQ NSINK,

– NSOURCE GREATEREQ NSINK.

Finally, MAX IN DEGREE has been renamed MAX ID.

• We have introduced an iterator over the items of a collection in order to spec-
ify in a generic way a set of similar elementary constraints or a set of simi-
lar graph properties. This was required for describing some global constraints
such as global cardinality, cycle resource or stretch. All these global
constraints mention a condition involving some limit depending on the specific
values that are effectively used. For instance the global cardinality con-
straint forces each value v to be respectively used at least atleastv and at most
atmostv times. This iterator was also necessary in the context of graph cover-
ing constraints where one wants to cover a digraph with some patterns. Each
pattern consists of one resource and several tasks. One can now attach spe-
cific constraints to the different resources. Both the cycle resource and the
tree resource constraints illustrate this point.

• We have added some standard existing global constraints that were obviously
missing from the previous report. This was for instance the case of the element
constraint.

• In order to make clear the notion of family of global constraints we have com-
puted for each global constraint a signature, which summarizes its structure.
Each signature was inserted into the index so that one can retrieve all the global
constraints sharing the same structure.

• We have generalized some existing global constraints. For instance the
change pair constraint extends the change constraint. Finally we have intro-
duced some novel global constraints like disjoint tasks or symmetric gcc.

• We have defined the rules for specifying arc constraints.
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3.2 Graph invariants

Within the scope of the graph-based description this section shows how to use implied
constraints, which are systematically linked to the description of a global constraint.
This usually occurs in the following context:

• Quite often, it happens that one wants to enforce the final graph to satisfy more
than one graph property. In this context, these graph properties involve several
graph characteristics that cannot vary independently.

EXAMPLE: As a practical example, consider the group constraint and its first
graph constraint. It involves the four graph characteristics NCC, MIN NCC,
MAX NCC and NVERTEX, which respectively correspond to the number of con-
nected components, the number of vertices of the smallest connected component, the
number of vertices of the largest connected component and the number of vertices of the
final graph. In this example the number of connected components of the final graph can-
not vary independently from the size of the smallest connected component. The same
remark applies also for the size of the largest connected component. Having a graph
invariant that directly relates the four graph characteristics can dramatically improve the
propagation.

• Even if the description of a global constraint involves one single graph character-
istic C, we can introduce the number of vertices, NVERTEX, and the number
of arcs, NARC, of the final digraph. In this context, we can take advantage of
graph invariants linking C, NARC and NVERTEX.

• It also happens that we enforce two graph constraints GC1 and GC2 that have the
same initial graph G. In this context we consider the following situations:

– Each arc of G belongs to one of the final graphs associated with GC1 or
with GC2 (but not to both). An example of such global constraint is the
change continuity constraint. Within the graph invariants this situation
is denoted by apartition.

– Each vertex of G belongs to one of the final graphs associated with GC1

or with GC2 (but not to both). An example of such global constraint is the
group constraint. Within the graph invariants this situation is denoted by
vpartition.

In these situations the graph properties associated with the two graph constraints
are also not independent.

In practice the graphs associated with global constraints have a regular structure
which comes from the initial graph or from the property of the arc constraints. So,
in addition to graph invariants that hold for any graph, we want also tighter graph
invariants that hold for specific graph classes. The next section introduces the graph
classes we consider, while the two other sections give the graph invariants on one and
two graphs.
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3.2.1 Graph classes
By definition, a graph invariant has to hold for any digraph. For instance, we have
the graph invariant NARC ≤ NVERTEX2, which relates the number of arcs and
the number of vertices of any digraph. This invariant is sharp since the equality is
reached for a clique. However, by considering the structure of a digraph, we can get
sharper invariants. For instance, if our digraph is a subset of an elementary path (e.g.
we use the PATH arc generator depicted by Figure 1.4) we have that NARC ≤
NVERTEX − 1, which is a tighter bound of the maximum number of arcs since
NVERTEX − 1 < NVERTEX2. For this reason, we consider recurring graph
classes that show up for different global constraints of the catalog. For a given global
constraint, a graph class specifies a general property that holds on its final digraph.
We list the different graph classes and, for each of them, we point to some global
constraints that fit in that class. Finding all the global constraints corresponding to a
given graph class can be done by looking into the list of keywords (see Section 2.5
page 62).

• acyclic: graph constraint for which the final graph doesn’t have any circuit.

• apartition: constraint defined by two graph constraints having the same initial
graph, where each arc of the initial graph belongs to one of the final graph (but
not to both).

• bipartite: graph constraint for which the final graph is bipartite.

• consecutive loops are connected: denotes the fact that the graph con-
straints of a global constraint use only the PATH and the LOOP arc generators
and that their final graphs do not contain consecutive vertices that have a loop
and that are not connected together by an arc.

• equivalence: graph constraint for which the final graph is reflexive, symmetric
and transitive.

• no loop: graph constraint for which the final graph doesn’t have any loop.

• one succ: graph constraint for which all the vertices of the initial graph belong
to the final graph and for which all vertices of the final graph have exactly one
successor.

• symmetric: graph constraint for which the final graph is symmetric.

• vpartition: constraint defined by two graph constraints having the same initial
graph, where each vertex of the initial graph belongs to one of the final graph (but
not to both).
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In addition, we also consider graph constraints such that their final graphs is a
subset of the graph generated by the arc generators:

• CHAIN ,

• CIRCUIT ,

• CLIQUE ,

• CLIQUE(Comparison),

• GRID ,

• LOOP ,

• PATH ,

• PRODUCT ,

• PRODUCT (Comparison),

• SYMMETRIC PRODUCT ,

• SYMMETRIC PRODUCT(Comparison),

where Comparison is one of the following comparison operators≤, ≥, <, >, =, 6=.

3.2.2 Format of an invariant

As we previously saw, we have graph invariants that hold for any digraph as well as
tighter graph invariants for specific graph classes. As a consequence, we partition the
database in groups of graph invariants. A group of graph invariants corresponds to
several invariants such that all invariants relate the same subset of graph characteristics
and such that all invariants are variations of the first invariant of the group taking into
accounts the graph class. Therefore, the first invariant of a group has no precondition,
while all other invariants have a non-empty precondition that characterizes the graph
class for which they hold.

EXAMPLE: As a first example consider the group of invariants denoted by Proposition
64, which relate the number of arcs NARC with the number of vertices of the smallest
and largest connected component (i.e. MIN NCC and MAX NCC).

MIN NCC 6= MAX NCC⇒ NARC ≥MIN NCC + MAX NCC− 2+

(MIN NCC = 1)

equivalence : MIN NCC 6= MAX NCC⇒
NARC ≥MIN NCC2 + MAX NCC2

On the one hand, since the first rule has no precondition it corresponds to a gen-
eral graph invariant. On the other hand the second rule specifies a tighter condition
(since MIN NCC2 + MAX NCC2 is greater than or equal to MIN NCC +
MAX NCC − 2 + (MIN NCC = 1)), which only holds for a final graph, which
is reflexive, symmetric and transitive.
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EXAMPLE: As a second example, consider the following group of invariants correspond-
ing to Proposition 49, which relate the number of arcs NARC to the number of vertices
NVERTEX according to the arc generator (see Figure 1.4) used for generating the ini-
tial digraph:

NARC ≤ NVERTEX2

arc gen = CIRCUIT : NARC ≤ NVERTEX

arc gen = CHAIN : NARC ≤ 2 ·NVERTEX − 2

arc gen = CLIQUE(≤) : NARC ≤ NVERTEX · (NVERTEX + 1)

2

arc gen = CLIQUE(≥) : NARC ≤ NVERTEX · (NVERTEX + 1)

2

arc gen = CLIQUE(<) : NARC ≤ NVERTEX · (NVERTEX − 1)

2

arc gen = CLIQUE(>) : NARC ≤ NVERTEX · (NVERTEX − 1)

2

arc gen = CLIQUE(6=) : NARC ≤ NVERTEX2 −NVERTEX

arc gen = CYCLE : NARC ≤ 2 ·NVERTEX

arc gen = PATH : NARC ≤ NVERTEX − 1

3.2.3 Using the database of invariants

The purpose of this section is to provide a set of graph invariants, each invariant relating
a given set of graph characteristics. Once we have these graph invariants we can use
them systematically by applying the following steps:

• For a given graph constraint we extract all the graph characteristics occurring in
its description. This can be done automatically by scanning the corresponding
graph properties. Let GC denote this subset of graph characteristics. For each
graph characteristic gc of GC we check if we have a graph property of the form
gc = var where var is a domain variable. If this is the case we record the pair
(gc, var ); if not, we create a new domain variable var and also record the pair
(gc, var ).

• We then search for all groups of graph invariants involving a subset of the previ-
ous graph characteristics GC. For each selected group we filter out those graph
invariants for which the preconditions are not compatible with the graph class
of the graph constraint under consideration. In each group we finally keep those
invariants that have the maximum number of preconditions (i.e. the most spe-
cialized graph invariants).

• Finally we state all the previous collected graph invariants as implied constraints.
This is achieved by using the variables associated with each graph characteristic.
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EXAMPLE: We continue with the example of the group constraint and its first graph
constraint. The steps for creating the implied constraints are:

• We first extract the graph characteristics NCC, MIN NCC, MAX NCC and
NVERTEX from the first graph constraint of the group constraint. Since all
the graph properties attached to the previous graph characteristics have the form
gc = var we extract the corresponding domain variables and get the following
pairs (NCC, NGROUP), (MIN NCC, MIN SIZE), (MAX NCC, MAX SIZE)
and (NVERTEX, NVAL).

• We search for all groups of graph invariants involving the graph characteristics
NCC, MIN NCC, MAX NCC and NVERTEX and filter out the irrele-
vant graph invariants that can’t be applied on the graph class associated with the
group constraint.

• We state all the previous invariants by substituting each graph characteristics by its
corresponding variable, which leads to a set of implied constraints.

3.2.4 The database of graph invariants
For each combination of graph characteristics we give the number of graph invariants
we currently have. The items are sorted first in increasing number of graph charac-
teristics of the invariant, second in alphabetic order on the name of the characteristics.
All graph invariants assume a digraph for which each vertex has at least one arc. For
some propositions, a figure depicts the corresponding final graph, which minimizes
or maximizes a given graph characteristics. The propositions of this section and their
corresponding proofs use the notations introduced in Section 1.2.2 page 31.

• Graph invariants involving one graph characteristics of a final graph:

– MAX NCC: 1 (see Proposition 1),

– MAX NSCC: 2 (see Propositions 2 and 3),

– MIN NCC: 1 (see Proposition 4),

– MIN NSCC: 2 (see Propositions 5 and 6),

– NARC: 1 (see Proposition 7),

– NCC: 2 (see Propositions 8 and 9),

– NSCC: 1 (see Proposition 10),

– NSINK: 1 (see Proposition 11),

– NSOURCE: 1 (see Proposition 12),

– NVERTEX: 1 (see Proposition 13).

• Graph invariants involving two graph characteristics of a final graph:

– MAX NCC, MAX NSCC: 2 (see Propositions 14 and 15),

– MAX NCC, MIN NCC: 2 (see Propositions 16 and 17),

– MAX NCC, NARC: 2 (see Propositions 18 and 19),

– MAX NCC, NSINK: 2 (see Propositions 20 and 21),

– MAX NCC, NSOURCE: 2 (see Propositions 22 and 23),
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– MAX NCC, NVERTEX: 2 (see Propositions 24 and 25),

– MAX NSCC, MIN NSCC: 2 (see Propositions 26 and 27),

– MAX NSCC, NARC: 2 (see Propositions 28 and 29),

– MAX NSCC, NVERTEX: 2 (see Propositions 30 and 31),

– MIN NCC, MIN NSCC: 2 (see Propositions 32 and 33),

– MIN NCC, NARC: 2 (see Propositions 34 and 35),

– MIN NCC, NCC: 1 (see Proposition 36),

– MIN NCC, NVERTEX: 3 (see Propositions 37, 38 and 39),

– MIN NSCC, NARC: 2 (see Propositions 40 and 41),

– MIN NSCC, NVERTEX: 2 (see Propositions 42 and 43),

– NARC, NCC: 2 (see Propositions 44 and 45),

– NARC, NSCC: 2 (see Propositions 46 and 47),

– NARC, NVERTEX: 4 (see Propositions 48, 49, 50 and 51),

– NCC, NSCC: 2 (see Propositions 52 and 53),

– NCC, NVERTEX: 3 (see Propositions 54 and 55 and 56),

– NSCC, NVERTEX: 3 (see Propositions 57, 58 and 59),

– NSINK, NVERTEX: 2 (see Propositions 60 and 61),

– NSOURCE, NVERTEX: 2 (see Propositions 62 and 63).

• Graph invariants involving three graph characteristics of a final graph:

– MAX NCC, MIN NCC, NARC: 1 (see Proposition 64),

– MAX NCC, MIN NCC, NCC: 1 (see Proposition 65),

– MAX NCC, MIN NCC, NVERTEX: 5 (see Propositions 66, 67, 68, 69 and 70),

– MAX NCC, NARC, NCC: 2 (see Propositions 71 and 72),

– MAX NCC, NARC, NVERTEX: 2 (see Propositions 73 and 74),

– MAX NCC, NCC, NVERTEX: 2 (see Propositions 75 and 76),

– MAX NSCC, MIN NSCC, NARC: 1 (see Proposition 77),

– MAX NSCC, MIN NSCC, NSCC: 1 (see Proposition 78),

– MAX NSCC, MIN NSCC, NVERTEX: 2 (see Propositions 79 and 80),

– MAX NSCC, NSCC, NVERTEX: 2 (see Propositions 81 and 82),

– MIN NCC, NARC, NVERTEX: 2 (see Propositions 83 and 84),

– MIN NCC, NCC, NVERTEX: 1 (see Proposition 85),

– MIN NSCC, NARC, NVERTEX: 1 (see Proposition 86),

– MIN NSCC, NSCC, NVERTEX: 1 (see Proposition 87),

– NARC, NCC, NVERTEX: 2 (see Propositions 88 and 89),

– NARC, NSCC, NVERTEX: 3 (see Propositions 90, 91 and 92),

– NARC, NSINK, NVERTEX: 2 (see Propositions 93 and 94),

– NARC, NSOURCE, NVERTEX: 2 (see Propositions 95 and 96),

– NSINK, NSOURCE, NVERTEX: 1 (see Proposition 97).

• Graph invariants involving four graph characteristics of a final graph:

– MAX NCC, MIN NCC, NARC, NCC: 2 (see Propositions 98 and 99),
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– MAX NCC, MIN NCC, NCC, NVERTEX: 2 (see Propositions 100 and 101),

– MAX NSCC, MIN NSCC, NARC, NSCC: 2 (see Propositions 102 and 103),

– MAX NSCC, MIN NSCC, NSCC, NVERTEX: 2 (see Propositions 104
and 105),

– MIN NCC, NARC, NCC, NVERTEX: 1 (see Proposition 106),

– NARC, NCC, NSCC, NVERTEX: 2 (see Propositions 107 and 108),

– NARC, NSINK, NSOURCE, NVERTEX: 1 (see Proposition 109).

• Graph invariants involving five graph characteristics of a final graph:

– MAX NCC, MIN NCC, NARC, NCC, NVERTEX: 1 (see Proposition 110),

– MIN NCC, NARC, NCC, NSCC, NVERTEX: 1 (see Proposition 111).

• Graph invariants relating two characteristics of two final graphs:

– MAX NCC1, NCC2: 1 (see Proposition 112),

– MAX NCC2, NCC1: 1 (see Proposition 113),

– MIN NCC1, NCC2: 1 (see Proposition 114),

– MIN NCC2, NCC1: 1 (see Proposition 115),

– NARC1, NARC2: 1 (see Proposition 116),

– NCC1, NCC2: 2 (see Propositions 117 and 118),

– NVERTEX1, NVERTEX2: 1 (see Proposition 119).

• Graph invariants relating three characteristics of two final graphs:

– MAX NCC1,MIN NCC1,MIN NCC2: 2 (see Propositions 120 and 121),

– MAX NCC2,MIN NCC2,MIN NCC1: 2 (see Propositions 122 and 123),

– MIN NCC1,NARC2,NCC1: 1 (see Proposition 124),

– MIN NCC2,NARC1,NCC2: 1 (see Proposition 125).

• Graph invariants relating four characteristics of two final graphs:

– MAX NCC1,MIN NCC1,MIN NCC2,NCC1: 2 (see Propositions 126 and
127),

– MAX NCC2,MIN NCC2,MIN NCC1,NCC2: 2 (see Propositions 128 and
129).

• Graph invariants relating five characteristics of two final graphs:

– MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC1: 7 (see Propo-
sitions 130, 131, 132, 133, 134, 135 and 136).

– MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC2: 7 (see Propo-
sitions 137, 138, 139, 140, 141, 142 and 143).

• Graph invariants relating six characteristics of two final graphs:

– MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC1, NCC2: 2
(see Propositions 144 and 145).
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Graph invariants involving one characteristic of a final graph

MAX NCC

Proposition 1.
no loop : MAX NCC 6= 1 (3.1)

Proof. Since we don’t have any loop, a non-empty connected component has at least two ver-
tices.

MAX NSCC

Proposition 2.
acyclic : MAX NSCC ≤ 1 (3.2)

Proof. Since we don’t have any circuit, a non-empty strongly connected component consists of
one single vertex.

Proposition 3.
no loop : MAX NSCC 6= 1 (3.3)

Proof. Since we don’t have any loop, a non-empty strongly connected component has at least
two vertices.

MIN NCC

Proposition 4.
no loop : MIN NCC 6= 1 (3.4)

Proof. Since we don’t have any loop, a non-empty connected component has at least two ver-
tices.

MIN NSCC

Proposition 5.
acyclic : MIN NSCC ≤ 1 (3.5)

Proof. Since we don’t have any circuit, a non-empty strongly connected component consists of
one single vertex.

Proposition 6.
no loop : MIN NSCC 6= 1 (3.6)

Proof. Since we don’t have any loop, a non-empty strongly connected component has at least
two vertices.

NARC

Proposition 7.
one succ : NARC = NVERTEXINITIAL (3.7)

Proof. By definition of one succ.
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NCC

Proposition 8.
no loop : 2 ·NCC ≤ NVERTEXINITIAL (3.8)

Proof. By definition of no loop, each connected component has at least two vertices.

Proposition 9.

consecutive loops are connected : 2 ·NCC ≤ NVERTEXINITIAL + 1 (3.9)

Proof. By definition of consecutive loops are connected.

NSCC

Proposition 10.
no loop : 2 ·NSCC ≤ NVERTEXINITIAL (3.10)

Proof. By definition of no loop, each strongly connected component has at least two vertices.

NSINK

Proposition 11.
symmetric : NSINK = 0 (3.11)

Proof. Since we don’t have any isolated vertex.

NSOURCE

Proposition 12.
symmetric : NSOURCE = 0 (3.12)

Proof. Since we don’t have any isolated vertex.

NVERTEX

Proposition 13.

one succ : NVERTEX = NVERTEXINITIAL (3.13)

Proof. By definition of one succ.
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Graph invariants involving two characteristics of a final graph

MAX NCC, MAX NSCC

Proposition 14.
MAX NCC = 0⇔MAX NSCC = 0 (3.14)

Proof. By definition of MAX NCC and of MAX NSCC.

Proposition 15.
MAX NSCC ≤MAX NCC (3.15)

Proof. MAX NSCC is a lower bound of the size of the largest connected component since
the largest strongly connected component is for sure included within a connected component.

MAX NCC, MIN NCC

Proposition 16.
MAX NCC = 0⇔MIN NCC = 0 (3.16)

Proof. By definition of MAX NCC and of MIN NCC.

Proposition 17.
MIN NCC ≤MAX NCC (3.17)

Proof. By definition of MIN NCC and of MAX NCC.

MAX NCC, NARC

Proposition 18.
MAX NCC = 0⇔ NARC = 0 (3.18)

Proof. By definition of MAX NCC and of NARC.

Proposition 19.

MAX NCC > 0⇒ NARC ≥ max(1,MAX NCC− 1) (3.19)

symmetric : MAX NCC > 0⇒ NARC ≥ max(1, 2 ·MAX NCC− 2) (3.20)

equivalence : NARC ≥MAX NCC2 (3.21)

arc gen = PATH : NARC ≥MAX NCC− 1 (3.22)

Proof.
(3.19) MAX NCC−1 arcs are needed to connect MAX NCC vertices that belong to a given
connected component containing at least two vertices. And one arc is required for a connected
component containing one single vertex.
(3.20) Similarly, when the graph is symmetric, 2 ·MAX NCC − 2 arcs are needed to con-
nect MAX NCC vertices that belong to a given connected component containing at least two
vertices.
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(3.21) Finally, when the graph is reflexive, symmetric and transitive, MAX NCC2 arcs are
needed to connect MAX NCC vertices that belong to a given connected component.
(3.22) When the initial graph corresponds to a path, the minimum number of arcs of a connected
component involving n vertices is equal to n− 1.

MAX NCC, NSINK

Proposition 20.
MAX NCC = 0⇒ NSINK = 0 (3.23)

Proof. By definition of MAX NCC and of NSINK.

Proposition 21.
NSINK ≥ 1⇒MAX NCC ≥ 2 (3.24)

Proof. Since we don’t have any isolated vertex a sink is connected to at least one other vertex.
Therefore, if the graph has a sink, there exists at least one connected component with at least two
vertices.

MAX NCC, NSOURCE

Proposition 22.
MAX NCC = 0⇒ NSOURCE = 0 (3.25)

Proof. By definition of MAX NCC and of NSOURCE.

Proposition 23.
NSOURCE ≥ 1⇒MAX NCC ≥ 2 (3.26)

Proof. Since we don’t have any isolated vertex a source is connected to at least one other vertex.
Therefore, if the graph has a source, there exists at least one connected component with at least
two vertices.

MAX NCC, NVERTEX

Proposition 24.
MAX NCC = 0⇔ NVERTEX = 0 (3.27)

Proof. By definition of MAX NCC and of NVERTEX.

Proposition 25.
NVERTEX ≥MAX NCC (3.28)

Proof. By definition of MAX NCC.



3.2. GRAPH INVARIANTS 125

MAX NSCC, MIN NSCC

Proposition 26.
MAX NSCC = 0⇔MIN NSCC = 0 (3.29)

Proof. By definition of MAX NSCC and of MIN NSCC.

Proposition 27.
MIN NSCC ≤MAX NSCC (3.30)

Proof. By definition of MIN NSCC and of MAX NSCC.

MAX NSCC, NARC

Proposition 28.
MAX NSCC = 0⇔ NARC = 0 (3.31)

Proof. By definition of MAX NSCC and of NARC.

Proposition 29.
NARC ≥MAX NSCC (3.32)

symmetric : NARC ≥ 2 ·MAX NSCC (3.33)

equivalence : NARC ≥MAX NSCC2 (3.34)

Proof. (3.32) In a strongly connected component at least one arc has to leave each vertex. Since
we have at least one strongly connected component of MAX NSCC vertices this leads to the
previous inequality.

MAX NSCC, NVERTEX

Proposition 30.
MAX NSCC = 0⇔ NVERTEX = 0 (3.35)

Proof. By definition of MAX NSCC and of NVERTEX.

Proposition 31.
NVERTEX ≥MAX NSCC (3.36)

Proof. By definition of MAX NSCC.

MIN NCC, MIN NSCC

Proposition 32.
MIN NCC = 0⇔MIN NSCC = 0 (3.37)

Proof. By definition of MIN NCC and of MIN NSCC.

Proposition 33.
MIN NCC ≥MIN NSCC (3.38)

Proof. By construction MIN NCC is an upper bound of the number of vertices of the smallest
strongly connected component.
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MIN NCC, NARC

Proposition 34.
MIN NCC = 0⇔ NARC = 0 (3.39)

Proof. By definition of MIN NCC and of NARC.

Proposition 35.

MIN NCC > 0⇒ NARC ≥ max(1,MIN NCC− 1) (3.40)

symmetric : MIN NCC > 0⇒ NARC ≥ max(1, 2 ·MIN NCC− 2) (3.41)

equivalence : NARC ≥MIN NCC2 (3.42)

arc gen = PATH : NARC ≥MIN NCC− 1 (3.43)

Proof. Similar to Proposition 19.

MIN NCC, NCC

Proposition 36.

consecutive loops are connected : (MIN NCC+1)·NCC ≤ NVERTEXINITIAL+1
(3.44)

Proof. By definition of consecutive loops are connected.

MIN NCC, NVERTEX

Proposition 37.
MIN NCC = 0⇔ NVERTEX = 0 (3.45)

Proof. By definition of MIN NCC and of NVERTEX.

Proposition 38.
NVERTEX ≥MIN NCC (3.46)

Proof. By definition of MIN NCC.

Proposition 39.

MIN NCC /∈
»
min

„—
NVERTEX

2

�
,

—
NVERTEXINITIAL − 1

2

�«
+ 1,NVERTEX− 1

–

(3.47)

Proof. On the one hand, if NCC ≤ 1, we have that MIN NCC ≥ NVERTEX.
On the other hand, if NCC > 1, we have that MIN NCC + MIN NCC ≤
NVERTEX and that MIN NCC + MIN NCC + 1 ≤ NVERTEXINITIAL , which
by isolating MIN NCC and by grouping the two inequalities leads to MIN NCC ≤
min

`¨
NVERTEX

2

˝
,
¨

NVERTEXINITIAL−1
2

˝´
. The result follows.
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MIN NSCC, NARC

Proposition 40.
MIN NSCC = 0⇔ NARC = 0 (3.48)

Proof. By definition of MIN NSCC and of NARC.

Proposition 41.
NARC ≥MIN NSCC (3.49)

symmetric : NARC ≥ 2 ·MIN NSCC (3.50)

equivalence : NARC ≥MIN NSCC2 (3.51)

Proof. Similar to Proposition 29.

MIN NSCC, NVERTEX

Proposition 42.
MIN NSCC = 0⇔ NVERTEX = 0 (3.52)

Proof. By definition of MIN NSCC and of NVERTEX.

Proposition 43.
NVERTEX ≥MIN NSCC (3.53)

Proof. By definition of MIN NSCC.

NARC, NCC

Proposition 44.
NARC = 0⇔ NCC = 0 (3.54)

Proof. By definition of NARC and of NCC.

Proposition 45.
NARC ≥ NCC (3.55)

Proof. Each connected component contains at least one arc (since, by hypothesis, each vertex
has at least one arc).

NARC, NSCC

Proposition 46.
NARC = 0⇔ NSCC = 0 (3.56)

Proof. By definition of NARC and of NSCC.

Proposition 47.
NARC ≥ NSCC (3.57)

no loop : NARC ≥ 2 ·NSCC (3.58)

Proof. 3.57 (respectively 3.58) holds since each strongly connected component contains at least
one (respectively two) arc(s).
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NARC, NVERTEX

Proposition 48.
NARC = 0⇔ NVERTEX = 0 (3.59)

Proof. By definition of NARC and of NVERTEX.

Proposition 49.
NARC ≤ NVERTEX2 (3.60)

arc gen = CIRCUIT : NARC ≤ NVERTEX (3.61)

arc gen = CHAIN : NARC ≤ 2 ·NVERTEX− 2 (3.62)

arc gen = CLIQUE(≤) : NARC ≤ NVERTEX · (NVERTEX + 1)

2
(3.63)

arc gen = CLIQUE(≥) : NARC ≤ NVERTEX · (NVERTEX + 1)

2
(3.64)

arc gen = CLIQUE(<) : NARC ≤ NVERTEX · (NVERTEX− 1)

2
(3.65)

arc gen = CLIQUE(>) : NARC ≤ NVERTEX · (NVERTEX− 1)

2
(3.66)

arc gen = CLIQUE (6=) : NARC ≤ NVERTEX2 −NVERTEX (3.67)

arc gen = CYCLE : NARC ≤ 2 ·NVERTEX (3.68)

arc gen = PATH : NARC ≤ NVERTEX− 1 (3.69)

Proof. 3.60 holds since each vertex of a digraph can have at most NVERTEX successors.
The next items correspond to the maximum number of arcs that can be achieved according to a
specific arc generator.

Proposition 50.
2 ·NARC ≥ NVERTEX (3.70)

Proof. By induction on the number of vertices of a graph G:

1. If NVERTEX(G) is equal to 1 or 2 Proposition 50 holds.

2. Assume that NVERTEX(G) ≥ 3.

• Assume there exists a vertex v such that, if we remove v, we don’t create any
isolated vertex in the remaining graph. We have NARC(G) ≥ NARC(G −
v) + 1. Thus 2 · NARC(G) ≥ 2 · NARC(G − v) + 1. Since by induction
hypothesis 2 ·NARC(G−v) ≥ NVERTEX(G−v) = NVERTEX(G)−1
the result holds.



3.2. GRAPH INVARIANTS 129

• Otherwise, all the connected components of G are reduced to two elements with
only one arc. We remove one of such connected component (v, w).
Thus NARC(G) = NARC(G − {v, w}) + 1. As by induction hypothesis,
2 ·NARC(G−{v, w}) ≥ NVERTEX(G−{v, w}) = NVERTEX(G)−2
the result holds.

Proposition 51.
arc gen = LOOP : NARC = NVERTEX (3.71)

Proof. From the definition of LOOP .

NCC, NSCC

Proposition 52.
NCC = 0⇔ NSCC = 0 (3.72)

Proof. By definition of NCC and of NSCC.

Proposition 53.
NCC ≤ NSCC (3.73)

Proof. Holds since each connected component contains at least one strongly connected compo-
nent.

NCC, NVERTEX

Proposition 54.
NCC = 0⇔ NVERTEX = 0 (3.74)

Proof. By definition of NCC and of NVERTEX.

Proposition 55.
NCC ≤ NVERTEX (3.75)

no loop : 2 ·NCC ≤ NVERTEX (3.76)

Proof. 3.75 (respectively 3.76) holds since each connected component contains at least one
(respectively two) vertex.

Proposition 56.

vpartition ∧ consecutive loops are connected :

NVERTEX ≤ NVERTEXINITIAL − (NCC− 1)
(3.77)

Proof. Holds since between two ”consecutive” connected components of the initial graph there
is at least one vertex, which is missing.
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NSCC, NVERTEX

Proposition 57.
NSCC = 0⇔ NVERTEX = 0 (3.78)

Proof. By definition of NSCC and of NVERTEX.

Proposition 58.
NSCC ≤ NVERTEX (3.79)

no loop : 2 ·NSCC ≤ NVERTEX (3.80)

Proof. 3.79 (respectively 3.80) holds since each strongly connected component contains at least
one (respectively 2) vertex.

Proposition 59.
acyclic : NSCC = NVERTEX (3.81)

Proof. In a directed acyclic graph we have that each vertex corresponds to a strongly connected
component involving only that vertex.

NSINK, NVERTEX

Proposition 60.
NVERTEX = 0⇒ NSINK = 0 (3.82)

Proof. By definition of NVERTEX and of NSINK.

Proposition 61.

NVERTEX > 0⇒ NSINK < NVERTEX (3.83)

Proof. Holds since each sink must have a predecessor which cannot be a sink and since each
vertex has at least one arc.

NSOURCE, NVERTEX

Proposition 62.
NVERTEX = 0⇒ NSOURCE = 0 (3.84)

Proof. By definition of NVERTEX and of NSOURCE.

Proposition 63.

NVERTEX > 0⇒ NSOURCE < NVERTEX (3.85)

Proof. Holds since each source must have a successor which cannot be a source and since each
vertex has at least one arc.
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Graph invariants involving three characteristics of a final graph

MAX NCC, MIN NCC, NARC

Proposition 64.

MIN NCC 6= MAX NCC⇒
NARC ≥MIN NCC + MAX NCC− 2 + (MIN NCC = 1)

(3.86)

equivalence : MIN NCC 6= MAX NCC⇒
NARC ≥MIN NCC2 + MAX NCC2

(3.87)

Proof. (3.86) n − 1 arcs are needed to connect n (n > 1) vertices that all belong to a
given connected component. Since we have two connected components which respectively
have MIN NCC and MAX NCC vertices this leads to the previous inequality. When
MIN NCC is equal to one we need an extra arc.

MAX NCC, MIN NCC, NCC

Proposition 65.
MIN NCC 6= MAX NCC⇒ NCC ≥ 2 (3.88)

Proof. If MIN NCC and MAX NCC are different then they correspond for sure to at least
two distinct connected components.

MAX NCC, MIN NCC, NVERTEX

Proposition 66.

MIN NCC 6= MAX NCC⇒ NVERTEX ≥MIN NCC + MAX NCC (3.89)

Proof. Since we have at least two distinct connected components which respectively have
MIN NCC and MAX NCC vertices this leads to the previous inequality.

Proposition 67.

MAX NCC ≤ max(MIN NCC,NVERTEX−max(1,MIN NCC)) (3.90)

Proof. On the one hand, if NCC ≤ 1, we have that MAX NCC ≤ MIN NCC. On
the other hand, if NCC > 1, we have that NVERTEX ≥ max(1,MIN NCC) +
MAX NCC (i.e. MAX NCC ≤ NVERTEX − max(1,MIN NCC)). The result
is obtained by taking the maximum value of the right hand side of the two inequalities.

Proposition 68.

MIN NCC /∈ [NVERTEX−max(1,MAX NCC) + 1,NVERTEX− 1] (3.91)

Proof. On the one hand, if NCC ≤ 1, we have that MIN NCC ≥ NVERTEX. On
the other hand, if NCC > 1, we have that MIN NCC + max(1,MAX NCC) ≤
NVERTEX (i.e. MIN NCC ≤ NVERTEX − max(1,MAX NCC)). The result
follows.
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Proposition 69.

NVERTEX /∈ [MIN NCC + 1,MIN NCC + MAX NCC− 1] (3.92)

Proof. On the one hand, if NCC ≤ 1, we have that NVERTEX ≤ MIN NCC. On the
other hand, if NCC > 1, we have that NVERTEX ≥MIN NCC + MAX NCC. Since
MIN NCC ≤MIN NCC + MAX NCC the result follows.

Proposition 70.

if MIN NCC > 0

then kinf =

—
NVERTEX + MIN NCC

MIN NCC

�
else kinf = 1

if MAX NCC > 0

then ksup1
=

—
NVERTEX− 1

MAX NCC

�
else ksup1

= NVERTEX

if MAX NCC < MIN NCC

then ksup2
=

—
MIN NCC− 2

MAX NCC−MIN NCC

�
else ksup2

= NVERTEX

ksup = min(ksup1
, ksup2

)

∀k ∈ [kinf , ksup ] : NVERTEX /∈ [k ·MAX NCC+1, (k+1) ·MIN NCC−1] (3.93)

Proof. We make the proof for k ∈ N (the interval [kinf , ksup] is only used for restricting
the number of intervals to check). We have that NVERTEX ∈ [k · MIN NCC, k ·
MAX NCC]. A forbidden interval [k · MAX NCC + 1, (k + 1) · MIN NCC − 1]
corresponds to an interval between the end of interval [k ·MIN NCC, k ·MAX NCC] and
the start of the next interval [(k+ 1) ·MIN NCC, (k+ 1) ·MAX NCC]. Since all intervals
[i ·MIN NCC, i ·MAX NCC] (i < k) end before k ·MAX NCC and since all intervals
[j ·MIN NCC, j ·MAX NCC] (j > k) start after (k+ 1) ·MIN NCC, they do not use
any value in [k ·MAX NCC + 1, (k + 1) ·MIN NCC− 1].

MAX NCC, NARC, NCC

Proposition 71.
NARC ≤ NCC ·MAX NCC2 (3.94)

arc gen = PATH : NARC ≤ NCC · (MAX NCC− 1) (3.95)

Proof. On the one hand, (3.94) holds since the maximum number of arcs is achieved by
taking NCC connected components where each connected component is a clique involving
MAX NCC vertices. On the other hand, (3.95) holds since a tree of n vertices has n − 1
arcs.
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Proposition 72.
NARC ≥MAX NCC + NCC− 2 (3.96)

Proof. The minimum number of arcs is achieved by taking one connected component with
MAX NCC vertices and MAX NCC−1 arcs as well as NCC−1 connected components
with one single vertex and a loop.

MAX NCC, NARC, NVERTEX

Proposition 73.

MAX NCC > 0⇒

NARC ≤MAX NCC2 ·
—

NVERTEX

MAX NCC

�
+ (NVERTEX mod MAX NCC)2

(3.97)

NVERTEX

MAX_NCC
connected components, each of them involving MAX_NCC vertices A connected component with

NVERTEX mod MAX_NCC vertices

Figure 3.1: Illustration of Proposition 73. A graph that achieves the maximum number of arcs
according to the size of the largest connected component as well as to a fixed number of vertices
(MAX NCC = 3,NVERTEX = 11,NARC = 32 ·

¨
11
3

˝
+ (11 mod 3)2 = 31)

Proof. We first begin with the following claim:
Let G be a graph such that V (G) − NCC(G,MAX NCC(G)) ∗ MAX NCC(G) ≥
MAX NCC(G), then there exists a graph G′ such that V (G′) = V (G),
MAX NCC(G′) = MAX NCC(G), NCC(G′,MAX NCC(G′)) =
NCC(G,MAX NCC(G)) + 1 and |E(G)| ≤ |E(G′)|.

Proof of the claim:
Let (Ci)i∈[n] be the connected components of G on less than MAX NCC(G) vertices
and such that |Ci| ≥ |Ci+1|. By hypothesis there exists k ≤ n such that |Sk−1

i=1 Ci| <
MAX NCC(G) and |Ski=1 Ci| ≥MAX NCC(G).

• Either |Ski=1 Ci| = MAX NCC(G), and then with G′ such that G′ restricted to theSk
i=1 Ci be a complete graph and G′ restricted to V (G) − Ski=1 Ci being exactly G

restricted to V (G)−Ski=1 Ci we obtain the claim.

• Or |Ski=1 Ci| > MAX NCC(G). Then Ck = C1
k ] C2

k such that
|(Sk−1

i=1 Ci) ∪ C1
k | = MAX NCC(G) and |C2

k | < |C1| (notice that k ≥ 2).
Then with G′ such that G′ restricted to (

Sk−1
i=1 Ci) ∪ C1

k is a complete graph and G′ re-
stricted to V (G)−((

Sk−1
i=1 Ci)∪C1

k) is exactlyG restricted to V (G)−((
Sk−1
i=1 Ci)∪C1

k)
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we obtain the claim.

End of proof of the claim

We prove by induction on r(G) =
j

NVERTEX(G)
MAX NCC(G)

k
− NCC(G,MAX NCC(G)),

where G is any graph. For r(G) = 0 the result holds (see Prop 44). Otherwise, since r(G) > 0
we have that V (G)−NCC(G,MAX NCC(G))∗MAX NCC(G) ≥MAX NCC(G),
by the previous claim there exists G′ with the same number of vertices and the same number of
vertices in the largest connected component, such that r(G′) = r(G) − 1. Consequently the
result holds by induction.

Proposition 74.

NARC ≥MAX NCC− 1 +

—
NVERTEX−MAX NCC + 1

2

�
(3.98)

Proof. Let G be a graph, let X be a maximal size connected component of G, then we have
G = G[X] ⊕ G[V (G) − X]. On the one hand, as G[X] is connected, by setting NCC = 1
in 3.134 of Proposition 89, we have |E(G[X]) ≥ |X| − 1, on the other hand, by Proposition 50,
|E(G[V (G)−X])| ≥

l
|V (G)−X|

2

m
. Thus the result follows.

MAX NCC, NCC, NVERTEX

Proposition 75.
NVERTEX ≤ NCC ·MAX NCC (3.99)

Proof. The number of vertices is less than or equal to the number of connected components
multiplied by the largest number of vertices in a connected component.

Proposition 76.

NVERTEX ≥MAX NCC + max(0,NCC− 1) (3.100)

no loop : NVERTEX ≥MAX NCC + max(0, 2 ·NCC− 2) (3.101)

Proof. (3.100) The minimum number of vertices according to a fixed number of connected
components NCC such that one of the connected component contains MAX NCC vertices
is obtained as follows: We get MAX NCC vertices from the connected component involving
MAX NCC vertices and one vertex for each remaining connected component.

MAX NSCC, MIN NSCC, NARC

Proposition 77.

MIN NSCC 6= MAX NSCC⇒ NARC ≥MIN NSCC + MAX NSCC (3.102)

equivalence : MIN NSCC 6= MAX NSCC⇒
NARC ≥MIN NSCC2 + MAX NSCC2

(3.103)

Proof. (3.102) In a strongly connected component at least one arc has to leave each arc.
Since we have two strongly connected components which respectively have MIN NSCC and
MAX NSCC vertices this leads to the previous inequality.
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MAX NSCC, MIN NSCC, NSCC

Proposition 78.

MIN NSCC 6= MAX NSCC⇒ NSCC ≥ 2 (3.104)

Proof. Follows from the definitions of MIN NSCC and of MAX NSCC.

MAX NSCC, MIN NSCC, NVERTEX

Proposition 79.

MIN NSCC 6= MAX NSCC⇒ NVERTEX ≥MIN NSCC + MAX NSCC
(3.105)

Proof. Since we have at least two distinct strongly connected components which respectively
have MIN NSCC and MAX NSCC vertices this leads to the previous inequality.

Proposition 80.

if MIN NSCC > 0

then kinf =

—
NVERTEX + MIN NSCC

MIN NSCC

�
else kinf = 1

if MAX NSCC > 0

then ksup1
=

—
NVERTEX− 1

MAX NSCC

�
else ksup1

= NVERTEX

if MAX NSCC < MIN NSCC

then ksup2
=

—
MIN NSCC− 2

MAX NSCC−MIN NSCC

�
else ksup2

= NVERTEX

ksup = min(ksup1
, ksup2

)

∀k ∈ [kinf , ksup ] : NVERTEX /∈ [k ·MAX NSCC + 1, (k + 1) ·MIN NSCC− 1]
(3.106)

Proof. Similar to Proposition 70.
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MAX NSCC, NSCC, NVERTEX

Proposition 81.
NVERTEX ≤ NSCC ·MAX NSCC (3.107)

Proof. Since each strongly connected component contains at most MAX NSCC vertices the
total number of vertices is less than or equal to NSCC ·MAX NSCC.

Proposition 82.

NVERTEX ≥MAX NSCC + max(0,NSCC− 1) (3.108)

no loop : NVERTEX ≥MAX NSCC + max(0, 2 ·NSCC− 2) (3.109)

Proof. (3.108) The minimum number of vertices according to a fixed number of strongly con-
nected components NSCC such that one of them contains MAX NSCC vertices is equal to
MAX NSCC + max(0,NSCC− 1).

MIN NCC, NARC, NVERTEX

Proposition 83.

NARC ≤MIN NCC2 + (NVERTEX−MIN NCC)2 (3.110)

arc gen = CIRCUIT : NARC ≤ NVERTEX− 2 · (MIN NCC < NVERTEX)
(3.111)

arc gen = CHAIN : NARC ≤ NVERTEX− 2 · (MIN NCC < NVERTEX)
(3.112)

arc gen = CLIQUE (≤) : NARC ≤ MIN NCC · (MIN NCC + 1)

2
+

(NVERTEX−MIN NCC) · (NVERTEX−MIN NCC + 1)

2

(3.113)

arc gen = CLIQUE (≥) : NARC ≤ MIN NCC · (MIN NCC + 1)

2
+

(NVERTEX−MIN NCC) · (NVERTEX−MIN NCC + 1)

2

(3.114)

arc gen = CLIQUE (<) : NARC ≤ MIN NCC · (MIN NCC− 1)

2
+

(NVERTEX−MIN NCC) · (NVERTEX−MIN NCC− 1)

2

(3.115)

arc gen = CLIQUE (>) : NARC ≤ MIN NCC · (MIN NCC− 1)

2
+

(NVERTEX−MIN NCC) · (NVERTEX−MIN NCC− 1)

2

(3.116)

arc gen = CLIQUE(6=) : NARC ≤MIN NCC2 −MIN NCC+

(NVERTEX−MIN NCC)2 − (NVERTEX−MIN NCC)
(3.117)
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arc gen = CYCLE : NARC ≤ NVERTEX− 4 · (MIN NCC < NVERTEX)
(3.118)

arc gen = PATH : NARC ≤ max(0,MIN NCC− 1)+

max(0,NVERTEX−MIN NCC− 1)
(3.119)

Proof. (3.110) The maximum number of vertices according to a fixed number of vertices
NVERTEX and to the fact that there is a connected component with MIN NCC vertices is
obtained by:

• Building a connected component with MIN NCC vertices and creating an arc between
each pair of vertices.

• Building a connected component with all the NVERTEX −MIN NCC remaining
vertices and creating an arc between each pair of vertices.

Proposition 84.

MIN NCC > 1⇒

NARC ≥
—

NVERTEX

MIN NCC

�
· (MIN NCC− 1) + NVERTEX mod MIN NCC

(3.120)

Proof. Achieving the minimum number of arcs with a fixed number of vertices and with a min-
imum number of vertices greater than or equal to one in each connected component is achieved
in the following way:

• Since the minimum number of arcs of a connected component of n vertices is n − 1,
splitting a connected component into k parts that all have more than one vertex saves
k−1 arcs. Therefore we build a maximum number of connected components. Since each
connected component has at least MIN NCC vertices we get

¨
NVERTEX
MIN NCC

˝
connected

components.

• Since we can’t build a connected component with the rest of the vertices (i.e.
NVERTEX mod MIN NCC vertices left) we have to incorporate them in the previ-
ous connected components and this costs one arc for each vertex.

When MIN NCC = 1, note that Proposition 50 provides a lower bound on the number of arcs.

MIN NCC, NCC, NVERTEX

Proposition 85.
NVERTEX ≥ NCC ·MIN NCC (3.121)

Proof. The smallest number of vertices is obtained by taking all connected components to their
minimum number of vertices MIN NCC.



138 CHAPTER 3. FURTHER TOPICS

MIN NSCC, NARC, NVERTEX

Proposition 86.

NARC ≤ NVERTEX2 + MIN NSCC2 −NVERTEX ·MIN NSCC (3.122)

Proof. Achieving the maximum number of arcs, provided that we have at least one strongly
connected component with MIN NSCC vertices, is done by:

• Building a first strongly connected component C1 with MIN NSCC vertices and adding
an arc between each pair of vertices of C1.

• Building a second strongly connected component C2 with NVERTEX −
MIN NSCC vertices and adding an arc between each pair of vertices of C2.

Finally, we add an arc from every vertex of C1 to every vertex of C2. This leads to a total
number of arcs of MIN NSCC2 + (NVERTEX −MIN NSCC)2 + MIN NSCC ·
(NVERTEX−MIN NSCC).

MIN NSCC, NSCC, NVERTEX

Proposition 87.
NVERTEX ≥ NSCC ·MIN NSCC (3.123)

Proof. Since each strongly connected component contains at least MIN NSCC vertices the
total number of vertices is greater than or equal to NSCC ·MIN NSCC.

NARC, NCC, NVERTEX

Proposition 88.

NARC ≤ (NVERTEX−NCC + 1)2 + NCC− 1 (3.124)

arc gen = CIRCUIT : NARC ≤ NVERTEX−NCC + 1 − (NCC 6= 1) (3.125)

arc gen = CHAIN : NARC ≤ 2 ·NVERTEX− 2 ·NCC (3.126)

arc gen = CLIQUE (≤) : NARC ≤ NCC− 1+

(NVERTEX−NCC + 1) · (NVERTEX−NCC + 2)

2

(3.127)

arc gen = CLIQUE (≥) : NARC ≤ NCC− 1+

(NVERTEX−NCC + 1) · (NVERTEX−NCC + 2)

2

(3.128)

arc gen = CLIQUE (<) : NARC ≤ NCC− 1+

(NVERTEX−NCC + 1) · (NVERTEX−NCC)

2

(3.129)

arc gen = CLIQUE (>) : NARC ≤ NCC− 1+

(NVERTEX−NCC + 1) · (NVERTEX−NCC)

2

(3.130)
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arc gen = CLIQUE(6=) : NARC ≤ max(0,NCC− 1)+

(NVERTEX−NCC + 1)2 − (NVERTEX−NCC + 1)
(3.131)

arc gen = CYCLE : NARC ≤ 2 ·NVERTEX− 2 ·NCC + 2 · (NCC = 1) (3.132)

arc gen = PATH : NARC = NVERTEX−NCC (3.133)

vertices
NVERTEX−NCC+1

NCC−1 connected components

Figure 3.2: Illustration of Proposition 88. A graph that achieves the maximum number of arcs
according to a fixed number of connected components as well as to a fixed number of vertices
(NCC = 5,NVERTEX = 7,NARC = (7− 5 + 1)2 + 5− 1 = 13)

Proof. (3.124) We proceed by induction on T (G) = NVERTEX(G)−|X|− (NCC(G)−
1), where X is any connected component of G of maximum cardinality. For T (G) = 0 then
either NCC(G) = 1 and thus the formula is clearly true, or all the connected components ofG,
but possibly X , are reduced to one element. Since isolated vertices are not allowed, the formula
holds.

Assume that T (G) ≥ 1. Then there exists Y , a connected component of G distinct from X ,
with more than one vertex. Let y ∈ Y and let G′ be the graph such that V (G′) = V (G) and
E(G′) is defined by:

• For all Z connected components of G distinct from X and Y we have G′[Z] = G[Z].

• With X ′ = X ∪ {y} and Y ′ = Y − {y}, we have G′[Y ′] = G[Y ′] and E(G′[X ′]) =
E(G[X]) ∪ (

S
x∈X′{(x, y), (y, x)}).

Clearly |E(G′)|−|E(G)| ≥ 2 · |X|+1−(2 · |Y |−1) and sinceX is of maximal cardinality the
difference is strictly positive. Now as NVERTEX(G′) = NVERTEX(G), NCC(G′) =
NCC(G) and as T (G′) = T (G)− 1 the result holds by induction hypothesis.

Proposition 89.
NARC ≥ NVERTEX−NCC (3.134)

equivalence : NCC > 0⇒
NARC ≥ (NVERTEX mod NCC) ·

`¨
NVERTEX

NCC

˝
+ 1
´2

+

(NCC−NVERTEX mod NCC) ·
¨

NVERTEX
NCC

˝2 (3.135)

Proof. (3.134) By induction of the number of vertices. The formula holds for one vertex. Let
G a graph with n+ 1 vertices (n ≥ 1). First assume there exists x in G such that G− x has the
same number of connected components than G. Since NARC(G) ≥ NARC(G − x) + 1,
and by induction hypothesis NARC(G − x) ≥ NVERTEX(G − x) −NCC(G − x) the
result holds. Otherwise all connected components ofG are reduced to one vertex and the formula
holds.
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NARC, NSCC, NVERTEX

Proposition 90.

NARC ≤ (NVERTEX−NSCC+1)·NVERTEX+
NSCC · (NSCC− 1)

2
(3.136)

equivalence : NARC ≤ NSCC− 1 + (NVERTEX−NSCC + 1)2 (3.137)

strongly connected components
NSCC−1 NVERTEX−NSCC+1

vertices

Figure 3.3: Illustration of Proposition 90(3.136). A graph that achieves the maximum number
of arcs according to a fixed number of strongly connected components as well as to a fixed
number of vertices (NSCC = 5,NVERTEX = 6,NARC = (6−5+1)·6+ 5·(5−1)

2
= 22)

Proof. For proving 3.136, it is easier to rewrite the formula as NARC ≤ (NVERTEX −
(NSCC − 1))2 + (NCC − 1) · (NVERTEX− (NSCC − 1)) + NSCC·(NSCC−1)

2
. We

proceed by induction on T (G) = NVERTEX(G) − |X| − (NSCC(G) − 1), where X is
any strongly connected component of G of maximum cardinality.

For T (G) = 0 then either NSCC(G) = 1 and thus the formula is clearly true, or all
the strongly connected components of G, but possibly X , are reduced to one element. Since
the maximum number of arcs in a directed acyclic graph of n vertices is n·(n+1)

2
, and as the

subgraph of G induced by all the strongly connected components of G excepted X is acyclic,
the formula clearly holds.

Assume that T (G) ≥ 1, let (Xi)i∈I be the family of strongly connected components of G,
and let Gr be the reduced graph of G induced by (Xi)i∈I (that is V (Gr) = I and ∀i1, i2 ∈ I ,
(i1, i2) ∈ E(Gr) iff ∃x1 ∈ Xi1 , ∃x2 ∈ Xi2 such that (x1, x2) ∈ E). Consider G′ such that
V (G′) = V (G) and E(G′) is defined by:

• For all strongly connected components Z of G we have G′[Z] = G[Z].

• For σ be any topological sort of Gr , ∀xi ∈ Xi, ∀xj ∈ Xj , (xi, xj) ∈ E(G′) whenever
i is less than j with respect to σ.

Notice that G′ satisfies the following properties: T (G′) = T (G), V (G′) = V (G),
NSCC(G′) = NSCC(G), E(G) ⊆ E(G′), (Xi)i∈I is still the family of strongly con-
nected components of G′, and moreover, for every i ∈ I and every xi ∈ Xi we have that xi
is connected to any vertex outside Xi, that is the number of arcs incident to xi and incident to
vertices outside Xi is exactly |V (G′)| − |Xi|.

Now, as T (G′) ≥ 1, there exists Y , a strongly connected component of G′ distinct from X ,
with more than one vertex. Let y ∈ Y and let G′′ be the graph such that V (G′′) = V (G′) and
E(G′′) is defined by:

• G′′[V (G)− {y}] = G′[V (G)− {y}].
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• With X ′ = X ∪ {y}, we have G′′[Y ′] = G′[Y ′] and E(G′′[X ′]) = E(G′[X]) ∪
(
S
x∈X′{(x, y), (y, x)}).

• Assume that X = Xj for j ∈ I . Then ∀i ∈ I − {j}, ∀xi ∈ Xi, (xi, y) ∈ E(G′′)
whenever i is less than j with respect to σ and (y, xi) ∈ E(G′′) whenever j is less than
i with respect to σ.

Clearly |E(G′′)| − |E(G′)| ≥ 2|X| + 1 + |V (G′)| − |X| − (2 · |Y | − 1 + |V (G′)| − |Y |) =
|X| − |Y | + 2 and since X is of maximal cardinality the difference is strictly positive. As
E(G) ⊆ E(G′), |E(G′′)| − |E(G)| is also stricly positive. Now as NVERTEX(G′′) =
NVERTEX(G′) = NVERTEX(G), NSCC(G′′) = NSCC(G′) = NSCC(G) and as
T (G′′) = T (G′)− 1 = T (G)− 1 the result holds by induction hypothesis.

Proposition 91.

NARC ≥ NVERTEX−
—

NSCC− 1

2

�
(3.138)

equivalence : NSCC > 0⇒
NARC ≥ (NVERTEX mod NSCC) ·

`¨
NVERTEX

NSCC

˝
+ 1
´2

+

(NSCC−NVERTEX mod NSCC) ·
¨

NVERTEX
NSCC

˝2 (3.139)

NSCC

2
2 strongly connected components vertices

NSCC

2
NVERTEX − 2

Figure 3.4: Illustration of Proposition 3.138. A graph that achieves the minimum number of
arcs according to a fixed number of strongly connected components as well as to a fixed number
of vertices (NSCC = 7,NVERTEX = 10,NARC = 10 −

¨
7
2

˝
= 7)

Proof. For proving part 3.138 of Proposition 91 we proceed by induction on NSCC(G). If
NSCC(G) = 1 then, we have NARC(G) ≥ NVERTEX(G) (i.e. for one vertex this is
true since every vertex has at least one arc, otherwise every vertex v has an arc arriving on v as
well as an arc starting from v, thus we have NARC ≥ 2·NVERTEX

2
). If NSCC(G) > 1

let X be a strongly connected component of G. Then NARC(G) ≥ NARC(G[V (G) −
X]) + NARC(G[X]). By induction hypothesis NARC(G[V (G) −X]) ≥ |V (G) −X| −j

NSCC(G[V (G)−X])−1
2

k
, thus NARC(G[V (G)−X]) ≥ |V (G)−X| −

j
(NSCC(G)−1)−1

2

k
.

Since NARC(G[X]) ≥ |X| we obtain NARC(G) ≥ |V (G)| −
j

(NSCC(G)−1)−1
2

k
, and

thus the result holds.
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Proposition 92.

equivalence : NVERTEX > 0⇒ NSCC ≥
‰

NVERTEX2

NARC

ı
(3.140)

Proof. As shown in [54], a lower bound for the minimum number of equivalence classes (e.g.
strongly connected components) is the independence number of the graph and the right-hand
side of Proposition 92 corresponds to a lower bound of the independence number proposed by
Turán [55].

NARC, NSINK, NVERTEX

Proposition 93.

NARC ≤ (NVERTEX−NSINK) ·NVERTEX (3.141)

Proof. The maximum number of arcs is achieved by the following pattern: For all non-sink
vertices we have an arc to all vertices.

Proposition 94.

NARC ≥ NSINK +max(0,NVERTEX− 2 ·NSINK) (3.142)

NVERTEX−NSINK

2.NSINK vertices

vertices
max(0,NVERTEX−2.NSINK)

vertices

NSINK vertices

(A) (B)

Figure 3.5: Illustration of Proposition 94. Graphs that achieve the minimum number of
arcs according to a fixed number of sinks as well as to a fixed number of vertices (A :

NSINK = 3,NVERTEX = 5,NARC = 3 + max(0, 5 − 2 · 3) = 3;B : NSINK =

3,NVERTEX = 9,NARC = 3 +max(0, 9− 2 · 3) = 6)

Proof. Recall that for x ∈ V (G), we have that d+
G(x) + d−G(x) ≥ 1. If x is a sink then

d−G(x) ≥ 1, consequently NARC(G) ≥ NSINK(G). If x is not a sink then d+
G(x) ≥ 1,

consequently NARC(G) ≥ |V (G)| −NSINK(G).
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vertices
NVERTEX−NSOURCE

2.NSOURCE vertices

vertices

(A) (B)

max(0,NVERTEX−2.NSOURCE)

NSOURCE vertices

Figure 3.6: Illustration of Proposition 96. Graphs that achieve the minimum number of
arcs according to a fixed number of sources as well as to a fixed number of vertices (A :

NSOURCE = 3,NVERTEX = 5,NARC = 3 + max(0, 5 − 2 · 3) = 3;B :

NSOURCE = 3,NVERTEX = 9,NARC = 3 +max(0, 9− 2 · 3) = 6)

NARC, NSOURCE, NVERTEX

Proposition 95.

NARC ≤ (NVERTEX−NSOURCE) ·NVERTEX (3.143)

Proof. The maximum number of arcs is achieved by the following pattern: For all non-source
vertices we have an arc from all vertices.

Proposition 96.

NARC ≥ NSOURCE +max(0,NVERTEX− 2 ·NSOURCE) (3.144)

Proof. Similar to Proposition 94.

NSINK, NSOURCE, NVERTEX

Proposition 97.
NVERTEX ≥ NSOURCE + NSINK (3.145)

Proof. No vertex can be both a source and a sink (isolated vertices are removed).
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Graph invariants involving four characteristics of a final graph

MAX NCC, MIN NCC, NARC, NCC

Proposition 98. Let α denote max(0,NCC− 1).

NARC ≤ α ·MAX NCC2 + MIN NCC2 (3.146)

arc gen = CIRCUIT : NARC ≤ α ·MAX NCC + MIN NCC (3.147)

arc gen = CHAIN : NARC ≤ α · (2 ·MAX NCC−2) + 2 ·MIN NCC−2 (3.148)

arc gen ∈ {CLIQUE (≤),CLIQUE(≥)} : NARC ≤
α · MAX NCC·(MAX NCC+1)

2
+ MIN NCC·(MIN NCC+1)

2
(3.149)

arc gen ∈ {CLIQUE (<),CLIQUE(>)} : NARC ≤
α · MAX NCC·(MAX NCC−1)

2
+ MIN NCC·(MIN NCC−1)

2
(3.150)

arc gen = CLIQUE(6=) : NARC ≤MIN NCC2 −MIN NCC+

α · (MAX NCC2 −MAX NCC) (3.151)

arc gen = CYCLE : NARC ≤ 2 · α ·MAX NCC + 2 ·MIN NCC (3.152)

arc gen = PATH : NARC ≤ α · (MAX NCC− 1) + MIN NCC− 1 (3.153)

Proof. We construct NCC − 1 connected components with MAX NCC vertices and one
connected component with MIN NCC vertices. n2 corresponds to the maximum number of
arcs in a connected component. n, 2·n−2, n·(n+1)

2
, n·(n+1)

2
, n·(n−1)

2
, n·(n−1)

2
, n2−n, 2·n and

n − 1 respectively correspond to the maximum number of arcs in a connected component of n
vertices according to the fact that we use the arc generator CIRCUIT , CHAIN , CLIQUE(≤),
CLIQUE(≥), CLIQUE(<), CLIQUE(>), CLIQUE(6=), CYCLE or PATH .

Proposition 99.

NCC > 0⇒ NARC ≥ (NCC−1)·max(1,MIN NCC−1)+max(1,MAX NCC−1)
(3.154)

arc gen = PATH : NARC ≥ max(0,NCC−1) ·(MIN NCC−1)+MAX NCC−1
(3.155)

Proof. (3.154) We construct NCC− 1 connected components with MIN NCC vertices and
one connected component with MAX NCC vertices. The quantity max(1, n−1) corresponds
to the minimum number of arcs in a connected component of n (n > 0) vertices.
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MAX NCC, MIN NCC, NCC, NVERTEX

Proposition 100.

NVERTEX ≤ max(0,NCC− 1) ·MAX NCC + MIN NCC (3.156)

Proof. Derived from the definitions of MIN NCC and MAX NCC.

Proposition 101.

NVERTEX ≥ max(0,NCC− 1) ·MIN NCC + MAX NCC (3.157)

Proof. Derived from the definitions of MIN NCC and MAX NCC.

MAX NSCC, MIN NSCC, NARC, NSCC

Proposition 102.

NARC ≤ max(0,NSCC− 1) ·MAX NSCC2 + MIN NSCC2 +

max(0,NSCC− 1) ·MIN NSCC ·MAX NSCC +

MAX NSCC2 · max(0,NSCC−2)·max(0,NSCC−1)
2

(3.158)

Proof. We assume that we have at least two strongly connected components (the case with one
being obvious). Let (SCCi)i∈[NCC(G)] be the family of strongly connected components of G.
Then |E(G)| ≤ Pi∈[NCC(G)] |E(G[SCCi])| + k, where k is the number of arcs between the
distinct strongly connected components of G. For any strongly connected component SCCi the
number of arcs it has with the other strongly connected components is bounded by |SCCi| ·
(|V (G)−SCCi|). Consequently, k ≤ 1

2
·Pi∈[NCC(G)] |SCCi| · (|V (G)−SCCi|). W.l.o.g.

we assume |SCC1| = MIN NCC. Then we get k ≤ 1
2
· (MIN NCC · (NCC − 1) ·

MAX NCC + MAX NCC · ((NCC− 2) ·MAX NCC + MIN NCC)).

Proposition 103.

NARC ≥ max(0,NSCC− 1) ·MIN NSCC + MAX NSCC (3.159)

Proof. Let (SCCi)i∈[NCC(G)] be the family of strongly connected components of G, as
|E(G)| ≥ P

i∈[NCC(G)] |E(G[SCCi])|, we obtain the result since in a strongly connected
graph the number of edges is at least its number of vertices.

MAX NSCC, MIN NSCC, NSCC, NVERTEX

Proposition 104.

NVERTEX ≤ max(0,NSCC− 1) ·MAX NSCC + MIN NSCC (3.160)

Proof. Derived from the definitions of MIN NSCC and MAX NSCC.

Proposition 105.

NVERTEX ≥ max(0,NSCC− 1) ·MIN NSCC + MAX NSCC (3.161)

Proof. Derived from the definitions of MIN NSCC and MAX NSCC.
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MIN NCC, NARC, NCC, NVERTEX

Proposition 106. Let α, β and γ respectively denote max(0,NCC − 1), NVERTEX −
α ·MIN NCC and MIN NCC.

NARC ≤ α · γ2 + β2 (3.162)

arc gen ∈ {CLIQUE (≤),CLIQUE(≥)} : NARC ≤ α · γ · (γ + 1)

2
+
β · (β + 1)

2
(3.163)

arc gen ∈ {CLIQUE (<),CLIQUE(>)} : NARC ≤ α · γ · (γ − 1)

2
+
β · (β − 1)

2
(3.164)

arc gen = CLIQUE(6=) : NARC ≤ α · γ · (γ − 1) + β · (β − 1) (3.165)

NCC−1 connected components
each of them consisting of
MIN_NCC vertices

NVERTEX−(NCC−1).MIN_NCC
vertices

Figure 3.7: Illustration of Proposition 106(3.162). Graphs that achieve the maximum number
of arcs according to a minimum number of vertices in a connected component, to a number of
connected components, as well as to a fixed number of vertices (MIN NCC = 2,NCC =

5,NVERTEX = 11,NARC = (11− (5− 1) · 2)2 + (5− 1) · 22 = 25)

Proof. For proving inequality 3.162 we proceed by induction on the number of vertices of G.
First note that if all the connected components are reduced to one element the result is obvious.
Thus we assume that the number of vertices in the maximal sized connected component of G
is at least 2. Let x be an element of the maximal sized connected component of G. Then,
G − x satisfies α(G − x) = α(G), γ(G − x) = γ(G) and β(G − x) = β(G) − 1. Since
by induction hypothesis |E(G − x)| ≤ α(G − x) · γ(G − x)2 + β(G − x)2, and since the
number of arcs of G incident to x is at most 2 · (β(G) − 1) + 1, we have that |E(G)| ≤
α(G) · γ(G)2 + (β(G)− 1)2 + 2 · (β(G)− 1) + 1. And thus the result follows.
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NVERTEX−NSCC+1
verticesstrongly connected components

NSCC−NCC
connected components
NCC−1

Figure 3.8: Illustration of Proposition 107. A graph that achieves the maximum number of arcs
according to a fixed number of connected components, to a fixed number of strongly connected
components as well as to a fixed number of vertices (NCC = 3,NSCC = 6,NVERTEX =

7,NARC = 3− 1 + (7 − 6 + 1)(7− 3 + 1) + (6− 3 + 1)(6 − 3)/2 = 18)

NARC, NCC, NSCC, NVERTEX

Proposition 107.

NARC ≤ NCC− 1 + (NVERTEX−NSCC + 1) · (NVERTEX−NCC + 1)

+
(NSCC−NCC + 1) · (NSCC−NCC)

2
(3.166)

Proof. We proceed by induction on T (G) = NVERTEX(G) − |X| − (NCC(G) − 1),
where X is any connected component of G of maximum cardinality. For T (G) = 0 then
either NCC(G) = 1 and thus the formula is clearly true, by Proposition 3.136 or all the
connected components of G, but possibly X , are reduced to one element. Since isolated
vertices are not allowed, again by Proposition 3.136 applied on G[X], the formula holds in-
deed NVERTEX(G[X]) = NVERTEX(G) − (NCC(G) − 1) and NSCC(G[X]) =
NSCC(G)− (NCC(G)− 1).

Assume that T (G) ≥ 1. Then there exists Y , a connected component of G distinct from X ,
with more than one vertex.

• Firstly assume that G[Y ] is strongly connected. Let y ∈ Y and let G′ be the graph such
that V (G′) = V (G) and E(G′) is defined by:

– For all Z connected components of G distinct from X and Y we have G′[Z] =
G[Z].

– With X ′ = X ∪ (Y − {y}) and Y ′ = {y}, we have E(G′[Y ′]) = {(y, y)},
E(G′[X ′]) = E(G[X]) ∪ {(z, x) : z ∈ Y − {y}, x ∈ X} ∪ {(z, t) : z, t ∈
Y − {y}}.

Clearly we have that |E(G′)| − |E(G)| ≥ (|Y | − 1) · |X| − 2 · (|Y | − 1) and since
|X| ≥ |Y | ≥ 2, the difference is positive or null. Now as NVERTEX(G′) =
NVERTEX(G), NCC(G′) = NCC(G), NSCC(G′) = NSCC(G) (since
G′[Y −{y}] is strongly connected because E(G′[Y −{y}]) = {(z, t) : z, t ∈ Y −{y}}
and since the reduced graph of the strongly connected components ofG′[X ′] is exactly the
reduced graph of the strongly connected components of G[X] to which a unique source
has been added) and as T (G′) ≤ T (G)− 1, the result holds by induction hypothesis.



148 CHAPTER 3. FURTHER TOPICS

• Secondly assume that G[Y ] is not strongly connected. Let Z ⊂ Y such that Z is a
strongly connected component of G[Y ] corresponding to a source in the reduced graph
of the strongly connected components of G[Y ]. Let G′ be the graph such that V (G′) =
V (G) and E(G′) is defined by:

– For all W connected components of G distinct from X and Y we have G′[W ] =
G[W ].

– WithX ′ = X ∪Z and Y ′ = Y −Z, we have E(G′[Y ′]) = E(G[Y ′]) if |Y ′| > 1
and E(G′[Y ′]) = {(y, y)} if Y ′ = {y}. E(G′[X ′]) = E(G[X]) ∪ {(z, x) : z ∈
Z, x ∈ X}.

Clearly we have that |E(G′)| − |E(G)| ≥ |Z| · |X| − |Z| · (|Y | − |Z|) and since
|X| > |Y | − |Z|, the difference is strictly positive. Now as NVERTEX(G′) =
NVERTEX(G), NCC(G′) = NCC(G), NSCC(G′) = NSCC(G) and as
T (G′) ≤ T (G)− 1, the result holds by induction hypothesis.

Proposition 108.

NARC ≥ NVERTEX−max(0,min(NCC,NSCC−NCC)) (3.167)

Proof. We prove that the invariant is valid for any digraph G. First notice that for an opera-
tional behavior, since we can’t assume that Proposition 53 (i.e. NCC(G) ≤ NSCC(G)) was
already triggered, we use the max operator. But since any strongly connected component is con-
nected, then NSCC(G)−NCC(G) is never negative. Consequently we only show by induc-
tion on NSCC(G) that NARC(G) ≥ NVERTEX(G) − min(NCC(G),NSCC(G) −
NCC(G)). To begin notice that if X is a strongly (non void) connected component then ei-
ther NARC(G[X]) ≥ |X| or NARC(G[X]) = 0 and in this latter case we have that both
|X| = 1 and X is strictly included in a connected component of G (recall that isolated vertices
are not allowed). Thus we can directly assume that NSCC(G) = k > 1.

First, consider that there exists a connected component of G, say X , which is also strongly
connected. Let G′ = G − X , consequently we have NSCC(G′) = NSCC(G) −
1, NCC(G′) = NCC(G) − 1, NVERTEX(G′) = NVERTEX(G) − |X|, and
NARC(G) ≥ |X| + NARC(G′). Then NARC(G) ≥ |X| + NVERTEX(G′) −
min(NCC(G′),NSCC(G′) − NCC(G′)) and thus NARC(G) ≥ NVERTEX(G) −
min(NCC(G)− 1,NSCC(G)−NCC(G)), which immediately gives the result.

Second consider that any strongly connected component is strictly included in a con-
nected component of G. Then, either there exists a strongly connected component X
such that |X| ≥ 2. Let G′ = G − X , consequently we have NSCC(G′) =
NSCC(G)−1, NCC(G′) = NCC(G), NVERTEX(G′) = NVERTEX(G)−|X|, and
NARC(G) ≥ |X|+ 1 +NARC(G′). Then NARC(G) ≥ |X|+ 1 +NVERTEX(G′)−
min(NCC(G′),NSCC(G′) − NCC(G′)) and thus NARC(G) ≥ NVERTEX(G) +
1 − min(NCC(G),NSCC(G) − NCC(G) + 1), which immediately gives the result. Or,
all the strongly connected components are reduced to one element, so we have NSCC(G) =
NVERTEX(G), and thus we obtain that NVERTEX(G)−min(NCC(G),NSCC(G)−
NCC(G)) = min(NCC(G),NVERTEX(G) −NCC(G)), which gives the result by for
example Proposition 89 (3.134).

This bound is tight: take for example any circuit.
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NARC, NSINK, NSOURCE, NVERTEX

Proposition 109.

NARC ≤ NVERTEX2 −NVERTEX ·NSOURCE

−NVERTEX ·NSINK + NSOURCE ·NSINK

(3.168)

Proof. Since the maximum number of arcs of a digraph is NVERTEX2, and since:

• No vertex can have a source as a successor we lose NVERTEX ·NSOURCE arcs,

• No sink can have a successor we lose NVERTEX ·NSINK arcs.

In these two sets of arcs we count twice the arcs from the sinks to the sources, so we finally get
a maximum number of arcs corresponding to the right-hand side of the inequality to prove.

Graph invariants involving five characteristics of a final graph

MAX NCC, MIN NCC, NARC, NCC, NVERTEX

Proposition 110.
Let:

• ∆ = NVERTEX−NCC ·MIN NCC,

• δ = b ∆
max(1,MAX NCC−MIN NCC)

c,
• r = ∆ mod max(1,MAX NCC−MIN NCC),

• ε = (r > 0).

∆ = 0 ∨ (MAX NCC 6= MIN NCC ∧ δ + ε ≤ NCC) (3.169)

NARC ≤ (NCC− δ − ε) ·MIN NCC2 + ε · (MIN NCC + r)2 + δ ·MAX NCC2

(3.170)

Proposition 110 is currently a conjecture.

MIN NCC, NARC, NCC, NSCC, NVERTEX

Proposition 111.

NARC ≤(NCC− 1) ·max(1, (MIN NCC− 1))+

(NVERTEX−NSCC + 1) · (NVERTEX−NCC + 1)+

(NSCC−NCC + 1) · (NSCC−NCC)

2

(3.171)

Proposition 111 is currently a conjecture.
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Graph invariants relating two characteristics of two final graphs

MAX NCC1, NCC2

Proposition 112.

vpartition : MAX NCC1 < NVERTEXINITIAL ⇔ NCC2 > 0 (3.172)

apartition : MAX NCC1 < NVERTEXINITIAL ⇔ NCC2 > 0 (3.173)

Proof. (3.172) Since we have the precondition vpartition, we know that each vertex of the
initial graph belongs to the first or to the second final graphs (but not to both).

1. On the one hand, if the largest connected component of the first final graph can’t contain
all the vertices of the initial graph, then the second final graph has at least one connected
component.

2. On the other hand, if the second final graph has at least one connected component then
the largest connected component of the first final graph can’t be equal to the initial graph.

(3.173) holds for a similar reason.

MAX NCC2, NCC1

Proposition 113.

vpartition : MAX NCC2 < NVERTEXINITIAL ⇔ NCC1 > 0 (3.174)

apartition : MAX NCC2 < NVERTEXINITIAL ⇔ NCC1 > 0 (3.175)

Proof. Similar to Proposition 112.

MIN NCC1, NCC2

Proposition 114.

vpartition : MIN NCC1 < NVERTEXINITIAL ⇔ NCC2 > 0 (3.176)

Proof. Since we have the precondition vpartition, we know that each vertex of the initial
graph belongs to the first or to the second final graphs (but not to both).

1. On the one hand, if the smallest connected component of the first final graph can’t contain
all the vertices of the initial graph, then the second final graph has at least one connected
component.

2. On the other hand, if the second final graph has at least one connected component then the
smallest connected component of the first final graph can’t be equal to the initial graph.
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MIN NCC2, NCC1

Proposition 115.

vpartition : MIN NCC2 < NVERTEXINITIAL ⇔ NCC1 > 0 (3.177)

Proof. Similar to Proposition 114.

NARC1, NARC2

Proposition 116.

apartition ∧ arc gen = PATH : NARC1 + NARC2 = NVERTEXINITIAL − 1
(3.178)

Proof. Holds since each arc of the initial graph belongs to one of the two final graphs and since
the initial graph has NVERTEXINITIAL − 1 arcs.

NCC1, NCC2

Proposition 117.

apartition ∧ arc gen = PATH : |NCC1 −NCC2| ≤ 1 (3.179)

vpartition ∧ consecutive loops are connected : |NCC1 −NCC2| ≤ 1 (3.180)

Proof. Holds because the two initial graphs correspond to a path and because consecutive con-
nected components do not come from the same graph constraint.

Proposition 118.

apartition ∧ arc gen = PATH : NCC1 + NCC2 < NVERTEXINITIAL (3.181)

Proof. Holds because the initial graph is a path.

NVERTEX1, NVERTEX2

Proposition 119.

vpartition : NVERTEX1 + NVERTEX2 = NVERTEXINITIAL (3.182)

Proof. By definition of vpartition each vertex of the initial graph belongs to one of the two
final graphs (but not to both).
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Graph invariants relating three characteristics of two final graphs

MAX NCC1, MIN NCC1, MIN NCC2

Proposition 120.

apartition ∧ arc gen = PATH :

max(2,MIN NCC1) + max(3,MIN NCC1 + 1,MAX NCC1)+

max(2,MIN NCC2)− 2 > NVERTEXINITIAL ⇒MIN NCC1 = MAX NCC1

(3.183)

Proof. The quantity max(2,MIN NCC1) + max(3,MIN NCC1 + 1,MAX NCC1) +
max(2,MIN NCC2)− 2 corresponds to the minimum number of variables needed for build-
ing two non-empty connected components of respective size MIN NCC1 and MAX NCC1

such that MAX NCC1 is strictly greater than MIN NCC1. If this quantity is greater than
the total number of variables we have that MIN NCC1 = MAX NCC1.

Proposition 121.

vpartition ∧ consecutive loops are connected :

max(1,MIN NCC1) + max(2,MIN NCC1 + 1,MAX NCC1)+

max(1,MIN NCC2) > NVERTEXINITIAL ⇒MIN NCC1 = MAX NCC1

(3.184)

Proof. The quantity max(1,MIN NCC1) + max(2,MIN NCC1 + 1,MAX NCC1) +
max(1,MIN NCC2) corresponds to the minimum number of variables needed for building
two non-empty connected components of respective size MIN NCC1 and MAX NCC1

such that MAX NCC1 is strictly greater than MIN NCC1. If this quantity is greater than
the total number of variables we have that MIN NCC1 = MAX NCC1.

MAX NCC2, MIN NCC2, MIN NCC1

Proposition 122.

apartition ∧ arc gen = PATH :

max(2,MIN NCC2) + max(3,MIN NCC2 + 1,MAX NCC2)+

max(2,MIN NCC1)− 2 > NVERTEXINITIAL ⇒MIN NCC2 = MAX NCC2

(3.185)

Proof. Similar to Proposition 120.

Proposition 123.

vpartition ∧ consecutive loops are connected :

max(1,MIN NCC2) + max(2,MIN NCC2 + 1,MAX NCC2)+

max(1,MIN NCC1) > NVERTEXINITIAL ⇒MIN NCC2 = MAX NCC2

(3.186)

Proof. Similar to Proposition 121.
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MIN NCC1, NARC2, NCC1

Proposition 124.

apartition ∧ arc gen = PATH ∧NVERTEXINITIAL > 0 :

NCC1 = 1⇔MIN NCC1 + NARC2 = NVERTEXINITIAL

(3.187)

Proof. When MIN NCC1 + NARC2 = NVERTEXINITIAL there is no more room for an
extra connected component for the first final graph.

MIN NCC1, NARC2, NCC1

Proposition 125.

apartition ∧ arc gen = PATH ∧NVERTEXINITIAL > 0 :

NCC2 = 1⇔MIN NCC2 + NARC1 = NVERTEXINITIAL

(3.188)

Proof. Similar to Proposition 124.

Graph invariants relating four characteristics of two final graphs

MAX NCC1, MIN NCC1, MIN NCC2, NCC1

Proposition 126.

apartition ∧ arc gen = PATH :

max(2,MIN NCC1) + max(2,MAX NCC1) + max(2,MIN NCC2)− 2 >

NVERTEXINITIAL ⇒ NCC1 ≤ 1

(3.189)

Proof. The quantity max(2,MIN NCC1) + max(2,MAX NCC1) +
max(2,MIN NCC2) − 2 corresponds to the minimum number of variables needed
for building two non-empty connected components of respective size MIN NCC1 and
MAX NCC1. If this quantity is greater than the total number of variables we have that
NCC1 ≤ 1.

Proposition 127.

vpartition ∧ consecutive loops are connected :

max(1,MIN NCC1) + max(1,MAX NCC1) + max(1,MIN NCC2) >

NVERTEXINITIAL ⇒ NCC1 ≤ 1

(3.190)

Proof. The quantity max(1,MIN NCC1) + max(1,MAX NCC1) +
max(1,MIN NCC2) corresponds to the minimum number of variables needed for building
two non-empty connected components of respective size MIN NCC1 and MAX NCC1. If
this quantity is greater than the total number of variables we have that NCC1 ≤ 1.
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MAX NCC2, MIN NCC2, MIN NCC1, NCC2

Proposition 128.

apartition ∧ arc gen = PATH :

max(2,MIN NCC2) + max(2,MAX NCC2) + max(2,MIN NCC1)− 2 >

NVERTEXINITIAL ⇒ NCC2 ≤ 1

(3.191)

Proof. Similar to Proposition 126.

Proposition 129.

vpartition ∧ consecutive loops are connected :

max(1,MIN NCC2) + max(1,MAX NCC2) + max(1,MIN NCC1) >

NVERTEXINITIAL ⇒ NCC2 ≤ 1

(3.192)

Proof. Similar to Proposition 127.

Graph invariants relating five characteristics of two final graphs

MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC1

Proposition 130.

vpartition ∧ consecutive loops are connected :

MIN NCC1 ·max(0,NCC1 − 1) + MAX NCC1+

MIN NCC2 ·max(0,NCC1 − 2) + MAX NCC2 ≤ NVERTEXINITIAL

(3.193)

Proof. The left-hand side of 130 corresponds to the minimum number of vertices of the two
final graphs provided that we build the smallest possible connected components.

Proposition 131.

vpartition ∧ consecutive loops are connected :

NCC1 ≤ (MAX NCC1 > 0) +

—
α

β

�
+
`
αmod β ≥ max(1,MIN NCC1)

´


• α = max(0,NVERTEXINITIAL −max(1,MAX NCC1)−max(1,MAX NCC2)),
• β = max(1,MIN NCC1) + max(1,MIN NCC2).

(3.194)

Proof. The maximum number of connected components is achieved by building non-empty
groups as small as possible, except for two groups of respective size max(1,MAX NCC1)
and max(1,MAX NCC2), which have to be built.

Proposition 132.

vpartition ∧ consecutive loops are connected :

MAX NCC1 ·max(0,NCC1 − 1) + MIN NCC1+

MAX NCC2 ·NCC1 + MIN NCC2 ≥ NVERTEXINITIAL

(3.195)
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Proof. The left-hand side of 132 corresponds to the maximum number of vertices of the two
final graphs provided that we build the largest possible connected components.

Proposition 133.

vpartition ∧ consecutive loops are connected :

NCC1 ≥ (MAX NCC2 < NVERTEXINITIAL) +

—
α

β

�
+
`
α mod β > MAX NCC2

´


• α = max(0,NVERTEXINITIAL −MIN NCC1 −MIN NCC2,

• β = max(1,MAX NCC1) + max(1,MAX NCC2).

(3.196)

Proof. The minimum number of connected components is achieved by taking the groups as
large as possible except for two groups of respective size MIN NCC2 and MIN NCC1,
which have to be built.

Proposition 134.

vpartition ∧ consecutive loops are connected :

MAX NCC2 ≤ max(MIN NCC2,NVERTEXINITIAL − α), with :

• α = MIN NCC1 ·max(0,NCC1 − 1) + MAX NCC1+

MIN NCC2 + MIN NCC2 ·max(0,NCC1 − 3)

(3.197)

Proof. If NCC1 ≤ 1 we have that MAX NCC2 ≤ MIN NCC2. Otherwise, when
NCC1 > 1, we have that MIN NCC1 · max(0,NCC1 − 1) + MAX NCC1 +
MIN NCC2+MAX NCC2+MIN NCC2·max(0,NCC1−3) ≤ NVERTEXINITIAL .
NCC1 − 3 comes from the fact that we build the minimum number of connected components
in the second final graph (i.e.NCC1 − 1 connected components) and that we have already built
two connected components of respective size MIN NCC2 and MAX NCC2. By isolat-
ing MAX NCC2 in the previous expression and by grouping the two inequalities the result
follows.

Proposition 135.

apartition ∧ arc gen = PATH ∧MIN NCC1 > 1 ∧MIN NCC2 > 1 :

NCC1 ≤ (MAX NCC1 > 0) +

—
α

β

�
+ ((αmod β) + 1 ≥MIN NCC1), with :


• α = max(0,NVERTEXINITIAL −MAX NCC1 −MAX NCC2 + 1),
• β = MIN NCC1 + MIN NCC2 − 2.

(3.198)

Proof. The maximum number of connected components of G1 is achieved by:

• Building a first connected component of G1 involving MAX NCC1 vertices,

• Building a first connected component of G2 involving MAX NCC2 vertices,

• Building alternatively a connected component of G1 and a connected component of G2

involving respectively MIN NCC1 and MIN NCC2 vertices,

• Finally, if this is possible, building a connected component of G1 involving
MIN NCC1 vertices.
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graph G2

graph G1

MAX_NCC1 MIN_NCC 1

MIN_NCC 2MAX_NCC2

initial graph

Figure 3.9: Illustration of Proposition 135. Configuration achieving the maximum number of
connected components forG1 according to the size of the smallest and largest connected compo-
nents ofG1 andG2 and to an initial number of vertices (MAX NCC1 = 4,MAX NCC2 =

5,MIN NCC1 = 3,MIN NCC2 = 4,NVERTEXINITIAL = 14, α = max(0, 14 − 4 −
5+1) = 6, β = max(2, 3+4−2) = 5,NCC1 = (4 > 0)+

¨
6
5

˝
+(((6mod5)+1) ≥ 3) = 2)

Proposition 136.

apartition ∧ arc gen = PATH ∧MIN NCC1 > 1 ∧MIN NCC2 > 1 :

NCC1 ≥ (MIN NCC1 > 0) +

—
α

β

�
+ ((α mod β) + 1 > MAX NCC2), with :


• α = max(0,NVERTEXINITIAL −MIN NCC1 −MIN NCC2 + 1),
• β = MAX NCC1 + MAX NCC2 − 2.

(3.199)

MIN_NCC2

MIN_NCC1

graph G2

graph G1

initial graph

MAX_NCC

MAX_NCCMAX_NCC

1

2 2

Figure 3.10: Illustration of Proposition 136. Configuration achieving the minimum num-
ber of connected components for G1 according to the size of the smallest and largest con-
nected components of G1 and G2 and to an initial number of vertices (MAX NCC1 =

4,MAX NCC2 = 5,MIN NCC1 = 3,MIN NCC2 = 4,NVERTEXINITIAL =

18, α = max(0, 18 − 3 − 4 + 1) = 12, β = max(2, 4 + 5 − 2) = 7,NCC1 = (3 >

0) +
¨

12
7

˝
+ (((12 mod 7) + 1) > 5) = 3)

Proof. The minimum number of connected components of G1 is achieved by:

• Building a first connected component of G2 involving MIN NCC2 vertices,

• Building a first connected component of G1 involving MIN NCC1 vertices,
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• Building alternatively a connected component of G2 and a connected component of G1

involving respectively MAX NCC2 and MAX NCC1 vertices,

• Finally, if this is possible, building a connected component of G2 involving
MAX NCC2 vertices and a connected component of G1 with the remaining vertices.
Note that these remaining vertices cannot be incorporated in the connected components
previously built.

MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC2

Proposition 137.

vpartition ∧ consecutive loops are connected :

MIN NCC2 ·max(0,NCC2 − 1) + MAX NCC2+

MIN NCC1 ·max(0,NCC2 − 2) + MAX NCC1 ≤ NVERTEXINITIAL

(3.200)

Proof. Similar to Proposition 130.

Proposition 138.

vpartition ∧ consecutive loops are connected :

NCC2 ≤ (MAX NCC2 > 0) +

—
α

β

�
+
`
α mod β ≥ max(1,MIN NCC2)

´


• α = max(0,NVERTEXINITIAL −max(1,MAX NCC2)−max(1,MAX NCC1)),
• β = max(1,MIN NCC2) + max(1,MIN NCC1).

(3.201)

Proof. Similar to Proposition 131.

Proposition 139.

vpartition ∧ consecutive loops are connected :

MAX NCC2 ·max(0,NCC2 − 1) + MIN NCC2+

MAX NCC1 ·NCC2 + MIN NCC1 ≥ NVERTEXINITIAL

(3.202)

Proof. Similar to Proposition 132.

Proposition 140.

vpartition ∧ consecutive loops are connected :

NCC2 ≥ (MAX NCC1 < NVERTEXINITIAL) +

—
α

β

�
+
`
α mod β > MAX NCC1

´


• α = max(0,NVERTEXINITIAL −MIN NCC2 −MIN NCC1,

• β = max(1,MAX NCC2) + max(1,MAX NCC1).

(3.203)

Proof. Similar to Proposition 133.
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Proposition 141.

vpartition ∧ consecutive loops are connected :

MAX NCC1 ≤ max(MIN NCC1,NVERTEXINITIAL − α), with :

• α = MIN NCC2 ·max(0,NCC2 − 1) + MAX NCC2+

MIN NCC1 + MIN NCC1 ·max(0,NCC2 − 3)

(3.204)

Proof. Similar to Proposition 134.

Proposition 142.

apartition ∧ arc gen = PATH ∧MIN NCC1 > 1 ∧MIN NCC2 > 1 :

NCC2 ≤ (MAX NCC2 > 0) +

—
α

β

�
+ ((α mod β) + 1 ≥MIN NCC2), with :


• α = max(0,NVERTEXINITIAL −MAX NCC1 −MAX NCC2 + 1),
• β = MIN NCC1 + MIN NCC2 − 2.

(3.205)

Proof. Similar to Proposition 135.

Proposition 143.

apartition ∧ arc gen = PATH ∧MIN NCC1 > 1 ∧MIN NCC2 > 1 :

NCC2 ≥ (MIN NCC2 > 0) +

—
α

β

�
+ ((αmod β) + 1 > MAX NCC1, with :


• α = max(0,NVERTEXINITIAL −MIN NCC1 −MIN NCC2 + 1),
• β = MAX NCC1 + MAX NCC2 − 2.

(3.206)

Proof. Similar to Proposition 136.
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Graph invariants relating six characteristics of two final graphs

MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC1, NCC2

Proposition 144.

apartition ∧ arc gen = PATH ∧NVERTEXINITIAL > 0 :

α ·MIN NCC1 + MAX NCC1+

β ·MIN NCC2 + MAX NCC2 ≤ NVERTEXINITIAL + NCC1 + NCC2 − 1, with :

• α = max(0,NCC1 − 1),
• β = max(0,NCC2 − 1).

(3.207)

Proof. Let CC(G1) = {CC1
a : a ∈ [NCC1]} and CC(G2) = {CC2

a : a ∈ [NCC2]} be
respectively the set of connected components of the first and the second final graphs. Since the
initial graph is a path, and since each arc of the initial graph belongs to the first or to the second
final graphs (but not to both), there exists (Ai)i∈[NCC1+NCC2] and there exists j ∈ [2] such that
Ai ∈ CC(G1+(j mod 2)), for i mod 2 = 0 and Ai ∈ CC(G1+((j+1) mod 2)) for i mod 2 = 1
and Ai ∩Ai+1 6= ∅ for i ∈ [NCC1 + NCC2 − 1].
By inclusion-exclusion principle, since Ai ∩ Aj = ∅ whenever j 6= i + 1, we obtain
NVERTEXINITIAL = Σa∈[NCC1]|CC1

a| + Σa∈[NCC2]|CC2
a| − Σi∈[NCC1+NCC2−1]|Ai ∩

Ai+1|. Since |Ai ∩ Ai+1| is equal to 1 for every well defined i, we obtain Σa∈[NCC1]|CC1
a| +

Σa∈[NCC2]|CC2
a| = NVERTEXINITIAL + NCC1 + NCC2− 1.

Since α · MIN NCC1 + MAX NCC1 + β · MIN NCC2 + MAX NCC2 ≤
Σa∈[NCC1]|CC1

a|+ Σa∈[NCC2]|CC2
a | the result follows.

Proposition 145.

apartition ∧ arc gen = PATH ∧NVERTEXINITIAL > 0 :

α ·MAX NCC1 + MIN NCC1+

β ·MAX NCC2 + MIN NCC2 ≥ NVERTEXINITIAL + NCC1 + NCC2 − 1, with :

• α = max(0,NCC1 − 1),
• β = max(0,NCC2 − 1).

(3.208)

Proof. Similar to Proposition 144.
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3.3 The electronic version of the catalog

An electronic version of the catalog containing every global constraint of the catalog
is given in Appendix B. This electronic version was used for generating the LATEX file
of this catalog, the figures associated with the graph-based description and a filtering
algorithm for some of the constraints that use the automaton-based description. Within
the electronic version, each constraint is described in terms of meta-data. A typical
entry is:

ctr_date(minimum,[’20000128’,’20030820’,’20040530’,’20041230’]).

ctr_origin(minimum, ’CHIP’, []).

ctr_arguments(minimum,
[’MIN’-dvar ,
’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(minimum,
[size(’VARIABLES’) > 0 ,
required(’VARIABLES’,var)]).

ctr_graph(minimum,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆkey = variables2ˆkey #\/ variables1ˆvar < variables2ˆvar],
[’ORDER’(0,’MAXINT’,var) = ’MIN’]).

ctr_example(minimum,
minimum(2,[[var-3],[var-2],[var-7],[var-2],[var-6]])).

ctr_see_also(minimum,[maximum]).

ctr_key_words(minimum,[’order constraint’ ,
’minimum’ ,
’maxint’ ,
’automaton’ ,
’automaton without counters’ ,
’centered cyclic(1) constraint network(1)’]).

ctr_automaton(minimum,minimum).

minimum(MIN, VARIABLES) :-
minimum_signature(VARIABLES, SIGNATURE, MIN),
automaton(SIGNATURE, _,

SIGNATURE, 0..2,
[source(s),node(e),sink(t)],
[arc(s,0,s), arc(s,1,e),
arc(e,1,e), arc(e,0,e), arc(e,$,t)],

[],[],[]).

minimum_signature([], [], _).
minimum_signature([[var-VAR]|VARs], [S|Ss], MIN) :-

S in 0..2,
MIN #< VAR #<=> S #= 0,
MIN #= VAR #<=> S #= 1,
MIN #> VAR #<=> S #= 2,
minimum_signature(VARs, Ss, MIN).

and consists of the following Prolog facts, where CONSTRAINT NAME is the name of the
constraint under consideration. The facts are organized in the following 13 items:

• Items 1, 2, 5, 10 and 11 provide general information about a global constraint,
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• Items 3, 4 and 6 describe the parameters of a global constraint.

• Items 7 and 8 describes the meaning of a global constraint in terms of a graph-
based representation.

• Item 9 provides a ground instance which holds.

• Items 12 and 13 describe the meaning of a global constraint in term of an
automaton-based representation.

Items 1, 2, 4 and 9 are mandatory, while all other items are optional. We now give the
different items:

1. ctr date( CONSTRAINT NAME, LIST OF DATES OF MODIFICATIONS )

• LIST OF DATES OF MODIFICATIONS is a list of dates when the description of the
constraint was modified.

2. ctr origin( CONSTRAINT NAME, STRING, LIST OF CONSTRAINTS NAMES )

• STRING is a string denoting the origin of the constraint.
LIST OF CONSTRAINTS NAMES is an eventually empty list of constraint names
related to the origin of the constraint.

3. ctr types( CONSTRAINT NAME, LIST OF TYPES DECLARATIONS )

• LIST OF TYPES DECLARATIONS is a list of elements of the form name-type, where
name is the name of a new type and type the type itself (usually a collection). Basic
and compound data types were respectively introduced in sections 1.1.1 and 1.1.2
page 3. This field is only used when we need to declare a new type that will be used
for specifying the type of the arguments of the constraint. This is for instance the
case when one argument of the constraint is a collection for which the type of one
attribute is also a collection. This is for instance the case of the diffn constraint
where the unique argument ORTHOTOPES is a collection of ORTHOTOPE; ORTHOTOPE
refers to a new type declared in LIST OF TYPES DECLARATIONS.

4. ctr arguments( CONSTRAINT NAME, LIST OF ARGUMENTS DECLARATIONS )

• LIST OF ARGUMENTS DECLARATIONS is a list of elements of the form arg-type,
where arg is the name of an argument of the constraint and type the type of the
argument. Basic and compound data types were respectively introduced in sec-
tions 1.1.1 and 1.1.2 page 3.

5. ctr synonyms( CONSTRAINT NAME, LIST OF SYNONYMS )

• LIST OF SYNONYMS is a list of synonyms for the constraint. This stems from
the fact that, quite often, different authors use a different name for the same
constraint. This is for instance the case for the alldifferent and the
symmetric alldifferent constraints.

6. ctr restrictions( CONSTRAINT NAME, LIST OF RESTRICTIONS )
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• LIST OF RESTRICTIONS is a list of restrictions on the different argument of the
constraint. Possible restrictions were described in Section 1.1.3 page 5.

7. ctr derived collections( CONSTRAINT NAME, LIST OF DERIVED COLLECTIONS )

• LIST OF DERIVED COLLECTIONS is a list of derived collections. Derived collec-
tions are collections that are computed from the arguments of the constraint and
are used in the graph-based description. Derived collections were described in Sec-
tion 1.2.2 page 17.

8. ctr graph( CONSTRAINT NAME, LIST OF ARC INPUT, ARC ARITY,

ARC GENERATORS, ARC CONSTRAINTS, GRAPH PROPERTIES )

• LIST OF ARC INPUT is a list of collections used for creating the vertices of the
initial graph. This was described at page 43 of Section 1.2.3.

• ARC ARITY is the number of vertices of an arc. Arc arity was explained at page 44
of Section 1.2.3.

• ARC GENERATORS is a list of arc generators. Arc generators were introduced at page
43 of Section 1.2.3.

• ARC CONSTRAINTS is a list of arc constraints. Arc constraints were defined in Sec-
tion 1.2.2 page 22.

• GRAPH PROPERTIES is a list of graph properties. Graph properties were described
in Section 1.2.2 page 31.

9. ctr example( CONSTRAINT NAME, LIST OF EXAMPLES )

• LIST OF EXAMPLES is a list of examples (usually one). Each example corresponds
to a ground instance for which the constraint holds.

10. ctr see also( CONSTRAINT NAME, LIST OF CONSTRAINTS )

• LIST OF CONSTRAINTS is a list of constraints that are related in some way to the
constraint.

11. ctr key words( CONSTRAINT NAME, LIST OF KEYWORDS )

• LIST OF KEYWORDS is a list of keywords associated with the constraint. Keywords
may be linked to the meaning of the constraint, to a typical pattern where the con-
straint can be applied or to a specific problem where the constraint is useful. All
keywords used in the catalog are listed in alphabetic order in Section 2.5 page 62.
Each keyword has an entry explaining its meaning and providing the list of global
constraints using that keyword.

12. ctr automaton( CONSTRAINT NAME, PREDICATE NAME )

• PREDICATE NAME is the name of the Prolog predicate that creates the automata
(usually one) associated with the constraint. This predicate name is usually the
same as the constraint name, except for those constraints corresponding to a SICS-
tus built-in (e.g. in, element).
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13. constraint name( LIST OF ARGUMENTS ) :- BODY:

• LIST OF ARGUMENTS is the list of argument of the constraint.

• BODY corresponds to the Prolog code that creates the signature constraints as well
as the automata (usually one) associated with the constraint. Within BODY, a fact
of the form automaton/9 describes the states and the transitions of the automata
used for describing the set of solutions accepted by the constraint. It follows the
description provided in Section 1.3.2 page 55.
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4.1 all differ from at least k pos

Origin Inspired by [56].

Constraint all differ from at least k pos(K, VECTORS)

Type(s) VECTOR : collection(var− dvar)

Argument(s) K : int

VECTORS : collection(vec− VECTOR)

Restriction(s) required(VECTOR, var)
K ≥ 0
required(VECTORS, vec)
same size(VECTORS, vec)

Purpose Enforce all pairs of distinct vectors of the VECTORS collection to differ from at least K positions.

Arc input(s) VECTORS

Arc generator CLIQUE(6=) 7→ collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) differ from at least k pos(K, vectors1.vec, vectors2.vec)

Graph property(ies) NARC = |VECTORS| ∗ |VECTORS| − |VECTORS|

Example all differ from at least k pos

0
BBBBBBBBBBBBBBBBBB@

2,

8
>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

vec −

8
>><
>>:

var− 2,
var− 5,
var− 2,
var− 0

9
>>=
>>;
,

vec −

8
>><
>>:

var− 3,
var− 6,
var− 2,
var− 1

9
>>=
>>;
,

vec −

8
>><
>>:

var− 3,
var− 6,
var− 1,
var− 0

9
>>=
>>;

9
>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

1
CCCCCCCCCCCCCCCCCCA

The previous constraint holds since exactly 3 · (3 − 1) = 6 arc constraints hold,
namely1:

• The first and second vectors differ from 3 positions which is greater than or equal to
K = 2.

1Each item corresponds to two arc constraints.
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• The first and third vectors differ from 3 positions which is greater than or equal to
K = 2.

• The second and third vectors differ from 2 positions which is greater than or equal to
K = 2.

Parts (A) and (B) of Figure 4.1 respectively show the initial and final graph. Since we use
the NARC graph property, the arcs of the final graph are stressed in bold.

VECTORS

1

2

3

NARC=6

1:2
  5
  2
  0

2:3
  6
  2
  1

3:3
  6
  1
  0

(A) (B)

Figure 4.1: Initial and final graph of the all differ from at least k pos con-
straint

Graph model The arc constraint(s) field uses the differ from at least k pos constraint defined in
this catalog.

Signature Since we use the CLIQUE(6=) arc generator on the items of the VECTORS collection, the
expression |VECTORS| · |VECTORS| − |VECTORS| corresponds to the maximum number of
arcs of the final graph. Therefore we can rewrite the graph property NARC = |VECTORS|·
|VECTORS| − |VECTORS| to NARC ≥ |VECTORS| · |VECTORS| − |VECTORS|. This leads to
simplify NARC to NARC.

See also differ from at least k pos.

Key words decomposition, disequality, bioinformatics, vector, no loop.
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4.2 all min dist

Origin [57]

Constraint all min dist(MINDIST, VARIABLES)

Synonym(s) minimum distance.

Argument(s) MINDIST : int

VARIABLES : collection(var − dvar)

Restriction(s) MINDIST > 0
required(VARIABLES, var)
VARIABLES.var ≥ 0

Purpose Enforce for each pair (vari, varj) of distinct variables of the collection VARIABLES that
|vari − varj | ≥ MINDIST.

Arc input(s) VARIABLES

Arc generator CLIQUE(<) 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) abs(variables1.var − variables2.var) ≥ MINDIST

Graph property(ies) NARC = |VARIABLES| ∗ (|VARIABLES| − 1)/2

Example all min dist
`

2, {var − 5, var − 1, var − 9, var − 3}
´

Parts (A) and (B) of Figure 4.2 respectively show the initial and final graph. The
all min dist constraint holds since all the arcs of the initial graph belong to the final
graph: all the minimum distance constraints are satisfied.

Graph model We generate a clique with a minimum distance constraint between each pair of distinct
vertices and state that the number of arcs of the final graph should be equal to the number
of arcs of the initial graph.

Usage The all min dist constraint was initially created for handling frequency allocation prob-
lems.

Remark The all min dist constraint can be modeled as a set of tasks which should not overlap.
For each variable var of the VARIABLES collection we create a task t where var and
MINDIST respectively correspond to the origin and the duration of t.

See also alldifferent, diffn.

Key words value constraint, decomposition, frequency allocation problem.
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VARIABLES

1

2

3

4

NARC=6

1:5

2:1

3:9

4:3

(A) (B)

Figure 4.2: Initial and final graph of the all min dist constraint
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4.3 alldifferent

Origin [2]

Constraint alldifferent(VARIABLES)

Synonym(s) alldiff, alldistinct.

Argument(s) VARIABLES : collection(var − dvar)

Restriction(s) required(VARIABLES, var)

Purpose Enforce all variables of the collection VARIABLES to take distinct values.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) MAX NSCC ≤ 1

Example alldifferent({var − 5, var − 1, var − 9, var − 3})

Parts (A) and (B) of Figure 4.3 respectively show the initial and final graph. Since
we use the MAX NSCC graph property we show one of the largest strongly connected
component of the final graph. The alldifferent holds since all the strongly connected
components have at most one vertex: A value is used at most once.

Graph model We generate a clique with an equality constraint between each pair of vertices (including a
vertex and itself) and state that the size of the largest strongly connected component should
not exceed one.

Automaton Figure 4.4 depicts the automaton associated to the alldifferent constraint. To each item
of the collection VARIABLES corresponds a signature variable Si, which is equal to 1. The
automaton counts the number of occurrences of each value and finally imposes that each
value is taken at most one time.

Usage The alldifferent constraint occurs in most practical problems. A classical example is
the n-queen chess puzzle problem: Place n queens on a n by n chessboard in such a way
that no queen attacks another. Two queens attack each other if they are located on the same
column, on the same row or on the same diagonal. This can be modelled as the conjunction
of three alldifferent constraints. We associate to the ith column of the chessboard a
domain variable Xi that gives the line number where the corresponding queen is located.
The three alldifferent constraints are:
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VARIABLES

1

2

3

4

MAX_NSCC=1

MAX_NSCC

1:5 2:1 3:9 4:3

(A) (B)

Figure 4.3: Initial and final graph of the alldifferent constraint

1,

i       i{C[VAR ]=C[VAR ]+1}

$

t:
arith(C,<,2)

s

{C[_]=0}

Figure 4.4: Automaton of the alldifferent constraint
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• alldifferent(X1, X2 + 1, . . . , Xn + n − 1) for the upper-left to lower-right di-
agonals,

• alldifferent(X1, X2, . . . , Xn) for the lines,
• alldifferent(X1 + n− 1, X2 + n− 2, . . . , Xn) for the lower-right to upper-left

diagonals.

They are respectively depicted by parts (A), (C) and (D) of Figure 4.5.

4

7

1

2

3

5

6

8

X X X X X X XX 2 3 4 5 6 7 81

4

7

1

2

3

5

6

8

X X X X X X XX 2 3 4 5 6 7 81 X X X X X X XX 2 3 4 5 6 7 81

4

7

1

2

3

5

6

8

(E)(B)

(A) (C) (D)

Figure 4.5: Upper-left to lower-right diagonals (A-B), lines (C) and lower-right to
upper-left diagonals (D-E)

Remark Even if the alldifferent constraint had not this form, it was specified in ALICE [58, 2]
by asking for an injective correspondence between variables and values: x 6= y ⇒ f(x) 6=
f(y).

For possible relaxations of the alldifferent constraints see the
alldifferent except 0, the soft alldifferent ctr, the soft alldifferent var

and the weighted partial alldiff constraints.

Algorithm The first complete filtering algorithm was independently found by Marie-Christine
Costa [59] and Jean-Charles Régin [18]. This algorithm is based on a corollary of Claude
Berge which characterizes the edges of a graph that belong to a maximum matching but not
to all [17, page 120]. A short time after, assuming that all variables have no holes in their
domain, Michel Leconte came up with a filtering algorithm [60] based on edge finding. A
first bound-consistency algorithm was proposed by Bleuzen-Guernalec et al. [61]. Later
on, two different approaches were used to design bound-consistency algorithms. Both ap-
proaches model the constraint as a bipartite graph. The first identifies Hall intervals in
this graph [62, 63] and the second applies the same algorithm that is used to compute arc-
consistency, but achieves a speedup by exploiting the simpler structure of the graph [23].

Used in circuit cluster, correspondence, size maximal sequence alldifferent,
size maximal starting sequence alldifferent, sort permutation.
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See also alldifferent except 0, soft alldifferent var, soft alldifferent ctr,
cycle, symmetric alldifferent, lex alldifferent,
alldifferent on intersection, weighted partial alldiff.

Key words value constraint, permutation, all different, disequality, bipartite matching, n-queen,
Hall interval, bound-consistency, automaton, automaton with array of counters, one succ.
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4.4 alldifferent between sets

Origin ILOG

Constraint alldifferent between sets(VARIABLES)

Synonym(s) all null intersect, alldiff between sets, alldistinct between sets.

Argument(s) VARIABLES : collection(var − svar)

Restriction(s) required(VARIABLES, var)

Purpose Enforce all sets of the collection VARIABLES to be distinct.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) eq set(variables1.var, variables2.var)

Graph property(ies) MAX NSCC ≤ 1

Example alldifferent between sets

0
BB@

8
>><
>>:

var − {3, 5},
var − ∅,
var − {3},
var − {3, 5, 7}

9
>>=
>>;

1
CCA

Parts (A) and (B) of Figure 4.6 respectively show the initial and final graph. Since
we use the MAX NSCC graph property we show one of the largest strongly connected
component of the final graph. The alldifferent between sets holds since all the
strongly connected components have at most one vertex.

Graph model We generate a clique with binary set equalities constraints between each pair of vertices
(including a vertex and itself) and state that the size of the largest strongly connected com-
ponent should not exceed one.

Usage This constraint is available in some configuration library offered by Ilog.

See also alldifferent, link set to booleans.

Key words all different, disequality, bipartite matching, constraint involving set variables, one succ.
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VARIABLES

1

2

3

4

MAX_NSCC=1

MAX_NSCC

1:{3,5} 2:{} 3:{3} 4:{3,5,7}

(A) (B)

Figure 4.6: Initial and final graph of the alldifferent between sets constraint
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4.5 alldifferent except 0

Origin Derived from alldifferent.

Constraint alldifferent except 0(VARIABLES)

Synonym(s) alldiff except 0, alldistinct except 0.

Argument(s) VARIABLES : collection(var − dvar)

Restriction(s) required(VARIABLES, var)

Purpose Enforce all variables of the collection VARIABLES to take distinct values, except those variables
which are assigned to 0.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • variables1.var 6= 0
• variables1.var = variables2.var

Graph property(ies) MAX NSCC ≤ 1

Example alldifferent except 0

0
BBBBBB@

8
>>>>>><
>>>>>>:

var − 5,
var − 0,
var − 1,
var − 9,
var − 0,
var − 3

9
>>>>>>=
>>>>>>;

1
CCCCCCA

Parts (A) and (B) of Figure 4.7 respectively show the initial and final graph. Since
we use the MAX NSCC graph property we show one of the largest strongly connected
component of the final graph. The alldifferent except 0 holds since all the strongly
connected components have at most one vertex: A value different from 0 is used at most
once.

Graph model The graph model is the same as the one used for the alldifferent constraint, except that
we discard all variables that are assigned to 0.

Automaton Figure 4.8 depicts the automaton associated to the alldifferent except 0 constraint.
To each variable VARi of the collection VARIABLES corresponds a 0-1 signature variable
Si. The following signature constraint links VARi and Si: VARi 6= 0⇔ Si. The automaton
counts the number of occurrences of each value different from 0 and finally imposes that
each non-zero value is taken at most one time.
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VARIABLES

1

2

3

4

5

6

MAX_NSCC=1

MAX_NSCC

1:5 3:1 4:9 6:3

(A) (B)

Figure 4.7: Initial and final graph of the alldifferent except 0 constraint

iVAR =0
VAR <>0,

i       i

i
{C[VAR ]=C[VAR ]+1}

$

t:
arith(C,<,2)

s

{C[_]=0}

Figure 4.8: Automaton of the alldifferent except 0 constraint
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Usage Quite often it appears that for some modelling reason you create a joker value. You don’t
want that normal constraints hold for variables that take this joker value. For this pur-
pose we modify the binary arc constraint in order to discard the vertices for which the
corresponding variables are assigned to 0. This will be effectively the case since all the
corresponding arcs constraints will not hold.

See also alldifferent, weighted partial alldiff.

Key words value constraint, relaxation, joker value, all different, automaton,
automaton with array of counters, one succ.
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4.6 alldifferent interval

Origin Derived from alldifferent.

Constraint alldifferent interval(VARIABLES, SIZE INTERVAL)

Synonym(s) alldiff interval, alldistinct interval.

Argument(s) VARIABLES : collection(var− dvar)
SIZE INTERVAL : int

Restriction(s) required(VARIABLES, var)
SIZE INTERVAL > 0

Purpose
Enforce all variables of the collection VARIABLES to belong to distinct intervals. The intervals
are defined by [SIZE INTERVAL · k, SIZE INTERVAL · k + SIZE INTERVAL− 1] where k is an
integer.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var/SIZE INTERVAL = variables2.var/SIZE INTERVAL

Graph property(ies) MAX NSCC ≤ 1

Example alldifferent interval({var − 2, var− 3, var− 10}, 3)

In the previous example, the second parameter SIZE INTERVAL defines the follow-
ing family of intervals [3 · k, 3 · k + 2], where k is an integer. Since the three variables
of the collection VARIABLES take values that are respectively located within the three
following distinct intervals [0, 2], [3, 5] and [9, 11], the alldifferent interval

constraint holds. Parts (A) and (B) of Figure 4.9 respectively show the initial and final
graph. Since we use the MAX NSCC graph property we show one of the largest
strongly connected component of the final graph.

Graph model Similar to the alldifferent constraint, but we replace the binary equality constraint of
the alldifferent constraint by the fact that two variables are respectively assigned to
two values that belong to the same interval. We generate a clique with a belong to the same
interval constraint between each pair of vertices (including a vertex and itself) and state
that the size of the largest strongly connected component should not exceed one.

Automaton Figure 4.10 depicts the automaton associated to the alldifferent interval constraint.
To each item of the collection VARIABLES corresponds a signature variable Si, which is
equal to 1. For each interval [SIZE INTERVAL·k, SIZE INTERVAL·k+SIZE INTERVAL−1]
of values the automaton counts the number of occurrences of its values and finally imposes
that the values of an interval are taken at most once.
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VARIABLES

1

2

3

MAX_NSCC=1

MAX_NSCC

1:2 2:3 3:10

(A) (B)

Figure 4.9: Initial and final graph of the alldifferent interval constraint

{C[VAR /SIZE_INTERVAL]=C[VAR /SIZE_INTERVAL]+1}

$

t:

1,

i                     i

arith(C,<,2)

{C[_]=0}

s

Figure 4.10: Automaton of the alldifferent interval constraint
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See also alldifferent.

Key words value constraint, interval, all different, automaton, automaton with array of counters,
one succ.
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4.7 alldifferent modulo

Origin Derived from alldifferent.

Constraint alldifferent modulo(VARIABLES, M)

Synonym(s) alldiff modulo, alldistinct modulo.

Argument(s) VARIABLES : collection(var − dvar)
M : int

Restriction(s) required(VARIABLES, var)
M 6= 0
M ≥ |VARIABLES|

Purpose Enforce all variables of the collection VARIABLES to have a distinct rest when divided by M.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var mod M = variables2.var mod M

Graph property(ies) MAX NSCC ≤ 1

Example alldifferent modulo

0
BB@

8
>><
>>:

var − 25,
var − 1,
var − 14,
var − 3

9
>>=
>>;
, 5

1
CCA

The equivalences classes associated to values 25, 1, 14 and 3 are respectively equal
to 25 mod 5 = 0, 1 mod 5 = 1, 14 mod 5 = 4 and 3 mod 5 = 3. Since they are
distinct the alldifferent modulo constraint holds. Parts (A) and (B) of Figure 4.11
respectively show the initial and final graph. Since we use the MAX NSCC graph
property we show one of the largest strongly connected component of the final graph.

Graph model Exploit the same model used for the alldifferent constraint. We replace the binary
equality constraint by an other equivalence relation depicted by the arc constraint. We
generate a clique with a binary equality modulo M constraint between each pair of ver-
tices (including a vertex and itself) and state that the size of the largest strongly connected
component should not exceed one.

Automaton Figure 4.12 depicts the automaton associated to the alldifferent modulo constraint.
To each item of the collection VARIABLES corresponds a signature variable Si, which is
equal to 1. The automaton counts for each equivalence class the number of used values and
finally imposes that each equivalence class is used at most one time.
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VARIABLES

1

2

3

4

MAX_NSCC=1

MAX_NSCC

1:25 2:1 3:14 4:3

(A) (B)

Figure 4.11: Initial and final graph of the alldifferent modulo constraint

1,

i            i{C[VAR mod M]=C[VAR mod M]+1}

$

t:
arith(C,<,2)

s

{C[_]=0}

Figure 4.12: Automaton of the alldifferent modulo constraint
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See also alldifferent.

Key words value constraint, modulo, all different, automaton, automaton with array of counters,
one succ.
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4.8 alldifferent on intersection

Origin Derived from common and alldifferent.

Constraint alldifferent on intersection(VARIABLES1, VARIABLES2)

Synonym(s) alldiff on intersection, alldistinct on intersection.

Argument(s) VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)

Restriction(s) required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose The values which both occur in the VARIABLES1 and VARIABLES2 collections have only one
occurrence.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) MAX NCC ≤ 2

Example alldifferent on intersection

0
BBBBBBBBBBBBBB@

8
>><
>>:

var− 5,
var− 9,
var− 1,
var− 5

9
>>=
>>;
,

8
>>>>>><
>>>>>>:

var− 2,
var− 1,
var− 6,
var− 9,
var− 6,
var− 2

9
>>>>>>=
>>>>>>;

1
CCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.13 respectively show the initial and final graph. Since we
use the MAX NCC graph property we show one of the largest connected component
of the final graph. The alldifferent on intersection constraint holds since each
connected component has at most two vertices. Observe that all the vertices corresponding
to the variables that take values 5, 2 or 6 were removed from the final graph since there is
no arc for which the associated equality constraint holds.

Automaton Figure 4.14 depicts the automaton associated to the alldifferent on intersection

constraint. To each variable VAR1i of the collection VARIABLES1 corresponds a signature
variable Si, which is equal to 0. To each variable VAR2i of the collection VARIABLES2 cor-
responds a signature variable Si+|VARIABLES1|, which is equal to 1. The automaton first counts
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the number of occurrences of each value assigned to the variables of the VARIABLES1 col-
lection. It then counts the number of occurrences of each value assigned to the variables of
the VARIABLES2 collection. Finally, the automaton imposes that each value is not taken by
two variables of both collections.

See also alldifferent, common, nvalue on intersection, same intersection.

Key words value constraint, all different, connected component, constraint on the intersection,
automaton, automaton with array of counters, acyclic, bipartite, no loop.
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VARIABLES1

VARIABLES2

1

1234 56

234

MAX_NCC=2

MAX_NCC

2:9

4:9

3:1

2:1

(A) (B)

Figure 4.13: Initial and final graph of the alldifferent on intersection con-
straint

i       i

1,
{D[VAR ]=D[VAR ]+1}

i       i

1,
{D[VAR ]=D[VAR ]+1}i

0,

i       i
{C[VAR ]=C[VAR ]+1}

$

t:
arith_or(C,D,<,2)

{C[_]=0,D[_]=0}

s

Figure 4.14: Automaton of the alldifferent on intersection constraint
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4.9 alldifferent partition

Origin Derived from alldifferent.

Constraint alldifferent partition(VARIABLES, PARTITIONS)

Synonym(s) alldiff partition, alldistinct partition.

Type(s) VALUES : collection(val− int)

Argument(s) VARIABLES : collection(var− dvar)
PARTITIONS : collection(p− VALUES)

Restriction(s) required(VALUES, val)
distinct(VALUES, val)
|VARIABLES| ≤ |PARTITIONS|
required(VARIABLES, var)
|PARTITIONS| ≥ 2
required(PARTITIONS, p)

Purpose Enforce all variables of the collection VARIABLES to take values which belong to distinct parti-
tions.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) in same partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) MAX NSCC ≤ 1

Example alldifferent partition

0
BB@

{var − 6, var − 3, var − 4},8
<
:

p− {val − 1, val − 3},
p− {val − 4},
p− {val − 2, val − 6}

9
=
;

1
CCA

Since all variables take values that are located within distinct partitions the
alldifferent partition constraint holds. Parts (A) and (B) of Figure 4.15 re-
spectively show the initial and final graph. Since we use the MAX NSCC graph
property we show one of the largest strongly connected component of the final graph.

Graph model Similar to the alldifferent constraint, but we replace the binary equality constraint of
the alldifferent constraint by the fact that two variables are respectively assigned to two
values that belong to the same partition. We generate a clique with a in same partition

constraint between each pair of vertices (including a vertex and itself) and state that the
size of the largest strongly connected component should not exceed one.

See also alldifferent, in same partition.

Key words value constraint, partition, all different, one succ.
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VARIABLES

1

2

3

MAX_NSCC=1

MAX_NSCC

1:6 2:3 3:4

(A) (B)

Figure 4.15: Initial and final graph of the alldifferent partition constraint
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4.10 alldifferent same value

Origin Derived from alldifferent.

Constraint alldifferent same value(NSAME, VARIABLES1, VARIABLES2)

Synonym(s) alldiff same value, alldistinct same value.

Argument(s) NSAME : dvar

VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)

Restriction(s) NSAME ≥ 0
NSAME ≤ |VARIABLES1|
|VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose
All the values assigned to the variables of the collection VARIABLES1 are pairwise dis-
tinct. NSAME is equal to number of constraints of the form VARIABLES1[i].var =
VARIABLES2[i].var (1 ≤ i ≤ |VARIABLES1|) that hold.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT (CLIQUE ,LOOP ,=) 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) •MAX NSCC ≤ 1
• NARC NO LOOP = NSAME

Example alldifferent same value

0
BBBBBBBBBB@

2,

8
>><
>>:

var − 7,
var − 3,
var − 1,
var − 5

9
>>=
>>;
,

8
>><
>>:

var− 1,
var− 3,
var− 1,
var− 7

9
>>=
>>;

1
CCCCCCCCCCA

Part (A) of Figure 4.16 gives the initial graph that is generated. Variables of collec-
tion VARIABLES1 are coloured, while variables of collection VARIABLES2 are kept in
white. Part (B) represents the final graph associated to the example. In this graph each
vertex constitutes a strongly connected component and the number of arcs that do not
correspond to a loop is equal to 2 (i.e. NSAME).
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Graph model The arc generator PRODUCT (CLIQUE ,LOOP ,=) is used in order to generate all the
arcs of the initial graph:

• The arc generator CLIQUE creates all links between the items of the first collection
VARIABLES1,

• The arc generator LOOP creates one loop for all items of the second collection
VARIABLES2,

• Finally the arc generator PRODUCT (=) creates an arc between items located at
the same position in the collections VARIABLES1 and VARIABLES2.

Automaton Figure 4.17 depicts the automaton associated to the alldifferent same value con-
straint. Let VAR1i and VAR2i respectively denote the ith variables of the VARIABLES1

and VARIABLES2 collections. To each pair of variables (VAR1i, VAR2i) corresponds a
signature variable Si. The following signature constraint links VAR1i, VAR2i and Si:
VAR1i = VAR2i ⇔ Si.

Usage When all variables of the second collection are initially bound to distinct values the
alldifferent same value constraint can be explained in the following way:

• We interpret the variables of the second collection as the previous solution of a prob-
lem where all variables have to be distinct.

• We interpret the variables of the first collection as the current solution to find, where
all variables should again be pairwise distinct.

The variable NSAME mesures the distance of the current solution from the previous solu-
tion. This corresponds to the number of variables of VARIABLES2 that are not assigned to
the same previous value.

Key words proximity constraint, automaton, automaton with array of counters.

2

4 3

4 3

21

2

4 3

4 3

21

(A) (B)

11

Figure 4.16: Initial and final graph of the alldifferent same value constraint
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VAR1 =VAR2 ,i     i

i        i{C[VAR1 ]=C[VAR1 ]+1,D=D+1}i        i

VAR1 <>VAR2 ,i      i
{C[VAR1 ]=C[VAR1 ]+1}

$

t:

NSAME=D

arith(C,<,2)

{C[_]=0,D=0}

s

Figure 4.17: Automaton of the alldifferent same value constraint
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4.11 allperm

Origin [64]

Constraint allperm(MATRIX)

Type(s) VECTOR : collection(var− dvar)

Argument(s) MATRIX : collection(vec− VECTOR)

Restriction(s) required(VECTOR, var)
required(MATRIX, vec)
same size(MATRIX, vec)

Purpose Given a matrix of domain variables, enforces that the first row is lexicographically less than or
equal to all permutations of all other rows.

Example allperm

„ 
vec − {var − 1, var − 2, var − 3},
vec − {var − 3, var − 1, var − 2}

ff «

The previous constraint holds since vector 〈1, 2, 3〉 is lexicographically less than or
equal to all the permutations of vector 〈3, 1, 2〉 (i.e. 〈1, 2, 3〉, 〈1, 3, 2〉, 〈2, 1, 3〉, 〈2, 3, 1〉,
〈3, 1, 2〉, 〈3, 2, 1〉).

Usage A symmetry-breaking constraint.

See also lex2, lex lesseq.

Key words predefined constraint, order constraint, matrix, matrix model, symmetry,
lexicographic order.
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4.12 among

Origin [37]

Constraint among(NVAR, VARIABLES, VALUES)

Argument(s) NVAR : dvar

VARIABLES : collection(var − dvar)
VALUES : collection(val − int)

Restriction(s) NVAR ≥ 0
NVAR ≤ |VARIABLES|
required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)

Purpose NVAR is the number of variables of the collection VARIABLES which take their value in VALUES.

Arc input(s) VARIABLES

Arc generator SELF 7→ collection(variables)

Arc arity 1

Arc constraint(s) in(variables.var, VALUES)

Graph property(ies) NARC = NVAR

Example among

0
BBBBBB@

3,

8
>>>><
>>>>:

var− 4,
var− 5,
var− 5,
var− 4,
var− 1

9
>>>>=
>>>>;
,

{val − 1, val − 5, val − 8}

1
CCCCCCA

Parts (A) and (B) of Figure 4.18 respectively show the initial and final graph. Since we use
the NARC graph property, the unary arcs of the final graph are stressed in bold.

VARIABLES

12345

NARC=3

2:5 3:5 5:1

(A) (B)

Figure 4.18: Initial and final graph of the among constraint

Graph model The arc constraint corresponds to the unary constraint in(variables.var, VALUES) de-
fined in this catalog. Since this is a unary constraint we employ the SELF arc generator in
order to produce an initial graph with a single loop on each vertex.
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Automaton Figure 4.19 depicts the automaton associated to the among constraint. To each variable
VARi of the collection VARIABLES corresponds a 0-1 signature variable Si. The following
signature constraint links VARi and Si: VARi ∈ VALUES ⇔ Si. The automaton counts the
number of variables of the VARIABLES collection which take their value in VALUES and
finally assigns this number to NVAR.

in(VAR ,VALUES),i
{C=C+1}

$

t:

not_in(VAR ,VALUES)i

NVAR=C

s

{C=0}

Figure 4.19: Automaton of the among constraint

C1

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0

C =00 C =NVARn

Q =tn

Figure 4.20: Hypergraph of the reformulation corresponding to the automaton of the
among constraint

Remark A similar constraint called between was introduced in CHIP in 1990.

The common constraint can be seen as a generalization of the among constraint where we
allow the val attributes of the VALUES collection to be domain variables.

See also among diff 0, exactly, global cardinality, count, common, nvalue, max nvalue,
min nvalue.

Key words value constraint, counting constraint, automaton, automaton with counters,
alpha-acyclic constraint network(2).
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4.13 among diff 0

Origin Used in the automaton of nvalue.

Constraint among diff 0(NVAR, VARIABLES)

Argument(s) NVAR : dvar

VARIABLES : collection(var − dvar)

Restriction(s) NVAR ≥ 0
NVAR ≤ |VARIABLES|
required(VARIABLES, var)

Purpose NVAR is the number of variables of the collection VARIABLES which take a value different from
0.

Arc input(s) VARIABLES

Arc generator SELF 7→ collection(variables)

Arc arity 1

Arc constraint(s) variables.var 6= 0

Graph property(ies) NARC = NVAR

Example among diff 0

0
BBBB@

3,

8
>>>><
>>>>:

var− 0,
var− 5,
var− 5,
var− 0,
var− 1

9
>>>>=
>>>>;

1
CCCCA

Parts (A) and (B) of Figure 4.21 respectively show the initial and final graph. Since we use
the NARC graph property, the unary arcs of the final graph are stressed in bold.

VARIABLES

12345

NARC=3

2:5 3:5 5:1

(A) (B)

Figure 4.21: Initial and final graph of the among diff 0 constraint

Graph model Since this is a unary constraint we employ the SELF arc generator in order to produce an
initial graph with a single loop on each vertex.
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{C=C+1}

VAR <>0,
i VAR =0i

$

t:
NVAR=C

s

{C=0}

Figure 4.22: Automaton of the among diff 0 constraint

C1

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0

C =00 C =NVARn

Q =tn

Figure 4.23: Hypergraph of the reformulation corresponding to the automaton of the
among diff 0 constraint
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Automaton Figure 4.22 depicts the automaton associated to the among diff 0 constraint. To each
variable VARi of the collection VARIABLES corresponds a 0-1 signature variable Si. The
following signature constraint links VARi and Si: VARi 6= 0 ⇔ Si. The automaton counts
the number of variables of the VARIABLES collection which take a value different from 0
and finally assigns this number to NVAR.

See also among, nvalue.

Key words value constraint, counting constraint, joker value, automaton, automaton with counters,
alpha-acyclic constraint network(2).
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4.14 among interval

Origin Derived from among.

Constraint among interval(NVAR, VARIABLES, LOW, UP)

Argument(s) NVAR : dvar

VARIABLES : collection(var − dvar)
LOW : int

UP : int

Restriction(s) NVAR ≥ 0
NVAR ≤ |VARIABLES|
required(VARIABLES, var)
LOW ≤ UP

Purpose NVAR is the number of variables of the collection VARIABLES taking a value that is located
within interval [LOW, UP].

Arc input(s) VARIABLES

Arc generator SELF 7→ collection(variables)

Arc arity 1

Arc constraint(s) • LOW ≤ variables.var
• variables.var ≤ UP

Graph property(ies) NARC = NVAR

Example among interval

0
BBBB@

3,

8
>>>><
>>>>:

var − 4,
var − 5,
var − 8,
var − 4,
var − 1

9
>>>>=
>>>>;
, 3, 5

1
CCCCA

The constraint holds since we have 3 values, namely 4, 5 and 4 which are situated
within interval [3, 5]. Parts (A) and (B) of Figure 4.24 respectively show the initial and
final graph. Since we use the NARC graph property, the unary arcs of the final graph are
stressed in bold.

VARIABLES

12345

NARC=3

1:4 2:5 4:4

(A) (B)

Figure 4.24: Initial and final graph of the among interval constraint
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Graph model The arc constraint corresponds to a unary constraint. For this reason we employ the SELF
arc generator in order to produce a graph with a single loop on each vertex.

Automaton Figure 4.25 depicts the automaton associated to the among interval constraint. To each
variable VARi of the collection VARIABLES corresponds a 0-1 signature variable Si. The
following signature constraint links VARi and Si: LOW ≤ VARi ∧ VARi ≤ UP ⇔ Si. The
automaton counts the number of variables of the VARIABLES collection which take their
value in [LOW, UP] and finally assigns this number to NVAR.

$

t:
NVAR=C

{C=C+1}

LOW>VAR  or VAR >UPLOW<=VAR  and VAR <=UPi        i i       is

{C=0}

Figure 4.25: Automaton of the among interval constraint

C1

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0

C =00 C =NVARn

Q =tn

Figure 4.26: Hypergraph of the reformulation corresponding to the automaton of the
among interval constraint

Remark By giving explicitly all values of the interval [LOW, UP] the among interval constraint can
be modelled with the among constraint. However when LOW − UP + 1 is a large quantity
the among interval constraint provides a more compact form.

See also among.

Key words value constraint, counting constraint, interval, automaton, automaton with counters,
alpha-acyclic constraint network(2).
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4.15 among low up

Origin [37]

Constraint among low up(LOW, UP, VARIABLES, VALUES)

Argument(s) LOW : int

UP : int

VARIABLES : collection(var − dvar)
VALUES : collection(val − int)

Restriction(s) LOW ≥ 0
LOW ≤ |VARIABLES|
UP ≥ LOW

required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)

Purpose Between LOW and UP variables of the VARIABLES collection are assigned to a value of the
VALUES collection.

Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→ collection(variables, values)

Arc arity 2

Arc constraint(s) variables.var = values.val

Graph property(ies) • NARC ≥ LOW

• NARC ≤ UP

Example among low up

0
BBBBBB@

1, 2, {var − 9, var − 2, var − 4, var − 5},8
>>>><
>>>>:

val − 0,
val − 2,
val − 4,
val − 6,
val − 8

9
>>>>=
>>>>;

1
CCCCCCA

Parts (A) and (B) of Figure 4.27 respectively show the initial and final graph. Since
we use the NARC graph property, the arcs of the final graph are stressed in bold.
The among low up constraint holds since between 1 and 2 variables of the VARIABLES

collection are assigned to a value of the VALUES collection.

Graph model Each arc constraint of the final graph corresponds to the fact that a variable is assigned to
a value that belong to the VALUES collection. The two graph properties restrict the total
number of arcs to the interval [LOW, UP].
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Automaton Figure 4.28 depicts the automaton associated to the among low up constraint. To each
variable VARi of the collection VARIABLES corresponds a 0-1 signature variable Si. The
following signature constraint links VARi and Si: VARi ∈ VALUES ⇔ Si. The automa-
ton counts the number of variables of the VARIABLES collection which take their value in
VALUES and finally checks that this number is within the interval [LOW, UP].

Used in among seq, cycle card on path, interval and count, sliding card skip0.

See also among.

Key words value constraint, counting constraint, automaton, automaton with counters,
alpha-acyclic constraint network(2), acyclic, bipartite, no loop.
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VARIABLES

VALUES

1

12 345

234

NARC=2

2:2

2:2

3:4

3:4

(A) (B)

Figure 4.27: Initial and final graph of the among low up constraint

in(VAR ,VALUES),i
{C=C+1}

$

not_in(VAR ,VALUES)i

t:
LOW<=C and C<=UP

{C=0}

s

Figure 4.28: Automaton of the among low up constraint

C1

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0

C =00

Q =tn

LOW<=C  and C <=UP     n      n

Figure 4.29: Hypergraph of the reformulation corresponding to the automaton of the
among low up constraint
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4.16 among modulo

Origin Derived from among.

Constraint among modulo(NVAR, VARIABLES, REMAINDER, QUOTIENT)

Argument(s) NVAR : dvar

VARIABLES : collection(var − dvar)
REMAINDER : int

QUOTIENT : int

Restriction(s) NVAR ≥ 0
NVAR ≤ |VARIABLES|
required(VARIABLES, var)
REMAINDER ≥ 0
REMAINDER < QUOTIENT

QUOTIENT > 0

Purpose NVAR is the number of variables of the collection VARIABLES taking a value that is congruent to
REMAINDER modulo QUOTIENT.

Arc input(s) VARIABLES

Arc generator SELF 7→ collection(variables)

Arc arity 1

Arc constraint(s) variables.var mod QUOTIENT = REMAINDER

Graph property(ies) NARC = NVAR

Example among modulo

0
BBBB@

3,

8
>>>><
>>>>:

var − 4,
var − 5,
var − 8,
var − 4,
var − 1

9
>>>>=
>>>>;
, 0, 2

1
CCCCA

In this example REMAINDER = 0 and QUOTIENT = 2 specifies that we count the
number of even values taken by the different variables. Parts (A) and (B) of Figure 4.30
respectively show the initial and final graph. Since we use the NARC graph property, the
unary arcs of the final graph are stressed in bold.

Graph model The arc constraint corresponds to a unary constraint. For this reason we employ the SELF
arc generator in order to produce a graph with a single loop on each vertex.

Automaton Figure 4.31 depicts the automaton associated to the among modulo constraint. To each
variable VARi of the collection VARIABLES corresponds a 0-1 signature variable Si. The
following signature constraint links VARi and Si: VARi mod QUOTIENT = REMAINDER ⇔
Si.
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VARIABLES

12345

NARC=3

1:4 3:8 4:4

(A) (B)

Figure 4.30: Initial and final graph of the among modulo constraint

$

t:
NVAR=C

VAR  mod QUOTIENT = REMAINDER,i
{C=C+1}

iVAR  mod QUOTIENT<>REMAINDERs

{C=0}

Figure 4.31: Automaton of the among modulo constraint

C1

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0

C =00 C =NVARn

Q =tn

Figure 4.32: Hypergraph of the reformulation corresponding to the automaton of the
among modulo constraint
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Remark By giving explicitly all values v which satisfy the equality vmodQUOTIENT = REMAINDER

the among modulo constraint can be modelled with the among constraint. However the
among modulo constraint provides a more compact form.

See also among.

Key words value constraint, counting constraint, modulo, automaton, automaton with counters,
alpha-acyclic constraint network(2).
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4.17 among seq

Origin [37]

Constraint among seq(LOW, UP, SEQ, VARIABLES, VALUES)

Argument(s) LOW : int

UP : int

SEQ : int

VARIABLES : collection(var − dvar)
VALUES : collection(val − int)

Restriction(s) LOW ≥ 0
LOW ≤ |VARIABLES|
UP ≥ LOW

SEQ > 0
SEQ ≥ LOW

SEQ ≤ |VARIABLES|
required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)

Purpose Constrains all sequences of SEQ consecutive variables of the collection VARIABLES to take at
least LOW values in VALUES and at most UP values in VALUES.

Arc input(s) VARIABLES

Arc generator PATH 7→ collection

Arc arity SEQ

Arc constraint(s) among low up(LOW, UP, collection, VALUES)

Graph property(ies) NARC = |VARIABLES| − SEQ + 1

Example among seq

0
BBBBBBBBBBBBBBBBBB@

1, 2, 4,

8
>>>>>>>><
>>>>>>>>:

var − 9,
var − 2,
var − 4,
var − 5,
var − 5,
var − 7,
var − 2

9
>>>>>>>>=
>>>>>>>>;

,

8
>>>><
>>>>:

val− 0,
val− 2,
val− 4,
val− 6,
val− 8

9
>>>>=
>>>>;

1
CCCCCCCCCCCCCCCCCCA

The previous constraint holds since the different sequences of 4 consecutive vari-
ables contains respectively 2, 2, 1 and 1 even numbers.
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Graph model A constraint on sliding sequences of consecutives variables. Each vertex of the graph
corresponds to a variable. Since they link SEQ variables, the arcs of the graph correspond
to hyperarcs. In order to link SEQ consecutive variables we use the arc generator PATH .
The constraint associated to an arc corresponds to the among low up constraint defined at
an other entry of this catalog.

Signature Since we use the PATH arc generator with an arity of SEQ on the items of the VARIABLES
collection, the expression |VARIABLES| − SEQ + 1 corresponds to the maximum num-
ber of arcs of the final graph. Therefore we can rewrite the graph property NARC =
|VARIABLES| − SEQ + 1 to NARC ≥ |VARIABLES| − SEQ + 1 and simplify NARC to
NARC.

Algorithm [65].

See also among, among low up.

Key words decomposition, sliding sequence constraint, sequence, hypergraph.
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4.18 arith

Origin Used in the definition of several automata

Constraint arith(VARIABLES, RELOP, VALUE)

Argument(s) VARIABLES : collection(var − dvar)
RELOP : atom

VALUE : int

Restriction(s) required(VARIABLES, var)
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose Enforce for all variables var of the VARIABLES collection to have var RELOP VALUE.

Arc input(s) VARIABLES

Arc generator SELF 7→ collection(variables)

Arc arity 1

Arc constraint(s) variables.var RELOP VALUE

Graph property(ies) NARC = |VARIABLES|

Example arith

0
BBBB@

8
>>>><
>>>>:

var − 4,
var − 5,
var − 7,
var − 4,
var − 5

9
>>>>=
>>>>;
, <, 9

1
CCCCA

The constraint holds since all variables of are stricly less than 9. Parts (A) and (B)
of Figure 4.33 respectively show the initial and final graph. Since we use the NARC
graph property, the unary arcs of the final graph are stressed in bold.

VARIABLES

12345

NARC=5

1:4 2:5 3:7 4:4 5:5

(A) (B)

Figure 4.33: Initial and final graph of the arith constraint

Automaton Figure 4.34 depicts the automaton associated to the arith constraint. To each variable
VARi of the collection VARIABLES corresponds a 0-1 signature variable Si. The following
signature constraint links VARi and Si: VARi RELOP VALUE⇔ Si. The automaton enforces
for each variable VARi the condition VARi RELOP VALUE.

Used in arith sliding.
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See also among, count.

Key words decomposition, value constraint, domain definition, automaton,
automaton without counters.

$

t

VAR RELOP VALUEis

Figure 4.34: Automaton of the arith constraint
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Q =tn
Q1Q =s0

S1 S2 Sn

VAR
1

VAR
2

VAR
n

Figure 4.35: Hypergraph of the reformulation corresponding to the automaton of the
arith constraint
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4.19 arith or

Origin Used in the definition of several automata

Constraint arith or(VARIABLES1, VARIABLES2, RELOP, VALUE)

Argument(s) VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
RELOP : atom

VALUE : int

Restriction(s) required(VARIABLES1, var)
required(VARIABLES2, var)
|VARIABLES1| = |VARIABLES2|
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose Enforce for all pairs of variables var1i, var2i of the VARIABLES1 and VARIABLES2 collections
to have var1i RELOP VALUE ∨ var2i RELOP VALUE.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT (=) 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var RELOP VALUE ∨ variables2.var RELOP VALUE

Graph property(ies) NARC = |VARIABLES1|

Example arith or

0
BBBBBBBBBBBBBB@

8
>>>><
>>>>:

var− 0,
var− 1,
var− 0,
var− 0,
var− 1

9
>>>>=
>>>>;
,

8
>>>><
>>>>:

var− 0,
var− 0,
var− 0,
var− 1,
var− 0

9
>>>>=
>>>>;
,=, 0

1
CCCCCCCCCCCCCCA

The constraint holds since for all pairs of variables var1i, var2i of the VARIABLES1 and
VARIABLES2 collections we have that at least one of the variables is equal to 0. Parts (A)
and (B) of Figure 4.36 respectively show the initial and final graphs. Since we use the
NARC graph property, the unary arcs of the final graph are stressed in bold.

Automaton Figure 4.37 depicts the automaton associated to the arith or constraint. Let VAR1i and
VAR2i be the ith variables of the VARIABLES1 and VARIABLES2 collections. To each pair
of variables (VAR1i, VAR2i) corresponds a signature variable Si. The following signature
constraint links VAR1i, VAR2i and Si: VAR1i RELOP VALUE ∨ VAR2i RELOP VALUE ⇔
Si. The automaton enforces for each pair of variables VAR1i,VAR2i the condition
VAR1i RELOP VALUE ∨ VAR2i RELOP VALUE.
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VARIABLES1

VARIABLES2

1

1

2

2

3

3

4

4

5

5

NARC=5

1:0

1:0

2:1

2:0

3:0

3:0

4:0

4:1

5:1

5:0

(A) (B)

Figure 4.36: Initial and final graph of the arith or constraint

$

t

s VAR1  RELOP VALUE or VAR2  RELOP VALUEi                    i

Figure 4.37: Automaton of the arith or constraint

Q =tn

VAR2
 1

VAR2
 2

VAR2
 n

VAR1
 1

VAR1
 2

VAR1
 n

Q1Q =s0

S1 S2 Sn

Figure 4.38: Hypergraph of the reformulation corresponding to the automaton of the
arith or constraint
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See also arith.

Key words decomposition, value constraint, automaton, automaton without counters, acyclic,
bipartite, no loop.
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4.20 arith sliding

Origin Used in the definition of some automaton

Constraint arith sliding(VARIABLES, RELOP, VALUE)

Argument(s) VARIABLES : collection(var − dvar)
RELOP : atom

VALUE : int

Restriction(s) required(VARIABLES, var)
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose Enforce for all sequences of variables var1, var2, . . . , vari of the VARIABLES collection to
have (var1 + var2 + . . .+ vari) RELOP VALUE.

Arc input(s) VARIABLES

Arc generator PATH 1 7→ collection

Arc arity ∗

Arc constraint(s) arith(collection, RELOP, VALUE)

Graph property(ies) NARC = |VARIABLES|

Example arith sliding

0
BBBBBBBB@

8
>>>>>>>><
>>>>>>>>:

var− 0,
var− 0,
var− 1,
var− 2,
var− 0,
var− 0,
var−−3

9
>>>>>>>>=
>>>>>>>>;

, <, 4

1
CCCCCCCCA

The previous constraint holds since all the following seven inequalities hold:

• 0 < 4,
• 0 + 0 < 4,
• 0 + 0 + 1 < 4,
• 0 + 0 + 1 + 2 < 4,
• 0 + 0 + 1 + 2 + 0 < 4,
• 0 + 0 + 1 + 2 + 0 + 0 < 4,
• 0 + 0 + 1 + 2 + 0 + 0− 3 < 4.

Automaton Figure 4.39 depicts the automaton associated to the arith sliding constraint. To each
item of the collection VARIABLES corresponds a signature variable Si, which is equal to 0.

See also arith, cumulative.

Key words decomposition, sliding sequence constraint, sequence, hypergraph, automaton,
automaton with counters.
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i

0,
{C=C+VAR }

i

0,C RELOP VALUE
{C=C+VAR }i

$, C RELOP VALUE

$

t

s

{C=0}

Figure 4.39: Automaton of the arith sliding constraint

Q =s0
Q1 Q =tn

VAR  1
C =01

VAR  2 VAR  n

S1 S2 Sn

C2 Cn

Figure 4.40: Hypergraph of the reformulation corresponding to the automaton of the
arith sliding constraint
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4.21 assign and counts

Origin N. Beldiceanu

Constraint assign and counts(COLOURS, ITEMS, RELOP, LIMIT)

Argument(s) COLOURS : collection(val− int)
ITEMS : collection(bin− dvar, colour − dvar)
RELOP : atom

LIMIT : dvar

Restriction(s) required(COLOURS, val)
distinct(COLOURS, val)
required(ITEMS, [bin, colour])
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose
Given several items (each of them having a specific colour which may not be initially fixed), and
different bins, assign each item to a bin, so that the total number n of items of colour COLOURS
in each bin satisfies the condition n RELOP LIMIT.

Derived Collection(s) col(VALUES − collection(val− int), [item(val − COLOURS.val)])

Arc input(s) ITEMS ITEMS

Arc generator PRODUCT 7→ collection(items1, items2)

Arc arity 2

Arc constraint(s) items1.bin = items2.bin

Sets

SUCC 7→2
4

source,

variables − col

„
VARIABLES − collection(var− dvar),
[item(var− ITEMS.colour)]

«
3
5

Constraint(s) on sets counts(VALUES, variables, RELOP, LIMIT)

Example assign and counts

0
BBBB@

{val − 4},8
>><
>>:

bin − 1 colour − 4,
bin − 3 colour − 4,
bin − 1 colour − 4,
bin − 1 colour − 5

9
>>=
>>;
,≤, 2

1
CCCCA

Parts (A) and (B) of Figure 4.41 respectively show the initial and final graph. The
final graph consists of the following two connected components:

• The connected component containing six vertices corresponds to the items which are
assigned to bin 1.
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• The connected component containing two vertices corresponds to the items which
are assigned to bin 3.

The assign and counts constraint holds since for each set of successors of the vertices
of the final graph no more than two items take colour 4. Figure 4.42 shows the solution
associated to the example. The items and the bins are respectively represented by little
squares and by the different columns. Each little square contains the value of the key

attribute of the item to which it corresponds. The items for which the colour attribute is
equal to 4 are located under the thick line.

ITEMS

ITEMS

1

1234

234

ITEMS

ITEMS

1:1,4

1:1,4 3:1,44:1,5

2:3,4

2:3,4

3:1,44:1,5

(A) (B)

Figure 4.41: Initial and final graph of the assign and counts constraint

<>4

=4

<3

1     2     3     4     5

1

3

4

2

Figure 4.42: Assignment of the items to the bins

Graph model We enforce the counts constraint on the colour of the items that are assigned to the same
bin.

Automaton Figure 4.43 depicts the automaton associated to the assign and counts constraint. To
each colour attribute COLOURi of the collection ITEMS corresponds a 0-1 signature vari-
able Si. The following signature constraint links COLOURi and Si: COLOURi ∈ COLOURS⇔
Si. For all items of the collection ITEMS for which the colour attribute takes its value in
COLOURS, counts for each value assigned to the bin attribute its number of occurrences n,
and finally imposes the condition n RELOP LIMIT.
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Usage Some persons have pointed out that it is impossible to use constraints such as among,
atleast, atmost, count, or global cardinality if the set of variables is not initially
known. However, this is for instance required in practice for some timetabling problems.

See also count, counts.

Key words assignment, coloured, automaton, automaton with array of counters, derived collection.

not_in(COLOUR ,COLOURS)       i
in(COLOUR ,COLOURS),   i

$

i       i

t:
arith(C,RELOP,LIMIT)

{C[BIN ]=C[BIN ]+1}
s

{C[_]=0}

Figure 4.43: Automaton of the assign and counts constraint
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4.22 assign and nvalues

Origin Derived from assign and counts and nvalues.

Constraint assign and nvalues(ITEMS, RELOP, LIMIT)

Argument(s) ITEMS : collection(bin − dvar, value − dvar)
RELOP : atom

LIMIT : dvar

Restriction(s) required(ITEMS, [bin, value])
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose
Given several items (each of them having a specific value which may not be initially fixed),
and different bins, assign each item to a bin, so that the number n of distinct values in each bin
satisfies the condition n RELOP LIMIT.

Arc input(s) ITEMS ITEMS

Arc generator PRODUCT 7→ collection(items1, items2)

Arc arity 2

Arc constraint(s) items1.bin = items2.bin

Sets
SUCC 7→»

source,
variables − col(VARIABLES − collection(var − dvar), [item(var − ITEMS.value)])

–

Constraint(s) on sets nvalues(variables, RELOP, LIMIT)

Example assign and nvalues

0
BBBB@

8
>>>><
>>>>:

bin − 2 value − 3,
bin − 1 value − 5,
bin − 2 value − 3,
bin − 2 value − 3,
bin − 2 value − 4

9
>>>>=
>>>>;
,≤, 2

1
CCCCA

Parts (A) and (B) of Figure 4.44 respectively show the initial and final graph. The
final graph consists of the following two connected components:

• The connected component containing eight vertices corresponds to the items which
are assigned to bin 2.

• The connected component containing two vertices corresponds to the items which
are assigned to bin 1.

The assign and nvalues constraint holds since for each set of successors of the vertices
of the final graph no more than two distinct values are used:

• The unique item assigned to bin 1 uses value 5.
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ITEMS

ITEMS

1

12 345

2345

ITEMS

ITEMS

1:2,3

1:2,33:2,3 4:2,35:2,4

2:1,5

2:1,5

3:2,3 4:2,35:2,4

(A) (B)

Figure 4.44: Initial and final graph of the assign and nvalues constraint

<3

Second value

First value 5 3

4

1 2 3 4 5

Figure 4.45: An assignment with at most two distinct values in parallel
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• Items assigned to bin 2 use values 3 and 4.

Figure 4.45 depicts the solution corresponding to the example.

Graph model We enforce the nvalue constraint on the items that are assigned to the same bin.

Usage Let us give two examples where the assign and nvalues constraint is useful:

• Quite often, in bin-packing problems, each item has a specific type, and one wants to
assign items of similar type to each bin.

• In a vehicle routing problem, one wants to restrict the number of towns visited by
each vehicle. Note that several customers may be located at the same town. In this
example, each bin would correspond to a vehicle, each item would correspond to a
visit to a customer, and the colour of an item would be the location of the correspond-
ing customer.

See also nvalue, nvalues.

Key words assignment, number of distinct values.
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4.23 atleast

Origin CHIP

Constraint atleast(N, VARIABLES, VALUE)

Argument(s) N : int

VARIABLES : collection(var − dvar)
VALUE : int

Restriction(s) N ≥ 0
N ≤ |VARIABLES|
required(VARIABLES, var)

Purpose At least N variables of the VARIABLES collection are assigned to value VALUE.

Arc input(s) VARIABLES

Arc generator SELF 7→ collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUE

Graph property(ies) NARC ≥ N

Example atleast(2, {var − 4, var − 2, var − 4, var − 5}, 4)

Parts (A) and (B) of Figure 4.46 respectively show the initial and final graph. Since we
use the NARC graph property, the unary arcs of the final graph are stressed in bold. The
atleast constraint holds since at least 2 variables are assigned to value 4.

VARIABLES

1234

NARC=2

1:4 3:4

(A) (B)

Figure 4.46: Initial and final graph of the atleast constraint

Graph model Since we use a unary arc constraint (VALUE is fixed) we employ the SELF arc generator in
order to produce a graph with a single loop on each vertex.

Automaton Figure 4.47 depicts the automaton associated to the atleast constraint. To each variable
VARi of the collection VARIABLES corresponds a 0-1 signature variable Si. The following
signature constraint links VARi and Si: VARi = VALUE ⇔ Si. The automaton counts the
number of variables of the VARIABLES collection which are assigned to VALUE and finally
checks that this number is greater than or equal to N.
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{C=C+1}
i

VAR =VALUE,
i

VAR <>VALUE

$

t:

N<=C

s

{C=0}

Figure 4.47: Automaton of the atleast constraint

C1

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0

C =00

Q =tn

C >=Nn

Figure 4.48: Hypergraph of the reformulation corresponding to the automaton of the
atleast constraint
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See also atmost, among, exactly.

Key words value constraint, at least, automaton, automaton with counters,
alpha-acyclic constraint network(2).
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4.24 atmost

Origin CHIP

Constraint atmost(N, VARIABLES, VALUE)

Argument(s) N : int

VARIABLES : collection(var − dvar)
VALUE : int

Restriction(s) N ≥ 0
required(VARIABLES, var)

Purpose At most N variables of the VARIABLES collection are assigned to value VALUE.

Arc input(s) VARIABLES

Arc generator SELF 7→ collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUE

Graph property(ies) NARC ≤ N

Example atmost(1, {var − 4, var − 2, var − 4, var − 5}, 2)

Parts (A) and (B) of Figure 4.49 respectively show the initial and final graph. Since we
use the NARC graph property, the unary arcs of the final graph are stressed in bold. The
atmost constraint holds since at most one variable is assigned to value 2.

VARIABLES

1234

NARC=1

2:2

(A) (B)

Figure 4.49: Initial and final graph of the atmost constraint

Graph model Since we use a unary arc constraint (VALUE is fixed) we employ the SELF arc generator in
order to produce a graph with a single loop on each vertex.

Automaton Figure 4.50 depicts the automaton associated to the atmost constraint. To each variable
VARi of the collection VARIABLES corresponds a 0-1 signature variable Si. The following
signature constraint links VARi and Si: VARi = VALUE ⇔ Si. The automaton counts the
number of variables of the VARIABLES collection which are assigned to VALUE and finally
checks that this number is less than or equal to N.
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{C=C+1}
i

VAR =VALUE,
i

VAR <>VALUE

$

t:

N>=C

s

{C=0}

Figure 4.50: Automaton of the atmost constraint
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Figure 4.51: Hypergraph of the reformulation corresponding to the automaton of the
atmost constraint



248 NARC, SELF

See also atleast, among, exactly, cumulative.

Key words value constraint, at most, automaton, automaton with counters,
alpha-acyclic constraint network(2).
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4.25 balance

Origin N. Beldiceanu

Constraint balance(BALANCE, VARIABLES)

Argument(s) BALANCE : dvar

VARIABLES : collection(var − dvar)

Restriction(s) BALANCE ≥ 0
BALANCE ≤ |VARIABLES|
required(VARIABLES, var)

Purpose BALANCE is equal to the difference between the number of occurrence of the value that occurs
the most and the value that occurs the least within the collection of variables VARIABLES.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) RANGE NSCC = BALANCE

Example balance

0
BBBB@

2,

8
>>>><
>>>>:

var − 3,
var − 1,
var − 7,
var − 1,
var − 1

9
>>>>=
>>>>;

1
CCCCA

In this example, values 1, 3 and 7 are respectively used 3, 1 and 1 times. BALANCE

is assigned to the difference between the maximum and minimum number of the previous
occurrences (i.e. 3 − 1). Parts (A) and (B) of Figure 4.52 respectively show the initial and
final graph. Since we use the RANGE NSCC graph property, we show the largest and
smallest strongly connected components of the final graph.

Graph model The graph property RANGE NSCC constraints the difference between the sizes of the
largest and smallest strongly connected components.

Automaton Figure 4.53 depicts the automaton associated to the balance constraint. To each item of
the collection VARIABLES corresponds a signature variable Si, which is equal to 1.

Usage One application of this constraint is to enforce a balanced assignment of values, no matter
how many distinct values will be used. In this case one will push down the maximum value
of the first argument of the balance constraint.

See also balance interval, balance modulo, balance partition, tree range.

Key words value constraint, assignment, balanced assignment, automaton,
automaton with array of counters, equivalence.
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VARIABLES

1

2

3

4

5

RANGE_NSCC=3-1=2

MIN_NSCC MAX_NSCC

1:3 2:1

4:1

5:1

3:7

(A) (B)

Figure 4.52: Initial and final graph of the balance constraint

$

t:

1,

i       i{C[VAR ]=C[VAR ]+1}

minimum_except_0(N1,C)

BALANCE=N2−N1

maximum(N2,C)

{C[_]=0}

s

Figure 4.53: Automaton of the balance constraint
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4.26 balance interval

Origin Derived from balance.

Constraint balance interval(BALANCE, VARIABLES, SIZE INTERVAL)

Argument(s) BALANCE : dvar

VARIABLES : collection(var− dvar)
SIZE INTERVAL : int

Restriction(s) BALANCE ≥ 0
BALANCE ≤ |VARIABLES|
required(VARIABLES, var)
SIZE INTERVAL > 0

Purpose

Consider the largest set S1 (respectively the smallest set S2) of variables of the collection
VARIABLES which take their value in a same interval [SIZE INTERVAL · k, SIZE INTERVAL ·
k + SIZE INTERVAL − 1], where k is an integer. BALANCE is equal to the difference between
the cardinality of S2 and the cardinality of S1.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var/SIZE INTERVAL = variables2.var/SIZE INTERVAL

Graph property(ies) RANGE NSCC = BALANCE

Example balance interval

0
BBBB@

3,

8
>>>><
>>>>:

var − 6,
var − 4,
var − 3,
var − 3,
var − 4

9
>>>>=
>>>>;
, 3

1
CCCCA

In the previous example, the third parameter SIZE INTERVAL defines the following
family of intervals [3 · k, 3 · k + 2], where k is an integer. Values 6,4,3,3 and 4 are
respectively located within intervals [6, 8], [3, 5], [3, 5], [3, 5] and [3, 5]. Therefore
intervals [6, 8] and [3, 5] are respectively used 1 and 4 times. BALANCE is assigned to the
difference between the maximum and minimum number of the previous occurrences (i.e.
4− 1). Parts (A) and (B) of Figure 4.54 respectively show the initial and final graph. Since
we use the RANGE NSCC graph property, we show the largest and smallest strongly
connected components of the final graph.

Graph model The graph property RANGE NSCC constraints the difference between the sizes of the
largest and smallest strongly connected components.
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VARIABLES

1

2

3

4

5

RANGE_NSCC=4-1=3

MIN_NSCC MAX_NSCC

1:6 2:4

3:3

4:3

5:4

(A) (B)

Figure 4.54: Initial and final graph of the balance interval constraint

1,
{C[VAR /SIZE_INTERVAL]=C[VAR /SIZE_INTERVAL]+1}i                     i

$

t:
minimum_except_0(N1,C)

BALANCE=N2−N1

maximum(N2,C)

s

{C[_]=0}

Figure 4.55: Automaton of the balance interval constraint
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Automaton Figure 4.55 depicts the automaton associated to the balance interval constraint. To
each item of the collection VARIABLES corresponds a signature variable Si, which is equal
to 1.

Usage One application of this constraint is to enforce a balanced assignment of interval of values,
no matter how many distinct interval of values will be used. In this case one will push down
the maximum value of the first argument of the balance interval constraint.

See also balance.

Key words value constraint, interval, assignment, balanced assignment, automaton,
automaton with array of counters, equivalence.
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4.27 balance modulo

Origin Derived from balance.

Constraint balance modulo(BALANCE, VARIABLES, M)

Argument(s) BALANCE : dvar

VARIABLES : collection(var − dvar)
M : int

Restriction(s) BALANCE ≥ 0
BALANCE ≤ |VARIABLES|
required(VARIABLES, var)
M > 0

Purpose
Consider the largest set S1 (respectively the smallest set S2) of variables of the collection
VARIABLES which have the same remainder when divided by M. BALANCE is equal to the differ-
ence between the cardinality of S2 and the cardinality of S1.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var mod M = variables2.var mod M

Graph property(ies) RANGE NSCC = BALANCE

Example balance modulo

0
BBBB@

2,

8
>>>><
>>>>:

var − 6,
var − 1,
var − 7,
var − 1,
var − 5

9
>>>>=
>>>>;
, 3

1
CCCCA

In this example values 6, 1, 7, 1, 5 are respectively associated to the equivalence
classes 0, 1, 1, 1, 2. Therefore the equivalence classes 0, 1 and 2 are respectively used
1, 3 and 1 times. BALANCE is assigned to the difference between the maximum and
minimum number of the previous occurrences (i.e. 3− 1). Parts (A) and (B) of Figure 4.56
respectively show the initial and final graph. Since we use the RANGE NSCC graph
property, we show the largest and smallest strongly connected components of the final
graph.

Graph model The graph property RANGE NSCC constraints the difference between the sizes of the
largest and smallest strongly connected components.

Automaton Figure 4.57 depicts the automaton associated to the balance modulo constraint. To each
item of the collection VARIABLES corresponds a signature variable Si, which is equal to 1.
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VARIABLES

1

2

3

4

5

RANGE_NSCC=3-1=2

MIN_NSCC MAX_NSCC

1:6 2:1

3:7

4:1

5:5

(A) (B)

Figure 4.56: Initial and final graph of the balance modulo constraint

1,
{C[VAR mod M]=C[VAR mod M]+1}i            i

$

t:
minimum_except_0(N1,C)

BALANCE=N2−N1

maximum(N2,C)

{C[_]=0}

s

Figure 4.57: Automaton of the balance modulo constraint
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Usage One application of this constraint is to enforce a balanced assignment of values, no matter
how many distinct equivalence classes will be used. In this case one will push down the
maximum value of the first argument of the balance modulo constraint.

See also balance.

Key words value constraint, modulo, assignment, balanced assignment, automaton,
automaton with array of counters, equivalence.
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4.28 balance partition

Origin Derived from balance.

Constraint balance partition(BALANCE, VARIABLES, PARTITIONS)

Type(s) VALUES : collection(val− int)

Argument(s) BALANCE : dvar

VARIABLES : collection(var− dvar)
PARTITIONS : collection(p− VALUES)

Restriction(s) required(VALUES, val)
distinct(VALUES, val)
BALANCE ≥ 0
BALANCE ≤ |VARIABLES|
required(VARIABLES, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose
Consider the largest set S1 (respectively the smallest set S2) of variables of the collection
VARIABLES which take their value in the same partition of the collection PARTITIONS.BALANCE
is equal to the difference between the cardinality of S2 and the cardinality of S1.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) in same partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) RANGE NSCC = BALANCE

Example balance partition

0
BBBBBBBBBB@

1,

8
>>>><
>>>>:

var − 6,
var − 2,
var − 6,
var − 4,
var − 4

9
>>>>=
>>>>;
,

8
<
:

p− {val − 1, val − 3},
p− {val − 4},
p− {val − 2, val − 6}

9
=
;

1
CCCCCCCCCCA

In this example values 6, 2, 6, 4, 4 are respectively associated to the partitions
p − {val − 2, val − 6} and p − {val − 4}. Partitions p − {val − 4} and
p − {val − 2, val − 6} are respectively used 2 and 3 times. BALANCE is assigned to
the difference between the maximum and minimum number of the previous occurrences
(i.e. 3 − 2). Note that we don’t consider those partitions that are not used at all. Parts
(A) and (B) of Figure 4.58 respectively show the initial and final graph. Since we use the
RANGE NSCC graph property, we show the largest and smallest strongly connected
components of the final graph.
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Graph model The graph property RANGE NSCC constraints the difference between the sizes of the
largest and smallest strongly connected components.

Usage One application of this constraint is to enforce a balanced assignment of values, no matter
how many distinct partitions will be used. In this case one will push down the maximum
value of the first argument of the balance partition constraint.

See also balance.

Key words value constraint, partition, assignment, balanced assignment, equivalence.
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VARIABLES

1

2

3

4

5

RANGE_NSCC=3-2=1

MIN_NSCC MAX_NSCC

4:4

5:4

1:6

2:2

3:6

(A) (B)

Figure 4.58: Initial and final graph of the balance partition constraint
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4.29 bin packing

Origin Derived from cumulative.

Constraint bin packing(CAPACITY, ITEMS)

Argument(s) CAPACITY : int

ITEMS : collection(bin − dvar, weight − int)

Restriction(s) CAPACITY ≥ 0
required(ITEMS, [bin, weight])
ITEMS.weight ≥ 0
ITEMS.weight ≤ CAPACITY

Purpose
Given several items of the collection ITEMS (each of them having a specific weight), and dif-
ferent bins of a fixed capacity, assign each item to a bin so that the total weight of the items in
each bin does not exceed CAPACITY.

Arc input(s) ITEMS ITEMS

Arc generator PRODUCT 7→ collection(items1, items2)

Arc arity 2

Arc constraint(s) items1.bin = items2.bin

Sets

SUCC 7→2
4

source,

variables − col

„
VARIABLES − collection(var− dvar),
[item(var− ITEMS.weight)]

«
3
5

Constraint(s) on sets sum ctr(variables,≤, CAPACITY)

Example bin packing

0
@ 5,

8
<
:

bin− 3 weight − 4,
bin− 1 weight − 3,
bin− 3 weight − 1

9
=
;

1
A

Parts (A) and (B) of Figure 4.59 respectively show the initial and final graph. Each
connected component of the final graph corresponds to the items which are all assigned
to the same bin. The bin packing constraint holds since the sum of the height of items
which are assigned to bins 1 and 3 is respectively equal to 3 and 5. The previous quantities
are both less than or equal to the maximum CAPACITY 5. Figure 4.60 shows the solution
associated to the previous example.

Graph model We enforce the sum ctr constraint on the weight of the items that are assigned to the same
bin.

Automaton Figure 4.61 depicts the automaton associated to the bin packing constraint. To each item
of the collection ITEMS corresponds a signature variable Si, which is equal to 1.
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ITEMS

ITEMS

1

1 23

2 3

ITEMS

ITEMS

1:3,4

1:3,4 3:3,1

2:1,3

2:1,3

3:3,1

(A) (B)

Figure 4.59: Initial and final graph of the bin packing constraint

1 2 3 4 5

1

2

3

4

5
<6

2 1

3

Figure 4.60: Bin-packing solution

1,
{C[BIN ]=C[BIN ]+WEIGHT }i       i        i

$

t:
arith(C,<=,CAPACITY)

{C[_]=0}

s

Figure 4.61: Automaton of the bin packing constraint
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Remark Note the difference with the classical bin-packing problem [66, page 221] where one wants
to find solutions that minimize the number of bins. In our case each item may be assigned
only to specific bins (i.e. the different values of the bin variable) and the goal is to find a
feasible solution. This constraint can be seen as a special case of the cumulative con-
straint [67], where all tasks durations are equal to one.

In [68] the CAPACITY parameter of the bin packing constraint is replaced by a collection
of domain variables representing the load of each bin (i.e. the sum of the weigths of the
items assigned to a bin). This allows representing problems where a minimum level has to
be reached in each bin.

Algorithm [69, 70, 71, 72, 68].

See also cumulative.

Key words resource constraint, assignment, automaton, automaton with array of counters.
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4.30 binary tree

Origin Derived from tree.

Constraint binary tree(NTREES, NODES)

Argument(s) NTREES : dvar

NODES : collection(index − int, succ − dvar)

Restriction(s) NTREES ≥ 0
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose
Cover the digraph G described by the NODES collection with NTREES binary trees in such a way
that each vertex of G belongs to one distinct binary tree. The edges of the binary trees are
directed from their leaves to their respective root.

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) •MAX NSCC ≤ 1
• NCC = NTREES

•MAX ID ≤ 2

Example binary tree

0
BBBBBBBBBB@

2,

8
>>>>>>>>>><
>>>>>>>>>>:

index − 1 succ − 1,
index − 2 succ − 3,
index − 3 succ − 5,
index − 4 succ − 7,
index − 5 succ − 1,
index − 6 succ − 1,
index − 7 succ − 7,
index − 8 succ − 5

9
>>>>>>>>>>=
>>>>>>>>>>;

1
CCCCCCCCCCA

Parts (A) and (B) of Figure 4.62 respectively show the initial and final graph. Since we use
the NCC graph property, we display the two connected components of the final graph.
Each of them corresponds to a binary tree. Since we use the MAX ID graph property,
we also show with a double circle a vertex which has a maximum number of predecessors.

The binary tree constraint holds since all strongly connected components of the final
graph have no more than one vertex, since NTREES = NCC = 2 and since MAX ID =
2.
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NODES

1

2

3

4

5

6

7

8 MAX_NSCC=1, NCC=2
MAX_ID=2

CC#1 CC#2

1:1,1

2:2,3

3:3,5

5:5,1 6:6,1

8:8,5

4:4,7

7:7,7

(A) (B)

Figure 4.62: Initial and final graph of the binary tree constraint
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Graph model We use the same graph constraint as for the tree constraint, except that we add the graph
property MAX ID ≤ 2 which constraints the maximum in-degree of the final graph to
not exceed 2. MAX ID does not consider loops: This is why we do not have any problem
with the root of each tree.

See also tree.

Key words graph constraint, graph partitioning constraint, connected component, tree, one succ.
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4.31 cardinality atleast

Origin Derived from global cardinality.

Constraint cardinality atleast(ATLEAST, VARIABLES, VALUES)

Argument(s) ATLEAST : dvar

VARIABLES : collection(var − dvar)
VALUES : collection(val − int)

Restriction(s) ATLEAST ≥ 0
ATLEAST ≤ |VARIABLES|
required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)

Purpose ATLEAST is the minimum number of time that a value of VALUES is taken by the variables of the
collection VARIABLES.

Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→ collection(variables, values)

Arc arity 2

Arc constraint(s) variables.var 6= values.val

Graph property(ies) MAX ID = |VARIABLES| − ATLEAST

Example cardinality atleast

„
1, {var − 3, var− 3, var− 8},
{val − 3, val − 8}

«

In this example, values 3 and 8 are respectively used 2, and 1 times. Therefore
ATLEAST is assigned to 3 − 2 = 1. Parts (A) and (B) of Figure 4.63 respectively show the
initial and final graph. Since we use the MAX ID graph property, the vertex with the
maximum number of predecessor is stressed with a double circle.

Graph model Using directly the graph property MIN ID = ATLEAST and replacing the disequality
of the arc constraint by an equality does not work since it ignores values which are not
assigned to any variable. This comes from the fact that isolated vertices are removed from
the final graph.

Automaton Figure 4.64 depicts the automaton associated to the cardinality atleast constraint. To
each variable VARi of the collection VARIABLES corresponds a 0-1 signature variable Si.
The following signature constraint links VARi and Si: VARi ∈ VALUES⇔ Si.

Usage An application of this constraint is to enforce a minimum use of values.
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VARIABLES

VALUES

1

12

2 3

MAX_ID=2

1:3

2:8

2:3 3:8

1:3

(A) (B)

Figure 4.63: Initial and final graph of the cardinality atleast constraint

in(VAR ,VALUES),i
inot_in(VAR ,VALUES)

$

i       i{C[VAR ]=C[VAR ]+1}

t:
minimum_except_0(M,C)

M>=ATLEAST

s

{C[_]=0}

Figure 4.64: Automaton of the cardinality atleast constraint
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Remark This is a restricted form of a variant of an among constraint and of the
global cardinality constraint. In the original global cardinality constraint, one
specifies for each value its minimum and maximum number of occurrences.

Algorithm See global cardinality [19].

See also global cardinality.

Key words value constraint, assignment, at least, automaton, automaton with array of counters,
acyclic, bipartite, no loop.
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4.32 cardinality atmost

Origin Derived from global cardinality.

Constraint cardinality atmost(ATMOST, VARIABLES, VALUES)

Argument(s) ATMOST : dvar

VARIABLES : collection(var − dvar)
VALUES : collection(val − int)

Restriction(s) ATMOST ≥ 0
ATMOST ≤ |VARIABLES|
required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)

Purpose ATMOST is the maximum number of occurrences of each value of VALUES within the variables
of the collection VARIABLES.

Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→ collection(variables, values)

Arc arity 2

Arc constraint(s) variables.var = values.val

Graph property(ies) MAX ID = ATMOST

Example cardinality atmost

0
BBBBBBBBBBBB@

2,

8
>>>><
>>>>:

var − 2,
var − 1,
var − 7,
var − 1,
var − 2

9
>>>>=
>>>>;
,

8
>><
>>:

val − 5,
val − 7,
val − 2,
val − 9

9
>>=
>>;

1
CCCCCCCCCCCCA

In this example, values 5, 7, 2 and 9 are respectively used 0, 1, 2 and 0 times.
Therefore ATMOST is assigned to the maximum number of occurrences 2. Parts (A) and (B)
of Figure 4.65 respectively show the initial and final graph. Since we use the MAX ID
graph property, the vertex which has the maximum number of predecessor is stressed with
a double circle.

Automaton Figure 4.66 depicts the automaton associated to the cardinality atmost constraint. To
each variable VARi of the collection VARIABLES corresponds a 0-1 signature variable Si.
The following signature constraint links VARi and Si: VARi ∈ VALUES⇔ Si.
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VARIABLES

VALUES

1

1234

2345

MAX_ID=2

1:2

3:2

3:7

2:7

5:2

(A) (B)

Figure 4.65: Initial and final graph of the cardinality atmost constraint

in(VAR ,VALUES),i
inot_in(VAR ,VALUES)

$

i       i{C[VAR ]=C[VAR ]+1}

t:
arith(C,<=,ATMOST)

{C[_]=0}

s

Figure 4.66: Automaton of the cardinality atmost constraint
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Usage One application of this constraint is to enforce a maximum use of values.

Remark This is a restricted form of a variant of the among constraint and of the
global cardinality constraint. In the original global cardinality constraint, one
specifies for each value its minimum and maximum number of occurrences.

Algorithm See global cardinality [19].

See also global cardinality.

Key words value constraint, assignment, at most, automaton, automaton with array of counters,
acyclic, bipartite, no loop.
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4.33 cardinality atmost partition

Origin Derived from global cardinality.

Constraint cardinality atmost partition(ATMOST, VARIABLES, PARTITIONS)

Type(s) VALUES : collection(val− int)

Argument(s) ATMOST : dvar

VARIABLES : collection(var− dvar)
PARTITIONS : collection(p− VALUES)

Restriction(s) required(VALUES, val)
distinct(VALUES, val)
ATMOST ≥ 0
ATMOST ≤ |VARIABLES|
required(VARIABLES, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose ATMOST is the maximum number of time that values of a same partition of PARTITIONS are
taken by the variables of the collection VARIABLES.

Arc input(s) VARIABLES PARTITIONS

Arc generator PRODUCT 7→ collection(variables, partitions)

Arc arity 2

Arc constraint(s) in(variables.var, partitions.p)

Graph property(ies) MAX ID = ATMOST

Example cardinality atmost partition

0
BBBBBBBBBBBB@

2,

8
>>>>>><
>>>>>>:

var − 2,
var − 3,
var − 7,
var − 1,
var − 6,
var − 0

9
>>>>>>=
>>>>>>;

,

8
<
:

p− {val − 1, val − 3},
p− {val − 4},
p− {val − 2, val − 6}

9
=
;

1
CCCCCCCCCCCCA

In this example, two variables are assigned to values of the first partition, no vari-
able is assigned to a value of the second partition, and finally two variables are assigned
to values of the last partition. Therefore ATMOST is assigned to the maximum number of
occurrences 2. Parts (A) and (B) of Figure 4.67 respectively show the initial and final
graph. Since we use the MAX ID graph property, a vertex with the maximum number
of predecessor is stressed with a double circle.
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See also global cardinality, in.

Key words value constraint, partition, at most, acyclic, bipartite, no loop.
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VARIABLES

PARTITIONS

1

1 23

2 3456

MAX_ID=2

1:2

3:2
  6

2:3

1:1
  3

4:15:6

(A) (B)

Figure 4.67: Initial and final graph of the cardinality atmost partition con-
straint
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4.34 change

Origin CHIP

Constraint change(NCHANGE, VARIABLES, CTR)

Synonym(s) nbchanges, similarity.

Argument(s) NCHANGE : dvar

VARIABLES : collection(var − dvar)
CTR : atom

Restriction(s) NCHANGE ≥ 0
NCHANGE < |VARIABLES|
required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose NCHANGE is the number of times that constraint CTR holds on consecutive variables of the
collection VARIABLES.

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var CTR variables2.var

Graph property(ies) NARC = NCHANGE

Example change

0
BBBB@

3,

8
>>>><
>>>>:

var − 4,
var − 4,
var − 3,
var − 4,
var − 1

9
>>>>=
>>>>;
, 6=

1
CCCCA

change

0
BBBB@

1,

8
>>>><
>>>>:

var − 1,
var − 2,
var − 4,
var − 3,
var − 7

9
>>>>=
>>>>;
, >

1
CCCCA

In the first example the changes are located between values 4 and 3, 3 and 4, 4 and
1. In the second example the unique change occurs between values 4 and 3. Parts (A) and
(B) of Figure 4.68 respectively show the initial and final graph of the first example. Since
we use the NARC graph property, the arcs of the final graph are stressed in bold.

Graph model Since we are only interested by the constraints linking two consecutive items of the collec-
tion VARIABLES we use PATH to generate the arcs of the initial graph.
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Automaton Figure 4.69 depicts the automaton associated to the change constraint. To each pair
of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a 0-
1 signature variable Si. The following signature constraint links VARi, VARi+1 and Si:
VARi CTR VARi+1 ⇔ Si.

Usage This constraint can be used in the context of timetabling problems in order to put an upper
limit on the number of changes of job types during a given period.

Remark A similar constraint appears in [73, page 338] under the name of similarity constraint.
The difference consists of replacing the arithmetic constraint CTR by a binary constraint.
When CTR is equal to 6= this constraint is called nbchanges in [40].

Algorithm [65].

Used in pattern.

See also smooth, change partition, change pair, circular change, longest change.

Key words timetabling constraint, number of changes, automaton, automaton with counters,
sliding cyclic(1) constraint network(2), sliding cyclic(1) constraint network(3), acyclic,
no loop.
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VARIABLES

1

2

3

4

5

NARC=3

2:4

3:3

4:4

5:1

(A) (B)

Figure 4.68: Initial and final graph of the change constraint

VAR  not CTR VARi i+1
{C=C+1}

i i+1VAR  CTR VAR    ,

$

NCHANGE=C
t:

s

{C=0}

Figure 4.69: Automaton of the change constraint

Q =s0

C =00 C1

Q1
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1
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VAR
n

VAR
3

S3

Q2

C2

Sn−1

VAR
n−1

Q   =tn−1

C   =NCHANGEn−1

Figure 4.70: Hypergraph of the reformulation corresponding to the automaton of the
change constraint
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4.35 change continuity

Origin N. Beldiceanu

Constraint change continuity

0
BBBBBBBBBBBBBB@

NB PERIOD CHANGE,
NB PERIOD CONTINUITY,
MIN SIZE CHANGE,
MAX SIZE CHANGE,
MIN SIZE CONTINUITY,
MAX SIZE CONTINUITY,
NB CHANGE,
NB CONTINUITY,
VARIABLES,
CTR

1
CCCCCCCCCCCCCCA

Argument(s) NB PERIOD CHANGE : dvar

NB PERIOD CONTINUITY : dvar

MIN SIZE CHANGE : dvar

MAX SIZE CHANGE : dvar

MIN SIZE CONTINUITY : dvar

MAX SIZE CONTINUITY : dvar

NB CHANGE : dvar

NB CONTINUITY : dvar

VARIABLES : collection(var − dvar)
CTR : atom

Restriction(s) NB PERIOD CHANGE ≥ 0
NB PERIOD CONTINUITY ≥ 0
MIN SIZE CHANGE ≥ 0
MAX SIZE CHANGE ≥ MIN SIZE CHANGE

MIN SIZE CONTINUITY ≥ 0
MAX SIZE CONTINUITY ≥ MIN SIZE CONTINUITY

NB CHANGE ≥ 0
NB CONTINUITY ≥ 0
required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]
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On the one hand a change is defined by the fact that constraint
VARIABLES[i].var CTR VARIABLES[i + 1].var holds.
On the other hand a continuity is defined by the fact that constraint
VARIABLES[i].var CTR VARIABLES[i + 1].var does not hold.
A period of change on variables

VARIABLES[i].var, VARIABLES[i + 1].var, . . . , VARIABLES[j].var (i < j)

is defined by the fact that all constraints VARIABLES[k].var CTR VARIABLES[k + 1].var hold
for k ∈ [i, j − 1].
A period of continuity on variables

VARIABLES[i].var, VARIABLES[i + 1].var, . . . , VARIABLES[j].var (i < j)

is defined by the fact that all constraints VARIABLES[k].var CTR VARIABLES[k+ 1].var do not
hold for k ∈ [i, j − 1].
The constraint change continuity holds if and only if:

Purpose • NB PERIOD CHANGE is equal to the number of periods of change,

• NB PERIOD CONTINUITY is equal to the number of periods of continuity,

• MIN SIZE CHANGE is equal to the number of variables of the smallest period of change,

• MAX SIZE CHANGE is equal to the number of variables of the largest period of change,

• MIN SIZE CONTINUITY is equal to the number of variables of the smallest period of
continuity,

• MAX SIZE CONTINUITY is equal to the number of variables of the largest period of con-
tinuity,

• NB CHANGE is equal to the total number of changes,

• NB CONTINUITY is equal to the total number of continuities.

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var CTR variables2.var

Graph property(ies) • NCC = NB PERIOD CHANGE

•MIN NCC = MIN SIZE CHANGE

•MAX NCC = MAX SIZE CHANGE

• NARC = NB CHANGE

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var¬ CTR variables2.var
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Graph property(ies) • NCC = NB PERIOD CONTINUITY

•MIN NCC = MIN SIZE CONTINUITY

•MAX NCC = MAX SIZE CONTINUITY

• NARC = NB CONTINUITY

Example change continuity

0
BBBBBBBBBBBBBBBB@

3, 2, 2, 4, 2, 4, 6, 4,

8
>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

var − 1,
var − 3,
var − 1,
var − 8,
var − 8,
var − 4,
var − 7,
var − 7,
var − 7,
var − 7,
var − 2

9
>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

, 6=

1
CCCCCCCCCCCCCCCCA

Figure 4.71 makes clear the different parameters that are associated to the given ex-
ample. We place character | for representing a change and a blank for a continuity. On
top of the solution we represent the different periods of change, while below we show the
different periods of continuity. Parts (A) and (B) of Figure 4.72 respectively show the
initial and final graph associated to the first graph constraint.

1|3|1|8 8|4|7 7 7 7|2

<−−−−−> <−−−>     <−>

      <−>   <−−−−−>

Figure 4.71: Periods of changes and periods of continuities

Graph model We use two graph constraints to respectively catch the constraints on the period of changes
and of the period of continuities. In both case each period corresponds to a connected
component of the final graph.

Automaton Figures 4.73 , 4.74 , 4.77 , 4.78 , 4.81 , 4.82 and 4.85 depict the automata associ-
ated to the different graph characteristics of the change continuity constraint. For
the automata that respectively compute NB PERIOD CHANGE, NB PERIOD CONTINUITY

MIN SIZE CHANGE, MIN SIZE CONTINUITY MAX SIZE CHANGE, MAX SIZE CONTINUITY

NB CHANGE and NB CONTINUITY we have a 0-1 signature variable Si for each pair of con-
secutive variables (VARi, VARi+1) of the collection VARIABLES. The following signature
constraint links VARi, VARi+1 and Si: VARi CTR VARi+1 ⇔ Si.

Remark If the variables of the collection VARIABLES have to take distinct values between 1 and the
total number of variables, we have what is called a permutation. In this case, if we choose
the binary constraint <, then MAX SIZE CHANGE gives the size of the longest run of the
permutation; A run is a maximal increasing contiguous subsequence in a permutation.

See also group, group skip isolated item, stretch path.

Key words timetabling constraint, run of a permutation, permutation, connected component,
automaton, automaton with counters, sliding cyclic(1) constraint network(2),
sliding cyclic(1) constraint network(3), acyclic, no loop, apartition.
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VARIABLES

1

2

3

4

5

6

7

8

9

10

11

NCC=3
MIN_NCC=2
MAX_NCC=4

NARC=5

MIN_NCC MAX_NCC

10:7

11:2

1:1

2:3

3:1

4:8

5:8

6:4

(A) (B)

Figure 4.72: Initial and final graph of the change continuity constraint
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VAR  not CTR VARi            i+1

VAR  not CTR VARi            i+1

VAR  CTR VAR   ,i        i+1

VAR  CTR VARi        i+1 $i

t:
NB_PERIOD_CHANGE=C

{C=C+1}

$

{C=0}

s

Figure 4.73: Automaton for the NB PERIOD CHANGE parameter of the
change continuity constraint

VAR  CTR VARi        i+1

VAR  CTR VARi        i+1

VAR  not CTR VAR   ,i            i+1

VAR  not CTR VARi            i+1 $i

t:

{C=C+1}

$

NB_PERIOD_CONTINUITY=C

{C=0}

s

Figure 4.74: Automaton for the NB PERIOD CONTINUITY parameter of the
change continuity constraint
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Q =s0

C =00 C1

Q1

VAR
1

S1

VAR
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S2

VAR
n

VAR
3

S3

Q2

C2

Sn−1

VAR
n−1

Q   =tn−1

C   =NB_PERIOD_CHANGEn−1

Figure 4.75: Hypergraph of the reformulation corresponding to the automaton of the
NB PERIOD CHANGE parameter of the change continuity constraint
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VAR
n

VAR
3

S3

Q2

C2

Sn−1

VAR
n−1

Q   =tn−1

C   =NB_PERIOD_CONTINUITYn−1

Figure 4.76: Hypergraph of the reformulation corresponding to the automaton of the
NB PERIOD CONTINUITY parameter of the change continuity constraint

i            i+1VAR  not CTR VAR   ,
$

i            i+1VAR  not CTR VAR   

i            i+1VAR  not CTR VAR   i        i+1VAR  CTR VAR   ,
{D=2}

i        i+1VAR  CTR VAR   ,i        i+1VAR  CTR VAR   ,

i        i+1VAR  CTR VAR   ,

i            i+1VAR  not CTR VAR

j

MIN_SIZE_CHANGE=C
t:

{C=D}

k

$

{C=0,D=1}

s

{C=min(C,D)}

{C=D}
$, {C=min(C,D)}

$,

{D=D+1}
i

{D=D+1}

{D=2}

Figure 4.77: Automaton for the MIN SIZE CHANGE parameter of the
change continuity constraint
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$

i        i+1VAR  CTR VAR   ,

i            i+1VAR  not CTR VAR

i        i+1VAR  CTR VAR   

i            i+1VAR  not CTR VAR   ,

i        i+1VAR  CTR VAR

i        i+1VAR  CTR VAR   , i            i+1VAR  not CTR VAR   ,i            i+1VAR  not CTR VAR   ,
j

t:

k

$

{C=0,D=1}

s

$,
$,

i

{C=D}

{C=min(C,D)}

{D=2}

{D=D+1}

{D=2}

{C=D}

{C=min(C,D)}

MIN_SIZE_CONTINUITY=C

{D=D+1}

Figure 4.78: Automaton for the MIN SIZE CONTINUITY parameter of the
change continuity constraint
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Figure 4.79: Hypergraph of the reformulation corresponding to the automaton of the
MIN SIZE CHANGE parameter of the change continuity constraint
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C =00 C1
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C   =MIN_SIZE_CONTINUITYn−1

Figure 4.80: Hypergraph of the reformulation corresponding to the automaton of the
MIN SIZE CONTINUITY parameter of the change continuity constraint
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i            i+1VAR  not CTR VAR   , i        i+1VAR  CTR VAR   ,

i        i+1VAR  CTR VAR   ,
i            i+1VAR  not CTR VAR

t:
MAX_SIZE_CHANGE=C

s

i

$,

$

{D=D+1}

{D=D+1}{C=max(C,D),D=1}

{C=max(C,D)}

{C=0,D=1}

Figure 4.81: Automaton for the MAX SIZE CHANGE parameter of the
change continuity constraint

i        i+1VAR  CTR VAR

i            i+1VAR  not CTR VAR   ,

i            i+1VAR  not CTR VAR   ,

i        i+1VAR  CTR VAR   ,

t:

s

i

$,

$

{C=0,D=1}

{D=D+1}

{C=max(C,D)}

{D=D+1}

MAX_SIZE_CONTINUITY=C

{C=max(C,D),D=1}

Figure 4.82: Automaton for the MAX SIZE CONTINUITY parameter of the
change continuity constraint

VAR
1

VAR
2

S2

VAR
n

VAR
3

S3

Q2

C2

Sn−1

VAR
n−1
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D =00

C   =MAX_SIZE_CHANGEn−1

Figure 4.83: Hypergraph of the reformulation corresponding to the automaton of the
MAX SIZE CHANGE parameter of the change continuity constraint
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D =00

C   =MAX_SIZE_CONTINUITYn−1

Figure 4.84: Hypergraph of the reformulation corresponding to the automaton of the
MAX SIZE CONTINUITY parameter of the change continuity constraint

VAR  not CTR VAR
i            i+1 VAR  CTR VAR

i        i+1VAR  CTR VAR   ,
i        i+1

{C=C+1}

VAR  not CTR VAR   ,
i            i+1

{C=C+1}

$

t:
NB_CHANGE=C

$

t:
NB_CONTINUITY=C

s s

{C=0} {C=0}

Figure 4.85: Automata for the NB CHANGE and NB CONTINUITY parameters of the
change continuity constraint
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Figure 4.86: Hypergraph of the reformulation corresponding to the automaton of the
NB CHANGE parameter of the change continuity constraint
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Figure 4.87: Hypergraph of the reformulation corresponding to the automaton of the
NB CONTINUITY parameter of the change continuity constraint
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4.36 change pair

Origin Derived from change.

Constraint change pair(NCHANGE, PAIRS, CTRX, CTRY)

Argument(s) NCHANGE : dvar

PAIRS : collection(x− dvar, y− dvar)
CTRX : atom

CTRY : atom

Restriction(s) NCHANGE ≥ 0
NCHANGE < |PAIRS|
required(PAIRS, [x, y])
CTRX ∈ [=, 6=, <,≥, >,≤]
CTRY ∈ [=, 6=, <,≥, >,≤]

Purpose
NCHANGE is the number of times that the following disjunction holds: (X1 CTRX X2) ∨
(Y1 CTRY Y2), where (X1, Y1) and (X2, Y2) correspond to consecutive pairs of variables of
the collection PAIRS.

Arc input(s) PAIRS

Arc generator PATH 7→ collection(pairs1, pairs2)

Arc arity 2

Arc constraint(s) pairs1.x CTRX pairs2.x ∨ pairs1.y CTRY pairs2.y

Graph property(ies) NARC = NCHANGE

Example change pair

0
BBBBBBBBBBBBBB@

3,

8
>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

x− 3 y − 5,
x− 3 y − 7,
x− 3 y − 7,
x− 3 y − 8,
x− 3 y − 4,
x− 3 y − 7,
x− 1 y − 3,
x− 1 y − 6,
x− 1 y − 6,
x− 3 y − 7

9
>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

, 6=, >

1
CCCCCCCCCCCCCCA

In the previous example we have the following 3 changes:

• One change between pairs x− 3 y− 8 and x− 3 y− 4,

• One change between pairs x− 3 y− 7 and x− 1 y− 3,

• One change between pairs x− 1 y− 6 and x− 3 y− 7.
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PAIRS

1

2

3

4

5

6

7

8

9

10

NARC=3

4:3,8

5:3,4

6:3,7

7:1,3

9:1,6

10:3,7

(A) (B)

Figure 4.88: Initial and final graph of the change pair constraint
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Parts (A) and (B) of Figure 4.88 respectively show the initial and final graph. Since we use
the NARC graph property, the arcs of the final graph are stressed in bold.

Graph model Same as change, except that each item has two attributes x and y.

Automaton Figure 4.89 depicts the automaton associated to the change pair constraint. To each
pair of consecutive pairs ((Xi, Yi), (Xi+1, Yi+1)) of the collection PAIRS corresponds a 0-1
signature variable Si. The following signature constraint links Xi, Yi, Xi+1, Yi+1 and Si:
(Xi CTRX Xi+1) ∨ (Yi CTRY Yi+1)⇔ Si.

(X  not CTRX X   ) and (Y  not CTRY Y   )i           i+1        i           i+1(X  CTRX X   ) or (Y  CTRY Y   ),i       i+1       i       i+1

$

NCHANGE=C
t:

{C=C+1}

{C=0}

s

Figure 4.89: Automaton of the change pair constraint
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n−1   Y
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S2

  X
2

  X
1

S1

C   =NCHANGEn−1

Q   =tn−1

Sn−1

Figure 4.90: Hypergraph of the reformulation corresponding to the automaton of the
change pair constraint

Usage Here is a typical example where this constraint is useful. Assume we have to produce a set
of cables. A given quality and a given cross-section that respectively correspond to the x

and y attributes of the previous pairs of variables characterize each cable. The problem is
to sequence the different cables in order to minimize the number of times two consecutive
wire cables C1 and C2 verify the following property: C1 and C2 do not have the same
quality or the cross section of C1 is greater than the cross section of C2.

See also change.

Key words timetabling constraint, number of changes, pair, automaton, automaton with counters,
sliding cyclic(2) constraint network(2), acyclic, no loop.
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4.37 change partition

Origin Derived from change.

Constraint change partition(NCHANGE, VARIABLES, PARTITIONS)

Type(s) VALUES : collection(val− int)

Argument(s) NCHANGE : dvar

VARIABLES : collection(var− dvar)
PARTITIONS : collection(p− VALUES)

Restriction(s) required(VALUES, val)
distinct(VALUES, val)
NCHANGE ≥ 0
NCHANGE < |VARIABLES|
required(VARIABLES, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose
NCHANGE is the number of times that the following constraint holds: X and Y do not belong to
the same partition of the collection PARTITIONS. X and Y correspond to consecutive variables
of the collection VARIABLES.

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) in same partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) NARC = NCHANGE

Example change partition

0
BBBBBBBBBBBBBBBBBBBBBB@

2,

8
>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

var − 6,
var − 6,
var − 2,
var − 1,
var − 3,
var − 3,
var − 1,
var − 6,
var − 2,
var − 2,
var − 2

9
>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

,

8
<
:

p − {val − 1, val − 3},
p − {val − 4},
p − {val − 2, val − 6}

9
=
;

1
CCCCCCCCCCCCCCCCCCCCCCA

In the previous example we have the following two changes:
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• One change between values 2 and 1 (since 2 and 1 respectively belong to the third
and the first partition),

• One change between values 1 and 6 (since 1 and 6 respectively belong to the first
and the third partition).

Parts (A) and (B) of Figure 4.91 respectively show the initial and final graph. Since we use
the NARC graph property, the arcs of the final graph are stressed in bold.

VARIABLES

1

2

3

4

5

6

7

8

9

10

11

NARC=2

3:2

4:1

7:1

8:6

(A) (B)

Figure 4.91: Initial and final graph of the change partition constraint

Usage This constraint is useful for the following problem: Assume you have to produce a set of
orders, each order belonging to a given family. In the previous example we have three
families that respectively correspond to values {1, 3}, to value {4} and to values {2, 6}.
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We would like to sequence the orders in such a way that we minimize the number of times
two consecutive orders do not belong to the same family.

Algorithm [65].

See also change, in same partition.

Key words timetabling constraint, number of changes, partition, acyclic, no loop.
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4.38 circuit

Origin [2]

Constraint circuit(NODES)

Synonym(s) atour, cycle.

Argument(s) NODES : collection(index − int, succ − dvar)

Restriction(s) required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose Enforce to cover a digraph G described by the NODES collection with one circuit visiting once
all vertices of G.

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) •MIN NSCC = |NODES|
•MAX ID = 1

Example circuit

0
BB@

8
>><
>>:

index − 1 succ − 2,
index − 2 succ − 3,
index − 3 succ − 4,
index − 4 succ − 1

9
>>=
>>;

1
CCA

Parts (A) and (B) of Figure 4.92 respectively show the initial and final graph. The
circuit constraint holds since the final graph consists of one circuit mentioning once
every vertex of the initial graph.

Graph model The first graph property enforces to have one single strongly connected component con-
taining |NODES| vertices. The second graph property imposes to only have circuits. Since
each vertex of the final graph has only one successor we don’t need to use set variables for
representing the successors of a vertex.

Signature Since the initial graph contains |NODES| vertices the final graph contains at most |NODES|
vertices. Therefore we can rewrite the graph property MIN NSCC = |NODES| to
MIN NSCC ≥ |NODES|. This leads to simplify MIN NSCC to MIN NSCC.
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Because of the graph property MIN NSCC = |NODES| the final graph contains at least
one vertex. Since a vertex v belongs to the final graph only if there is an arc that has v
as one of its extremities the final graph contains at least one arc. Therefore MAX ID
is greater than or equal to 1. So we can rewrite the graph property MAX ID = 1 to
MAX ID ≤ 1. This leads to simplify MAX ID to MAX ID.

Remark In the original circuit constraint of CHIP the index attribute was not explicitly present.
It was implicitly defined as the position of a variable in a list.

Within the framework of linear programming [74] this constraint was introduced under the
name atour. Within the KOALOG constraint system this constraint is called cycle.

Algorithm Since all succ variables of the NODES collection have to take distinct values one can reuse
the algorithms associated to the alldifferent constraint. A second necessary condition
is to have no more than one strongly connected component. Further necessary conditions
combining the fact that we have a perfect matching and one single strongly connected
component can be found in [75]. When the graph is planar one can also use as a necessary
condition discovered by Grinberg [76] for pruning.

See also cycle, tour.

Key words graph constraint, graph partitioning constraint, circuit, permutation, Hamiltonian,
linear programming, one succ.
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NODES

1

2

3

4

MIN_NSCC=4,MAX_ID=1

MIN_NSCC

1:1,2

2:2,3

3:3,4

4:4,1

(A) (B)

Figure 4.92: Initial and final graph of the circuit constraint
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4.39 circuit cluster

Origin Inspired by [77].

Constraint circuit cluster(NCIRCUIT, NODES)

Argument(s) NCIRCUIT : dvar

NODES : collection(index − int, cluster − int, succ − dvar)

Restriction(s) NCIRCUIT ≥ 1
NCIRCUIT ≤ |NODES|
required(NODES, [index, cluster, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose

Consider a digraph G, described by the NODES collection, such that its vertices are partitioned
among several clusters. NCIRCUIT is the number of circuits containing more than one vertex
used for covering G in such a way that each cluster is visited by exactly one circuit of length
greater than 1.

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) • nodes1.succ 6= nodes1.index
• nodes1.succ = nodes2.index

Graph property(ies) • NTREE = 0
• NSCC = NCIRCUIT

Sets
ALL VERTICES 7→»

variables − col

„
VARIABLES − collection(var − dvar),
[item(var − NODES.cluster)]

« –

Constraint(s) on sets • alldifferent(variables)
• nvalues(variables,=, size(NODES, cluster))
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Example circuit cluster

0
BBBBBBBBBBBB@

1,

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

index − 1 cluster − 1 succ − 1,
index − 2 cluster − 1 succ − 4,
index − 3 cluster − 2 succ − 3,
index − 4 cluster − 2 succ − 5,
index − 5 cluster − 3 succ − 8,
index − 6 cluster − 3 succ − 6,
index − 7 cluster − 3 succ − 7,
index − 8 cluster − 4 succ − 2,
index − 9 cluster − 4 succ − 9

9
>>>>>>>>>>>>=
>>>>>>>>>>>>;

1
CCCCCCCCCCCCA

circuit cluster

0
BBBBBBBBBBBB@

2,

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

index − 1 cluster − 1 succ − 1,
index − 2 cluster − 1 succ − 4,
index − 3 cluster − 2 succ − 3,
index − 4 cluster − 2 succ − 2,
index − 5 cluster − 3 succ − 5,
index − 6 cluster − 3 succ − 9,
index − 7 cluster − 3 succ − 7,
index − 8 cluster − 4 succ − 8,
index − 9 cluster − 4 succ − 6

9
>>>>>>>>>>>>=
>>>>>>>>>>>>;

1
CCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.93 respectively show the initial and final graph asso-
ciated to the second example. Since we use the NSCC graph property, we show the two
strongly connected components of the final graph. They respectively correspond to the two
circuits 2 → 4 → 2 and 6 → 9 → 6. Since all the vertices belongs to a circuit we have
that NTREE = 0. The first example uses only one single circuit: 2→ 4→ 5→ 8→ 2.

NODES

1

2

3

4

5

6

7

8

9 NTREE=0,NSCC=2

SCC#1 SCC#2

2:2,1,4

4:4,2,2

6:6,3,9

9:9,4,6

(A) (B)

Figure 4.93: Initial and final graph of the circuit cluster constraint

Graph model In order to express the binary constraint linking two vertices one has to make explicit the
identifier of each vertex as well as the cluster to which belong each vertex. This is why the
circuit cluster constraint considers objects that have the following three attributes:

• The attribute index, which is the identifier of a vertex.

• The attribute cluster, which is the cluster to which belong a vertex.
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• The attribute succ, which is the unique successor of a vertex.

The partitioning of the clusters by different circuits is expressed in the following way:

• First observe the condition nodes1.succ 6= nodes1.index prevents the final graph
of containing any loop. Moreover the condition nodes1.succ = nodes2.index
imposes no more than one successor for each vertex of the final graph.

• The graph property NTREE = 0 enforces that all vertices of the final graph belong
to one circuit.

• The graph property NSCC = NCIRCUIT express the fact that the number of
strongly connected components of the final graph is equal to NCIRCUIT.

• The constraint alldifferent(variables) on the set ALL VERTICES (i.e. all the
vertices of the final graph) states that the cluster attributes of the vertices of the final
graph should be pairwise distinct. This concretely means that no cluster should be
visited more than once.

• The constraint nvalues(variables,=, size(NODES, cluster)) on the set
ALL VERTICES conveys the fact that the number of distinct values of the cluster
attribute of the vertices of the final graph should be equal to the total number of
clusters. This implies that each cluster is visited at least one time.

Usage A related abstraction in Operations Research was introduced in [77]. It was reported as
the Generalized Travelling Salesman Problem (GTSP). The circuit cluster constraint
differs from the GTSP because of the two following points:

• Each node of our graph belongs to one single cluster,

• We do not constrain the number of circuits to be equal to one: the number of circuits
should be equal to one of the values of the domain of the variable NCIRCUIT.

See also alldifferent, nvalues.

Key words graph constraint, connected component, cluster, one succ.
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4.40 circular change

Origin Derived from change.

Constraint circular change(NCHANGE, VARIABLES, CTR)

Argument(s) NCHANGE : dvar

VARIABLES : collection(var − dvar)
CTR : atom

Restriction(s) NCHANGE ≥ 0
NCHANGE ≤ |VARIABLES|
required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose
NCHANGE is the number of times that CTR holds on consecutive variables of the collection
VARIABLES. The last and the first variables of the collection VARIABLES are also considered to
be consecutive.

Arc input(s) VARIABLES

Arc generator CIRCUIT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var CTR variables2.var

Graph property(ies) NARC = NCHANGE

Example circular change

0
BBBB@

4,

8
>>>><
>>>>:

var− 4,
var− 4,
var− 3,
var− 4,
var− 1

9
>>>>=
>>>>;
, 6=

1
CCCCA

In the previous example the changes are located between values 4 and 3, 3 and 4,
4 and 1, and 1 and 4. We count one change for each disequality constraint (between two
consecutives variables) which holds. Parts (A) and (B) of Figure 4.94 respectively show
the initial and final graph. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.

Graph model Since we are also interested in the constraint that links the last and the first variable we use
the arc generator CIRCUIT to produce the arcs of the initial graph.

Automaton Figure 4.95 depicts the automaton associated to the circular change constraint. To each
pair of consecutive variables (VARi, VAR(imod |VARIABLES|)+1) of the collection VARIABLES

corresponds a 0-1 signature variable Si. The following signature constraint links VARi,
VAR(imod |VARIABLES|)+1 and Si: VARi CTR VAR(i mod |VARIABLES|)+1 ⇔ Si.
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VARIABLES

1

2

3

4

5

NARC=4

2:4

3:3

4:4

5:1

1:4

(A) (B)

Figure 4.94: Initial and final graph of the circular change constraint

VAR  not CTR VARi i+1
{C=C+1}

iVAR  CTR VAR i+1

$

NCHANGE=C
t:

{C=0}

s

Figure 4.95: Automaton of the circular change constraint

Q =s0

C =00 C1

Q1

VAR
1

S1

VAR
2

S2

VAR
n

Sn−1

VAR
n−1VAR

3

S3

Q2

C2

Qn−1

Cn−1

VAR
1

Sn

Q =tn

C =NCHANGEn

Figure 4.96: Hypergraph of the reformulation corresponding to the automaton of the
circular change constraint
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See also change.

Key words timetabling constraint, number of changes, cyclic, automaton, automaton with counters,
circular sliding cyclic(1) constraint network(2).
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4.41 clique

Origin [78]

Constraint clique(SIZE CLIQUE, NODES)

Argument(s) SIZE CLIQUE : dvar

NODES : collection(index − int, succ − svar)

Restriction(s) SIZE CLIQUE ≥ 0
SIZE CLIQUE ≤ |NODES|
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)

Purpose

Consider a digraphG described by the NODES collection: To the ith item of the NODES collection
corresponds the ith vertex of G; To each value j of the ith succ variable corresponds an arc
from the ith vertex to the jth vertex. Select a subset S of the vertices ofG which forms a clique
of size SIZE CLIQUE (i.e. there is an arc between each pair of distinct vertices of S).

Arc input(s) NODES

Arc generator CLIQUE(6=) 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) in set(nodes2.index, nodes1.succ)

Graph property(ies) • NARC = SIZE CLIQUE ∗ SIZE CLIQUE − SIZE CLIQUE

• NVERTEX = SIZE CLIQUE

Example clique

0
BBBB@

3,

8
>>>><
>>>>:

index − 1 succ − ∅,
index − 2 succ − {3, 5},
index − 3 succ − {2, 5},
index − 4 succ − ∅,
index − 5 succ − {2, 3}

9
>>>>=
>>>>;

1
CCCCA

Part (A) of Figure 4.97 shows the initial graph from which we start. It is derived
from the set associated to each vertex. Each set describes the potential values of the succ
attribute of a given vertex. Part (B) of Figure 4.97 gives the final graph associated to the
example. Since we both use the NARC and NVERTEX graph properties, the arcs and
the vertices of the final graph are stressed in bold. The final graph corresponds to a clique
containing three vertices.

Graph model Observe the use of set variables for modelling the fact that the vertices of the final graph
have more than one successor: The successor variable associated to each vertex contains
the successors of the corresponding vertex.
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Algorithm [78], [79].

See also link set to booleans.

Key words graph constraint, maximum clique, constraint involving set variables.
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NODES

1:1,{2,4}

2:2,{1,3,5}

4:4,{1,5}3:3,{2,5}

5:5,{2,3,4}

NARC=6,NVERTEX=3

2:2,{3,5}

3:3,{2,5}

5:5,{2,3}

(A) (B)

Figure 4.97: Initial and final graph of the clique set constraint
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4.42 colored matrix

Origin KOALOG

Constraint colored matrix(C, L, K, MATRIX, CPROJ, LPROJ)

Synonym(s) cardinality matrix, card matrix.

Argument(s) C : int

L : int

K : int

MATRIX : collection(column − int, line− int, var − dvar)
CPROJ : collection(column − int, val− int, noccurrence − dvar)
LPROJ : collection(line− int, val − int, noccurrence − dvar)

Restriction(s) C ≥ 0
L ≥ 0
K ≥ 0
required(MATRIX, [column, line, var])
increasing seq(MATRIX, [column, line])
|MATRIX| = C ∗ L + C + L + 1
MATRIX.column ≥ 0
MATRIX.column ≤ C

MATRIX.line ≥ 0
MATRIX.line ≤ L

MATRIX.var ≥ 0
MATRIX.var ≤ K

required(CPROJ, [column, val, noccurrence])
increasing seq(CPROJ, [column, val])
|CPROJ| = C ∗ K + C + K + 1
CPROJ.column ≥ 0
CPROJ.column ≤ C

CPROJ.val ≥ 0
CPROJ.val ≤ K

required(LPROJ, [line, val, noccurrence])
increasing seq(LPROJ, [line, val])
|LPROJ| = L ∗ K + L + K + 1
LPROJ.line ≥ 0
LPROJ.line ≤ L

LPROJ.val ≥ 0
LPROJ.val ≤ K

Purpose Given a matrix of domain variables, imposes a global cardinality constraint involving car-
dinality variables on each column and each row of the matrix.
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Example colored matrix

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1, 2, 4,

8
>>>>>><
>>>>>>:

column − 0 line − 0 var − 3,
column − 0 line − 1 var − 1,
column − 0 line − 2 var − 3,
column − 1 line − 0 var − 4,
column − 1 line − 1 var − 4,
column − 1 line − 2 var − 3

9
>>>>>>=
>>>>>>;

,

8
>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

column − 0 val − 0 nocc − 0,
column − 0 val − 1 nocc − 1,
column − 0 val − 2 nocc − 0,
column − 0 val − 3 nocc − 2,
column − 0 val − 4 nocc − 0,
column − 1 val − 0 nocc − 0,
column − 1 val − 1 nocc − 0,
column − 1 val − 2 nocc − 0,
column − 1 val − 3 nocc − 1,
column − 1 val − 4 nocc − 2

9
>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

,

8
>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

line − 0 val − 0 nocc − 0,
line − 0 val − 1 nocc − 0,
line − 0 val − 2 nocc − 0,
line − 0 val − 3 nocc − 1,
line − 0 val − 4 nocc − 1,
line − 1 val − 0 nocc − 0,
line − 1 val − 1 nocc − 1,
line − 1 val − 2 nocc − 0,
line − 1 val − 3 nocc − 0,
line − 1 val − 4 nocc − 1,
line − 2 val − 0 nocc − 0,
line − 2 val − 1 nocc − 0,
line − 2 val − 2 nocc − 0,
line − 2 val − 3 nocc − 2,
line − 2 val − 4 nocc − 0

9
>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Remark Within [80] the colored matrix constraint is called cardinality matrix.

Algorithm The filtering algorithm described in [80] is based on network flow and does not achieve
arc-consistency in general. However, when the number of values is restricted to two, the
algorithm [80] achieves arc-consistency on the variables of the matrix. This corresponds in
fact to a generalization of the problem called ”Matrices composed of 0’s and 1’s” presented
by Ford and Fulkerson [81].

See also global cardinality, same.

Key words predefined constraint, timetabling constraint, matrix, matrix model.
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4.43 coloured cumulative

Origin Derived from cumulative and nvalues.

Constraint coloured cumulative(TASKS, LIMIT)

Argument(s) TASKS : collection(origin − dvar, duration − dvar, end − dvar, colour − dvar)
LIMIT : int

Restriction(s) require at least(2, TASKS, [origin, duration, end])
required(TASKS, colour)
TASKS.duration ≥ 0
LIMIT ≥ 0

Purpose

Consider the set T of tasks described by the TASKS collection. The coloured cumulative

constraint enforces that, at each point in time, the number of distinct colours of the set of tasks
that overlap that point, does not exceed a given limit. For each task of T it also imposes the
constraint origin + duration = end.

Arc input(s) TASKS

Arc generator SELF 7→ collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin + tasks.duration = tasks.end

Graph property(ies) NARC = |TASKS|

Arc input(s) TASKS TASKS

Arc generator PRODUCT 7→ collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • tasks1.duration > 0
• tasks2.origin ≤ tasks1.origin
• tasks1.origin < tasks2.end

Sets

SUCC 7→2
4

source,

variables − col

„
VARIABLES − collection(var− dvar),
[item(var− TASKS.colour)]

«
3
5

Constraint(s) on sets nvalues(variables,≤, LIMIT)
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Example coloured cumulative

0
BBBB@

8
>>>><
>>>>:

origin − 1 duration − 2 end − 3 colour − 1,
origin − 2 duration − 9 end − 11 colour − 2,
origin − 3 duration − 10 end − 13 colour − 3,
origin − 6 duration − 6 end − 12 colour − 2,
origin − 7 duration − 2 end − 9 colour − 3

9
>>>>=
>>>>;
, 2

1
CCCCA

Parts (A) and (B) of Figure 4.98 respectively show the initial and final graph asso-
ciated to the second graph constraint. On the one hand, each source vertex of the final
graph can be interpreted as a time point. On the other hand the successors of a source ver-
tex correspond to those tasks which overlap that time point. The coloured cumulative

constraint holds since for each successor set S of the final graph the number of distinct
colours of the tasks in S does not exceed the LIMIT 2. Figure 4.99 shows the solution
associated to the previous example.

TASKS

TASKS

1

12 345

2345

TASKS

TASKS

1:1,2,3,1

1:1,2,3,1

2:2,9,11,2

2:2,9,11,2

3:3,10,13,3

3:3,10,13,3

4:6,6,12,2

4:6,6,12,2

5:7,2,9,3

5:7,2,9,3

(A) (B)

Figure 4.98: Initial and final graph of the coloured cumulative constraint

6 7 8 9 10 11 12 time

< 3

1 2 3 4 5

4

5

3

2

1

Figure 4.99: A coloured cumulative solution with at most two distinct colours in par-
allel

Graph model Same as cumulative, except that we use an other constraint for computing the resource
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consumption at each time point.

Signature Since TASKS is the maximum number of vertices of the final graph of the first graph con-
straint we can rewrite NARC = |TASKS| to NARC ≥ |TASKS|. This leads to simplify
NARC to NARC.

Usage Useful for scheduling problems where a machine can only proceed in parallel a maxi-
mum number of tasks of distinct type. This condition cannot be modelled by the classical
cumulative constraint.

See also coloured cumulatives, cumulative, nvalues.

Key words scheduling constraint, resource constraint, temporal constraint, coloured,
number of distinct values.
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4.44 coloured cumulatives

Origin Derived from cumulatives and nvalues.

Constraint coloured cumulatives(TASKS, MACHINES)

Argument(s) TASKS : collection

0
BBBB@

machine − dvar,
origin − dvar,
duration − dvar,
end− dvar,
colour − dvar

1
CCCCA

MACHINES : collection(id− int, capacity − int)

Restriction(s) required(TASKS, [machine, colour])
require at least(2, TASKS, [origin, duration, end])
TASKS.duration ≥ 0
required(MACHINES, [id, capacity])
distinct(MACHINES, id)
MACHINES.capacity ≥ 0

Purpose

Consider a set T of tasks described by the TASKS collection. The coloured cumulatives

constraint enforces for each machine m of the MACHINES collection the following condition:
At each point in time p, the numbers of distinct colours of the set of tasks that both overlap
that point p and are assigned to machine m does not exceed the capacity of machine m. It also
imposes for each task of T the constraint origin + duration = end.

Arc input(s) TASKS

Arc generator SELF 7→ collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin + tasks.duration = tasks.end

Graph property(ies) NARC = |TASKS|

For all items of MACHINES:

Arc input(s) TASKS TASKS

Arc generator PRODUCT 7→ collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • tasks1.machine = MACHINES.id
• tasks1.machine = tasks2.machine
• tasks1.duration > 0
• tasks2.origin ≤ tasks1.origin
• tasks1.origin < tasks2.end
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Sets

SUCC 7→2
4

source,

variables − col

„
VARIABLES − collection(var − dvar),
[item(var − TASKS.colour)]

«
3
5

Constraint(s) on sets nvalues(variables,≤, MACHINES.capacity)

Example coloured cumulatives

0
BBBBBBBBBB@

8
>>>>>><
>>>>>>:

machine − 1 origin − 6 duration − 6 end − 12 colour − 1,
machine − 1 origin − 2 duration − 9 end − 11 colour − 2,
machine − 2 origin − 7 duration − 3 end − 10 colour − 2,
machine − 1 origin − 1 duration − 2 end − 3 colour − 1,
machine − 2 origin − 4 duration − 5 end − 9 colour − 2,
machine − 1 origin − 3 duration − 10 end − 13 colour − 1

9
>>>>>>=
>>>>>>;

,


id − 1 capacity − 2,
id − 2 capacity − 1

ff

1
CCCCCCCCCCA

Parts (A) and (B) of Figure 4.100 respectively shows the initial and final graph as-
sociated to machines 1 and 2. On the one hand, each source vertex of the final graph can
be interpreted as a time point p on a specific machine m. On the other hand the successors
of a source vertex correspond to those tasks which both overlap that time point p and are
assigned to machine m. The coloured cumulatives constraint holds since for each
successor set S of the final graph the number of distinct colours in S does not exceed the
capacity of the machine corresponding to the time point associated to S . Figure 4.101
shows the solution associated to the previous example. For machine 1 we have at most two
distinct colours in parallel, while for machine 2 we have no more than one single colour in
parallel.

TASKS

TASKS

1

1234 56

2 3456

MACHINES:1 MACHINES:2

1:1,6,6,12,1

1:1,6,6,12,1 6:1,3,10,13,1

2:1,2,9,11,2

2:1,2,9,11,2 4:1,1,2,3,1

4:1,1,2,3,16:1,3,10,13,1 3:2,7,3,10,2

3:2,7,3,10,25:2,4,5,9,2

5:2,4,5,9,2

(A) (B)

Figure 4.100: Initial and final graph of the coloured cumulatives constraint
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Signature Since TASKS is the maximum number of vertices of the final graph of the first graph con-
straint we can rewrite NARC = |TASKS| to NARC ≥ |TASKS|. This leads to simplify
NARC to NARC.

Usage Useful for scheduling problems where several machines are available and where you have
to assign each task to a specific machine. In addition each machine can only proceed in
parallel a maximum number of tasks of distinct types.

See also coloured cumulative, cumulative, cumulatives, nvalues.

Key words scheduling constraint, resource constraint, temporal constraint, coloured,
number of distinct values.

6 7 8 9 10 11 12 time

m
ac

hi
ne

 1
m

ac
hi

ne
 2

< 2

< 3

1 2 3 4 5

1

3

5

6

2

4

Figure 4.101: Assignment of the tasks on the two machines
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4.45 common

Origin N. Beldiceanu

Constraint common(NCOMMON1, NCOMMON2, VARIABLES1, VARIABLES2)

Argument(s) NCOMMON1 : dvar

NCOMMON2 : dvar

VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)

Restriction(s) NCOMMON1 ≥ 0
NCOMMON1 ≤ |VARIABLES1|
NCOMMON2 ≥ 0
NCOMMON2 ≤ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose

NCOMMON1 is the number of variables of the collection of variables VARIABLES1 taking a value
in VARIABLES2.
NCOMMON2 is the number of variables of the collection of variables VARIABLES2 taking a value
in VARIABLES1.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) • NSOURCE = NCOMMON1

• NSINK = NCOMMON2

Example common

0
BBBBBBBB@

3, 4, {var − 1, var − 9, var − 1, var − 5},8
>>>>>><
>>>>>>:

var − 2,
var − 1,
var − 9,
var − 9,
var − 6,
var − 9

9
>>>>>>=
>>>>>>;

1
CCCCCCCCA

Parts (A) and (B) of Figure 4.102 respectively show the initial and final graph.
Since we use the NSOURCE and NSINK graph properties, the source and sink
vertices of the final graph are stressed with a double circle. Since the final graph has only
3 sources and 4 sinks the variables NCOMMON1 and NCOMMON2 are respectively equal to 3
and 4. Note that all the vertices corresponding to the variables that take values 5, 2 or 6
were removed from the final graph since there is no arc for which the associated equality
constraint holds.
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See also alldifferent on intersection, nvalue on intersection, same intersection.

Key words constraint between two collections of variables, acyclic, bipartite, no loop.
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VARIABLES1

VARIABLES2

1

1234 56

234

NSOURCE=3,NSINK=4

1:1

2:1

2:9

3:9 4:9 6:9

3:1

(A) (B)

Figure 4.102: Initial and final graph of the common constraint



20000128 335



336 NSINK,NSOURCE,PRODUCT

4.46 common interval

Origin Derived from common.

Constraint common interval(NCOMMON1, NCOMMON2, VARIABLES1, VARIABLES2, SIZE INTERVAL)

Argument(s) NCOMMON1 : dvar

NCOMMON2 : dvar

VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
SIZE INTERVAL : int

Restriction(s) NCOMMON1 ≥ 0
NCOMMON1 ≤ |VARIABLES1|
NCOMMON2 ≥ 0
NCOMMON2 ≤ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
SIZE INTERVAL > 0

Purpose

NCOMMON1 is the number of variables of the collection of variables VARIABLES1 taking a value
in one of the intervals derived from the values assigned to the variables of the collection
VARIABLES2: To each value v assigned to a variable of the collection VARIABLES2 we associate
the interval [SIZE INTERVAL ·bv/SIZE INTERVALc, SIZE INTERVAL ·bv/SIZE INTERVALc+
SIZE INTERVAL − 1].
NCOMMON2 is the number of variables of the collection of variables VARIABLES2 taking a value
in one of the intervals derived from the values assigned to the variables of the collection
VARIABLES1: To each value v assigned to a variable of the collection VARIABLES1 we associate
the interval [SIZE INTERVAL ·bv/SIZE INTERVALc, SIZE INTERVAL ·bv/SIZE INTERVALc+
SIZE INTERVAL − 1].

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var/SIZE INTERVAL = variables2.var/SIZE INTERVAL

Graph property(ies) • NSOURCE = NCOMMON1

• NSINK = NCOMMON2
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Example common interval

0
BBBBBBBBBBBBBB@

3, 2,

8
>><
>>:

var − 8,
var − 6,
var − 6,
var − 0

9
>>=
>>;
,

8
>>>>>><
>>>>>>:

var − 7,
var − 3,
var − 3,
var − 3,
var − 3,
var − 7

9
>>>>>>=
>>>>>>;

, 3

1
CCCCCCCCCCCCCCA

In the previous example, the last parameter SIZE INTERVAL defines the following
family of intervals [3 · k, 3 · k+ 2], where k is an integer. Parts (A) and (B) of Figure 4.103
respectively show the initial and final graph. Since we use the NSOURCE and
NSINK graph properties, the source and sink vertices of the final graph are stressed with
a double circle. Since the graph has only 3 sources and 2 sinks the variables NCOMMON1

and NCOMMON2 are respectively equal to 3 and 2. Note that the vertices corresponding to
the variables that take values 0 or 3 were removed from the final graph since there is no
arc for which the associated arc constraint holds.

VARIABLES1

VARIABLES2

1

1234 56

234

NSOURCE=3,NSINK=2

1:8

1:7 6:7

2:6 3:6

(A) (B)

Figure 4.103: Initial and final graph of the common interval constraint

See also common.

Key words constraint between two collections of variables, interval, acyclic, bipartite, no loop.
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4.47 common modulo

Origin Derived from common.

Constraint common modulo(NCOMMON1, NCOMMON2, VARIABLES1, VARIABLES2, M)

Argument(s) NCOMMON1 : dvar

NCOMMON2 : dvar

VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
M : int

Restriction(s) NCOMMON1 ≥ 0
NCOMMON1 ≤ |VARIABLES1|
NCOMMON2 ≥ 0
NCOMMON2 ≤ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
M > 0

Purpose

NCOMMON1 is the number of variables of the collection of variables VARIABLES1 taking a value
situated in an equivalence class (congruence modulo a fixed number M) derived from the values
assigned to the variables of VARIABLES2 and from M.
NCOMMON2 is the number of variables of the collection of variables VARIABLES2 taking a value
situated in an equivalence class (congruence modulo a fixed number M) derived from the values
assigned to the variables of VARIABLES1 and from M.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var mod M = variables2.var mod M

Graph property(ies) • NSOURCE = NCOMMON1

• NSINK = NCOMMON2

Example common modulo

0
BBBBBBBB@

3, 4, {var − 0, var − 4, var − 0, var− 8},8
>>>>>><
>>>>>>:

var− 7,
var− 5,
var− 4,
var− 9,
var− 2,
var− 4

9
>>>>>>=
>>>>>>;

, 5

1
CCCCCCCCA

Parts (A) and (B) of Figure 4.104 respectively show the initial and final graph.
Since we use the NSOURCE and NSINK graph properties, the source and sink
vertices of the final graph are stressed with a double circle. Since the graph has only 3
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sources and 4 sinks the variables NCOMMON1 and NCOMMON2 are respectively equal to 3 and
4. Note that the vertices corresponding to the variables that take values 8, 7 or 2 were
removed from the final graph since there is no arc for which the associated arc constraint
holds.

VARIABLES1

VARIABLES2

1

1234 56

234

NSOURCE=3,NSINK=4

1:0

2:5

2:4

3:4 4:9 6:4

3:0

(A) (B)

Figure 4.104: Initial and final graph of the common modulo constraint

See also common.

Key words constraint between two collections of variables, modulo, acyclic, bipartite, no loop.
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4.48 common partition

Origin Derived from common.

Constraint common partition(NCOMMON1, NCOMMON2, VARIABLES1, VARIABLES2, PARTITIONS)

Type(s) VALUES : collection(val− int)

Argument(s) NCOMMON1 : dvar

NCOMMON2 : dvar

VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
PARTITIONS : collection(p− VALUES)

Restriction(s) required(VALUES, val)
distinct(VALUES, val)
NCOMMON1 ≥ 0
NCOMMON1 ≤ |VARIABLES1|
NCOMMON2 ≥ 0
NCOMMON2 ≤ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose

NCOMMON1 is the number of variables of the VARIABLES1 collection taking a value in a partition
derived from the values assigned to the variables of VARIABLES2 and from PARTITIONS.
NCOMMON2 is the number of variables of the VARIABLES2 collection taking a value in a partition
derived from the values assigned to the variables of VARIABLES1 and from PARTITIONS.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) in same partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) • NSOURCE = NCOMMON1

• NSINK = NCOMMON2
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Example common partition

0
BBBBBBBBBBBBBBBBBBBB@

3, 4,

8
>><
>>:

var − 2,
var − 3,
var − 6,
var − 0

9
>>=
>>;
,

8
>>>>>><
>>>>>>:

var − 0,
var − 6,
var − 3,
var − 3,
var − 7,
var − 1

9
>>>>>>=
>>>>>>;

,

8
<
:

p− {val − 1, val− 3},
p− {val − 4},
p− {val − 2, val− 6}

9
=
;

1
CCCCCCCCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.105 respectively show the initial and final graph.
Since we use the NSOURCE and NSINK graph properties, the source and sink
vertices of the final graph are stressed with a double circle. Since the graph has only
3 sources and 4 sinks the variables NCOMMON1 and NCOMMON2 are respectively equal
to 3 and 4. Note that the vertices corresponding to the variables that take values 0 or
7 were removed from the final graph since there is no arc for which the associated
in same partition constraint holds.

VARIABLES1

VARIABLES2

1

1234 56

234

NSOURCE=3,NSINK=4

1:2

2:6

2:3

3:3 4:3 6:1

3:6

(A) (B)

Figure 4.105: Initial and final graph of the common partition constraint

See also common, in same partition.

Key words constraint between two collections of variables, partition, acyclic, bipartite, no loop.
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4.49 connect points

Origin N. Beldiceanu

Constraint connect points(SIZE1, SIZE2, SIZE3, NGROUP, POINTS)

Argument(s) SIZE1 : int

SIZE2 : int

SIZE3 : int

NGROUP : dvar

POINTS : collection(p− dvar)

Restriction(s) SIZE1 > 0
SIZE2 > 0
SIZE3 > 0
NGROUP ≥ 0
NGROUP ≤ |POINTS|
SIZE1 ∗ SIZE2 ∗ SIZE3 = |POINTS|
required(POINTS, p)

Purpose On a 3-dimensional grid of variables, number of groups, where a group consists of a connected
set of variables which all have a same value distinct from 0.

Arc input(s) POINTS

Arc generator GRID([SIZE1, SIZE2, SIZE3]) 7→ collection(points1, points2)

Arc arity 2

Arc constraint(s) • points1.p 6= 0
• points1.p = points2.p

Graph property(ies) NSCC = NGROUP
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Example connect points

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

8, 4, 2, 2,

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

p− 0, p − 0,
p− 1, p − 1,
p− 0, p − 2,
p− 0, p − 0,
p− 0, p − 0,
p− 0, p − 1,
p− 0, p − 2,
p− 0, p − 0,
p− 0, p − 0,
p− 0, p − 1,
p− 1, p − 1,
p− 1, p − 1,
p− 0, p − 2,
p− 0, p − 1,
p− 0, p − 2,
p− 0, p − 0,
p− 0, p − 0,
p− 0, p − 0,
p− 0, p − 0,
p− 0, p − 0,
p− 0, p − 0,
p− 0, p − 0,
p− 0, p − 2,
p− 0, p − 0,
p− 0, p − 2,
p− 2, p − 2,
p− 2, p − 2,
p− 0, p − 0,
p− 0, p − 2,
p− 0, p − 0,
p− 0, p − 2,
p− 0, p − 0

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Figure 4.106 gives the initial graph constructed by the GRID arc generator. Fig-
ure 4.107 corresponds to the solution where we describe separately each layer of the grid.
We have two groups: A first one for the variables assigned to value 1, and a second one for
the variables assigned to value 2.

Figure 4.106: Graph generated by GRID([8,4,2])

Usage Wiring problems [82], [83].

Key words geometrical constraint, channel routing, strongly connected component, joker value,
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symmetric.
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0
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0

2
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0

2

0 0

0

0
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0

0

2

20

2

0

2

00

2

2

Figure 4.107: The two layers of the solution
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4.50 correspondence

Origin Derived from sort permutation by removing the sorting condition.

Constraint correspondence(FROM, PERMUTATION, TO)

Argument(s) FROM : collection(fvar − dvar)
PERMUTATION : collection(var− dvar)
TO : collection(tvar − dvar)

Restriction(s) |PERMUTATION| = |FROM|
|PERMUTATION| = |TO|
PERMUTATION.var ≥ 1
PERMUTATION.var ≤ |PERMUTATION|
alldifferent(PERMUTATION)
required(FROM, fvar)
required(PERMUTATION, var)
required(TO, tvar)

Purpose The variables of the TO collection correspond to the variables of the FROM collection according
to the permutation expressed by PERMUTATION.

Derived Collection(s) col

„
FROM PERMUTATION − collection(fvar − dvar, var − dvar),
[item(fvar− FROM.fvar, var − PERMUTATION.var)]

«

Arc input(s) FROM PERMUTATION TO

Arc generator PRODUCT 7→ collection(from permutation, to)

Arc arity 2

Arc constraint(s) • from permutation.fvar = to.tvar
• from permutation.var = to.key

Graph property(ies) NARC = |PERMUTATION|
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Example correspondence

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

8
>>>>>><
>>>>>>:

fvar − 1,
fvar − 9,
fvar − 1,
fvar − 5,
fvar − 2,
fvar − 1

9
>>>>>>=
>>>>>>;

,

8
>>>>>><
>>>>>>:

var − 6,
var − 1,
var − 3,
var − 5,
var − 4,
var − 2

9
>>>>>>=
>>>>>>;

,

8
>>>>>><
>>>>>>:

tvar − 9,
tvar − 1,
tvar − 1,
tvar − 2,
tvar − 5,
tvar − 1

9
>>>>>>=
>>>>>>;

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.108 respectively show the initial and final graph. In
both graphs the source vertices correspond to the derived collection FROM PERMUTATION,
while the sink vertices correspond to the collection TO. Since the final graph contains
exactly |PERMUTATION| arcs the correspondence constraint holds. As we use the
NARC graph property, the arcs of the final graph are stressed in bold.

FROM_PERMUTATION

TO

1

1234 56

2 3456

NARC=6

1:1,6

6:1

2:9,1

1:9

3:1,3

3:1

4:5,5

5:5

5:2,4

4:2

6:1,2

2:1

(A) (B)

Figure 4.108: Initial and final graph of the correspondence constraint

Signature Because of the second condition from permutation.var = to.key of the arc constraint
and since both, the var attributes of the collection FROM PERMUTATION and the key at-
tributes of the collection TO are all distinct, the final graph contains at most |PERMUTATION|
arcs. Therefore we can rewrite the graph property NARC = |PERMUTATION| to
NARC ≥ |PERMUTATION|. This leads to simplify NARC to NARC.

Remark Similar to the same constraint except that we also provide the permutation which allows to
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go from the items of collection FROM to the items of collection TO.

See also same, sort permutation.

Key words constraint between three collections of variables, permutation, derived collection, acyclic,
bipartite, no loop.
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4.51 count

Origin [46]

Constraint count(VALUE, VARIABLES, RELOP, NVAR)

Argument(s) VALUE : int

VARIABLES : collection(var − dvar)
RELOP : atom

NVAR : dvar

Restriction(s) required(VARIABLES, var)
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose Let N be the number of variables of the VARIABLES collection assigned to value VAL; Enforce
condition N RELOP NVAR to hold.

Arc input(s) VARIABLES

Arc generator SELF 7→ collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUE

Graph property(ies) NARC RELOP NVAR

Example count

0
BBBB@

5,

8
>>>><
>>>>:

var− 4,
var− 5,
var− 5,
var− 4,
var− 5

9
>>>>=
>>>>;
,≥, 2

1
CCCCA

The constraint holds since value 5 occurs 3 times, which is greater than or equal to
2. Parts (A) and (B) of Figure 4.109 respectively show the initial and final graph. Since we
use the NARC graph property, the unary arcs of the final graph are stressed in bold.

VARIABLES

12345

NARC=3

2:5 3:5 5:5

(A) (B)

Figure 4.109: Initial and final graph of the count constraint

Automaton Figure 4.110 depicts the automaton associated to the count constraint. To each variable
VARi of the collection VARIABLES corresponds a 0-1 signature variable Si. The following
signature constraint links VARi and Si: VARi = VALUE⇔ Si.
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{C=C+1}
iVAR  = VALUE

$

t:

iVAR  <> VALUE

C RELOP NVAR

s

{C=0}

Figure 4.110: Automaton of the count constraint

C1

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0

C =00

Q =tn

C RELOP NVARn

Figure 4.111: Hypergraph of the reformulation corresponding to the automaton of the
count constraint
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Remark Similar to the among constraint.

See also among, counts, nvalue, max nvalue, min nvalue.

Key words value constraint, counting constraint, automaton, automaton with counters,
alpha-acyclic constraint network(2).
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4.52 counts

Origin Derived from count.

Constraint counts(VALUES, VARIABLES, RELOP, LIMIT)

Argument(s) VALUES : collection(val − int)
VARIABLES : collection(var − dvar)
RELOP : atom

LIMIT : dvar

Restriction(s) required(VALUES, val)
distinct(VALUES, val)
required(VARIABLES, var)
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose LetN be the number of variables of the VARIABLES collection assigned to a value of the VALUES
collection. Enforce condition N RELOP LIMIT to hold.

Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→ collection(variables, values)

Arc arity 2

Arc constraint(s) variables.var = values.val

Graph property(ies) NARC RELOP LIMIT

Example counts

0
BBBBBBBB@

{val − 1, val − 3, val − 4, val − 9},8
>>>>>><
>>>>>>:

var − 4,
var − 5,
var − 5,
var − 4,
var − 1,
var − 5

9
>>>>>>=
>>>>>>;

,=, 3

1
CCCCCCCCA

The constraint holds since values 1, 3, 4 and 9 are used by three variables of the
VARIABLES collection. This number is equal to the last argument of the counts constraint.
Parts (A) and (B) of Figure 4.112 respectively show the initial and final graph. Since we
use the NARC graph property, the arcs of the final graph are stressed in bold.

Graph model Because of the arc constraint variables.var = values.val and since each domain vari-
able can take at most one value, NARC is the number of variables taking a value in the
VALUES collection.

Automaton Figure 4.113 depicts the automaton associated to the counts constraint. To each variable
VARi of the collection VARIABLES corresponds a 0-1 signature variable Si. The following
signature constraint links VARi and Si: VARi ∈ VALUES⇔ Si.
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VARIABLES

VALUES

1

1234

2 3456

NARC=3

1:4

3:4

4:4 5:1

1:1

(A) (B)

Figure 4.112: Initial and final graph of the counts constraint

in(VAR ,VALUES),i
{C=C+1}

$

not_in(VAR ,VALUES)i

t:
C RELOP LIMIT

{C=0}

s

Figure 4.113: Automaton of the counts constraint

C1

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0

C =00

Q =tn

C RELOP LIMITn

Figure 4.114: Hypergraph of the reformulation corresponding to the automaton of the
counts constraint
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Usage Used in the Constraint(s) on sets slot for defining some constraints like
assign and counts.

Used in assign and counts.

See also count, among.

Key words value constraint, counting constraint, automaton, automaton with counters,
alpha-acyclic constraint network(2), acyclic, bipartite, no loop.
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4.53 crossing

Origin Inspired by [84].

Constraint crossing(NCROSS, SEGMENTS)

Argument(s) NCROSS : dvar

SEGMENTS : collection(ox− dvar, oy − dvar, ex− dvar, ey − dvar)

Restriction(s) NCROSS ≥ 0
NCROSS ≤ (|SEGMENTS| ∗ |SEGMENTS| − |SEGMENTS|)/2
required(SEGMENTS, [ox, oy, ex, ey])

Purpose
NCROSS is the number of line-segments intersections between the line-segments defined by the
SEGMENTS collection. Each line-segment is defined by the coordinates (ox, oy) and (ex, ey) of
its two extremities.

Arc input(s) SEGMENTS

Arc generator CLIQUE(<) 7→ collection(s1, s2)

Arc arity 2

Arc constraint(s) • max(s1.ox, s1.ex) ≥ min(s2.ox, s2.ex)
• max(s2.ox, s2.ex) ≥ min(s1.ox, s1.ex)
• max(s1.oy, s1.ey) ≥ min(s2.oy, s2.ey)
• max(s2.oy, s2.ey) ≥ min(s1.oy, s1.ey)

• W
0
BB@

(s2.ox − s1.ex) ∗ (s1.ey − s1.oy)− (s1.ex− s1.ox) ∗ (s2.oy − s1.ey) = 0,
(s2.ex − s1.ex) ∗ (s2.oy − s1.oy)− (s2.ox− s1.ox) ∗ (s2.ey − s1.ey) = 0,
sign((s2.ox − s1.ex) ∗ (s1.ey − s1.oy)− (s1.ex − s1.ox) ∗ (s2.oy− s1.ey)) 6=
sign((s2.ex − s1.ex) ∗ (s2.oy − s1.oy)− (s2.ox − s1.ox) ∗ (s2.ey− s1.ey))

1
CCA

Graph property(ies) NARC = NCROSS

Example crossing

0
BB@ 3,

8
>><
>>:

ox − 1 oy − 4 ex− 9 ey− 2,
ox − 1 oy − 1 ex− 3 ey− 5,
ox − 3 oy − 2 ex− 7 ey− 4,
ox − 9 oy − 1 ex− 9 ey− 4

9
>>=
>>;

1
CCA

Parts (A) and (B) of Figure 4.115 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in bold.
An arc constraint expresses the fact the two line-segments intersect. It is taken from [84,
page 889]. Each arc of the final graph corresponds to a line-segments intersection.
Figure 4.116 gives a picture of the previous example, where one can observe three
line-segments intersections.

Graph model Each line-segment is described by the x and y coordinates of its two extremities. In the
arc generator we use the restriction < in order to generate one single arc for each pair
of segments. This is required, since otherwise we would count more than once a given
line-segments intersection.
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SEGMENTS

1

2

3

4

NARC=3

1:1,4,9,2

2:1,1,3,5 3:3,2,7,4 4:9,1,9,4

(A) (B)

Figure 4.115: Initial and final graph of the crossing constraint

1

2

3

4

5

1 2 3 4 5 6 7 8 9

S3

S2
S4

S1

Figure 4.116: Intersection between line-segments
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See also graph crossing, two layer edge crossing.

Key words geometrical constraint, line-segments intersection, no loop.
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4.54 cumulative

Origin [67]

Constraint cumulative(TASKS, LIMIT)

Argument(s) TASKS : collection(origin − dvar, duration − dvar, end − dvar, height − dvar)
LIMIT : int

Restriction(s) require at least(2, TASKS, [origin, duration, end])
required(TASKS, height)
TASKS.duration ≥ 0
TASKS.height ≥ 0
LIMIT ≥ 0

Purpose

Cumulative scheduling constraint or scheduling under resource constraints. Consider a set T
of tasks described by the TASKS collection. The cumulative constraint enforces that at each
point in time, the cumulated height of the set of tasks that overlap that point, does not exceed a
given limit. It also imposes for each task of T the constraint origin + duration = end.

Arc input(s) TASKS

Arc generator SELF 7→ collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin + tasks.duration = tasks.end

Graph property(ies) NARC = |TASKS|

Arc input(s) TASKS TASKS

Arc generator PRODUCT 7→ collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • tasks1.duration > 0
• tasks2.origin ≤ tasks1.origin
• tasks1.origin < tasks2.end

Sets

SUCC 7→2
4

source,

variables − col

„
VARIABLES − collection(var− dvar),
[item(var− TASKS.height)]

«
3
5

Constraint(s) on sets sum ctr(variables,≤, LIMIT)
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Example cumulative

0
BBBB@

8
>>>><
>>>>:

origin − 1 duration − 3 end − 4 height − 1,
origin − 2 duration − 9 end − 11 height − 2,
origin − 3 duration − 10 end − 13 height − 1,
origin − 6 duration − 6 end − 12 height − 1,
origin − 7 duration − 2 end − 9 height − 3

9
>>>>=
>>>>;
, 8

1
CCCCA

Parts (A) and (B) of Figure 4.117 respectively show the initial and final graph asso-
ciated to the second graph constraint. On the one hand, each source vertex of the
final graph can be interpreted as a time point. On the other hand the successors of a
source vertex correspond to those tasks which overlap that time point. The cumulative

constraint holds since for each successor set S of the final graph the sum of the heights of
the tasks in S does not exceed the limit LIMIT = 8. Figure 4.118 shows the cumulated
profile associated to the previous example.

TASKS

TASKS

1

12 345

2345

TASKS

TASKS

1:1,3,4,1

1:1,3,4,1

2:2,9,11,2

2:2,9,11,2

3:3,10,13,1

3:3,10,13,1

4:6,6,12,1

4:6,6,12,1

5:7,2,9,3

5:7,2,9,3

(A) (B)

Figure 4.117: Initial and final graph of the cumulative constraint

Graph model The first graph constraint enforces for each task the link between its origin, its duration and
its end. The second graph constraint makes sure, for each time point t corresponding to
the start of a task, that the cumulated heights of the tasks that overlap t does not exceed the
limit of the resource.

Signature Since TASKS is the maximum number of vertices of the final graph of the first graph con-
straint we can rewrite NARC = |TASKS| to NARC ≥ |TASKS|. This leads to simplify
NARC to NARC.

Automaton Figure 4.119 depicts the automaton associated to the cumulative constraint. To each item
of the collection TASKS corresponds a signature variable Si, which is equal to 1.
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Figure 4.118: Resource consumption profile

i       i        i{C[ORI ]=C[ORI ]+HEIGHT ,

i       i        i{C[END ]=C[END ]−HEIGHT }

$

1,

t:
arith_sliding(C,<=,LIMIT)

{C[_]=0}

s

Figure 4.119: Automaton of the cumulative constraint
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Algorithm [85, 86, 87]. Within the context of linear programming, the reference [8] provides a relax-
ation of the cumulative constraint.

See also bin packing, cumulative product, coloured cumulative, cumulative two d,
coloured cumulatives, cumulatives, cumulative with level of priority.

Key words scheduling constraint, resource constraint, temporal constraint, linear programming,
producer-consumer, squared squares, automaton, automaton with array of counters.
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4.55 cumulative product

Origin Derived from cumulative.

Constraint cumulative product(TASKS, LIMIT)

Argument(s) TASKS : collection(origin − dvar, duration − dvar, end − dvar, height − dvar)
LIMIT : int

Restriction(s) require at least(2, TASKS, [origin, duration, end])
required(TASKS, height)
TASKS.duration ≥ 0
TASKS.height ≥ 1
LIMIT ≥ 0

Purpose

Consider a set T of tasks described by the TASKS collection. The cumulative product con-
straint enforces that at each point in time, the product of the height of the set of tasks that
overlap that point, does not exceed a given limit. It also imposes for each task of T the con-
straint origin + duration = end.

Arc input(s) TASKS

Arc generator SELF 7→ collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin + tasks.duration = tasks.end

Graph property(ies) NARC = |TASKS|

Arc input(s) TASKS TASKS

Arc generator PRODUCT 7→ collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • tasks1.duration > 0
• tasks2.origin ≤ tasks1.origin
• tasks1.origin < tasks2.end

Sets

SUCC 7→2
4

source,

variables − col

„
VARIABLES − collection(var− dvar),
[item(var− ITEMS.height)]

«
3
5

Constraint(s) on sets product ctr(variables,≤, LIMIT)
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Example cumulative product

0
BBBB@

8
>>>><
>>>>:

origin − 1 duration − 3 end− 4 height − 1,
origin − 2 duration − 9 end− 11 height − 2,
origin − 3 duration − 10 end− 13 height − 1,
origin − 6 duration − 6 end− 12 height − 1,
origin − 7 duration − 2 end− 9 height − 3

9
>>>>=
>>>>;
, 6

1
CCCCA

Parts (A) and (B) of Figure 4.120 respectively show the initial and final graph asso-
ciated to the second graph constraint. On the one hand, each source vertex of the final
graph can be interpreted as a time point. On the other hand the successors of a source
vertex correspond to those tasks which overlap that time point. The cumulative product

constraint holds since for each successor set S of the final graph the product of the heights
of the tasks in S does not exceed the limit LIMIT = 6. Figure 4.121 shows the solution
associated to the previous example.

TASKS

TASKS

1

12 345

2345

TASKS

TASKS

1:1,3,4,1

1:1,3,4,1

2:2,9,11,2

2:2,9,11,2

3:3,10,13,1

3:3,10,13,1

4:6,6,12,1

4:6,6,12,1

5:7,2,9,3

5:7,2,9,3

(A) (B)

Figure 4.120: Initial and final graph of the cumulative product constraint

6 7 8 9 10 11 12 time1 2 3 4 5

4

4

3

5

3

2

1

1

1

Figure 4.121: Solution of the cumulative product constraint
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Signature Since TASKS is the maximum number of vertices of the final graph of the first graph con-
straint we can rewrite NARC = |TASKS| to NARC ≥ |TASKS|. This leads to simplify
NARC to NARC.

See also cumulative.

Key words scheduling constraint, resource constraint, temporal constraint, product.
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4.56 cumulative two d

Origin Inspired by cumulative and diffn.

Constraint cumulative two d(RECTANGLES, LIMIT)

Argument(s) RECTANGLES : collection

0
BBBBBBBB@

start1 − dvar,
size1 − dvar,
last1 − dvar,
start2 − dvar,
size2 − dvar,
last2 − dvar,
height − dvar

1
CCCCCCCCA

LIMIT : int

Restriction(s) require at least(2, RECTANGLES, [start1, size1, last1])
require at least(2, RECTANGLES, [start2, size2, last2])
required(RECTANGLES, height)
RECTANGLES.size1 ≥ 0
RECTANGLES.size2 ≥ 0
RECTANGLES.height ≥ 0
LIMIT ≥ 0

Purpose
Consider a set R of rectangles described by the RECTANGLES collection. Enforces that at each
point of the plane, the cumulated height of the set of rectangles that overlap that point, does not
exceed a given limit.

Derived Collection(s) col

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

CORNERS − collection(size1 − dvar, size2 − dvar, x− dvar, y− dvar),2
666666666666666666666666664

item

0
BB@

size1 − RECTANGLES.size1,
size2 − RECTANGLES.size2,
x− RECTANGLES.start1,
y− RECTANGLES.start2

1
CCA ,

item

0
BB@

size1 − RECTANGLES.size1,
size2 − RECTANGLES.size2,
x− RECTANGLES.start1,
y− RECTANGLES.last2

1
CCA ,

item

0
BB@

size1 − RECTANGLES.size1,
size2 − RECTANGLES.size2,
x− RECTANGLES.last1,
y− RECTANGLES.start2

1
CCA ,

item

0
BB@

size1 − RECTANGLES.size1,
size2 − RECTANGLES.size2,
x− RECTANGLES.last1,
y− RECTANGLES.last2

1
CCA

3
777777777777777777777777775

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Arc input(s) RECTANGLES

Arc generator SELF 7→ collection(rectangles)
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Arc arity 1

Arc constraint(s) • rectangles.start1 + rectangles.size1 − 1 = rectangles.last1
• rectangles.start2 + rectangles.size2 − 1 = rectangles.last2

Graph property(ies) NARC = |RECTANGLES|

Arc input(s) CORNERS RECTANGLES

Arc generator PRODUCT 7→ collection(corners, rectangles)

Arc arity 2

Arc constraint(s) • corners.size1 > 0
• corners.size2 > 0
• rectangles.start1 ≤ corners.x
• corners.x ≤ rectangles.last1
• rectangles.start2 ≤ corners.y
• corners.y ≤ rectangles.last2

Sets

SUCC 7→2
4

source,

variables − col

„
VARIABLES − collection(var − dvar),
[item(var − RECTANGLES.height)]

«
3
5

Constraint(s) on sets sum ctr(variables,≤, LIMIT)

Example cumulative two d

0
BB@

8
>><
>>:

start1 − 1 size1 − 4 last1 − 4 start2 − 3 size2 − 3 last2 − 5 height − 4,
start1 − 3 size1 − 2 last1 − 4 start2 − 1 size2 − 2 last2 − 2 height − 2,
start1 − 1 size1 − 2 last1 − 2 start2 − 1 size2 − 2 last2 − 2 height − 3,
start1 − 4 size1 − 1 last1 − 4 start2 − 1 size2 − 1 last2 − 1 height − 1

9
>>=
>>;
, 4

1
CCA

Parts (A) and (B) of Figure 4.122 respectively show the initial and final graph asso-
ciated to the second graph constraint. On the one hand, each source vertex of the final
graph corresponds to the corner of a rectangle of the RECTANGLES collection. On the other
hand the successors of a source vertex are those rectangles which overlap that corner.

Part (A) of Figure 4.123 shows 4 rectangles of height 4, 2, 3 and 1. Part (B) gives the cor-
responding cumulated 2-dimensional profile, where each number is the cumulated height
of all the rectangles that contain the corresponding region.

Signature Since RECTANGLES is the maximum number of vertices of the final graph of the first graph
constraint we can rewrite NARC = |RECTANGLES| to NARC ≥ |RECTANGLES|. This
leads to simplify NARC to NARC.

Usage The cumulative two d constraint is a necessary condition for the diffn constraint in 3
dimensions (i.e. the placement of parallelepipeds in such a way that they do not pairwise
overlap and that each parallelepiped has his sides parallel to the sides of the placement
space).

Algorithm A first natural way to handle this constraint would be to accumulate the compulsory
parts [85] of the rectangles in a quadtree [88]. To each leave of the quadtree we asso-
ciate the cumulated height of the rectangles containing the corresponding region.
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CORNERS

RECTANGLES

1

1234

23456789101112 13141516

CORNERS

RECTANGLES

1:4,3,1,3

1:1,4,4,3,3,5,4

2:4,3,1,53:4,3,4,34:4,3,4,55:2,2,3,1

2:3,2,4,1,2,2,2

6:2,2,3,27:2,2,4,1

4:4,1,4,1,1,1,1

8:2,2,4,2 9:2,2,1,1

3:1,2,2,1,2,2,3

10:2,2,1,211:2,2,2,112:2,2,2,213:1,1,4,114:1,1,4,115:1,1,4,116:1,1,4,1

(A) (B)

Figure 4.122: Initial and final graph of the cumulative two d constraint
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3

4
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1
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3
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4

1

2
3

4

<5

Figure 4.123: Two representations of a 2-dimensional cumulated profile
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See also cumulative, diffn, bin packing.

Key words geometrical constraint, derived collection.
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4.57 cumulative with level of priority

Origin H. Simonis

Constraint cumulative with level of priority(TASKS, PRIORITIES)

Argument(s) TASKS : collection

0
BBBB@

priority − int,
origin − dvar,
duration − dvar,
end − dvar,
height − dvar

1
CCCCA

PRIORITIES : collection(id− int, capacity − int)

Restriction(s) required(TASKS, [priority, height])
require at least(2, TASKS, [origin, duration, end])
TASKS.priority ≥ 1
TASKS.priority ≤ |PRIORITIES|
TASKS.duration ≥ 0
TASKS.height ≥ 0
required(PRIORITIES, [id, capacity])
PRIORITIES.id ≥ 1
PRIORITIES.id ≤ |PRIORITIES|
increasing seq(PRIORITIES, id)
increasing seq(PRIORITIES, capacity)

Purpose

Consider a set T of tasks described by the TASKS collection where each task has a given priority
choosen in the range [1, PRIORITIES]. Let Ti denotes the subset of tasks of T which all have
a priority less than or equal to i. For each set Ti, the cumulative with level of priority

constraint enforces that at each point in time, the cumulated height of the set of tasks that
overlap that point, does not exceed a given limit. Finally, it also imposes for each task of T the
constraint origin + duration = end.

Derived Collection(s) col

0
@

TIME POINTS − collection(idp − int, duration − dvar, point − dvar),»
item(idp − TASKS.priority, duration − TASKS.duration, point − TASKS.origin),
item(idp − TASKS.priority, duration − TASKS.duration, point − TASKS.end)

–
1
A

Arc input(s) TASKS

Arc generator SELF 7→ collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin + tasks.duration = tasks.end

Graph property(ies) NARC = |TASKS|

For all items of PRIORITIES:
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Arc input(s) TIME POINTS TASKS

Arc generator PRODUCT 7→ collection(time points, tasks)

Arc arity 2

Arc constraint(s) • time points.idp = PRIORITIES.id
• time points.idp ≥ tasks.priority
• time points.duration > 0
• tasks.origin ≤ time points.point
• time points.point < tasks.end

Sets

SUCC 7→2
4

source,

variables − col

„
VARIABLES − collection(var − dvar),
[item(var − TASKS.height)]

«
3
5

Constraint(s) on sets sum ctr(variables,≤, PRIORITIES.capacity)

Example cumulative with level of priority

0
BBBBBBBB@

8
>>>><
>>>>:

priority − 1 origin − 1 duration − 2 end− 3 height − 1,
priority − 1 origin − 2 duration − 3 end− 5 height − 1,
priority − 1 origin − 5 duration − 2 end− 7 height − 2,
priority − 2 origin − 3 duration − 2 end− 5 height − 2,
priority − 2 origin − 6 duration − 3 end− 9 height − 1

9
>>>>=
>>>>;
,


id − 1 capacity − 2,
id − 2 capacity − 3

ff

1
CCCCCCCCA

Within the context of the second graph constraint, part (A) of Figure 4.124 shows
the initial graphs associated to priorities 1 and 2. Part (B) of Figure 4.124 shows the corre-
sponding final graphs associated to priorities 1 and 2. On the one hand, each source vertex
of the final graph can be interpreted as a time point p. On the other hand the successors of
a source vertex correspond to those tasks which both overlap that time point p and have a
priority less than or equal to a given level. The cumulative with level of priority

constraint holds since for each successor set S of the final graph the sum of the height of
the tasks in S is less than or equal to the capacity associated to a given level of priority.
Figure 4.125 shows the cumulated profile associated to both levels of priority.

Signature Since TASKS is the maximum number of vertices of the final graph of the first graph con-
straint we can rewrite NARC = |TASKS| to NARC ≥ |TASKS|. This leads to simplify
NARC to NARC.

Usage The cumulative with level of priority constraint was suggested by problems from
the telecommunication area where one has to ensure different levels of quality of service.
For this purpose the capacity of a transmission link is splitted so that a given percentage
is reserved to each level. In addition we have that, if the capacities allocated to levels
1, 2, . . . , i is not completely used, then level i+1 can use the corresponding spare capacity.

Remark The cumulative with level of priority constraint can be modeled by a con-
junction of cumulative constraints. As shown by the next example, the consis-
tency for all variables of the cumulative constraints does not implies consistency for
the corresponding cumulative with level of priority constraint. The following
cumulative with level of priority constraint
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TIME_POINTS

TASKS

1

123456 7

234 5678

PRIORITIES:1 PRIORITIES:2

1:1,2,1

1:1,1,2,3,1

2:1,2,3

2:1,2,3,5,1

3:1,3,24:1,3,5

3:1,5,2,7,2

5:1,2,5 6:2,2,3

4:1,2,3,5,1 6:2,3,2,5,2

7:2,2,5

5:1,5,2,7,2

8:2,3,6

7:2,6,3,9,1

(A) (B)

Figure 4.124: Initial and final graph of the cumulative with level of priority
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Figure 4.125: Resource consumption profile according to both levels of priority
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cumulative with level of priority

0
BBBB@

8
<
:

priority − 1 origin − o1 duration − 2 height − 2,
priority − 1 origin − o2 duration − 2 height − 1,
priority − 2 origin − o3 duration − 1 height − 3

9
=
; ,


id − 1 capacity − 2,
id − 2 capacity − 3

ff

1
CCCCA

where the domains of o1, o2 and o3 are respectively equal to {1, 2, 3}, {1, 2, 3} and
{1, 2, 3, 4} corresponds to the following conjunction of cumulative constraints

cumulative

„ 
origin − o1 duration − 2 height − 2,
origin − o2 duration − 2 height − 1

ff
, 2

«

cumulative

0
@
8
<
:

origin − o1 duration − 2 height − 2,
origin − o2 duration − 2 height − 1,
origin − o3 duration − 1 height − 3

9
=
; , 3

1
A

Even if the cumulative could achieve arc-consistency, the previous conjunction of
cumulative constraints would not detect the fact that there is no solution.

See also cumulative.

Key words scheduling constraint, resource constraint, temporal constraint, derived collection.
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4.58 cumulatives

Origin [89]

Constraint cumulatives(TASKS, MACHINES, CTR)

Argument(s) TASKS : collection

0
BBBB@

machine − dvar,
origin − dvar,
duration − dvar,
end− dvar,
height − dvar

1
CCCCA

MACHINES : collection(id− int, capacity − int)
CTR : atom

Restriction(s) required(TASKS, [machine, height])
require at least(2, TASKS, [origin, duration, end])
in attr(TASKS, machine, MACHINES, id)
TASKS.duration ≥ 0
required(MACHINES, [id, capacity])
distinct(MACHINES, id)
CTR ∈ [≤,≥]

Purpose

Consider a set T of tasks described by the TASKS collection. When CTR is equal to ≤ (repec-
tively ≥), the cumulatives constraint enforces the following condition for each machine m:
At each point in time, where at least one task assigned on machine m is present, the cumulated
height of the set of tasks that both overlap that point and are assigned to machine m should be
less than or equal to (repectively greater than or equal to) the capacity associated to machine m.
It also imposes for each task of T the constraint origin + duration = end.

Derived Collection(s) col

0
@

TIME POINTS − collection(idm − int, duration − dvar, point − dvar),»
item(idm − TASKS.machine, duration − TASKS.duration, point − TASKS.origin),
item(idm − TASKS.machine, duration − TASKS.duration, point − TASKS.end)

–
1
A

Arc input(s) TASKS

Arc generator SELF 7→ collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin + tasks.duration = tasks.end

Graph property(ies) NARC = |TASKS|

For all items of MACHINES:

Arc input(s) TIME POINTS TASKS

Arc generator PRODUCT 7→ collection(time points, tasks)
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Arc arity 2

Arc constraint(s) • time points.idm = MACHINES.id
• time points.idm = tasks.machine
• time points.duration > 0
• tasks.origin ≤ time points.point
• time points.point < tasks.end

Sets

SUCC 7→2
4

source,

variables − col

„
VARIABLES − collection(var − dvar),
[item(var − TASKS.height)]

«
3
5

Constraint(s) on sets sum ctr(variables, CTR, MACHINES.capacity)

Example cumulatives

0
BBBBBBBBBB@

8
>>>>>>>><
>>>>>>>>:

machine − 1 origin − 2 duration − 2 end − 4 height −−2,
machine − 1 origin − 1 duration − 4 end − 5 height − 1,
machine − 1 origin − 4 duration − 2 end − 6 height −−1,
machine − 1 origin − 2 duration − 3 end − 5 height − 2,
machine − 1 origin − 5 duration − 2 end − 7 height − 2,
machine − 2 origin − 3 duration − 2 end − 5 height −−1,
machine − 2 origin − 1 duration − 4 end − 5 height − 1

9
>>>>>>>>=
>>>>>>>>;

,

{id − 1 capacity − 0, id − 2 capacity − 0},≥

1
CCCCCCCCCCA

Within the context of the second graph constraint, part (A) of Figure 4.126 shows
the initial graphs associated to machines 1 and 2. Part (B) of Figure 4.126 shows the
corresponding final graphs associated to machines 1 and 2. On the one hand, each source
vertex of the final graph can be interpreted as a time point p on a specific machine m.
On the other hand the successors of a source vertex correspond to those tasks which both
overlap that time point p and are assigned to machine m. Since they don’t have any
successors we have eliminated those vertices corresponding to the end of the last three
tasks of the TASKS collection. The cumulatives constraint holds since for each successor
set S of the final graph the sum of the height of the tasks in S is greather than or equal to
the capacity of the machine corresponding to the time point associated to S . Figure 4.127
shows with a thick line the cumulated profile on both machines.

Signature Since TASKS is the maximum number of vertices of the final graph of the first graph con-
straint we can rewrite NARC = |TASKS| to NARC ≥ |TASKS|. This leads to simplify
NARC to NARC.

Usage As shown in the previous example, the cumulatives constraint is useful for covering
problems where different demand profiles have to be covered by a set of tasks. This is
modelled in the following way:

• To each demand profile is associated a given machine m and a set of tasks for which
all attributes (machine, origin, duration, end, height) are fixed; moreover the
machine attribute is fixed tom and the height attribute is strictly negative. For each
machine m the cumulated profile of all the previous tasks constitutes the demand
profile to cover.

• To each task that can be used to cover the demand is associated a task for which the
height attribute is a positive integer; the height attribute describes the amount of
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TIME_POINTS

TASKS

1

123456 7

2345678910 11121314

MACHINES:1 MACHINES:2

1:1,2,2

1:1,2,2,4,-22:1,1,4,5,1 4:1,2,3,5,2

2:1,2,4

3:1,4,2,6,-1

3:1,4,14:1,4,5

5:1,5,2,7,2

5:1,2,46:1,2,6 7:1,3,28:1,3,59:1,2,5 11:2,2,3

6:2,3,2,5,-17:2,1,4,5,1

13:2,4,1

(A) (B)

Figure 4.126: Initial and final graph of the cumulatives constraint
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Figure 4.127: Resource consumption profile on the different machines
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demand that can be covered by the task at each instant during its execution (between
its origin and its end) on the demand profile associated to the machine attribute.

• In order to express the fact that each demand profile should completely be covered,
we set the capacity attribute of each machine to 0. We can also relax the constraint
by setting the capacity attribute to a negative number that specifies the maximum
allowed uncovered demand at each instant.

The demand profiles might also not be completely fixed in advance.

When all the heights of the tasks are non-negative, one other possible use of the
cumulatives constraint is to enforce to reach a minimum level of resource consumption.
This is imposed on those time-points that are overlapped by at least one task.

By introducing a dummy task of height 0, of origin the minimum origin of all the tasks and
of end the maximum end of all the tasks, this can also be imposed between the first and the
last utilisation of the resource.

Finally the cumulatives constraint is also useful for scheduling problems where several
cumulative machines are available and where you have to assign each task on a specific
machine.

Algorithm Three filtering algorithms for this constraint are described in [89].

See also cumulative.

Key words scheduling constraint, resource constraint, temporal constraint, producer-consumer,
workload covering, demand profile, derived collection.
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4.59 cutset

Origin [90]

Constraint cutset(SIZE CUTSET, NODES)

Argument(s) SIZE CUTSET : dvar

NODES : collection(index − int, succ − sint, bool − dvar)

Restriction(s) SIZE CUTSET ≥ 0
SIZE CUTSET ≤ |NODES|
required(NODES, [index, succ, bool])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.bool ≥ 0
NODES.bool ≤ 1

Purpose
Consider a digraph G with n vertices described by the NODES collection. Enforces that the
subset of kept vertices of cardinality n − SIZE CUTSET and their corresponding arcs form a
graph without circuit.

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) • in set(nodes2.index, nodes1.succ)
• nodes1.bool = 1
• nodes2.bool = 1

Graph property(ies) •MAX NSCC ≤ 1
• NVERTEX = |NODES| − SIZE CUTSET

Example cutset

0
BB@ 1,

8
>><
>>:

index − 1 succ − {2, 3, 4} bool − 1,
index − 2 succ − {3} bool − 1,
index − 3 succ − {4} bool − 1,
index − 4 succ − {1} bool − 0

9
>>=
>>;

1
CCA

Part (A) of Figure 4.128 shows the initial graph from which we have choose to
start. It is derived from the set associated to each vertex. Each set describes the potential
values of the succ attribute of a given vertex. Part (B) of Figure 4.128 gives the final graph
associated to the example. Since we use the NVERTEX graph property, the vertices of
the final graph are stressed in bold. The cutset constraint holds since the final graph does
not contain any circuit and since the number of removed vertices SIZE CUTSET is equal to
1.
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Graph model We use a set of integers for representing the successors of each vertex. Because of the arc
constraint, all arcs such that the bool attribute of one extremity is equal to 0 are elimi-
nated; Therefore all vertices for which the bool attribute is equal to 0 are also eliminated
(since they will correspond to isolated vertices). The graph property MAX NSCC ≤ 1
enforces the size of the largest strongly connected component to not exceed 1; Therefore,
the final graph can’t contain any circuit.

Usage The paper [90] introducing the cutset constraint mentions applications from various areas
such that deadlock breaking or program verification.

Algorithm The filtering algorithm presented in [90] uses graph reduction techniques inspired from
Levy and Low [91] as well as from Lloyd, Soffa and Wang [92].

Key words graph constraint, circuit, directed acyclic graph.
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NODES

1:1,{2,3,4}

2:2,{3}

3:3,{4}

4:4,{1}

MAX_NSCC=1,NVERTEX=3

1:1,{2,3,4},1

2:2,{3},1

3:3,{4},1

(A) (B)

Figure 4.128: Initial and final graph of the cutset set constraint
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4.60 cycle

Origin [37]

Constraint cycle(NCYCLE, NODES)

Argument(s) NCYCLE : dvar

NODES : collection(index − int, succ − dvar)

Restriction(s) NCYCLE ≥ 1
NCYCLE ≤ |NODES|
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose

Consider a digraph G described by the NODES collection. NCYCLE is equal to the number of
circuits for coveringG in such a way that each vertex ofG belongs to one single circuit. NCYCLE
can also be interpreted as the number of cycles of the permutation associated to the successor
variables of the NODES collection.

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) • NTREE = 0
• NCC = NCYCLE

Example cycle

0
BBBB@

2,

8
>>>><
>>>>:

index − 1 succ − 2,
index − 2 succ − 1,
index − 3 succ − 5,
index − 4 succ − 3,
index − 5 succ − 4

9
>>>>=
>>>>;

1
CCCCA

In this previous example we have the following two cycles: 1 → 2 → 1 and
3→ 5→ 4→ 3. Parts (A) and (B) of Figure 4.129 respectively show the initial and final
graph. Since we use the NCC graph property, we show the two connected components
of the final graph. The constraint holds since all the vertices belong to a circuit (i.e.
NTREE = 0) and since NCYCLE = NCC = 2.

Graph model From the restrictions and from the arc constraint, we deduce that we have a bijection from
the successor variables to the values of interval [1, |NODES|]. With no explicit restrictions it
would have been impossible to derive this property.
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In order to express the binary constraint that links two vertices one has to make explicit the
identifier of the vertices. This is why the cycle constraint considers objects that have two
attributes:

• One fixed attribute index, which is the identifier of the vertex,

• One variable attribute succ, which is the successor of the vertex.

The graph property NTREE = 0 is used in order to avoid having vertices which both do
not belong to a circuit and have at least one successor located on a circuit. This concretely
means that all vertices of the final graph should belong to a circuit.

Usage The PhD thesis of Eric Bourreau [93] mentions the following applications of the cycle

constraint:

• The balanced Euler knight problem where one tries to cover a rectangular chessboard
of sizeN ·M by C knights which all have to visit between 2 · bb(N ·M)/Cc/2c and
2 · dd(N ·M)/Ce/2e distinct locations. For some values ofN , M and C there does
not exist any solution to the previous problem. This is for instance the case when
N = M = C = 6.

• Some pick-up delivery problems where a fleet of vehicles has to transport a set of
orders. Each order is characterized by its initial location, its final destination and its
weight. In addition one has also to take into account the capacity of the different
vehicles.

Remark In the original cycle constraint of CHIP the index attribute was not explicitly present. It
was implicitly defined as the position of a variable in a list.

In an early version of the CHIP their was a constraint named circuit which, from a
declarative point of view, was equivalent to cycle(1, NODES). In ALICE [2] the circuit
constraint was also present.

Algorithm Since all succ variables have to take distinct values one can reuse the algorithms associ-
ated to the alldifferent constraint. A second necessary condition is to have no more
than max(NCYCLE) strongly connected components. Since all the vertices of a circuit be-
long to the same strongly connected component an arc going from one strongly connected
component to another strongly connected component has to be removed.

See also circuit, cycle card on path, cycle resource, derangement, inverse, map,
symmetric alldifferent, tree.

Key words graph constraint, circuit, cycle, permutation, graph partitioning constraint,
connected component, strongly connected component, Euler knight, pick-up delivery,
one succ.
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NODES

1

2

3

4

5

NTREE=0,NCC=2

CC#1 CC#2

1:1,2

2:2,1

3:3,5

5:5,4

4:4,3

(A) (B)

Figure 4.129: Initial and final graph of the cycle constraint
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4.61 cycle card on path

Origin CHIP

Constraint cycle card on path(NCYCLE, NODES, ATLEAST, ATMOST, PATH LEN, VALUES)

Argument(s) NCYCLE : dvar

NODES : collection(index − int, succ − dvar, colour − dvar)
ATLEAST : int

ATMOST : int

PATH LEN : int

VALUES : collection(val− int)

Restriction(s) NCYCLE ≥ 1
NCYCLE ≤ |NODES|
required(NODES, [index, succ, colour])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|
ATLEAST ≥ 0
ATLEAST ≤ PATH LEN

ATMOST ≥ ATLEAST

PATH LEN ≥ 0
required(VALUES, val)
distinct(VALUES, val)

Purpose

Consider a digraph G described by the NODES collection. NCYCLE is the number of circuits
for covering G in such a way that each vertex belongs to one single circuit. In addition the
following constraint must also hold: On each set of PATH LENGTH consecutive distinct vertices
of each final circuit, the number of vertices for which the attribute colour takes his value in the
collection of values VALUES should be located within the range [ATLEAST, ATMOST].

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) • NTREE = 0
• NCC = NCYCLE

Sets
PATH LENGTH(PATH LEN) 7→»

variables − col

„
VARIABLES − collection(var − dvar),
[item(var − NODES.colour)]

« –
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Constraint(s) on sets among low up(ATLEAST, ATMOST, variables, VALUES)

Example cycle card on path

0
BBBBBBBBBBBBBB@

2,

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

index − 1 succ − 7 colour − 2,
index − 2 succ − 4 colour − 3,
index − 3 succ − 8 colour − 2,
index − 4 succ − 9 colour − 1,
index − 5 succ − 1 colour − 2,
index − 6 succ − 2 colour − 1,
index − 7 succ − 5 colour − 1,
index − 8 succ − 6 colour − 1,
index − 9 succ − 3 colour − 1

9
>>>>>>>>>>>>=
>>>>>>>>>>>>;

, 1, 2, 3,

{val − 1}

1
CCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.130 respectively show the initial and final graph.
Since we use the NCC graph property, we show the two connected components of the
final graph. The constraint cycle card on path holds since all the vertices belong to a
circuit (i.e. NTREE = 0) and since for each set of three consecutives vertices, colour 1
occurs at least once and at most twice (i.e. the among low up constraint holds).

NODES

1

2

3

4

5

6

7

8

9

NTREE=0,NCC=2

CC#1 CC#2

1:1,7,2

7:7,5,1

5:5,1,2

2:2,4,3

4:4,9,1

3:3,8,2

8:8,6,1

9:9,3,1

6:6,2,1

(A) (B)

Figure 4.130: Initial and final graph of the cycle card on path constraint

Usage Assume that the vertices of G are partitioned into the following two categories:

• Clients to visit.

• Depots where one can reload a vehicle.

Using the cycle card on path constraint we can express a constraint like: After visiting
three consecutives clients we should visit a depot. This is typically not possible with the
atmost constraint since we don’t know in advance the set of variables on which to post the
atmost constraint.
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Remark This constraint is a special case of the sequence parameter of the cycle constraint of
CHIP [93, pages 121–128].

See also cycle, among low up.

Key words graph constraint, sliding sequence constraint, sequence, connected component, coloured,
one succ.
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4.62 cycle or accessibility

Origin Inspired by [94].

Constraint cycle or accessibility(MAXDIST, NCYCLE, NODES)

Argument(s) MAXDIST : int

NCYCLE : dvar

NODES : collection(index − int, succ− dvar, x − int, y − int)

Restriction(s) MAXDIST ≥ 0
NCYCLE ≥ 1
NCYCLE ≤ |NODES|
required(NODES, [index, succ, x, y])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 0
NODES.succ ≤ |NODES|
NODES.x ≥ 0
NODES.y ≥ 0

Purpose

Consider a digraph G described by the NODES collection. Cover a subset of the vertices of
G by a set of vertex-disjoint circuits in such a way that the following property holds: For
each uncovered vertex v1 of G there exists at least one covered vertex v2 of G such that the
Manhattan distance between v1 and v2 is less than or equal to MAXDIST.

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) • NTREE = 0
• NCC = NCYCLE

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s)
W
0
BB@

nodes1.succ = nodes2.index,

V
0
@

nodes1.succ = 0,
nodes2.succ 6= 0,
abs(nodes1.x− nodes2.x) + abs(nodes1.y− nodes2.y) ≤ MAXDIST

1
A

1
CCA
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Graph property(ies) NVERTEX = |NODES|

Sets
PRED 7→»

variables − col(VARIABLES − collection(var− dvar), [item(var − NODES.succ)]),
destination

–

Constraint(s) on sets nvalues except 0(variables,=, 1)

Example cycle or accessibility

0
BBBBBBBB@

3, 2,

8
>>>>>>>><
>>>>>>>>:

index − 1 succ − 6 x− 4 y − 5,
index − 2 succ − 0 x− 9 y − 1,
index − 3 succ − 0 x− 2 y − 4,
index − 4 succ − 1 x− 2 y − 6,
index − 5 succ − 5 x− 7 y − 2,
index − 6 succ − 4 x− 4 y − 7,
index − 7 succ − 0 x− 6 y − 4

9
>>>>>>>>=
>>>>>>>>;

1
CCCCCCCCA

Parts (A) and (B) of Figure 4.131 respectively show the initial and final graph asso-
ciated to the second graph constraint. Figure 4.132 represents the solution associated to
the previous example. The covered vertices are colored in gray while the links starting
from the uncovered vertices are dashed. In the solution we have 2 circuits and 3 uncovered
nodes. All the uncovered nodes are located at a distance that does not exceed 3 from at
least one covered node.

NODES

1

2

3

4

5

6

7

NVERTEX=7

1:1,6,4,5

6:6,4,4,7

4:4,1,2,6

2:2,0,9,1

5:5,5,7,2

3:3,0,2,4 7:7,0,6,4

(A) (B)

Figure 4.131: Initial and final graph of the cycle or accessibility constraint

Graph model For each vertex v we have introduced the following attributes:

• index: The label associated to v,

• succ: If v is not covered by a circuit then 0; If v is covered by a circuit then index of
the successor of v.

• x: The x-coordinate of v,

• y: The y-coordinate of v.
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The first graph constraint enforces all vertices which have a non-zero successor to form a
set of NCYCLE vertex-disjoint circuits.

The final graph associated to the second graph constraint contains two types of arcs:

• The arcs belonging to one circuit (i.e. nodes1.succ = nodes2.index),

• The arcs between one vertex v1 that does not belong to any circuit (i.e.
nodes1.succ = 0) and one vertex v2 located on a circuit (i.e. nodes2.succ 6= 0)
such that the Manhattan distance between v1 and v2 is less than or equal to MAXDIST.

In order to specify the fact that each vertex is involved in at least one arc we
use the graph property NVERTEX = |NODES|. Finally the dynamic constraint
nvalues except 0(variables,=, 1) expresses the fact that for each vertex v, there is
exactly one predecessor of v which belong to a circuit.

Signature Since |NODES| is the maximum number of vertices of the final graph associated to the
second graph constraint we can rewrite NVERTEX = |NODES| to NVERTEX ≥
|NODES|. This leads to simplify NVERTEX to NVERTEX.

Remark This kind of facilities location problem is described in [94, pages 187–189] pages. In addi-
tion to our example they also mention the cost problem that is usually a trade-off between
the vertices that are directly covered by circuits and the others.

See also nvalues except 0.

Key words graph constraint, geometrical constraint, strongly connected component,
facilities location problem.

1 2 3 4 5 6 7 8 9

1

2

3

5

6

7

4 3

4

1

6

7

5

2

Figure 4.132: Final graph associated to the facilities location problem
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4.63 cycle resource

Origin CHIP

Constraint cycle resource(RESOURCE, TASK)

Argument(s) RESOURCE : collection(id− int, first task − dvar, nb task − dvar)
TASK : collection(id− int, next task − dvar, resource − dvar)

Restriction(s) required(RESOURCE, [id, first task, nb task])
RESOURCE.id ≥ 1
RESOURCE.id ≤ |RESOURCE|
distinct(RESOURCE, id)
RESOURCE.first task ≥ 1
RESOURCE.first task ≤ |RESOURCE| + |TASK|
RESOURCE.nb task ≥ 0
RESOURCE.nb task ≤ |TASK|
required(TASK, [id, next task, resource])
TASK.id > |RESOURCE|
TASK.id ≤ |RESOURCE|+ |TASK|
distinct(TASK, id)
TASK.next task ≥ 1
TASK.next task ≤ |RESOURCE| + |TASK|
TASK.resource ≥ 1
TASK.resource ≤ |RESOURCE|

Consider a digraph G defined as follows:
Purpose • To each item of the RESOURCE and TASK collections corresponds one vertex of G. A

vertex that was generated from an item of the RESOURCE (respectively TASK) collection
is called a resource vertex (respectively task vertex).

• There is an arc from a resource vertex r to a task vertex t if t ∈
RESOURCE[r].first task.

• There is an arc from a task vertex t to a resource vertex r if r ∈ TASK[t].next task.

• There is an arc from a task vertex t1 to a task vertex t2 if t2 ∈ TASK[t1].next task.

• There is no arc between two resource vertices.
Enforce to cover G in such a way that each vertex belongs to one single circuit. Each circuit is
made up from one single resource vertex and zero, one or more task vertices. For each resource-
vertex a domain variable indicates how many task-vertices belong to the corresponding circuit.
For each task a domain variable gives the identifier of the resource which can effectively handle
that task.

Derived Collection(s) col

0
@

RESOURCE TASK − collection(index − int, succ − dvar, name − dvar),»
item(index − RESOURCE.id, succ − RESOURCE.first task, name − RESOURCE.id),
item(index − TASK.id, succ − TASK.next task, name − TASK.resource)

–
1
A

Arc input(s) RESOURCE TASK
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Arc generator CLIQUE 7→ collection(resource task1, resource task2)

Arc arity 2

Arc constraint(s) • resource task1.succ = resource task2.index
• resource task1.name = resource task2.name

Graph property(ies) • NTREE = 0
• NCC = |RESOURCE|
• NVERTEX = |RESOURCE|+ |TASK|

For all items of RESOURCE:

Arc input(s) RESOURCE TASK

Arc generator CLIQUE 7→ collection(resource task1, resource task2)

Arc arity 2

Arc constraint(s) • resource task1.succ = resource task2.index
• resource task1.name = resource task2.name
• resource task1.name = RESOURCE.id

Graph property(ies) NVERTEX = RESOURCE.nb task + 1

Example cycle resource

0
BBBBBBBBBB@

8
<
:

id− 1 first task − 5 nb task − 3,
id− 2 first task − 2 nb task − 0,
id− 3 first task − 8 nb task − 2

9
=
; ,

8
>>>><
>>>>:

id− 4 next task − 7 resource − 1,
id− 5 next task − 4 resource − 1,
id− 6 next task − 3 resource − 3,
id− 7 next task − 1 resource − 1,
id− 8 next task − 6 resource − 3

9
>>>>=
>>>>;

1
CCCCCCCCCCA

Part (A) of Figure 4.133 shows the initial graphs (of the second graph constraint)
associated to resources 1, 2 and 3. Part (B) of Figure 4.133 shows the final graphs
(of the second graph constraint) associated to resources 1, 2 and 3. Since we use the
NVERTEX graph property, the vertices of the final graphs are stressed in bold. To each
resource corresponds a circuit of respectively 3, 0 and 2 task-vertices.

Graph model The graph model of the cycle resource constraint illustrates the following points:

• How to differentiate the constraint on the length of a circuit according to a resource
that is assigned to a circuit? This is achieved by introducing a collection of resources
and by asking a different graph property for each item of that collection.

• How to introduce the concept of name which corresponds to the resource that handle
a given task? This is done by adding to the arc constraint associated to the cycle

constraint the condition that the name variables of two consecutive vertices should
be equal.
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Signature Since the initial graph of the first graph constraint contains |RESOURCE| + |TASK| ver-
tices, the corresponding final graph cannot have more than |RESOURCE| + |TASK| vertices.
Therefore we can rewrite the graph property NVERTEX = |RESOURCE| + |TASK| to
NVERTEX ≥ |RESOURCE| + |TASK| and simplify NVERTEX to NVERTEX.

Usage This constraint is useful for some vehicles routing problem where the number of locations
to visit depends of the vehicle type that is effectively used. The resource attribute allows
expressing various constraints such as:

• The compatibility or incompability between tasks and vehicles,

• The fact that certain tasks should be performed by the same vehicle,

• The preassignment of certain tasks to a given vehicle.

Remark This constraint could be expressed with the cycle constraint of CHIP by using the follow-
ing optional parameters:

• The resource node parameter [93, page 97],

• The circuit weight parameter [93, page 101],

• The name parameter [93, page 104].

See also cycle.

Key words graph constraint, resource constraint, graph partitioning constraint, connected component,
strongly connected component, derived collection.
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RESOURCE_TASK

1

2

3

4

5

6

7

8

1:NVERTEX=4
2:NVERTEX=1
3:NVERTEX=3

RESOURCE:1 RESOURCE:2 RESOURCE:3

1:1,5,1

5:5,4,1

4:4,7,1

7:7,1,1

2:2,2,2 3:3,8,3

8:8,6,3

6:6,3,3

(A) (B)

Figure 4.133: Initial and final graph of the cycle resource constraint
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4.64 cyclic change

Origin Derived from change.

Constraint cyclic change(NCHANGE, CYCLE LENGTH, VARIABLES, CTR)

Argument(s) NCHANGE : dvar

CYCLE LENGTH : int

VARIABLES : collection(var− dvar)
CTR : atom

Restriction(s) NCHANGE ≥ 0
NCHANGE < |VARIABLES|
CYCLE LENGTH > 0
required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose NCHANGE is the number of times that constraint ((X + 1) mod CYCLE LENGTH) CTR Y holds;
X and Y correspond to consecutive variables of the collection VARIABLES.

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) (variables1.var + 1) mod CYCLE LENGTH CTR variables2.var

Graph property(ies) NARC = NCHANGE

Example cyclic change

0
BBBB@

2, 4,

8
>>>><
>>>>:

var− 3,
var− 0,
var− 2,
var− 3,
var− 1

9
>>>>=
>>>>;
, 6=

1
CCCCA

In the previous example we have the two following changes:

• A first change between 0 and 2,

• A second change between 3 and 1.

However, the sequence 3 0 does not correspond to a change since (3 + 1) mod 4 is equal
to 0. Parts (A) and (B) of Figure 4.134 respectively show the initial and final graph. Since
we use the NARC graph property, the arcs of the final graph are stressed in bold.

Automaton Figure 4.135 depicts the automaton associated to the cyclic change constraint. To each
pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a
0-1 signature variable Si. The following signature constraint links VARi, VARi+1 and Si:
((VARi + 1) mod CYCLE LENGTH) CTR VARi+1 ⇔ Si.
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VARIABLES

1

2

3

4

5

NARC=2

2:0

3:2

4:3

5:1

(A) (B)

Figure 4.134: Initial and final graph of the cyclic change constraint

(VAR +1)mod CYCLE_LENGTH CTR VAR   ,i                           i+1 (VAR +1)mod CYCLE_LENGTH not CTR VARi                               i+1

$

NCHANGE=C
t:

{C=C+1}

{C=0}

s

Figure 4.135: Automaton of the cyclic change constraint

Q =s0

C =00 C1

Q1

VAR
1

S1

VAR
2

S2

VAR
n

VAR
3

S3

Q2

C2

Sn−1

VAR
n−1

Q   =tn−1

C   =NCHANGEn−1

Figure 4.136: Hypergraph of the reformulation corresponding to the automaton of the
cyclic change constraint
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Usage This constraint may be used for personnel cyclic timetabling problems where each person
has to work according to cycles. In this context each variable of the VARIABLES collection
corresponds to the type of work a person performs on a specific day. Because of some
perturbation (e.g. illness, unavailability, variation of the workload) it is in practice not
reasonable to ask for perfect cyclic solutions. One alternative is to use the cyclic change

constraint and to ask for solutions where one tries to minimize the number of cycle breaks
(i.e. the variable NCHANGE).

See also change.

Key words timetabling constraint, number of changes, cyclic, automaton, automaton with counters,
sliding cyclic(1) constraint network(2), acyclic, no loop.
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4.65 cyclic change joker

Origin Derived from cyclic change.

Constraint cyclic change joker(NCHANGE, CYCLE LENGTH, VARIABLES, CTR)

Argument(s) NCHANGE : dvar

CYCLE LENGTH : int

VARIABLES : collection(var− dvar)
CTR : atom

Restriction(s) NCHANGE ≥ 0
NCHANGE < |VARIABLES|
required(VARIABLES, var)
CYCLE LENGTH > 0
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose

NCHANGE is the number of times that the following constraint holds:

((X + 1) mod CYCLE LENGTH) CTR Y ∧X < CYCLE LENGTH ∧ Y < CYCLE LENGTH

X and Y correspond to consecutive variables of the collection VARIABLES.

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • (variables1.var + 1) mod CYCLE LENGTH CTR variables2.var
• variables1.var < CYCLE LENGTH

• variables2.var < CYCLE LENGTH

Graph property(ies) NARC = NCHANGE

Example cyclic change joker

0
BBBBBBBBBBBB@

2, 4,

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

var − 3,
var − 0,
var − 2,
var − 4,
var − 4,
var − 4,
var − 3,
var − 1,
var − 4

9
>>>>>>>>>>>>=
>>>>>>>>>>>>;

, 6=

1
CCCCCCCCCCCCA

In the previous example we have the two following changes:

• A first change between 0 and 2,

• A second change between 3 and 1.
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But when the joker value 4 is involved, there is no change. This is why no change is
counted between values 2 and 4, between 4 and 4 and between 1 and 4. Parts (A) and (B)
of Figure 4.137 respectively show the initial and final graph. Since we use the NARC
graph property, the arcs of the final graph are stressed in bold.

VARIABLES

1

2

3

4

5

6

7

8

9

NARC=2

2:0

3:2

7:3

8:1

(A) (B)

Figure 4.137: Initial and final graph of the cyclic change joker constraint

Graph model The joker values are those values that are greater than or equal to CYCLE LENGTH. We do
not count any change for those arc constraints involving at least one variable taking a joker
value.

Automaton Figure 4.138 depicts the automaton associated to the cyclic change joker constraint.
To each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corre-
sponds a 0-1 signature variable Si. The following signature constraint links VARi, VARi+1

and Si:

(((VARi + 1) mod CYCLE LENGTH) CTR VARi+1 ∧
(VARi < CYCLE LENGTH) ∧ (VARi+1 < CYCLE LENGTH))⇔ Si.

Usage The cyclic change joker constraint can be used in the same context as the
cycle change constraint with the additional feature: In our example codes 0 to 3 cor-
respond to different type of activities (i.e. working the morning, the afternoon or the night)
and code 4 represents a holliday. We want to express the fact that we don’t count any
change for two consecutive days d1, d2 such that d1 or d2 is a holliday.

See also change.

Key words timetabling constraint, number of changes, cyclic, joker value, automaton,
automaton with counters, sliding cyclic(1) constraint network(2), acyclic, no loop.



408 NARC,PATH

(VAR +1)mod CYCLE_LENGTH not CTR VAR    ori                               i+1
VAR >=CYCLE_LENGTH ori

i+1VAR   >=CYCLE_LENGTH

(VAR +1)mod CYCLE_LENGTH CTR VAR    andi                           i+1
VAR <CYCLE_LENGTH andi

i+1VAR   <CYCLE_LENGTH,

$

NCHANGE=C
t:

{C=C+1}

{C=0}

s

Figure 4.138: Automaton of the cyclic change joker constraint

Q =s0

C =00 C1

Q1

VAR
1

S1

VAR
2

S2

VAR
n

VAR
3

S3

Q2

C2

Sn−1

VAR
n−1

Q   =tn−1

C   =NCHANGEn−1

Figure 4.139: Hypergraph of the reformulation corresponding to the automaton of the
cyclic change joker constraint
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4.66 decreasing

Origin Inspired by increasing.

Constraint decreasing(VARIABLES)

Argument(s) VARIABLES : collection(var − dvar)

Restriction(s) |VARIABLES| > 0
required(VARIABLES, var)

Purpose The variables of the collection VARIABLES are decreasing.

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var ≥ variables2.var

Graph property(ies) NARC = |VARIABLES| − 1

Example decreasing({var − 8, var − 4, var − 1, var− 1})

Parts (A) and (B) of Figure 4.140 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

VARIABLES

1

2

3

4

NARC=3

1:8

2:4

3:1

4:1

(A) (B)

Figure 4.140: Initial and final graph of the decreasing constraint
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Automaton Figure 4.141 depicts the automaton associated to the decreasing constraint. To each
pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a
0-1 signature variable Si. The following signature constraint links VARi, VARi+1 and Si:
VARi < VARi+1 ⇔ Si.

See also strictly decreasing, increasing, strictly increasing.

Key words decomposition, order constraint, automaton, automaton without counters,
sliding cyclic(1) constraint network(1).

$

t

s i     i+1VAR >=VAR

Figure 4.141: Automaton of the decreasing constraint
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VAR
1

VAR
2

S2

VAR
n

VAR
3

S3

Q2

Sn−1

VAR
n−1

Q   =tn−1Q =s0 Q1

S1

Figure 4.142: Hypergraph of the reformulation corresponding to the automaton of the
decreasing constraint
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4.67 deepest valley

Origin Derived from valley.

Constraint deepest valley(DEPTH, VARIABLES)

Argument(s) DEPTH : dvar

VARIABLES : collection(var − dvar)

Restriction(s) DEPTH ≥ 0
VARIABLES.var ≥ 0
required(VARIABLES, var)

Purpose

A variable Vk (1 < k < m) of the sequence of variables VARIABLES = V1, . . . , Vm is a valley
if and only if there exist an i (1 < i ≤ k) such that Vi−1 > Vi and Vi = Vi+1 = . . . = Vk
and Vk < Vk+1. DEPTH is the minimum value of the valley variables. If no such variable exists
DEPTH is equal to the default value MAXINT.

Example deepest valley

0
BBBBBBBBBB@

2,

8
>>>>>>>>>><
>>>>>>>>>>:

var − 5,
var − 3,
var − 4,
var − 8,
var − 8,
var − 2,
var − 7,
var − 1

9
>>>>>>>>>>=
>>>>>>>>>>;

1
CCCCCCCCCCA

The previous constraint holds since 2 is the deepest valley of the sequence 5 3 4 8 8 2 7 1.

1

1 5 6 7 8

2

3

4

5

6

43

7

8

Values

Variables 2

5

2

4

3

8 8

7

1

Figure 4.143: The sequence and its deepest valley

Automaton Figure 4.144 depicts the automaton associated to the deepest valley constraint. To each
pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a
signature variable Si. The following signature constraint links VARi, VARi+1 and Si:

VARi < VARi+1 ⇔ Si = 0 ∧ VARi = VARi+1 ⇔ Si = 1 ∧ VARi > VARi+1 ⇔ Si = 2.
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VAR = VARi i+1

VAR = VARi i+1i+1iVAR < VAR

u

$

$

i i+1

i{C=min(C,VAR )}

i i+1

i i+1

VAR > VAR

VAR < VAR   ,

VAR > VAR

DEPTH=C

t:

s

{C=maxint}

Figure 4.144: Automaton of the deepest valley constraint

C1

Q1

VAR
1

S1

VAR
2

S2

VAR
n

VAR
3

S3

Q2

C2

Sn−1

VAR
n−1

Q =s0

C =maxint0

Q   =tn−1

n−1C   =DEPTH

Figure 4.145: Hypergraph of the reformulation corresponding to the automaton of the
deepest valley constraint
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See also valley, heighest peak.

Key words sequence, maxint, automaton, automaton with counters,
sliding cyclic(1) constraint network(2).
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4.68 derangement

Origin Derived from cycle.

Constraint derangement(NODES)

Argument(s) NODES : collection(index − int, succ − dvar)

Restriction(s) required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose Enforce to have a permutation with no cycle of length one. The permutation is depicted by the
succ attribute of the NODES collection.

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) • nodes1.succ = nodes2.index
• nodes1.succ 6= nodes1.index

Graph property(ies) NTREE = 0

Example derangement

0
BBBB@

8
>>>><
>>>>:

index − 1 succ − 2,
index − 2 succ − 1,
index − 3 succ − 5,
index − 4 succ − 3,
index − 5 succ − 4

9
>>>>=
>>>>;

1
CCCCA

In the permutation of the previous example we have the following 2 cycles: 1 → 2 → 1
and 3 → 5 → 4 → 3. Parts (A) and (B) of Figure 4.146 respectively show the initial and
final graph. The constraint holds since the final graph does not contain any vertex which
do not belong to a circuit (i.e. NTREE = 0).

Graph model In order to express the binary constraint that links two vertices of the NODES collection
one has to make explicit the index value of the vertices. This is why the derangement

constraint considers objects that have two attributes:

• One fixed attribute index, which is the identifier of the vertex,

• One variable attribute succ, which is the successor of the vertex.

Forbiding cycles of length one is achieved by the second condition of the arc constraint.
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Signature Since 0 is the smallest possible value of NTREE we can rewrite the graph property
NTREE = 0 to NTREE ≤ 0. This leads to simplify NTREE to NTREE.

Remark A special case of the cycle [37] constraint.

See also alldifferent, cycle.

Key words graph constraint, permutation.
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NODES

1

2

3

4

5

NTREE=0

1:1,2

2:2,1

3:3,5

5:5,4

4:4,3

(A) (B)

Figure 4.146: Initial and final graph of the derangement constraint
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4.69 differ from at least k pos

Origin Inspired by [56].

Constraint differ from at least k pos(K, VECTOR1, VECTOR2)

Type(s) VECTOR : collection(var− dvar)

Argument(s) K : int

VECTOR1 : VECTOR

VECTOR2 : VECTOR

Restriction(s) required(VECTOR, var)
K ≥ 0
K ≤ |VECTOR1|
|VECTOR1| = |VECTOR2|

Purpose Enforce two vectors VECTOR1 and VECTOR2 to differ from at least K positions.

Arc input(s) VECTOR1 VECTOR2

Arc generator PRODUCT (=) 7→ collection(vector1, vector2)

Arc arity 2

Arc constraint(s) vector1.var 6= vector2.var

Graph property(ies) NARC ≥ K

Example differ from at least k pos

0
BBBBBBBBBB@

2,

8
>><
>>:

var − 2,
var − 5,
var − 2,
var − 0

9
>>=
>>;
,

8
>><
>>:

var − 3,
var − 6,
var − 2,
var − 1

9
>>=
>>;

1
CCCCCCCCCCA

The previous constraint holds since the first and second vectors differ from 3 posi-
tions which is greater than or equal to K = 2. Parts (A) and (B) of Figure 4.147
respectively show the initial and final graph. Since we use the NARC graph property, the
arcs of the final graph are stressed in bold.

Automaton Figure 4.148 depicts the automaton associated to the differ from at least k pos con-
straint. Let VAR1i and VAR2i be the ith variables of the VECTOR1 and VECTOR2 collections.
To each pair of variables (VAR1i, VAR2i) corresponds a signature variable Si. The follow-
ing signature constraint links VAR1i, VAR2i and Si: VAR1i = VAR2i ⇔ Si.

Remark Used in the Arc constraint(s) slot of the all differ from at least k pos constraint.
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VECTOR1

VECTOR2

1

1

2

2

3

3

4

4

NARC=3

1:2

1:3

2:5

2:6

4:0

4:1

(A) (B)

Figure 4.147: Initial and final graph of the differ from at least k pos constraint

{C=C+1}

VAR1<>VAR2,

$

t:
C>=K

VAR1=VAR2s

{C=0}

Figure 4.148: Automaton of the differ from at least k pos constraint

C1

S1

Q1

S2 Sn

Q =s0

C =00

Q =tn

VAR2
 1

VAR2
 2

VAR2
 n

VAR1
 1

VAR1
 2

VAR1
 n

C >=Kn

Figure 4.149: Hypergraph of the reformulation corresponding to the automaton of the
differ from at least k pos constraint
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Used in all differ from at least k pos.

Key words value constraint, vector, automaton, automaton with counters,
alpha-acyclic constraint network(2).



20030820 425



426 NARC, SELF ; NARC,CLIQUE (6=)

4.70 diffn

Origin [37]

Constraint diffn(ORTHOTOPES)

Type(s) ORTHOTOPE : collection(ori − dvar, siz− dvar, end − dvar)

Argument(s) ORTHOTOPES : collection(orth− ORTHOTOPE)

Restriction(s) |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
required(ORTHOTOPES, orth)
same size(ORTHOTOPES, orth)

Purpose
Generalized multi-dimensional non-overlapping constraint: Holds if, for each pair of orthotopes
(O1, O2), O1 and O2 do not overlap. Two orthotopes do not overlap if there exists at least one
dimension where their projections do not overlap.

Arc input(s) ORTHOTOPES

Arc generator SELF 7→ collection(orthotopes)

Arc arity 1

Arc constraint(s) orth link ori siz end(orthotopes.orth)

Graph property(ies) NARC = |ORTHOTOPES|

Arc input(s) ORTHOTOPES

Arc generator CLIQUE(6=) 7→ collection(orthotopes1, orthotopes2)

Arc arity 2

Arc constraint(s) two orth do not overlap(orthotopes1.orth, orthotopes2.orth)

Graph property(ies) NARC = |ORTHOTOPES| ∗ |ORTHOTOPES| − |ORTHOTOPES|

Example diffn

0
BBBBBB@

8
>>>>>><
>>>>>>:

orth −


ori − 2 siz − 2 end − 4,
ori − 1 siz − 3 end − 4

ff
,

orth −


ori − 4 siz − 4 end − 8,
ori − 3 siz − 3 end − 3

ff
,

orth −


ori − 9 siz − 2 end − 11,
ori − 4 siz − 3 end − 7

ff

9
>>>>>>=
>>>>>>;

1
CCCCCCA

Parts (A) and (B) of Figure 4.150 respectively show the initial and final graph asso-
ciated to the second graph constraint. Since we use the NARC graph property, the arcs
of the final graph are stressed in bold. Figure 4.151 represents the respective position of
the three rectangles of the example. The coordinates of the leftmost lowest corner of each
rectangle are stressed in bold.
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ORTHOTOPES

1

2

3

NARC=6

1:2,2,4
  1,3,4

2:4,4,8
  3,3,3

3:9,2,11
  4,3,7

(A) (B)

Figure 4.150: Initial and final graph of the diffn constraint

1

1 2 3 4 5 6 7 8 9 10

2

3

4

5

6

R1

R2

R3

Figure 4.151: The three rectangles of the example
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Graph model The diffn constraint is expressed by using two graph constraints:

• The first graph constraint enforces for each dimension and for each orthotope the link
between the corresponding ori, siz and end attributes.

• The second graph constraint imposes each pair of distinct orthotopes to not overlap.

Signature Since |ORTHOTOPES| is the maximum number of vertices of the final graph of the first graph
constraint we can rewrite NARC = |ORTHOTOPES| to NARC ≥ |ORTHOTOPES|. This
leads to simplify NARC to NARC.

Since we use the CLIQUE(6=) arc generator on the ORTHOTOPES collection,
|ORTHOTOPES| · |ORTHOTOPES| − |ORTHOTOPES| is the maximum number of ver-
tices of the final graph of the second graph constraint. Therefore we can rewrite
NARC = |ORTHOTOPES| · |ORTHOTOPES|−|ORTHOTOPES| to NARC ≥ |ORTHOTOPES| ·
|ORTHOTOPES| − |ORTHOTOPES|. Again, this leads to simplify NARC to NARC.

Usage The diffn constraint occurs in placement and scheduling problems. It was for instance
used for scheduling problems where one has to both assign each non-premptive task to a
resource and fix its origin so that two tasks which are assigned to the same resource do
not overlap. A practical application from the area of the design of memory-dominated
embedded systems [95] can be found in [96].

Algorithm For the two-dimensional case of diffn a possible filtering algorithm based on sweep is
described in [97]. For the n-dimensional case of diffn a filtering algorithm handling the
fact that two objects do not overlap is given in [98]. Extensions of the non-overlapping
constraint to polygons and to more complex shapes are respectively described in [98] and
in [99]. Specialized propagation algorithms for the squared squares problem [100] (based
on the fact that no waste is permitted) are given in [101] and in [102].

Used in diffn column, diffn include, place in pyramid.

See also orth link ori siz end, two orth do not overlap.

Key words decomposition, geometrical constraint, orthotope, polygon, non-overlapping, sweep,
squared squares.
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4.71 diffn column

Origin CHIP: option guillotine cut (column) of diffn.

Constraint diffn column(ORTHOTOPES, N)

Type(s) ORTHOTOPE : collection(ori − dvar, siz− dvar, end − dvar)

Argument(s) ORTHOTOPES : collection(orth− ORTHOTOPE)
N : int

Restriction(s) |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
required(ORTHOTOPES, orth)
same size(ORTHOTOPES, orth)
N > 0
N ≤ |ORTHOTOPE|
diffn(ORTHOTOPES)

Purpose

Arc input(s) ORTHOTOPES

Arc generator CLIQUE(<) 7→ collection(orthotopes1, orthotopes2)

Arc arity 2

Arc constraint(s) two orth column(orthotopes1.orth, orthotopes2.orth, N)

Graph property(ies) NARC = |ORTHOTOPES| ∗ (|ORTHOTOPES| − 1)/2

Example diffn column

0
BB@

8
>><
>>:

orth −


ori − 1 siz − 3 end − 4,
ori − 1 siz − 1 end − 2

ff
,

orth −


ori − 4 siz − 2 end − 6,
ori − 1 siz − 3 end − 4

ff

9
>>=
>>;
, 1

1
CCA

See also diffn, two orth column, diffn include.

Key words decomposition, geometrical constraint, positioning constraint, orthotope, guillotine cut.
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ORTHOTOPES

1

2

NARC=1

1:1,3,4
  1,1,2

2:4,2,6
  1,3,4

(A) (B)

Figure 4.152: Initial and final graph of the diffn column constraint
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4.72 diffn include

Origin CHIP: option guillotine cut (include) of diffn.

Constraint diffn include(ORTHOTOPES, N)

Type(s) ORTHOTOPE : collection(ori − dvar, siz− dvar, end − dvar)

Argument(s) ORTHOTOPES : collection(orth− ORTHOTOPE)
N : int

Restriction(s) |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
required(ORTHOTOPES, orth)
same size(ORTHOTOPES, orth)
N > 0
N ≤ |ORTHOTOPE|
diffn(ORTHOTOPES)

Purpose

Arc input(s) ORTHOTOPES

Arc generator CLIQUE(<) 7→ collection(orthotopes1, orthotopes2)

Arc arity 2

Arc constraint(s) two orth include(orthotopes1.orth, orthotopes2.orth, N)

Graph property(ies) NARC = |ORTHOTOPES| ∗ (|ORTHOTOPES| − 1)/2

Example diffn include

0
BB@

8
>><
>>:

orth −


ori− 1 siz − 3 end − 4,
ori− 1 siz − 1 end − 2

ff
,

orth −


ori− 1 siz − 2 end − 3,
ori− 2 siz − 3 end − 5

ff

9
>>=
>>;
, 1

1
CCA

See also diffn, two orth include, diffn column.

Key words decomposition, geometrical constraint, positioning constraint, orthotope.
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ORTHOTOPES

1

2

NARC=1

1:1,3,4
  1,1,2

2:1,2,3
  2,3,5

(A) (B)

Figure 4.153: Initial and final graph of the diffn include constraint
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4.73 discrepancy

Origin [103] and [104]

Constraint discrepancy(VARIABLES, K)

Argument(s) VARIABLES : collection(var − dvar, bad− sint)
K : int

Restriction(s) required(VARIABLES, var)
required(VARIABLES, bad)
K ≥ 0
K ≤ |VARIABLES|

Purpose K is the number of variables of the collection VARIABLES which take their value in their respec-
tive sets of bad values.

Arc input(s) VARIABLES

Arc generator SELF 7→ collection(variables)

Arc arity 1

Arc constraint(s) in set(variables.var, variables.bad)

Graph property(ies) NARC = K

Example discrepancy

0
BBBB@

8
>>>><
>>>>:

var− 4 bad − {1, 4, 6},
var− 5 bad − {0, 1},
var− 5 bad − {1, 6, 9},
var− 4 bad − {1, 4},
var− 1 bad − ∅

9
>>>>=
>>>>;
, 2

1
CCCCA

Parts (A) and (B) of Figure 4.154 respectively show the initial and final graph.
Since we use the NARC graph property, the unary arcs of the final graph are stressed in
bold.

VARIABLES

12345

NARC=2

1:4,{1,4,6} 4:4,{1,4}

(A) (B)

Figure 4.154: Initial and final graph of the discrepancy constraint

Graph model The arc constraint corresponds to the constraint
in set(variables.var, variables.bad) defined in this catalog. We employ the
SELF arc generator in order to produce an initial graph with a single loop on each vertex.
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Remark Limited discrepancy search was first introduced by M. L. Ginsberg and W. D. Harvey as
a search technique in [105]. Later on, discrepancy based filtering was presented in the
PhD thesis of F. Focacci [103, pages 171–172]. Finally the discrepancy constraint was
explictely defined in the PhD thesis of W.-J. van Hoeve [104, page 104].

See also among.

Key words value constraint, counting constraint, heuristics, limited discrepancy search.



436 NARC,PRODUCT

4.74 disjoint

Origin Derived from alldifferent.

Constraint disjoint(VARIABLES1, VARIABLES2)

Argument(s) VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)

Restriction(s) required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose Each variable of the collection VARIABLES1 should take a value that is distinct from all the
values assigned to the variables of the collection VARIABLES2.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NARC = 0

Example disjoint

0
BBBBBBBB@

{var − 1, var− 9, var− 1, var− 5},8
>>>>>><
>>>>>>:

var − 2,
var − 7,
var − 7,
var − 0,
var − 6,
var − 8

9
>>>>>>=
>>>>>>;

1
CCCCCCCCA

In this example, values 1, 5, 9 are used by the variables of VARIABLES1 and values
0, 2, 6, 7, 8 by the variables of VARIABLES2. Since there is no intersection between the
two previous sets of values the disjoint constraint holds. Figure 4.155 shows the initial
graph. Since we use the NARC = 0 graph property the final graph is empty.

Graph model PRODUCT is used in order to generate the arcs of the graph between all variables
of VARIABLES1 and all variables of VARIABLES2. Since we use the graph property
NARC = 0 the final graph will be empty.

Signature Since 0 is the smallest number of arcs of the final graph we can rewrite NARC = 0 to
NARC ≤ 0. This leads to simplify NARC to NARC.

Automaton Figure 4.156 depicts the automaton associated to the disjoint constraint. To each variable
VAR1i of the collection VARIABLES1 corresponds a signature variable Si, which is equal to
0. To each variable VAR2i of the collection VARIABLES2 corresponds a signature variable
Si+|VARIABLES1|, which is equal to 1.
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VARIABLES1

VARIABLES2

1

1234 56

234

Figure 4.155: Initial graph of the disjoint constraint (the final graph is empty)

i        i

1,
{D[VAR2 ]=D[VAR2 ]+1}

i        i

1,
{D[VAR2 ]=D[VAR2 ]+1}

0,
{C[VAR1 ]=C[VAR1 ]+1}i        i

i

$

t:
arith_or(C,D,<,1)

s

{C[_]=0,D[_]=0}

Figure 4.156: Automaton of the disjoint constraint
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Remark Despite the fact that this is not an uncommon constraint, it can not be modelled in a compact
way neither with a disequality constraint (i.e. two given variables have to take distinct
values) nor with the alldifferent constraint. The disjoint constraint can bee seen as a
special case of the common(NCOMMON1, NCOMMON2, VARIABLES1, VARIABLES2) constraint
where NCOMMON1 and NCOMMON2 are both set to 0.

Algorithm Let us note:

• n1 the minimum number of distinct values taken by the variables of the collection
VARIABLES1.

• n2 the minimum number of distinct values taken by the variables of the collection
VARIABLES2.

• n12 the maximum number of distinct values taken by the union of the variables of
VARIABLES1 and VARIABLES2.

One invariant to maintain for the disjoint constraint is n1 +n2 ≤ n12. A lower bound of
n1 and n2 can be obtained by using the algorithms provided in [33, 106]. An exact upper
bound of n12 can be computed by using a bipartite matching algorithm.

See also disjoint tasks.

Key words value constraint, empty intersection, disequality, bipartite matching, automaton,
automaton with array of counters.
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4.75 disjoint tasks

Origin Derived from disjoint.

Constraint disjoint tasks(TASKS1, TASKS2)

Argument(s) TASKS1 : collection(origin − dvar, duration − dvar, end − dvar)
TASKS2 : collection(origin − dvar, duration − dvar, end − dvar)

Restriction(s) require at least(2, TASKS1, [origin, duration, end])
TASKS1.duration ≥ 0
require at least(2, TASKS2, [origin, duration, end])
TASKS2.duration ≥ 0

Purpose Each task of the collection TASKS1 should not overlap any task of the collection TASKS2.

Arc input(s) TASKS1

Arc generator SELF 7→ collection(tasks1)

Arc arity 1

Arc constraint(s) tasks1.origin + tasks1.duration = tasks1.end

Graph property(ies) NARC = |TASKS1|

Arc input(s) TASKS2

Arc generator SELF 7→ collection(tasks2)

Arc arity 1

Arc constraint(s) tasks2.origin + tasks2.duration = tasks2.end

Graph property(ies) NARC = |TASKS2|

Arc input(s) TASKS1 TASKS2

Arc generator PRODUCT 7→ collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • tasks1.duration > 0
• tasks2.duration > 0
• tasks1.origin < tasks2.end
• tasks2.origin < tasks1.end

Graph property(ies) NARC = 0
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Example disjoint tasks

0
BBBB@


origin − 6 duration − 5 end− 11,
origin − 8 duration − 2 end− 10

ff
,

8
<
:

origin − 2 duration − 2 end− 4,
origin − 3 duration − 3 end− 6,
origin − 12 duration − 1 end− 13

9
=
;

1
CCCCA

Figure 4.157 shows the initial graph of the third graph constraint. Because of the
graph property NARC = 0 the corresponding final graph is empty. Figure 4.158 displays
the two groups of tasks (i.e. the tasks of TASKS1 and the tasks of TASKS2). Since no task
of the first group overlaps any task of the second group, the disjoint tasks constraint
holds.

TASKS1

TASKS2

1

1 23

2

Figure 4.157: Initial graph of the disjoint tasks constraint (the final graph is empty)

1 3 4 5 9 112 6 7 8 10 12

1

5

2

3

4

TASKS1

TASKS2

Figure 4.158: Fixed tasks of the disjoint tasks constraint

Graph model PRODUCT is used in order to generate the arcs of the graph between all the tasks of the
collection TASKS1 and all tasks of the collection TASKS2.

The first two graph constraints respectively enforce for each task of TASKS1 and TASKS2

the fact that the end of a task is equal to the sum of its origin and its duration.

The arc constraint of the third graph constraint depicts the fact that two tasks overlap.
Therefore, since we use the graph property NARC = 0 the final graph associated to
the third graph constraint will be empty and no task of TASKS1 will overlap any task of
TASKS2.

Signature Since TASKS1 is the maximum number of arcs of the final graph associated to the first
graph constraint we can rewrite NARC = |TASKS1|. This leads to simplify NARC to
NARC.
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We can apply a similar remark for the second graph constraint.

Finally, since 0 is the smallest number of arcs of the final graph we can rewrite NARC =
0 to NARC ≤ 0. This leads to simplify NARC to NARC.

Remark Despite the fact that this is not an uncommon constraint, it cannot be modelled in a com-
pact way with one single cumulative constraint. But it can be expressed by using the
coloured cumulative constraint: We assign a first colour to the tasks of TASKS1 as well
as a second distinct colour to the tasks of TASKS2. Finally we set up a limit of 1 for the
maximum number of distinct colours allowed at each time point.

See also disjoint, coloured cumulative.

Key words scheduling constraint, temporal constraint, non-overlapping.
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4.76 disjunctive

Origin [107]

Constraint disjunctive(TASKS)

Synonym(s) one machine.

Argument(s) TASKS : collection(origin − dvar, duration − dvar)

Restriction(s) required(TASKS, [origin, duration])
TASKS.duration ≥ 0

Purpose All the tasks of the collection TASKS should not overlap.

Arc input(s) TASKS

Arc generator CLIQUE(<) 7→ collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s)
W
0
BB@

tasks1.duration = 0,
tasks2.duration = 0,
tasks1.origin + tasks1.duration ≤ tasks2.origin,
tasks2.origin + tasks2.duration ≤ tasks1.origin

1
CCA

Graph property(ies) NARC = |TASKS| ∗ (|TASKS| − 1)/2

Example disjunctive

0
BB@

8
>><
>>:

origin − 1 duration − 3,
origin − 2 duration − 0,
origin − 7 duration − 2,
origin − 4 duration − 1

9
>>=
>>;

1
CCA

Parts (A) and (B) of Figure 4.159 respectively show the initial and final graph. The
disjunctive constraint holds since all the arcs of the initial graph belong to the final
graph: all the non-overlapping constraints holds.

Graph model We generate a clique with a non-overlapping constraint between each pair of distinct tasks
and state that the number of arcs of the final graph should be equal to the number of arcs
of the initial graph.

Remark A soft version of this constraint, under the hypothesis that all durations are fixed, was
presented by P. Baptiste et al. in [108]. In this context the goal was to perform as many
tasks as possible within their respective due-dates.

Algorithm Efficient filtering algorithms for handling the disjunctive constraint are described
in [109] and [110].

See also cumulative, diffn.

Key words scheduling constraint, resource constraint, decomposition.
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TASKS

1

2

3

4

NARC=6

1:1,3

2:2,0

3:7,2

4:4,1

(A) (B)

Figure 4.159: Initial and final graph of the disjunctive constraint
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4.77 distance between

Origin N. Beldiceanu

Constraint distance between(DIST, VARIABLES1, VARIABLES2, CTR)

Argument(s) DIST : dvar

VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
CTR : atom

Restriction(s) DIST ≥ 0
DIST ≤ |VARIABLES1| ∗ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
|VARIABLES1| = |VARIABLES2|
CTR ∈ [=, 6=, <,≥, >,≤]

Let Ui and Vi be respectively the ith and jth variables (i 6= j) of the collection VARIABLES1.
In a similar way, letXi and Yi be respectively the ith and jth variables (i 6= j) of the collection
VARIABLES2. DIST is equal to the number of times one of the following mutually incompatible
conditions are true:

Purpose • Ui CTR Vi holds and Xi CTR Yi does not hold,

• Xi CTR Yi holds and Ui CTR Vi does not hold.

Arc input(s) VARIABLES1/ VARIABLES2

Arc generator CLIQUE(6=) 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var CTR variables2.var

Graph property(ies) DISTANCE = DIST

Example distance between

0
BBBBBBBBBBBBBB@

2,

8
>>>><
>>>>:

var − 3,
var − 4,
var − 6,
var − 2,
var − 4

9
>>>>=
>>>>;
,

8
>>>><
>>>>:

var − 2,
var − 6,
var − 9,
var − 3,
var − 6

9
>>>>=
>>>>;
, <

1
CCCCCCCCCCCCCCA

Between solution var-3,var-4,var-6,var-2,var-4 and solution var-2,var-6,var-
9,var-3,var-6 there are 2 changes, which respectively correspond to:
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• Within the final graph associated to solution var-3,var-4,var-6,var-2,var-4 the arc
4→ 1 (i.e. values 2→ 3) does not occur in the final graph associated to var-2,var-
6,var-9,var-3,var-6,

• Within the final graph associated to solution var-2,var-6,var-9,var-3,var-6 the arc
1→ 4 (i.e. values 2→ 3) does not occur in the final graph associated to var-3,var-
4,var-6,var-2,var-4.

Part (A) of Figure 4.160 gives the final graph associated to the solution var-3,var-4,var-
6,var-2,var-4, while part (B) shows the final graph corresponding to var-2,var-6,var-
9,var-3,var-6. The two arc constraints that differ from one graph to the other are marked
by a dotted line.

4:2

1:3

2:4

3:6

5:4

1:2

4:3

2:6

3:9

5:6

(A) (B)

Figure 4.160: Final graphs of the distance between constraint

Graph model Within the arc input field, the character / indicates that we generate two distinct graphs.
The graph property DISTANCE measures the distance between two digraphs G1 and
G2. This distance is defined as the sum of the following quantities:

• The number of arcs of G1 which do not belong to G2,

• The number of arcs of G2 which do not belong to G1.

Usage Measure the distance between two solutions in term of the number of constraint changes.
This should be put in contrast to the number of value changes which is sometimes superfi-
cial.

See also distance change.

Key words proximity constraint.
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4.78 distance change

Origin Derived from change.

Constraint distance change(DIST, VARIABLES1, VARIABLES2, CTR)

Argument(s) DIST : dvar

VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
CTR : atom

Restriction(s) DIST ≥ 0
DIST < |VARIABLES1|
required(VARIABLES1, var)
required(VARIABLES2, var)
|VARIABLES1| = |VARIABLES2|
CTR ∈ [=, 6=, <,≥, >,≤]

DIST is equal to the number of times one of the following two conditions is true (1 ≤ i < n):
Purpose • VARIABLES1[i].var CTR VARIABLES1[i+ 1].var holds and

VARIABLES2[i].var CTR VARIABLES2[i+ 1].var does not hold,

• VARIABLES2[i].var CTR VARIABLES2[i+ 1].var holds and
VARIABLES1[i].var CTR VARIABLES1[i+ 1].var does not hold.

Arc input(s) VARIABLES1/ VARIABLES2

Arc generator PATH 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var CTR variables2.var

Graph property(ies) DISTANCE = DIST

Example distance change

0
BBBBBBBBBBBBBB@

1,

8
>>>><
>>>>:

var− 3,
var− 3,
var− 1,
var− 2,
var− 2

9
>>>>=
>>>>;
,

8
>>>><
>>>>:

var − 4,
var − 4,
var − 3,
var − 3,
var − 3

9
>>>>=
>>>>;
, 6=

1
CCCCCCCCCCCCCCA

Part (A) of Figure 4.161 gives the final graph associated to the solution var-3,var-
3,var-1,var-2,var-2, while part (B) shows the final graph corresponding to var-4,var-
4,var-3,var-3,var-3. Since arc 3→ 4 belongs to the first final graph but not to the second
one, the distance between the two final graphs is equal to 1.
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Graph model Within the arc input field, the character / indicates that we generate two distinct graphs.
The graph property DISTANCE measures the distance between two digraphs G1 and G2.
This distance is defined as the sum of the following quantities:

• The number of arcs of G1 which do not belong to G2,

• The number of arcs of G2 which do not belong to G1.

Automaton Figure 4.162 depicts the automaton associated to the distance change constraint.
Let (VAR1i, VAR1i+1) and (VAR2i, VAR2i+1) respectively be the ith pairs of consec-
utive variables of the collections VARIABLES1 and VARIABLES2. To each quadruple
(VAR1i, VAR1i+1, VAR2i, VAR2i+1) corresponds a 0-1 signature variable Si. The follow-
ing signature constraint links these variables:

((VAR1i = VAR1i+1) ∧ (VAR2i 6= VAR2i+1)) ∨
((VAR1i 6= VAR1i+1) ∧ (VAR2i = VAR2i+1))⇔ Si.

Usage Measure the distance between two solutions according to the change constraint.

Remark We measure that distance according to a given constraint and not according to the fact that
the variables take distinct values.

See also change, distance between.

Key words proximity constraint, automaton, automaton with counters,
sliding cyclic(2) constraint network(2).

3:1

4:2

2:3
2:4

3:3

(A) (B)

Figure 4.161: Final graphs of the distance change constraint
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(VAR1  not CTR VAR1    or VAR2  CTR VAR2   ) and

$

t:
DIST=C

(VAR1  CTR VAR1    and VAR2  not CTR VAR2   ) ori         i+1         i             i+1

(VAR1  not CTR VAR1    and VAR2  CTR VAR2   ),

{C=C+1}

i             i+1         i         i+1

s

{C=0}

i             i+1        i         i+1

(VAR1  CTR VAR1    or VAR2  not CTR VAR2   )i         i+1        i             i+1

Figure 4.162: Automaton of the distance change constraint

Q =s0

C =00 C1

Q1

S3

Q2

C2

  VAR1
   3

  VAR2
   3

S2S1

  VAR2
   1

  VAR1
   1

  VAR1
   2

  VAR2
   2

  VAR1
   n−1

  VAR2
   n−1

  VAR1
   n

  VAR2
   n

C   =DISTn−1

Q   =tn−1

Sn−1

Figure 4.163: Hypergraph of the reformulation corresponding to the automaton of the
distance change constraint



20000128 451



452 NARC,PRODUCT

4.79 domain constraint

Origin [111]

Constraint domain constraint(VAR, VALUES)

Argument(s) VAR : dvar

VALUES : collection(var01 − dvar, value − int)

Restriction(s) required(VALUES, [var01, value])
VALUES.var01 ≥ 0
VALUES.var01 ≤ 1
distinct(VALUES, value)

Purpose
Make the link between a domain variable VAR and those 0-1 variables that are associated to each
potential value of VAR: The 0-1 variable associated to the value which is taken by variable VAR
is equal to 1, while the remaining 0-1 variables are all equal to 0.

Derived Collection(s) col(VALUE − collection(var01 − int, value − dvar), [item(var01 − 1, value − VAR)])

Arc input(s) VALUE VALUES

Arc generator PRODUCT 7→ collection(value, values)

Arc arity 2

Arc constraint(s) value.value = values.value⇔ values.var01 = 1

Graph property(ies) NARC = |VALUES|

Example domain constraint

0
BB@ 5,

8
>><
>>:

var01 − 0 value − 9,
var01 − 1 value − 5,
var01 − 0 value − 2,
var01 − 0 value − 7

9
>>=
>>;

1
CCA

In the previous example, the 0-1 variable associated to value 5 is set to 1, while the
other 0-1 variables are all set to 0. Parts (A) and (B) of Figure 4.164 respectively show
the initial and final graph. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.

Graph model The domain constraint constraint is modelled with the following bipartite graph:

• The first class of vertices corresponds to one single vertex containing the domain
variable.

• The second class of vertices contains one vertex for each item of the collection
VALUES.
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PRODUCT is used in order to generate the arcs of the graph. In our context it takes a
collection with one single item {var01 − 1 value − VAR} and the collection VALUES.

The arc constraint between the variable VAR and one potential value v expresses the fol-
lowing:

• If the 0-1 variable associated to v is equal to 1, VAR is equal to v.

• Otherwise, if the 0-1 variable associated to v is equal to 0, VAR is not equal to v.

Since all arc constraints should hold the final graph contains exactly |VALUES| arcs.

Signature Since the number of arcs of the initial graph is equal to VALUES the maximum number
of arcs of the final graph is also equal to VALUES. Therefore we can rewrite the graph
property NARC = |VALUES| to NARC ≥ |VALUES|. This leads to simplify NARC to
NARC.

Automaton Figure 4.165 depicts the automaton associated to the domain constraint constraint. Let
VAR01i and VALUEi respectively be the var01 and the value attributes of the ith item of
the VALUES collection. To each triple (VAR, VAR01i, VALUEi) corresponds a 0-1 signature
variable Si as well as the following signature constraint: ((VAR = VALUEi)⇔ VAR01i)⇔
Si.

Usage This constraint is used in order to make the link between a formulation using finite domain
constraints and a formulation exploiting 0-1 variables.

See also link set to booleans.

Key words decomposition, channeling constraint, domain channel, boolean channel,
linear programming, automaton, automaton without counters,
centered cyclic(1) constraint network(1), derived collection.
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VALUE

VALUES

1

1234

NARC=4

1:1,5

1:0,9 2:1,5 3:0,2 4:0,7

(A) (B)

Figure 4.164: Initial and final graph of the domain constraint constraint

$

iVAR=VALUE  <=> VAR01 =1is

t

Figure 4.165: Automaton of the domain constraint constraint

Sn

Q =tn
Q1Q =s0

VAR01
  n

S2S1

VAR01
  1

VAR01
  2

VAR

Figure 4.166: Hypergraph of the reformulation corresponding to the automaton of the
domain constraint constraint
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4.80 elem

Origin Derived from element.

Constraint elem(ITEM, TABLE)

Usual name element

Argument(s) ITEM : collection(index − dvar, value − dvar)
TABLE : collection(index − int, value − dvar)

Restriction(s) required(ITEM, [index, value])
ITEM.index ≥ 1
ITEM.index ≤ |TABLE|
|ITEM| = 1
required(TABLE, [index, value])
TABLE.index ≥ 1
TABLE.index ≤ |TABLE|
distinct(TABLE, index)

Purpose ITEM is equal to one of the entries of the table TABLE.

Arc input(s) ITEM TABLE

Arc generator PRODUCT 7→ collection(item, table)

Arc arity 2

Arc constraint(s) • item.index = table.index
• item.value = table.value

Graph property(ies) NARC = 1

Example elem

0
BBBB@

{index − 3 value − 2},8
>><
>>:

index − 1 value − 6,
index − 2 value − 9,
index − 3 value − 2,
index − 4 value − 9

9
>>=
>>;

1
CCCCA

Parts (A) and (B) of Figure 4.167 respectively show the initial and final graph.
Since we use the NARC graph property, the unique arc of the final graph is stressed in
bold.

Graph model We regroup the INDEX and VALUE parameters of the original element constraint
element(INDEX, TABLE, VALUE) into the parameter ITEM. We also make explicit the dif-
ferent indices of the table TABLE.

Signature Since all the index attributes of TABLE are distinct and because of the first condition of
the arc constraint the final graph cannot have more than one arc. Therefore we can rewrite
NARC = 1 to NARC ≥ 1 and simplify NARC to NARC.
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Automaton Figure 4.168 depicts the automaton associated to the elem constraint. Let INDEX and
VALUE respectively be the index and the value attributes of the unique item of the ITEM

collection. Let INDEXi and VALUEi respectively be the index and the value attributes of
the ith item of the TABLE collection. To each quadruple (INDEX, VALUE, INDEXi, VALUEi)
corresponds a 0-1 signature variable Si as well as the following signature constraint:
((INDEX = INDEXi) ∧ (VALUE = VALUEi))⇔ Si.

Usage Makes the link between the decision variable INDEX and the variable VALUE according to a
given table of values TABLE. We now give three typical uses of the elem constraint.

1. In some scheduling problems the duration of a task depends on the machine where
the task will be assigned in final schedule. In this case we generate for each task an
elem constraint of the following form:

elem

0
BBBBB@

˘
index − Machine value − Duration

¯
,8

>>><
>>>:

index − 1 value − Dur1,
index − 2 value − Dur2,

...
index −m value − Durm

9
>>>=
>>>;

1
CCCCCA

where:

• Machine is a domain variable which indicates the resource to which the task
will be assigned,

• Duration is a domain variable which corresponds to the duration of the task,

• Dur1, Dur2, . . . , Durm are the respective durations of the task according to the
hypothesis that it runs on machine 1, 2 or m.

2. In some vehicle routing problems we typically use the elem constraint to express the
distance between the ith location and the next location visited by a vehicle. For this
purpose we generate for each location i an elem constraint of the form:

elem

0
BBBBB@

˘
index − Nexti value − distancei

¯
,8

>>><
>>>:

index − 1 value − Disti1 ,
index − 2 value − Disti2 ,

...
index −m value − Distim

9
>>>=
>>>;

1
CCCCCA

where:

• Nexti is a domain variable which gives the index of the location the vehicle will
visit just after the ith location,

• distancei is a domain variable which corresponds to the distance between
location i and the location the vehicle will visit just after,

• Disti1 , Disti2 , . . . , Distim are the respective distances between location i
and locations 1, 2, . . . ,m.

3. In some optimization problems a classical use of the elem constraint consists ex-
pressing the link between a discrete choice and its corresponding cost. For each
discrete choice we create an elem constraint of the form:
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ITEM

TABLE

1

1234

NARC=1

1:3,2

3:3,2

(A) (B)

Figure 4.167: Initial and final graph of the elem constraint

s

t

ITEM_INDEX=TABLE_INDEX  and ITEM_VALUE=TABLE_VALUE

ITEM_INDEX<>TABLE_INDEX  or ITEM_VALUE<>TABLE_VALUEii

i i

Figure 4.168: Automaton of the elem constraint

Q1Q =s0

S1

TABLE_VALUE
        n

Q =tn

Sn

TABLE_VALUE
        1

TABLE_VALUE
        2

S2

ITEM_INDEX

ITEM_VALUE

Figure 4.169: Hypergraph of the reformulation corresponding to the automaton of the
elem constraint
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elem

0
BBBBB@

˘
index − Choice value − Cost

¯
,8

>>><
>>>:

index − 1 value − Cost1,
index − 2 value − Cost2,

...
index −m value − Costm

9
>>>=
>>>;

1
CCCCCA

where:

• Choice is a domain variable which indicates which alternative will be finally
selected,

• Cost is a domain variable which corresponds to the cost of the decision associ-
ated to the value of the Choice variable,

• Cost1, Cost2, . . . , Costm are the respective costs associated to the alternatives
1, 2, . . . ,m.

Remark Originally, the parameters of the elem constraint had the form
element(INDEX, TABLE, VALUE), where INDEX and VALUE were two domain vari-
ables and TABLE a list of non-negative integers.

See also element, element greatereq, element lesseq, element sparse, element matrix,
elements, elements alldifferent, stage element.

Key words array constraint, data constraint, table, functional dependency,
variable indexing, variable subscript, automaton, automaton without counters,
centered cyclic(2) constraint network(1).
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4.81 element

Origin [32]

Constraint element(INDEX, TABLE, VALUE)

Argument(s) INDEX : dvar

TABLE : collection(value − dvar)
VALUE : dvar

Restriction(s) INDEX ≥ 1
INDEX ≤ |TABLE|
required(TABLE, value)

Purpose VALUE is equal to the INDEXth item of TABLE.

Derived Collection(s) col

„
ITEM − collection(index − dvar, value − dvar),
[item(index − INDEX, value − VALUE)]

«

Arc input(s) ITEM TABLE

Arc generator PRODUCT 7→ collection(item, table)

Arc arity 2

Arc constraint(s) • item.index = table.key
• item.value = table.value

Graph property(ies) NARC = 1

Example element

0
BB@ 3,

8
>><
>>:

value − 6,
value − 9,
value − 2,
value − 9

9
>>=
>>;
, 2

1
CCA

Parts (A) and (B) of Figure 4.170 respectively show the initial and final graph.
Since we use the NARC graph property, the unique arc of the final graph is stressed in
bold.

Graph model The original element constraint with three arguments. We use the derived collection ITEM

for putting together the INDEX and VALUE parameters of the element constraint. Within the
arc constraint we use the implicit attribute key which associates to each item of a collection
its position within the collection.

Signature Because of the first condition of the arc constraint the final graph cannot have more than
one arc. Therefore we can rewrite NARC = 1 to NARC ≥ 1 and simplify NARC to
NARC.
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ITEM

TABLE

1

1234

NARC=1

1:3,2

3:2

(A) (B)

Figure 4.170: Initial and final graph of the element constraint

INDEX<>TABLE_KEY  or VALUE<>TABLE_VALUEiis

t

INDEX=TABLE_KEY  and VALUE=TABLE_VALUEi i

Figure 4.171: Automaton of the element constraint

Q1Q =s0

S1

TABLE_VALUE
        n

Q =tn

Sn

TABLE_VALUE
        1

TABLE_VALUE
        2

S2

INDEX

VALUE

Figure 4.172: Hypergraph of the reformulation corresponding to the automaton of the
element constraint
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Automaton Figure 4.171 depicts the automaton associated to the element constraint. Let VALUEi
be the value attribute of the ith item of the TABLE collection. To each triple
(INDEX, VALUE, VALUEi) corresponds a 0-1 signature variable Si as well as the following
signature constraint: (INDEX = i ∧ VALUE = VALUEi)⇔ Si.

Usage See elem.

Remark In the original element constraint of CHIP the index attribute was not explicitly present
in the table of values. It was implicitly defined as the position of a value in the previous
table.

The case constraint [46] is a generalization of the element constraint, where the table is
replaced by a directed acyclic graph describing the set of solutions.

See also elem, element greatereq, element lesseq, element sparse, element matrix,
elements, elements alldifferent, stage element.

Key words array constraint, data constraint, table, functional dependency,
variable indexing, variable subscript, automaton, automaton without counters,
centered cyclic(2) constraint network(1), derived collection.
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4.82 element greatereq

Origin [112]

Constraint element greatereq(ITEM, TABLE)

Argument(s) ITEM : collection(index − dvar, value − dvar)
TABLE : collection(index − int, value − int)

Restriction(s) required(ITEM, [index, value])
ITEM.index ≥ 1
ITEM.index ≤ |TABLE|
|ITEM| = 1
required(TABLE, [index, value])
TABLE.index ≥ 1
TABLE.index ≤ |TABLE|
distinct(TABLE, index)

Purpose ITEM.value is greater than or equal to one of the entries (i.e. the value attribute) of the table
TABLE.

Arc input(s) ITEM TABLE

Arc generator PRODUCT 7→ collection(item, table)

Arc arity 2

Arc constraint(s) • item.index = table.index
• item.value ≥ table.value

Graph property(ies) NARC = 1

Example element greatereq

0
BBBB@

{index − 1 value − 8},8
>><
>>:

index − 1 value − 6,
index − 2 value − 9,
index − 3 value − 2,
index − 4 value − 9

9
>>=
>>;

1
CCCCA

Parts (A) and (B) of Figure 4.173 respectively show the initial and final graph.
Since we use the NARC graph property, the unique arc of the final graph is stressed in
bold.

Graph model Similar to the element constraint except that the equality constraint of the second condi-
tion of the arc constraint is replaced by a greater than or equal to constraint.

Signature Since all the index attributes of TABLE are distinct and because of the first arc constraint
the final graph cannot have more than one arc. Therefore we can rewrite NARC = 1 to
NARC ≥ 1 and simplify NARC to NARC.
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Automaton Figure 4.174 depicts the automaton associated to the element greatereq constraint.
Let INDEX and VALUE respectively be the index and the value attributes of the unique
item of the ITEM collection. Let INDEXi and VALUEi respectively be the index and
the value attributes of the ith item of the TABLE collection. To each quadruple
(INDEX, VALUE, INDEXi, VALUEi) corresponds a 0-1 signature variable Si as well as the
following signature constraint: ((INDEX = INDEXi) ∧ (VALUE ≥ VALUEi))⇔ Si.

Usage Used for modelling variable subscripts in linear constraints [112].

See also element, element lesseq.

Key words array constraint, data constraint, binary constraint, table, linear programming,
variable subscript, variable indexing, automaton, automaton without counters,
centered cyclic(2) constraint network(1).
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ITEM

TABLE

1

1234

NARC=1

1:1,8

1:1,6

(A) (B)

Figure 4.173: Initial and final graph of the element greatereq constraint

s

t

ITEM_INDEX<>TABLE_INDEX  or ITEM_VALUE<TABLE_VALUE

ITEM_INDEX=TABLE_INDEX  and ITEM_VALUE>=TABLE_VALUE

i

i

i

i

Figure 4.174: Automaton of the element greatereq constraint

Q1Q =s0

S1

TABLE_VALUE
        n

Q =tn
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TABLE_VALUE
        1

TABLE_VALUE
        2

S2

ITEM_INDEX

ITEM_VALUE

Figure 4.175: Hypergraph of the reformulation corresponding to the automaton of the
element greatereq constraint
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4.83 element lesseq

Origin [112]

Constraint element lesseq(ITEM, TABLE)

Argument(s) ITEM : collection(index − dvar, value − dvar)
TABLE : collection(index − int, value − int)

Restriction(s) required(ITEM, [index, value])
ITEM.index ≥ 1
ITEM.index ≤ |TABLE|
|ITEM| = 1
required(TABLE, [index, value])
TABLE.index ≥ 1
TABLE.index ≤ |TABLE|
distinct(TABLE, index)

Purpose ITEM.value is less than or equal to one of the entries (i.e. the value attribute) of the table
TABLE.

Arc input(s) ITEM TABLE

Arc generator PRODUCT 7→ collection(item, table)

Arc arity 2

Arc constraint(s) • item.index = table.index
• item.value ≤ table.value

Graph property(ies) NARC = 1

Example element lesseq

0
BBBB@

{index − 3 value − 1},8
>><
>>:

index − 1 value − 6,
index − 2 value − 9,
index − 3 value − 2,
index − 4 value − 9

9
>>=
>>;

1
CCCCA

Parts (A) and (B) of Figure 4.176 respectively show the initial and final graph.
Since we use the NARC graph property, the unique arc of the final graph is stressed in
bold.

Graph model Similar to the element constraint except that the equality constraint of the second condi-
tion of the arc constraint is replaced by a less than or equal to constraint.

Signature Since all the index attributes of TABLE are distinct and because of the first arc constraint
the final graph cannot have more than one arc. Therefore we can rewrite NARC = 1 to
NARC ≥ 1 and simplify NARC to NARC.
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Automaton Figure 4.177 depicts the automaton associated to the element lesseq constraint. Let
INDEX and VALUE respectively be the index and the value attributes of the unique
item of the ITEM collection. Let INDEXi and VALUEi respectively be the index and
the value attributes of the ith item of the TABLE collection. To each quadruple
(INDEX, VALUE, INDEXi, VALUEi) corresponds a 0-1 signature variable Si as well as the
following signature constraint: ((INDEX = INDEXi) ∧ (VALUE ≤ VALUEi))⇔ Si.

Usage Used for modelling variable subscripts in linear constraints [112].

See also element, element greatereq.

Key words array constraint, data constraint, binary constraint, table, linear programming,
variable subscript, variable indexing, automaton, automaton without counters,
centered cyclic(2) constraint network(1).
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ITEM
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1:3,1

3:3,2

(A) (B)

Figure 4.176: Initial and final graph of the element lesseq constraint
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i

i

i

i

ITEM_INDEX<>TABLE_INDEX  or ITEM_VALUE>TABLE_VALUE

ITEM_INDEX=TABLE_INDEX  and ITEM_VALUE<=TABLE_VALUE

Figure 4.177: Automaton of the element lesseq constraint
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Figure 4.178: Hypergraph of the reformulation corresponding to the automaton of the
element lesseq constraint
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4.84 element matrix

Origin CHIP

Constraint element matrix(MAX I, MAX J, INDEX I, INDEX J, MATRIX, VALUE)

Argument(s) MAX I : int

MAX J : int

INDEX I : dvar

INDEX J : dvar

MATRIX : collection(i− int, j − int, v− int)
VALUE : dvar

Restriction(s) MAX I ≥ 1
MAX J ≥ 1
INDEX I ≥ 1
INDEX I ≤ MAX I

INDEX J ≥ 1
INDEX J ≤ MAX J

required(MATRIX, [i, j, v])
increasing seq(MATRIX, [i, j])
MATRIX.i ≥ 1
MATRIX.i ≤ MAX I

MATRIX.j ≥ 1
MATRIX.j ≤ MAX J

|MATRIX| = MAX I ∗ MAX J

Purpose The MATRIX collection corresponds to the two-dimensional matrix MATRIX[1..MAX I, 1..MAX J].
VALUE is equal to the entry MATRIX[INDEX I, INDEX J] of the previous matrix.

Derived Collection(s) col

„
ITEM − collection(index i − dvar, index j − dvar, value − dvar),
[item(index i − INDEX I, index j− INDEX J, value − VALUE)]

«

Arc input(s) ITEM MATRIX

Arc generator PRODUCT 7→ collection(item, matrix)

Arc arity 2

Arc constraint(s) • item.index i = matrix.i
• item.index j = matrix.j
• item.value = matrix.v

Graph property(ies) NARC = 1
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Example element matrix

0
BBBBBBBBBBBBBBBBBB@

4, 3, 1, 3,

8
>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

i− 1 j− 1 v− 4,
i− 1 j− 2 v− 1,
i− 1 j− 3 v− 7,
i− 2 j− 1 v− 1,
i− 2 j− 2 v− 0,
i− 2 j− 3 v− 8,
i− 3 j− 1 v− 3,
i− 3 j− 2 v− 2,
i− 3 j− 3 v− 1,
i− 4 j− 1 v− 0,
i− 4 j− 2 v− 0,
i− 4 j− 3 v− 6

9
>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

, 7

1
CCCCCCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.179 respectively show the initial and final graph.
Since we use the NARC graph property, the unique arc of the final graph is stressed in
bold.

ITEM

MATRIX

1

123456789101112

NARC=1

1:1,3,7

3:1,3,7

(A) (B)

Figure 4.179: Initial and final graph of the element matrix constraint

Graph model Similar to the element constraint except that the arc constraint is updated according to the
fact that we have a two-dimensional matrix.

Signature Because of the first condition of the arc constraint the final graph cannot have more than
one arc. Therefore we can rewrite NARC = 1 to NARC ≥ 1 and simplify NARC to
NARC.

Automaton Figure 4.180 depicts the automaton associated to the element matrix constraint. Let Ik,
Jk and Vk respectively be the i, the j and the v kth attributes of the MATRIX collection. To
each sextuple (INDEX I, INDEX J, VALUE, Ik, Jk, Vk) corresponds a 0-1 signature variable
Sk as well as the following signature constraint: ((INDEX I = Ik) ∧ (INDEX J = Jk) ∧
(VALUE = Vk))⇔ Sk.

See also element.
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INDEX_I<>MATRIX_I    or INDEX_J<>MATRIX_J    or VALUE<>MATRIX_VALUE
i,j                     i,j                       i,j

INDEX_I=MATRIX_I    and INDEX_J=MATRIX_J    and VALUE=MATRIX_VALUE
i,j                     i,j                       i,j

s

t

Figure 4.180: Automaton of the element matrix constraint

S2

Q1Q =s0

S1

MATRIX_I
     1,1

MATRIX_J
     1,1

MATRIX_V
     1,1

MATRIX_I
     n,m

MATRIX_V
     n,m

MATRIX_J
     n,mMATRIX_J

     1,2

MATRIX_I
     1,2

MATRIX_V
     1,2

Sn.m

Q   =tn.m

INDEX_I
INDEX_J
VALUE

Figure 4.181: Hypergraph of the reformulation corresponding to the automaton of the
element matrix constraint
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Key words array constraint, data constraint, ternary constraint, matrix, automaton,
automaton without counters, centered cyclic(3) constraint network(1), derived collection.
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4.85 element sparse

Origin CHIP

Constraint element sparse(ITEM, TABLE, DEFAULT)

Usual name element

Argument(s) ITEM : collection(index − dvar, value − dvar)
TABLE : collection(index − int, value − int)
DEFAULT : int

Restriction(s) required(ITEM, [index, value])
ITEM.index ≥ 1
|ITEM| = 1
required(TABLE, [index, value])
TABLE.index ≥ 1
distinct(TABLE, index)

Purpose ITEM.value is equal to one of the entries of the table TABLE or to the default value DEFAULT if
the entry ITEM.index does not exist in TABLE.

Derived Collection(s) col(DEF − collection(index − int, value − int), [item(index − 0, value − DEFAULT)])

col

0
@

TABLE DEF − collection(index − dvar, value − dvar),»
item(index − TABLE.index, value − TABLE.value),
item(index − DEF.index, value − DEF.value)

–
1
A

Arc input(s) ITEM TABLE DEF

Arc generator PRODUCT 7→ collection(item, table def)

Arc arity 2

Arc constraint(s) • item.value = table def.value
• item.index = table def.index ∨ table def.index = 0

Graph property(ies) NARC ≥ 1

Example element sparse

0
BBBB@

{index − 2 value − 5},8
>><
>>:

index − 1 value − 6,
index − 2 value − 5,
index − 4 value − 2,
index − 8 value − 9

9
>>=
>>;
, 5

1
CCCCA

Parts (A) and (B) of Figure 4.182 respectively show the initial and final graph.
Since we use the NARC graph property the final graph is outline with thick lines.

Graph model The final graph has between one and two arc constraints: It has two arcs when the default
value DEFAULT occurs also in the table TABLE; Otherwise it has only one arc.
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Automaton Figure 4.183 depicts the automaton associated to the element sparse constraint. Let
INDEX and VALUE respectively be the index and the value attributes of the unique
item of the ITEM collection. Let INDEXi and VALUEi respectively be the index and
the value attributes of the ith item of the TABLE collection. To each quintuple
(INDEX, VALUE, DEFAULT, INDEXi, VALUEi) corresponds a signature variable Si as well as
the following signature constraint:
8
<
:

(INDEX 6= INDEXi ∧ VALUE 6= DEFAULT) ⇔ Si = 0 ∧
(INDEX = INDEXi ∧ VALUE = VALUEi ) ⇔ Si = 1 ∧
(INDEX 6= INDEXi ∧ VALUE = DEFAULT) ⇔ Si = 2

.

Usage A sometimes more compact form of the element constraint: We are not obliged to spec-
ify explicitely the table entries that correspond to the specified default value. This can
sometimes reduce drastically memory utilisation.

Remark The original constraint of CHIP had an additional parameter SIZE giving the maximum
value of ITEM.index.

See also element.

Key words array constraint, data constraint, binary constraint, table, sparse table,
sparse functional dependency, variable indexing, automaton, automaton without counters,
centered cyclic(2) constraint network(1), derived collection.
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ITEM

TABLE_DEF

1

12345

NARC=2

1:2,5

1:0,5 3:2,5

(A) (B)

Figure 4.182: Initial and final graph of the element sparse constraint

ITEM_INDEX=TABLE_INDEX  and

ITEM_VALUE=TABLE_VALUE
i

i

ITEM_INDEX=TABLE_INDEX  and

ITEM_VALUE=TABLE_VALUE
i

i

s

t

d$

ITEM_INDEX<>TABLE_INDEX  and

ITEM_VALUE=DEFAULT

ITEM_INDEX<>TABLE_INDEX  and

ITEM_VALUE=DEFAULT

i

i

ITEM_VALUE<>DEFAULT
iITEM_INDEX<>TABLE_INDEX  and

Figure 4.183: Automaton of the element sparse constraint

Q1Q =s0

S1

TABLE_VALUE
        n

Q =tn

Sn

TABLE_VALUE
        1

TABLE_VALUE
        2

S2

ITEM_INDEX

ITEM_VALUE

Figure 4.184: Hypergraph of the reformulation corresponding to the automaton of the
element sparse constraint
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4.86 elements

Origin Derived from element.

Constraint elements(ITEMS, TABLE)

Argument(s) ITEMS : collection(index − dvar, value − dvar)
TABLE : collection(index − int, value − dvar)

Restriction(s) required(ITEMS, [index, value])
ITEMS.index ≥ 1
ITEMS.index ≤ |TABLE|
required(TABLE, [index, value])
TABLE.index ≥ 1
TABLE.index ≤ |TABLE|
distinct(TABLE, index)

Purpose All the items of ITEMS should be equal to one of the entries of the table TABLE.

Arc input(s) ITEMS TABLE

Arc generator PRODUCT 7→ collection(items, table)

Arc arity 2

Arc constraint(s) • items.index = table.index
• items.value = table.value

Graph property(ies) NARC = |ITEMS|

Example elements

0
BBBB@

{index − 4 value − 9, index − 1 value − 6},8
>><
>>:

index − 1 value − 6,
index − 2 value − 9,
index − 3 value − 2,
index − 4 value − 9

9
>>=
>>;

1
CCCCA

Parts (A) and (B) of Figure 4.185 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Signature Since all the index attributes of TABLE collection are distinct and because of the first
condition items.index = table.index of the arc constraint, a source vertex of the final
graph can have at most one successor. Therefore |ITEMS| is the maximum number of arcs
of the final graph and we can rewrite NARC = |ITEMS| to NARC ≥ |ITEMS|. So we
can simplify NARC to NARC.

Usage Used for replacing several element constraints sharing exactly the same table by one single
constraint.

See also element.

Key words data constraint, table, shared table, functional dependency.
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ITEMS

TABLE

1

1234

2

NARC=2

1:4,9

4:4,9

2:1,6

1:1,6

(A) (B)

Figure 4.185: Initial and final graph of the elements constraint
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4.87 elements alldifferent

Origin Derived from elements and alldifferent.

Constraint elements alldifferent(ITEMS, TABLE)

Synonym(s) elements alldiff, elements alldistinct.

Argument(s) ITEMS : collection(index − dvar, value − dvar)
TABLE : collection(index − int, value − dvar)

Restriction(s) required(ITEMS, [index, value])
ITEMS.index ≥ 1
ITEMS.index ≤ |TABLE|
|ITEMS| = |TABLE|
required(TABLE, [index, value])
TABLE.index ≥ 1
TABLE.index ≤ |TABLE|
distinct(TABLE, index)

Purpose All the items of the ITEMS collection should be equal to one of the entries of the table TABLE

and all the variables ITEMS.index should take distinct values.

Arc input(s) ITEMS TABLE

Arc generator PRODUCT 7→ collection(items, table)

Arc arity 2

Arc constraint(s) • items.index = table.index
• items.value = table.value

Graph property(ies) NVERTEX = |ITEMS|+ |TABLE|

Example elements alldifferent

0
BBBBBBBBBB@

8
>><
>>:

index − 2 value − 9,
index − 1 value − 6,
index − 4 value − 9,
index − 3 value − 2

9
>>=
>>;
,

8
>><
>>:

index − 1 value − 6,
index − 2 value − 9,
index − 3 value − 2,
index − 4 value − 9

9
>>=
>>;

1
CCCCCCCCCCA

Parts (A) and (B) of Figure 4.186 respectively show the initial and final graph.
Since we use the NVERTEX graph property, the vertices of the final graph are stressed
in bold.

Graph model The fact that all variables ITEMS.index are pairwise different is derived from the conjunc-
tions of the following facts:



20030820 483

• From the graph property NVERTEX = |ITEMS| + |TABLE| it follows that all
vertices of the initial graph belong also to the final graph,

• A vertex v belongs to the final graph if there is at least one constraint involving v that
holds,

• From the first condition items.index = table.index of the arc constraint, and
from the restriction distinct(TABLE.index) it follows: For all vertices v generated
from the collection ITEMS at most one constraint involving v holds.

Signature Since the final graph cannot have more than |ITEMS| + |TABLE| vertices one can simplify
NVERTEX to NVERTEX.

Usage Used for replacing by one single elements alldifferent constraint an alldifferent

and a set of element constraints having the following structure:

• The union of the index variables of the element constraints is equal to the set of
variables of the alldifferent constraint.

• All the element constraints share exactly the same table.

For instance, the constraint given in the previous example is equivalent to the conjunction
of the following set of constraints:

alldifferent({var − 2, var − 1, var − 4, var − 3})

element

0
BBBB@

˘
index − 2 value − 9

¯
,8

>><
>>:

index − 1 value − 6,
index − 2 value − 9,
index − 3 value − 2,
index − 4 value − 9

9
>>=
>>;

1
CCCCA

element

0
BBBB@

˘
index − 1 value − 6

¯
,8

>><
>>:

index − 1 value − 6,
index − 2 value − 9,
index − 3 value − 2,
index − 4 value − 9

9
>>=
>>;

1
CCCCA

element

0
BBBB@

˘
index − 3 value − 2

¯
,8

>><
>>:

index − 1 value − 6,
index − 2 value − 9,
index − 3 value − 2,
index − 4 value − 9

9
>>=
>>;

1
CCCCA

element

0
BBBB@

˘
index − 4 value − 9

¯
,8

>><
>>:

index − 1 value − 6,
index − 2 value − 9,
index − 3 value − 2,
index − 4 value − 9

9
>>=
>>;

1
CCCCA

As a practical example of utilization of the elements alldifferent constraint we show
how to model the link between a permutation consisting of one single cycle and its ex-
panded form. For instance, to the permutation 3, 6, 5, 2, 4, 1 corresponds the sequence
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3 5 4 2 6 1. Let us note S1, S2, S3, S4, S5, S6 the permutation and V1V2V3V4V5V6 its
expanded form.

The constraint:

elements alldifferent

0
BBBBBBBBBBBBBBBBBB@

8
>>>>>><
>>>>>>:

index − V1 value − V2,
index − V2 value − V3,
index − V3 value − V4,
index − V4 value − V5,
index − V5 value − V6,
index − V6 value − V1

9
>>>>>>=
>>>>>>;

,

8
>>>>>><
>>>>>>:

index − 1 value − S1,
index − 2 value − S2,
index − 3 value − S3,
index − 4 value − S4,
index − 5 value − S5,
index − 6 value − S6

9
>>>>>>=
>>>>>>;

1
CCCCCCCCCCCCCCCCCCA

models the fact that S1, S2, S3, S4, S5, S6 corresponds to a permutation with one sin-
gle cycle. It also expresses the link between the variables S1, S2, S3, S4, S5, S6 and
V1, V2, V3, V4, V5, V6.

See also alldifferent, element.

Key words data constraint, table, functional dependency, permutation, disequality.



20030820 485

ITEMS

TABLE

1

1234

234

NVERTEX=8

1:2,9

2:2,9

2:1,6

1:1,6

3:4,9

4:4,9

4:3,2

3:3,2

(A) (B)

Figure 4.186: Initial and final graph of the elements alldifferent constraint

=31S 1

3 5

4

26

3=5 5=4

2=66=1

1=3 2=5 3=4 4=2 5=6 6=1
4=2

V V V V

S

V

53 4 2 6

S S

SS

V

1

Figure 4.187: Two representations of a permutation containing one single cycle
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4.88 elements sparse

Origin Derived from element sparse.

Constraint elements sparse(ITEMS, TABLE, DEFAULT)

Argument(s) ITEMS : collection(index − dvar, value − dvar)
TABLE : collection(index − int, value − int)
DEFAULT : int

Restriction(s) required(ITEMS, [index, value])
ITEMS.index ≥ 1
required(TABLE, [index, value])
TABLE.index ≥ 1
distinct(TABLE, index)

Purpose
All the items of ITEMS should be equal to one of the entries of the table TABLE or to the default
value DEFAULT if the entry ITEMS.index does not occurs among the values of the index attribute
of the TABLE collection.

Derived Collection(s) col(DEF − collection(index − int, value − int), [item(index − 0, value − DEFAULT)])

col

0
@

TABLE DEF − collection(index − dvar, value − dvar),»
item(index − TABLE.index, value − TABLE.index),
item(index − DEF.index, value − DEF.value)

–
1
A

Arc input(s) ITEMS TABLE DEF

Arc generator PRODUCT 7→ collection(items, table def)

Arc arity 2

Arc constraint(s) • items.value = table def.value
• items.index = table def.index ∨ table def.index = 0

Graph property(ies) NSOURCE = |ITEMS|

Example elements sparse

0
BBBBBBBB@

8
<
:

index − 8 value − 9,
index − 3 value − 5,
index − 2 value − 5

9
=
; ,

8
>><
>>:

index − 1 value − 6,
index − 2 value − 5,
index − 4 value − 2,
index − 8 value − 9

9
>>=
>>;
, 5

1
CCCCCCCCA

Parts (A) and (B) of Figure 4.188 respectively show the initial and final graph.
Since we use the NSOURCE graph property, the vertices of the final graph are drawn
with a double circle.
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Graph model An item of the ITEMS collection may have up to two successors (see for instance the third
item of the ITEMS collection of the previous example). Therefore we use the graph property
NSOURCE = |ITEMS| for enforcing the fact that each item of the ITEMS collection has
at least one successor.

Signature On the one hand note that ITEMS is equal to the number of sources of the initial graph.
On the other hand observe that, in the initial graph, all the vertices which are not sources
correspond to sinks. Since isolated vertices are eliminated from the final graph the sinks of
the initial graph cannot become sources of the final graph. Therefore the maximum number
of sources of the final graph is equal to ITEMS. We can rewrite NSOURCE = |ITEMS|
to NSOURCE ≥ |ITEMS| and simplify NSOURCE to NSOURCE.

Usage Used for replacing several element constraints sharing exactly the same sparse table by
one single constraint.

See also element, element sparse.

Key words data constraint, table, shared table, sparse table, sparse functional dependency,
derived collection.
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ITEMS

TABLE_DEF

1

12 345

2 3

NSOURCE=3

1:8,9

4:8,9

2:3,5

5:0,5

3:2,5

2:2,5

(A) (B)

Figure 4.188: Initial and final graph of the elements sparse constraint
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4.89 eq set

Origin Used for defining alldifferent between sets.

Constraint eq set(SET1, SET2)

Argument(s) SET1 : svar

SET2 : svar

Purpose Constraint the set SET1 to be equal to the set SET2.

Example eq set({3, 5}, {3, 5})

Used in alldifferent between sets.

Key words predefined constraint, binary constraint, equality, constraint involving set variables.
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4.90 exactly

Origin Derived from atleast and atmost.

Constraint exactly(N, VARIABLES, VALUE)

Argument(s) N : int

VARIABLES : collection(var − dvar)
VALUE : int

Restriction(s) N ≥ 0
N ≤ |VARIABLES|
required(VARIABLES, var)

Purpose Exactly N variables of the VARIABLES collection are assigned to value VALUE.

Arc input(s) VARIABLES

Arc generator SELF 7→ collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUE

Graph property(ies) NARC = N

Example exactly(2, {var − 4, var − 2, var − 4, var − 5}, 4)

Parts (A) and (B) of Figure 4.189 respectively show the initial and final graph.
Since we use the NARC graph property, the unary arcs of the final graph are stressed in
bold. The exactly constraint holds since exactly 2 variables are assigned to value 4.

VARIABLES

1234

NARC=2

1:4 3:4

(A) (B)

Figure 4.189: Initial and final graph of the exactly constraint

Graph model Since we use a unary arc constraint (VALUE is fixed) we employ the SELF arc generator in
order to produce a graph with a single loop on each vertex.

Automaton Figure 4.190 depicts the automaton associated to the exactly constraint. To each variable
VARi of the collection VARIABLES corresponds a 0-1 signature variable Si. The following
signature constraint links VARi and Si: VARi = VALUE⇔ Si.
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{C=C+1}
i

VAR =VALUE,
i

VAR <>VALUE

$

t:

N=C

{C=0}

s

Figure 4.190: Automaton of the exactly constraint

C1

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0

C =00

Q =tn

C =Nn

Figure 4.191: Hypergraph of the reformulation corresponding to the automaton of the
exactly constraint
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See also atleast, atmost, among.

Key words value constraint, counting constraint, automaton, automaton with counters,
alpha-acyclic constraint network(2).
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4.91 global cardinality

Origin CHARME

Constraint global cardinality(VARIABLES, VALUES)

Synonym(s) distribute, distribution, gcc, card var gcc, egcc.

Argument(s) VARIABLES : collection(var − dvar)
VALUES : collection(val − int, noccurrence − dvar)

Restriction(s) required(VARIABLES, var)
required(VALUES, [val, noccurrence])
distinct(VALUES, val)
VALUES.noccurrence ≥ 0
VALUES.noccurrence ≤ |VARIABLES|

Purpose Each value VALUES[i].val (1 ≤ i ≤ |VALUES|) should be taken by exactly
VALUES[i].noccurrence variables of the VARIABLES collection.

For all items of VALUES:

Arc input(s) VARIABLES

Arc generator SELF 7→ collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUES.val

Graph property(ies) NVERTEX = VALUES.noccurrence

Example global cardinality

0
BBBBBBBB@

8
>><
>>:

var − 3,
var − 3,
var − 8,
var − 6

9
>>=
>>;
,

8
<
:

val − 3 noccurrence − 2,
val − 5 noccurrence − 0,
val − 6 noccurrence − 1

9
=
;

1
CCCCCCCCA

The constraint holds since values 3, 5 and 6 are respectively used 2, 0 and 1 times
and since no constraint was specified for value 8. Part (A) of Figure 4.192 shows the
initial graphs associated to each value 3, 5 and 6 of the VALUES collection. Part (B) of
Figure 4.192 shows the two final graphs respectively associated to values 3 and 6 which
are both assigned to the variables of the VARIABLES collection (since value 5 is not
assigned to any variable of the VARIABLES collection the final graph associated to value 5
is empty). Since we use the NVERTEX graph property, the vertices of the final graphs
are stressed in bold.
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Graph model Since we want to express one unary constraint for each value we use the “For all items of
VALUES” iterator.

Automaton Figure 4.193 depicts the automaton associated to the global cardinality constraint. To
each item of the collection VARIABLES corresponds a signature variable Si, which is equal
to 0. To each item of the collection VALUES corresponds a signature variable Si+|VARIABLES|,
which is equal to 1.

Usage We show how to use the global cardinality constraint in order to model the magic
series problem [113, page 155] with one single global cardinality constraint. A non-
empty finite series S = (s0, s1, . . . , sn) is magic if and only if there are si occurrences of
i in S for each integer i ranging from 0 to n. This leads to the following constraint:

global cardinality

0
BBBBB@

˘
var− s0, var − s1, . . . , var − sn

¯
,8

>>><
>>>:

val − 0 noccurrence − s0,
val − 1 noccurrence − s1,

...
val − n noccurrence − sn

9
>>>=
>>>;

1
CCCCCA

Remark This is a generalized form of the original global cardinality constraint: In the origi-
nal global cardinality constraint [19], one specifies for each value its minimum and
maximum number of occurrences; Here we give for each value v a domain variable which
indicates how many time value v is effectively used. By setting the minimum and maxi-
mum values of this variable to the appropriate constants we can express the same thing as
in the original global cardinality constraint. However, as shown in the magic series
problem, we can also use this variable in other constraints.

A last difference with the original global cardinality constraint comes from the fact
that there is no constraint on the values which are not mentioned in the VALUES collection.
In the original global cardinality these values could not be assigned to the variables
of the VARIABLES collection.

Within [34] the global cardinality constraint is called distribution. Within [80]
the global cardinality constraint is called card var gcc. Within [114] the
global cardinality constraint is called egcc or rgcc. This later case corresponds to
the fact that some variables are duplicated within the VARIABLES collection.

W.-J. van Hoeve et al. present two soft versions of the global cardinality constraint
in [12].

Algorithm A flow algorithm that handles the original global cardinality constraint is described
in [19]. The two approaches that were used to design bound-consistency algorithms for

VARIABLES

1234

3:NVERTEX=2, 5:NVERTEX=0, 6:NVERTEX=1

VALUES:3 VALUES:6

1:32:3 4:6

(A) (B)

Figure 4.192: Initial and final graph of the global cardinality constraint
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alldifferent were generalized for the global cardinality constraint. The algorithm
in [115] identifies Hall intervals and the one in [24] exploits convexity to achieve a fast im-
plementation of the flow-based arc-consistency algorithm. The later algorithm can also
compute bound-consistency for the count variables [116]. An improved algorithm for
achieving arc-consistency is described in [27]. In the same paper, it is shown that it is
NP-hard to compute arc-consistency for the count variables.

See also among, count, nvalue, max nvalue, min nvalue, global cardinality with costs,
symmetric gcc, symmetric cardinality, colored matrix,
same and global cardinality.

Key words value constraint, assignment, magic series, Hall interval, bound-consistency, flow,
duplicated variables, automaton, automaton with array of counters.
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0,
{c[VAR ]=c[VAR ]+1}i       i

i

$

arith(C,=,0)
t:

1,

1,

{c[VAL ]=c[VAL ]−NOCCURRENCE }i       i             i

{c[VAL ]=c[VAL ]−NOCCURRENCE }i       i             i

{C[_]=0}

s

Figure 4.193: Automaton of the global cardinality constraint
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4.92 global cardinality low up

Origin Used for defining sliding distribution.

Constraint global cardinality low up(VARIABLES, VALUES)

Argument(s) VARIABLES : collection(var − dvar)
VALUES : collection(val − int, omin− int, omax − int)

Restriction(s) required(VARIABLES, var)
|VALUES| > 0
required(VALUES, [val, omin, omax])
distinct(VALUES, val)
VALUES.omin ≥ 0
VALUES.omax ≤ |VARIABLES|
VALUES.omin ≤ VALUES.omax

Purpose Each value VALUES[i].val (1 ≤ i ≤ |VALUES|) should be taken by at least VALUES[i].omin and
at most VALUES[i].omax variables of the VARIABLES collection.

For all items of VALUES:

Arc input(s) VARIABLES

Arc generator SELF 7→ collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUES.val

Graph property(ies) • NVERTEX ≥ VALUES.omin
• NVERTEX ≤ VALUES.omax

Example global cardinality low up

0
BBBBBBBB@

8
>><
>>:

var− 3,
var− 3,
var− 8,
var− 6

9
>>=
>>;
,

8
<
:

val− 3 omin − 2 omax − 3,
val− 5 omin − 0 omax − 1,
val− 6 omin − 1 omax − 2

9
=
;

1
CCCCCCCCA

The constraint holds since values 3, 5 and 6 are respectively used 2, 0 and 1 times
and since no constraint was specified for value 8. Part (A) of Figure 4.192 shows the
initial graphs associated to each value 3, 5 and 6 of the VALUES collection. Part (B) of
Figure 4.192 shows the two final graphs respectively associated to values 3 and 6 which
are both assigned to the variables of the VARIABLES collection (since value 5 is not
assigned to any variable of the VARIABLES collection the final graph associated to value 5
is empty). Since we use the NVERTEX graph property, the vertices of the final graphs
are stressed in bold.
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Graph model Since we want to express one unary constraint for each value we use the “For all items of
VALUES” iterator.

Algorithm [19].

Used in sliding distribution.

See also global cardinality, sliding distribution.

Key words value constraint, assignment, flow.

VARIABLES

1234

3:NVERTEX=2, 5:NVERTEX=0, 6:NVERTEX=1

VALUES:3 VALUES:6

1:32:3 4:6

(A) (B)

Figure 4.194: Initial and final graph of the global cardinality low up constraint
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4.93 global cardinality with costs

Origin [117]

Constraint global cardinality with costs(VARIABLES, VALUES, MATRIX, COST)

Synonym(s) gccc, cost gcc.

Argument(s) VARIABLES : collection(var − dvar)
VALUES : collection(val − int, noccurrence − dvar)
MATRIX : collection(i− int, j− int, c− int)
COST : dvar

Restriction(s) required(VARIABLES, var)
required(VALUES, [val, noccurrence])
distinct(VALUES, val)
VALUES.noccurrence ≥ 0
VALUES.noccurrence ≤ |VARIABLES|
required(MATRIX, [i, j, c])
increasing seq(MATRIX, [i, j])
MATRIX.i ≥ 1
MATRIX.i ≤ |VARIABLES|
MATRIX.j ≥ 1
MATRIX.j ≤ |VALUES|
|MATRIX| = |VARIABLES| ∗ |VALUES|

Purpose

Each value VALUES[i].val should be taken by exactly VALUES[i].noccurrence variables of the
VARIABLES collection. In addition the COST of an assignment is equal to the sum of the ele-
mentary costs associated to the fact that we assign the ith variable of the VARIABLES collection
to the jth value of the VALUES collection. These elementary costs are given by the MATRIX

collection.

For all items of VALUES:

Arc input(s) VARIABLES

Arc generator SELF 7→ collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUES.val

Graph property(ies) NVERTEX = VALUES.noccurrence

Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→ collection(variables, values)
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Arc arity 2

Arc constraint(s) variables.var = values.val

Graph property(ies) SUM WEIGHT ARC(MATRIX[(variables.key − 1) ∗ |VALUES|+ values.key].c) = COST

Example global cardinality with costs

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

8
>><
>>:

var − 3,
var − 3,
var − 3,
var − 6

9
>>=
>>;
,

8
<
:

val − 3 noccurrence − 3,
val − 5 noccurrence − 0,
val − 6 noccurrence − 1

9
=
; ,

8
>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

i − 1 j− 1 c − 4,
i − 1 j− 2 c − 1,
i − 1 j− 3 c − 7,
i − 2 j− 1 c − 1,
i − 2 j− 2 c − 0,
i − 2 j− 3 c − 8,
i − 3 j− 1 c − 3,
i − 3 j− 2 c − 2,
i − 3 j− 3 c − 1,
i − 4 j− 1 c − 0,
i − 4 j− 2 c − 0,
i − 4 j− 3 c − 6

9
>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

, 14

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.195 respectively show the initial and final graph asso-
ciated to the second graph constraint.

VARIABLES

VALUES

1

1 23

234

SUM_WEIGHT_ARC=4+1+3+6=14

1:3

1:3,3

4

2:3

1

3:3

3

4:6

3:6,1

6

(A) (B)

Figure 4.195: Initial and final graph of the global cardinality with costs con-
straint

Graph model The first graph constraint enforces each value of the VALUES collection to be taken by
a specific number of variables of the VARIABLES collection. It is identical to the graph
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constraint used in the global cardinality constraint. The second graph constraint ex-
presses the fact that the COST variable is equal to the sum of the elementary costs as-
sociated to each variable-value assignment. All these elementary costs are recorded in
the MATRIX collection. More precisely, the cost cij is recorded in the attribute c of the
((i − 1) · |VALUES)| + j)th entry of the MATRIX collection. This is ensured by the
increasing restriction which enforces the fact that the items of the MATRIX collection
are sorted in lexicographically increasing order according to attributes i and j.

Usage A classical utilisation of the global cardinality with costs constraint corresponds
to the following assignment problem. We have a set of persons P as well as a set of jobs
J to perform. Each job requires a number of persons restricted to a specified interval. In
addition each person p has to be assigned to one specific job taken from a subset Jp of J .
There is a cost Cpj associated to the fact that person p is assigned to job j. The previous
problem is modelled with one single global cardinality with costs constraint where
the persons and the jobs respectively correspond to the items of the VARIABLES and VALUES
collection.

The global cardinality with costs constraint can also be used for modelling a con-
junction alldifferent(X1, X2, . . . , Xn) and α1 · X1 + α2 · X2 + . . . + αn · Xn = COST.
For this purpose we set the domain of the noccurrence variables to {0, 1} and the cost
attribute c of a variable Xi and one of its potential value j to αi · j. In practice this can be
used for the magic squares and the magic hexagon problems where all the αi are set to 1.

Algorithm [20]

See also global cardinality, weighted partial alldiff.

Key words cost filtering constraint, assignment, cost matrix, weighted assignment, scalar product,
magic square, magic hexagon.
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4.94 global contiguity

Origin [35]

Constraint global contiguity(VARIABLES)

Argument(s) VARIABLES : collection(var − dvar)

Restriction(s) required(VARIABLES, var)
VARIABLES.var ≥ 0
VARIABLES.var ≤ 1

Purpose Enforce all variables of the VARIABLES collection to be assigned to 0 or 1. In addition, all
variables assigned to value 1 appear contiguously.

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)
LOOP 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • variables1.var = variables2.var
• variables1.var = 1

Graph property(ies) NCC ≤ 1

Example global contiguity

0
BB@

8
>><
>>:

var− 0,
var− 1,
var− 1,
var− 0

9
>>=
>>;

1
CCA

Parts (A) and (B) of Figure 4.196 respectively show the initial and final graph. The
global contiguity constraint holds since the final graph does not contain more than
one connected component. This connected component corresponds to 2 contiguous
variables which are both assigned to 1.

Graph model Each connected component of the final graph corresponds to one set of contiguous variables
that all take value 1.

Automaton Figure 4.197 depicts the automaton associated to the global contiguity constraint. To
each variable VARi of the collection VARIABLES corresponds a signature variable, which is
equal to VARi. There is no signature constraint.

Usage The paper [35] introducing this constraint refers to hardware configuration problems.

Algorithm A filtering algorithm for this constraint is described in [35].

See also group, inflexion.

Key words connected component, convex, Berge-acyclic constraint network, automaton,
automaton without counters.
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VARIABLES

1

2

3

4

NCC=1

CC#1

2:1

3:1

(A) (B)

Figure 4.196: Initial and final graph of the global contiguity constraint

VAR =0i

VAR =1i

VAR =1i

VAR =0i
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Figure 4.197: Automaton of the global contiguity constraint

Q =tn

VAR
1

VAR
2

VAR
n

Q1Q =s0

Figure 4.198: Hypergraph of the reformulation corresponding to the automaton of the
global contiguity constraint
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4.95 golomb

Origin Inspired by [118].

Constraint golomb(VARIABLES)

Argument(s) VARIABLES : collection(var − dvar)

Restriction(s) required(VARIABLES, var)
VARIABLES.var ≥ 0

Purpose Enforce all differences Xi − Xj between two variables Xi and Xj (i > j) of the collection
VARIABLES to be distinct.

Derived Collection(s) col

„
PAIRS − collection(x− dvar, y− dvar),
[> −item(x− VARIABLES.var, y − VARIABLES.var)]

«

Arc input(s) PAIRS

Arc generator CLIQUE 7→ collection(pairs1, pairs2)

Arc arity 2

Arc constraint(s) pairs1.y − pairs1.x = pairs2.y − pairs2.x

Graph property(ies) MAX NSCC ≤ 1

Example golomb({var − 0, var − 1, var− 4, var− 6})

Parts (A) and (B) of Figure 4.199 respectively show the initial and final graph.
Since we use the MAX NSCC graph property we show one of the largest strongly
connected component of the final graph. The constraint holds since all the strongly
connected components have at most one vertex: the differences 1, 2, 3, 4, 5, 6 that one can
construct from the values 0, 1, 4, 6 assigned to the variables of the VARIABLES collection
are all distinct. Figure 4.200 gives a graphical interpretation of the solution given in the
example in term of a graph: Each vertex corresponds to a variable, while each arc depicts
a difference between two variables. One can observe that these differences are all distinct.

Graph model When applied on the collection of items {VAR1, VAR2, VAR3, VAR4}, the gen-
erator of derived collection generates the following collection of items:
{VAR2 VAR1, VAR3 VAR1, VAR3 VAR2, VAR4 VAR1, VAR4 VAR2, VAR4 VAR3}. Note
that we use a binary arc constraint between two vertices and that this binary constraint
involves four variables.

Usage This constraint refers to the Golomb ruler problem. We quote the definition from [119]:
“A Golomb ruler is a set of integers (marks) a1 < · · · < ak such that all the differences
ai − aj (i > j) are distinct”.

Remark Different constraints models for the Golomb ruler problem were presented in [120].
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PAIRS

1

2

3

4

5

6

MAX_NSCC=1

MAX_NSCC

1:1,0 2:4,0 3:4,1 4:6,0 5:6,1 6:6,4

(A) (B)

Figure 4.199: Initial and final graph of the golomb constraint

3

4 4

6 2

1

1

6

5

0

Figure 4.200: Graphical representation of the solution 0,1,4,6



510 MAX NSCC,CLIQUE

Algorithm At a first glance, one could think that, because it looks so similar to the alldifferent

constraint, we could have a perfect polynomial filtering algorithm. However this is not true
since one retrieves the same variable in different vertices of the graph. This leads to the fact
that one has incompatible arcs in the bipartite graph (the two classes of vertices correspond
to the pair of variables and to the fact that the difference between two pairs of variables
takes a specific value). However one can still reuse a similar filtering algorithm as for the
alldifferent constraint, but this will not lead to perfect pruning.

See also alldifferent.

Key words Golomb ruler, disequality, difference, derived collection.
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4.96 graph crossing

Origin N. Beldiceanu

Constraint graph crossing(NCROSS, NODES)

Argument(s) NCROSS : dvar

NODES : collection(succ− dvar, x − int, y− int)

Restriction(s) NCROSS ≥ 0
required(NODES, [succ, x, y])
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose NCROSS is the number of proper intersections between line-segments, where each line-segment
is an arc of the directed graph defined by the arc linking a node and its unique successor.

Arc input(s) NODES

Arc generator CLIQUE(<) 7→ collection(n1, n2)

Arc arity 2

Arc constraint(s) • max(n1.x, NODES[n1.succ].x) ≥ min(n2.x, NODES[n2.succ].x)
• max(n2.x, NODES[n2.succ].x) ≥ min(n1.x, NODES[n1.succ].x)
• max(n1.y, NODES[n1.succ].y) ≥ min(n2.y, NODES[n2.succ].y)
• max(n2.y, NODES[n2.succ].y) ≥ min(n1.y, NODES[n1.succ].y)

• (n2.x − NODES[n1.succ].x) ∗ (NODES[n1.succ].y − n1.y)−
(NODES[n1.succ].x − n1.x) ∗ (n2.y− NODES[n1.succ].y)

6= 0

• (NODES[n2.succ].x − NODES[n1.succ].x) ∗ (n2.y− n1.y)−
(n2.x − n1.x) ∗ (NODES[n2.succ].y − NODES[n1.succ].y)

6= 0

•
sign

„
(n2.x− NODES[n1.succ].x) ∗ (NODES[n1.succ].y − n1.y)−
(NODES[n1.succ].x − n1.x) ∗ (n2.y− NODES[n1.succ].y)

«
6=

sign

„
(NODES[n2.succ].x − NODES[n1.succ].x) ∗ (n2.y− n1.y)−
(n2.x− n1.x) ∗ (NODES[n2.succ].y − NODES[n1.succ].y)

«

Graph property(ies) NARC = NCROSS

Example graph crossing

0
BBBBBBBBBBBBBB@

2,

8
>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

succ − 1 x− 4 y− 7,
succ − 1 x− 2 y− 5,
succ − 1 x− 7 y− 6,
succ − 2 x− 1 y− 2,
succ − 3 x− 2 y− 2,
succ − 2 x− 5 y− 3,
succ − 3 x− 8 y− 2,
succ − 9 x− 6 y− 2,
succ − 10 x− 10 y− 6,
succ − 8 x− 10 y− 1

9
>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

1
CCCCCCCCCCCCCCA
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Parts (A) and (B) of Figure 4.201 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in bold.
Each arc of the final graph corresponds to a proper intersection between two line-segments.
Figure 4.202 shows the line-segments associated to the NODES collection. One can observe
the following line-segments intersection:

• Arcs 8→ 9 and 7→ 3 cross,

• Arcs 5→ 3 and 7→ 3 cross also.

NODES

1

2

3

4

5

6

7

8

9

10 NARC=2

5:3,2,2

6:2,5,3

7:3,8,2

8:9,6,2

(A) (B)

Figure 4.201: Initial and final graph of the graph crossing constraint
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1

2
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6
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8

7

10

93

2

1

Figure 4.202: A graph covering with 2 line-segments intersections

Graph model Each node is described by its coordinates x and y, and by its successor succ in the final cov-
ering. Note that the coordinates are initially fixed. We use the arc generator CLIQUE(<)
in order to avoid counting twice the same line-segment crossing.
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Usage This is a general crossing constraint that can be used in conjunction with one graph covering
constraint such as cycle, tree or map. In many practical problems ones want not only to
cover a graph with specific patterns but also to avoid too much crossing between the arcs
of the final graph.

Remark We did not give a specific crossing constraint for each graph covering constraint. We feel
that it is better to start first with a more general constraint before going in the specificity of
the pattern that is used for covering the graph.

See also crossing, two layer edge crossing, cycle, tree, map.

Key words geometrical constraint, line-segments intersection.
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4.97 group

Origin CHIP

Constraint group(NGROUP, MIN SIZE, MAX SIZE, MIN DIST, MAX DIST, NVAL, VARIABLES, VALUES)

Argument(s) NGROUP : dvar

MIN SIZE : dvar

MAX SIZE : dvar

MIN DIST : dvar

MAX DIST : dvar

NVAL : dvar

VARIABLES : collection(var − dvar)
VALUES : collection(val − int)

Restriction(s) NGROUP ≥ 0
MIN SIZE ≥ 0
MAX SIZE ≥ MIN SIZE

MIN DIST ≥ 0
MAX DIST ≥ MIN DIST

NVAL ≥ 0
required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)

Let n be the number of variables of the collection VARIABLES. Let Xi, Xi+1, . . . , Xj (1 ≤
i ≤ j ≤ n) be consecutive variables of the collection of variables VARIABLES such that all the
following conditions simultaneously apply:

Purpose • All variables Xi, . . . , Xj take their value in the set of values VALUES,

• i = 1 or Xi−1 does not take a value in VALUES,

• j = n or Xj+1 does not take a value in VALUES.
We call such a set of variables a group. The constraint group is true if all the following condi-
tions hold:

• There are exactly NGROUP groups of variables,

• MIN SIZE is the number of variables of the smallest group,

• MAX SIZE is the number of variables of the largest group,

• MIN DIST is the minimum number of variables between two consecutives groups or be-
tween one border and one group,

• MAX DIST is the maximum number of variables between two consecutives groups or
between one border and one group,

• NVAL is the number of variables that take their value in the set of values VALUES.

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)
LOOP 7→ collection(variables1, variables2)
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Arc arity 2

Arc constraint(s) • in(variables1.var, VALUES)
• in(variables2.var, VALUES)

Graph property(ies) • NCC = NGROUP

•MIN NCC = MIN SIZE

•MAX NCC = MAX SIZE

• NVERTEX = NVAL

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)
LOOP 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • not in(variables1.var, VALUES)
• not in(variables2.var, VALUES)

Graph property(ies) •MIN NCC = MIN DIST

•MAX NCC = MAX DIST

Example group

0
BBBBBBBBBBBBBBBBBBBBBB@

2, 1, 2, 2, 4, 3,

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

var − 2,
var − 8,
var − 1,
var − 7,
var − 4,
var − 5,
var − 1,
var − 1,
var − 1

9
>>>>>>>>>>>>=
>>>>>>>>>>>>;

,

8
>>>><
>>>>:

val − 0,
val − 2,
val − 4,
val − 6,
val − 8

9
>>>>=
>>>>;

1
CCCCCCCCCCCCCCCCCCCCCCA

The previous constraint holds since:

• The final graph of the first graph constraint has two connected components. There-
fore the number of groups NGROUP is equal to two.

• The number of vertices of the smallest connected component of the final graph of the
first graph constraint is equal to one. Therefore MIN SIZE is equal to one.

• The number of vertices of the largest connected component of the final graph of the
first graph constraint is equal to two. Therefore MAX SIZE is equal to two.

• The number of vertices of the smallest connected component of the final graph of the
second graph constraint is equal to two. Therefore MIN DIST is equal to two.

• The number of vertices of the largest connected component of the final graph of the
second graph constraint is equal to four. Therefore MAX DIST is equal to four.
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• The number of vertices of the final graph of the first graph constraint is equal to three.
Therefore NVAL is equal to three.

Parts (A) and (B) of Figure 4.203 respectively show the initial and final graph associated
to the first graph constraint. Since we use the NVERTEX graph property, the vertices
of the final graph are stressed in bold. In addition, since we use the MIN NCC and the
MAX NCC graph properties, we also show the smallest and largest connected compo-
nents of the final graph.

VARIABLES

1

2

3

4

5

6

7

8

9

NCC=2
MIN_NCC=1
MAX_NCC=2
NVERTEX=3

MIN_NCC MAX_NCC

5:4 1:2

2:8

(A) (B)

Figure 4.203: Initial and final graph of the group constraint

Graph model We use two graph constraints for modelling the group constraint: A first one for specifying
the constraints on NGROUP, MIN SIZE, MAX SIZE and NVAL, and a second one for stating
the constraints on MIN DIST and MAX DIST. In order to generate the initial graph related to
the first graph constraint we use:

• The arc generators PATH and LOOP ,

• The binary constraint variables1.var ∈ VALUES ∧ variables2.var ∈ VALUES.

This produces an initial graph depicted in part (A) of Figure 4.203. We use PATH LOOP
and the binary constraint variables1.var ∈ VALUES ∧ variables2.var ∈ VALUES in
order to catch the two following situations:

• A binary constraint has to be used in order to get the notion of group: Consecutive
variables that take their value in VALUES.
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• If we only use PATH then we would lose the groups that are composed from one
single variable since the predecessor and the successor arc would be destroyed; this
is why we use also the LOOP arc generator.

Automaton Figures 4.204, 4.206, 4.207, 4.209, 4.210 and 4.212 depict the different automata associated
to the group constraint. For the automata that respectively compute NGROUP, MIN SIZE,
MAX SIZE, MIN DIST, MAX DIST and NVAL we have a 0-1 signature variable Si for each
variable VARi of the collection VARIABLES. The following signature constraint links VARi
and Si: VARi ∈ VALUES⇔ Si.

not_in(VAR ,VALUES)i

in(VAR ,VALUES)i

not_in(VAR ,VALUES)i
in(VAR ,VALUES),i
{C=C+1}

i

$

$

NGROUP=C
t:

s

{C=0}

Figure 4.204: Automaton for the NGROUP parameter of the group constraint

C1
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1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0

C =00

Q =tn

C =NGROUPn

Figure 4.205: Hypergraph of the reformulation corresponding to the automaton of the
NGROUP parameter of the group constraint

Usage A typical use of the group constraint in the context of timetabling is as follow: The value
of the ith variable of the VARIABLES collection corresponds to the type of shift (i.e. night,
morning, afternoon, rest) performed by a specific person on day i. A complete period of
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inot_in(VAR ,VALUES)

inot_in(VAR ,VALUES),

iin(VAR ,VALUES),

iin(VAR ,VALUES),

inot_in(VAR ,VALUES) $
i j

MIN_SIZE=C
t:

k

{C=|VARIABLES|}

{C=min(C,D)}

{D=1} $
{C=min(C,D)}
$,

{D=D+1}

in(VAR ,VALUES),

{C=0,D=1}

s

Figure 4.206: Automaton for the MIN SIZE parameter of the group constraint

inot_in(VAR ,VALUES), iin(VAR ,VALUES),

MAX_SIZE=C
t:

{D=D+1}{C=max(C,D),D=0}

$,
{C=max(C,D)}

{C=0,D=0}

s

Figure 4.207: Automaton for the MAX SIZE parameter of the group constraint

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0 Q =tn

D1 Dn

C1C =00 C =MIN_SIZEn

D =10

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0 Q =tn

D1 Dn

C1C =00

D =00

C =MAX_SIZEn

Figure 4.208: Hypergraphs of the reformulations corresponding to the automata of the
MIN SIZE and MAX SIZE parameters of the group constraint
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i
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i

i

i $j
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$
{C=min(C,D)}
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MIN_DIST=C

in(VAR ,VALUES),

in(VAR ,VALUES)

in(VAR ,VALUES)

not_in(VAR ,VALUES),

{C=|VARIABLES|}

not_in(VAR ,VALUES),
{D=D+1}

not_in(VAR ,VALUES),

{D=1}
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{C=0,D=1}

s

Figure 4.209: Automaton for the MIN DIST parameter of the group constraint

i
{C=max(C,D),D=0}

in(VAR ,VALUES), i

t:

{D=D+1}

$,
{C=max(C,D)}

MAX_DIST=C

not_in(VAR ,VALUES),

{C=0,D=0}

s

Figure 4.210: Automaton for the MAX DIST parameter of the group constraint
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Figure 4.211: Hypergraphs of the reformulations corresponding to the automata of the
MIN DIST and MAX DIST parameters of the group constraint
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in(VAR ,VALUES),i
{C=C+1}

$

t:

not_in(VAR ,VALUES)i

NVAL=C

{C=0}

s

Figure 4.212: Automaton for the NVAL parameter of the group constraint
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Figure 4.213: Hypergraph of the reformulation corresponding to the automaton of the
NVAL parameter of the group constraint
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work is represented by the variables of the VARIABLES collection. In this context the group
constraint expresses for a person:

• The number of periods of consecutive night shift during a complete period of work.

• The total number of night shift during a complete period of work.

• The maximum number of allowed consecutive night shift.

• The minimum number of days (which do not correspond to night shift) between two
consecutive sequences of night shift.

Remark For this constraint we use the possibility to express directly more than one constraint on the
characteristics of the final graph we want to obtain. For more propagation, it is crucial to
keep this in one single constraint, since strong relations relate the different characteristics
of a graph. This constraint is very similar to the group constraint introduced in CHIP,
except that here, the MIN DIST and MAX DIST constraints apply also for the two borders:
we cannot start or end with a group of k consecutive variables that take their values outside
VALUES and such that k is less than MIN DIST or k is greater than MAX DIST.

See also group skip isolated item, change continuity, stretch path.

Key words timetabling constraint, connected component, automaton, automaton with counters,
alpha-acyclic constraint network(2), alpha-acyclic constraint network(3), vpartition,
consecutive loops are connected.
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4.98 group skip isolated item

Origin Derived from group.

Constraint group skip isolated item(NGROUP, MIN SIZE, MAX SIZE, NVAL, VARIABLES, VALUES)

Argument(s) NGROUP : dvar

MIN SIZE : dvar

MAX SIZE : dvar

NVAL : dvar

VARIABLES : collection(var − dvar)
VALUES : collection(val − int)

Restriction(s) NGROUP ≥ 0
MIN SIZE ≥ 0
MAX SIZE ≥ MIN SIZE

NVAL ≥ 0
required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)

Let n be the number of variables of the collection VARIABLES. Let Xi, Xi+1, . . . , Xj (1 ≤
i < j ≤ n) be consecutive variables of the collection of variables VARIABLES such that the
following conditions apply:

Purpose • All variables Xi, . . . , Xj take their value in the set of values VALUES,

• i = 1 or Xi−1 does not take a value in VALUES,

• j = n or Xj+1 does not take a value in VALUES.
We call such a set of variables a group. The constraint group skip isolated item is true if
all the following conditions hold:

• There are exactly NGROUP groups of variables,

• The number of variables of the smallest group is MIN SIZE,

• The number of variables of the largest group is MAX SIZE,

• The number of variables that take their value in the set of values VALUES is equal to
NVAL.

Arc input(s) VARIABLES

Arc generator CHAIN 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • in(variables1.var, VALUES)
• in(variables2.var, VALUES)
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Graph property(ies) • NSCC = NGROUP

•MIN NSCC = MIN SIZE

•MAX NSCC = MAX SIZE

• NVERTEX = NVAL

Example group skip isolated item

0
BBBBBBBBBBBBBBBBBBBBBB@

1, 2, 2, 3,

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

var − 2,
var − 8,
var − 1,
var − 7,
var − 4,
var − 5,
var − 1,
var − 1,
var − 1

9
>>>>>>>>>>>>=
>>>>>>>>>>>>;

,

8
>>>><
>>>>:

val − 0,
val − 2,
val − 4,
val − 6,
val − 8

9
>>>>=
>>>>;

1
CCCCCCCCCCCCCCCCCCCCCCA

The previous constraint holds since:

• The final graph contains one strongly connected component. Therefore the number
of groups is equal to one.

• The unique strongly connected component of the final graph contains two vertices.
Therefore MIN SIZE and MAX SIZE are both equal to two.

• The number of vertices of the final graph is equal to two. Therefore NVAL is equal to
two.

Parts (A) and (B) of Figure 4.214 respectively show the initial and final graph.

Graph model We use the CHAIN arc generator in order to produce the initial graph. This creates the
graph depicted in part (A) of Figure 4.214. We use CHAIN together with the arc constraint
variables1.var ∈ VALUES ∧ variables2.var ∈ VALUES in order to skip the isolated
variables that take a value in VALUES that we don’t want to count as a group. This is why,
on the example, value 4 is not counted as a group.

Automaton Figures 4.215, 4.217, 4.218 and 4.220 depict the different automata associated to the
group skip isolated item constraint. For the automata that respectively compute
NGROUP, MIN SIZE, MAX SIZE and NVAL we have a 0-1 signature variable Si for each vari-
able VARi of the collection VARIABLES. The following signature constraint links VARi and
Si: VARi ∈ VALUES⇔ Si.

Usage This constraint is useful in order to specify rules about how rest days should be allocated
to a person during a period of n consecutive days. In this case VALUES are the codes for the
rest days (perhaps one single value) and VARIABLES corresponds to the amount of work
done during n consecutive days. We can then express a rule like: In a month one should
have at least 4 periods of at least 2 rest days; Isolated rest days are not counted as rest
periods.

See also group, change continuity, stretch path.
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VARIABLES

1

2

3

4

5

6

7

8

9

NSCC=1
MIN_NSCC=2
MAX_NSCC=2
NVERTEX=2

SCC#1

1:2

2:8

(A) (B)

Figure 4.214: Initial and final graph of the group skip isolated item constraint

i

j

not_in(VAR ,VALUES)

$

not_in(VAR ,VALUES)

$

not_in(VAR ,VALUES)

t:
NGROUP=C

i

i

i

in(VAR ,VALUES)i

{C=C+1}

in(VAR ,VALUES),i

in(VAR ,VALUES)i

$

{C=0}

s

Figure 4.215: Automaton for the NGROUP parameter of the
group skip isolated item constraint
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C1

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0

C =00

Q =tn

C =NGROUPn

Figure 4.216: Hypergraph of the reformulation corresponding to the automaton of the
NGROUP parameter of the group skip isolated item constraint

m

inot_in(VAR ,VALUES)

inot_in(VAR ,VALUES)

iin(VAR ,VALUES),

iin(VAR ,VALUES),{D=2}

inot_in(VAR ,VALUES)

iin(VAR ,VALUES),{D=D+1}

iin(VAR ,VALUES)

inot_in(VAR ,VALUES)

inot_in(VAR ,VALUES),

iin(VAR ,VALUES),{C=|VARIABLES}

j

l

$

$

$

$

k

$,{C=min(C,D}

{C=min(C,D)}

MIN_SIZE=C
t:

s

{C=0,D=2}

Figure 4.217: Automaton for the MIN SIZE parameter of the
group skip isolated item constraint
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MAX_SIZE=C
t:

inot_in(VAR ,VALUES),

inot_in(VAR ,VALUES)

iin(VAR ,VALUES),

iin(VAR ,VALUES),
i

{C=max(C,D)}

$

$,{C=max(C,D)}

{D=D+1}

{D=1}

s

{C=0,D=0}

Figure 4.218: Automaton for the MAX SIZE parameter of the
group skip isolated item constraint

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0 Q =tn

D1 Dn

C1C =00 C =MIN_SIZEn

D =20

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0 Q =tn

D1 Dn

C1C =00

D =00

C =MAX_SIZEn

Figure 4.219: Hypergraphs of the reformulations corresponding to the automata of the
MIN SIZE and MAX SIZE parameters of the group skip isolated item constraint
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in(VAR ,VALUES),i
{C=C+1}

$

t:

not_in(VAR ,VALUES)i

NVAL=C

{C=0}

s

Figure 4.220: Automaton for the NVAL parameter of the group skip isolated item

constraint

C1

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0

C =00

Q =tn

C =NVALn

Figure 4.221: Hypergraph of the reformulation corresponding to the automaton of the
NVAL parameter of the group skip isolated item constraint
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Key words timetabling constraint, strongly connected component, automaton,
automaton with counters, alpha-acyclic constraint network(2),
alpha-acyclic constraint network(3).
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4.99 heighest peak

Origin Derived from peak.

Constraint heighest peak(HEIGHT, VARIABLES)

Argument(s) HEIGHT : dvar

VARIABLES : collection(var − dvar)

Restriction(s) HEIGHT ≥ 0
VARIABLES.var ≥ 0
required(VARIABLES, var)

Purpose

A variable Vk (1 < k < m) of the sequence of variables VARIABLES = V1, . . . , Vm is a peak
if and only if there exist an i (1 < i ≤ k) such that Vi−1 < Vi and Vi = Vi+1 = . . . = Vk
and Vk > Vk+1. HEIGHT is the maximum value of the peak variables. If no such variable exists
HEIGHT is equal to 0.

Example heighest peak

0
BBBBBBBBBB@

8,

8
>>>>>>>>>><
>>>>>>>>>>:

var − 1,
var − 1,
var − 4,
var − 8,
var − 6,
var − 2,
var − 7,
var − 1

9
>>>>>>>>>>=
>>>>>>>>>>;

1
CCCCCCCCCCA

The previous constraint holds since 8 is the maximum peak of the sequence 1 1 4 8 6 2 7 1.

1

1 5 6 7 8

2

3

4

5

6

43

7

8

1 1

Values

Variables 2

8

4

6

2

7

1

Figure 4.222: The sequence and its heighest peak

Automaton Figure 4.223 depicts the automaton associated to the heighest peak constraint. To each
pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a
signature variable Si. The following signature constraint links VARi, VARi+1 and Si:

VARi > VARi+1 ⇔ Si = 0 ∧ VARi = VARi+1 ⇔ Si = 1 ∧ VARi < VARi+1 ⇔ Si = 2.
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VAR > VARi i+1 VAR = VARi i+1

VAR = VARi i+1i i+1VAR < VAR

VAR < VARi i+1

u

$

$

VAR > VAR   ,i i+1
{C=max(C,VAR )}i

HEIGHT=C

t:

{C=0}

s

Figure 4.223: Automaton of the heighest peak constraint

VAR
1

S1

VAR
2 VAR

n
VAR

3

S3 Sn−1

VAR
n−1

Q =s0

C =00
C1

Q1

S2

Q2

C2

Q   =tn−1

n−1C   =HEIGHT

Figure 4.224: Hypergraph of the reformulation corresponding to the automaton of the
heighest peak constraint
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See also peak, deepest valley.

Key words sequence, automaton, automaton with counters, sliding cyclic(1) constraint network(2).
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4.100 in

Origin Domain definition.

Constraint in(VAR, VALUES)

Argument(s) VAR : dvar

VALUES : collection(val− int)

Restriction(s) required(VALUES, val)
distinct(VALUES, val)

Purpose Enforce the domain variable VAR to take a value within the values described by the VALUES

collection.

Derived Collection(s) col(VARIABLES − collection(var − dvar), [item(var − VAR)])

Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→ collection(variables, values)

Arc arity 2

Arc constraint(s) variables.var = values.val

Graph property(ies) NARC = 1

Example in(3, {val − 1, val − 3})

Parts (A) and (B) of Figure 4.225 respectively show the initial and final graph.
Since we use the NARC graph property, the unique arc of the final graph is stressed in
bold.

VARIABLES

VALUES

1

12

NARC=1

1:3

2:3

(A) (B)

Figure 4.225: Initial and final graph of the in constraint

Signature Since all the val attributes of the VALUES collection are distinct and because of the arc con-
straint variables.var = values.val the final graph contains at most one arc. Therefore
we can rewrite NARC = 1 to NARC ≥ 1 and simplify NARC to NARC.
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Automaton Figure 4.226 depicts the automaton associated to the in constraint. Let VALi be the val

attribute of the ith item of the VALUES collection. To each pair (VAR, VALi) corresponds a
0-1 signature variable Si as well as the following signature constraint: VAR = VALi ⇔ Si.

VAR<>VAL is

t

VAR=VALi

Figure 4.226: Automaton of the in constraint

Q =tn
Q1Q =s0

  S
1

  S
2

  S
n

VAR

Figure 4.227: Hypergraph of the reformulation corresponding to the automaton of the
in constraint

Remark Entailment occurs immediately after posting this constraint.

Used in among, cardinality atmost partition, group, group skip isolated item,
in same partition.

See also not in, in same partition.

Key words value constraint, unary constraint, included, domain definition, automaton,
automaton without counters, centered cyclic(1) constraint network(1), derived collection.
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4.101 in relation

Origin Constraint explicitely defined by tuples of values.

Constraint in relation(VARIABLES, TUPLES OF VALS)

Synonym(s) extension.

Type(s) TUPLE OF VARS : collection(var− dvar)
TUPLE OF VALS : collection(val− int)

Argument(s) VARIABLES : TUPLE OF VARS

TUPLES OF VALS : collection(tuple − TUPLE OF VALS)

Restriction(s) required(TUPLE OF VARS, var)
required(TUPLE OF VALS, val)
required(TUPLES OF VALS, tuple)
min size(TUPLES OF VALS, tuple) = |VARIABLES|
max size(TUPLES OF VALS, tuple) = |VARIABLES|

Purpose
Enforce the tuple of variables VARIABLES to take its value out of a set of tuples of values
TUPLES OF VALS. The value of a tuple of variables 〈V1, V2, . . . , Vn〉 is a tuple of values
〈U1, U2, . . . , Un〉 if and only if V1 = U1 ∧ V2 = U2 ∧ · · · ∧ Vn = Un.

Derived Collection(s) col(TUPLES OF VARS − collection(vec − TUPLE OF VARS), [item(vec − VARIABLES)])

Arc input(s) TUPLES OF VARS TUPLES OF VALS

Arc generator PRODUCT 7→ collection(tuples of vars, tuples of vals)

Arc arity 2

Arc constraint(s) vec eq tuple(tuples of vars.vec, tuples of vals.tuple)

Graph property(ies) NARC ≥ 1

Example in relation

0
BB@

{var − 5, var − 3, var − 3},8
<
:

tuple − {val − 5, val− 2, val− 3},
tuple − {val − 5, val− 2, val− 6},
tuple − {val − 5, val− 3, val− 3}

9
=
;

1
CCA

Parts (A) and (B) of Figure 4.228 respectively show the initial and final graph.
Since we use the NARC graph property, the unique arc of the final graph is stressed in
bold.

Usage Quite often some constraints cannot be easily expressed, neither by a formula, nor by a
regular pattern. In this case one has to define the constraint by specifying in extension the
combinations of allowed values.
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Remark Within [34] this constraint is called extension.

See also element.

Key words data constraint, tuple, extension, relation, derived collection.
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TUPLES_OF_VARS

TUPLES_OF_VALS

1

123

NARC=1

1:5
  3
  3

3:5
  3
  3

(A) (B)

Figure 4.228: Initial and final graph of the in relation constraint
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4.102 in same partition

Origin Used for defining several entries of this catalog.

Constraint in same partition(VAR1, VAR2, PARTITIONS)

Type(s) VALUES : collection(val− int)

Argument(s) VAR1 : dvar

VAR2 : dvar

PARTITIONS : collection(p− VALUES)

Restriction(s) required(VALUES, val)
distinct(VALUES, val)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose Enforce VAR1 and VAR2 to be respectively assigned to values v1 and v2 that both belong to a
same partition of the collection PARTITIONS.

Derived Collection(s) col(VARIABLES − collection(var − dvar), [item(var − VAR1), item(var − VAR2)])

Arc input(s) VARIABLES PARTITIONS

Arc generator PRODUCT 7→ collection(variables, partitions)

Arc arity 2

Arc constraint(s) in(variables.var, partitions.p)

Graph property(ies) • NSOURCE = 2
• NSINK = 1

Example in same partition

0
@ 6, 2,

8
<
:

p − {val − 1, val − 3},
p − {val − 4},
p − {val − 2, val − 6}

9
=
;

1
A

Parts (A) and (B) of Figure 4.229 respectively show the initial and final graph.
Since we both use the NSOURCE and NSINK graph properties, the source and sink
vertices of the final graph are shown with a double circle.

Graph model VAR1 and VAR2 are put together in the derived collection VARIABLES. Since both VAR1 and
VAR2 should take their value in one of the partition depicted by the PARTITIONS collection,
the final graph should have two sources corresponding respectively to VAR1 and VAR2.
Since two, possibly distinct, values should be assigned to VAR1 and VAR2 and since these
values belong to the same partition p the final graph should only have one sink. This sink
corresponds in fact to partition p.
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Signature Observe that the sinks of the initial graph cannot become sources of the final graph since
isolated vertices are eliminated from the final graph. Since the final graph contains two
sources it also includes one arc between a source and a sink. Therefore the minimum
number of sinks of the final graph is equal to one. So we can rewrite NSINK = 1 to
NSINK ≥ 1 and simplify NSINK to NSINK.

Automaton Figure 4.230 depicts the automaton associated to the in same partition constraint. Let
VALUESi be the p attribute of the ith item of the PARTITIONS collection. To each triple
(VAR1, VAR2, VALUESi) corresponds a 0-1 signature variable Si as well as the following
signature constraint: ((VAR1 ∈ VALUESi) ∧ (VAR2 ∈ VALUESi))⇔ Si.

Used in alldifferent partition, balance partition, change partition,
common partition, nclass, same partition, soft same partition var,
soft used by partition var, used by partition.

See also in.

Key words value constraint, partition, automaton, automaton without counters,
centered cyclic(2) constraint network(1), derived collection.

VARIABLES

PARTITIONS

1

1 23

2

NSOURCE=2,NSINK=1

1:6

3:2
  6

2:2

(A) (B)

Figure 4.229: Initial and final graph of the in same partition constraint
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s

t

i

i

not_in(VAR1,VALUES ) or not_in(VAR2,VALUES )i

in(VAR1,VALUES ) and in(VAR2,VALUES )i

Figure 4.230: Automaton of the in same partition constraint

Q =tn
Q1Q =s0

  S
1

  S
2

  S
n

VAR1

VAR2

Figure 4.231: Hypergraph of the reformulation corresponding to the automaton of the
in same partition constraint
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4.103 in set

Origin Used for defining constraints with set variables.

Constraint in set(VAL, SET)

Argument(s) VAL : dvar

SET : svar

Purpose Constraint variable VAL to belong to set SET.

Example in set(3, {1, 3})

Used in clique, cutset, discrepancy, inverse set, k cut, link set to booleans,
path from to, strongly connected, sum, sum set, symmetric cardinality,
symmetric gcc, tour.

Key words predefined constraint, value constraint, included, constraint involving set variables.
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4.104 increasing

Origin KOALOG

Constraint increasing(VARIABLES)

Argument(s) VARIABLES : collection(var − dvar)

Restriction(s) |VARIABLES| > 0
required(VARIABLES, var)

Purpose The variables of the collection VARIABLES are increasing.

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var ≤ variables2.var

Graph property(ies) NARC = |VARIABLES| − 1

Example increasing({var − 1, var − 1, var − 4, var− 8})

Parts (A) and (B) of Figure 4.232 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

VARIABLES

1

2

3

4

NARC=3

1:1

2:1

3:4

4:8

(A) (B)

Figure 4.232: Initial and final graph of the increasing constraint
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Automaton Figure 4.233 depicts the automaton associated to the increasing constraint. To each
pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a
0-1 signature variable Si. The following signature constraint links VARi, VARi+1 and Si:
VARi > VARi+1 ⇔ Si.

See also strictly increasing, decreasing, strictly decreasing.

Key words decomposition, order constraint, automaton, automaton without counters,
sliding cyclic(1) constraint network(1).

$

t

s VAR <=VARi     i+1

Figure 4.233: Automaton of the increasing constraint
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VAR
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VAR
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S3

Q2

Sn−1

VAR
n−1

Q   =tn−1Q =s0 Q1

S1

Figure 4.234: Hypergraph of the reformulation corresponding to the automaton of the
increasing constraint
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4.105 indexed sum

Origin N. Beldiceanu

Constraint indexed sum(ITEMS, TABLE)

Argument(s) ITEMS : collection(index − dvar, weight − dvar)
TABLE : collection(index − int, sum − dvar)

Restriction(s) |ITEMS| > 0
|TABLE| > 0
required(ITEMS, [index, weight])
ITEMS.index ≥ 0
ITEMS.index < |TABLE|
required(TABLE, [index, sum])
TABLE.index ≥ 0
TABLE.index < |TABLE|
increasing seq(TABLE, index)

Purpose

Given several items of the collection ITEMS (each of them having a specific fixed index as
well as a weight which may be negative or positive), and a table TABLE (each entry of TABLE
corresponding to a sum variable), assign each item to an entry of TABLE so that the sum of the
weights of the items assigned to that entry is equal to the corresponding sum variable.

For all items of TABLE:

Arc input(s) ITEMS TABLE

Arc generator PRODUCT 7→ collection(items, table)

Arc arity 2

Arc constraint(s) items.index = table.index

Sets

SUCC 7→2
4

source,

variables − col

„
VARIABLES − collection(var− dvar),
[item(var− ITEMS.weight)]

«
3
5

Constraint(s) on sets sum ctr(variables,=, TABLE.sum)

Example indexed sum

0
BBBBBB@

8
<
:

index − 2 weight −−4,
index − 0 weight − 6,
index − 2 weight − 1

9
=
; ,

8
<
:

index − 0 sum− 6,
index − 1 sum− 0,
index − 2 sum−−3

9
=
;

1
CCCCCCA
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Part (A) of Figure 4.235 shows the initial graphs associated to entries 0, 1 and 2.
Part (B) of Figure 4.235 shows the corresponding final graphs associated to entries 0 and
2. Each source vertex of the final graph can be interpreted as an item assigned to a specific
entry of TABLE. The indexedsum constraint holds since the sum variables associated
to each entry of TABLE are equal to the sum of the weights of the items assigned to the
corresponding entry.

ITEMS

TABLE

1

1 23

2 3

TABLE:0 TABLE:2

2:0,6

1:0,6

1:2,-4

3:2,-3

3:2,1

(A) (B)

Figure 4.235: Initial and final graph of the indexed sum constraint

Graph model We enforce the sum ctr constraint on the weight of the items that are assigned to the same
entry.

See also bin packing.

Key words assignment, variable indexing, variable subscript.
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4.106 inflexion

Origin N. Beldiceanu

Constraint inflexion(N, VARIABLES)

Argument(s) N : dvar

VARIABLES : collection(var − dvar)

Restriction(s) N ≥ 1
N ≤ |VARIABLES|
required(VARIABLES, var)

N is equal to the number of times that the following conjunctions of constraints hold:
Purpose • XiCTRXi+1 ∧Xi 6= Xi+1,

• Xi+1 = Xi+2 ∧ · · · ∧Xj−2 = Xj−1,

• Xj−1 6= Xj ∧Xj−1¬CTRXj .
where Xk is the kth item of the VARIABLES collection and 1 ≤ i, i + 2 ≤ j, j ≤ n and CTR is
< or >.

Example inflexion

0
BBBBBBBBBB@

3,

8
>>>>>>>>>><
>>>>>>>>>>:

var− 1,
var− 1,
var− 4,
var− 8,
var− 8,
var− 2,
var− 7,
var− 1

9
>>>>>>>>>>=
>>>>>>>>>>;

1
CCCCCCCCCCA

The previous constraint holds since the sequence 1 1 4 8 8 2 7 1 contains three
inflexions peaks which respectively correspond to values 8, 2 and 7.

1

1 5 6 7 8

2

3

4

5

6

43

7

8

1

4

8 8

1

Values

Variables 

1

2

2

7

Figure 4.236: The sequence and its three inflexions
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Automaton Figure 4.237 depicts the automaton associated to the inflexion constraint. To each pair of
consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a signature
variable Si. The following signature constraint links VARi, VARi+1 and Si: (VARi >
VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi < VARi+1 ⇔ Si = 2).

VAR >VAR   ,i
{C=C+1}

i+1

VAR <VAR   ,i
{C=C+1}

i+1
VAR =VARi i+1

VAR =VARi i+1

VAR <VARi i+1

VAR =VARi i+1

VAR <VARi i+1 VAR >VARi i+1

VAR >VARi i+1

i j

$ $t:

N=C

$

s

{C=0}

Figure 4.237: Automaton of the inflexion constraint
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C =00 C1
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VAR
1

S1
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S2

VAR
n

VAR
3

Sn−1

VAR
n−1

S3

Q2

C2

Q   =tn−1

C   =Nn−1

Figure 4.238: Hypergraph of the reformulation corresponding to the automaton of the
inflexion constraint

Usage Useful for constraining the number of inflexions of a sequence of domain variables.

Remark Since the arity of the arc constraint is not fixed, the inflexion constraint cannot be cur-
rently described. However, this would not hold anymore if we were introducing a slot that
specifies how to merge adjacent vertices of the final graph.

See also peak, valley.

Key words sequence, automaton, automaton with counters, sliding cyclic(1) constraint network(2).
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4.107 int value precede

Origin [121]

Constraint int value precede(S, T, VARIABLES)

Argument(s) S : int

T : int

VARIABLES : collection(var − dvar)

Restriction(s) S 6= T

required(VARIABLES, var)

Purpose If value T occurs in the collection of variables VARIABLES then its first occurrence should be
preceded by an occurrence of value S.

Example int value precede

0
BBBB@

0, 1,

8
>>>><
>>>>:

var − 4,
var − 0,
var − 6,
var − 1,
var − 0

9
>>>>=
>>>>;

1
CCCCA

The int value precede constraint holds since the first occurrence of value 0 pre-
cedes the first occurrence of value 1.

Automaton Figure 4.239 depicts the automaton associated to the int value precede constraint. Let
VARi be the ith variable of the VARIABLES collection. To each triple (S, T, VARi) corre-
sponds a signature variable Si as well as the following signature constraint: (VARi = S⇔
Si = 1) ∧ (VARi = T⇔ Si = 2) ∧ (VARi 6= S ∧ VARi 6= T⇔ Si = 3).

VAR <>S and VAR <>Ti           i

t

VAR =Si

s

$

Figure 4.239: Automaton of the int value precede constraint

Algorithm A filtering algorithm for maintaining value precedence is presented in [121]. Its complexity
is linear to the number of variables of the collection VARIABLES.

See also int value precede chain, set value precede.

Key words order constraint, symmetry, indistinguishable values, value precedence,
Berge-acyclic constraint network, automaton, automaton without counters.



20041003 557

Q =tn

VAR
1

VAR
2

VAR
n

Q1Q =s0

Figure 4.240: Hypergraph of the reformulation corresponding to the automaton of the
int value precede constraint
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4.108 int value precede chain

Origin [121]

Constraint int value precede chain(VALUES, VARIABLES)

Argument(s) VALUES : collection(val − int)
VARIABLES : collection(var − dvar)

Restriction(s) required(VALUES, val)
distinct(VALUES, val)
required(VARIABLES, var)

Purpose

Assuming n denotes the number of items of the VALUES collection, the following condition
holds for every i ∈ [1, n − 1]: When it exists, the first occurrence of the (i+ 1)th value of the
VALUES collection should be preceded by the first occurrence of the ith value of the VALUES

collection.

Example int value precede chain

0
BBBBBB@

{val − 4, val − 0, val − 1},8
>>>><
>>>>:

var − 4,
var − 0,
var − 6,
var − 1,
var − 0

9
>>>>=
>>>>;

1
CCCCCCA

The int value precede chain constraint holds since:

• The first occurrence of value 4 occurs before the first occurrence of value 0.

• The first occurrence of value 0 occurs before the first occurrence of value 1.

Automaton Figure 4.241 depicts the automaton associated to the int value precede chain con-
straint. Let VARi be the ith variable of the VARIABLES collection. Let VALj (1 <
j < |VALUES|) denotes the jth value of the VALUES collection. To each variable
VARi corresponds a signature variable Si as well as the following signature constraint:
(VARi /∈ VALUES ⇔ Si = 0) ∧ (VARi = VAL1 ⇔ Si = 1) ∧ (VARi = VAL2 ⇔ Si =
2) ∧ · · · ∧ (VARi = VAL|VALUES| ⇔ Si = |VALUES|).

Algorithm The reformulation associated to the previous automaton achieves to arc-consistency.

See also int value precede.

Key words order constraint, symmetry, indistinguishable values, value precedence,
Berge-acyclic constraint network, automaton, automaton without counters.
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not_in(VAR ,VALUES)       i

not_in(VAR ,VALUES)       i

not_in(VAR ,VALUES)       i

not_in(VAR ,VALUES)       i

VAR =vali    1

VAR =vali    2

VAR =vali    3

VAR =vali    n−1

VAR =val  or ... or VAR = vali    1              i     n−2

VAR =vali    1

VAR =val  or VAR =vali    1       i    2

$

$

s

1

t

$

n−2

$

2

Figure 4.241: Automaton of the int value precede chain constraint

Q =tn

VAR
1

VAR
2

VAR
n

Q1Q =s0

Figure 4.242: Hypergraph of the reformulation corresponding to the automaton of the
int value precede chain constraint
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4.109 interval and count

Origin [122]

Constraint interval and count(ATMOST, COLOURS, TASKS, SIZE INTERVAL)

Argument(s) ATMOST : int

COLOURS : collection(val− int)
TASKS : collection(origin − dvar, colour − dvar)
SIZE INTERVAL : int

Restriction(s) ATMOST ≥ 0
required(COLOURS, val)
distinct(COLOURS, val)
required(TASKS, [origin, colour])
SIZE INTERVAL > 0

Purpose

First consider the set of tasks of the TASKS collection, where each task has a specific colour
which may not be initially fixed. Then consider the intervals of the form [k ·SIZE INTERVAL, k ·
SIZE INTERVAL + SIZE INTERVAL − 1], where k is an integer. The interval and count

constraint enforces that, for each interval Ik previously defined, the total number of tasks which
both are assigned to Ik and take their colour in COLOURS does not exceed the limit ATMOST.

Arc input(s) TASKS TASKS

Arc generator PRODUCT 7→ collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) tasks1.origin/SIZE INTERVAL = tasks2.origin/SIZE INTERVAL

Sets

SUCC 7→2
4

source,

variables − col

„
VARIABLES − collection(var− dvar),
[item(var− TASKS.colour)]

«
3
5

Constraint(s) on sets among low up(0, ATMOST, variables, COLOURS)

Example interval and count

0
BBBB@

2, {val − 4},8
>><
>>:

origin − 1 colour − 4,
origin − 0 colour − 9,
origin − 10 colour − 4,
origin − 4 colour − 4

9
>>=
>>;
, 5

1
CCCCA

Figure 4.243 shows the solution associated to the previous example. The constraint
interval and count holds since, for each interval, the number of tasks taking colour 4
does not exceed the limit 2. Parts (A) and (B) of Figure 4.244 respectively show the initial
and final graph. Each connected component of the final graph corresponds to items which
are all assigned to the same interval.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

<>4

=4
<3

1

4

2

3

Figure 4.243: Solution with the use of each interval

TASKS

TASKS

1

1234

234

TASKS

TASKS

1:1,4

1:1,4 2:0,94:4,4

2:0,93:10,4

3:10,4

4:4,4

(A) (B)

Figure 4.244: Initial and final graph of the interval and count constraint
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Graph model We use a bipartite graph where each class of vertices corresponds to the different tasks of
the TASKS collection. There is an arc between two tasks if their origins belong to the same
interval. Finally we enforce an among low up constraint on each set S of successors of the
different vertices of the final graph. This put a restriction on the maximum number of tasks
of S for which the colour attribute takes its value in COLOURS.

Automaton Figure 4.245 depicts the automaton associated to the interval and count constraint.
Let COLOURi be the colour attribute of the ith item of the TASKS collection. To each pair
(COLOURS, COLOURi) corresponds a signature variable Si as well as the following signature
constraint: COLOURi ∈ COLOURS⇔ Si.

{C[ORIGIN /SIZE_INTERVAL]=C[ORIGIN /SIZE_INTERVAL]+1}i                        i

in(COLOUR ,COLOURS),inot_in(COLOUR ,COLOURS)    i

$

arith(C,<=,ATMOST)
t:

{C[_]=0}

s

Figure 4.245: Automaton of the interval and count constraint

Usage This constraint was originally proposed for dealing with timetabling problems. In this
context the different intervals are interpreted as morning and afternoon periods of different
consecutives days. Each colour corresponds to a type of course (i.e. French, mathematics).
There is a restriction on the maximum number of courses of a given type each morning as
well as each afternoon.

Remark If we want to only consider intervals that correspond to the morning or to the afternoon we
could extend the interval and count constraint in the following way:

• We introduce two extra parameters REST and QUOTIENT that correspond to non-
negative integers such that REST is strictly less than QUOTIENT,

• We add the following condition to the arc constraint:
(tasks1.origin/SIZE INTERVAL) ≡ REST( mod QUOTIENT)

Now, if we want to express a constraint on the morning intervals, we set REST to 0 and
QUOTIENT to 2.

See also count, among low up.

Key words timetabling constraint, resource constraint, temporal constraint, assignment, interval,
coloured, automaton, automaton with array of counters.
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4.110 interval and sum

Origin Derived from cumulative.

Constraint interval and sum(SIZE INTERVAL, TASKS, LIMIT)

Argument(s) SIZE INTERVAL : int

TASKS : collection(origin − dvar, height − dvar)
LIMIT : int

Restriction(s) SIZE INTERVAL > 0
required(TASKS, [origin, height])
TASKS.height ≥ 0
LIMIT ≥ 0

Purpose

A maximum resource capacity constraint: We have to fix the origins of a collection of tasks
in such a way that, for all the tasks that are allocated to the same interval, the sum of the
heights does not exceed a given capacity. All the intervals we consider have the following form:
[k · SIZE INTERVAL, k · SIZE INTERVAL + SIZE INTERVAL − 1], where k is an integer.

Arc input(s) TASKS TASKS

Arc generator PRODUCT 7→ collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) tasks1.origin/SIZE INTERVAL = tasks2.origin/SIZE INTERVAL

Sets

SUCC 7→2
4

source,

variables − col

„
VARIABLES − collection(var− dvar),
[item(var− TASKS.height)]

«
3
5

Constraint(s) on sets sum ctr(variables,≤, LIMIT)

Example interval and sum

0
BB@ 5,

8
>><
>>:

origin − 1 height − 2,
origin − 10 height − 2,
origin − 10 height − 3,
origin − 4 height − 1

9
>>=
>>;
, 5

1
CCA

Figure 4.246 shows the solution associated to the previous example. The constraint
interval and sum holds since the sum of the heights of the tasks that are located in
the same interval does not exceed the limit 5. Each task t is depicted by a rectangle
r associated to the interval to which the task t is assigned. The rectangle r is labelled
with the position of t within the items of the TASKS collection. The origin of task t is
represented by a small black square located within its corresponding rectangle r. Finally,
the height of a rectangle r is equal to the height of the task t to which it corresponds.

Parts (A) and (B) of Figure 4.247 respectively show the initial and final graph. Each con-
nected component of the final graph corresponds to items which are all assigned to the
same interval.
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1
2
3
4
5

1 2 3 4 5 6 7 8 9 10 11 12 13 140

<6

1

2

3

4

Figure 4.246: Solution showing for each interval the corresponding tasks

TASKS

TASKS

1

1234

234

TASKS

TASKS

1:1,2

1:1,24:4,1

2:10,2

2:10,2 3:10,3

3:10,3 4:4,1

(A) (B)

Figure 4.247: Initial and final graph of the interval and sum constraint
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Graph model We use a bipartite graph where each class of vertices corresponds to the different tasks
of the TASKS collection. There is an arc between two tasks if their origins belong to the
same interval. Finally we enforce a sum ctr constraint on each set S of successors of the
different vertices of the final graph. This put a restriction on the maximum value of the
sum of the height attributes of the tasks of S .

Automaton Figure 4.248 depicts the automaton associated to the interval and sum constraint. To
each item of the collection TASKS corresponds a signature variable Si, which is equal to 1.

{C[ORIGIN /SIZE_INTERVAL]=C[ORIGIN /SIZE_INTERVAL]+HEIGHT }i                        i                      i

1,

$

arith(C,<=,LIMIT)

t:

s

{C[_]=0}

Figure 4.248: Automaton of the interval and sum constraint

Usage This constraint can be use for timetabling problems. In this context the different intervals
are interpreted as morning and afternoon periods of different consecutive days. We have
a capacity constraint for all tasks that are assigned to the same morning or afternoon of a
given day.

Key words timetabling constraint, resource constraint, temporal constraint, assignment, interval,
automaton, automaton with array of counters.
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4.111 inverse

Origin CHIP

Constraint inverse(NODES)

Synonym(s) assignment.

Argument(s) NODES : collection(index − int, succ − dvar, pred − dvar)

Restriction(s) required(NODES, [index, succ, pred])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|
NODES.pred ≥ 1
NODES.pred ≤ |NODES|

Purpose
Enforce each vertex of a digraph to have exactly one predecessor and one successor. In addition
the following property also holds: If the successor of the ith node is the jth node then the
predecessor of the jth node is the ith node.

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) • nodes1.succ = nodes2.index
• nodes2.pred = nodes1.index

Graph property(ies) NARC = |NODES|

Example inverse

0
BBBB@

8
>>>><
>>>>:

index − 1 succ − 2 pred − 2,
index − 2 succ − 1 pred − 1,
index − 3 succ − 5 pred − 4,
index − 4 succ − 3 pred − 5,
index − 5 succ − 4 pred − 3

9
>>>>=
>>>>;

1
CCCCA

Parts (A) and (B) of Figure 4.249 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Graph model In order to express the binary constraint that links two vertices one has to make explicit the
identifier of the vertices. This is why the inverse constraint considers objects that have
three attributes:

• One fixed attribute index that is the identifier of the vertex,

• One variable attribute succ that is the successor of the vertex,
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• One variable attribute pred that is the predecessor of the vertex.

Signature Since all the index attributes of the NODES collection are distinct and because of the first
condition nodes1.succ = nodes2.index of the arc constraint all the vertices of the final
graph have at most one predecessor.

Since all the index attributes of the NODES collection are distinct and because of the second
condition nodes2.pred = nodes1.index of the arc constraint all the vertices of the final
graph have at most one successor.

From the two previous remarks it follows that the final graph is made up from disjoint
paths and disjoint circuits. Therefore the maximum number of arcs of the final graph is
equal to its maximum number of vertices NODES. So we can rewrite the graph property
NARC = |NODES| to NARC ≥ |NODES| and simplify NARC to NARC.

Automaton Figure 4.250 depicts the automaton associated to the inverse constraint. To each item of
the collection NODES corresponds a signature variable Si, which is equal to 1.

Usage This constraint is used in order to make the link between the successor and the predeces-
sor variables. This is sometimes required by specific heuristics that use both predecessor
and successor variables. In some problems, the successor and predecessor variables are
respectively interpreted as column an row variables. This is for instance the case in the
n-queens problem (i.e. place n queens on a n by n chessboard in such a way that no two
queens are on the same row, the same column or the same diagonal) when we use the fol-
lowing model: To each column of the chessboard we associate a variable which gives the
row where the corresponding queen is located. Symmetrically, to each row of the chess-
board we create a variable which indicates the column where the associated queen is placed.
Having these two sets of variables, we can now write a heuristics which selects the column
or the row for which we have the fewest number of alternatives for placing a queen.

Remark In the original inverse constraint of CHIP the index attribute was not explicitly present.
It was implicitly defined as the position of a variable in a list.

See also cycle, inverse set.

Key words graph constraint, channeling constraint, permutation channel, permutation, dual model,
n-queen, automaton, automaton with array of counters.



570 NARC,CLIQUE

NODES

1

2

3

4

5

NARC=5

1:1,2,2

2:2,1,1

3:3,5,4

5:5,4,3

4:4,3,5

(A) (B)

Figure 4.249: Initial and final graph of the inverse constraint

 C[INDEX ]=C[INDEX ]−PRED } i         i      i

{C[SUCC ]=C[SUCC ]+INDEX ,i        i       i

1,

$

t:
arith(C,=,0)

s

{C[_]=0}

Figure 4.250: Automaton of the inverse constraint
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4.112 inverse set

Origin Derived from inverse.

Constraint inverse set(X, Y)

Argument(s) X : collection(index − int, set − svar)
Y : collection(index − int, set − svar)

Restriction(s) required(X, [index, set])
required(Y, [index, set])
increasing seq(X, index)
increasing seq(Y, index)
X.index ≥ 1
X.index ≤ |Y|
Y.index ≥ 1
Y.index ≤ |X|
X.set ≥ 1
X.set ≤ |Y|
Y.set ≥ 1
Y.set ≤ |X|

Purpose If value j belongs to the x set variable of the ith item of the X collection then value i belongs
also to the y set variable of the jth item of the Y collection.

Arc input(s) X Y

Arc generator PRODUCT 7→ collection(x, y)

Arc arity 2

Arc constraint(s) in set(y.index, x.set)⇔ in set(x.index, y.set)

Graph property(ies) NARC = |X| ∗ |Y|

Example inverse set

0
BBBBBBBBBBBB@

8
>><
>>:

index − 1 set− {2, 4},
index − 2 set− {4},
index − 3 set− {1},
index − 4 set− {4}

9
>>=
>>;
,

8
>>>><
>>>>:

index − 1 set− {3},
index − 2 set− {1},
index − 3 set− ∅,
index − 4 set− {1, 2, 4},
index − 5 set− ∅

9
>>>>=
>>>>;

1
CCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.251 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in bold.
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Usage The inverse set constraint can for instance be used in order to model problems where
one has to place items on a rectangular board in such a way that a column or a line can
have more than one item. We have one set variable for each line of the board; Its values
are the column indexes corresponding to the positions where an item is placed. Similarly
we have also one set variable for each column of the board; Its values are the line indexes
corresponding to the positions where an item is placed. The inverse set constraint main-
tains the link between the lines and the columns variables. Figure 4.252 shows the board
associated to the example.

See also inverse.

Key words channeling constraint, set channel, dual model, constraint involving set variables.
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X

Y

1

12 345

234

NARC=20

1:1,{2,4}

1:1,{3}2:2,{1} 3:3,{} 4:4,{1,2,4} 5:5,{}

2:2,{4}3:3,{1} 4:4,{4}

(A) (B)

Figure 4.251: Initial and final graph of the inverse set constraint

{}

{}

{1}

{3}

{1,2,4}

{2,4} {4}{1}{4}

1

1

2 3 4

3

4

5

2

Figure 4.252: Board associated to the example
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4.113 ith pos different from 0

Origin Used for defining the automaton of min n.

Constraint ith pos different from 0(ITH, POS, VARIABLES)

Argument(s) ITH : int

POS : dvar

VARIABLES : collection(var − dvar)

Restriction(s) ITH ≥ 1
ITH ≤ |VARIABLES|
POS ≥ ITH

POS ≤ |VARIABLES|
required(VARIABLES, var)

Purpose POS is the position of the ITHth non-zero item of the sequence of variables VARIABLES.

Example ith pos different from 0

0
BBBB@

2, 4,

8
>>>><
>>>>:

var − 3,
var − 0,
var − 0,
var − 8,
var − 6

9
>>>>=
>>>>;

1
CCCCA

The previous constraint holds since 4 corresponds to the position of the 2th non-
zero item of the sequence 3 0 0 8 6.

Automaton Figure 4.253 depicts the automaton associated to the ith pos different from 0 con-
straint. To each variable VARi of the collection VARIABLES corresponds a 0-1 signature
variable Si. The following signature constraint links VARi and Si: VARi = 0⇔ Si.

VAR <>0,i
{if C<ITH then C=C+1,D=D+1}

iVAR =0,

{if C<ITH then D=D+1}

$

t:
ITH=C,POS=D

s

{C=0,D=0}

Figure 4.253: Automaton of the ith pos different from 0 constraint

See also min n.
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Key words data constraint, table, joker value, automaton, automaton with counters,
alpha-acyclic constraint network(3).

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0

C1C =00

D =00 D1

Q =tn

C =ITHn

D =POSn

Figure 4.254: Hypergraph of the reformulation corresponding to the automaton of the
ith pos different from 0 constraint
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4.114 k cut

Origin E. Althaus

Constraint k cut(K, NODES)

Argument(s) K : int

NODES : collection(index − int, succ − svar)

Restriction(s) K ≥ 1
K ≤ |NODES|
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)

Purpose Select some arcs of a digraph in order to have at least K connected components (an isolated
vertex is counted as one connected component).

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.index = nodes2.index ∨ in set(nodes2.index, nodes1.succ)

Graph property(ies) NCC ≥ K

Example k cut

0
BBBB@

3,

8
>>>><
>>>>:

index − 1 succ − ∅,
index − 2 succ − {3, 5},
index − 3 succ − {5},
index − 4 succ − ∅,
index − 5 succ − {2, 3}

9
>>>>=
>>>>;

1
CCCCA

Part (A) of Figure 4.255 shows the initial graph from which we have choose to
start. It is derived from the set associated to each vertex. Each set describes the potential
values of the succ attribute of a given vertex. Part (B) of Figure 4.255 gives the final
graph associated to the example. The k cut constraint holds since we have at least K = 3
connected components in the final graph.

Graph model nodes1.index = nodes2.index holds if nodes1 and nodes2 correspond to the same
vertex. It is used in order to enforce keeping all the vertices of the initial graph. This is
because an isolated vertex counts always as one connected component.

See also link set to booleans.

Key words graph constraint, linear programming, connected component,
constraint involving set variables.



20030820 579

NODES

1:1,{2,4}

2:2,{1,3,5}

4:4,{1,5}3:3,{2,5}

5:5,{2,3,4}

NCC=3

CC#1 CC#2 CC#3

1:1,{} 2:2,{3,5}

3:3,{5}

5:5,{2,3}

4:4,{}

(A) (B)

Figure 4.255: Initial and final graph of the k cut set constraint
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4.115 lex2

Origin [123]

Constraint lex2(MATRIX)

Synonym(s) double lex, row and column lex.

Type(s) VECTOR : collection(var− dvar)

Argument(s) MATRIX : collection(vec− VECTOR)

Restriction(s) required(VECTOR, var)
required(MATRIX, vec)
same size(MATRIX, vec)

Purpose Given a matrix of domain variables, enforces that both adjacent rows, and adjacent columns are
lexicographically ordered (adjacent rows and adjacent columns can be equal).

Example lex2

„ 
vec− {var − 2, var− 2, var− 3},
vec− {var − 2, var− 3, var− 1}

ff «

Usage A symmetry-breaking constraint.

Remark The idea of this symmetry-breaking constraint can allready be found in the following arti-
cles of A.Lubiw [124, 125].

In block designs you sometimes want repeated blocks, so using the non-strict order would
be required in this case.

See also strict lex2, allperm, lex lesseq, lex chain lesseq.

Key words predefined constraint, order constraint, matrix, matrix model, symmetry, matrix symmetry,
lexicographic order.
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4.116 lex alldifferent

Origin J. Pearson

Constraint lex alldifferent(VECTORS)

Synonym(s) lex alldiff, lex alldistinct.

Type(s) VECTOR : collection(var− dvar)

Argument(s) VECTORS : collection(vec− VECTOR)

Restriction(s) required(VECTOR, var)
required(VECTORS, vec)
same size(VECTORS, vec)

Purpose All the vectors of the collection VECTORS are distinct. Two vectors (u1, u2, . . . , un) and
(v1, v2, . . . , vn) are distinct if and only if there exist i ∈ [1, n] such that ui 6= vi.

Arc input(s) VECTORS

Arc generator CLIQUE(<) 7→ collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) lex different(vectors1.vec, vectors2.vec)

Graph property(ies) NARC = |VECTORS| ∗ (|VECTORS| − 1)/2

Example lex alldifferent

0
@
8
<
:

vec − {var − 5, var − 2, var − 3},
vec − {var − 5, var − 2, var − 6},
vec − {var − 5, var − 3, var − 3}

9
=
;

1
A

Parts (A) and (B) of Figure 4.256 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Signature Since we use the CLIQUE (<) arc generator on the VECTORS collection the number of arcs
of the initial graph is equal to |VECTORS|·(|VECTORS|−1)/2. For this reason we can rewrite
NARC = |VECTORS| · (|VECTORS|− 1)/2 to NARC ≥ |VECTORS| · (|VECTORS|− 1)/2
and simplify NARC to NARC.

See also alldifferent, lex different.

Key words decomposition, vector, bipartite matching.
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VECTORS

1

2

3

NARC=3

1:5
  2
  3

2:5
  2
  6

3:5
  3
  3

(A) (B)

Figure 4.256: Initial and final graph of the lex alldifferent constraint
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4.117 lex between

Origin [126]

Constraint lex between(LOWER BOUND, VECTOR, UPPER BOUND)

Argument(s) LOWER BOUND : collection(var − int)
VECTOR : collection(var − dvar)
UPPER BOUND : collection(var − int)

Restriction(s) required(LOWER BOUND, var)
required(VECTOR, var)
required(UPPER BOUND, var)
|LOWER BOUND| = |VECTOR|
|UPPER BOUND| = |VECTOR|
lex lesseq(LOWER BOUND, VECTOR)
lex lesseq(VECTOR, UPPER BOUND)

Purpose The vector VECTOR is lexicographically greater than or equal to the fixed vector LOWER BOUND

and lexicographically smaller than or equal to the fixed vector UPPER BOUND.

Example lex between

0
@
{var − 5, var − 2, var − 3, var − 9},
{var − 5, var − 2, var − 6, var − 2},
{var − 5, var − 2, var − 6, var − 3}

1
A

Automaton Figure 4.257 depicts the automaton associated to the lex between constraint. Let Li, Vi
and Ui respectively be the var attributes of the ith items of the LOWER BOUND, the VECTOR
and the UPPER BOUND collections. To each triple (Li, Vi, Ui) corresponds a signature vari-
able Si as well as the following signature constraint:

(Li < Vi) ∧ (Vi < Ui)⇔ Si = 0 ∧
(Li < Vi) ∧ (Vi = Ui)⇔ Si = 1 ∧
(Li < Vi) ∧ (Vi > Ui)⇔ Si = 2 ∧
(Li = Vi) ∧ (Vi < Ui)⇔ Si = 3 ∧
(Li = Vi) ∧ (Vi = Ui)⇔ Si = 4 ∧
(Li = Vi) ∧ (Vi > Ui)⇔ Si = 5 ∧
(Li > Vi) ∧ (Vi < Ui)⇔ Si = 6 ∧
(Li > Vi) ∧ (Vi = Ui)⇔ Si = 7 ∧
(Li > Vi) ∧ (Vi > Ui)⇔ Si = 8.

Usage This constraint does usually not occur explicitly in practice. However it shows up indirectly
in the context of the lex chain less and the lex chain lesseq constraints: In order to
have a complete filtering algorithm for the lex chain less and the lex chain lesseq

constraints one has to come up with a complete filtering algorithm for the lex between
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L =V  and V =Ui iii

L <V  and V <Ui iii

L =V  and V <Ui iii

L <V  and V =Ui iii

L <V  and V =Ui iii
L =V  and V =Ui iii
L >V  and V =Ui iii

L =V  and V =Ui iii

L <V  and V >Ui iii

L <V  and V <Ui iii
L <V  and V =Ui iii

L =V  and V >Ui iii

s

a

t

$

$

b

$

L <V  and V <U

L =V  and V <Ui iii

L >V  and V <U

L =V  and V <U
i  i      i  i

i  i      i  i

i  i      i  i

Figure 4.257: Automaton of the lex between constraint
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Figure 4.258: Hypergraph of the reformulation corresponding to the automaton of the
lex between constraint
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constraint. The reason is that the lex chain less as well as the lex chain lesseq con-
straints both compute feasible lower and upper bounds for each vector they mention. There-
fore one ends up with a lex between constraint for each vector of the lex chain less

and lex chain lesseq constraints.

Algorithm [126].

See also lex less, lex lesseq, lex greater, lex greatereq, lex chain less,
lex chain lesseq.

Key words order constraint, vector, symmetry, lexicographic order, Berge-acyclic constraint network,
automaton, automaton without counters.
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4.118 lex chain less

Origin [126]

Constraint lex chain less(VECTORS)

Usual name lex chain

Type(s) VECTOR : collection(var− dvar)

Argument(s) VECTORS : collection(vec− VECTOR)

Restriction(s) required(VECTOR, var)
required(VECTORS, vec)
same size(VECTORS, vec)

Purpose

For each pair of consecutive vectors VECTORi and VECTORi+1 of the VECTORS collection we
have that VECTORi is lexicographically strictly less than VECTORi+1. Given two vectors, ~X and
~Y of n components, 〈X0, . . . , Xn〉 and 〈Y0, . . . , Yn〉, ~X is lexicographically strictly less than
~Y if and only if X0 < Y0 or X0 = Y0 and 〈X1, . . . , Xn〉 is lexicographically strictly less than
〈Y1, . . . , Yn〉.

Arc input(s) VECTORS

Arc generator PATH 7→ collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) lex less(vectors1.vec, vectors2.vec)

Graph property(ies) NARC = |VECTORS| − 1

Example lex chain less

0
BBBBBBBBBBBBBBBBBB@

8
>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

vec−

8
>><
>>:

var − 5,
var − 2,
var − 3,
var − 9

9
>>=
>>;
,

vec−

8
>><
>>:

var − 5,
var − 2,
var − 6,
var − 2

9
>>=
>>;
,

vec−

8
>><
>>:

var − 5,
var − 2,
var − 6,
var − 3

9
>>=
>>;

9
>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

1
CCCCCCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.259 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in bold.
The lex chain less constraint holds since all the arc constraints of the initial graph are
satisfied.
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Signature Since we use the PATH arc generator on the VECTORS collection the number of arcs of
the initial graph is equal to |VECTORS| − 1. For this reason we can rewrite NARC =
|VECTORS| − 1 to NARC ≥ |VECTORS| − 1 and simplify NARC to NARC.

Usage This constraint was motivated for breaking symmetry: More precisely when one wants
to lexicographically order the consecutive columns of a matrix of decision variables. A
further motivation is that using a set of lexicographic ordering constraints between two
vectors does usually not allows to come up with a complete pruning.

Algorithm A complete filtering algorithm for a chain of lexicographical constraints is presented
in [126].

See also lex between, lex chain lesseq, lex less, lex lesseq, lex greater,
lex greatereq.

Key words decomposition, order constraint, vector, symmetry, matrix symmetry, lexicographic order.
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1
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  6
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  6
  3

(A) (B)

Figure 4.259: Initial and final graph of the lex chain less constraint
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4.119 lex chain lesseq

Origin [126]

Constraint lex chain lesseq(VECTORS)

Usual name lex chain

Type(s) VECTOR : collection(var− dvar)

Argument(s) VECTORS : collection(vec− VECTOR)

Restriction(s) required(VECTOR, var)
required(VECTORS, vec)
same size(VECTORS, vec)

Purpose

For each pair of consecutive vectors VECTORi and VECTORi+1 of the VECTORS collection we
have that VECTORi is lexicographically less than or equal to VECTORi+1. Given two vectors, ~X
and ~Y of n components, 〈X0, . . . , Xn〉 and 〈Y0, . . . , Yn〉, ~X is lexicographically less than or
equal to ~Y if and only if n = 0 orX0 < Y0 orX0 = Y0 and 〈X1, . . . , Xn〉 is lexicographically
less than or equal to 〈Y1, . . . , Yn〉.

Arc input(s) VECTORS

Arc generator PATH 7→ collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) lex lesseq(vectors1.vec, vectors2.vec)

Graph property(ies) NARC = |VECTORS| − 1

Example lex chain lesseq

0
BBBBBBBBBBBBBBBBBB@

8
>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

vec −

8
>><
>>:

var − 5,
var − 2,
var − 3,
var − 9

9
>>=
>>;
,

vec −

8
>><
>>:

var − 5,
var − 2,
var − 6,
var − 2

9
>>=
>>;
,

vec −

8
>><
>>:

var − 5,
var − 2,
var − 6,
var − 2

9
>>=
>>;

9
>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

1
CCCCCCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.260 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in bold.
The lex chain lesseq constraint holds since all the arc constraints of the initial graph
are satisfied.
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Signature Since we use the PATH arc generator on the VECTORS collection the number of arcs of
the initial graph is equal to |VECTORS| − 1. For this reason we can rewrite NARC =
|VECTORS| − 1 to NARC ≥ |VECTORS| − 1 and simplify NARC to NARC.

Usage This constraint was motivated for breaking symmetry: More precisely when one wants
to lexicographically order the consecutive columns of a matrix of decision variables. A
further motivation is that using a set of lexicographic ordering constraints between two
vectors does usually not allows to come up with a complete pruning.

Algorithm A complete filtering algorithm for a chain of lexicographical constraints is presented
in [126].

See also lex between, lex chain less, lex less, lex lesseq, lex greater,
lex greatereq.

Key words decomposition, order constraint, vector, symmetry, matrix symmetry, lexicographic order.
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Figure 4.260: Initial and final graph of the lex chain lesseq constraint
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4.120 lex different

Origin Used for defining lex alldifferent.

Constraint lex different(VECTOR1, VECTOR2)

Argument(s) VECTOR1 : collection(var− dvar)
VECTOR2 : collection(var− dvar)

Restriction(s) required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| = |VECTOR2|

Purpose Vectors VECTOR1 and VECTOR2 differ from at least one component.

Arc input(s) VECTOR1 VECTOR2

Arc generator PRODUCT (=) 7→ collection(vector1, vector2)

Arc arity 2

Arc constraint(s) vector1.var 6= vector2.var

Graph property(ies) NARC ≥ 1

Example lex different

„
{var − 5, var− 2, var − 7, var − 1},
{var − 5, var− 3, var − 7, var − 1}

«

Parts (A) and (B) of Figure 4.261 respectively show the initial and final graph.
Since we use the NARC graph property, the unique arc of the final graph is stressed in
bold. It corresponds to a component where the two vectors differ.

Automaton Figure 4.262 depicts the automaton associated to the lex different constraint. Let VAR1i
and VAR2i respectively be the var attributes of the ith items of the VECTOR1 and the
VECTOR2 collections. To each pair (VAR1i, VAR2i) corresponds a 0-1 signature variable
Si as well as the following signature constraint: VAR1i = VAR2i ⇔ Si.

Used in lex alldifferent.

See also lex greatereq, lex less, lex lesseq.

Key words vector, disequality, Berge-acyclic constraint network, automaton,
automaton without counters.
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Figure 4.261: Initial and final graph of the lex different constraint
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Figure 4.262: Automaton of the lex different constraint
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Figure 4.263: Hypergraph of the reformulation corresponding to the automaton of the
lex different constraint
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4.121 lex greater

Origin CHIP

Constraint lex greater(VECTOR1, VECTOR2)

Argument(s) VECTOR1 : collection(var− dvar)
VECTOR2 : collection(var− dvar)

Restriction(s) required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| = |VECTOR2|

Purpose

VECTOR1 is lexicographically strictly greater than VECTOR2. Given two vectors, ~X and ~Y of n
components, 〈X0, . . . , Xn〉 and 〈Y0, . . . , Yn〉, ~X is lexicographically strictly greater than ~Y if
and only if X0 > Y0 or X0 = Y0 and 〈X1, . . . , Xn〉 is lexicographically strictly greater than
〈Y1, . . . , Yn〉.

Derived Collection(s) col

„
DESTINATION − collection(index − int, x− int, y − int),
[item(index − 0, x− 0, y− 0)]

«

col

„
COMPONENTS − collection(index − int, x − dvar, y − dvar),
[item(index − VECTOR1.key, x− VECTOR1.var, y− VECTOR2.var)]

«

Arc input(s) COMPONENTS DESTINATION

Arc generator PRODUCT (PATH ,VOID) 7→ collection(item1, item2)

Arc arity 2

Arc constraint(s) item2.index > 0 ∧ item1.x = item1.y ∨ item2.index = 0 ∧ item1.x > item1.y

Graph property(ies) PATH FROM TO(index, 1, 0) = 1

Example lex greater

„
{var − 5, var − 2, var − 7, var − 1},
{var − 5, var − 2, var − 6, var − 2}

«

Parts (A) and (B) of Figure 4.264 respectively show the initial and final graph. Since we
use the PATH FROM TO graph property we show the following information on the
final graph:

• The vertices which respectively correspond to the start and the end of the required
path are stressed in bold.

• The arcs on the required path are also stressed in bold.

Graph model The vertices of the initial graph are generated in the following way:

• We create a vertex ci for each pair of components which both have the same index i.

• We create an additional dummy vertex called d.
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The arcs of the initial graph are generated in the following way:

• We create an arc between ci and d. We associate to this arc the arc constraint
item1.x > item2.y.

• We create an arc between ci and ci+1. We associate to this arc the arc constraint
item1.x = item2.y.

The lex greater constraint holds when there exist a path from c1 to d. This path can be
interpreted as a sequence of equality constraints on the prefix of both vectors, immediatly
followed by a greater than constraint.

Signature Since the maximum value returned by the graph property PATH FROM TO
is equal to 1 we can rewrite PATH FROM TO(index, 1, 0) = 1 to
PATH FROM TO(index, 1, 0) ≥ 1. Therefore we simplify PATH FROM TO
to PATH FROM TO.

Automaton Figure 4.265 depicts the automaton associated to the lex greater constraint. Let VAR1i
and VAR2i respectively be the var attributes of the ith items of the VECTOR1 and the
VECTOR2 collections. To each pair (VAR1i, VAR2i) corresponds a signature variable Si
as well as the following signature constraint: (VAR1i < VAR2i ⇔ Si = 1) ∧ (VAR1i =
VAR2i ⇔ Si = 2) ∧ (VAR1i > VAR2i ⇔ Si = 3).

Remark A multiset ordering constraint and its corresponding filtering algorithm are described
in [127].

Algorithm The first complete filtering algorithm for this constraint was presented in [36]. A second
complete filtering algorithm, detecting entailment in a more eager way, was given in [128].
This second algorithm was derived from a deterministic finite automata. A third complete
filtering algorithm extending the algorithm presented in [36] detecting entailment is given
in the PhD thesis of Z.Kızıltan [129, page 95]. The previous thesis [129, pages 105–109]
presents also a filtering algorithm handling the fact that a given variable has more than one
occurrence.

See also lex between, lex greatereq, lex less, lex lesseq, lex chain less,
lex chain lesseq.

Key words order constraint, vector, symmetry, matrix symmetry, lexicographic order,
multiset ordering, duplicated variables, Berge-acyclic constraint network, automaton,
automaton without counters, derived collection.
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Figure 4.264: Initial and final graph of the lex greater constraint
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Figure 4.265: Automaton of the lex greater constraint
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Figure 4.266: Hypergraph of the reformulation corresponding to the automaton of the
lex greater constraint
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4.122 lex greatereq

Origin CHIP

Constraint lex greatereq(VECTOR1, VECTOR2)

Argument(s) VECTOR1 : collection(var− dvar)
VECTOR2 : collection(var− dvar)

Restriction(s) required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| = |VECTOR2|

Purpose

VECTOR1 is lexicographically greater than or equal to VECTOR2. Given two vectors, ~X and ~Y of
n components, 〈X0, . . . , Xn〉 and 〈Y0, . . . , Yn〉, ~X is lexicographically greater than or equal
to ~Y if and only if n = 0 or X0 > Y0 or X0 = Y0 and 〈X1, . . . , Xn〉 is lexicographically
greater than or equal to 〈Y1, . . . , Yn〉.

Derived Collection(s) col

„
DESTINATION − collection(index − int, x− int, y − int),
[item(index − 0, x− 0, y− 0)]

«

col

„
COMPONENTS − collection(index − int, x − dvar, y − dvar),
[item(index − VECTOR1.key, x− VECTOR1.var, y− VECTOR2.var)]

«

Arc input(s) COMPONENTS DESTINATION

Arc generator PRODUCT (PATH ,VOID) 7→ collection(item1, item2)

Arc arity 2

Arc constraint(s)
W
0
@

item2.index > 0 ∧ item1.x = item1.y,
item1.index < |VECTOR1| ∧ item2.index = 0 ∧ item1.x > item1.y,
item1.index = |VECTOR1| ∧ item2.index = 0 ∧ item1.x ≥ item1.y

1
A

Graph property(ies) PATH FROM TO(index, 1, 0) = 1

Example lex greatereq

„
{var − 5, var− 2, var − 8, var − 9},
{var − 5, var− 2, var − 6, var − 2}

«

lex greatereq

„
{var − 5, var− 2, var − 3, var − 9},
{var − 5, var− 2, var − 3, var − 9}

«

Parts (A) and (B) of Figure 4.267 respectively show the initial and final graph asso-
ciated to the first example. Since we use the PATH FROM TO graph property we
show on the final graph the following information:

• The vertices which respectively correspond to the start and the end of the required
path are stressed in bold.

• The arcs on the required path are also stressed in bold.
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Graph model The vertices of the initial graph are generated in the following way:

• We create a vertex ci for each pair of components which both have the same index i.

• We create an additional dummy vertex called d.

The arcs of the initial graph are generated in the following way:

• We create an arc between ci and d. When ci was generated from the last components
of both vectors We associate to this arc the arc constraint item1.x ≥ item2.y;
Otherwise we associate to this arc the arc constraint item1.x > item2.y;

• We create an arc between ci and ci+1. We associate to this arc the arc constraint
item1.x = item2.y.

The lex greatereq constraint holds when there exist a path from c1 to d. This path can
be interpreted as a maximum sequence of equality constraints on the prefix of both vectors,
eventually followed by a greater than constraint.

Signature Since the maximum value returned by the graph property PATH FROM TO
is equal to 1 we can rewrite PATH FROM TO(index, 1, 0) = 1 to
PATH FROM TO(index, 1, 0) ≥ 1. Therefore we simplify PATH FROM TO
to PATH FROM TO.

Automaton Figure 4.268 depicts the automaton associated to the lex greatereq constraint. Let
VAR1i and VAR2i respectively be the var attributes of the ith items of the VECTOR1 and
the VECTOR2 collections. To each pair (VAR1i, VAR2i) corresponds a signature variable Si
as well as the following signature constraint: (VAR1i < VAR2i ⇔ Si = 1) ∧ (VAR1i =
VAR2i ⇔ Si = 2) ∧ (VAR1i > VAR2i ⇔ Si = 3).

Remark A multiset ordering constraint and its corresponding filtering algorithm are described
in [127].

Algorithm The first complete filtering algorithm for this constraint was presented in [36]. A second
complete filtering algorithm, detecting entailment in a more eager way, was given in [128].
This second algorithm was derived from a deterministic finite automata. A third complete
filtering algorithm extending the algorithm presented in [36] detecting entailment is given
in the PhD thesis of Z.Kızıltan [129, page 95]. The previous thesis [129, pages 105–109]
presents also a filtering algorithm handling the fact that a given variable has more than one
occurrence.

See also lex between, lex greater, lex less, lex lesseq, lex chain less,
lex chain lesseq.

Key words order constraint, vector, symmetry, matrix symmetry, lexicographic order,
multiset ordering, duplicated variables, Berge-acyclic constraint network, automaton,
automaton without counters, derived collection.
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Figure 4.267: Initial and final graph of the lex greatereq constraint
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Figure 4.269: Hypergraph of the reformulation corresponding to the automaton of the
lex greatereq constraint
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4.123 lex less

Origin CHIP

Constraint lex less(VECTOR1, VECTOR2)

Argument(s) VECTOR1 : collection(var− dvar)
VECTOR2 : collection(var− dvar)

Restriction(s) required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| = |VECTOR2|

Purpose

VECTOR1 is lexicographically strictly less than VECTOR2. Given two vectors, ~X and ~Y of n
components, 〈X0, . . . , Xn〉 and 〈Y0, . . . , Yn〉, ~X is lexicographically strictly less than ~Y if
and only if X0 < Y0 or X0 = Y0 and 〈X1, . . . , Xn〉 is lexicographically strictly less than
〈Y1, . . . , Yn〉.

Derived Collection(s) col

„
DESTINATION − collection(index − int, x− int, y − int),
[item(index − 0, x− 0, y− 0)]

«

col

„
COMPONENTS − collection(index − int, x − dvar, y − dvar),
[item(index − VECTOR1.key, x− VECTOR1.var, y− VECTOR2.var)]

«

Arc input(s) COMPONENTS DESTINATION

Arc generator PRODUCT (PATH ,VOID) 7→ collection(item1, item2)

Arc arity 2

Arc constraint(s) item2.index > 0 ∧ item1.x = item1.y ∨ item2.index = 0 ∧ item1.x < item1.y

Graph property(ies) PATH FROM TO(index, 1, 0) = 1

Example lex less

„
{var − 5, var− 2, var− 3, var− 9},
{var − 5, var− 2, var− 6, var− 2}

«

Parts (A) and (B) of Figure 4.270 respectively show the initial and final graph.
Since we use the PATH FROM TO graph property we show on the final graph the
following information:

• The vertices which respectively correspond to the start and the end of the required
path are stressed in bold.

• The arcs on the required path are also stressed in bold.

Graph model The vertices of the initial graph are generated in the following way:

• We create a vertex ci for each pair of components which both have the same index i.

• We create an additional dummy vertex called d.
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The arcs of the initial graph are generated in the following way:

• We create an arc between ci and d. We associate to this arc the arc constraint
item1.x < item2.y.

• We create an arc between ci and ci+1. We associate to this arc the arc constraint
item1.x = item2.y.

The lex less constraint holds when there exist a path from c1 to d. This path can be
interpreted as a sequence of equality constraints on the prefix of both vectors, immediately
followed by a less than constraint.

Signature Since the maximum value returned by the graph property PATH FROM TO
is equal to 1 we can rewrite PATH FROM TO(index, 1, 0) = 1 to
PATH FROM TO(index, 1, 0) ≥ 1. Therefore we simplify PATH FROM TO
to PATH FROM TO.

Automaton Figure 4.271 depicts the automaton associated to the lex less constraint. Let VAR1i and
VAR2i respectively be the var attributes of the ith items of the VECTOR1 and the VECTOR2
collections. To each pair (VAR1i, VAR2i) corresponds a signature variable Si as well as the
following signature constraint: (VAR1i < VAR2i ⇔ Si = 1) ∧ (VAR1i = VAR2i ⇔ Si =
2) ∧ (VAR1i > VAR2i ⇔ Si = 3).

Remark A multiset ordering constraint and its corresponding filtering algorithm are described
in [127].

Algorithm The first complete filtering algorithm for this constraint was presented in [36]. A second
complete filtering algorithm, detecting entailment in a more eager way, was given in [128].
This second algorithm was derived from a deterministic finite automata. A third complete
filtering algorithm extending the algorithm presented in [36] detecting entailment is given
in the PhD thesis of Z.Kızıltan [129, page 95]. The previous thesis [129, pages 105–109]
presents also a filtering algorithm handling the fact that a given variable has more than one
occurrence.

Used in lex chain less.

See also lex between, lex lesseq, lex greater, lex greatereq, lex chain lesseq.

Key words order constraint, vector, symmetry, matrix symmetry, lexicographic order,
multiset ordering, duplicated variables, Berge-acyclic constraint network, automaton,
automaton without counters, derived collection.
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Figure 4.270: Initial and final graph of the lex less constraint
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Figure 4.272: Hypergraph of the reformulation corresponding to the automaton of the
lex less constraint
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4.124 lex lesseq

Origin CHIP

Constraint lex lesseq(VECTOR1, VECTOR2)

Argument(s) VECTOR1 : collection(var− dvar)
VECTOR2 : collection(var− dvar)

Restriction(s) required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| = |VECTOR2|

Purpose

VECTOR1 is lexicographically less than or equal to VECTOR2. Given two vectors, ~X and ~Y of n
components, 〈X0, . . . , Xn〉 and 〈Y0, . . . , Yn〉, ~X is lexicographically less than or equal to ~Y
if and only if n = 0 or X0 < Y0 or X0 = Y0 and 〈X1, . . . , Xn〉 is lexicographically less than
or equal to 〈Y1, . . . , Yn〉.

Derived Collection(s) col

„
DESTINATION − collection(index − int, x− int, y − int),
[item(index − 0, x− 0, y− 0)]

«

col

„
COMPONENTS − collection(index − int, x − dvar, y − dvar),
[item(index − VECTOR1.key, x− VECTOR1.var, y− VECTOR2.var)]

«

Arc input(s) COMPONENTS DESTINATION

Arc generator PRODUCT (PATH ,VOID) 7→ collection(item1, item2)

Arc arity 2

Arc constraint(s)
W
0
@

item2.index > 0 ∧ item1.x = item1.y,
item1.index < |VECTOR1| ∧ item2.index = 0 ∧ item1.x < item1.y,
item1.index = |VECTOR1| ∧ item2.index = 0 ∧ item1.x ≤ item1.y

1
A

Graph property(ies) PATH FROM TO(index, 1, 0) = 1

Example lex lesseq

„
{var − 5, var − 2, var − 3, var − 1},
{var − 5, var − 2, var − 6, var − 2}

«

lex lesseq

„
{var − 5, var − 2, var − 3, var − 9},
{var − 5, var − 2, var − 3, var − 9}

«

Parts (A) and (B) of Figure 4.273 respectively show the initial and final graph asso-
ciated to the first example. Since we use the PATH FROM TO graph property we
show on the final graph the following information:

• The vertices which respectively correspond to the start and the end of the required
path are stressed in bold.

• The arcs on the required path are also stressed in bold.
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Graph model The vertices of the initial graph are generated in the following way:

• We create a vertex ci for each pair of components which both have the same index i.

• We create an additional dummy vertex called d.

The arcs of the initial graph are generated in the following way:

• We create an arc between ci and d. When ci was generated from the last components
of both vectors We associate to this arc the arc constraint item1.x ≤ item2.y;
Otherwise we associate to this arc the arc constraint item1.x < item2.y;

• We create an arc between ci and ci+1. We associate to this arc the arc constraint
item1.x = item2.y.

The lex lesseq constraint holds when there exist a path from c1 to d. This path can be
interpreted as a maximum sequence of equality constraints on the prefix of both vectors,
eventually followed by a less than constraint.

Signature Since the maximum value returned by the graph property PATH FROM TO
is equal to 1 we can rewrite PATH FROM TO(index, 1, 0) = 1 to
PATH FROM TO(index, 1, 0) ≥ 1. Therefore we simplify PATH FROM TO
to PATH FROM TO.

Automaton Figure 4.274 depicts the automaton associated to the lex lesseq constraint. Let VAR1i
and VAR2i respectively be the var attributes of the ith items of the VECTOR1 and the
VECTOR2 collections. To each pair (VAR1i, VAR2i) corresponds a signature variable Si
as well as the following signature constraint: (VAR1i < VAR2i ⇔ Si = 1) ∧ (VAR1i =
VAR2i ⇔ Si = 2) ∧ (VAR1i > VAR2i ⇔ Si = 3).

Remark A multiset ordering constraint and its corresponding filtering algorithm are described
in [127].

Algorithm The first complete filtering algorithm for this constraint was presented in [36]. A second
complete filtering algorithm, detecting entailment in a more eager way, was given in [128].
This second algorithm was derived from a deterministic finite automata. A third complete
filtering algorithm extending the algorithm presented in [36] detecting entailment is given
in the PhD thesis of Z.Kızıltan [129, page 95]. The previous thesis [129, pages 105–109]
presents also a filtering algorithm handling the fact that a given variable has more than one
occurrence.

Used in lex between, lex chain lesseq.

See also lex less, lex greater, lex greatereq, lex chain less.

Key words order constraint, vector, symmetry, matrix symmetry, lexicographic order,
multiset ordering, duplicated variables, Berge-acyclic constraint network, automaton,
automaton without counters, derived collection.
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COMPONENTS

DESTINATION

1

2

1

3

4

PATH_FROM_TO(index,1,0)=1

COMPONENTS

DESTINATION

1:1,5,5

2:2,2,2

3:3,3,6

1:0,0,0

4:4,1,2

(A) (B)

Figure 4.273: Initial and final graph of the lex lesseq constraint
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Figure 4.274: Automaton of the lex lesseq constraint
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Figure 4.275: Hypergraph of the reformulation corresponding to the automaton of the
lex lesseq constraint
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4.125 link set to booleans

Origin Inspired by domain constraint.

Constraint link set to booleans(SVAR, BOOLEANS)

Argument(s) SVAR : svar

BOOLEANS : collection(bool − dvar, val− int)

Restriction(s) required(BOOLEANS, [bool, val])
BOOLEANS.bool ≥ 0
BOOLEANS.bool ≤ 1
distinct(BOOLEANS, val)

Purpose
Make the link between a set variable SVAR and those 0-1 variables that are associated to each
potential value belonging to SVAR: The 0-1 variables, which are associated to a value belonging
to the set variable SVAR, are equal to 1, while the remaining 0-1 variables are all equal to 0.

Derived Collection(s) col(SET − collection(one − int, setvar − svar), [item(one− 1, setvar − SVAR)])

Arc input(s) SET BOOLEANS

Arc generator PRODUCT 7→ collection(set, booleans)

Arc arity 2

Arc constraint(s) booleans.bool = set.one⇔ in set(booleans.val, set.setvar)

Graph property(ies) NARC = |BOOLEANS|

Example link set to booleans

0
BBBBBBBB@

{1, 3, 4},8
>>>>>><
>>>>>>:

bool − 0 val − 0,
bool − 1 val − 1,
bool − 0 val − 2,
bool − 1 val − 3,
bool − 1 val − 4,
bool − 0 val − 5

9
>>>>>>=
>>>>>>;

1
CCCCCCCCA

In the previous example, the 0-1 variables associated to the values 1,3 and 4 are all
set to 1, while the other 0-1 variables are set to 0. The link set to booleans constraint
holds since the final graph contains exactly 6 arcs (one for each 0-1 variable). Parts (A)
and (B) of Figure 4.276 respectively show the initial and final graph. Since we use the
NARC graph property, the arcs of the final graph are stressed in bold.

Graph model The link set to booleans constraint is modelled with the following bipartite graph.
The first set of vertices corresponds to one single vertex containing the set variable. The
second class of vertices contains one vertex for each item of the collection BOOLEANS. The
arc constraint between the set variable SVAR and one potential value v of the set variable
expresses the following:
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• If the 0-1 variable associated to v is equal to 1 then v should belong to SVAR.

• Otherwise if the 0-1 variable associated to v is equal to 0 then v should not belong
to SVAR.

Since all arc constraints should hold the final graph contains exactly |BOOLEANS| arcs.

Signature Since the initial graph contains |BOOLEANS| arcs the maximum number of arcs of the final
graph is equal to |BOOLEANS|. Therefore we can rewrite the graph property NARC =
|BOOLEANS| to NARC ≥ |BOOLEANS| and simplify NARC to NARC.

Usage This constraint is used in order to make the link between a formulation using set variables
and a formulation based on linear programming.

See also domain constraint, clique, symmetric gcc, tour, strongly connected,
path from to.

Key words decomposition, value constraint, channeling constraint, set channel, linear programming,
constraint involving set variables, derived collection.
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SET

BOOLEANS

1

123456

NARC=6

1:1,{1,3,4}

1:0,0 2:1,1 3:0,2 4:1,3 5:1,4 6:0,5

(A) (B)

Figure 4.276: Initial and final graph of the link set to booleans constraint
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4.126 longest change

Origin Derived from change.

Constraint longest change(SIZE, VARIABLES, CTR)

Argument(s) SIZE : dvar

VARIABLES : collection(var − dvar)
CTR : atom

Restriction(s) SIZE ≥ 0
SIZE < |VARIABLES|
required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose
SIZE is the maximum number of consecutive variables of the collection VARIABLES for which
constraint CTR holds in an uninterrupted way. We count a change when X CTR Y holds; X
and Y are two consecutive variables of the collection VARIABLES.

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var CTR variables2.var

Graph property(ies) MAX NCC = SIZE

Example longest change

0
BBBBBBBBBBBB@

4,

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

var − 8,
var − 8,
var − 3,
var − 4,
var − 1,
var − 1,
var − 5,
var − 5,
var − 2

9
>>>>>>>>>>>>=
>>>>>>>>>>>>;

, 6=

1
CCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.277 respectively show the initial and final graph.
Since we use the MAX NCC graph property we show the largest connected component
of the final graph. It corresponds to the longest period of uninterrupted changes: Sequence
8, 3, 4, 1, which involves 4 consecutives variables.

Graph model In order to specify the longest change constraint, we use MAX NCC, which is the
number of vertices of the largest connected component. Since the initial graph corresponds
to a path, this will be the length of the longest path in the final graph.
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VARIABLES

1

2

3

4

5

6

7

8

9

MAX_NCC=4

MAX_NCC

2:8

3:3

4:4

5:1

6:1

7:5

8:5

9:2

(A) (B)

Figure 4.277: Initial and final graph of the longest change constraint

i
{C=max(C,D),D=1}

i+1VAR  not CTR VAR   ,

{D=D+1}

VAR  CTR VAR   ,i i+1

t:
SIZE=C

$,

{C=max(C,D)}

s

{C=0,D=1}

Figure 4.278: Automaton of the longest change constraint
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Automaton Figure 4.278 depicts the automaton associated to the longest change constraint. To each
pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a
0-1 signature variable Si. The following signature constraint links VARi, VARi+1 and Si:
VARi CTR VARi+1 ⇔ Si.

See also change.

Key words timetabling constraint, automaton, automaton with counters,
sliding cyclic(1) constraint network(3).

VAR
1

VAR
2

S2

VAR
n

VAR
3

S3

Q2

C2

Sn−1

VAR
n−1

Q =s0

C =00 C1

Q1

S1

D =10 D1
D2

Q   =tn−1

C   =SIZEn−1

Dn−1

Figure 4.279: Hypergraph of the reformulation corresponding to the automaton of the
longest change constraint



20000128 621



622 NCC,NTREE,CLIQUE

4.127 map

Origin Inspired by [130]

Constraint map(NBCYCLE, NBTREE, NODES)

Argument(s) NBCYCLE : dvar

NBTREE : dvar

NODES : collection(index − int, succ− dvar)

Restriction(s) NBCYCLE ≥ 0
NBTREE ≥ 0
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Number of trees and number of cycles of a map. We take the description of a map from [130,
page 459]:

Purpose Every map decomposes into a set of connected components, also called con-
nected maps. Each component consists of the set of all points that wind up on the
same cycle, with each point on the cycle attached to a tree of all points that enter
the cycle at that point.

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) • NCC = NBCYCLE

• NTREE = NBTREE

Example map

0
BBBBBBBBBBBB@

2, 3,

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

index − 1 succ − 5,
index − 2 succ − 9,
index − 3 succ − 8,
index − 4 succ − 2,
index − 5 succ − 9,
index − 6 succ − 2,
index − 7 succ − 9,
index − 8 succ − 8,
index − 9 succ − 1

9
>>>>>>>>>>>>=
>>>>>>>>>>>>;

1
CCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.280 respectively show the initial and final graph.
Since we use the NCC graph property, we display the two connected components of the
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final graph. Each of them corresponds to a connected map. The first connected map is
made up from one circuit and two trees, while the second one consists of one circuit and
one tree. Since we also use the NTREE graph property, we display with a double circle
those vertices which do not belong to any circuit but for which at least one successor
belong to a circuit.

NODES

1

2

3

4

5

6

7

8

9

NCC=2,NTREE=3

CC#1

CC#2

1:1,5

5:5,92:2,9

9:9,1

4:4,26:6,2

7:7,9

3:3,8

8:8,8

(A) (B)

Figure 4.280: Initial and final graph of the map constraint

Graph model Observe that, for the argument NBTREE of the map constraint, we consider a definition
different from the one used for the argument NTREES of the tree constraint:

• In the map constraint the number of trees NBTREE is equal to the number of vertices
of the final graph, which both do not belong to any circuit and have a successor which
is located on a circuit. Therefore we count three trees in the previous example.

• In the tree constraint the number of trees NTREES is equal to the number of con-
nected components of the final graph.

See also cycle, tree, graph crossing.

Key words graph constraint, graph partitioning constraint, connected component.
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4.128 max index

Origin N. Beldiceanu

Constraint max index(MAX INDEX, VARIABLES)

Argument(s) MAX INDEX : dvar

VARIABLES : collection(index − int, var − dvar)

Restriction(s) |VARIABLES| > 0
MAX INDEX ≥ 0
MAX INDEX ≤ |VARIABLES|
required(VARIABLES, [index, var])
VARIABLES.index ≥ 1
VARIABLES.index ≤ |VARIABLES|
distinct(VARIABLES, index)

Purpose MAX INDEX is the index of the variables corresponding to the maximum value of the collection
of variables VARIABLES.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.key = variables2.key ∨ variables1.var > variables2.var

Graph property(ies) ORDER(0, 0, index) = MAX INDEX

Example max index

0
BBBB@

3,

8
>>>><
>>>>:

index − 1 var− 3,
index − 2 var− 2,
index − 3 var− 7,
index − 4 var− 2,
index − 5 var− 6

9
>>>>=
>>>>;

1
CCCCA

Parts (A) and (B) of Figure 4.281 respectively show the initial and final graph.
Since we use the ORDER graph property, the vertex of rank 0 (without considering the
loops) of the final graph is shown in gray.

Automaton Figure 4.282 depicts the automaton associated to the max index constraint. To each item
of the collection VARIABLES corresponds a signature variable Si, which is equal to 0.

See also min index.

Key words order constraint, maximum, automaton, automaton with counters,
alpha-acyclic constraint network(4).



20030820 625

VARIABLES

1

2

3

4

5

ORDER(0,0,index)=3

1:1,3

2:2,2 4:4,2

3:3,7

5:5,6

(A) (B)

Figure 4.281: Initial and final graph of the max index constraint

{if VAR >M then M=VAR ;

 J=J+1}

0,

ii

$

t:
MAX_INDEX=I

s

{M=−1000000,I=0,J=0}

Figure 4.282: Automaton of the max index constraint

M1
I1
J1J =00

M =−10000000

Q =s0

S1 S2
VAR  1

VAR  2

Q1
Q =tn
Mn

I =00 I =MAX_INDEXn
Jn

Sn

VAR  n

Figure 4.283: Hypergraph of the reformulation corresponding to the automaton of the
max index constraint
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4.129 max n

Origin [33]

Constraint max n(MAX, RANK, VARIABLES)

Argument(s) MAX : dvar

RANK : int

VARIABLES : collection(var − dvar)

Restriction(s) |VARIABLES| > 0
RANK ≥ 0
RANK < |VARIABLES|
required(VARIABLES, var)

Purpose MAX is the maximum value of rank RANK (i.e. the RANKth largest distinct value) of the collection
of domain variables VARIABLES. Sources have a rank of 0.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.key = variables2.key ∨ variables1.var > variables2.var

Graph property(ies) ORDER(RANK, MININT, var) = MAX

Example max n

0
BBBB@

6, 1,

8
>>>><
>>>>:

var − 3,
var − 1,
var − 7,
var − 1,
var − 6

9
>>>>=
>>>>;

1
CCCCA

Parts (A) and (B) of Figure 4.284 respectively show the initial and final graph.
Since we use the ORDER graph property, the vertex of rank 1 (without considering the
loops) of the final graph is shown in gray.

Algorithm [33].

See also maximum, min n.

Key words order constraint, rank, maximum.
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VARIABLES

1

2

3

4

5

ORDER(1,MININT,var)=6

1:3

2:1 4:1

3:7

5:6

(A) (B)

Figure 4.284: Initial and final graph of the max n constraint
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4.130 max nvalue

Origin Derived from nvalue.

Constraint max nvalue(MAX, VARIABLES)

Argument(s) MAX : dvar

VARIABLES : collection(var − dvar)

Restriction(s) MAX ≥ 1
MAX ≤ |VARIABLES|
required(VARIABLES, var)

Purpose MAX is the maximum number of times that the same value is taken by the variables of the
collection VARIABLES.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) MAX NSCC = MAX

Example max nvalue

0
BBBBBBBBBBBBBB@

3,

8
>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

var− 9,
var− 1,
var− 7,
var− 1,
var− 1,
var− 6,
var− 7,
var− 7,
var− 4,
var− 9

9
>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

1
CCCCCCCCCCCCCCA

In the previous example, values 1, 4, 6, 7, 9 are respectively used 3, 1, 1, 3, 2 times.
So the maximum number of time MAX that a same value occurs is 3. Parts (A) and
(B) of Figure 4.285 respectively show the initial and final graph. Since we use the
MAX NSCC graph property, we show the largest strongly connected component of the
final graph.

Graph model Because of the arc constraint, each strongly connected component of the final graph cor-
responds to a distinct value which is assigned to a subset of variables of the VARIABLES

collection. Therefore the number of vertices of the largest strongly connected component
is equal to the mostly used value.

Automaton Figure 4.286 depicts the automaton associated to the max nvalue constraint. To each item
of the collection VARIABLES corresponds a signature variable Si, which is equal to 0.



20000128 629

VARIABLES

1

2

3

4

5

6

7

8

9

10

MAX_NSCC=3

MAX_NSCC

3:7

7:7

8:7

1:9

10:9

2:1

4:1

5:1

6:6 9:4

(A) (B)

Figure 4.285: Initial and final graph of the max nvalue constraint

i       i

0,
{C[VAR ]=C[VAR ]+1}

$

maximum(N,C)
t:

{C[_]=0}

s

Figure 4.286: Automaton of the max nvalue constraint
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Usage This constraint may be used in order to replace a set of count or among constraints were
one would have to generate explicitly one constraint for each potential value. Also useful
for constraining the number of occurrences of the mostly used value without knowing this
value in advance and without giving explicitly an upper limit on the number of occurrences
of each value as it is done in the global cardinality constraint.

See also nvalue, min nvalue.

Key words value constraint, assignment, maximum number of occurrences, maximum, automaton,
automaton with array of counters, equivalence.
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4.131 max size set of consecutive var

Origin N. Beldiceanu

Constraint max size set of consecutive var(MAX, VARIABLES)

Argument(s) MAX : dvar

VARIABLES : collection(var − dvar)

Restriction(s) MAX ≥ 1
MAX ≤ |VARIABLES|
required(VARIABLES, var)

Purpose MAX is the size of the largest set of variables of the collection VARIABLES which all take their
value in a set of consecutive values.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) abs(variables1.var − variables2.var) ≤ 1

Graph property(ies) MAX NSCC = MAX

Example max size set of consecutive var

0
BBBBBBBBBBBBBB@

6,

8
>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

var − 3,
var − 1,
var − 3,
var − 7,
var − 4,
var − 1,
var − 2,
var − 8,
var − 7,
var − 6

9
>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

1
CCCCCCCCCCCCCCA

In the previous example, the following sets of variables {var − 3, var − 1, var −
3, var − 4, var − 1, var − 2} and {var − 7, var − 8, var − 7, var − 6} take their
values in the two following sets of consecutive values {1, 2, 3, 4} and {6, 7, 8}. The
max size set of consecutive var constraint holds since the cardinality of the largest
set of variables is 6. Parts (A) and (B) of Figure 4.287 respectively show the initial and
final graph. Since we use the MAX NSCC graph property, we show the largest strongly
connected component of the final graph.

Graph model Since the arc constraint is symmetric each strongly connected component of the final graph
corresponds exactly to one connected component of the final graph.

See also nset of consecutive values.

Key words value constraint, consecutive values, maximum.
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VARIABLES

1

2

3

4

5

6

7

8

9

10

MAX_NSCC=6

MAX_NSCC

1:3

3:3

5:47:2

2:1

6:1

4:7

8:8

9:7

10:6

(A) (B)

Figure 4.287: Initial and final graph of the max size set of consecutive var con-
straint
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4.132 maximum

Origin CHIP

Constraint maximum(MAX, VARIABLES)

Argument(s) MAX : dvar

VARIABLES : collection(var − dvar)

Restriction(s) |VARIABLES| > 0
required(VARIABLES, var)

Purpose MAX is the maximum value of the collection of domain variables VARIABLES.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.key = variables2.key ∨ variables1.var > variables2.var

Graph property(ies) ORDER(0, MININT, var) = MAX

Example maximum

0
BBBB@

7,

8
>>>><
>>>>:

var − 3,
var − 2,
var − 7,
var − 2,
var − 6

9
>>>>=
>>>>;

1
CCCCA

Parts (A) and (B) of Figure 4.288 respectively show the initial and final graph.
Since we use the ORDER graph property, the vertex of rank 0 (without considering the
loops) of the final graph is shown in gray.

Graph model We use a similar definition that the one that was utilized for the minimum constraint. Within
the arc constraint, we replace the comparaison operator < by >.

Automaton Figure 4.289 depicts the automaton associated to the maximum constraint. Let VARi be
the ith variable of the VARIABLES collection. To each pair (MAX, VARi) corresponds a
signature variable Si as well as the following signature constraint: (MAX > VARi ⇔ Si =
0) ∧ (MAX = VARi ⇔ Si = 1) ∧ (MAX < VARi ⇔ Si = 2).

Usage In some project scheduling problems one has to introduce dummy activities which corre-
spond for instance to the completion time of a given set of activities. In this context one
can use the maximum constraint to get the maximum end of a set of tasks.

Remark Note that maximum is a constraint and not just a function that computes the maximum value
of a collection of variables: The values of MAX influence the variables and reciprocally the
values of the variables influence MAX.
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VARIABLES

1

2

3

4

5

ORDER(0,MININT,var)=7

1:3

2:2 4:2

3:7

5:6

(A) (B)

Figure 4.288: Initial and final graph of the maximum constraint
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MAX=VARi MAX>VARi
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Figure 4.289: Automaton of the maximum constraint
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Algorithm [33].

See also minimum.

Key words order constraint, maximum, automaton, automaton without counters,
centered cyclic(1) constraint network(1).

Sn

Q =tn
Q1Q =s0

S2S1

VAR
1

VAR
2

VAR
n

MAX

Figure 4.290: Hypergraph of the reformulation corresponding to the automaton of the
maximum constraint
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4.133 maximum modulo

Origin Derived from maximum.

Constraint maximum modulo(MAX, VARIABLES, M)

Argument(s) MAX : dvar

VARIABLES : collection(var − dvar)
M : int

Restriction(s) |VARIABLES| > 0
M > 0
required(VARIABLES, var)

Purpose
MAX is a maximum value of the collection of domain variables VARIABLES according to the
following partial ordering: (X mod M) < (Y mod M).

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.key = variables2.key ∨ variables1.var mod M > variables2.var mod M

Graph property(ies) ORDER(0, MININT, var) = MAX

Example maximum modulo

0
BBBB@

5,

8
>>>><
>>>>:

var − 9,
var − 1,
var − 7,
var − 6,
var − 5

9
>>>>=
>>>>;
, 3

1
CCCCA

Parts (A) and (B) of Figure 4.291 respectively show the initial and final graph.
Since we use the ORDER graph property, the vertex of rank 0 (without considering the
loops) of the final graph is shown in gray.

See also maximum, minimum modulo.

Key words order constraint, modulo, maximum.



20000128 639

VARIABLES

1

2

3

4

5

ORDER(0,MININT,var)=5

1:9

2:1

4:6

3:7

5:5

(A) (B)

Figure 4.291: Initial and final graph of the maximum modulo constraint
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4.134 min index

Origin N. Beldiceanu

Constraint min index(MIN INDEX, VARIABLES)

Argument(s) MIN INDEX : dvar

VARIABLES : collection(index − int, var − dvar)

Restriction(s) |VARIABLES| > 0
MIN INDEX ≥ 0
MIN INDEX ≤ |VARIABLES|
required(VARIABLES, [index, var])
VARIABLES.index ≥ 1
VARIABLES.index ≤ |VARIABLES|
distinct(VARIABLES, index)

Purpose MIN INDEX is the index of the variables corresponding to the minimum value of the collection
of variables VARIABLES.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.key = variables2.key ∨ variables1.var < variables2.var

Graph property(ies) ORDER(0, 0, index) = MIN INDEX

Example min index

0
BBBB@

2,

8
>>>><
>>>>:

index − 1 var− 3,
index − 2 var− 2,
index − 3 var− 7,
index − 4 var− 2,
index − 5 var− 6

9
>>>>=
>>>>;

1
CCCCA

min index

0
BBBB@

4,

8
>>>><
>>>>:

index − 1 var− 3,
index − 2 var− 2,
index − 3 var− 7,
index − 4 var− 2,
index − 5 var− 6

9
>>>>=
>>>>;

1
CCCCA

Parts (A) and (B) of Figure 4.292 respectively show the initial and final graph asso-
ciated to both examples. Since we use the ORDER graph property, the vertices of rank
0 (without considering the loops) of the final graph are shown in gray.

Graph model Within the context of scheduling, assume the variables of the VARIABLES collection corre-
spond to the starts of a set of tasks. Then MIN INDEX gives the indexes of those tasks which
can be scheduled first.
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VARIABLES

1

2

3

4

5

ORDER(0,0,index)=2

1:1,3

3:3,7

5:5,6

2:2,2 4:4,2

(A) (B)

Figure 4.292: Initial and final graph of the min index constraint

 J=J+1}

0,

ii{if VAR <M then M=VAR ;

$

t:
MIN_INDEX=I

s

{M=1000000,I=0,J=0}

Figure 4.293: Automaton of the min index constraint

M1
I1
J1J =00

Q =s0

S1 S2
VAR  1

VAR  2

Q1
Q =tn
Mn

I =00
Jn

Sn

VAR  n

M =10000000
I =MIN_INDEXn

Figure 4.294: Hypergraph of the reformulation corresponding to the automaton of the
min index constraint
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Automaton Figure 4.293 depicts the automaton associated to the min index constraint. Figure 4.293
depicts the automaton associated to the min index constraint. To each item of the collec-
tion VARIABLES corresponds a signature variable Si, which is equal to 0.

See also max index.

Key words order constraint, minimum, automaton, automaton with counters,
alpha-acyclic constraint network(4).
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4.135 min n

Origin [33]

Constraint min n(MIN, RANK, VARIABLES)

Argument(s) MIN : dvar

RANK : int

VARIABLES : collection(var − dvar)

Restriction(s) |VARIABLES| > 0
RANK ≥ 0
RANK < |VARIABLES|
required(VARIABLES, var)

Purpose MIN is the minimum value of rank RANK (i.e. the RANKth smallest distinct value) of the collection
of domain variables VARIABLES. Sources have a rank of 0.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.key = variables2.key ∨ variables1.var < variables2.var

Graph property(ies) ORDER(RANK, MAXINT, var) = MIN

Example min n

0
BBBB@

3, 1,

8
>>>><
>>>>:

var − 3,
var − 1,
var − 7,
var − 1,
var − 6

9
>>>>=
>>>>;

1
CCCCA

Note that identical values are only counted once. This is why the minimum of or-
der 1 is 3 instead of 1 in the previous example. Parts (A) and (B) of Figure 4.295
respectively show the initial and final graph. Since we use the ORDER graph property,
the vertex of rank 1 (without considering the loops) of the final graph is shown in gray.

Graph model A generalization of the minimum constraint.

Automaton Figure 4.296 depicts the automaton associated to the min n constraint. Figure 4.296 de-
picts the automaton associated to the min n constraint. To each item of the collection
VARIABLES corresponds a signature variable Si, which is equal to 1.

Algorithm [33].

See also minimum, max n, ith pos different from 0.

Key words order constraint, rank, minimum, maxint, automaton, automaton with array of counters.
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VARIABLES

1

2

3

4

5

ORDER(1,MAXINT,var)=3

1:3

3:7

5:6

2:1 4:1

(A) (B)

Figure 4.295: Initial and final graph of the min n constraint

1,
{C[VAR ]=C[VAR ]+1,D=min(D,VAR )}i       i               i

$

t:
ith_pos_different_from_0(RANK+1,M,C)

MIN=M+D−1

{C[_]=0,D=maxint}

s

Figure 4.296: Automaton of the min n constraint
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4.136 min nvalue

Origin N. Beldiceanu

Constraint min nvalue(MIN, VARIABLES)

Argument(s) MIN : dvar

VARIABLES : collection(var − dvar)

Restriction(s) MIN ≥ 1
MIN ≤ |VARIABLES|
required(VARIABLES, var)

Purpose MIN is the minimum number of times that the same value is taken by the variables of the collec-
tion VARIABLES.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) MIN NSCC = MIN

Example min nvalue

0
BBBBBBBBBBBBBB@

2,

8
>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

var− 9,
var− 1,
var− 7,
var− 1,
var− 1,
var− 7,
var− 7,
var− 7,
var− 7,
var− 9

9
>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

1
CCCCCCCCCCCCCCA

In the previous example, values 1, 7, 9 are respectively used 3, 5, 2 times. So the
minimum number of time that a same value occurs is 2. Parts (A) and (B) of Figure 4.297
respectively show the initial and final graph. Since we use the MIN NSCC graph
property, we show the smallest strongly connected component of the final graph.

Automaton Figure 4.298 depicts the automaton associated to the min nvalue constraint. To each item
of the collection VARIABLES corresponds a signature variable Si, which is equal to 0.

Usage This constraint may be used in order to replace a set of count or among constraints were
one would have to generate explicitly one constraint for each potential value. Also useful
for constraining the number of occurrences of the less used value without knowing this
value in advance and without giving explicitly a lower limit on the number of occurrences
of each value as it is done in the global cardinality constraint.
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VARIABLES

1

2

3

4

5

6

7

8

9

10

MIN_NSCC=2

MIN_NSCC

1:9

10:9

2:1

4:1

5:1

3:7

6:7

7:7

8:7

9:7

(A) (B)

Figure 4.297: Initial and final graph of the min nvalue constraint

i       i

0,
{C[VAR ]=C[VAR ]+1}

$

t:
minimum_except_0(N,C)

s

{C[_]=0}

Figure 4.298: Automaton of the min nvalue constraint
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See also nvalue, max nvalue.

Key words value constraint, assignment, minimum number of occurrences, minimum, automaton,
automaton with array of counters, equivalence.
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4.137 min size set of consecutive var

Origin N. Beldiceanu

Constraint min size set of consecutive var(MIN, VARIABLES)

Argument(s) MIN : dvar

VARIABLES : collection(var − dvar)

Restriction(s) MIN ≥ 1
MIN ≤ |VARIABLES|
required(VARIABLES, var)

Purpose MIN is the size of the smallest set of variables of the collection VARIABLES which all take their
value in a set of consecutive values.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) abs(variables1.var − variables2.var) ≤ 1

Graph property(ies) MIN NSCC = MIN

Example min size set of consecutive var

0
BBBBBBBBBBBBBB@

4,

8
>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

var − 3,
var − 1,
var − 3,
var − 7,
var − 4,
var − 1,
var − 2,
var − 8,
var − 7,
var − 6

9
>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

1
CCCCCCCCCCCCCCA

In the previous example, the following sets of variables {var − 3, var − 1, var −
3, var − 4, var − 1, var − 2} and {var − 7, var − 8, var − 7, var − 6} take their
values in the two following sets of consecutive values {1, 2, 3, 4} and {6, 7, 8}. The
min size set of consecutive var constraint holds since the cardinality of the smallest
set of variables is 4. Parts (A) and (B) of Figure 4.299 respectively show the initial and
final graph. Since we use the MIN NSCC graph property, we show the smallest
strongly connected component of the final graph.

Graph model Since the arc constraint is symmetric each strongly connected component of the final graph
corresponds exactly to one connected component of the final graph.

See also nset of consecutive values.

Key words value constraint, assignment, consecutive values, minimum.
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VARIABLES

1

2

3

4

5

6

7

8

9

10

MIN_NSCC=4

MIN_NSCC

4:7

8:8

9:7

10:6

1:3

3:3

5:4 7:2

2:1

6:1

(A) (B)

Figure 4.299: Initial and final graph of the min size set of consecutive var con-
straint
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4.138 minimum

Origin CHIP

Constraint minimum(MIN, VARIABLES)

Argument(s) MIN : dvar

VARIABLES : collection(var − dvar)

Restriction(s) |VARIABLES| > 0
required(VARIABLES, var)

Purpose MIN is the minimum value of the collection of domain variables VARIABLES.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.key = variables2.key ∨ variables1.var < variables2.var

Graph property(ies) ORDER(0, MAXINT, var) = MIN

Example minimum

0
BBBB@

2,

8
>>>><
>>>>:

var − 3,
var − 2,
var − 7,
var − 2,
var − 6

9
>>>>=
>>>>;

1
CCCCA

Parts (A) and (B) of Figure 4.300 respectively show the initial and final graph.
Since we use the ORDER graph property, the vertices of rank 0 (without considering
the loops) of the final graph are shown in gray.

Graph model The condition variables1.key = variables2.key holds if and only if variables1 and
variables2 corresponds to the same vertex. It is used in order to enforce to keep all the
vertices of the initial graph. ORDER(0, MAXINT, var) refers to the source vertices of the
graph, i.e. those vertices that do not have any predecessor.

Automaton Figure 4.301 depicts the automaton associated to the minimum constraint. Let VARi be
the ith variable of the VARIABLES collection. To each pair (MIN, VARi) corresponds a
signature variable Si as well as the following signature constraint: (MIN < VARi ⇔ Si =
0) ∧ (MIN = VARi ⇔ Si = 1) ∧ (MIN > VARi ⇔ Si = 2).

Remark Note that minimum is a constraint and not just a function that computes the minimum value
of a collection of variables: The values of MIN influence the variables and reciprocally the
values of the variables influence MIN.

Algorithm [33].
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VARIABLES

1

2

3

4

5

ORDER(0,MAXINT,var)=2

1:3

3:7

5:6

2:2 4:2

(A) (B)

Figure 4.300: Initial and final graph of the minimum constraint

MIN<VARi

MIN=VARi

MIN=VARi MIN<VARi

$

t

s

e

Figure 4.301: Automaton of the minimum constraint
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Used in minimum greater than, next element, next greater element.

See also maximum.

Key words order constraint, minimum, maxint, automaton, automaton without counters,
centered cyclic(1) constraint network(1).

Sn

Q =tn
Q1Q =s0

S2S1

VAR
1

VAR
2

VAR
n

MIN

Figure 4.302: Hypergraph of the reformulation corresponding to the automaton of the
minimum constraint



20000128 655



656 ORDER,CLIQUE

4.139 minimum except 0

Origin Derived from minimum.

Constraint minimum except 0(MIN, VARIABLES)

Argument(s) MIN : dvar

VARIABLES : collection(var − dvar)

Restriction(s) |VARIABLES| > 0
required(VARIABLES, var)
VARIABLES.var ≥ 0

Purpose MIN is the minimum value of the collection of domain variables VARIABLES, ignoring all vari-
ables that take 0 as value.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • variables1.var 6= 0
• variables2.var 6= 0
• variables1.key = variables2.key ∨ variables1.var < variables2.var

Graph property(ies) ORDER(0, MAXINT, var) = MIN

Example minimum except 0

0
BBBBBB@

3,

8
>>>>>><
>>>>>>:

var− 3,
var− 7,
var− 6,
var− 7,
var− 4,
var− 7

9
>>>>>>=
>>>>>>;

1
CCCCCCA

minimum except 0

0
BBBBBB@

2,

8
>>>>>><
>>>>>>:

var− 3,
var− 2,
var− 0,
var− 7,
var− 2,
var− 6

9
>>>>>>=
>>>>>>;

1
CCCCCCA

minimum except 0

0
BBBBBB@

1000000,

8
>>>>>><
>>>>>>:

var − 0,
var − 0,
var − 0,
var − 0,
var − 0,
var − 0

9
>>>>>>=
>>>>>>;

1
CCCCCCA

Parts (A) and (B) of Figure 4.303 respectively show the initial and final graph of
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the second example. Since we use the ORDER graph property, the vertices of rank 0
(without considering the loops) of the final graph are shown in gray.

Since the graph associated to the third example does not contain any vertex, ORDER
returns the default value MAXINT.

Graph model Because of the first two conditions of the arc constraint, all vertices that correspond to 0
will be removed from the final graph.

Automaton Figure 4.304 depicts the automaton associated to the minimum except 0 constraint. Let
VARi be the ith variable of the VARIABLES collection. To each pair (MIN, VARi) corresponds
a signature variable Si as well as the following signature constraint:

((VARi = 0) ∧ (MIN 6= MAXINT))⇔ Si = 0 ∧
((VARi = 0) ∧ (MIN = MAXINT))⇔ Si = 1 ∧
((VARi 6= 0) ∧ (MIN = VARi))⇔ Si = 2 ∧
((VARi 6= 0) ∧ (MIN < VARi))⇔ Si = 3.

Remark The joker value 0 makes sense only because we restrict the variables of the VARIABLES

collection to take non-negative values.

See also minimum, min nvalue.

Key words order constraint, joker value, minimum, maxint, automaton, automaton without counters,
centered cyclic(1) constraint network(1).
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VARIABLES

1

2

3

4

5

6

ORDER(0,MAXINT,var)=2

1:3

4:7

6:6

2:2 5:2

(A) (B)

Figure 4.303: Initial and final graph of the minimum except 0 constraint

VAR <>0 and MIN=VARi               i VAR <>0 and MIN<VARi               i

VAR <>0 and MIN<VARi               i

VAR =0 and MIN=maxinti

VAR <>0 and MIN=VARi               i VAR =0 and MIN=maxinti

VAR =0 and MIN<>maxinti

VAR =0 and MIN<>maxinti VAR =0 and MIN=maxinti

s

j k

t

$ $

Figure 4.304: Automaton of the minimum except 0 constraint

Sn

Q =tn
Q1Q =s0

S2S1

VAR
1

VAR
2

VAR
n

MIN

Figure 4.305: Hypergraph of the reformulation corresponding to the automaton of the
minimum except 0 constraint
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4.140 minimum greater than

Origin N. Beldiceanu

Constraint minimum greater than(VAR1, VAR2, VARIABLES)

Argument(s) VAR1 : dvar

VAR2 : dvar

VARIABLES : collection(var − dvar)

Restriction(s) |VARIABLES| > 0
required(VARIABLES, var)

Purpose
VAR1 is the smallest value strictly greater than VAR2 of the collection of variables VARIABLES:
This concretely means that there exist at least one variable of VARIABLES which take a value
strictly greater than VAR1.

Derived Collection(s) col(ITEM − collection(var − dvar), [item(var − VAR2)])

Arc input(s) ITEM VARIABLES

Arc generator PRODUCT 7→ collection(item, variables)

Arc arity 2

Arc constraint(s) item.var < variables.var

Graph property(ies) NARC > 0

Sets SUCC 7→ [source, variables]

Constraint(s) on sets minimum(VAR1, variables)

Example minimum greater than

0
BB@ 5, 3,

8
>><
>>:

var − 8,
var − 5,
var − 3,
var − 8

9
>>=
>>;

1
CCA

The minimum greater than constraint holds since value 5 is the smallest value
strictly greater than value 3 among values 8, 5, 3 and 8. Parts (A) and (B) of Figure 4.306
respectively show the initial and final graph. Since we use the NARC graph property,
the arcs of the final graph are stressed in bold. The source and the sinks of the final
graph respectively correspond to the variable VAR2 and to the variables of the VARIABLES
collection which are strictly greater than VAR2. VAR1 is set to the smallest value of the var
attribute of the sinks of the final graph.

Graph model Similar to the next greater element constraint, except that there is no order on the
variables of the collection VARIABLES.
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Automaton Figure 4.307 depicts the automaton associated to the minimum greater than con-
straint. Let VARi be the ith variable of the VARIABLES collection. To each triple
(VAR1, VAR2, VARi) corresponds a signature variable Si as well as the following signature
constraint:

((VARi < VAR1) ∧ (VARi ≤ VAR2))⇔ Si = 0 ∧
((VARi = VAR1) ∧ (VARi ≤ VAR2))⇔ Si = 1 ∧
((VARi > VAR1) ∧ (VARi ≤ VAR2))⇔ Si = 2 ∧
((VARi < VAR1) ∧ (VARi > VAR2))⇔ Si = 3 ∧
((VARi = VAR1) ∧ (VARi > VAR2))⇔ Si = 4 ∧
((VARi > VAR1) ∧ (VARi > VAR2))⇔ Si = 5.

The automaton is constructed in order to fullfit the following conditions:

• We look for an item of the VARIABLES collection such that vari = VAR1 and vari >
VAR2,

• There should not exist any item of the VARIABLES collection such that vari < VAR1

and vari > VAR2.

See also next greater element.

Key words order constraint, minimum, automaton, automaton without counters,
centered cyclic(2) constraint network(1), derived collection.
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ITEM

VARIABLES

1

1234

NARC=3

1:3

1:8 2:5 4:8

(A) (B)

Figure 4.306: Initial and final graph of the minimum greater than constraint

VAR <=VAR2i

VAR <=VAR2i

VAR >VAR1i

VAR >=VAR1i

VAR =VAR1 and VAR >VAR2i             i

$

t

s

e

Figure 4.307: Automaton of the minimum greater than constraint
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Sn

Q =tn
Q1Q =s0

S2S1

VAR
1

VAR
2

VAR
n

VAR2

VAR1

Figure 4.308: Hypergraph of the reformulation corresponding to the automaton of the
minimum greater than constraint
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4.141 minimum modulo

Origin Derived from minimum.

Constraint minimum modulo(MIN, VARIABLES, M)

Argument(s) MIN : dvar

VARIABLES : collection(var − dvar)
M : int

Restriction(s) |VARIABLES| > 0
M > 0
required(VARIABLES, var)

Purpose MIN is a minimum value of the collection of domain variables VARIABLES according to the
following partial ordering: (X mod M) < (Y mod M).

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.key = variables2.key ∨ variables1.var mod M < variables2.var mod M

Graph property(ies) ORDER(0, MAXINT, var) = MIN

Example minimum modulo

0
BBBB@

6,

8
>>>><
>>>>:

var − 9,
var − 1,
var − 7,
var − 6,
var − 5

9
>>>>=
>>>>;
, 3

1
CCCCA

minimum modulo

0
BBBB@

9,

8
>>>><
>>>>:

var − 9,
var − 1,
var − 7,
var − 6,
var − 5

9
>>>>=
>>>>;
, 3

1
CCCCA

Parts (A) and (B) of Figure 4.309 respectively show the initial and final graph asso-
ciated to the second example. Since we use the ORDER graph property, the vertex of
rank 0 (without considering the loops) associated to value 9 is shown in gray.

Graph model We use a similar definition that the one that was utilized for the minimum constraint. Within
the arc constraint we replace the condition X < Y by the condition (X mod M) <
(Y mod M).

See also minimum, maximum modulo.

Key words order constraint, modulo, maxint, minimum.
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VARIABLES

1

2

3

4

5

ORDER(0,MAXINT,var)=9

1:9

2:1 3:7

5:5

4:6

(A) (B)

Figure 4.309: Initial and final graph of the minimum modulo constraint
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4.142 minimum weight alldifferent

Origin [131]

Constraint minimum weight alldifferent(VARIABLES, MATRIX, COST)

Synonym(s) minimum weight alldiff, minimum weight alldistinct, min weight alldiff,
min weight alldifferent, min weight alldistinct.

Argument(s) VARIABLES : collection(var − dvar)
MATRIX : collection(i− int, j− int, c− int)
COST : dvar

Restriction(s) |VARIABLES| > 0
required(VARIABLES, var)
VARIABLES.var ≥ 1
VARIABLES.var ≤ |VARIABLES|
required(MATRIX, [i, j, c])
increasing seq(MATRIX, [i, j])
MATRIX.i ≥ 1
MATRIX.i ≤ |VARIABLES|
MATRIX.j ≥ 1
MATRIX.j ≤ |VARIABLES|
|MATRIX| = |VARIABLES| ∗ |VARIABLES|

Purpose
All variables of the VARIABLES collection should take a distinct value located within interval
[1, |VARIABLES|]. In addition COST is equal to the sum of the costs associated to the fact that
we assign value i to variable j. These costs are given by the matrix MATRIX.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.key

Graph property(ies) • NTREE = 0
• SUM WEIGHT ARC(MATRIX[(variables1.key − 1) ∗ |VARIABLES|+ variables1.var].c) = COST
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Example minimum weight alldifferent

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

8
>><
>>:

var − 2,
var − 3,
var − 1,
var − 4

9
>>=
>>;
,

8
>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

i− 1 j− 1 c − 4,
i− 1 j− 2 c − 1,
i− 1 j− 3 c − 7,
i− 1 j− 4 c − 0,
i− 2 j− 1 c − 1,
i− 2 j− 2 c − 0,
i− 2 j− 3 c − 8,
i− 2 j− 4 c − 2,
i− 3 j− 1 c − 3,
i− 3 j− 2 c − 2,
i− 3 j− 3 c − 1,
i− 3 j− 4 c − 6,
i− 4 j− 1 c − 0,
i− 4 j− 2 c − 0,
i− 4 j− 3 c − 6,
i− 4 j− 4 c − 5

9
>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>;

, 17

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

The cost 17 corresponds to the sum MATRIX[(1 − 1) · 4 + 2].c + MATRIX[(2 −

VARIABLES

1

2

3

4 NARC=4
SUM_WEIGHT_ARC=1+8+3+5=17

1:2

2:3

1

3:1

8

3

4:4 5

(A) (B)

Figure 4.310: Initial and final graph of the minimum weight alldifferent con-
straint

1) · 4 + 3].c + MATRIX[(3 − 1) · 4 + 1].c + MATRIX[(4 − 1) · 4 + 4].c =
MATRIX[2].c + MATRIX[7].c + MATRIX[9].c + MATRIX[16].c = 1 + 8 + 3 + 5.
Parts (A) and (B) of Figure 4.310 respectively show the initial and final graph. Since we
use the SUM WEIGHT ARC graph property, the arcs of the final graph are stressed
in bold; We also indicate their corresponding weight.

Graph model Since each variable takes one value, and because of the arc constraint variables1 =
variables.key, each vertex of the initial graph belongs to the final graph and has exactly
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one successor. Therefore the sum of the out-degrees of the vertices of the final graph is
equal to the number of vertices of the final graph. Since the sum of the in-degrees is equal
to the sum of the out-degrees, it is also equal to the number of vertices of the final graph.
Since NTREE = 0, each vertex of the final graph belongs to a circuit. Therefore each
vertex of the final graph has at least one predecessor. Since we saw that the sum of the
in-degrees is equal to the number of vertices of the final graph, each vertex of the final
graph has exactly one predecessor. We conclude that the final graph consists of a set of
vertex-disjoint elementary circuits.

Finally the graph constraint expresses the fact that the COST variable is equal to the sum
of the elementary costs associated to each variable-value assignment. All these elementary
costs are recorded in the MATRIX collection. More precisely, the cost cij is recorded in the
attribute c of the ((i − 1) · |VARIABLES)| + j)th entry of the MATRIX collection. This is
ensured by the increasing restriction which enforces the fact that the items of the MATRIX
collection are sorted in lexicographically increasing order according to attributes i and j.

Algorithm A filtering algorithm is described in [132]. It can be used for handling both side of the
minimum weight alldifferent constraint:

• Evaluating a lower bound of the COST variable and pruning the variables of the
VARIABLES collection in order to not exceed the maximum value of COST.

• Evaluating an upper bound of the COST variable and pruning the variables of the
VARIABLES collection in order to not be under the minimum value of COST.

See also alldifferent, global cardinality with costs, weighted partial alldiff.

Key words cost filtering constraint, assignment, cost matrix, weighted assignment, one succ.
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670 NSCC,CLIQUE

4.143 nclass

Origin Derived from nvalue.

Constraint nclass(NCLASS, VARIABLES, PARTITIONS)

Type(s) VALUES : collection(val− int)

Argument(s) NCLASS : dvar

VARIABLES : collection(var− dvar)
PARTITIONS : collection(p− VALUES)

Restriction(s) required(VALUES, val)
distinct(VALUES, val)
NCLASS ≥ 0
NCLASS ≤ min(|VARIABLES|, |PARTITIONS|)
required(VARIABLES, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose Number of partitions of the collection PARTITIONS such that at least one value is assigned to at
least one variable of the collection VARIABLES.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) in same partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) NSCC = NCLASS

Example nclass

0
BBBBBBBBBB@

2,

8
>>>><
>>>>:

var − 3,
var − 2,
var − 7,
var − 2,
var − 6

9
>>>>=
>>>>;
,

8
<
:

p − {val − 1, val − 3},
p − {val − 4},
p − {val − 2, val − 6}

9
=
;

1
CCCCCCCCCCA

Parts (A) and (B) of Figure 4.311 respectively show the initial and final graph.
Since we use the NSCC graph property we show the different strongly connected
components of the final graph. Each strongly connected component corresponds to one
class of values which were assigned to some variables of the VARIABLES collection. We
effectively use two classes of values that respectively correspond to values {3} and {2, 6}.
Note that we do not consider value 7 since it does not belong to the different classes of
values we gave: all corresponding arc constraints do not hold.
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Algorithm [33, 106].

See also nvalue, nequivalence, ninterval, npair, in same partition.

Key words counting constraint, value partitioning constraint, number of distinct equivalence classes,
partition, strongly connected component, equivalence.
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VARIABLES

1

2

3

4

5

NSCC=2

SCC#1 SCC#2

1:3 2:2

4:2

5:6

(A) (B)

Figure 4.311: Initial and final graph of the nclass constraint
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4.144 nequivalence

Origin Derived from nvalue.

Constraint nequivalence(NEQUIV, M, VARIABLES)

Argument(s) NEQUIV : dvar

M : int

VARIABLES : collection(var − dvar)

Restriction(s) NEQUIV ≥ min(1, |VARIABLES|)
NEQUIV ≤ min(M, |VARIABLES|)
M > 0
required(VARIABLES, var)

Purpose NEQUIV is the number of distinct rests obtained by dividing the variables of the collection
VARIABLES by M.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var mod M = variables2.var mod M

Graph property(ies) NSCC = NEQUIV

Example nequivalence

0
BBBBBBBB@

2, 3,

8
>>>>>>>><
>>>>>>>>:

var − 3,
var − 2,
var − 5,
var − 6,
var − 15,
var − 3,
var − 3

9
>>>>>>>>=
>>>>>>>>;

1
CCCCCCCCA

Parts (A) and (B) of Figure 4.312 respectively show the initial and final graph.
Since we use the NSCC graph property we show the different strongly connected
components of the final graph. Each strongly connected component corresponds to one
equivalence class: We have two equivalence classes that respectively correspond to values
{3, 6, 15} and {2, 5}.

Algorithm Since constraints X = Y and X ≡ Y ( mod M) are similar, one should also use a similar
algorithm as the one [33, 106] provided for constraint nvalue.

See also nvalue, nclass, ninterval, npair.

Key words counting constraint, value partitioning constraint, number of distinct equivalence classes,
strongly connected component, equivalence.
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VARIABLES

1

2

3

4

5

6

7

NSCC=2

SCC#1 SCC#2

1:3

4:6

5:15

6:3

7:3

2:2

3:5

(A) (B)

Figure 4.312: Initial and final graph of the nequivalence constraint



676 NARC,PRODUCT , SUCC

4.145 next element

Origin N. Beldiceanu

Constraint next element(THRESHOLD, INDEX, TABLE, VAL)

Argument(s) THRESHOLD : dvar

INDEX : dvar

TABLE : collection(index − int, value − dvar)
VAL : dvar

Restriction(s) INDEX ≥ 1
INDEX ≤ |TABLE|
required(TABLE, [index, value])
TABLE.index ≥ 1
TABLE.index ≤ |TABLE|
distinct(TABLE, index)

Purpose INDEX is the smallest entry of TABLE strictly greater than THRESHOLD containing value VAL.

Derived Collection(s) col

„
ITEM − collection(index − dvar, value − dvar),
[item(index − THRESHOLD, value − VAL)]

«

Arc input(s) ITEM TABLE

Arc generator PRODUCT 7→ collection(item, table)

Arc arity 2

Arc constraint(s) • item.index < table.index
• item.value = table.value

Graph property(ies) NARC > 0

Sets
SUCC 7→»

source,
variables − col(VARIABLES − collection(var − dvar), [item(var − TABLE.index)])

–

Constraint(s) on sets minimum(INDEX, variables)

Example next element

0
BBBB@

2, 3,

8
>>>><
>>>>:

index − 1 value − 1,
index − 2 value − 8,
index − 3 value − 9,
index − 4 value − 5,
index − 5 value − 9

9
>>>>=
>>>>;
, 9

1
CCCCA

The next element constraint holds since 3 is the smallest entry located after entry
2 that contains value 9. Parts (A) and (B) of Figure 4.313 respectively show the initial and
final graph associated to the second graph constraint. Since we use the NARC graph
property, the arcs of the final graph are stressed in bold.
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Automaton Figure 4.314 depicts the automaton associated to the next element constraint. Let Ik
and Vk respectively be the index and the value attributes of the kth item of the TABLE

collections. To each quintuple (THRESHOLD, INDEX, VAL, Ik, Vk) corresponds a signature
variable Sk as well as the following signature constraint:

((Ik ≤ THRESHOLD) ∧ (Ik < INDEX) ∧ (Vk = VAL))⇔ Sk = 0 ∧
((Ik ≤ THRESHOLD) ∧ (Ik < INDEX) ∧ (Vk 6= VAL))⇔ Sk = 1 ∧
((Ik ≤ THRESHOLD) ∧ (Ik = INDEX) ∧ (Vk = VAL))⇔ Sk = 2 ∧
((Ik ≤ THRESHOLD) ∧ (Ik = INDEX) ∧ (Vk 6= VAL))⇔ Sk = 3 ∧
((Ik ≤ THRESHOLD) ∧ (Ik > INDEX) ∧ (Vk = VAL))⇔ Sk = 4 ∧
((Ik ≤ THRESHOLD) ∧ (Ik > INDEX) ∧ (Vk 6= VAL))⇔ Sk = 5 ∧
((Ik > THRESHOLD) ∧ (Ik < INDEX) ∧ (Vk = VAL))⇔ Sk = 6 ∧
((Ik > THRESHOLD) ∧ (Ik < INDEX) ∧ (Vk 6= VAL))⇔ Sk = 7 ∧
((Ik > THRESHOLD) ∧ (Ik = INDEX) ∧ (Vk = VAL))⇔ Sk = 8 ∧
((Ik > THRESHOLD) ∧ (Ik = INDEX) ∧ (Vk 6= VAL))⇔ Sk = 9 ∧
((Ik > THRESHOLD) ∧ (Ik > INDEX) ∧ (Vk = VAL))⇔ Sk = 10 ∧
((Ik > THRESHOLD) ∧ (Ik > INDEX) ∧ (Vk 6= VAL))⇔ Sk = 11.

The automaton is constructed in order to fullfit the following conditions:

• We look for an item of the TABLE collection such that INDEXi > THRESHOLD and
INDEXi = INDEX and VALUEi = VAL,

• There should not exist any item of the TABLE collection such that INDEXi >
THRESHOLD and INDEXi < INDEX and VALUEi = VAL.

Usage Originally introduced for modelling the fact that a nucleotide has to be consumed as soon
as possible at cycle INDEX after a given cycle represented by variable THRESHOLD.

See also minimum greater than, next greater element.

Key words data constraint, minimum, table, automaton, automaton without counters,
centered cyclic(3) constraint network(1), derived collection.
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ITEM

TABLE

1

12345

NARC=2

1:2,9

3:3,9 5:5,9

(A) (B)

Figure 4.313: Initial and final graph of the next element constraint

s

e

INDEX >INDEX  i

INDEX >=INDEX  i

INDEX >THRESHOLD and INDEX =INDEX and VALUE =VAL  i                    i                i

INDEX <=THRESHOLD  i

VALUE <>VAL  i

INDEX <=THRESHOLD  i

VALUE <=VAL  i

t

$

Figure 4.314: Automaton of the next element constraint
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Sn

Q =tn
Q1Q =s0

S2S1

VALUE
  1

VALUE
  2

VALUE
  n

THRESHOLD

VAL

INDEX

Figure 4.315: Hypergraph of the reformulation corresponding to the automaton of the
next element constraint
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4.146 next greater element

Origin M. Carlsson

Constraint next greater element(VAR1, VAR2, VARIABLES)

Argument(s) VAR1 : dvar

VAR2 : dvar

VARIABLES : collection(var − dvar)

Restriction(s) |VARIABLES| > 0
required(VARIABLES, var)

Purpose
VAR2 is the value strictly greater than VAR1 located at the smallest possible entry of the table
TABLE. In addition, the variables of the collection VARIABLES are sorted in strictly increasing
order.

Derived Collection(s) col(V − collection(var− dvar), [item(var − VAR1)])

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var < variables2.var

Graph property(ies) NARC = |VARIABLES| − 1

Arc input(s) V VARIABLES

Arc generator PRODUCT 7→ collection(v, variables)

Arc arity 2

Arc constraint(s) v.var < variables.var

Graph property(ies) NARC > 0

Sets SUCC 7→ [source, variables]

Constraint(s) on sets minimum(VAR2, variables)

Example next greater element

0
BB@ 7, 8,

8
>><
>>:

var − 3,
var − 5,
var − 8,
var − 9

9
>>=
>>;

1
CCA

The next greater element constraint holds since:
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• VAR2 is fixed to the first value 8 strictly greater than VAR1 = 7,

• The var attributes of the items of the collection VARIABLES are sorted in strictly
increasing order.

Parts (A) and (B) of Figure 4.316 respectively show the initial and final graph associated to
the second graph constraint. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.

V

VARIABLES

1

1234

NARC=2

1:7

3:8 4:9

(A) (B)

Figure 4.316: Initial and final graph of the next greater element constraint

Signature Since the first graph constraint uses the PATH arc generator on the VARIABLES collection,
the number of arcs of the corresponding initial graph is equal to |VARIABLES|−1. Therefore
the maximum number of arcs of the final graph is equal to |VARIABLES|−1. For this reason
we can rewrite NARC = |VARIABLES|−1 to NARC ≥ |VARIABLES|−1 and simplify
NARC to NARC.

Usage Originally introduced for modelling the fact that a nucleotide has to be consumed as soon
as possible at cycle VAR2 after a given cycle VAR1.

Remark Similar to the minimum greater than constraint, except for the fact that the var attributes
are sorted.

See also minimum greater than, next element.

Key words order constraint, minimum, data constraint, table, derived collection.
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4.147 ninterval

Origin Derived from nvalue.

Constraint ninterval(NVAL, VARIABLES, SIZE INTERVAL)

Argument(s) NVAL : dvar

VARIABLES : collection(var− dvar)
SIZE INTERVAL : int

Restriction(s) NVAL ≥ min(1, |VARIABLES|)
NVAL ≤ |VARIABLES|
required(VARIABLES, var)
SIZE INTERVAL > 0

Purpose
Consider the intervals of the form [SIZE INTERVAL ·k, SIZE INTERVAL·k+SIZE INTERVAL−
1] where k is an integer. NVAL is the number of intervals for which at least one value is assigned
to at least one variable of the collection VARIABLES.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var/SIZE INTERVAL = variables2.var/SIZE INTERVAL

Graph property(ies) NSCC = NVAL

Example ninterval

0
BBBB@

2,

8
>>>><
>>>>:

var− 3,
var− 1,
var− 9,
var− 1,
var− 9

9
>>>>=
>>>>;
, 4

1
CCCCA

Parts (A) and (B) of Figure 4.317 respectively show the initial and final graph.
Since we use the NSCC graph property we show the different strongly connected
components of the final graph. Each strongly connected component corresponds to those
values of an interval which are assigned to some variables of the VARIABLES collection.
The values 1, 3 and the value 9 which respectively correspond to intervals [0, 3] and [7, 9]
are assigned to the variables of the VARIABLES collection.

Usage The ninterval constraint is useful for counting the number of effectively used periods,
no matter how many time each period is used. A period can for example stand for a hour
or for a day.

Algorithm [33, 106].

See also nvalue, nclass, nequivalence, npair.

Key words counting constraint, value partitioning constraint, number of distinct equivalence classes,
interval, strongly connected component, equivalence.
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VARIABLES

1

2

3

4

5

NSCC=2

SCC#1 SCC#2

1:3

2:1

4:1

3:9

5:9

(A) (B)

Figure 4.317: Initial and final graph of the ninterval constraint



684 AUTOMATON

4.148 no peak

Origin Derived from peak.

Constraint no peak(VARIABLES)

Argument(s) VARIABLES : collection(var − dvar)

Restriction(s) |VARIABLES| > 0
required(VARIABLES, var)

Purpose
A variable Vk (1 < k < m) of the sequence of variables VARIABLES = V1, . . . , Vm is a peak
if and only if there exist an i (1 < i ≤ k) such that Vi−1 < Vi and Vi = Vi+1 = . . . = Vk and
Vk > Vk+1. The total number of peaks of the sequence of variables VARIABLES is equal to 0.

Example no peak

0
BBBB@

8
>>>><
>>>>:

var − 1,
var − 1,
var − 4,
var − 8,
var − 8

9
>>>>=
>>>>;

1
CCCCA

The previous constraint holds since the sequence 1 1 4 8 8 does not contain any
peak.

1

1 2 5

2

3

4

5

6

43

7

8

1 1

4

Values
8 8

Variables 

Figure 4.318: A sequence without any peak

Automaton Figure 4.319 depicts the automaton associated to the no peak constraint. To each pair of
consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a signature
variable Si. The following signature constraint links VARi, VARi+1 and Si: (VARi <
VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi > VARi+1 ⇔ Si = 2).

See also peak, no valley, valley.

Key words sequence, automaton, automaton without counters, sliding cyclic(1) constraint network(1).
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i    i+1VAR =VAR

i    i+1VAR =VAR

i    i+1VAR >VAR

i    i+1VAR >VAR

i    i+1VAR <VAR

i

t

s

$

$

Figure 4.319: Automaton of the no peak constraint

VAR
1

VAR
2

S2

VAR
n

VAR
3

S3

Q2

Sn−1

VAR
n−1

Q   =tn−1Q =s0 Q1

S1

Figure 4.320: Hypergraph of the reformulation corresponding to the automaton of the
no peak constraint
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4.149 no valley

Origin Derived from valley.

Constraint no valley(VARIABLES)

Argument(s) VARIABLES : collection(var − dvar)

Restriction(s) |VARIABLES| > 0
required(VARIABLES, var)

Purpose
A variable Vk (1 < k < m) of the sequence of variables VARIABLES = V1, . . . , Vm is a valley
if and only if there exist an i (1 < i ≤ k) such that Vi−1 > Vi and Vi = Vi+1 = . . . = Vk and
Vk < Vk+1. The total number of valleys of the sequence of variables VARIABLES is equal to 0.

Example no valley

0
BBBBBB@

8
>>>>>><
>>>>>>:

var− 1,
var− 1,
var− 4,
var− 8,
var− 8,
var− 2

9
>>>>>>=
>>>>>>;

1
CCCCCCA

The previous constraint holds since the sequence 1 1 4 8 8 2 does not contain any
valley.

1

1 2 5 6

2

3

4

5

6

43

7

8

1 1

4

Values
8 8

2

Variables 

Figure 4.321: A sequence without any valley

Automaton Figure 4.322 depicts the automaton associated to the no valley constraint. To each pair of
consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a signature
variable Si. The following signature constraint links VARi, VARi+1 and Si: (VARi <
VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi > VARi+1 ⇔ Si = 2).

See also valley, no peak, peak.

Key words sequence, automaton, automaton without counters, sliding cyclic(1) constraint network(1).
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i    i+1VAR =VAR

i    i+1VAR =VAR

i    i+1VAR <VAR

i    i+1VAR <VAR

i    i+1VAR >VAR

i

t

s

$

$

Figure 4.322: Automaton of the no valley constraint
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Figure 4.323: Hypergraph of the reformulation corresponding to the automaton of the
no valley constraint
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4.150 not all equal

Origin CHIP

Constraint not all equal(VARIABLES)

Argument(s) VARIABLES : collection(var − dvar)

Restriction(s) required(VARIABLES, var)
|VARIABLES| > 1

Purpose The variables of the collection VARIABLES should take more than one single value.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NSCC > 1

Example not all equal

0
BBBB@

8
>>>><
>>>>:

var − 3,
var − 1,
var − 3,
var − 3,
var − 3

9
>>>>=
>>>>;

1
CCCCA

Parts (A) and (B) of Figure 4.324 respectively show the initial and final graph.
Since we use the NSCC graph property we show the different strongly connected com-
ponents of the final graph. Each strongly connected component corresponds to one value
which is assigned to some variables of the VARIABLES collection. The not all equal

holds since the final graph contains more than one strongly connected component.

Automaton Figure 4.325 depicts the automaton associated to the not all equal constraint. To each
pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds
a signature variable Si. The following signature constraint links VARi, VARi+1 and Si:
VARi = VARi+1 ⇔ Si.

Algorithm If the intersection of the domains of the variables of the VARIABLES collection is empty
the not all equal constraint is entailed. Otherwise, when only one single variable V
remains not fixed, remove the unique value (unique since the constraint is not entailed)
taken by the other variables from the domain of V .

See also nvalue.

Key words value constraint, disequality, automaton, automaton without counters,
sliding cyclic(1) constraint network(1), equivalence.
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NSCC=2

SCC#1 SCC#2

1:3

3:3

4:3

5:3

2:1

(A) (B)

Figure 4.324: Initial and final graph of the not all equal constraint
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Figure 4.325: Automaton of the not all equal constraint
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Figure 4.326: Hypergraph of the reformulation corresponding to the automaton of the
not all equal constraint
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4.151 not in

Origin Derived from in.

Constraint not in(VAR, VALUES)

Argument(s) VAR : dvar

VALUES : collection(val− int)

Restriction(s) required(VALUES, val)
distinct(VALUES, val)

Purpose Remove the values of the VALUES collection from domain variable VAR.

Derived Collection(s) col(VARIABLES − collection(var − dvar), [item(var − VAR)])

Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→ collection(variables, values)

Arc arity 2

Arc constraint(s) variables.var = values.val

Graph property(ies) NARC = 0

Example not in(2, {val − 1, val− 3})

Figure 4.327 shows the initial graph associated to the previous example. Since we
use the NARC = 0 graph property the final graph is empty.

VARIABLES

VALUES

1

12

Figure 4.327: Initial graph of the not in constraint (the final graph is empty)

Signature Since 0 is the smallest number of arcs of the final graph we can rewrite NARC = 0 to
NARC ≤ 0. This leads to simplify NARC to NARC.
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Automaton Figure 4.328 depicts the automaton associated to the not in constraint. Let VALi be the
val attribute of the ith item of the VALUES collection. To each pair (VAR, VALi) corresponds
a 0-1 signature variable Si as well as the following signature constraint: VAR = VALi ⇔ Si.

Remark Entailment occurs immediately after posting this constraint.

Used in group.

See also in.

Key words value constraint, unary constraint, excluded, disequality, domain definition, automaton,
automaton without counters, centered cyclic(1) constraint network(1), derived collection.

VAR<>VAL is

t

$

Figure 4.328: Automaton of the not in constraint
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Figure 4.329: Hypergraph of the reformulation corresponding to the automaton of the
not in constraint
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694 NSCC,CLIQUE

4.152 npair

Origin Derived from nvalue.

Constraint npair(NVAL, PAIRS)

Argument(s) NVAL : dvar

PAIRS : collection(x − dvar, y − dvar)

Restriction(s) NVAL ≥ min(1, |PAIRS|)
NVAL ≤ |PAIRS|
required(PAIRS, [x, y])

Purpose NVAL is the number of distinct pairs of values assigned to the pairs of variables of the collection
PAIRS.

Arc input(s) PAIRS

Arc generator CLIQUE 7→ collection(pairs1, pairs2)

Arc arity 2

Arc constraint(s) • pairs1.x = pairs2.x
• pairs1.y = pairs2.y

Graph property(ies) NSCC = NVAL

Example npair

0
BBBB@

2,

8
>>>><
>>>>:

x− 3 y− 1,
x− 1 y− 5,
x− 3 y− 1,
x− 3 y− 1,
x− 1 y− 5

9
>>>>=
>>>>;

1
CCCCA

Parts (A) and (B) of Figure 4.330 respectively show the initial and final graph.
Since we use the NSCC graph property we show the different strongly connected
components of the final graph. Each strongly connected component corresponds to one
pair of values which is assigned to some pairs of variables of the PAIRS collection. In our
example we have the following pairs of values: (3,1) and (1,5).

Remark This is an example of a number of distinct values constraint where there is more than one
attribute that is associated to each vertex of the final graph.

See also nvalue, nclass, nequivalence, ninterval.

Key words counting constraint, value partitioning constraint, number of distinct equivalence classes,
pair, strongly connected component, equivalence.
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PAIRS

1
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3

4

5

NSCC=2

SCC#1 SCC#2

1:3,1

3:3,1

4:3,1

2:1,5

5:1,5

(A) (B)

Figure 4.330: Initial and final graph of the npair constraint



696 NSCC,CLIQUE

4.153 nset of consecutive values

Origin N. Beldiceanu

Constraint nset of consecutive values(N, VARIABLES)

Argument(s) N : dvar

VARIABLES : collection(var − dvar)

Restriction(s) N ≥ 1
N ≤ |VARIABLES|
required(VARIABLES, var)

Purpose N is the number of set of consecutive values used by the variables of the collection VARIABLES.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) abs(variables1.var − variables2.var) ≤ 1

Graph property(ies) NSCC = N

Example nset of consecutive values

0
BBBBBBBB@

2,

8
>>>>>>>><
>>>>>>>>:

var − 3,
var − 1,
var − 7,
var − 1,
var − 1,
var − 2,
var − 8

9
>>>>>>>>=
>>>>>>>>;

1
CCCCCCCCA

In this example, the variables of the collection VARIABLES use the following two
sets of consecutive values: {1, 2, 3} and {7, 8}. Parts (A) and (B) of Figure 4.331
respectively show the initial and final graph. Since we use the NSCC graph property, we
show the two strongly connected components of the final graph.

Graph model Since the arc constraint is symmetric each strongly connected component of the final graph
corresponds exactly to one connected component of the final graph.

Usage Used for specifying the fact that the values have to be used in a compact way is achieved
by setting N to 1.

See also min size set of consecutive var.

Key words value constraint, consecutive values, strongly connected component.
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7
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SCC#1 SCC#2

1:3

6:2

2:1

4:1
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(A) (B)

Figure 4.331: Initial and final graph of the nset of consecutive values constraint
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4.154 nvalue

Origin [73]

Constraint nvalue(NVAL, VARIABLES)

Synonym(s) cardinality on attributes values.

Argument(s) NVAL : dvar

VARIABLES : collection(var − dvar)

Restriction(s) NVAL ≥ min(1, |VARIABLES|)
NVAL ≤ |VARIABLES|
required(VARIABLES, var)

Purpose NVAL is the number of distinct values taken by the variables of the collection VARIABLES.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NSCC = NVAL

Example nvalue

0
BBBB@

4,

8
>>>><
>>>>:

var − 3,
var − 1,
var − 7,
var − 1,
var − 6

9
>>>>=
>>>>;

1
CCCCA

Parts (A) and (B) of Figure 4.332 respectively show the initial and final graph.
Since we use the NSCC graph property we show the different strongly connected
components of the final graph. Each strongly connected component corresponds to one
value which is assigned to some variables of the VARIABLES collection. The 4 following
values 1, 3, 6 and 7 are used by the variables of the VARIABLES collection.

Automaton Figure 4.333 depicts the automaton associated to the nvalue constraint. To each item of
the collection VARIABLES corresponds a signature variable Si, which is equal to 0.

Usage This constraint occurs in many practical applications. In the context of timetabling one
wants to set up a limit on the maximum number of activity types it is possible to perform.
For frequency allocation problems, one optimisation criteria corresponds to the fact that
you want to minimize the number of distinct frequencies that you use all over the entire
network. The nvalue constraint generalizes several constraints like:
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VARIABLES

1

2

3

4

5

NSCC=4

SCC#1 SCC#2 SCC#3 SCC#4

1:3 2:1

4:1

3:7 5:6

(A) (B)

Figure 4.332: Initial and final graph of the nvalue constraint

i       i

0,
{C[VAR ]=C[VAR ]+1}

$

t:
among_diff_0(N,C)

{C[_]=0}

s

Figure 4.333: Automaton of the nvalue constraint
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• alldifferent(VARIABLES): in order to get the alldifferent constraint, one has
to set NVAL to the total number of variables.

• not all equal(VARIABLES): in order to get the not all equal constraint, one
has to set the minimum value of NVAL to 2.

Remark This constraint appears in [73, page 339] under the name of Cardinality on Attributes Val-
ues. A constraint called k − diff enforcing that a set of variables takes at least k distinct
values appears in the PhD thesis of J.-C. Régin [133].

Algorithm [33, 106, 54].

Used in track.

See also alldifferent, not all equal, nvalues, nvalues except 0, npair,
nvalue on intersection, among diff 0.

Key words counting constraint, value partitioning constraint, number of distinct equivalence classes,
number of distinct values, strongly connected component, domination, automaton,
automaton with array of counters, equivalence.
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4.155 nvalue on intersection

Origin Derived from common and nvalue.

Constraint nvalue on intersection(NVAL, VARIABLES1, VARIABLES2)

Argument(s) NVAL : dvar

VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)

Restriction(s) NVAL ≥ 0
NVAL ≤ |VARIABLES1|
NVAL ≤ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose NVAL is the number of distinct values which both occur in the VARIABLES1 and VARIABLES2

collections.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NCC = NVAL

Example nvalue on intersection

0
BBBBBBBBBBBBBB@

2,

8
>><
>>:

var − 1,
var − 9,
var − 1,
var − 5

9
>>=
>>;
,

8
>>>>>><
>>>>>>:

var − 2,
var − 1,
var − 9,
var − 9,
var − 6,
var − 9

9
>>>>>>=
>>>>>>;

1
CCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.334 respectively show the initial and final graph.
Since we use the NCC graph property we show the connected components of the final
graph. The variable NVAL is equal to this number of connected components. Observe that
all the vertices corresponding to the variables that take values 5, 2 or 6 were removed from
the final graph since there is no arc for which the associated equality constraint holds.

See also nvalue, common, alldifferent on intersection, same intersection.

Key words counting constraint, number of distinct values, connected component,
constraint on the intersection.
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VARIABLES1

VARIABLES2

1

1234 56

234

NCC=2

CC#1 CC#2

1:1

2:1

3:1 2:9

3:9 4:9 6:9

(A) (B)

Figure 4.334: Initial and final graph of the nvalue on intersection constraint
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4.156 nvalues

Origin Inspired by nvalue and count.

Constraint nvalues(VARIABLES, RELOP, LIMIT)

Argument(s) VARIABLES : collection(var − dvar)
RELOP : atom

LIMIT : dvar

Restriction(s) required(VARIABLES, var)
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose Let N be the number of distinct values assigned to the variables of the VARIABLES collection.
Enforce condition N RELOP LIMIT to hold.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NSCC RELOP LIMIT

Example nvalues

0
BBBBBB@

8
>>>>>><
>>>>>>:

var− 4,
var− 5,
var− 5,
var− 4,
var− 1,
var− 5

9
>>>>>>=
>>>>>>;

,=, 3

1
CCCCCCA

Parts (A) and (B) of Figure 4.335 respectively show the initial and final graph.
Since we use the NSCC graph property we show the different strongly connected
components of the final graph. Each strongly connected component corresponds to one
value which is assigned to some variables of the VARIABLES collection. The 3 following
values 1, 4 and 5 are used by the variables of the VARIABLES collection.

Usage Used in the Constraint(s) on sets slot for defining some constraints like
assign and nvalues, circuit cluster or coloured cumulative.

Used in assign and nvalues, circuit cluster, coloured cumulative,
coloured cumulatives.

See also nvalues except 0, nvalue.

Key words counting constraint, value partitioning constraint, number of distinct equivalence classes,
number of distinct values, strongly connected component, equivalence.
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VARIABLES

1

2

3

4

5

6

NSCC=3

SCC#1 SCC#2 SCC#3

1:4

4:4

2:5

3:5

6:5

5:1

(A) (B)

Figure 4.335: Initial and final graph of the nvalues constraint
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4.157 nvalues except 0

Origin Derived from nvalues.

Constraint nvalues except 0(VARIABLES, RELOP, LIMIT)

Argument(s) VARIABLES : collection(var − dvar)
RELOP : atom

LIMIT : dvar

Restriction(s) required(VARIABLES, var)
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose Let N be the number of distinct values, different from 0, assigned to the variables of the
VARIABLES collection. Enforce condition N RELOP LIMIT to hold.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • variables1.var 6= 0
• variables1.var = variables2.var

Graph property(ies) NSCC RELOP LIMIT

Example nvalues except 0

0
BBBBBB@

8
>>>>>><
>>>>>>:

var − 4,
var − 5,
var − 5,
var − 4,
var − 0,
var − 1

9
>>>>>>=
>>>>>>;

,=, 3

1
CCCCCCA

Parts (A) and (B) of Figure 4.336 respectively show the initial and final graph.
Since we use the NSCC graph property we show the different strongly connected
components of the final graph. Each strongly connected component corresponds to one
value distinct from 0 which is assigned to some variables of the VARIABLES collection.
Beside value 0, the 3 following values 1, 4 and 5 are assigned to the variables of the
VARIABLES collection.

Used in cycle or accessibility.

See also nvalues, nvalue, assign and nvalues.

Key words counting constraint, value partitioning constraint, number of distinct values,
strongly connected component, joker value.
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VARIABLES

1

2

3

4

5

6

NSCC=3

SCC#1 SCC#2 SCC#3

1:4

4:4

2:5

3:5

6:1

(A) (B)

Figure 4.336: Initial and final graph of the nvalues except 0 constraint
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4.158 one tree

Origin Inspired by [134]

Constraint one tree(NODES)

Argument(s) NODES : collection

0
BBBBBB@

id− atom,
index − int,
type − int,
father − dvar,
depth1 − dvar,
depth2 − dvar

1
CCCCCCA

Restriction(s) required(NODES, [id, index, type, father, depth1, depth2])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
in list(NODES, type, [2, 3, 6])
NODES.father ≥ 1
NODES.father ≤ |NODES|
NODES.depth1 ≥ 0
NODES.depth1 ≤ |NODES|
NODES.depth2 ≥ 0
NODES.depth2 ≤ |NODES|

Purpose Merge two trees that have some leaves in common so that all the precedence constraints induced
by the father relation of both trees are preserved.

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s)
W

0
BBBBBBBB@

nodes1.index = nodes2.index ∧ nodes1.father = nodes1.index,

V

0
BBBBBB@

nodes1.index 6= nodes2.index,
nodes1.father = nodes2.index,
W„ nodes1.type mod 2 = 0 ∧ nodes1.depth1 > nodes2.depth1,

nodes1.type mod 2 > 0 ∧ nodes1.depth1 = nodes2.depth1

«
,

W„ nodes1.type mod 3 = 0 ∧ nodes1.depth2 > nodes2.depth2,
nodes1.type mod 3 > 0 ∧ nodes1.depth2 = nodes2.depth2

«

1
CCCCCCA

1
CCCCCCCCA

Graph property(ies) •MAX NSCC ≤ 1
• NCC = 1
• NVERTEX = |NODES|
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Example one tree

0
BBBBBBBBBBBBBBBBBBBBBB@

8
>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

id − x index − 1 type − 2 father − 6 depth1 − 2 depth2 − 2,
id − x index − 2 type − 2 father − 2 depth1 − 1 depth2 − 0,
id − x index − 3 type − 3 father − 6 depth1 − 1 depth2 − 3,
id − x index − 4 type − 3 father − 5 depth1 − 2 depth2 − 4,
id − x index − 5 type − 3 father − 1 depth1 − 2 depth2 − 3,
id − x index − 6 type − 3 father − 7 depth1 − 1 depth2 − 2,
id − x index − 7 type − 3 father − 2 depth1 − 1 depth2 − 1,
id − g index − 8 type − 2 father − 1 depth1 − 3 depth2 − 2,
id − a index − 9 type − 6 father − 4 depth1 − 3 depth2 − 5,
id − f index − 10 type − 6 father − 7 depth1 − 2 depth2 − 2,
id − b index − 11 type − 3 father − 4 depth1 − 2 depth2 − 5,
id − c index − 12 type − 3 father − 5 depth1 − 2 depth2 − 4,
id − e index − 13 type − 3 father − 3 depth1 − 1 depth2 − 4,
id − d index − 14 type − 3 father − 3 depth1 − 1 depth2 − 4

9
>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;

1
CCCCCCCCCCCCCCCCCCCCCCA

Figure 4.337 shows the two trees we want to merge. Note that the leaves a and f occur in
both trees. In order to ease the link with the merged tree given in part (B) of Figure 4.338,
each vertex of the original trees contains the id, the index, the type, the father and the
corresponding depth.

g  8 2 1 3

x  1 2 2 2

x  2 2 2 1

a  9 6 1 3

f 10 6 2 2

b 11 3 4 5

x  4 3 5 4

x  5 3 6 3

a  9 6 4 5

c 12 3 5 4

x  6 3 7 2

e 13 3 3 4

x  3 3 6 3

d 14 3 3 4

f 10 6 7 2

x  7 3 7 1

Figure 4.337: The two trees to merge

Parts (A) and (B) of Figure 4.338 respectively show the initial and final graph. Since we
use the NVERTEX graph property, the vertices of the final graph are stressed in bold.

Graph model The information about the two trees to merge is modelled in the following way:
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NODES

1

2

3

4

5

6

7

8

9

10

11

12

13

14

MAX_NSCC=1,NCC=1,NVERTEX=14

1:x,1,2,6,2,2

6:x,6,3,7,1,2

7:x,7,3,2,1,1

2:x,2,2,2,1,0

3:x,3,3,6,1,3

4:x,4,3,5,2,4

5:x,5,3,1,2,3 8:g,8,2,1,3,2

9:a,9,6,4,3,5

10:f,10,6,7,2,2

11:b,11,3,4,2,5

12:c,12,3,5,2,4

13:e,13,3,3,1,4 14:d,14,3,3,1,4

(A) (B)

Figure 4.338: Initial and final graph of the one tree constraint
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• A vertex which only belongs to the first (respectively second) tree has its type

attribute set to 2 (respectively 3), while a vertex which belongs to both trees has
its type attribute set to 6. This encoding was selected so that the statement
type mod 2 = 0 (respectively type mod 3 = 0) allows determining whether a
vertex belongs or not to the first (respectively second) tree.

• For a vertex belonging to the first (respectively second) tree, the depth1 (respectively
depth2) attribute indicates the depth of that vertex in the corresponding tree.

The arc constraint is a disjunction of two conditions which respectively capture the follow-
ing ideas:

• The first condition describes the fact that we link a vertex to itself. This vertex
corresponds to the root of the merged tree we construct.

• The first part of the second condition describes the fact that we link a child vertex
nodes1 to its father nodes2. The last part of the second condition expresses the fact
that we want to preserve the father relation imposed by the first and second trees. This
is achieved by using the following idea: When the child vertex nodes1 belongs to
the first (respectively second) tree we enforce a strict inequality between the depth1
(respectively depth2) attributes of nodes1 and nodes2; Otherwise we enforce an
equality constraint.

Finally we use the following three graph properties in order to enforce to get a merged tree:

• The first graph property MAX NSCC ≤ 1 enforces the fact that the size of the
largest strongly connected component does not exceed one. This avoid having cir-
cuits containing more than one vertex. In fact the root of the merged tree is a strongly
connected component with one single vertex.

• The second graph property NCC = 1 imposes having only one single tree.

• Finally the third graph property NVERTEX = |NODES| imposes that the merged
tree contains effectively all the vertices of the first and second tree.

Remark A compact way to model the construction of a tree of life [134].

See also tree.

Key words graph constraint, tree, bioinformatics, phylogeny, obscure.
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4.159 orchard

Origin [135]

Constraint orchard(NROW, TREES)

Argument(s) NROW : dvar

TREES : collection(index − int, x− dvar, y− dvar)

Restriction(s) NROW ≥ 0
TREES.index ≥ 1
TREES.index ≤ |TREES|
required(TREES, [index, x, y])
distinct(TREES, index)
TREES.x ≥ 0
TREES.y ≥ 0

Orchard problem [135]:
Purpose Your aid I want, Nine trees to plant, In rows just half a score, And let there be,

In each row, three—Solve this: I ask no more!

Arc input(s) TREES

Arc generator CLIQUE(<) 7→ collection(trees1, trees2, trees3)

Arc arity 3

Arc constraint(s)
P
0
@

trees1.x ∗ trees2.y − trees1.x ∗ trees3.y,
trees1.y ∗ trees3.x − trees1.y ∗ trees2.x,
trees2.x ∗ trees3.y − trees2.y ∗ trees3.x

1
A = 0

Graph property(ies) NARC = NROW

Example orchard

0
BBBBBBBBBBBB@

10,

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

index − 1 x− 0 y − 0,
index − 2 x− 4 y − 0,
index − 3 x− 8 y − 0,
index − 4 x− 2 y − 4,
index − 5 x− 4 y − 4,
index − 6 x− 6 y − 4,
index − 7 x− 0 y − 8,
index − 8 x− 4 y − 8,
index − 9 x− 8 y − 8

9
>>>>>>>>>>>>=
>>>>>>>>>>>>;

1
CCCCCCCCCCCCA

The 10 alignments of 3 trees correspond to the following triples of trees: (1, 2, 3),
(1, 4, 8), (1, 5, 9), (2, 4, 7), (2, 5, 8), (2, 6, 9), (3, 5, 7), (3, 6, 8), (4, 5, 6), (7, 8, 9).
Figure 4.339 shows the 9 trees and the 10 alignments corresponding to the example.
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Graph model The arc generator CLIQUE(<) with an arity of three is used in order to generate all
the arcs of the directed hypergraph. Each arc is an ordered triple of trees. We use the
restriction< in order to generate one single arc for each set of three trees. This is required,
since otherwise we would count more than once a given alignment of three trees. The
formula used within the arc constraint expresses the fact that the three points of respective
coordinates (trees1.x, trees1.y), (trees2.x, trees2.y) and (trees3.x, trees3.y) are
aligned. It corresponds to the development of the expression:

˛̨
˛̨
˛̨
trees1.x trees2.y 1
trees2.x trees2.y 1
trees3.x trees3.y 1

˛̨
˛̨
˛̨ = 0

Key words geometrical constraint, alignment, hypergraph.
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2
1 3

5

4 6

7
8

9

Figure 4.339: Nine trees with 10 alignments of 3 trees
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4.160 orth link ori siz end

Origin Used by several constraints between orthotopes

Constraint orth link ori siz end(ORTHOTOPE)

Argument(s) ORTHOTOPE : collection(ori − dvar, siz− dvar, end − dvar)

Restriction(s) |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0

Purpose Enforce for each item of the ORTHOTOPE collection the constraint ori + siz = end.

Arc input(s) ORTHOTOPE

Arc generator SELF 7→ collection(orthotope)

Arc arity 1

Arc constraint(s) orthotope.ori + orthotope.siz = orthotope.end

Graph property(ies) NARC = |ORTHOTOPE|

Example orth link ori siz end

„ 
ori − 2 siz − 2 end − 4,
ori − 1 siz − 3 end − 4

ff «

Parts (A) and (B) of Figure 4.340 respectively show the initial and final graph.
Since we use the NARC graph property, the unary arcs of the final graph are stressed in
bold.

ORTHOTOPE

12

NARC=2

1:2,2,4 2:1,3,4

(A) (B)

Figure 4.340: Initial and final graph of the orth link ori siz end constraint

Signature Since we use the SELF arc generator on the ORTHOTOPE collection the number of arcs of
the initial graph is equal to |ORTHOTOPE|. Therefore the maximum number of arcs of the
final graph is also equal to |ORTHOTOPE|. For this reason we can rewrite the graph property
NARC = |ORTHOTOPE| to NARC ≥ |ORTHOTOPE| and simplify NARC to NARC.

Usage Used in the Arc constraint(s) slot for defining some constraints like diffn,
place in pyramid or orths are connected.
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Used in diffn, orth on the ground, orth on top of orth, orths are connected,
two orth are in contact, two orth column, two orth do not overlap,
two orth include.

Key words decomposition, orthotope.
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4.161 orth on the ground

Origin Used for defining place in pyramid.

Constraint orth on the ground(ORTHOTOPE, VERTICAL DIM)

Argument(s) ORTHOTOPE : collection(ori− dvar, siz − dvar, end− dvar)
VERTICAL DIM : int

Restriction(s) |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
VERTICAL DIM ≥ 1
VERTICAL DIM ≤ |ORTHOTOPE|
orth link ori siz end(ORTHOTOPE)

Purpose The ori attribute of the VERTICAL DIMth item of the ORTHOTOPES collection should be fixed
to one.

Arc input(s) ORTHOTOPE

Arc generator SELF 7→ collection(orthotope)

Arc arity 1

Arc constraint(s) • orthotope.key = VERTICAL DIM

• orthotope.ori = 1

Graph property(ies) NARC = 1

Example orth on the ground

„ 
ori − 1 siz − 2 end− 3,
ori − 2 siz − 3 end− 5

ff
, 1

«

Parts (A) and (B) of Figure 4.341 respectively show the initial and final graph.
Since we use the NARC graph property, the unary arc of the final graph is stressed in
bold.

ORTHOTOPE

12

NARC=1

1:1,2,3

(A) (B)

Figure 4.341: Initial and final graph of the orth on the ground constraint
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Signature Since all the key attributes of the ORTHOTOPES collection are distinct, because of the first
condition of the arc constraint, and since we use the SELF arc generator the final graph
contains at most one arc. Therefore we can rewrite the graph property NARC = 1 to
NARC ≥ 1 and simplify NARC to NARC.

Used in place in pyramid.

See also place in pyramid.

Key words geometrical constraint, orthotope.
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4.162 orth on top of orth

Origin Used for defining place in pyramid.

Constraint orth on top of orth(ORTHOTOPE1, ORTHOTOPE2, VERTICAL DIM)

Type(s) ORTHOTOPE : collection(ori − dvar, siz− dvar, end − dvar)

Argument(s) ORTHOTOPE1 : ORTHOTOPE

ORTHOTOPE2 : ORTHOTOPE

VERTICAL DIM : int

Restriction(s) |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
|ORTHOTOPE1| = |ORTHOTOPE2|
VERTICAL DIM ≥ 1
VERTICAL DIM ≤ |ORTHOTOPE1|
orth link ori siz end(ORTHOTOPE1)
orth link ori siz end(ORTHOTOPE2)

ORTHOTOPE1 is located on top of ORTHOTOPE2 which concretely means:
Purpose • In each dimension different from VERTICAL DIM the projection of ORTHOTOPE1 is in-

cluded in the projection of ORTHOTOPE2.

• In the dimension VERTICAL DIM the origin of ORTHOTOPE1 coincide with the end of
ORTHOTOPE2.

Arc input(s) ORTHOTOPE1 ORTHOTOPE2

Arc generator PRODUCT (=) 7→ collection(orthotope1, orthotope2)

Arc arity 2

Arc constraint(s) • orthotope1.key 6= VERTICAL DIM

• orthotope2.ori ≤ orthotope1.ori
• orthotope1.end ≤ orthotope2.end

Graph property(ies) NARC = |ORTHOTOPE1| − 1

Arc input(s) ORTHOTOPE1 ORTHOTOPE2

Arc generator PRODUCT (=) 7→ collection(orthotope1, orthotope2)

Arc arity 2

Arc constraint(s) • orthotope1.key = VERTICAL DIM

• orthotope1.ori = orthotope2.end
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Graph property(ies) NARC = 1

Example orth on top of orth

0
BB@


ori − 5 siz − 2 end − 7,
ori − 3 siz − 3 end − 6

ff
,


ori − 3 siz − 5 end − 8,
ori − 1 siz − 2 end − 3

ff
, 2

1
CCA

Parts (A) and (B) of Figure 4.342 respectively show the initial and final graph asso-
ciated to the second graph constraint. Since we use the NARC graph property, the unique
arc of the final graph is stressed in bold.

ORTHOTOPE1

ORTHOTOPE2

1

1

2

2

NARC=1

2:3,3,6

2:1,2,3

(A) (B)

Figure 4.342: Initial and final graph of the orth on top of orth constraint

Graph model The first and second graph constraints respectively express the first and second conditions
stated in the Purpose slot defining the orth on top of orth constraint.

Signature Consider the second graph constraint. Since all the key attributes of the ORTHOTOPE1

collection are distinct, because of the arc constraint orthotope1.key = VERTICAL DIM,
and since we use the PRODUCT (=) arc generator the final graph contains at most one
arc. Therefore we can rewrite the graph property NARC = 1 to NARC ≥ 1 and
simplify NARC to NARC.

Used in place in pyramid.

See also place in pyramid.

Key words geometrical constraint, non-overlapping, orthotope.
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4.163 orths are connected

Origin N. Beldiceanu

Constraint orths are connected(ORTHOTOPES)

Type(s) ORTHOTOPE : collection(ori − dvar, siz− dvar, end − dvar)

Argument(s) ORTHOTOPES : collection(orth− ORTHOTOPE)

Restriction(s) |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz > 0
required(ORTHOTOPES, orth)
same size(ORTHOTOPES, orth)

Purpose
There should be one single group of connected orthotopes. Two orthotopes touch each other
(i.e. are connected) if they overlap in all dimensions except one, and if, for the dimension where
they do not overlap, the distance between the two orthotopes is equal to 0.

Arc input(s) ORTHOTOPES

Arc generator SELF 7→ collection(orthotopes)

Arc arity 1

Arc constraint(s) orth link ori siz end(orthotopes.orth)

Graph property(ies) NARC = |ORTHOTOPES|

Arc input(s) ORTHOTOPES

Arc generator CLIQUE(6=) 7→ collection(orthotopes1, orthotopes2)

Arc arity 2

Arc constraint(s) two orth are in contact(orthotopes1.orth, orthotopes2.orth)

Graph property(ies) • NVERTEX = |ORTHOTOPES|
• NCC = 1

Example orths are connected

0
BBBBBBBBBB@

8
>>>>>>>>>><
>>>>>>>>>>:

orth −


ori− 2 siz− 4 end − 6,
ori− 2 siz− 2 end − 4

ff
,

orth −


ori− 1 siz− 2 end − 3,
ori− 4 siz− 3 end − 7

ff
,

orth −


ori− 7 siz− 4 end − 11,
ori− 1 siz− 2 end − 3

ff
,

orth −


ori− 6 siz− 2 end − 8,
ori− 3 siz− 2 end − 5

ff

9
>>>>>>>>>>=
>>>>>>>>>>;

1
CCCCCCCCCCA
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Parts (A) and (B) of Figure 4.343 respectively show the initial and final graph.
Since we use the NVERTEX graph property the vertices of the final graph are stressed
in bold. Since we also use the NCC graph property we show the unique connected
component of the final graph. An arc between two vertices indicates that two rectangles
are in contact. Figure 4.344 shows the rectangles associated to the example. One can
observe that:

• Rectangle 2 touch rectangle 1,

• Rectangle 1 touch rectangle 2 and rectangle 4,

• Rectangle 4 touch rectangle 1 and rectangle 3,

• Rectangle 3 touch rectangle 4.

ORTHOTOPES

1

2

3

4 NVERTEX=4
NCC=1

SCC#1

1:2,4,6
  2,2,4

2:1,2,3
  4,3,7

4:6,2,8
  3,2,5

3:7,4,11
  1,2,3

(A) (B)

Figure 4.343: Initial and final graph of the orths are connected constraint

1

1 2 3 4 5 6 7 8 9 10

2

3

4

5

6

R1

R3

R4

R2

Figure 4.344: Four connected rectangles

Signature Since the first graph constraint uses the SELF arc generator on the ORTHOTOPES col-
lection the corresponding initial graph contains |ORTHOTOPES| arcs. Therefore the final
graph of the first graph constraint contains at most |ORTHOTOPES| arcs and we can rewrite
NARC = |ORTHOTOPES| to NARC ≥ |ORTHOTOPES|. So we can simplify NARC to
NARC.
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Consider now the second graph constraint. Since its corresponding initial graph con-
tains |ORTHOTOPES| vertices, its final graph has a maximum number of vertices also
equal to |ORTHOTOPES|. Therefore we can rewrite NVERTEX = |ORTHOTOPES| to
NVERTEX ≥ |ORTHOTOPES| and simplify NVERTEX to NVERTEX. From the
graph property NVERTEX = |ORTHOTOPES| and from the restriction |ORTHOTOPES| >
0 the final graph is not empty. Therefore it contains at least one connected component. So
we can rewrite NCC = 1 to NCC ≤ 1 and simplify NCC to NCC.

Usage In floor planning problem there is a typical constraint, which states that one should be able
to access every room from any room.

See also two orth are in contact.

Key words geometrical constraint, touch, contact, non-overlapping, orthotope.
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4.164 path from to

Origin [74]

Constraint path from to(FROM, TO, NODES)

Usual name path

Argument(s) FROM : int

TO : int

NODES : collection(index − int, succ − svar)

Restriction(s) FROM ≥ 1
FROM ≤ |NODES|
TO ≥ 1
TO ≤ |NODES|
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)

Purpose Select some arcs of a digraph G so that there is still a path between two given vertices of G.

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) in set(nodes2.index, nodes1.succ)

Graph property(ies) PATH FROM TO(index, FROM, TO) = 1

Example path from to

0
BBBB@

4, 3,

8
>>>><
>>>>:

index − 1 succ − ∅,
index − 2 succ − ∅,
index − 3 succ − {5},
index − 4 succ − {5},
index − 5 succ − {2, 3}

9
>>>>=
>>>>;

1
CCCCA

Part (A) of Figure 4.345 shows the initial graph from which we choose to start. It
is derived from the set associated to each vertex. Each set describes the potential values
of the succ attribute of a given vertex. Part (B) of Figure 4.345 gives the final graph
associated to the example. Since we use the PATH FROM TO graph property we
show on the final graph the following information:

• The vertices which respectively correspond to the start and the end of the required
path are stressed in bold.

• The arcs on the required path are also stressed in bold.
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The path from to constraint holds since there is a path from vertex 4 to vertex 3 (4 and 3
refer to the index attribute of a vertex).

Signature Since the maximum value returned by the graph property PATH FROM TO
is equal to 1 we can rewrite PATH FROM TO(index, FROM, TO) = 1
to PATH FROM TO(index, FROM, TO) ≥ 1. Therefore we simplify
PATH FROM TO to PATH FROM TO.

See also temporal path, link set to booleans.

Key words graph constraint, path, linear programming, constraint involving set variables.
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NODES

1:1,{2,4}

2:2,{1,3,5}

4:4,{1,5}3:3,{2,5}

5:5,{2,3,4}

PATH_FROM_TO(index,4,3)=1

4:4,{5}

5:5,{2,3}

3:3,{5} 2:2,{}

(A) (B)

Figure 4.345: Initial and final graph of the path from to set constraint
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4.165 pattern

Origin [34]

Constraint pattern(VARIABLES, PATTERNS)

Type(s) PATTERN : collection(var− int)

Argument(s) VARIABLES : collection(var − dvar)
PATTERNS : collection(pat − PATTERN)

Restriction(s) required(PATTERN, var)
change(0, PATTERN,=)
required(VARIABLES, var)
required(PATTERNS, pat)
same size(PATTERNS, pat)

Purpose

We quote the definition from the original paper [34, page 157] introducing the pattern con-
straint.
We call a k-pattern any sequence of k elements such that no two successive elements have the
same value. Consider a set V = {v1, v2, . . . , vm} and a sequence s = 〈s1, s2, . . . , sn〉 of
elements of V . Consider now the sequence 〈vi1, vi2, . . . , vil〉 of the types of the successive
stretches that appear in s. Let P be a set of k-pattern. Vector s satisfies P if and only if every
subsequence of k elements in 〈vi1, vi2, . . . , vil〉 belongs to P .

Example pattern

0
BBBBBBBBBBBBBBBB@

8
>>>>>>>>>><
>>>>>>>>>>:

var− 1,
var− 1,
var− 2,
var− 2,
var− 2,
var− 1,
var− 3,
var− 3

9
>>>>>>>>>>=
>>>>>>>>>>;

,

8
<
:

pat− {var − 1, var− 2, var− 1},
pat− {var − 1, var− 2, var− 3},
pat− {var − 2, var− 1, var− 3}

9
=
;

1
CCCCCCCCCCCCCCCCA

Usage The pattern constraint was originally introduced within the context of staff scheduling.
In this context, the value of the ith variable of the VARIABLES collection corresponds to
the type of shift performed by a person on the ith day. A stretch is a maximum sequence
of consecutive variables which are all assigned to the same value. The pattern constraint
imposes that each sequence of k consecutive stretches belongs to a given list of patterns.

Remark A generalization of the pattern constraint to the regular constraint enforcing the fact
that a sequence of variables corresponds to a regular expression is presented in [5].

See also stretch path, sliding distribution, group.
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Key words predefined constraint, timetabling constraint, sliding sequence constraint.
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4.166 peak

Origin Derived from inflexion.

Constraint peak(N, VARIABLES)

Argument(s) N : dvar

VARIABLES : collection(var − dvar)

Restriction(s) N ≥ 0
2 ∗ N ≤ max(|VARIABLES| − 1, 0)
required(VARIABLES, var)

Purpose
A variable Vk (1 < k < m) of the sequence of variables VARIABLES = V1, . . . , Vm is a peak
if and only if there exist an i (1 < i ≤ k) such that Vi−1 < Vi and Vi = Vi+1 = . . . = Vk and
Vk > Vk+1. N is the total number of peaks of the sequence of variables VARIABLES.

Example peak

0
BBBBBBBBBB@

2,

8
>>>>>>>>>><
>>>>>>>>>>:

var − 1,
var − 1,
var − 4,
var − 8,
var − 6,
var − 2,
var − 7,
var − 1

9
>>>>>>>>>>=
>>>>>>>>>>;

1
CCCCCCCCCCA

The previous constraint holds since the sequence 1 1 4 8 6 2 7 1 contains two
peaks which correspond to the variables which are assigned to values 8 and 7.

1

1 5 6 7 8

2

3

4

5

6

43

7

8

1 1

4

Values

Variables 

8

2

6

2

7

1

Figure 4.346: The sequence and its two peaks

Automaton Figure 4.347 depicts the automaton associated to the peak constraint. To each pair of
consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a signature
variable Si. The following signature constraint links VARi, VARi+1 and Si: (VARi >
VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi < VARi+1 ⇔ Si = 2).
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VAR > VARi i+1 VAR = VARi i+1

VAR = VARi i+1i i+1VAR < VAR

VAR < VARi i+1

u

t:
N=C

$

$

VAR > VAR   ,i i+1
{C=C+1}

{C=0}

s

Figure 4.347: Automaton of the peak constraint

Q =s0

C =00 C1

Q1

VAR
1

S1

VAR
2

S2

VAR
n

VAR
3

Sn−1

VAR
n−1

S3

Q2

C2

Q   =tn−1

C   =Nn−1

Figure 4.348: Hypergraph of the reformulation corresponding to the automaton of the
peak constraint
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Usage Useful for constraining the number of peaks of a sequence of domain variables.

Remark Since the arity of the arc constraint is not fixed, the peak constraint cannot be currently de-
scribed. However, this would not hold anymore if we were introducing a slot that specifies
how to merge adjacent vertices of the final graph.

See also no peak, inflexion, valley.

Key words sequence, automaton, automaton with counters, sliding cyclic(1) constraint network(2).
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4.167 period

Origin N. Beldiceanu

Constraint period(PERIOD, VARIABLES, CTR)

Argument(s) PERIOD : dvar

VARIABLES : collection(var − dvar)
CTR : atom

Restriction(s) PERIOD ≥ 1
PERIOD ≤ |VARIABLES|
required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose
Let us note V0, V1, . . . , Vm−1 the variables of the VARIABLES collection. PERIOD is the period
of the sequence V0 V1 . . . Vm−1 according to constraint CTR . This means that PERIOD is the
smallest natural number such that Vi CTR Vi+PERIOD holds for all i ∈ 0, 1, . . . ,m−PERIOD−1.

Example period

0
BBBBBBBBBB@

3,

8
>>>>>>>>>><
>>>>>>>>>>:

var − 1,
var − 1,
var − 4,
var − 1,
var − 1,
var − 4,
var − 1,
var − 1

9
>>>>>>>>>>=
>>>>>>>>>>;

,=

1
CCCCCCCCCCA

The smallest period of the previous sequence is equal to 3.

Algorithm When CTR corresponds to the equality constraint, a potentially incomplete filtering algo-
rithm based on 13 deductions rules is described in [136]. The generalization of these rules
to the case where CTR is not the equality constraint is discussed.

See also period except 0.

Key words predefined constraint, periodic, timetabling constraint, scheduling constraint, sequence,
border.
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4.168 period except 0

Origin Derived from period.

Constraint period except 0(PERIOD, VARIABLES, CTR)

Argument(s) PERIOD : dvar

VARIABLES : collection(var − dvar)
CTR : atom

Restriction(s) PERIOD ≥ 1
PERIOD ≤ |VARIABLES|
required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose

Let us note V0, V1, . . . , Vm−1 the variables of the VARIABLES collection. PERIOD is the period
of the sequence V0 V1 . . . Vm−1 according to constraint CTR . This means that PERIOD is the
smallest natural number such that Vi CTR Vi+PERIOD ∨ Vi = 0 ∨ Vi+PERIOD = 0 holds for all
i ∈ 0, 1, . . . ,m− PERIOD − 1.

Example period except 0

0
BBBBBBBBBB@

3,

8
>>>>>>>>>><
>>>>>>>>>>:

var − 1,
var − 1,
var − 4,
var − 1,
var − 1,
var − 0,
var − 1,
var − 1

9
>>>>>>>>>>=
>>>>>>>>>>;

,=

1
CCCCCCCCCCA

Since value 0 is considered as a joker the fact that 4 is different from 0 does not
matter. Therefore, the smallest period of the previous sequence is equal to 3.

Usage Useful for timetabling problems where a person should repeat some work pattern over an
over except when he is unavailable for some reason. The value 0 represents the fact that he
is unavailable, while the other values are used in the work pattern.

Algorithm See [136].

See also period.

Key words predefined constraint, periodic, timetabling constraint, scheduling constraint, sequence,
joker value.
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4.169 place in pyramid

Origin N. Beldiceanu

Constraint place in pyramid(ORTHOTOPES, VERTICAL DIM)

Type(s) ORTHOTOPE : collection(ori − dvar, siz− dvar, end − dvar)

Argument(s) ORTHOTOPES : collection(orth− ORTHOTOPE)
VERTICAL DIM : int

Restriction(s) |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
same size(ORTHOTOPES, orth)
VERTICAL DIM ≥ 1
diffn(ORTHOTOPES)

Purpose

For each pair of orthotopes (O1, O2) of the collection ORTHOTOPES, O1 and O2 do not overlap
(two orthotopes do not overlap if there exists at least one dimension where their projections do
not overlap). In addition, each orthotope of the collection ORTHOTOPES should be supported
by one other orthotope or by the ground. The vertical dimension is given by the parameter
VERTICAL DIM.

Arc input(s) ORTHOTOPES

Arc generator CLIQUE 7→ collection(orthotopes1, orthotopes2)

Arc arity 2

Arc constraint(s)
W
0
BB@

V„ orthotopes1.key = orthotopes2.key,
orth on the ground(orthotopes1.orth, VERTICAL DIM)

«
,

V„ orthotopes1.key 6= orthotopes2.key,
orth on top of orth(orthotopes1.orth, orthotopes2.orth, VERTICAL DIM)

«

1
CCA

Graph property(ies) NARC = |ORTHOTOPES|

Example place in pyramid

0
BBBBBBBBBBBBBBBBBB@

8
>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

orth −


ori − 1 siz − 3 end − 4,
ori − 1 siz − 2 end − 3

ff
,

orth −


ori − 1 siz − 2 end − 3,
ori − 3 siz − 3 end − 6

ff
,

orth −


ori − 5 siz − 6 end − 11,
ori − 1 siz − 2 end − 3

ff
,

orth −


ori − 5 siz − 2 end − 7,
ori − 3 siz − 2 end − 5

ff
,

orth −


ori − 8 siz − 3 end − 11,
ori − 3 siz − 2 end − 5

ff
,

orth −


ori − 8 siz − 2 end − 10,
ori − 5 siz − 2 end − 7

ff

9
>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

, 2

1
CCCCCCCCCCCCCCCCCCA
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Parts (A) and (B) of Figure 4.349 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in bold.
Figure 4.350 depicts the placement associated to the example.

ORTHOTOPES

1

2

3

4

5

6

NARC=6

1:1,3,4
  1,2,3

2:1,2,3
  3,3,6

3:5,6,11
  1,2,3

4:5,2,7
  3,2,5

5:8,3,11
  3,2,5

6:8,2,10
  5,2,7

(A) (B)

Figure 4.349: Initial and final graph of the place in pyramid constraint

101 2 3 4 5 6 7 8 9
1

2

3

4

5

6

R1

R2
R5

R6

R4

R3

dim=1

di
m

=2

Figure 4.350: Solution corresponding to the final graph

Graph model The arc constraint of the graph constraint enforces one of the following conditions:

• If the arc connects the same orthotope O then the ground directly supports O,

• Otherwise, if we have an arc from a orthotope O1 to a distinct orthotope O2,
the condition is: O1 is on top of O2 (i.e. in all dimensions, except dimension
VERTICAL DIM, the projection of O1 is included in the projection of O2, while in
dimension VERTICAL DIM the projection ofO1 is located after the projection ofO2).

Usage The diffn constraint is not enough if one wants to produce a placement where no orthotope
floats in the air. This constraint is usually handled with a heuristic during the enumeration
phase.

See also orth on top of orth, orth on the ground.
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Key words geometrical constraint, non-overlapping, orthotope.



20000128 743



744 NCC,NVERTEX,CLIQUE (6=)

4.170 polyomino

Origin Inspired by [137].

Constraint polyomino(CELLS)

Argument(s) CELLS : collection(index − int, right − dvar, left − dvar, up− dvar, down − dvar)

Restriction(s) CELLS.index ≥ 1
CELLS.index ≤ |CELLS|
|CELLS| ≥ 1
required(CELLS, [index, right, left, up, down])
distinct(CELLS, index)
CELLS.right ≥ 0
CELLS.right ≤ |CELLS|
CELLS.left ≥ 0
CELLS.left ≤ |CELLS|
CELLS.up ≥ 0
CELLS.up ≤ |CELLS|
CELLS.down ≥ 0
CELLS.down ≤ |CELLS|

Enforce all cells of the collection CELLS to be connected. Each cell is defined by the following
attributes:

Purpose 1. The index attribute of the cell, which is an integer between 1 and the total number of
cells, is unique for each cell.

2. The right attribute, which is the index of the cell located immediately to the right of
that cell (or 0 if no such cell exists).

3. The left attribute, which is the index of the cell located immediately to the left of that
cell (or 0 if no such cell exists).

4. The up attribute, which is the index of the cell located immediately on top of that cell (or
0 if no such cell exists).

5. The down attribute, which is the index of the cell located immediately above that cell (or
0 if no such cell exists).

This corresponds to a polyomino [118].

Arc input(s) CELLS

Arc generator CLIQUE(6=) 7→ collection(cells1, cells2)

Arc arity 2

Arc constraint(s)
W
0
BB@

cells1.right = cells2.index ∧ cells2.left = cells1.index,
cells1.left = cells2.index ∧ cells2.right = cells1.index,
cells1.up = cells2.index ∧ cells2.down = cells1.index,
cells1.down = cells2.index ∧ cells2.up = cells1.index

1
CCA
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Graph property(ies) • NVERTEX = |CELLS|
• NCC = 1

Example polyomino

0
BBBB@

8
>>>><
>>>>:

index − 1 right − 0 left − 0 up− 2 down− 0,
index − 2 right − 3 left − 0 up− 0 down− 1,
index − 3 right − 0 left − 2 up− 4 down− 0,
index − 4 right − 5 left − 0 up− 0 down− 3,
index − 5 right − 0 left − 4 up− 0 down− 0

9
>>>>=
>>>>;

1
CCCCA

Parts (A) and (B) of Figure 4.351 respectively show the initial and final graph.
Since we use the NVERTEX graph property the vertices of the final graph are stressed
in bold. Since we also use the NCC graph property we show the unique connected
component of the final graph. An arc between two vertices indicates that two cells are
directly connected. Figure 4.352 shows the polyomino associated to the previous example.

CELLS

1

2

3

4

5 NVERTEX=5
NCC=1

CC#1

1:1,0,0,2,0

2:2,3,0,0,1

3:3,0,2,4,0

4:4,5,0,0,3

5:5,0,4,0,0

(A) (B)

Figure 4.351: Initial and final graph of the polyomino constraint

1
2 3

4 5

Figure 4.352: Polyomino corresponding to the final graph

Graph model The graph constraint models the fact that all the cells are connected. We use the
CLIQUE(6=) arc generator in order to only consider connections between two distinct
cells. The first graph property NVERTEX = |CELLS| avoid the case isolated cells,
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while the second graph property NCC = 1 enforces to have one single group of con-
nected cells.

Signature From the graph property NVERTEX = |CELLS| and from the restriction |CELLS| ≥ 1
we have that the final graph is not empty. Therefore it contains at least one connected
component. So we can rewrite NCC = 1 to NCC ≤ 1 and simplify NCC to NCC.

Usage Enumeration of polyominoes.

Key words geometrical constraint, strongly connected component, pentomino.
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4.171 product ctr

Origin Arithmetic constraint.

Constraint product ctr(VARIABLES, CTR, VAR)

Argument(s) VARIABLES : collection(var − dvar)
CTR : atom

VAR : dvar

Restriction(s) required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose Constraint the product of a set of domain variables. More precisely let P denotes the product of
the variables of the VARIABLES collection. Enforce the following constraint to hold: P CTR VAR.

Arc input(s) VARIABLES

Arc generator SELF 7→ collection(variables)

Arc arity 1

Arc constraint(s) TRUE

Graph property(ies) PRODUCT (VARIABLES, var) CTR VAR

Example product ctr({var − 2, var − 1, var − 4},=, 8)

Parts (A) and (B) of Figure 4.353 respectively show the initial and final graph.
Since we use the TRUE arc constraint both graphs are identical.

VARIABLES

123

PRODUCT(VARIABLES,var)=2*1*4=8

1:2 2:1 3:4

(A) (B)

Figure 4.353: Initial and final graph of the product ctr constraint

Graph model Since we want to keep all the vertices of the initial graph we use the SELF arc generator
together with the TRUE arc constraint. This predefined arc constraint allways holds.

Used in cumulative product.

See also sum ctr, range ctr.

Key words arithmetic constraint, product.
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4.172 range ctr

Origin Arithmetic constraint.

Constraint range ctr(VARIABLES, CTR, VAR)

Argument(s) VARIABLES : collection(var − dvar)
CTR : atom

VAR : dvar

Restriction(s) required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose
Constraint the difference between the maximum value and the minimum value of a set of domain
variables. More precisely let R denotes the difference between the largest and the smallest
variables of the VARIABLES collection. Enforce the following constraint to hold: R CTR VAR.

Arc input(s) VARIABLES

Arc generator SELF 7→ collection(variables)

Arc arity 1

Arc constraint(s) TRUE

Graph property(ies) RANGE(VARIABLES, var) CTR VAR

Example range ctr({var − 1, var − 9, var − 4},=, 8)

Parts (A) and (B) of Figure 4.354 respectively show the initial and final graph.
Since we use the TRUE arc constraint both graphs are identical.

VARIABLES

123

RANGE(VARIABLES,var)=9-1=8

1:1 2:9 3:4

(A) (B)

Figure 4.354: Initial and final graph of the range ctr constraint

Graph model Since we want to keep all the vertices of the initial graph we use the SELF arc generator
together with the TRUE arc constraint. This predefined arc constraint allways holds.

Used in shift.

See also sum ctr, product ctr.

Key words arithmetic constraint, range.
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752 NARC,PATH

4.173 relaxed sliding sum

Origin CHIP

Constraint relaxed sliding sum(ATLEAST, ATMOST, LOW, UP, SEQ, VARIABLES)

Argument(s) ATLEAST : int

ATMOST : int

LOW : int

UP : int

SEQ : int

VARIABLES : collection(var − dvar)

Restriction(s) ATLEAST ≥ 0
ATMOST ≥ ATLEAST

ATMOST ≤ |VARIABLES| − SEQ + 1
UP ≥ LOW

SEQ > 0
SEQ ≤ |VARIABLES|
required(VARIABLES, var)

Purpose Constrains that there exist between ATLEAST and ATMOST sequences of SEQ consecutive vari-
ables of the collection VARIABLES such that the sum of the variables is in interval [LOW, UP].

Arc input(s) VARIABLES

Arc generator PATH 7→ collection

Arc arity SEQ

Arc constraint(s) • sum ctr(collection,≥, LOW)
• sum ctr(collection,≤, UP)

Graph property(ies) • NARC ≥ ATLEAST

• NARC ≤ ATMOST

Example relaxed sliding sum

0
BBBBBBBB@

3, 4, 3, 7, 4,

8
>>>>>>>><
>>>>>>>>:

var − 2,
var − 4,
var − 2,
var − 0,
var − 0,
var − 3,
var − 4

9
>>>>>>>>=
>>>>>>>>;

1
CCCCCCCCA

The final directed hypergraph associated to the previous example is given by Fig-
ure 4.355. For each vertex of the graph we show its corresponding position within the
collection of variables. The constraint associated to each arc corresponds to a conjunction
of two sum ctr constraints involving 4 consecutive variables. We did not put vertex
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1 since the single arc constraint that mentions vertex 1 does not hold (i.e. the sum
2 + 4 + 2 + 0 = 8 is not located in interval [3, 7]). However, the directed hypergraph
contains 3 arcs, so the relaxed sliding sum constraint is satisfied since it was requested
to have between 3 and 4 arcs.

2 3 4 5 6 7

Figure 4.355: Final directed hypergraph associated to the example

Algorithm [65].

See also sliding sum, sum ctr.

Key words sliding sequence constraint, soft constraint, relaxation, sequence, hypergraph.



754 NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT

4.174 same

Origin N. Beldiceanu

Constraint same(VARIABLES1, VARIABLES2)

Argument(s) VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)

Restriction(s) |VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose The variables of the VARIABLES2 collection correspond to the variables of the VARIABLES1

collection according to a permutation.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) • for all connected components: NSOURCE = NSINK
• NSOURCE = |VARIABLES1|
• NSINK = |VARIABLES2|

Example same

0
BBBBBBBBBBBBBBBBBB@

8
>>>>>><
>>>>>>:

var − 1,
var − 9,
var − 1,
var − 5,
var − 2,
var − 1

9
>>>>>>=
>>>>>>;

,

8
>>>>>><
>>>>>>:

var − 9,
var − 1,
var − 1,
var − 1,
var − 2,
var − 5

9
>>>>>>=
>>>>>>;

1
CCCCCCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.356 respectively show the initial and final graph.
Since we use the NSOURCE and NSINK graph properties, the source and sink
vertices of the final graph are stressed with a double circle. Since there is a constraint
on each connected component of the final graph we also show the different connected
components. Each of them corresponds to an equivalence class according to the arc
constraint. The same constraint holds since:
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• Each connected component of the final graph has the same number of sources and of
sinks.

• The number of sources of the final graph is equal to |VARIABLES1|.
• The number of sinks of the final graph is equal to |VARIABLES2|.

VARIABLES1

VARIABLES2

1

1234 56

2 3456

CC#1:NSOURCE=3,NSINK=3
CC#2:NSOURCE=1,NSINK=1
CC#3:NSOURCE=1,NSINK=1
CC#4:NSOURCE=1,NSINK=1

CC#1 CC#2 CC#3 CC#4

1:1

2:1 3:14:1

3:16:1 2:9

1:9

4:5

6:5

5:2

5:2

(A) (B)

Figure 4.356: Initial and final graph of the same constraint

Signature Since the initial graph contains only sources and sinks, and since isolated vertices are elim-
inated from the final graph, we make the following observations:

• Sources of the initial graph cannot become sinks of the final graph,

• Sinks of the initial graph cannot become sources of the final graph.

From the previous observations and since we use the PRODUCT arc generator on the col-
lections VARIABLES1 and VARIABLES2, we have that the maximum number of sources and
sinks of the final graph is respectively equal to |VARIABLES1| and |VARIABLES2|. There-
fore we can rewrite NSOURCE = |VARIABLES1| to NSOURCE ≥ |VARIABLES1|
and simplify NSOURCE to NSOURCE. In a similar way, we can rewrite
NSINK = |VARIABLES2| to NSINK ≥ |VARIABLES2| and simplify NSINK to
NSINK.

Automaton To each item of the collection VARIABLES1 corresponds a signature variable Si, which is
equal to 0. To each item of the collection VARIABLES2 corresponds a signature variable
Si+|VARIABLES1|, which is equal to 1.

Usage The same constraint can be used in the following contexts:

• Pairing problems taken from [25]. The organization Doctors Without Borders has a
list of doctors and a list of nurses, each of whom volunteered to go on one mission
in the next year. Each volunteer specifies a list of possible dates and each mission
involves one doctor and one nurse. The task is to produce a list of pairs such that
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each pair includes a doctor and a nurse who are available at the same date and each
volunteer appears in exactly one pair. The problem is modelled by a same(D =
d1, d2, . . . , dm, N = n1, n2, . . . , nm) constraint where each doctor is respresented
by a domain variable in D and each nurse by a domain variable in N . For a given
doctor or nurse the corresponding domain variable gives the dates when the person
is available. When the number of nurses is different from the number of doctors we
replace the same constraint by a used by constraint.

• Timetabling problems where we wish to produce fair schedules for different persons
is a second use of the same constraint. Assume we need to generate a plan over a
period of D consecutive days for P persons. For each day d and each person p we
need to decide whether person p works in the morning shift, in the afternoon shift,
in the night shift or does not work at all on day d. In a fair schedule, the number
of morning shifts should be the same for all the persons. The same condition holds
for the afternoon and the night shifts as well as for the days off. We create for each
person p the sequence of variables vp,1, vp,2, . . . , vp,D . vp,D is equal to one of 0, 1, 2
and 3, depending on whether person p does not work, works in the morning, in the
afternoon or during the night on day d. We can use P −1 same constraints to express
the fact that v1,1, v1,2, . . . , v1,D should be a permutation of vp,1, vp,2, . . . , vp,D for
each (1 < p ≤ P ).

• The same constraint can also be used as a chanelling constraint for modelling the
following recurring pattern: Given the number of 1s in each line and each column
of a 0-1 matrix M with n lines and m columns, reconstruct the matrix. This pat-
tern usually occurs with additional constraints about compatible positions of the 1s,
or about the overall shape reconstructed from all the 1’s (e.g. convexity, connec-
tivity). If we restrict ourself to the basic pattern there is an O(mn) algorithm for
reconstructing a m · n matrix from its horizontal and vertical directions [138]. We
show how to model this pattern with the same constraint. Let li (1 ≤ i ≤ n) and
cj (1 ≤ j ≤ m) denote respectively, the required number of 1s in the ith line and
the jth column ofM. We number the entries of the matrix as shown in the left-hand
side of 4.358. For line i we create li domain variables vik where k ∈ [1, li]. Sim-
ilarly, for each column j we create cj domain variables ujk where k ∈ [1, ci]. The
domain of each variable contains the set of entries that belong to the row or column
that the variable corresponds to. Thus, each domain variable represents a 1 which
appears in the designated row or column. Let V be the set of variables corresponding
to rows and U be the set of variables corresponding to columns. To make sure that
each 1 is placed in a different entry, we impose the constraint alldifferent(U). In
addition, the constraint same(U ,V) enforces that the 1s exactly coincide on the lines
and the columns. A solution is shown on the right-hand side of 4.358. Note that the
same and global cardinality constraint allows to model the matrix reconstruc-
tion problem without the additional alldifferent constraint.

Remark The same constraint is a relaxed version of the sort constraint introduced in [139]. We
don’t enforce the second collection of variables to be sorted in increasing order.

If we interpret the collections VARIABLES1 and VARIABLES2 as two multisets vari-
ables [140], the same constraint can be considered as an equality constraint between two
multisets variables.

The same constraint can be modeled by two global cardinality constraints. For in-
stance, the same constraint
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i       i

1,
{c[VAR ]=c[VAR ]−1}

i       i

1,
{c[VAR ]=c[VAR ]−1}
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Figure 4.357: Automaton of the same constraint
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Figure 4.358: Modelling the 0-1 matrix reconstruction problem with the same con-
straint
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same

„ ˘
var − x1, var − x2

¯
,˘

var − y1, var − y2

¯
,

«

where the union of the domains of the different variables is {1, 2, 3, 4} corresponds to the
conjunction of the following two global cardinality constraints:

global cardinality

0
BBBB@

˘
var − x1, var − x2

¯
,8

>><
>>:

val− 1 noccurrence − c1,
val− 2 noccurrence − c2,
val− 3 noccurrence − c3,
val− 4 noccurrence − c4

9
>>=
>>;

1
CCCCA

global cardinality

0
BBBB@

˘
var − y1, var − y2

¯
,8

>><
>>:

val− 1 noccurrence − c1,
val− 2 noccurrence − c2,
val− 3 noccurrence − c3,
val− 4 noccurrence − c4

9
>>=
>>;

1
CCCCA

As shown by the next example, the consistency for all variables of the two
global cardinality constraints does not implies consistency for the corresponding
same constraint. This is for instance the case when the domains of x1, x2, y1 and y2

is respectively equal to {1, 2}, {3, 4}, {1, 2, 3, 4} and {3, 4}. The conjunction of the two
global cardinality constraints does not remove values 3 and 4 from y1.

In his PhD thesis, W.-J. van Hoeve introduces a soft version of the same constraint where
the cost is the minimum number of variables to unassign in order to get back to a solu-
tion [104, page 78]. In the context of the same constraint this violation cost corresponds
to the difference between the number of variables in VARIABLES1 and the number of val-
ues which both occur in VARIABLES1 and in VARIABLES2 (provided that one value of
VARIABLES1 matches at most one value of VARIABLES2).

Algorithm In [141], [25] and [142] it is shown how to model this constraint by a flow network that
enables to compute arc-consistency and bound-consistency. Unlike the networks used for
alldifferent and global cardinality, the network now has three sets of nodes, so
the algorithms are more complex, in particular the efficient bound-consistency algorithm.

See also colored matrix, correspondence, same interval, same modulo, same partition,
same and global cardinality, same intersection.

Key words constraint between two collections of variables, channeling constraint, permutation,
multiset, equality between multisets, flow, bound-consistency, automaton,
automaton with array of counters.
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4.175 same and global cardinality

Origin Derived from same and global cardinality

Constraint same and global cardinality(VARIABLES1, VARIABLES2, VALUES)

Synonym(s) sgcc, same gcc, same and gcc, swc, same with cardinalities.

Argument(s) VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
VALUES : collection(val− int, noccurrence − dvar)

Restriction(s) |VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
required(VALUES, [val, noccurrence])
distinct(VALUES, val)
VALUES.noccurrence ≥ 0
VALUES.noccurrence ≤ |VARIABLES1|

Purpose
The variables of the VARIABLES2 collection correspond to the variables of the VARIABLES1 col-
lection according to a permutation. In addition, each value VALUES[i].val (1 ≤ i ≤ |VALUES|)
should be taken by exactly VALUES[i].noccurrence variables of the VARIABLES1 collection.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) • for all connected components: NSOURCE = NSINK
• NSOURCE = |VARIABLES1|
• NSINK = |VARIABLES2|

For all items of VALUES:

Arc input(s) VARIABLES1

Arc generator SELF 7→ collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUES.val

Graph property(ies) NVERTEX = VALUES.noccurrence
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Example same and global cardinality

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

8
>>>>>><
>>>>>>:

var − 1,
var − 9,
var − 1,
var − 5,
var − 2,
var − 1

9
>>>>>>=
>>>>>>;

,

8
>>>>>><
>>>>>>:

var − 9,
var − 1,
var − 1,
var − 1,
var − 2,
var − 5

9
>>>>>>=
>>>>>>;

,

8
>>>><
>>>>:

val − 1 noccurrence − 3,
val − 2 noccurrence − 1,
val − 5 noccurrence − 1,
val − 7 noccurrence − 0,
val − 9 noccurrence − 1

9
>>>>=
>>>>;

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.359 respectively show the initial and final graph asso-
ciated to the first graph constraint. Since we use the NSOURCE and NSINK graph
properties, the source and sink vertices of the final graph are stressed with a double circle.
Since there is a constraint on each connected component of the final graph we also show
the different connected components. Each of them corresponds to an equivalence class
according to the arc constraint. The same and global cardinality constraint holds
since:

• The values 1, 9, 1, 5, 2, 1 assigned to |VARIABLES1| correspond to a permutation of
the values 9, 1, 1, 1, 2, 5 assigned to |VARIABLES2|.

• The values 1, 2, 5, 7 and 6 are respectively used 3, 1, 1, 0 and 1 times.

VARIABLES1

VARIABLES2

1

1234 56

2 3456

CC#1:NSOURCE=3,NSINK=3
CC#2:NSOURCE=1,NSINK=1
CC#3:NSOURCE=1,NSINK=1
CC#4:NSOURCE=1,NSINK=1

CC#1 CC#2 CC#3 CC#4

1:1

2:1 3:14:1

3:16:1 2:9

1:9

4:5

6:5

5:2

5:2

(A) (B)

Figure 4.359: Initial and final graph of the same and global cardinality con-
straint
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Usage The same and global cardinality constraint can be used for modeling the following
assignment problem with one single constraint. The organization Doctors Without Borders
has a list of doctors and a list of nurses, each of whom volunteered to go on one rescue
mission. Each volunteer specifies a list of possible dates and each mission should include
one doctor and one nurse. In addition we have for each date the minimum and maximum
number of missions that should be effectively done. The task is to produce a list of pairs
such that each pair includes a doctor and a nurse who are available on the same date and
each volunteer appears in exactly one pair so that for each day we build the required number
of missions.

Algorithm In [143], the flow network that was used to model the same constraint [141, 25] is extended
to support the cardinalities. Then, algorithms are developed to compute arc-consistency and
bound-consistency.

See also same, global cardinality.

Key words constraint between two collections of variables, value constraint, permutation, multiset,
equality between multisets, assignment, demand profile.
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4.176 same intersection

Origin Derived from same and common.

Constraint same intersection(VARIABLES1, VARIABLES2)

Argument(s) VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)

Restriction(s) required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose Each value which occurs both in the VARIABLES1 and in the VARIABLES2 collections has the
same number of occurrences in VARIABLES1 as well as in VARIABLES2.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) for all connected components: NSOURCE = NSINK

Example same intersection

0
BBBBBBBBBBBBBBBBBBBB@

8
>>>>>><
>>>>>>:

var− 1,
var− 9,
var− 1,
var− 5,
var− 2,
var− 1

9
>>>>>>=
>>>>>>;

,

8
>>>>>>>><
>>>>>>>>:

var− 9,
var− 1,
var− 1,
var− 1,
var− 3,
var− 5,
var− 8

9
>>>>>>>>=
>>>>>>>>;

1
CCCCCCCCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.360 respectively show the initial and final graph. The
same intersection constraint holds since each connected component of the final graph
has the same number of sources and sinks. Note that all the vertices corresponding to the
variables that take values 2, 3 or 8 were removed from the final graph since there is no arc
for which the associated equality constraint holds.

See also same, common, alldifferent on intersection, nvalue on intersection.

Key words constraint between two collections of variables, constraint on the intersection.
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VARIABLES1

VARIABLES2

1

123456 7

2 3456

CC#1:NSOURCE=3,NSINK=3
CC#2:NSOURCE=1,NSINK=1
CC#3:NSOURCE=1,NSINK=1

CC#1 CC#2 CC#3

1:1

2:1 3:1 4:1

3:16:1 2:9

1:9

4:5

6:5

(A) (B)

Figure 4.360: Initial and final graph of the same intersection constraint
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4.177 same interval

Origin Derived from same.

Constraint same interval(VARIABLES1, VARIABLES2, SIZE INTERVAL)

Argument(s) VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
SIZE INTERVAL : int

Restriction(s) |VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
SIZE INTERVAL > 0

Purpose
LetNi (respectivelyMi) denote the number of variables of the collection VARIABLES1 (respec-
tively VARIABLES2) that take a value in the interval [SIZE INTERVAL · i, SIZE INTERVAL · i+
SIZE INTERVAL − 1. For all integer i we have Ni = Mi.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var/SIZE INTERVAL = variables2.var/SIZE INTERVAL

Graph property(ies) • for all connected components: NSOURCE = NSINK
• NSOURCE = |VARIABLES1|
• NSINK = |VARIABLES2|

Example same interval

0
BBBBBBBBBBBBBBBBBB@

8
>>>>>><
>>>>>>:

var− 1,
var− 7,
var− 6,
var− 0,
var− 1,
var− 7

9
>>>>>>=
>>>>>>;

,

8
>>>>>><
>>>>>>:

var− 8,
var− 8,
var− 8,
var− 0,
var− 1,
var− 2

9
>>>>>>=
>>>>>>;

, 3

1
CCCCCCCCCCCCCCCCCCA

In the previous example, the third parameter SIZE INTERVAL defines the following
family of intervals [3 · k, 3 · k+ 2], where k is an integer. Parts (A) and (B) of Figure 4.361
respectively show the initial and final graph. Since we use the NSOURCE and
NSINK graph properties, the source and sink vertices of the final graph are stressed
with a double circle. Since there is a constraint on each connected component of the final
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graph we also show the different connected components. Each of them corresponds to an
equivalence class according to the arc constraint. The same interval constraint holds
since:

• Each connected component of the final graph has the same number of sources and of
sinks.

• The number of sources of the final graph is equal to |VARIABLES1|.
• The number of sinks of the final graph is equal to |VARIABLES2|.

VARIABLES1

VARIABLES2

1

1234 56

2 3456

CC#1:NSOURCE=3,NSINK=3
CC#2:NSOURCE=3,NSINK=3

CC#1 CC#2

1:1

4:0 5:16:2

4:05:1 2:7

1:8 2:83:8

3:66:7

(A) (B)

Figure 4.361: Initial and final graph of the same interval constraint

Signature Since the initial graph contains only sources and sinks, and since isolated vertices are elim-
inated from the final graph, we make the following observations:

• Sources of the initial graph cannot become sinks of the final graph,

• Sinks of the initial graph cannot become sources of the final graph.

From the previous observations and since we use the PRODUCT arc generator on the col-
lections VARIABLES1 and VARIABLES2, we have that the maximum number of sources and
sinks of the final graph is respectively equal to |VARIABLES1| and |VARIABLES2|. There-
fore we can rewrite NSOURCE = |VARIABLES1| to NSOURCE ≥ |VARIABLES1|
and simplify NSOURCE to NSOURCE. In a similar way, we can rewrite
NSINK = |VARIABLES2| to NSINK ≥ |VARIABLES2| and simplify NSINK to
NSINK.

Algorithm See algorithm of the same constraint.

See also same.

Key words constraint between two collections of variables, permutation, interval.
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4.178 same modulo

Origin Derived from same.

Constraint same modulo(VARIABLES1, VARIABLES2, M)

Argument(s) VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
M : int

Restriction(s) |VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
M > 0

Purpose
For each integer R in [0, M− 1], let N1R (respectively N2R) denote the number of variables of
VARIABLES1 (respectively VARIABLES2) which have R as a rest when divided by M. For all R
in [0, M− 1] we have that N1R = N2R.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var mod M = variables2.var mod M

Graph property(ies) • for all connected components: NSOURCE = NSINK
• NSOURCE = |VARIABLES1|
• NSINK = |VARIABLES2|

Example same modulo

0
BBBBBBBBBBBBBBBBBB@

8
>>>>>><
>>>>>>:

var − 1,
var − 9,
var − 1,
var − 5,
var − 2,
var − 1

9
>>>>>>=
>>>>>>;

,

8
>>>>>><
>>>>>>:

var − 6,
var − 4,
var − 1,
var − 1,
var − 5,
var − 5

9
>>>>>>=
>>>>>>;

, 3

1
CCCCCCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.362 respectively show the initial and final graph.
Since we use the NSOURCE and NSINK graph properties, the source and sink
vertices of the final graph are stressed with a double circle. Since there is a constraint
on each connected component of the final graph we also show the different connected
components. Each of them corresponds to an equivalence class according to the arc
constraint. The same modulo constraint holds since:
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• Each connected component of the final graph has the same number of sources and of
sinks.

• The number of sources of the final graph is equal to |VARIABLES1|.
• The number of sinks of the final graph is equal to |VARIABLES2|.

VARIABLES1

VARIABLES2

1

1234 56

2 3456

CC#1:NSOURCE=3,NSINK=3
CC#2:NSOURCE=1,NSINK=1
CC#3:NSOURCE=2,NSINK=2

CC#1 CC#2 CC#3

1:1

2:4 3:14:1

3:16:1 2:9

1:6

4:5

5:5 6:5

5:2

(A) (B)

Figure 4.362: Initial and final graph of the same modulo constraint

Signature Since the initial graph contains only sources and sinks, and since isolated vertices are elim-
inated from the final graph, we make the following observations:

• Sources of the initial graph cannot become sinks of the final graph,

• Sinks of the initial graph cannot become sources of the final graph.

From the previous observations and since we use the PRODUCT arc generator on the col-
lections VARIABLES1 and VARIABLES2, we have that the maximum number of sources and
sinks of the final graph is respectively equal to |VARIABLES1| and |VARIABLES2|. There-
fore we can rewrite NSOURCE = |VARIABLES1| to NSOURCE ≥ |VARIABLES1|
and simplify NSOURCE to NSOURCE. In a similar way, we can rewrite
NSINK = |VARIABLES2| to NSINK ≥ |VARIABLES2| and simplify NSINK to
NSINK.

See also same.

Key words constraint between two collections of variables, permutation, modulo.
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4.179 same partition

Origin Derived from same.

Constraint same partition(VARIABLES1, VARIABLES2, PARTITIONS)

Type(s) VALUES : collection(val− int)

Argument(s) VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
PARTITIONS : collection(p− VALUES)

Restriction(s) required(VALUES, val)
distinct(VALUES, val)
|VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose
For each integer i in [1, |PARTITIONS|], let N1 i (respectively N2 i) denote the number of vari-
ables of VARIABLES1 (respectively VARIABLES2) which take their value in the ith partition of
the collection PARTITIONS. For all i in [1, |PARTITIONS|] we have N1 i = N2 i.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) in same partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) • for all connected components: NSOURCE = NSINK
• NSOURCE = |VARIABLES1|
• NSINK = |VARIABLES2|

Example same

0
BBBBBBBBBBBBBBBBBBBBBBBB@

8
>>>>>><
>>>>>>:

var − 1,
var − 2,
var − 6,
var − 3,
var − 1,
var − 2

9
>>>>>>=
>>>>>>;

,

8
>>>>>><
>>>>>>:

var − 6,
var − 6,
var − 2,
var − 3,
var − 1,
var − 3

9
>>>>>>=
>>>>>>;

,

8
<
:

p− {val − 1, val − 3},
p− {val − 4},
p− {val − 2, val − 6}

9
=
;

1
CCCCCCCCCCCCCCCCCCCCCCCCA
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Parts (A) and (B) of Figure 4.363 respectively show the initial and final graph.
Since we use the NSOURCE and NSINK graph properties, the source and sink
vertices of the final graph are stressed with a double circle. Since there is a constraint
on each connected component of the final graph we also show the different connected
components. Each of them corresponds to an equivalence class according to the arc
constraint. The same partition constraint holds since:

• Each connected component of the final graph has the same number of sources and of
sinks.

• The number of sources of the final graph is equal to |VARIABLES1|.
• The number of sinks of the final graph is equal to |VARIABLES2|.

VARIABLES1

VARIABLES2

1

1234 56

2 3456

CC#1:NSOURCE=3,NSINK=3
CC#2:NSOURCE=3,NSINK=3

CC#1 CC#2

1:1

4:3 5:16:3

4:35:1 2:2

1:6 2:63:2

3:66:2

(A) (B)

Figure 4.363: Initial and final graph of the same partition constraint

Signature Since the initial graph contains only sources and sinks, and since isolated vertices are elim-
inated from the final graph, we make the following observations:

• Sources of the initial graph cannot become sinks of the final graph,

• Sinks of the initial graph cannot become sources of the final graph.

From the previous observations and since we use the PRODUCT arc generator on the col-
lections VARIABLES1 and VARIABLES2, we have that the maximum number of sources and
sinks of the final graph is respectively equal to |VARIABLES1| and |VARIABLES2|. There-
fore we can rewrite NSOURCE = |VARIABLES1| to NSOURCE ≥ |VARIABLES1|
and simplify NSOURCE to NSOURCE. In a similar way, we can rewrite
NSINK = |VARIABLES2| to NSINK ≥ |VARIABLES2| and simplify NSINK to
NSINK.

See also same, in same partition.

Key words constraint between two collections of variables, permutation, partition.
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4.180 sequence folding

Origin J. Pearson

Constraint sequence folding(LETTERS)

Argument(s) LETTERS : collection(index − int, next− dvar)

Restriction(s) |LETTERS| ≥ 1
required(LETTERS, [index, next])
LETTERS.index ≥ 1
LETTERS.index ≤ |LETTERS|
increasing seq(LETTERS, index)
LETTERS.next ≥ 1
LETTERS.next ≤ |LETTERS|

Purpose
Express the fact that a sequence is folded in a way that no crossing occurs. A sequence is
modelled by a collection of letters. For each letter l1 of a sequence, we indicate the next letter
l2 located after l1 which is directly in contact with l1 (l1 itself if such a letter does not exist).

Arc input(s) LETTERS

Arc generator SELF 7→ collection(letters)

Arc arity 1

Arc constraint(s) letters.next ≥ letters.index

Graph property(ies) NARC = |LETTERS|

Arc input(s) LETTERS

Arc generator CLIQUE(<) 7→ collection(letters1, letters2)

Arc arity 2

Arc constraint(s) letters2.index ≥ letters1.next ∨ letters2.next ≤ letters1.next

Graph property(ies) NARC = |LETTERS| ∗ (|LETTERS| − 1)/2

Example sequence folding

0
BBBBBBBBBBBB@

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

index − 1 next − 1,
index − 2 next − 8,
index − 3 next − 3,
index − 4 next − 5,
index − 5 next − 5,
index − 6 next − 7,
index − 7 next − 7,
index − 8 next − 8,
index − 9 next − 9

9
>>>>>>>>>>>>=
>>>>>>>>>>>>;

1
CCCCCCCCCCCCA
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Parts (A) and (B) of Figure 4.364 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in bold.
Figure 4.365 gives the folded sequence associated to the previous example. Each number
represents the index of an item.

LETTERS

1

2

3

4

5

6

7

8

9

NARC=36

1:1,1

2:2,8

3:3,3

4:4,5

5:5,5

6:6,7

7:7,7

8:8,8

9:9,9

(A) (B)

Figure 4.364: Initial and final graph of the sequence folding constraint

765

2

9

1
3

4

8

Figure 4.365: Folded sequence associated to the example

Graph model In the list of restrictions note the increasing statement which imposes the items of the
LETTERS collection to be ordered in increasing order of their index attribute. This is used
so that the arc generator CLIQUE(<) only generates arcs between vertices for which
the indices are increasing. The arc constraint of the second graph constraint avoids the
following conditions to be both true:
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• The second letter is located before the letter associated to the first letter,

• The letter associated to the second letter is located after the letter associated to the
first letter.

Observe that, from the previous remark, we know that the first letter is located before the
second letter. The graph property enforces all arcs constraints to hold.

Signature Consider the first graph constraint. Since we use the SELF arc generator on the LETTERS
collection the maximum number of arcs of the final graph is equal to |LETTERS|. Therefore
we can rewrite the graph property NARC = |LETTERS| to NARC ≥ |LETTERS| and
simplify NARC to NARC.

Consider now the second graph constraint. Since we use the CLIQUE (<) arc generator
on the LETTERS collection the maximum number of arcs of the final graph is equal to
|LETTERS| · (|LETTERS| − 1)/2. Therefore we can rewrite the graph property NARC =
|LETTERS| · (|LETTERS|−1)/2 to NARC ≥ |LETTERS| · (|LETTERS|−1)/2 and simplify
NARC to NARC.

Automaton Figure 4.366 depicts the automaton associated to the sequence folding constraint. Con-
sider the ith and the jth (i < j) items of the collection LETTERS. Let INDEXi and
NEXTi respectively denote the index and the next attributes of the ith item of the
collection LETTERS. Similarly, let INDEXj and NEXTj respectively denote the index

and the next attributes of the jth item of the collection LETTERS. To each quadru-
ple (INDEXi, NEXTi, INDEXj , NEXTj) corresponds a signature variable Si,j , which takes its
value in {0, 1, 2}, as well as the following signature constraint:

(INDEXi ≤ NEXTi) ∧ (INDEXj ≤ NEXTj) ∧ (NEXTi ≤ NEXTj)⇔ Si,j = 0 ∧
(INDEXi ≤ NEXTi) ∧ (INDEXj ≤ NEXTj) ∧ (NEXTi > INDEXj) ∧ (NEXTj ≤ NEXTi) ⇔
Si,j = 1.

NEXT <=NEXT

i j

i i

j j

i j

j i

INDEX <INDEX  and

INDEX <=NEXT  and

INDEX <=NEXT  and

NEXT >INDEX  and

$

s

t

NEXT <=INDEX

i

i

i

i

j

j j

j

INDEX <INDEX  and

INDEX <=NEXT  and

INDEX <=NEXT  and

Figure 4.366: Automaton of the sequence folding constraint

Usage Motivated by RNA folding [144].

Key words decomposition, geometrical constraint, sequence, bioinformatics, automaton,
automaton without counters.
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4.181 set value precede

Origin [121]

Constraint set value precede(S, T, VARIABLES)

Argument(s) S : int

T : int

VARIABLES : collection(var − svar)

Restriction(s) S 6= T

required(VARIABLES, var)

Purpose If there exists a set variable v1 of VARIABLES such that S does not belong to v1 and T does, then
there also exists a set variable v2 preceding v1 such that S belongs to v2 and T does not.

Example set value precede

0
BB@ 2, 1,

8
>><
>>:

var − {0, 2},
var − {0, 1},
var − ∅,
var − {1}

9
>>=
>>;

1
CCA

The set value precede constraint holds since the first occurrence of value 2 pre-
cedes the first occurrence of value 1.

Algorithm A filtering algorithm for maintaining value precedence on a sequence of set variables is
presented in [121]. Its complexity is linear to the number of variables of the collection
VARIABLES.

See also int value precede.

Key words order constraint, symmetry, indistinguishable values, value precedence,
constraint involving set variables.
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4.182 shift

Origin N. Beldiceanu

Constraint shift(MIN BREAK, MAX RANGE, TASKS)

Argument(s) MIN BREAK : int

MAX RANGE : int

TASKS : collection(id− int, origin − dvar, end − dvar)

Restriction(s) MIN BREAK > 0
MAX RANGE > 0
required(TASKS, [id, origin, end])
distinct(TASKS, id)

The difference between the end of the last task of a shift and the origin of the first task of a shift
should not exceed the quantity MAX RANGE. Two tasks t1 and t2 belong to the same shift if at
least one of the following conditions is true:

Purpose • Task t2 starts after the end of task t1 at a distance that is less than or equal to the quantity
MIN BREAK,

• Task t1 starts after the end of task t2 at a distance that is less than or equal to the quantity
MIN BREAK.

• Task t1 overlaps task t2.

Arc input(s) TASKS

Arc generator SELF 7→ collection(tasks)

Arc arity 1

Arc constraint(s) • tasks.end ≥ tasks.origin
• tasks.end − tasks.origin ≤ MAX RANGE

Graph property(ies) NARC = |TASKS|

Arc input(s) TASKS

Arc generator CLIQUE 7→ collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s)
W
0
@

tasks2.origin ≥ tasks1.end ∧ tasks2.origin − tasks1.end ≤ MIN BREAK,
tasks1.origin ≥ tasks2.end ∧ tasks1.origin − tasks2.end ≤ MIN BREAK,
tasks2.origin < tasks1.end ∧ tasks1.origin < tasks2.end

1
A

Sets
CC 7→»

variables − col

„
VARIABLES − collection(var − dvar),
[item(var − TASKS.origin), item(var − TASKS.end)]

« –
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Constraint(s) on sets range ctr(variables,≤, MAX RANGE)

Example shift

0
BBBB@

6, 8,

8
>>>><
>>>>:

id− 1 origin − 17 end− 20,
id− 2 origin − 7 end− 10,
id− 3 origin − 2 end− 4,
id− 4 origin − 21 end− 22,
id− 5 origin − 5 end− 6

9
>>>>=
>>>>;

1
CCCCA

Parts (A) and (B) of Figure 4.367 respectively show the initial and final graph asso-
ciated to the second graph constraint. Since we use the set generator CC we show the
two connected components of the final graph. They respectively correspond to the two
shifts which are displayed in Figure 4.368. Each task is drawn as a rectangle with its
corresponding id in the middle. We indicate the distance between two consecutives tasks
of a same shift and check that it is less than or equal to the value of the MIN BREAK

parameter (6 in the example). Since each shift has a range that is less than or equal to the
MAX RANGE parameter, the shift constraint holds (the range of a shift is the difference
between the end of the last task of the shift and the origin of the first task of the shift).

TASKS

1

2

3

4

5

SET#1 SET#2

1:1,17,20

4:4,21,22

2:2,7,10

3:3,2,4

5:5,5,6

(A) (B)

Figure 4.367: Initial and final graph of the shift constraint

5 7 17 21

breakfirst shift second shift

2 time

3 5 2 1 4

1 1 1

range=8 =7 range=5

Figure 4.368: The two shifts of the example

Graph model The first graph constraint enforces the following two constraints between the attributes of
each task:
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• The end of a task should not be situated before its start,

• The duration of a task should not be greater than the MAX RANGE parameter.

The second graph constraint decomposes the final graph in connected components where
each component corresponds to a given shift. Finally, the constraint(s) on sets field restricts
the stretch of each shift.

Signature Consider the first graph constraint. Since we use the SELF arc generator on the TASKS

collection the maximum number of arcs of the final graph is equal to |TASKS|. Therefore
we can rewrite the graph property NARC = |TASKS| to NARC ≥ |TASKS| and simplify
NARC to NARC.

Usage The shift constraint can be used in machine scheduling problems where one has to shut
down a machine for maintenance purpose after a given maximum utilisation of that ma-
chine. In this case the MAX RANGE parameter indicates the maximum possible utilisation of
the machine before maintenance, while the MIN BREAK parameter gives the minimum time
needed for maintenance.

The shift constraint can also be used for timetabling problems where the rest period of a
person can move in time. In this case MAX RANGE indicates the maximum possible working
time for a person, while MIN BREAK specifies the minimum length of the break that follows
a working time period.

See also sliding time window.

Key words scheduling constraint, timetabling constraint, temporal constraint.
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4.183 size maximal sequence alldifferent

Origin N. Beldiceanu

Constraint size maximal sequence alldifferent(SIZE, VARIABLES)

Synonym(s) size maximal sequence alldiff, size maximal sequence alldistinct.

Argument(s) SIZE : dvar

VARIABLES : collection(var − dvar)

Restriction(s) SIZE ≥ 0
SIZE ≤ |VARIABLES|
required(VARIABLES, var)

Purpose SIZE is the size of the maximal sequence (among all sequences of consecutives variables of the
collection VARIABLES) for which the alldifferent constraint holds.

Arc input(s) VARIABLES

Arc generator PATH N 7→ collection

Arc arity ∗

Arc constraint(s) alldifferent(collection)

Graph property(ies) NARC = SIZE

Example size maximal sequence alldifferent

0
BBBBBBBB@

4,

8
>>>>>>>><
>>>>>>>>:

var − 2,
var − 2,
var − 4,
var − 5,
var − 2,
var − 7,
var − 4

9
>>>>>>>>=
>>>>>>>>;

1
CCCCCCCCA

The previous constraint holds since the constraint
alldifferent(var− 4, var− 5, var− 2, var− 7) holds and since the following
three constraints do not hold:

• alldifferent(var − 2, var − 2, var − 4, var − 5, var − 2),

• alldifferent(var − 2, var − 4, var − 5, var − 2, var − 7),

• alldifferent(var − 4, var − 5, var − 2, var − 7, var − 4).

Graph model Observe that this is an example of global constraint where the arc constraints don’t have
the same arity. However they correspond to the same type of constraint.

See also alldifferent, size maximal starting sequence alldifferent.

Key words sliding sequence constraint, conditional constraint, sequence, hypergraph.
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4.184 size maximal starting sequence alldifferent

Origin N. Beldiceanu

Constraint size maximal starting sequence alldifferent(SIZE, VARIABLES)

Synonym(s) size maximal starting sequence alldiff, size maximal starting sequence alldistinct.

Argument(s) SIZE : dvar

VARIABLES : collection(var − dvar)

Restriction(s) SIZE ≥ 0
SIZE ≤ |VARIABLES|
required(VARIABLES, var)

Purpose SIZE is the size of the maximal sequence (among all sequences of consecutives variables of the
collection VARIABLES starting at position one) for which the alldifferent constraint holds.

Arc input(s) VARIABLES

Arc generator PATH 1 7→ collection

Arc arity ∗

Arc constraint(s) alldifferent(collection)

Graph property(ies) NARC = SIZE

Example size maximal starting sequence alldifferent

0
BBBBBBBB@

4,

8
>>>>>>>><
>>>>>>>>:

var − 9,
var − 2,
var − 4,
var − 5,
var − 2,
var − 7,
var − 4

9
>>>>>>>>=
>>>>>>>>;

1
CCCCCCCCA

The previous constraint holds since the constraint
alldifferent(var− 9, var− 2, var− 4, var− 5) holds and since
alldifferent(var− 9, var− 2, var− 4, var− 5, var − 2) does not hold. Parts
(A) and (B) of Figure 4.369 respectively show the initial and final graph.

Graph model Observe that this is an example where the arc constraints don’t have the same arity. How-
ever they correspond to the same constraint.

Remark A conditional constraint [145] with the specific structure that one can relax the constraints
on the last variables of the collection VARIABLES.

See also alldifferent, size maximal sequence alldifferent.

Key words sliding sequence constraint, conditional constraint, sequence, hypergraph.
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2 3 4 6 71 5

1:9 2:2 4:53:4

(A)

(B)

Figure 4.369: Initial and final graph of the
size maximal starting sequence alldifferent constraint
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4.185 sliding card skip0

Origin N. Beldiceanu

Constraint sliding card skip0(ATLEAST, ATMOST, VARIABLES, VALUES)

Argument(s) ATLEAST : int

ATMOST : int

VARIABLES : collection(var − dvar)
VALUES : collection(val − int)

Restriction(s) ATLEAST ≥ 0
ATMOST ≥ ATLEAST

required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)
VALUES.val 6= 0

Let n be the total number of variables of the collection VARIABLES. A maximum non-zero set
of consecutive variables Xi..Xj (1 ≤ i ≤ j ≤ n) is defined in the following way:

Purpose • All variables Xi, . . . , Xj take a non-zero value,

• i = 1 or Xi−1 is equal to 0,

• j = n or Xj+1 is equal to 0.
Enforces that each maximum non-zero set of consecutive variables of the collection VARIABLES
contains at least ATLEAST and at most ATMOST values from the collection of values VALUES.

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)
LOOP 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • variables1.var 6= 0
• variables2.var 6= 0

Sets CC 7→ [variables]

Constraint(s) on sets among low up(ATLEAST, ATMOST, variables, VALUES)

Example sliding card skip0

0
BBBBBBBBBBBBBB@

2, 3,

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

var− 0,
var− 7,
var− 2,
var− 9,
var− 0,
var− 0,
var− 9,
var− 4,
var− 9

9
>>>>>>>>>>>>=
>>>>>>>>>>>>;

,

{val − 7, val − 9}

1
CCCCCCCCCCCCCCA
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Parts (A) and (B) of Figure 4.370 respectively show the initial and final graph.
Since we use the set generator CC we show the two connected components of the final
graph. Since these two connected components both contains between 2 and 3 variables
which take there value in {7, 9} the sliding card skip0 constraint holds.

VARIABLES

1

2

3

4

5

6

7

8

9

SET#1 SET#2

2:7

3:2

4:9

7:9

8:4

9:9

(A) (B)

Figure 4.370: Initial and final graph of the sliding card skip0 constraint

Graph model Note that the arc constraint will produce the different sequences of consecutives variables
that do not contain any 0. The CC set generator produces all the connected components of
the final graph.

Automaton Figure 4.371 depicts the automaton associated to the sliding card skip0 constraint. To
each variable VARi of the collection VARIABLES corresponds a signature variable Si. The
following signature constraint links VARi and Si:

(VARi = 0)⇔ Si = 0 ∧
(VARi 6= 0 ∧ VARi /∈ VALUES)⇔ Si = 1 ∧
(VARi 6= 0 ∧ VARi ∈ VALUES)⇔ Si = 2.

Usage This constraint is useful in timetabling problems where the variables are interpreted as the
type of job that a person does on consecutive days. Value 0 represents a rest day and one
imposes a cardinality constraint on periods that are located between rest periods.
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iVAR = 0

iVAR = 0 and

iVAR <>0 and in(VAR ,VALUES),i
{C=C+1}

iVAR <>0 and

not_in(VAR ,VALUES)i

iVAR <>0 and not_in(VAR ,VALUES),i

t

i

ATLEAST<=C and

$

$ and ATLEAST<=C and C<=ATMOST

iVAR <>0 and in(VAR ,VALUES),i
{C=1}

{C=0}

C<=ATMOST

{C=0}

s

Figure 4.371: Automaton of the sliding card skip0 constraint

C1

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0

C =00

Q =tn

Cn

Figure 4.372: Hypergraph of the reformulation corresponding to the automaton of the
sliding card skip0 constraint
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Remark One cannot initially state a global cardinality constraint since the rest days are not
yet allocated. One can also not use an among seq constraint since it does not hold for the
sequences of consecutive variables that contains at least one rest day.

See also among, among low up, global cardinality.

Key words timetabling constraint, sliding sequence constraint, sequence, automaton,
automaton with counters, alpha-acyclic constraint network(2).
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4.186 sliding distribution

Origin [146]

Constraint sliding distribution(SEQ, VARIABLES, VALUES)

Argument(s) SEQ : int

VARIABLES : collection(var − dvar)
VALUES : collection(val − int, omin− int, omax − int)

Restriction(s) SEQ > 0
SEQ ≤ |VARIABLES|
required(VARIABLES, var)
|VALUES| > 0
required(VALUES, [val, omin, omax])
distinct(VALUES, val)
VALUES.omin ≥ 0
VALUES.omax ≤ SEQ

VALUES.omin ≤ VALUES.omax

Purpose
For each sequence of SEQ consecutive variables of the VARIABLES collection, each value
VALUES[i].val (1 ≤ i ≤ |VALUES|) should be taken by at least VALUES[i].omin and at most
VALUES[i].omax variables.

Arc input(s) VARIABLES

Arc generator PATH 7→ collection

Arc arity SEQ

Arc constraint(s) global cardinality low up(collection, VALUES)

Graph property(ies) NARC = |VARIABLES| − SEQ + 1

Example sliding distribution

0
BBBBBBBBBBBBBBBBBB@

4,

8
>>>>>>>><
>>>>>>>>:

var − 0,
var − 5,
var − 6,
var − 6,
var − 5,
var − 0,
var − 0

9
>>>>>>>>=
>>>>>>>>;

,

8
>>>><
>>>>:

val − 0 omin − 1 omax − 2,
val − 1 omin − 0 omax − 4,
val − 4 omin − 0 omax − 4,
val − 5 omin − 1 omax − 2,
val − 6 omin − 0 omax − 2

9
>>>>=
>>>>;

1
CCCCCCCCCCCCCCCCCCA

The sliding distribution constraint holds since:
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• On the first sequence of 4 consecutive variables 0566 values 0, 1, 4, 5 and 6 are
respectively used 1, 0, 0, 1 and 2 times.

• On the second sequence of 4 consecutive variables 5665 values 0, 1, 4, 5 and 6 are
respectively used 0, 0, 0, 2 and 2 times.

• On the third sequence of 4 consecutive variables 6650 values 0, 1, 4, 5 and 6 are
respectively used 1, 0, 0, 1 and 2 times.

• On the third sequence of 4 consecutive variables 6500 values 0, 1, 4, 5 and 6 are
respectively used 2, 0, 0, 1 and 1 times.

See also among seq, global cardinality low up, pattern.

Key words decomposition, sliding sequence constraint, sequence, hypergraph.
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4.187 sliding sum

Origin CHIP

Constraint sliding sum(LOW, UP, SEQ, VARIABLES)

Argument(s) LOW : int

UP : int

SEQ : int

VARIABLES : collection(var − dvar)

Restriction(s) UP ≥ LOW

SEQ > 0
SEQ ≤ |VARIABLES|
required(VARIABLES, var)

Purpose
Constrains all sequences of SEQ consecutive variables of the collection VARIABLES so that the
sum of the variables belongs to interval [LOW, UP].

Arc input(s) VARIABLES

Arc generator PATH 7→ collection

Arc arity SEQ

Arc constraint(s) • sum ctr(collection,≥, LOW)
• sum ctr(collection,≤, UP)

Graph property(ies) NARC = |VARIABLES| − SEQ + 1

Example sliding sum

0
BBBBBBBB@

3, 7, 4,

8
>>>>>>>><
>>>>>>>>:

var − 1,
var − 4,
var − 2,
var − 0,
var − 0,
var − 3,
var − 4

9
>>>>>>>>=
>>>>>>>>;

1
CCCCCCCCA

The previous example considers all sliding sequences of 4 consecutive variables
and constraints the sum to be between 3 and 7. The constraint holds since the sum
associated to the different sequences are respectively 7, 6, 5 and 7.

Graph model We use sum ctr as an arc constraint. sum ctr takes a collection of domain variables as its
first argument.

Signature Since we use the PATH arc generator with an arity of SEQ on the items of the VARIABLES
collection, the expression |VARIABLES| − SEQ + 1 corresponds to the maximum num-
ber of arcs of the final graph. Therefore we can rewrite the graph property NARC =
|VARIABLES| − SEQ + 1 to NARC ≥ |VARIABLES| − SEQ + 1 and simplify NARC to
NARC.
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Algorithm [65].

Key words decomposition, sliding sequence constraint, sequence, hypergraph, sum.
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4.188 sliding time window

Origin N. Beldiceanu

Constraint sliding time window(WINDOW SIZE, LIMIT, TASKS)

Argument(s) WINDOW SIZE : int

LIMIT : int

TASKS : collection(id − int, origin − dvar, duration − dvar)

Restriction(s) WINDOW SIZE > 0
LIMIT ≥ 0
required(TASKS, [id, origin, duration])
distinct(TASKS, id)
TASKS.duration ≥ 0

Purpose For any time window of size WINDOW SIZE, the intersection of all the tasks of the collection
TASKS with this time window is less than or equal to a given limit LIMIT.

Arc input(s) TASKS

Arc generator CLIQUE 7→ collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • tasks1.origin ≤ tasks2.origin
• tasks2.origin − tasks1.origin < WINDOW SIZE

Sets SUCC 7→ [source, tasks]

Constraint(s) on sets sliding time window from start(WINDOW SIZE, LIMIT, tasks, source.origin)

Example sliding time window

0
BBBB@

9, 6,

8
>>>><
>>>>:

id− 1 origin − 10 duration − 3,
id− 2 origin − 5 duration − 1,
id− 3 origin − 6 duration − 2,
id− 4 origin − 14 duration − 2,
id− 5 origin − 2 duration − 2

9
>>>>=
>>>>;

1
CCCCA

Parts (A) and (B) of Figure 4.373 respectively show the initial and final graph. In
the final graph, the successors of a given task t correspond to the set of tasks that do not
start before task t and intersect the time window that starts at the origin of task t.

The lower part of Figure 4.374 indicates the different tasks on the time axis. Each task is
drawn as a rectangle with its corresponding identifier in the middle. Finally the upper part
of Figure 4.374 shows the different time windows and the respective contribution of the
tasks in these time windows. A line with two arrows depicts each time window. The two
arrows indicate the start and the end of the time window. At the right of each time window
we give its occupation. Since this occupation is always less than or equal to the limit 6, the
sliding time window constraint holds.
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TASKS

1

2

3

4

5

1:1,10,3

4:4,14,2

2:2,5,1

3:3,6,2

5:5,2,2

(A) (B)

Figure 4.373: Initial and final graph of the sliding time window constraint

2 5 6 10 14

6 = 1+2+3 < 7

6 = 2+3+1 < 7

5 = 3+2 < 7

2 = 2 < 7

time

5 2 3 1 4

6 = 2+1+2+1 < 7

Figure 4.374: Time windows of the sliding time window constraint
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Graph model We generate an arc from a task t1 to a task t2 if task t2 does not start before task t1 and
if task t2 intersects the time window that starts at the origin of task t1. Each set generated
by SUCC corresponds to all tasks that intersect in time the time window that starts at the
origin of a given task.

Usage The sliding time window constraint is useful for timetabling problems in order to put
an upper limit on the total work over sliding time windows.

See also shift, sliding time window from start, sliding time window sum.

Key words sliding sequence constraint, temporal constraint.
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4.189 sliding time window from start

Origin Used for defining sliding time window.

Constraint sliding time window from start(WINDOW SIZE, LIMIT, TASKS, START)

Argument(s) WINDOW SIZE : int

LIMIT : int

TASKS : collection(id − int, origin − dvar, duration − dvar)
START : dvar

Restriction(s) WINDOW SIZE > 0
LIMIT ≥ 0
required(TASKS, [id, origin, duration])
distinct(TASKS, id)
TASKS.duration ≥ 0

Purpose The sum of the intersections of all the tasks of the TASKS collection with interval
[START, START + WINDOW SIZE − 1] is less than or equal to LIMIT.

Derived Collection(s) col(S − collection(var− dvar), [item(var − START)])

Arc input(s) S TASKS

Arc generator PRODUCT 7→ collection(s, tasks)

Arc arity 2

Arc constraint(s) TRUE

Graph property(ies) SUM WEIGHT ARC

„
max

„
0,

min(s.var + WINDOW SIZE, tasks.origin + tasks.duration)−
max(s.var, tasks.origin)

« «
≤ LIMIT

Example sliding time window

0
@ 9, 6,

8
<
:

id− 1 origin − 10 duration − 3,
id− 2 origin − 5 duration − 1,
id− 3 origin − 6 duration − 2

9
=
; , 5

1
A

Parts (A) and (B) of Figure 4.375 respectively show the initial and final graph. To each arc
of the final graph we associate the intersection of the corresponding sink task with interval
[START, START+WINDOW SIZE−1]. The constraint sliding time window from start

holds since the sum of the previous intersections does not exceed LIMIT.

Graph model Since we use the TRUE arc constraint the final and the initial graph are identical. The unique
source of the final graph corresponds to the interval [START, START + WINDOW SIZE − 1].
Each sink of the final graph represents a given task of the TASKS collection. We valu-
ate each arc by the intersection of the task associated to one of the extremities of the arc
with the time window [START, START + WINDOW SIZE − 1]. Finally, the graph property
SUM WEIGHT ARC sums up all the valuations of the arcs and check that it does
not exceed a given limit.
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Used in sliding time window.

Key words sliding sequence constraint, temporal constraint, derived collection.
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S

TASKS

1

123

SUM_WEIGHT_ARC=3+1+2=6

1:5

1:1,10,3

3

2:2,5,1

1

3:3,6,2

2

(A) (B)

Figure 4.375: Initial and final graph of the sliding time window from start con-
straint



20030820 801



802 NARC, SELF ; CLIQUE , SUCC

4.190 sliding time window sum

Origin Derived from sliding time window.

Constraint sliding time window sum(WINDOW SIZE, LIMIT, TASKS)

Argument(s) WINDOW SIZE : int

LIMIT : int

TASKS : collection(id − int, origin − dvar, end− dvar, npoint − dvar)

Restriction(s) WINDOW SIZE > 0
LIMIT ≥ 0
required(TASKS, [id, origin, end, npoint])
distinct(TASKS, id)
TASKS.npoint ≥ 0

Purpose For any time window of size WINDOW SIZE, the sum of the points of the tasks of the collection
TASKS that overlap that time window do not exceed a given limit LIMIT.

Arc input(s) TASKS

Arc generator SELF 7→ collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin ≤ tasks.end

Graph property(ies) NARC = |TASKS|

Arc input(s) TASKS

Arc generator CLIQUE 7→ collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • tasks1.end ≤ tasks2.end
• tasks2.origin − tasks1.end < WINDOW SIZE − 1

Sets

SUCC 7→2
4

source,

variables − col

„
VARIABLES − collection(var− dvar),
[item(var− TASKS.npoint)]

«
3
5

Constraint(s) on sets sum ctr(variables,≤, LIMIT)
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Example sliding time window sum

0
BBBB@

9, 16,

8
>>>><
>>>>:

id − 1 origin − 10 end − 13 npoint − 2,
id − 2 origin − 5 end − 6 npoint − 3,
id − 3 origin − 6 end − 8 npoint − 4,
id − 4 origin − 14 end − 16 npoint − 5,
id − 5 origin − 2 end − 4 npoint − 6

9
>>>>=
>>>>;

1
CCCCA

Parts (A) and (B) of Figure 4.376 respectively show the initial and final graph. In
the final graph, the successors of a given task t correspond to the set of tasks that both do
not end before the end of task t, and intersect the time window that starts at the end − 1
of task t.

The lower part of Figure 4.377 indicates the different tasks on the time axis. Each task is
drawn as a rectangle with its corresponding identifier in the middle. Finally the upper part
of Figure 4.377 shows the different time windows and the respective contribution of the
tasks in these time windows. A line with two arrows depicts each time window. The two
arrows indicate the start and the end of the time window. At the right of each time window
we give its occupation. Since this occupation is always less than or equal to the limit 16,
the sliding time window sum constraint holds.

TASKS

1

2

3

4

5

1:1,10,13,2

4:4,14,16,5

2:2,5,6,3

3:3,6,8,4

5:5,2,4,6

(A) (B)

Figure 4.376: Initial and final graph of the sliding time window sum constraint

Graph model We generate an arc from a task t1 to a task t2 if task t2 does not end before the end of task
t1 and if task t2 intersects the time window that starts at the last instant of task t1. Each
set generated by SUCC corresponds to all tasks that intersect in time the time window that
starts at instant end− 1, where end is the end of a given task.

Signature Consider the first graph constraint. Since we use the SELF arc generator on the TASKS

collection the maximum number of arcs of the final graph is equal to |TASKS|. Therefore we
can rewrite NARC = |TASKS| to NARC ≥ |TASKS| and simplify NARC to NARC.

Usage This constraint may be used for timetabling problems in order to put an upper limit on the
cumulated number of points in a shift.

See also sliding time window.
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Key words sliding sequence constraint, temporal constraint, time window, sum.

2 5 6 10 14

15 = 6+3+4+2 < 17

9 = 3+4+2 < 17

11 = 4+2+5 < 17

7 = 2+5 < 17

5 = 5 < 17

time

5 2 3 1 4

Figure 4.377: Time windows of the sliding time window sum constraint
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4.191 smooth

Origin Derived from change.

Constraint smooth(NCHANGE, TOLERANCE, VARIABLES)

Argument(s) NCHANGE : dvar

TOLERANCE : int

VARIABLES : collection(var − dvar)

Restriction(s) NCHANGE ≥ 0
NCHANGE < |VARIABLES|
TOLERANCE ≥ 0
required(VARIABLES, var)

Purpose NCHANGE is the number of times that |X − Y | > TOLERANCE holds; X and Y correspond to
consecutive variables of the collection VARIABLES.

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) abs(variables1.var − variables2.var) > TOLERANCE

Graph property(ies) NARC = NCHANGE

Example smooth

0
BBBB@

1, 2,

8
>>>><
>>>>:

var − 1,
var − 3,
var − 4,
var − 5,
var − 2

9
>>>>=
>>>>;

1
CCCCA

In the previous example we have one change between values 5 and 2 since the dif-
ference in absolute value is greater than the tolerance (i.e. |5 − 2| > 2). Parts (A) and (B)
of Figure 4.378 respectively show the initial and final graph. Since we use the NARC
graph property, the unique arc of the final graph is stressed in bold.

Automaton Figure 4.379 depicts the automaton associated to the smooth constraint. To each pair
of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a 0-
1 signature variable Si. The following signature constraint links VARi, VARi+1 and Si:
(|VARi − VARi+1|) > TOLERANCE⇔ Si = 1.

Usage This constraint is useful for the following problems:

• Assume that VARIABLES corresponds to the number of people that work on consec-
utive weeks. One may not normally increase or decrease too drastically the number
of people from one week to the next week. With the smooth constraint you can state
a limit on the number of drastic changes.
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VARIABLES

1

2

3

4

5

NARC=1

4:5

5:2

(A) (B)

Figure 4.378: Initial and final graph of the smooth constraint

|VAR −VAR   |>TOLERANCE,
i i+1

|VAR −VAR   |<=TOLERANCE
i i+1

$

t:
NCHANGE=C

{C=C+1}

s

{C=0}

Figure 4.379: Automaton of the smooth constraint

Q =s0

C =00 C1

Q1

VAR
1

S1

VAR
2

S2

VAR
n

VAR
3

S3

Q2

C2

Sn−1

VAR
n−1

Q   =tn−1

C   =NCHANGEn−1

Figure 4.380: Hypergraph of the reformulation corresponding to the automaton of the
smooth constraint
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• Assume you have to produce a set of orders, each order having a specific attribute.
You want to generate the orders in such a way that there is not a too big difference
between the values of the attributes of two consecutives orders. If you can’t achieve
this on two given specific orders, this would imply a set-up or a cost. Again, with the
smooth constraint, you can control this kind of drastic changes.

Algorithm [65].

See also change.

Key words timetabling constraint, number of changes, automaton, automaton with counters,
sliding cyclic(1) constraint network(2).
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4.192 soft alldifferent ctr

Origin [10]

Constraint soft alldifferent ctr(C, VARIABLES)

Synonym(s) soft alldiff ctr, soft alldistinct ctr.

Argument(s) C : dvar

VARIABLES : collection(var − dvar)

Restriction(s) C ≥ 0
C ≤ (|VARIABLES| ∗ |VARIABLES| − |VARIABLES|)/2
required(VARIABLES, var)

Purpose
Consider the disequality constraints involving two distinct variables of the collection
VARIABLES. Among the previous set of constraints, C is the number of disequality constraints
which do not hold.

Arc input(s) VARIABLES

Arc generator CLIQUE(<) 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NARC = C

Example soft alldifferent ctr

0
BBBBBB@

4,

8
>>>>>><
>>>>>>:

var− 5,
var− 1,
var− 9,
var− 1,
var− 5,
var− 5

9
>>>>>>=
>>>>>>;

1
CCCCCCA

Parts (A) and (B) of Figure 4.381 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in bold.
Since four equality constraints remain in the final graph the cost variable C is equal to 4.

Graph model We generate an initial graph with binary equalities constraints between each vertex and
its successors. We use the arc generator CLIQUE(<) in order to avoid counting twice
the same equality constraint. The graph property states that C is equal to the number of
equalities that hold in the final graph.

Usage A soft alldifferent constraint.
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Algorithm Since it focus on the soft aspect of the alldifferent constraint, the original paper [10]
which introduces this constraint describes how to evaluate the minimum value of C and how
to prune according to the maximum value of C. The corresponding filtering algorithm does
not achieve arc-consistency. W.-J. van Hoeve [26] presents a new filtering algorithm which
achieves arc-consistency. This algorithm is based on a reformulation into a minimum-cost
flow problem.

See also alldifferent, soft alldifferent var.

Key words soft constraint, value constraint, relaxation, decomposition-based violation measure,
all different, disequality, flow.
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VARIABLES

1

2

3

4

5

6

NARC=4

1:5

5:5

6:5

2:1

4:1

(A) (B)

Figure 4.381: Initial and final graph of the soft alldifferent ctr constraint
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4.193 soft alldifferent var

Origin [10]

Constraint soft alldifferent var(C, VARIABLES)

Synonym(s) soft alldiff var, soft alldistinct var.

Argument(s) C : dvar

VARIABLES : collection(var − dvar)

Restriction(s) C ≥ 0
C < |VARIABLES|
required(VARIABLES, var)

Purpose C is the minimum number of variables of the collection VARIABLES for which the value needs
to be changed in order that all variables of VARIABLES take a distinct value.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NSCC = |VARIABLES| − C

Example soft alldifferent var

0
BBBBBB@

3,

8
>>>>>><
>>>>>>:

var− 5,
var− 1,
var− 9,
var− 1,
var− 5,
var− 5

9
>>>>>>=
>>>>>>;

1
CCCCCCA

Parts (A) and (B) of Figure 4.382 respectively show the initial and final graph.
Since we use the NSCC graph property we show the different strongly connected
components of the final graph. Each strongly connected component of the final graph
includes all variables which take the same value. Since we have 6 variables and 3 strongly
connected components the cost variable C is equal to 6− 3.

Graph model We generate a clique with binary equalities constraints between each pairs of vertices (this
include an arc between a vertex and itself) and we state that C is equal to the difference
between the total number of variables and the number of strongly connected components.

Usage A soft alldifferent constraint.

Remark Since it focus on the soft aspect of the alldifferent constraint, the original paper [10]
which introduce this constraint describes how to evaluate the minimum value of C and how
to prune according to the maximum value of C.
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Algorithm The filtering algorithm presented in [10] achieves arc-consistency.

See also alldifferent, soft alldifferent ctr, weighted partial alldiff.

Key words soft constraint, value constraint, relaxation, variable-based violation measure, all different,
disequality, strongly connected component, equivalence.
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VARIABLES

1

2

3

4

5

6

NSCC=3

SCC#1 SCC#2 SCC#3

1:5

5:5

6:5

2:1

4:1

3:9

(A) (B)

Figure 4.382: Initial and final graph of the soft alldifferent var constraint
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4.194 soft same interval var

Origin Derived from same interval

Constraint soft same interval var(C, VARIABLES1, VARIABLES2, SIZE INTERVAL)

Synonym(s) soft same interval.

Argument(s) C : dvar

VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
SIZE INTERVAL : int

Restriction(s) C ≥ 0
C ≤ |VARIABLES1|
|VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
SIZE INTERVAL > 0

Purpose

LetNi (respectivelyMi) denote the number of variables of the collection VARIABLES1 (respec-
tively VARIABLES2) that take a value in the interval [SIZE INTERVAL · i, SIZE INTERVAL · i+
SIZE INTERVAL − 1. C is the minimum number of values to change in the VARIABLES1 and
VARIABLES2 collections so that for all integer i we have Ni = Mi.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var/SIZE INTERVAL = variables2.var/SIZE INTERVAL

Graph property(ies) NSINK NSOURCE = |VARIABLES1| − C

Example soft same interval var

0
BBBBBBBBBBBBBBBBBB@

4,

8
>>>>>><
>>>>>>:

var− 9,
var− 9,
var− 9,
var− 9,
var− 9,
var− 1

9
>>>>>>=
>>>>>>;

,

8
>>>>>><
>>>>>>:

var − 9,
var − 1,
var − 1,
var − 1,
var − 1,
var − 8

9
>>>>>>=
>>>>>>;

, 3

1
CCCCCCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.383 respectively show the initial and final graph.
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Since we use the NSINK NSOURCE graph property, the source and sink vertices
of the final graph are stressed with a double circle. The soft same interval var

constraint holds since the cost 4 corresponds to the difference between the number of
variables of VARIABLES1 and the sum over the different connected components of the
minimum number of sources and sinks.

VARIABLES1

VARIABLES2

1

1234 56

2 3456

NSINK_NSOURCE=min(5,1)+min(1,4)=2

1:9

1:9

2:9 3:9 4:9 5:9 6:1

2:1 3:1 4:1 5:1

(A) (B)

Figure 4.383: Initial and final graph of the soft same interval var constraint

Usage A soft same interval constraint.

Algorithm See algorithm of the soft same var constraint.

See also same interval.

Key words soft constraint, constraint between two collections of variables, relaxation,
variable-based violation measure, interval.
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4.195 soft same modulo var

Origin Derived from same modulo

Constraint soft same modulo var(C, VARIABLES1, VARIABLES2, M)

Synonym(s) soft same modulo.

Argument(s) C : dvar

VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
M : int

Restriction(s) C ≥ 0
C ≤ |VARIABLES1|
|VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
M > 0

Purpose

For each integer R in [0, M − 1], let N1R (respectively N2R) denote the number of variables
of VARIABLES1 (respectively VARIABLES2) which have R as a rest when divided by M. C is the
minimum number of values to change in the VARIABLES1 and VARIABLES2 collections so that
for all R in [0, M− 1] we have N1R = N2R.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var mod M = variables2.var mod M

Graph property(ies) NSINK NSOURCE = |VARIABLES1| − C

Example soft same modulo var

0
BBBBBBBBBBBBBBBBBB@

4,

8
>>>>>><
>>>>>>:

var − 9,
var − 9,
var − 9,
var − 9,
var − 9,
var − 1

9
>>>>>>=
>>>>>>;

,

8
>>>>>><
>>>>>>:

var− 9,
var− 1,
var− 1,
var− 1,
var− 1,
var− 8

9
>>>>>>=
>>>>>>;

, 3

1
CCCCCCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.384 respectively show the initial and final graph.
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Since we use the NSINK NSOURCE graph property, the source and sink vertices of
the final graph are stressed with a double circle. The soft same modulo var constraint
holds since the cost 4 corresponds to the difference between the number of variables
of VARIABLES1 and the sum over the different connected components of the minimum
number of sources and sinks.

VARIABLES1

VARIABLES2

1

1234 56

2 3456

NSINK_NSOURCE=min(5,1)+min(1,4)=2

1:9

1:9

2:9 3:9 4:9 5:9 6:1

2:1 3:1 4:1 5:1

(A) (B)

Figure 4.384: Initial and final graph of the soft same modulo var constraint

Usage A soft same modulo constraint.

Algorithm See algorithm of the soft same var constraint.

See also same modulo.

Key words soft constraint, constraint between two collections of variables, relaxation,
variable-based violation measure, modulo.
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4.196 soft same partition var

Origin Derived from same partition

Constraint soft same partition var(C, VARIABLES1, VARIABLES2, PARTITIONS)

Synonym(s) soft same partition.

Type(s) VALUES : collection(val− int)

Argument(s) C : dvar

VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
PARTITIONS : collection(p− VALUES)

Restriction(s) C ≥ 0
C ≤ |VARIABLES1|
|VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2
required(VALUES, val)
distinct(VALUES, val)

Purpose

For each integer i in [1, |PARTITIONS|], let N1 i (respectively N2 i) denote the number of vari-
ables of VARIABLES1 (respectively VARIABLES2) which take their value in the ith partition of
the collection PARTITIONS. C is the minimum number of values to change in the VARIABLES1
and VARIABLES2 collections so that for all i in [1, |PARTITIONS|] we have N1 i = N2 i.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) in same partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) NSINK NSOURCE = |VARIABLES1| − C
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Example soft same partition var

0
BBBBBBBBBBBBBBBBBBBBBBBB@

4,

8
>>>>>><
>>>>>>:

var − 9,
var − 9,
var − 9,
var − 9,
var − 9,
var − 1

9
>>>>>>=
>>>>>>;

,

8
>>>>>><
>>>>>>:

var − 9,
var − 1,
var − 1,
var − 1,
var − 1,
var − 8

9
>>>>>>=
>>>>>>;

,

8
<
:

p− {val − 1, val− 2},
p− {val − 9},
p− {val − 7, val− 8}

9
=
;

1
CCCCCCCCCCCCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.385 respectively show the initial and final graph.
Since we use the NSINK NSOURCE graph property, the source and sink vertices
of the final graph are stressed with a double circle. The soft same partition var

constraint holds since the cost 4 corresponds to the difference between the number of
variables of VARIABLES1 and the sum over the different connected components of the
minimum number of sources and sinks.

VARIABLES1

VARIABLES2

1

1234 56

2 3456

NSINK_NSOURCE=min(5,1)+min(1,4)=2

1:9

1:9

2:9 3:9 4:9 5:9 6:1

2:1 3:1 4:1 5:1

(A) (B)

Figure 4.385: Initial and final graph of the soft same partition var constraint

Usage A soft same partition constraint.

Algorithm See algorithm of the soft same var constraint.

See also same partition.

Key words soft constraint, constraint between two collections of variables, relaxation,
variable-based violation measure, partition.
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4.197 soft same var

Origin [104]

Constraint soft same var(C, VARIABLES1, VARIABLES2)

Synonym(s) soft same.

Argument(s) C : dvar

VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)

Restriction(s) C ≥ 0
C ≤ |VARIABLES1|
|VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose
C is the minimum number of values to change in the VARIABLES1 and VARIABLES2 collec-
tions so that the variables of the VARIABLES2 collection correspond to the variables of the
VARIABLES1 collection according to a permutation.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NSINK NSOURCE = |VARIABLES1| − C

Example soft same var

0
BBBBBBBBBBBBBBBBBB@

4,

8
>>>>>><
>>>>>>:

var − 9,
var − 9,
var − 9,
var − 9,
var − 9,
var − 1

9
>>>>>>=
>>>>>>;

,

8
>>>>>><
>>>>>>:

var − 9,
var − 1,
var − 1,
var − 1,
var − 1,
var − 8

9
>>>>>>=
>>>>>>;

1
CCCCCCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.386 respectively show the initial and final graph.
Since we use the NSINK NSOURCE graph property, the source and sink vertices
of the final graph are stressed with a double circle. The soft same var constraint
holds since the cost 4 corresponds to the difference between the number of variables
of VARIABLES1 and the sum over the different connected components of the minimum
number of sources and sinks.
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Usage A soft same constraint.

Algorithm [104, page 80].

See also same.

Key words soft constraint, constraint between two collections of variables, relaxation,
variable-based violation measure.
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VARIABLES1

VARIABLES2

1

1234 56

2 3456

NSINK_NSOURCE=min(5,1)+min(1,4)=2

1:9

1:9

2:9 3:9 4:9 5:9 6:1

2:1 3:1 4:1 5:1

(A) (B)

Figure 4.386: Initial and final graph of the soft same var constraint
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4.198 soft used by interval var

Origin Derived from used by interval.

Constraint soft used by interval var(C, VARIABLES1, VARIABLES2, SIZE INTERVAL)

Synonym(s) soft used by interval.

Argument(s) C : dvar

VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
SIZE INTERVAL : int

Restriction(s) C ≥ 0
C ≤ |VARIABLES2|
|VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
SIZE INTERVAL > 0

Purpose

LetNi (respectivelyMi) denote the number of variables of the collection VARIABLES1 (respec-
tively VARIABLES2) that take a value in the interval [SIZE INTERVAL · i, SIZE INTERVAL · i+
SIZE INTERVAL − 1]. C is the minimum number of values to change in the VARIABLES1 and
VARIABLES2 collections so that for all integer i we have Mi > 0⇒ Ni > 0.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var/SIZE INTERVAL = variables2.var/SIZE INTERVAL

Graph property(ies) NSINK NSOURCE = |VARIABLES2| − C

Example soft used by interval var

0
BBBBBBBBBBBB@

2,

8
>>>><
>>>>:

var − 9,
var − 1,
var − 1,
var − 8,
var − 8

9
>>>>=
>>>>;
,

8
>><
>>:

var − 9,
var − 9,
var − 9,
var − 1

9
>>=
>>;
, 3

1
CCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.387 respectively show the initial and final graph.
Since we use the NSINK NSOURCE graph property, the source and sink vertices
of the final graph are stressed with a double circle. The soft used by interval var

constraint holds since the cost 2 corresponds to the difference between the number of
variables of VARIABLES2 and the sum over the different connected components of the
minimum number of sources and sinks.
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Usage A soft used by interval constraint.

See also used by interval.

Key words soft constraint, constraint between two collections of variables, relaxation,
variable-based violation measure, interval.
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VARIABLES1

VARIABLES2

1

1234

2345

NSINK_NSOURCE=min(1,3)+min(2,1)=2

1:9

1:9 2:9 3:9

2:1

4:1

3:1

(A) (B)

Figure 4.387: Initial and final graph of the soft used by interval var constraint
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4.199 soft used by modulo var

Origin Derived from used by modulo

Constraint soft used by modulo var(C, VARIABLES1, VARIABLES2, M)

Synonym(s) soft used by modulo.

Argument(s) C : dvar

VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
M : int

Restriction(s) C ≥ 0
C ≤ |VARIABLES2|
|VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
M > 0

Purpose

For each integer R in [0, M − 1], let N1R (respectively N2R) denote the number of variables
of VARIABLES1 (respectively VARIABLES2) which have R as a rest when divided by M. C is the
minimum number of values to change in the VARIABLES1 and VARIABLES2 collections so that
for all R in [0, M− 1] we have N2R > 0⇒ N1R > 0.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var mod M = variables2.var mod M

Graph property(ies) NSINK NSOURCE = |VARIABLES2| − C

Example soft used by modulo var

0
BBBBBBBBBBBB@

2,

8
>>>><
>>>>:

var − 9,
var − 1,
var − 1,
var − 8,
var − 8

9
>>>>=
>>>>;
,

8
>><
>>:

var − 9,
var − 9,
var − 9,
var − 1

9
>>=
>>;
, 3

1
CCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.388 respectively show the initial and final graph.
Since we use the NSINK NSOURCE graph property, the source and sink vertices
of the final graph are stressed with a double circle. The soft used by modulo var

constraint holds since the cost 2 corresponds to the difference between the number of
variables of VARIABLES2 and the sum over the different connected components of the
minimum number of sources and sinks.
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Usage A soft used by modulo constraint.

Key words soft constraint, constraint between two collections of variables, relaxation,
variable-based violation measure, modulo.
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VARIABLES1

VARIABLES2

1

1234

2345

NSINK_NSOURCE=min(1,3)+min(2,1)=2

1:9

1:9 2:9 3:9

2:1

4:1

3:1

(A) (B)

Figure 4.388: Initial and final graph of the soft used by modulo var constraint
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4.200 soft used by partition var

Origin Derived from used by partition.

Constraint soft used by partition var(C, VARIABLES1, VARIABLES2, PARTITIONS)

Synonym(s) soft used by partition.

Type(s) VALUES : collection(val− int)

Argument(s) C : dvar

VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
PARTITIONS : collection(p− VALUES)

Restriction(s) C ≥ 0
C ≤ |VARIABLES2|
|VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2
required(VALUES, val)
distinct(VALUES, val)

Purpose

For each integer i in [1, |PARTITIONS|], let N1 i (respectively N2 i) denote the number of vari-
ables of VARIABLES1 (respectively VARIABLES2) which take their value in the ith partition of
the collection PARTITIONS. C is the minimum number of values to change in the VARIABLES1
and VARIABLES2 collections so that for all i in [1, |PARTITIONS|] we have N1 i = N2 i.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) in same partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) NSINK NSOURCE = |VARIABLES2| − C
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Example soft used by partition var

0
BBBBBBBBBBBBBBBBBB@

2,

8
>>>><
>>>>:

var − 9,
var − 1,
var − 1,
var − 8,
var − 8

9
>>>>=
>>>>;
,

8
>><
>>:

var − 9,
var − 9,
var − 9,
var − 1

9
>>=
>>;
,

8
<
:

p − {val − 1, val − 2},
p − {val − 9},
p − {val − 7, val − 8}

9
=
;

1
CCCCCCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.389 respectively show the initial and final graph.
Since we use the NSINK NSOURCE graph property, the source and sink vertices
of the final graph are stressed with a double circle. The soft used by partition var

constraint holds since the cost 2 corresponds to the difference between the number of
variables of VARIABLES2 and the sum over the different connected components of the
minimum number of sources and sinks.

VARIABLES1

VARIABLES2

1

1234

2345

NSINK_NSOURCE=min(1,3)+min(2,1)=2

1:9

1:9 2:9 3:9

2:1

4:1

3:1

(A) (B)

Figure 4.389: Initial and final graph of the soft used by partition var constraint

Usage A soft used by partition constraint.

See also used by partition.

Key words soft constraint, constraint between two collections of variables, relaxation,
variable-based violation measure, partition.
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4.201 soft used by var

Origin Derived from used by

Constraint soft used by var(C, VARIABLES1, VARIABLES2)

Synonym(s) soft used by.

Argument(s) C : dvar

VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)

Restriction(s) C ≥ 0
C ≤ |VARIABLES2|
|VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose
C is the minimum number of values to change in the VARIABLES1 and VARIABLES2 collections
so that all the values of the variables of collection VARIABLES2 are used by the variables of
collection VARIABLES1.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NSINK NSOURCE = |VARIABLES2| − C

Example soft used by var

0
BBBBBBBBBBBB@

2,

8
>>>><
>>>>:

var − 9,
var − 1,
var − 1,
var − 8,
var − 8

9
>>>>=
>>>>;
,

8
>><
>>:

var− 9,
var− 9,
var− 9,
var− 1

9
>>=
>>;

1
CCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.390 respectively show the initial and final graph.
Since we use the NSINK NSOURCE graph property, the source and sink vertices
of the final graph are stressed with a double circle. The soft used by var constraint
holds since the cost 2 corresponds to the difference between the number of variables
of VARIABLES2 and the sum over the different connected components of the minimum
number of sources and sinks.
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Usage A soft used by constraint.

Key words soft constraint, constraint between two collections of variables, relaxation,
variable-based violation measure.
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VARIABLES1

VARIABLES2

1

1234

2345

NSINK_NSOURCE=min(1,3)+min(2,1)=2

1:9

1:9 2:9 3:9

2:1

4:1

3:1

(A) (B)

Figure 4.390: Initial and final graph of the soft used by var constraint



20050507 841



842 NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT ; NARC,PATH

4.202 sort

Origin [139]

Constraint sort(VARIABLES1, VARIABLES2)

Argument(s) VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)

Restriction(s) |VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose The variables of the collection VARIABLES2 correspond to the variables of VARIABLES1 ac-
cording to a permutation. The variables of VARIABLES2 are also sorted in increasing order.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) • for all connected components: NSOURCE = NSINK
• NSOURCE = |VARIABLES1|
• NSINK = |VARIABLES2|

Arc input(s) VARIABLES2

Arc generator PATH 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var ≤ variables2.var

Graph property(ies) NARC = |VARIABLES2| − 1

Example sort

0
BBBBBBBBBBBBBBBBBB@

8
>>>>>><
>>>>>>:

var − 1,
var − 9,
var − 1,
var − 5,
var − 2,
var − 1

9
>>>>>>=
>>>>>>;

,

8
>>>>>><
>>>>>>:

var − 1,
var − 1,
var − 1,
var − 2,
var − 5,
var − 9

9
>>>>>>=
>>>>>>;

1
CCCCCCCCCCCCCCCCCCA
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Parts (A) and (B) of Figure 4.391 respectively show the initial and final graph asso-
ciated to the first graph constraint. Since it uses the NSOURCE and NSINK graph
properties, the source and sink vertices of this final graph are stressed with a double circle.
Since there is a constraint on each connected component of the final graph we also show
the different connected components. The sort constraint holds since:

• Each connected component of the final graph of the first graph constraint has the
same number of sources and of sinks.

• The number of sources of the final graph of the first graph constraint is equal to
|VARIABLES1|.

• The number of sinks of the final graph of the first graph constraint is equal to
|VARIABLES2|.

• Finally the second graph constraint holds also since its corresponding final graph
contains exactly |VARIABLES1 − 1| arcs: All the inequalities constraints between
consecutive variables of VARIABLES2 holds.

VARIABLES1

VARIABLES2

1

1234 56

2 3456

CC#1:NSOURCE=3,NSINK=3
CC#2:NSOURCE=1,NSINK=1
CC#3:NSOURCE=1,NSINK=1
CC#4:NSOURCE=1,NSINK=1

NSOURCE=6,NSINK=6

CC#1 CC#2 CC#3 CC#4

1:1

1:1 2:13:1

3:16:1 2:9

6:9

4:5

5:5

5:2

4:2

(A) (B)

Figure 4.391: Initial and final graph of the sort constraint

Signature Consider the first graph constraint. Since the initial graph contains only sources and sinks,
and since isolated vertices are eliminated from the final graph, we make the following
observations:

• Sources of the initial graph cannot become sinks of the final graph,

• Sinks of the initial graph cannot become sources of the final graph.

From the previous observations and since we use the PRODUCT arc generator on the col-
lections VARIABLES1 and VARIABLES2, we have that the maximum number of sources and
sinks of the final graph is respectively equal to |VARIABLES1| and |VARIABLES2|. There-
fore we can rewrite NSOURCE = |VARIABLES1| to NSOURCE ≥ |VARIABLES1|
and simplify NSOURCE to NSOURCE. In a similar way, we can rewrite
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NSINK = |VARIABLES2| to NSINK ≥ |VARIABLES2| and simplify NSINK to
NSINK.

Consider now the second graph constraint. Since we use the PATH arc generator with an
arity of 2 on the VARIABLES2 collection, the maximum number of arcs of the final graph
is equal to |VARIABLES2| − 1. Therefore we can rewrite the graph property NARC =
|VARIABLES2| − 1 to NARC ≥ |VARIABLES2| − 1 and simplify NARC to NARC.

Remark A variant of this constraint was introduced in [147]. In this variant an additional list of
domain variables represents the permutation which allows to go from VARIABLES1 to
VARIABLES2.

Algorithm [61, 23].

See also same, sort permutation.

Key words constraint between two collections of variables, sort, permutation.
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4.203 sort permutation

Origin [147]

Constraint sort permutation(FROM, PERMUTATION, TO)

Usual name sort

Argument(s) FROM : collection(var− dvar)
PERMUTATION : collection(var− dvar)
TO : collection(var− dvar)

Restriction(s) |PERMUTATION| = |FROM|
|PERMUTATION| = |TO|
PERMUTATION.var ≥ 1
PERMUTATION.var ≤ |PERMUTATION|
alldifferent(PERMUTATION)
required(FROM, var)
required(PERMUTATION, var)
required(TO, var)

Purpose The variables of collection FROM correspond to the variables of collection TO according to the
permutation PERMUTATION. The variables of collection TO are also sorted in increasing order.

Derived Collection(s) col

„
FROM PERMUTATION − collection(var− dvar, ind − dvar),
[item(var− FROM.var, ind − PERMUTATION.var)]

«

Arc input(s) FROM PERMUTATION TO

Arc generator PRODUCT 7→ collection(from permutation, to)

Arc arity 2

Arc constraint(s) • from permutation.var = to.var
• from permutation.ind = to.key

Graph property(ies) NARC = |PERMUTATION|

Arc input(s) TO

Arc generator PATH 7→ collection(to1, to2)

Arc arity 2

Arc constraint(s) to1.var ≤ to2.var

Graph property(ies) NARC = |TO| − 1
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Example sort permutation

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

8
>>>>>><
>>>>>>:

var − 1,
var − 9,
var − 1,
var − 5,
var − 2,
var − 1

9
>>>>>>=
>>>>>>;

,

8
>>>>>><
>>>>>>:

var − 1,
var − 6,
var − 3,
var − 5,
var − 4,
var − 2

9
>>>>>>=
>>>>>>;

,

8
>>>>>><
>>>>>>:

var − 1,
var − 1,
var − 1,
var − 2,
var − 5,
var − 9

9
>>>>>>=
>>>>>>;

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.392 respectively show the initial and final graph asso-
ciated to the first graph constraint. In both graphs the source vertices correspond to the
items of the derived collection FROM PERMUTATION, while the sink vertices correspond
to the items of the TO collection. Since the first graph constraint uses the NARC graph
property, the arcs of its final graph are stressed in bold. The sort permutation constraint
holds since:

• The first graph constraint holds since its final graph contains exactly PERMUTATION

arcs.

• Finally the second graph constraint holds also since its corresponding final graph
contains exactly |PERMUTATION − 1| arcs: All the inequalities constraints between
consecutive variables of TO holds.

FROM_PERMUTATION

TO

1

1234 56

2 3456

NARC=6

1:1,1

1:1

2:9,6

6:9

3:1,3

3:1

4:5,5

5:5

5:2,4

4:2

6:1,2

2:1

(A) (B)

Figure 4.392: Initial and final graph of the sort permutation constraint
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Signature Consider the first graph constraint where we use the PRODUCT arc generator. Since all
the key attributes of the TO collection are distinct, and because of the second condition
from permutation.ind = to.key of the arc constraint, each vertex of the final graph has
at most one successor. Therefore the maximum number of arcs of the final graph is equal
to |PERMUTATION|. So we can rewrite the graph property NARC = |PERMUTATION| to
NARC ≥ |PERMUTATION| and simplify NARC to NARC.

Consider now the second graph constraint. Since we use the PATH arc generator with
an arity of 2 on the TO collection, the maximum number of arcs of the corresponding final
graph is equal to |TO| − 1. Therefore we can rewrite NARC = |TO| − 1 to NARC ≥
|TO| − 1 and simplify NARC to NARC.

Algorithm [147].

See also correspondence, sort.

Key words constraint between three collections of variables, sort, permutation, derived collection.
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4.204 stage element

Origin CHOCO, derived from element.

Constraint stage element(ITEM, TABLE)

Usual name stage elt

Argument(s) ITEM : collection(index − dvar, value − dvar)
TABLE : collection(low − int, up− int, value − int)

Restriction(s) required(ITEM, [index, value])
|ITEM| = 1
required(TABLE, [low, up, value])

Purpose

Let lowi, upi and valuei respectively denote the values of the low, up and value attributes of
the ith item of the TABLE collection. First we have that: lowi ≤ upi and upi + 1 = lowi+1.
Second, the stageelement constraint enforces the following equivalence:
lowi ≤ ITEM.index ∧ ITEM.index ≤ upi ⇔ ITEM.value = valuei.

Arc input(s) TABLE

Arc generator PATH 7→ collection(table1, table2)

Arc arity 2

Arc constraint(s) • table1.low ≤ table1.up
• table1.up + 1 = table2.low
• table2.low ≤ table2.up

Graph property(ies) NARC = |TABLE| − 1

Arc input(s) ITEM TABLE

Arc generator PRODUCT 7→ collection(item, table)

Arc arity 2

Arc constraint(s) • item.index ≥ table.low
• item.index ≤ table.up
• item.value = table.value

Graph property(ies) NARC = 1
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Example stage element

0
BBBB@

{index − 5 value − 6},8
>><
>>:

low − 3 up− 7 value − 6,
low − 8 up− 8 value − 9,
low − 9 up− 14 value − 2,
low − 15 up− 19 value − 9

9
>>=
>>;

1
CCCCA

Parts (A) and (B) of Figure 4.393 respectively show the initial and final graph asso-
ciated to the second graph constraint. Since we use the NARC graph property, the unique
arc of the final graph is stressed in bold.

Graph model The first graph constraint models the restrictions on the low and up attributes of the TABLE
collection, while the second graph constraint is similar to the one used for defining the
element constraint.

Automaton Figure 4.394 depicts the automaton associated to the stage element constraint. Let
INDEX and VALUE respectively be the index and the value attributes of the unique
item of the ITEM collection. Let LOWi, UPi and VALUEi respectively be the low, the
up and the value attributes of the ith item of the TABLE collection. To each quintu-
ple (INDEX, VALUE, LOWi, UPi, VALUEi) corresponds a 0-1 signature variable Si as well as
the following signature constraint: ((LOWi ≤ INDEX) ∧ (INDEX ≤ UPi) ∧ (VALUE =
VALUEi))⇔ Si.

See also element, elem.

Key words data constraint, binary constraint, table, functional dependency, automaton,
automaton without counters, centered cyclic(2) constraint network(1).
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ITEM

TABLE

1

1234

NARC=1

1:5,6

1:3,7,6

(A) (B)

Figure 4.393: Initial and final graph of the stage element constraint

s

t

TABLE_LOW =<ITEM_INDEX and ITEM_INDEX=<TABLE_UP  and ITEM_VALUE=TABLE_VALUE
i                                     i                           i

TABLE_LOW >ITEM_INDEX or ITEM_INDEX>TABLE_UP  or ITEM_VALUE<>TABLE_VALUE
i                                  i                           i

Figure 4.394: Automaton of the stage element constraint

Q =tn

SnS2

Q1Q =s0

S1

ITEM_INDEX

ITEM_VALUE

Figure 4.395: Hypergraph of the reformulation corresponding to the automaton of the
stage element constraint
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4.205 stretch circuit

Origin [148]

Constraint stretch circuit(VARIABLES, VALUES)

Usual name stretch

Argument(s) VARIABLES : collection(var − dvar)
VALUES : collection(val − int, lmin− int, lmax − int)

Restriction(s) |VARIABLES| > 0
required(VARIABLES, var)
|VALUES| > 0
required(VALUES, [val, lmin, lmax])
distinct(VALUES, val)
VALUES.lmin ≤ VALUES.lmax

Let n be the number of variables of the collection VARIABLES. Let Xi, . . . , Xj (0 ≤ i <
n, 0 ≤ j < n) be consecutive variables of the collection of variables VARIABLES such that the
following conditions apply:

Purpose • All variables Xi, . . . , Xj take a same value from the set of values of the val attribute,

• X(i−1) mod n is different from Xi,

• X(j+1) mod n is different from Xj .
We call such a set of variables a stretch. The span of the stretch is equal to 1 + (j − i) mod n,
while the value of the stretch isXi. An item (val−v, lmin−s, lmax− t) gives the minimum
value s as well as the maximum value t for the span of a stretch of value v.

For all items of VALUES:

Arc input(s) VARIABLES

Arc generator CIRCUIT 7→ collection(variables1, variables2)
LOOP 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • variables1.var = VALUES.val
• variables2.var = VALUES.val

Graph property(ies) • not in(MIN NCC, 1, VALUES.lmin − 1)
•MAX NCC ≤ VALUES.lmax
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Example stretch circuit

0
BBBBBBBBBBBBBBBBBB@

8
>>>>>>>>>><
>>>>>>>>>>:

var − 6,
var − 6,
var − 3,
var − 1,
var − 1,
var − 1,
var − 6,
var − 6

9
>>>>>>>>>>=
>>>>>>>>>>;

,

8
>><
>>:

val − 1 lmin − 2 lmax − 4,
val − 2 lmin − 2 lmax − 3,
val − 3 lmin − 1 lmax − 6,
val − 6 lmin − 2 lmax − 4

9
>>=
>>;

1
CCCCCCCCCCCCCCCCCCA

Part (A) of Figure 4.396 shows the initial graphs associated to values 1, 2, 3 and 6.
Part (B) of Figure 4.396 shows the final graphs associated to values 1, 3 and 6. Since value
2 is not assigned to any variable of the VARIABLES collection the final graph associated to
value 2 is empty. The stretch circuit constraint holds since:

• For value 1 we have one connected component for which the number of vertices is
greater than or equal to 2 and less than or equal to 4,

• For value 2 we don’t have any connected component,

• For value 3 we have one connected component for which the number of vertices is
greater than or equal to 1 and less than or equal to 6,

• For value 6 we have one connected component for which the number of vertices is
greater than or equal to 2 and less than or equal to 4.

VARIABLES

1

2

3

4

5

6

7

8

1:MIN_NCC=3,MAX_NCC=3
3:MIN_NCC=1,MAX_NCC=1
6:MIN_NCC=2,MAX_NCC=2

VALUES:1 VALUES:3 VALUES:6

4:1

5:1

6:1

3:3 1:6

2:6

7:6

8:6

(A) (B)

Figure 4.396: Initial and final graph of the stretch circuit constraint

Usage The paper [148] which originally introduced the stretch constraint quotes rostering prob-
lems as typical examples of use of this constraint.
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Remark We split the origin stretch constraint into the stretch circuit and the stretch path

constraints which respectively use the PATH LOOP and CIRCUIT LOOP arc gen-
erator. We also reorganize the parameters: the VALUES collection describes the attributes
of each value that can be assigned to the variables of the stretch circuit constraint.
Finally we skipped the pattern constraint which tells what values can follow a given value.

Algorithm A first filtering algorithm was described in the original paper of G. Pesant [148]. An al-
gorithm which also generates explanations is given in [7]. The first filtering algorithm
achieving arc-consistency is depicted in [149]. This algorithm is based on dynamic pro-
gramming and handles the fact that some values can be followed by only a given subset of
values.

See also stretch path, sliding distribution, group, pattern.

Key words timetabling constraint, sliding sequence constraint, cyclic.
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4.206 stretch path

Origin [148]

Constraint stretch path(VARIABLES, VALUES)

Usual name stretch

Argument(s) VARIABLES : collection(var − dvar)
VALUES : collection(val − int, lmin− int, lmax − int)

Restriction(s) |VARIABLES| > 0
required(VARIABLES, var)
|VALUES| > 0
required(VALUES, [val, lmin, lmax])
distinct(VALUES, val)
VALUES.lmin ≤ VALUES.lmax

Let n be the number of variables of the collection VARIABLES. Let Xi, . . . , Xj (1 ≤ i ≤ j ≤
n) be consecutive variables of the collection of variables VARIABLES such that the following
conditions apply:

Purpose • All variables Xi, . . . , Xj take a same value from the set of values of the val attribute,

• i = 1 or Xi−1 is different from Xi,

• j = n or Xj+1 is different from Xj .
We call such a set of variables a stretch. The span of the stretch is equal to j − i+ 1, while the
value of the stretch is Xi. An item (val− v, lmin− s, lmax− t) gives the minimum value s
as well as the maximum value t for the span of a stretch of value v.

For all items of VALUES:

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)
LOOP 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • variables1.var = VALUES.val
• variables2.var = VALUES.val

Graph property(ies) • not in(MIN NCC, 1, VALUES.lmin − 1)
•MAX NCC ≤ VALUES.lmax
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Example stretch path

0
BBBBBBBBBBBBBBBBBB@

8
>>>>>>>>>><
>>>>>>>>>>:

var − 6,
var − 6,
var − 3,
var − 1,
var − 1,
var − 1,
var − 6,
var − 6

9
>>>>>>>>>>=
>>>>>>>>>>;

,

8
>><
>>:

val − 1 lmin − 2 lmax − 4,
val − 2 lmin − 2 lmax − 3,
val − 3 lmin − 1 lmax − 6,
val − 6 lmin − 2 lmax − 2

9
>>=
>>;

1
CCCCCCCCCCCCCCCCCCA

Part (A) of Figure 4.397 shows the initial graphs associated to values 1, 2, 3 and 6.
Part (B) of Figure 4.397 shows the final graphs associated to values 1, 3 and 6. Since value
2 is not assigned to any variable of the VARIABLES collection the final graph associated to
value 2 is empty. The stretch path constraint holds since:

• For value 1 we have one connected component for which the number of vertices 3 is
greater than or equal to 2 and less than or equal to 4,

• For value 2 we don’t have any connected component,

• For value 3 we have one connected component for which the number of vertices 1 is
greater than or equal to 1 and less than or equal to 6,

• For value 6 we have two connected components which both contain two vertices:
This is greater than or equal to 2 and less than or equal to 2.

VARIABLES

1

2

3

4

5

6

7

8

1:MIN_NCC=3,MAX_NCC=3
3:MIN_NCC=1,MAX_NCC=1
6:MIN_NCC=2,MAX_NCC=2

VALUES:1 VALUES:3 VALUES:6

4:1

5:1

6:1

3:3 1:6

2:6

7:6

8:6

(A) (B)

Figure 4.397: Initial and final graph of the stretch path constraint

Graph model During the presentation of this constraint at CP’2001 the following point was mentioned:
It could be useful to allow domain variables for the minimum and the maximum values
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of a stretch. This could be achieved in the following way: The lmin (respectively lmax)
attribute would now be a domain variable which gives the size of the shortest (respectively
longest) stretch. Finally within the graph property(ies) field we would replace ≥(and ≤)
by =.

Usage The paper [148] which originally introduced the stretch constraint quotes rostering prob-
lems as typical examples of use of this constraint.

Remark We split the original stretch constraint into the stretch path and the
stretch circuit constraints which respectively use the PATH LOOP and CIRCUIT
LOOP arc generator. We also reorganize the parameters: the VALUES collection describes
the attributes of each value that can be assigned to the variables of the stretch path

constraint. Finally we skipped the pattern constraint which tells what values can follow a
given value.

Algorithm A first filtering algorithm was described in the original paper of G. Pesant [148]. A second
filtering algorithm, based on dynamic programming, achieving arc-consistency is depicted
in [149]. It also handles the fact that some values can be followed by only a given subset
of values.

See also stretch circuit, sliding distribution, group, pattern.

Key words timetabling constraint, sliding sequence constraint.
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4.207 strict lex2

Origin [123]

Constraint strict lex2(MATRIX)

Type(s) VECTOR : collection(var− dvar)

Argument(s) MATRIX : collection(vec− VECTOR)

Restriction(s) required(VECTOR, var)
required(MATRIX, vec)
same size(MATRIX, vec)

Purpose Given a matrix of domain variables, enforces that both adjacent rows, and adjacent columns are
lexicographically ordered (adjacent rows and adjacent columns cannot be equal).

Example strict lex2

„ 
vec − {var − 2, var − 2, var − 3},
vec − {var − 2, var − 3, var − 1}

ff «

Usage A symmetry-breaking constraint.

See also lex2, allperm, lex lesseq, lex chain lesseq.

Key words predefined constraint, order constraint, matrix, matrix model, symmetry,
lexicographic order.
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4.208 strictly decreasing

Origin Derived from strictly increasing.

Constraint strictly decreasing(VARIABLES)

Argument(s) VARIABLES : collection(var − dvar)

Restriction(s) |VARIABLES| > 0
required(VARIABLES, var)

Purpose The variables of the collection VARIABLES are strictly decreasing.

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var > variables2.var

Graph property(ies) NARC = |VARIABLES| − 1

Example strictly decreasing

0
BB@

8
>><
>>:

var − 8,
var − 4,
var − 3,
var − 1

9
>>=
>>;

1
CCA

Parts (A) and (B) of Figure 4.398 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Automaton Figure 4.399 depicts the automaton associated to the strictly decreasing constraint.
To each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corre-
sponds a 0-1 signature variable Si. The following signature constraint links VARi, VARi+1

and Si: VARi ≤ VARi+1 ⇔ Si.

See also decreasing, increasing, strictly increasing.

Key words decomposition, order constraint, automaton, automaton without counters,
sliding cyclic(1) constraint network(1).
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VARIABLES

1

2

3

4

NARC=3

1:8

2:4

3:3

4:1

(A) (B)

Figure 4.398: Initial and final graph of the strictly decreasing constraint
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Figure 4.399: Automaton of the strictly decreasing constraint
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VAR
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VAR
n−1

Q   =tn−1Q =s0 Q1

S1

Figure 4.400: Hypergraph of the reformulation corresponding to the automaton of the
strictly decreasing constraint
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4.209 strictly increasing

Origin KOALOG

Constraint strictly increasing(VARIABLES)

Argument(s) VARIABLES : collection(var − dvar)

Restriction(s) |VARIABLES| > 0
required(VARIABLES, var)

Purpose The variables of the collection VARIABLES are strictly increasing.

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var < variables2.var

Graph property(ies) NARC = |VARIABLES| − 1

Example strictly increasing

0
BB@

8
>><
>>:

var − 1,
var − 3,
var − 4,
var − 8

9
>>=
>>;

1
CCA

Parts (A) and (B) of Figure 4.401 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Automaton Figure 4.402 depicts the automaton associated to the strictly increasing constraint.
To each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corre-
sponds a 0-1 signature variable Si. The following signature constraint links VARi, VARi+1

and Si: VARi ≥ VARi+1 ⇔ Si.

See also increasing, decreasing, strictly decreasing.

Key words decomposition, order constraint, automaton, automaton without counters,
sliding cyclic(1) constraint network(1).
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VARIABLES

1

2

3

4

NARC=3

1:1

2:3

3:4

4:8

(A) (B)

Figure 4.401: Initial and final graph of the strictly increasing constraint

$

t

s VAR <VARi    i+1

Figure 4.402: Automaton of the strictly increasing constraint
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Figure 4.403: Hypergraph of the reformulation corresponding to the automaton of the
strictly increasing constraint
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4.210 strongly connected

Origin [74]

Constraint strongly connected(NODES)

Argument(s) NODES : collection(index − int, succ − svar)

Restriction(s) required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)

Purpose Consider a digraph G described by the NODES collection. Select a subset of arcs of G so that
we have one single strongly connected component involving all vertices of G.

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) in set(nodes2.index, nodes1.succ)

Graph property(ies) MIN NSCC = |NODES|

Example strongly connected

0
BBBB@

8
>>>><
>>>>:

index − 1 succ − {2},
index − 2 succ − {3},
index − 3 succ − {2, 5},
index − 4 succ − {1},
index − 5 succ − {4}

9
>>>>=
>>>>;

1
CCCCA

Part (A) of Figure 4.404 shows the initial graph from which we start. It is derived
from the set associated to each vertex. Each set describes the potential values of the succ
attribute of a given vertex. Part (B) of Figure 4.404 gives the final graph associated to the
example. The strongly connected constraint holds since the final graph contains one
single strongly connected component mentioning every vertex of the initial graph.

Signature Since the maximum number of vertices of the final graph is equal to |NODES|we can rewrite
the graph property MIN NSCC = |NODES| to MIN NSCC ≥ |NODES| and simplify
MIN NSCC to MIN NSCC.

See also circuit, link set to booleans.

Key words graph constraint, linear programming, strongly connected component,
constraint involving set variables.
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NODES

1:1,{2,4}

2:2,{1,3,5}

4:4,{1,5}3:3,{2,5}

5:5,{2,3,4}

MIN_NSCC=5

MIN_NSCC

1:1,{2}

2:2,{3}

3:3,{2,5}

5:5,{4}

4:4,{1}

(A) (B)

Figure 4.404: Initial and final graph of the strongly connected set constraint
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4.211 sum

Origin [150].

Constraint sum(INDEX, SETS, CONSTANTS, S)

Argument(s) INDEX : dvar

SETS : collection(ind − int, set− sint)
CONSTANTS : collection(cst − int)
S : dvar

Restriction(s) |SETS| ≥ 1
required(SETS, [ind, set])
distinct(SETS, ind)
|CONSTANTS| ≥ 1
required(CONSTANTS, cst)

Purpose S is equal to the sum of the constants corresponding to the INDEXth set of the SETS collection.

Arc input(s) SETS CONSTANTS

Arc generator PRODUCT 7→ collection(sets, constants)

Arc arity 2

Arc constraint(s) • INDEX = sets.ind
• in set(constants.key, sets.set)

Graph property(ies) SUM(CONSTANTS, cst) = S

Example sum

0
BBBBBBBBBBBB@

8,

8
>><
>>:

ind − 8 set − {2, 3},
ind − 1 set − {3},
ind − 3 set − {1, 4, 5},
ind − 6 set − {2, 4}

9
>>=
>>;
,

8
>>>><
>>>>:

cst− 4,
cst− 9,
cst− 1,
cst− 3,
cst− 1

9
>>>>=
>>>>;
, 10

1
CCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.405 respectively show the initial and final graph.
Since we use the SUM graph property we show the vertices from which we compute S in
a box.

Graph model According to the value assigned to INDEX the arc constraint selects for the final graph:

• The INDEXth item of the SETS collection,

• The items of the CONSTANTS collection for which the key correspond to the indices
of the INDEXth set of the SETS collection.
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Finally, since we use the SUM graph property on the cst attribute of the CONSTANTS

collection, the last argument S of the sum constraint is equal to the sum of the constants
associated to the vertices of the final graph.

Usage In his paper introducing the sum constraint, Tallys H. Yunes mentions the Sequence Depen-
dent Cumulative Cost Problem as the subproblem that originally motivate this constraint.

Algorithm The paper [150] gives the convex hull relaxation of the sum constraint.

See also element, sum ctr, sum set.

Key words data constraint, linear programming, convex hull relaxation, sum.



872 SUM,PRODUCT

SETS

CONSTANTS

1

12 345

234

SUM=9+1=10

1:8,{2,3}

2:9 3:1

(A) (B)

Figure 4.405: Initial and final graph of the sum constraint



20030820 873



874 SUM, SELF

4.212 sum ctr

Origin Arithmetic constraint.

Constraint sum ctr(VARIABLES, CTR, VAR)

Synonym(s) constant sum.

Argument(s) VARIABLES : collection(var − dvar)
CTR : atom

VAR : dvar

Restriction(s) required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose Constraint the sum of a set of domain variables. More precisely let S denotes the sum of the
variables of the VARIABLES collection. Enforce the following constraint to hold: S CTR VAR.

Arc input(s) VARIABLES

Arc generator SELF 7→ collection(variables)

Arc arity 1

Arc constraint(s) TRUE

Graph property(ies) SUM(VARIABLES, var) CTR VAR

Example sum ctr({var − 1, var − 1, var − 4},=, 6)

Parts (A) and (B) of Figure 4.406 respectively show the initial and final graph.
Since we use the TRUE arc constraint both graphs are identical.

VARIABLES

123

SUM(VARIABLES,var)=1+1+4=6

1:1 2:1 3:4

(A) (B)

Figure 4.406: Initial and final graph of the sum ctr constraint

Graph model Since we want to keep all the vertices of the initial graph we use the SELF arc generator
together with the TRUE arc constraint. This predefined arc constraint allways holds.

Remark When CTR corresponds to = this constraint is referenced under the name constant sum

in KOALOG.
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Used in bin packing, cumulative, cumulative two d,
cumulative with level of priority, cumulatives, indexed sum,
interval and sum, relaxed sliding sum, sliding sum,
sliding time window sum.

See also sum, sum set, product ctr, range ctr.

Key words arithmetic constraint, sum.
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4.213 sum of weights of distinct values

Origin [106]

Constraint sum of weights of distinct values(VARIABLES, VALUES, COST)

Synonym(s) swdv.

Argument(s) VARIABLES : collection(var − dvar)
VALUES : collection(val − int, weight − int)
COST : dvar

Restriction(s) required(VARIABLES, var)
required(VALUES, [val, weight])
VALUES.weight ≥ 0
distinct(VALUES, val)
COST ≥ 0

Purpose
All variables of the VARIABLES collection take a value in the VALUES collection. In addition
COST is the sum of the weight attributes associated to the distinct values taken by the variables
of VARIABLES.

Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→ collection(variables, values)

Arc arity 2

Arc constraint(s) variables.var = values.val

Graph property(ies) • NSOURCE = |VARIABLES|
• SUM(VALUES, weight) = COST

Example sum of weights of distinct values

0
BBBBBB@

8
<
:

var − 1,
var − 6,
var − 1

9
=
; ,

8
<
:

val − 1 weight − 5,
val − 2 weight − 3,
val − 6 weight − 7

9
=
; , 12

1
CCCCCCA

Parts (A) and (B) of Figure 4.407 respectively show the initial and final graph.
Since we use the NSOURCE graph property, the source vertices of the final graph
are shown in a double circle. Since we also use the SUM graph property we show the
vertices from which we compute the total cost in a box.

Signature Since we use the PRODUCT arc generator, the number of sources of the final graph
cannot exceed the number of sources of the initial graph. Since the initial graph contains
|VARIABLES| sources, this number is an upper bound of the number of sources of the final
graph. Therefore we can rewrite NSOURCE = |VARIABLES| to NSOURCE ≥
|VARIABLES| and simplify NSOURCE to NSOURCE.
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See also minimum weight alldifferent, global cardinality with costs, nvalue,
weighted partial alldiff.

Key words cost filtering constraint, assignment, relaxation, domination, weighted assignment,
facilities location problem.
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VARIABLES

VALUES

1

1 23

2 3

NSOURCE=3
SUM(VALUES,weight)=5+7=12

1:1

1:1,5

2:6

3:6,7

3:1

(A) (B)

Figure 4.407: Initial and final graph of the sum of weights of distinct values

constraint
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4.214 sum set

Origin H. Cambazard

Constraint sum set(SV, VALUES, CTR, VAR)

Argument(s) SV : svar

VALUES : collection(val− int, coef − int)
CTR : atom

VAR : dvar

Restriction(s) required(VALUES, [val, coef])
distinct(VALUES, val)
VALUES.coef ≥ 0
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose Let SUM denotes the sum of the coef attributes of the VALUES collection for which the corre-
sponding values val occur in the set SV. Enforce the following constraint to hold: SUM CTR VAR.

Arc input(s) VALUES

Arc generator SELF 7→ collection(values)

Arc arity 1

Arc constraint(s) in set(values.val, SV)

Graph property(ies) SUM(VALUES, coef) CTR VAR

Example sum set

0
BBBB@

{2, 3, 6},8
>><
>>:

val − 2 coef − 7,
val − 9 coef − 1,
val − 5 coef − 7,
val − 6 coef − 2

9
>>=
>>;
,=, 9

1
CCCCA

Parts (A) and (B) of Figure 4.408 respectively show the initial and final graph.

VALUES

1234

SUM=7+2=9

1:2,7 4:6,2

(A) (B)

Figure 4.408: Initial and final graph of the sum set constraint

See also sum, sum ctr.

Key words arithmetic constraint, binary constraint, sum, constraint involving set variables.
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4.215 symmetric alldifferent

Origin [20]

Constraint symmetric alldifferent(NODES)

Synonym(s) symmetric alldiff, symmetric alldistinct, symm alldifferent,
symm alldiff, symm alldistinct, one factor.

Argument(s) NODES : collection(index − int, succ − dvar)

Restriction(s) required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose

All variables associated to the succ attribute of the NODES collection should be pairwise dis-
tinct. In addition enforce the following condition: If variable NODES[i].succ takes value j then
variable NODES[j].succ takes value i. This can be interpreted as a graph-covering problem
where one has to cover a digraph G with circuits of length two in such a way that each vertex
of G belongs to one single circuit.

Arc input(s) NODES

Arc generator CLIQUE(6=) 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) • nodes1.succ = nodes2.index
• nodes2.succ = nodes1.index

Graph property(ies) NARC = |NODES|

Example symmetric alldifferent

0
BB@

8
>><
>>:

index − 1 succ − 3,
index − 2 succ − 4,
index − 3 succ − 1,
index − 4 succ − 2

9
>>=
>>;

1
CCA

Parts (A) and (B) of Figure 4.409 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Graph model In order to express the binary constraint that links two vertices one has to make explicit the
identifier of the vertices.

Signature Since all the index attributes of the NODES collection are distinct, and because of the first
condition nodes1.succ = nodes2.index of the arc constraint, each vertex of the final
graph has at most one successor. Therefore the maximum number of arcs of the final graph
is equal to the maximum number of vertices |NODES| of the final graph. So we can rewrite
NARC = |NODES| to NARC ≥ |NODES| and simplify NARC to NARC.
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Usage As it was reported in [20, page 420], this constraint is useful to express matches between
persons. The symmetric alldifferentconstraint also appears implicitly in the cycle
cover problem and corresponds to the four conditions given in section 1 Modeling the
Cycle Cover Problem of [151].

Remark This constraint is referenced under the name one factor in [152] as well as in [153]. From
a modelling point of view this constraint can be express with the cycle constraint [37]
where one imposes the additional condition that each cycle has only two nodes.

Algorithm [20].

See also cycle, alldifferent.

Key words graph constraint, circuit, cycle, timetabling constraint, sport timetabling, permutation,
all different, disequality, graph partitioning constraint, matching.
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NODES

1

2

3

4

NARC=4

1:1,3

3:3,1

2:2,4

4:4,2

(A) (B)

Figure 4.409: Initial and final graph of the symmetric alldifferent constraint
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4.216 symmetric cardinality

Origin Derived from global cardinality by W. Kocjan.

Constraint symmetric cardinality(VARS, VALS)

Argument(s) VARS : collection(idvar − int, var − svar, l − int, u − int)
VALS : collection(idval − int, val − svar, l − int, u − int)

Restriction(s) required(VARS, [idvar, var, l, u])
|VARS| ≥ 1
VARS.idvar ≥ 1
VARS.idvar ≤ |VARS|
distinct(VARS, idvar)
VARS.l ≥ 0
VARS.l ≤ VARS.u
VARS.u ≤ |VALS|
required(VALS, [idval, val, l, u])
|VALS| ≥ 1
VALS.idval ≥ 1
VALS.idval ≤ |VALS|
distinct(VALS, idval)
VALS.l ≥ 0
VALS.l ≤ VALS.u
VALS.u ≤ |VARS|

Purpose
Put in relation two sets: For each element of one set gives the corresponding elements of the
other set to which it is associated. In addition, it constraints the number of elements associated
to each element to be in a given interval.

Arc input(s) VARS VALS

Arc generator PRODUCT 7→ collection(vars, vals)

Arc arity 2

Arc constraint(s) • in set(vars.idvar, vals.val)⇔ in set(vals.idval, vars.var)
• vars.l ≤ card set(vars.var)
• vars.u ≥ card set(vars.var)
• vals.l ≤ card set(vals.val)
• vals.u ≥ card set(vals.val)

Graph property(ies) NARC = |VARS| ∗ |VALS|
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Example symmetric cardinality

0
BBBBBBBBBB@

8
>><
>>:

idvar − 1 var− {3} l− 0 u − 1,
idvar − 2 var− {1} l− 1 u − 2,
idvar − 3 var− {1, 2} l− 1 u − 2,
idvar − 4 var− {1, 3} l− 2 u − 3

9
>>=
>>;
,

8
>><
>>:

idval − 1 val− {2, 3, 4} l − 3 u− 4,
idval − 2 val− {3} l − 1 u− 1,
idval − 3 val− {1, 4} l − 1 u− 2,
idval − 4 val− ∅ l − 0 u− 1

9
>>=
>>;

1
CCCCCCCCCCA

Parts (A) and (B) of Figure 4.410 respectively show the initial and final graph.
Since we use the NARC graph property, all the arcs of the final graph are stressed in
bold.

VARS

VALS

1

1234

234

NARC=16

1:1,{3},0,1

1:1,{2,3,4},3,4 2:2,{3},1,13:3,{1,4},1,2 4:4,{},0,1

2:2,{1},1,23:3,{1,2},1,2 4:4,{1,3},2,3

(A) (B)

Figure 4.410: Initial and final graph of the symmetric cardinality constraint

Graph model The graph model used for the symmetric cardinality is similar to the one used in the
domain constraint or in the link set to booleans constraints: We use an equiva-
lence in the arc constraint and ask all arc constraints to hold.

Signature Since we use the PRODUCT arc generator on the collections VARS and VALS, the number
of arcs of the initial graph is equal to |VARS| · |VALS|. Therefore the maximum number
of arcs of the final graph is also equal to |VARS| · |VALS| and we can rewrite NARC =
|VARS| · |VALS| to NARC ≥ |VARS| · |VALS|. So we can simplify NARC to NARC.

Usage The most simple example of applying symmetric gcc is a variant of personnel assignment
problem, where one person can be assigned to perform between n and m (n ≤ m) jobs,
and every job requires between p and q (p ≤ q) persons. In addition every job requires
different kind of skills. The previous problem can be modelled as follows:

• For each person we create an item of the VARS collection,

• For each job we create an item of the VALS collection,

• There is an arc between a person and the particular job if this person is qualified to
perform it.



888 NARC,PRODUCT

Remark The symmetric gcc constraint generalizes the global cardinality constraint by al-
lowing a variable to take more than one value.

Algorithm A flow-based arc-consistency algorithm for the symmetric cardinality constraint is
described in [154].

See also symmetric gcc, global cardinality, link set to booleans.

Key words decomposition, timetabling constraint, assignment, relation, flow,
constraint involving set variables.
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4.217 symmetric gcc

Origin Derived from global cardinality by W. Kocjan.

Constraint symmetric gcc(VARS, VALS)

Synonym(s) sgcc.

Argument(s) VARS : collection(idvar − int, var − svar, nocc − dvar)
VALS : collection(idval − int, val − svar, nocc − dvar)

Restriction(s) required(VARS, [idvar, var, nocc])
|VARS| ≥ 1
VARS.idvar ≥ 1
VARS.idvar ≤ |VARS|
distinct(VARS, idvar)
VARS.nocc ≥ 0
VARS.nocc ≤ |VALS|
required(VALS, [idval, val, nocc])
|VALS| ≥ 1
VALS.idval ≥ 1
VALS.idval ≤ |VALS|
distinct(VALS, idval)
VALS.nocc ≥ 0
VALS.nocc ≤ |VARS|

Purpose
Put in relation two sets: For each element of one set gives the corresponding elements of the
other set to which it is associated. In addition, enforce a cardinality constraint on the number of
occurrences of each value.

Arc input(s) VARS VALS

Arc generator PRODUCT 7→ collection(vars, vals)

Arc arity 2

Arc constraint(s) • in set(vars.idvar, vals.val)⇔ in set(vals.idval, vars.var)
• vars.nocc = card set(vars.var)
• vals.nocc = card set(vals.val)

Graph property(ies) NARC = |VARS| ∗ |VALS|

Example symmetric gcc

0
BBBBBBBBBB@

8
>><
>>:

idvar − 1 var − {3} nocc − 1,
idvar − 2 var − {1} nocc − 1,
idvar − 3 var − {1, 2} nocc − 2,
idvar − 4 var − {1, 3} nocc − 2

9
>>=
>>;
,

8
>><
>>:

idval − 1 val − {2, 3, 4} nocc − 3,
idval − 2 val − {3} nocc − 1,
idval − 3 val − {1, 4} nocc − 2,
idval − 4 val − ∅ nocc − 0

9
>>=
>>;

1
CCCCCCCCCCA
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Parts (A) and (B) of Figure 4.411 respectively show the initial and final graph.
Since we use the NARC graph property, all the arcs of the final graph are stressed in
bold.

VARS

VALS

1

1234

234

NARC=16

1:1,{3},1

1:1,{2,3,4},3 2:2,{3},13:3,{1,4},2 4:4,{},0

2:2,{1},13:3,{1,2},2 4:4,{1,3},2

(A) (B)

Figure 4.411: Initial and final graph of the symmetric gcc constraint

Graph model The graph model used for the symmetric gcc is similar to the one used in the
domain constraint or in the link set to booleans constraints: We use an equiva-
lence in the arc constraint and ask all arc constraints to hold.

Signature Since we use the PRODUCT arc generator on the collections VARS and VALS, the number
of arcs of the initial graph is equal to |VARS| · |VALS|. Therefore the maximum number
of arcs of the final graph is also equal to |VARS| · |VALS| and we can rewrite NARC =
|VARS| · |VALS| to NARC ≥ |VARS| · |VALS|. So we can simplify NARC to NARC.

Usage The most simple example of applying symmetric gcc is a variant of personnel assignment
problem, where one person can be assigned to perform between n and m (n ≤ m) jobs,
and every job requires between p and q (p ≤ q) persons. In addition every job requires
different kind of skills. The previous problem can be modelled as follows:

• For each person we create an item of the VARS collection,
• For each job we create an item of the VALS collection,
• There is an arc between a person and the particular job if this person is qualified to

perform it.

Remark The symmetric gcc constraint generalizes the global cardinality constraint by al-
lowing a variable to take more than one value. It corresponds to a variant of the
symmetric cardinality constraint described in [154] where the occurrence variables
of the VARS and VALS collections are replaced by fixed intervals.

See also symmetric cardinality, global cardinality, link set to booleans.

Key words decomposition, timetabling constraint, assignment, relation, flow,
constraint involving set variables.
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4.218 temporal path

Origin ILOG

Constraint temporal path(NPATH, NODES)

Argument(s) NPATH : dvar

NODES : collection(index − int, succ − dvar, start − dvar, end − dvar)

Restriction(s) NPATH ≥ 1
NPATH ≤ |NODES|
required(NODES, [index, succ, start, end])
|NODES| > 0
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose

Let G be the digraph described by the NODES collection. Partition G with a set of disjoint
paths such that each vertex of the graph belongs to a single path. In addition, for all pairs of
consecutive vertices of a path we have a precedence constraint that enforces the end associated
to the first vertex to be less than or equal to the start related to the second vertex.

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) • nodes1.succ = nodes2.index
• nodes1.succ = nodes1.index ∨ nodes1.end ≤ nodes2.start
• nodes1.start ≤ nodes1.end
• nodes2.start ≤ nodes2.end

Graph property(ies) •MAX ID = 1
• NCC = NPATH

• NVERTEX = |NODES|

Example temporal path

0
BBBBBBBB@

2,

8
>>>>>>>><
>>>>>>>>:

index − 1 succ − 2 start − 0 end − 1,
index − 2 succ − 6 start − 3 end − 5,
index − 3 succ − 4 start − 0 end − 3,
index − 4 succ − 5 start − 4 end − 6,
index − 5 succ − 7 start − 7 end − 8,
index − 6 succ − 6 start − 7 end − 9,
index − 7 succ − 7 start − 9 end − 10

9
>>>>>>>>=
>>>>>>>>;

1
CCCCCCCCA

Parts (A) and (B) of Figure 4.412 respectively show the initial and final graph.
Since we use the MAX ID, the NCC and the NVERTEX graph properties we
display the following information on the final graph:
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• We show with a double circle a vertex which has the maximum number of predeces-
sors.

• We show the two connected components corresponding to the two paths.

• We put in bold the vertices.

NODES

1

2

3

4

5

6

7

MAX_ID=1,NCC=2,NVERTEX=7

CC#1 CC#2

1:1,2,0,1

2:2,6,3,5

6:6,6,7,9

3:3,4,0,3

4:4,5,4,6

5:5,7,7,8

7:7,7,9,10

(A) (B)

Figure 4.412: Initial and final graph of the temporal path constraint

Graph model The arc constraint is a conjunction of four conditions that respectively correspond to:

• A constraint that links the successor variable of a first vertex to the index attribute of
a second vertex,

• A precedence constraint that applies on one vertex and its distinct successor,

• One precedence constraint between the start and the end of the vertex that corre-
sponds to the departure of an arc,

• One precedence constraint between the start and the end of the vertex that corre-
sponds to the arrival of an arc.

We use the following three graph properties in order to enforce the partitioning of the graph
in distinct paths:

• The first property MAX ID = 1 enforces that each vertex has only one single
predecessor (except the last vertex of a path which has also itself as a predecessor),

• The second property NCC = NPATH ensures that we have the required number of
paths,

• The third property NVERTEX = |NODES| enforces that for each vertex, the start
is not located after the end.
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Signature Since we use the graph property NVERTEX = |NODES| together with the restric-
tion |NODES| > 0 the final graph is not empty. Therefore the smallest possible value of
MAX ID is equal to 1. So we can rewrite MAX ID = 1 to MAX ID ≤ 1 and
simplify MAX ID to MAX ID.

Since the maximum number of vertices of the final graph is equal to |NODES|we can rewrite
the graph property NVERTEX = |NODES| to NVERTEX ≥ |NODES| and simplify
NVERTEX to NVERTEX.

Remark This constraint is related to the path constraint of Ilog Solver. It can also be directly
expressed with the cycle [37] constraint of CHIP by using the diff nodes and the origin
parameters. A generic model based on linear programming that handles paths, trees and
cycles is presented in [94].

See also path from to.

Key words graph constraint, graph partitioning constraint, path, connected component.
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4.219 tour

Origin [74]

Constraint tour(NODES)

Synonym(s) atour, cycle.

Argument(s) NODES : collection(index − int, succ − svar)

Restriction(s) |NODES| ≥ 3
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)

Purpose Enforce to cover an undirected graph G described by the NODES collection with a Hamiltonian
cycle.

Arc input(s) NODES

Arc generator CLIQUE(6=) 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) in set(nodes2.index, nodes1.succ)⇔ in set(nodes1.index, nodes2.succ)

Graph property(ies) NARC = |NODES| ∗ |NODES| − |NODES|

Arc input(s) NODES

Arc generator CLIQUE(6=) 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) in set(nodes2.index, nodes1.succ)

Graph property(ies) •MIN NSCC = |NODES|
•MIN ID = 2
•MAX ID = 2
•MIN OD = 2
•MAX OD = 2

Example tour

0
BB@

8
>><
>>:

index − 1 succ − {2, 4},
index − 2 succ − {1, 3},
index − 3 succ − {2, 4},
index − 4 succ − {1, 3}

9
>>=
>>;

1
CCA

Part (A) of Figure 4.413 shows the initial graph from which we start. It is derived
from the set associated to each vertex. Each set describes the potential values of the succ
attribute of a given vertex. Part (B) of Figure 4.413 gives the final graph associated to the
example. The tour constraint holds since the final graph corresponds to a Hamiltonian
cycle.
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Graph model The first graph property enforces the subsequent condition: If we have an arc from the ith

vertex to the jth vertex then we have also an arc from the jth vertex to the ith vertex. The
second graph property enforces the following constraints:

• We have one strongly connected component containing |NODES| vertices,

• Each vertex has exactly two predecessors and two successors.

Signature Since the maximum number of vertices of the final graph is equal to |NODES|, we can rewrite
the graph property MIN NSCC = |NODES| to MIN NSCC ≥ |NODES| and simplify
MIN NSCC to MIN NSCC.

See also circuit, cycle, link set to booleans.

Key words graph constraint, undirected graph, Hamiltonian, linear programming,
constraint involving set variables.
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NODES

1:1,{2,3,4}

2:2,{1,3,4}

3:3,{1,2,4}

4:4,{1,2,3}

MIN_NSCC=4
MIN_ID=2

MAX_ID =2
MIN_OD=2
MAX_OD=2

MIN_NSCC

1:1,{2,4}

2:2,{1,3}

4:4,{1,3}

3:3,{2,4}

(A) (B)

Figure 4.413: Initial and final graph of the tour set constraint



20030820 899



900 NARC, SELF ; PRODUCT , SUCC

4.220 track

Origin [155]

Constraint track(NTRAIL, TASKS)

Argument(s) NTRAIL : int

TASKS : collection(trail − int, origin − dvar, end− dvar)

Restriction(s) NTRAIL > 0
required(TASKS, [trail, origin, end])
TASKS.trail > 0
TASKS.trail ≤ NTRAIL

Purpose
The track constraint enforces that, at each point in time overlapped by at least one task, the
number of distinct values of the trail attribute of the set of tasks that overlap that point, is
equal to NTRAIL.

Derived Collection(s) col

0
@

TIME POINTS − collection(origin − dvar, end − dvar, point − dvar),»
item(origin − TASKS.origin, end − TASKS.end, point − TASKS.origin),
item(origin − TASKS.origin, end − TASKS.end, point − TASKS.end − 1)

–
1
A

Arc input(s) TASKS

Arc generator SELF 7→ collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin ≤ tasks.end

Graph property(ies) NARC = |TASKS|

Arc input(s) TIME POINTS TASKS

Arc generator PRODUCT 7→ collection(time points, tasks)

Arc arity 2

Arc constraint(s) • time points.end > time points.origin
• tasks.origin ≤ time points.point
• time points.point < tasks.end

Sets
SUCC 7→»

source,
variables − col(VARIABLES − collection(var − dvar), [item(var − TASKS.trail)])

–

Constraint(s) on sets nvalue(NTRAIL, variables)
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Example track

0
BBBB@

2,

8
>>>><
>>>>:

trail − 1 origin − 1 end − 2,
trail − 2 origin − 1 end − 2,
trail − 1 origin − 2 end − 4,
trail − 2 origin − 2 end − 3,
trail − 2 origin − 3 end − 4

9
>>>>=
>>>>;

1
CCCCA

The previous constraint holds since:

• The first and second tasks both overlap instant 1 and have a respective trail of 1 and
2, which makes two distinct values for the trail attribute at instant 1,

• The third and fourth tasks both overlap instant 2 and have a respective trail of 1 and
2, which makes two distinct values for the trail attribute at instant 2,

• The third and fifth tasks both overlap instant 3 and have a respective trail of 1 and 2,
which makes two distinct values for the trail attribute at instant 3.

Parts (A) and (B) of Figure 4.414 respectively show the initial and final graph of the second
graph constraint.

TIME_POINTS

TASKS

1

12 345

23456 78910

TIME_POINTS

TASKS

1:1,2,1

1:1,1,22:2,1,2

2:1,2,13:1,2,14:1,2,15:2,4,2

3:1,2,4 4:2,2,3

6:2,4,3

5:2,3,4

7:2,3,28:2,3,29:3,4,310:3,4,3

(A) (B)

Figure 4.414: Initial and final graph of the track constraint

Signature Consider the first graph constraint. Since we use the SELF arc generator on the TASKS

collection, the maximum number of arcs of the final graph is equal to |TASKS|. Therefore
we can rewrite NARC = |TASKS| to NARC ≥ |TASKS| and simplify NARC to
NARC.

See also nvalue.

Key words timetabling constraint, resource constraint, temporal constraint, derived collection.
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4.221 tree

Origin N. Beldiceanu

Constraint tree(NTREES, NODES)

Argument(s) NTREES : dvar

NODES : collection(index − int, succ − dvar)

Restriction(s) NTREES ≥ 0
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose Cover a digraph G by a set of trees in such a way that each vertex of G belongs to one distinct
tree. The edges of the trees are directed from their leaves to their respective roots.

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) •MAX NSCC ≤ 1
• NCC = NTREES

Example tree

0
BBBBBBBBBB@

2,

8
>>>>>>>>>><
>>>>>>>>>>:

index − 1 succ − 1,
index − 2 succ − 5,
index − 3 succ − 5,
index − 4 succ − 7,
index − 5 succ − 1,
index − 6 succ − 1,
index − 7 succ − 7,
index − 8 succ − 5

9
>>>>>>>>>>=
>>>>>>>>>>;

1
CCCCCCCCCCA

Parts (A) and (B) of Figure 4.415 respectively show the initial and final graph.
Since we use the NCC graph property, we display the two connected components of
the final graph. Each of them corresponds to a tree. The tree constraint holds since all
strongly connected components of the final graph have no more than one vertex and since
NTREES = NCC = 2.

Graph model We use the graph property MAX NSCC ≤ 1 in order to specify the fact that the size
of the largest strongly connected component should not exceed one. In fact each root of a
tree is a strongly connected component with one single vertex. The second graph property
NCC = NTREES enforces the number of trees to be equal to the number of connected
components.
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Algorithm An arc-consistency filtering algorithm for the tree constraint is described in [156]. This
algorithm is based on a necessary and sufficient condition that we now depict.

To any tree constraint we associate the digraph G = (V,E), where:

• To each item NODES[i] of the NODES collection corresponds a vertex vi of G.

• For every pair of items (NODES[i], NODES[j]) of the NODES collection, where i and j
are not necessarily distinct, there is an arc from vi to vj in E if j is a potential value
of NODES[i].succ.

A strongly connected component C of G is called a sink component if all the successors
of all vertices of C belong to C. Let MINTREES and MAXTREES respectively denote the
number of sink components of G and the number of vertices of G with a loop.

The tree constraint has a solution if and only if:

• Each sink component of G contains at least one vertex with a loop,

• The domain of NTREES has at least one value within interval [MINTREES, MAXTREES].

See also binary tree, cycle, map, tree resource, graph crossing.

Key words graph constraint, graph partitioning constraint, connected component, tree, one succ.
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NODES

1

2

3

4

5

6

7

8

MAX_NSCC=1,NCC=2

CC#1 CC#2

1:1,1

2:2,5

5:5,1

3:3,5

6:6,1

8:8,5 4:4,7

7:7,7

(A) (B)

Figure 4.415: Initial and final graph of the tree constraint
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4.222 tree range

Origin Derived from tree.

Constraint tree range(NTREES, R, NODES)

Argument(s) NTREES : dvar

R : dvar

NODES : collection(index − int, succ − dvar)

Restriction(s) NTREES ≥ 0
R ≥ 0
R < |NODES|
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose
Cover the digraph G described by the NODES collection with NTREES trees in such a way that
each vertex of G belongs to one distinct tree. R is the difference between the longest and the
shortest paths of the final graph.

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) •MAX NSCC ≤ 1
• NCC = NTREES

• RANGE DRG = R

Example tree range

0
BBBBBBBBBB@

2, 1,

8
>>>>>>>>>><
>>>>>>>>>>:

index − 1 succ − 1,
index − 2 succ − 5,
index − 3 succ − 5,
index − 4 succ − 7,
index − 5 succ − 1,
index − 6 succ − 1,
index − 7 succ − 7,
index − 8 succ − 5

9
>>>>>>>>>>=
>>>>>>>>>>;

1
CCCCCCCCCCA

Parts (A) and (B) of Figure 4.416 respectively show the initial and final graph.
Since we use the RANGE DRG graph property, we respectively display the longest and
shortest paths of the final graph with a bold and a dash line.
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See also tree, balance.

Key words graph constraint, graph partitioning constraint, connected component, tree, balanced tree.
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NODES

1

2

3

4

5

6

7

8 MAX_NSCC=1,NCC=2
RANGE_DRG=2-1=1

CC#1 CC#2

1:1,1

2:2,5

5:5,1

3:3,5

6:6,1

8:8,5 4:4,7

7:7,7

(A) (B)

Figure 4.416: Initial and final graph of the tree range constraint
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4.223 tree resource

Origin Derived from tree.

Constraint tree resource(RESOURCE, TASK)

Argument(s) RESOURCE : collection(id− int, nb task − dvar)
TASK : collection(id− int, father − dvar, resource − dvar)

Restriction(s) required(RESOURCE, [id, nb task])
RESOURCE.id ≥ 1
RESOURCE.id ≤ |RESOURCE|
distinct(RESOURCE, id)
RESOURCE.nb task ≥ 0
RESOURCE.nb task ≤ |TASK|
required(TASK, [id, father, resource])
TASK.id > |RESOURCE|
TASK.id ≤ |RESOURCE|+ |TASK|
distinct(TASK, id)
TASK.father ≥ 1
TASK.father ≤ |RESOURCE|+ |TASK|
TASK.resource ≥ 1
TASK.resource ≤ |RESOURCE|

Purpose

Cover a digraph G in such a way that each vertex belongs to one distinct tree. Each tree is made
up from one resource vertex and several task vertices. The resource vertices correspond to the
roots of the different trees. For each resource a domain variable nb task indicates how many
task-vertices belong to the corresponding tree. For each task a domain variable resource gives
the identifier of the resource which can handle that task.

Derived Collection(s) col

0
@

RESOURCE TASK − collection(index − int, succ − dvar, name − dvar),»
item(index − RESOURCE.id, succ − RESOURCE.id, name − RESOURCE.id),
item(index − TASK.id, succ − TASK.father, name − TASK.resource)

–
1
A

Arc input(s) RESOURCE TASK

Arc generator CLIQUE 7→ collection(resource task1, resource task2)

Arc arity 2

Arc constraint(s) • resource task1.succ = resource task2.index
• resource task1.name = resource task2.name

Graph property(ies) •MAX NSCC ≤ 1
• NCC = |RESOURCE|
• NVERTEX = |RESOURCE|+ |TASK|

For all items of RESOURCE:
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Arc input(s) RESOURCE TASK

Arc generator CLIQUE 7→ collection(resource task1, resource task2)

Arc arity 2

Arc constraint(s) • resource task1.succ = resource task2.index
• resource task1.name = resource task2.name
• resource task1.name = RESOURCE.id

Graph property(ies) NVERTEX = RESOURCE.nb task + 1

Example tree resource

0
BBBBBBBBBB@

8
<
:

id − 1 nb task − 4,
id − 2 nb task − 0,
id − 3 nb task − 1

9
=
; ,

8
>>>><
>>>>:

id − 4 father − 8 resource − 1,
id − 5 father − 3 resource − 3,
id − 6 father − 8 resource − 1,
id − 7 father − 1 resource − 1,
id − 8 father − 1 resource − 1

9
>>>>=
>>>>;

1
CCCCCCCCCCA

For the second graph constraint, part (A) of Figure 4.417 shows the initial graphs
associated to resources 1, 2 and 3. For the second graph constraint, part (B) of Fig-
ure 4.417 shows the final graphs associated to resources 1, 2 and 3. Since we use the
NVERTEX graph property, the vertices of the final graphs are stressed in bold. To each
resource corresponds a tree of respectively 4, 0 and 1 task-vertices.

Signature Since the initial graph of the first graph constraint contains |RESOURCE| + |TASK| ver-
tices, the corresponding final graph cannot have more than |RESOURCE| + |TASK| vertices.
Therefore we can rewrite the graph property NVERTEX = |RESOURCE| + |TASK| to
NVERTEX ≥ |RESOURCE| + |TASK| and simplify NVERTEX to NVERTEX.

See also tree.

Key words graph constraint, tree, resource constraint, graph partitioning constraint,
connected component, derived collection.
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RESOURCE_TASK

1

2

3

4

5

6

7

8
1:NVERTEX=5
2:NVERTEX=1
3:NVERTEX=2

RESOURCE:1 RESOURCE:2 RESOURCE:3

1:1,1,1

4:4,8,1

8:8,1,1

6:6,8,1

7:7,1,1

2:2,2,2

3:3,3,3

5:5,3,3

(A) (B)

Figure 4.417: Initial and final graph of the tree resource constraint
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4.224 two layer edge crossing

Origin Inspired by [157].

Constraint two layer edge crossing(NCROSS, VERTICES LAYER1, VERTICES LAYER2, EDGES)

Argument(s) NCROSS : dvar

VERTICES LAYER1 : collection(id − int, pos − dvar)
VERTICES LAYER2 : collection(id − int, pos − dvar)
EDGES : collection(id − int, vertex1 − int, vertex2 − int)

Restriction(s) NCROSS ≥ 0
required(VERTICES LAYER1, [id, pos])
VERTICES LAYER1.id ≥ 1
VERTICES LAYER1.id ≤ |VERTICES LAYER1|
distinct(VERTICES LAYER1, id)
required(VERTICES LAYER2, [id, pos])
VERTICES LAYER2.id ≥ 1
VERTICES LAYER2.id ≤ |VERTICES LAYER2|
distinct(VERTICES LAYER2, id)
required(EDGES, [id, vertex1, vertex2])
EDGES.id ≥ 1
EDGES.id ≤ |EDGES|
distinct(EDGES, id)
EDGES.vertex1 ≥ 1
EDGES.vertex1 ≤ |VERTICES LAYER1|
EDGES.vertex2 ≥ 1
EDGES.vertex2 ≤ |VERTICES LAYER2|

Purpose NCROSS is the number of line-segments intersections.

Derived Collection(s) col

0
@

EDGES EXTREMITIES − collection(layer1 − dvar, layer2 − dvar),»
item

„
layer1 − EDGES.vertex1(VERTICES LAYER1, pos, id),
layer2 − EDGES.vertex2(VERTICES LAYER2, pos, id)

« –
1
A

Arc input(s) EDGES EXTREMITIES

Arc generator CLIQUE(<) 7→ collection(edges extremities1, edges extremities2)

Arc arity 2

Arc constraint(s)
W
0
BB@

V„ edges extremities1.layer1 < edges extremities2.layer1,
edges extremities1.layer2 > edges extremities2.layer2

«
,

V„ edges extremities1.layer1 > edges extremities2.layer1,
edges extremities1.layer2 < edges extremities2.layer2

«

1
CCA

Graph property(ies) NARC = NCROSS
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Example two layer edge crossing

0
BBBBBBBB@

2, {id − 1 pos − 1, id − 2 pos − 2},8
<
:

id− 1 pos− 3,
id− 2 pos− 1,
id− 3 pos− 2

9
=
; ,

8
<
:

id− 1 vertex1 − 2 vertex2 − 2,
id− 2 vertex1 − 2 vertex2 − 3,
id− 3 vertex1 − 1 vertex2 − 1

9
=
;

1
CCCCCCCCA

Parts (A) and (B) of Figure 4.418 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in
bold. Figure 4.419 gives a picture of the previous example, where one can observe the
two line-segments intersections. Each line-segment of Figure 4.419 is labelled with
its identifier and corresponds to one vertex of the initial and final graph depicted in
Figure 4.418.

EDGES_EXTREMITIES

1

2

3

NARC=2

3:1,3

1:2,1 2:2,2

(A) (B)

Figure 4.418: Initial and final graph of the two layer edge crossing constraint

layer 1
vertex id

vertex position

layer 2
vertex id

vertex position
3 1

1 2 3

1 2
1 2

2

1 2 3

Figure 4.419: Intersection between line-segments joining two layers

Graph model As usual for the two-layer edge crossing problem [157], [158], positions of the vertices
on each layer are represented as a permutation of the vertices. We generate a derived
collection which, for each edges, contains the position of its extremities on both layers. In
the arc generator we use the restriction< in order to generate one single arc for each pair of
segments. This is required, since otherwise we would count more than once a line-segments
intersection.
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Remark The two-layer edge crossing minimization problem was proved to be NP-hard in [159].

See also crossing, graph crossing.

Key words geometrical constraint, line-segments intersection, derived collection.
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4.225 two orth are in contact

Origin Used for defining orths are connected.

Constraint two orth are in contact(ORTHOTOPE1, ORTHOTOPE2)

Type(s) ORTHOTOPE : collection(ori − dvar, siz− dvar, end − dvar)

Argument(s) ORTHOTOPE1 : ORTHOTOPE

ORTHOTOPE2 : ORTHOTOPE

Restriction(s) |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz > 0
|ORTHOTOPE1| = |ORTHOTOPE2|
orth link ori siz end(ORTHOTOPE1)
orth link ori siz end(ORTHOTOPE2)

Enforce the following conditions on two orthotopes O1 and O2:
Purpose • For all dimensions i, except one dimension, the projections of O1 and O2 on i have a

non-empty intersection.

• For all dimensions i, the distance between the projections of O1 and O2 on i is equal to
0.

Arc input(s) ORTHOTOPE1 ORTHOTOPE2

Arc generator PRODUCT (=) 7→ collection(orthotope1, orthotope2)

Arc arity 2

Arc constraint(s) • orthotope1.end > orthotope2.ori
• orthotope2.end > orthotope1.ori

Graph property(ies) NARC = |ORTHOTOPE1| − 1

Arc input(s) ORTHOTOPE1 ORTHOTOPE2

Arc generator PRODUCT (=) 7→ collection(orthotope1, orthotope2)

Arc arity 2

Arc constraint(s) max
`

0, max(orthotope1.ori, orthotope2.ori)− min(orthotope1.end, orthotope2.end)
´

= 0

Graph property(ies) NARC = |ORTHOTOPE1|
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Example two orth are in contact

0
BB@


ori − 1 siz − 3 end − 4,
ori − 5 siz − 2 end − 7

ff
,


ori − 3 siz − 2 end − 5,
ori − 2 siz − 3 end − 5

ff

1
CCA

Parts (A) and (B) of Figure 4.420 respectively show the initial and final graph asso-
ciated to the first graph constraint. Since we use the NARC graph property, the unique
arc of the final graph is stressed in bold. It corresponds to the fact that the projection in
dimension 1 of the two rectangles of the example overlap. Figure 4.421 shows the two
rectangles of the previous example.

ORTHOTOPE1

ORTHOTOPE2

1

1

2

2

NARC=1

1:1,3,4

1:3,2,5

(A) (B)

Figure 4.420: Initial and final graph of the two orth are in contact constraint

1

1 2 3 5

2

3

4

5

6

R2

R1

4

Figure 4.421: Two connected rectangles

Signature Consider the second graph constraint. Since we use the arc generator PRODUCT (=
) on the collections ORTHOTOPE1 and ORTHOTOPE2, and because of the restriction
|ORTHOTOPE1| = |ORTHOTOPE2|, the maximum number of arcs of the corresponding final
graph is equal to |ORTHOTOPE1|. Therefore we can rewrite the graph property NARC =
|ORTHOTOPE1| to NARC ≥ |ORTHOTOPE1| and simplify NARC to NARC.

Automaton Figure 4.422 depicts the automaton associated to the two orth are in contact con-
straint. Let ORI1i, SIZ1i and END1i respectively be the ori, the siz and the end attributes
of the ith item of the ORTHOTOPE1 collection. Let ORI2i, SIZ2i and END2i respectively be
the ori, the siz and the end attributes of the ith item of the ORTHOTOPE2 collection. To
each sextuple (ORI1i, SIZ1i, END1i, ORI2i, SIZ2i, END2i) corresponds a signature vari-
able Si, which takes its value in {0, 1, 2}, as well as the following signature constraint:

((SIZ1i > 0) ∧ (SIZ2i > 0) ∧ (END1i > ORI2i) ∧ (END2i > ORI1i))⇔ Si = 0
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((SIZ1i > 0) ∧ (SIZ2i > 0) ∧ (END1i = ORI2i ∨ END2i = ORI1i))⇔ Si = 1.

$

t

s

z i iiiSIZ1 >0 and SIZ2 >0 and END1 >ORI2 and END2 >ORI1

iSIZ1 >0 and SIZ2 >0 and (END1 =ORI2 or

i i iiiSIZ1 >0 and SIZ2 >0 and END1 >ORI2 and END2 >ORI1i

i

i

i i END2 =ORI1 )i i

i

Figure 4.422: Automaton of the two orth are in contact constraint

ORI1
 1

SIZ1
 1

END1
 1

ORI2
 1

SIZ2
 1

END2
 1

S1

Q =s0
Q1

SIZ1 
 2

END1
 2

ORI2
 2

ORI1
 2

SIZ2
 2

END2
 2

ORI1
 n

SIZ1
 n

END1
 n

ORI2
 n

SIZ2
 n

END2
 n

Q =tn

S2 Sn

Figure 4.423: Hypergraph of the reformulation corresponding to the automaton of the
two orth are in contact constraint

Used in orths are connected.

Key words geometrical constraint, touch, contact, non-overlapping, orthotope,
Berge-acyclic constraint network, automaton, automaton without counters.
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4.226 two orth column

Origin Used for defining diffn column.

Constraint two orth column(ORTHOTOPE1, ORTHOTOPE2, N)

Type(s) ORTHOTOPE : collection(ori − dvar, siz− dvar, end − dvar)

Argument(s) ORTHOTOPE1 : ORTHOTOPE

ORTHOTOPE2 : ORTHOTOPE

N : int

Restriction(s) |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
|ORTHOTOPE1| = |ORTHOTOPE2|
orth link ori siz end(ORTHOTOPE1)
orth link ori siz end(ORTHOTOPE2)
N > 0
N ≤ |ORTHOTOPE1|

Purpose

Arc input(s) ORTHOTOPE1 ORTHOTOPE2

Arc generator PRODUCT (=) 7→ collection(orthotope1, orthotope2)

Arc arity 2

Arc constraint(s)

V

0
BBBB@

orthotope1.key = N,
orthotope1.ori < orthotope2.end,
orthotope2.ori < orthotope1.end,
orthotope1.siz > 0,
orthotope2.siz > 0

1
CCCCA
⇒

V
0
@

min(orthotope1.end, orthotope2.end)− max(orthotope1.ori, orthotope2.ori) =
orthotope1.siz

,

orthotope1.siz = orthotope2.siz

1
A

Graph property(ies) NARC = 1

Example two orth column

0
BB@


ori − 1 siz − 3 end − 4,
ori − 1 siz − 1 end − 2

ff
,


ori − 4 siz − 2 end − 6,
ori − 1 siz − 3 end − 4

ff
, 1

1
CCA

Used in diffn column.

See also diffn.

Key words geometrical constraint, positioning constraint, orthotope, guillotine cut.
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ORTHOTOPE1

ORTHOTOPE2

1

1

2

2

NARC=1

1:1,3,4

2:1,3,4

(A) (B)

Figure 4.424: Initial and final graph of the two orth column constraint
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4.227 two orth do not overlap

Origin Used for defining diffn.

Constraint two orth do not overlap(ORTHOTOPE1, ORTHOTOPE2)

Type(s) ORTHOTOPE : collection(ori − dvar, siz− dvar, end − dvar)

Argument(s) ORTHOTOPE1 : ORTHOTOPE

ORTHOTOPE2 : ORTHOTOPE

Restriction(s) |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
|ORTHOTOPE1| = |ORTHOTOPE2|
orth link ori siz end(ORTHOTOPE1)
orth link ori siz end(ORTHOTOPE2)

Purpose For two orthotopes O1 and O2 enforce that there exist at least one dimension i such that the
projections on i of O1 and O2 do not overlap.

Arc input(s) ORTHOTOPE1 ORTHOTOPE2

Arc generator SYMMETRIC PRODUCT (=) 7→ collection(orthotope1, orthotope2)

Arc arity 2

Arc constraint(s) orthotope1.end ≤ orthotope2.ori ∨ orthotope1.siz = 0

Graph property(ies) NARC ≥ 1

Example two orth do not overlap

0
BB@


ori − 2 siz − 2 end − 4,
ori − 1 siz − 3 end − 4

ff
,


ori − 4 siz − 4 end − 8,
ori − 3 siz − 3 end − 6

ff

1
CCA

Parts (A) and (B) of Figure 4.425 respectively show the initial and final graph.
Since we use the NARC graph property, the unique arc of the final graph is stressed in
bold. It corresponds to the fact that the projection in dimension 1 of the first orthotope is
located before the projection in dimension 1 of the second orthotope. Therefore the two
orthotopes do not overlap.

Graph model We build an initial graph where each arc corresponds to the fact that, either the projection
of an orthotope on a given dimension is empty, either it is located before the projection in
the same dimension of the other orthotope. Finally we ask that at least one arc constraint
remains in the final graph.
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Automaton Figure 4.426 depicts the automaton associated to the two orth do not overlap con-
straint. Let ORI1i, SIZ1i and END1i respectively be the ori, the siz and the end attributes
of the ith item of the ORTHOTOPE1 collection. Let ORI2i, SIZ2i and END2i respectively
be the ori, the siz and the end attributes of the ith item of the ORTHOTOPE2 collec-
tion. To each sextuple (ORI1i, SIZ1i, END1i, ORI2i, SIZ2i, END2i) corresponds a 0-1 sig-
nature variable Si as well as the following signature constraint: ((SIZ1i > 0) ∧ (SIZ2i >
0) ∧ (END1i > ORI2i) ∧ (END2i > ORI1i))⇔ Si.

Used in diffn.

Key words geometrical constraint, non-overlapping, orthotope, Berge-acyclic constraint network,
automaton, automaton without counters.

ORTHOTOPE1

ORTHOTOPE2

1

1

2

2

NARC=1

1:2,2,4

1:4,4,8

(A) (B)

Figure 4.425: Initial and final graph of the two orth do not overlap constraint
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s

t

SIZ1 =0 or SIZ2 =0 or END1 <=ORI2  or END2 <=ORI1

SIZ1 >0 and SIZ2 >0 and END1 >ORI2  and END2 >ORI1i           i           i     i         i     i

i          i          i      i        i      i

Figure 4.426: Automaton of the two orth do not overlap constraint

ORI1
 1

SIZ1
 1

END1
 1

ORI2
 1

SIZ2
 1

END2
 1

S1

Q =s0
Q1

SIZ1 
 2

END1
 2

ORI2
 2

ORI1
 2

SIZ2
 2

END2
 2

ORI1
 n

SIZ1
 n

END1
 n

ORI2
 n

SIZ2
 n

END2
 n

Q =tn

S2 Sn

Figure 4.427: Hypergraph of the reformulation corresponding to the automaton of the
two orth do not overlap constraint
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4.228 two orth include

Origin Used for defining diffn include.

Constraint two orth include(ORTHOTOPE1, ORTHOTOPE2, N)

Type(s) ORTHOTOPE : collection(ori − dvar, siz− dvar, end − dvar)

Argument(s) ORTHOTOPE1 : ORTHOTOPE

ORTHOTOPE2 : ORTHOTOPE

N : int

Restriction(s) |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
|ORTHOTOPE1| = |ORTHOTOPE2|
orth link ori siz end(ORTHOTOPE1)
orth link ori siz end(ORTHOTOPE2)
N > 0
N ≤ |ORTHOTOPE1|

Purpose

Arc input(s) ORTHOTOPE1 ORTHOTOPE2

Arc generator PRODUCT (=) 7→ collection(orthotope1, orthotope2)

Arc arity 2

Arc constraint(s)

V

0
BBBB@

orthotope1.key = N,
orthotope1.ori < orthotope2.end,
orthotope2.ori < orthotope1.end,
orthotope1.siz > 0,
orthotope2.siz > 0

1
CCCCA
⇒

W
0
BB@

min(orthotope1.end, orthotope2.end)− max(orthotope1.ori, orthotope2.ori) =
orthotope1.siz

,

min(orthotope1.end, orthotope2.end)− max(orthotope1.ori, orthotope2.ori) =
orthotope2.siz

1
CCA

Graph property(ies) NARC = 1

Example two orth include

0
BB@


ori − 1 siz − 3 end − 4,
ori − 1 siz − 1 end − 2

ff
,


ori − 1 siz − 2 end − 3,
ori − 2 siz − 3 end − 5

ff
, 1

1
CCA

Used in diffn include.
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See also diffn.

Key words geometrical constraint, positioning constraint, orthotope.

ORTHOTOPE1

ORTHOTOPE2

1

1

2

2

NARC=1

1:1,3,4

2:2,3,5

(A) (B)

Figure 4.428: Initial and final graph of the two orth include constraint
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4.229 used by

Origin N. Beldiceanu

Constraint used by(VARIABLES1, VARIABLES2)

Argument(s) VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)

Restriction(s) |VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose All the values of the variables of collection VARIABLES2 are used by the variables of collection
VARIABLES1.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) • for all connected components: NSOURCE ≥ NSINK
• NSINK = |VARIABLES2|

Example used by

0
BBBBBBBB@

8
>>>>>><
>>>>>>:

var − 1,
var − 9,
var − 1,
var − 5,
var − 2,
var − 1

9
>>>>>>=
>>>>>>;

,

{var − 1, var − 1, var − 2, var − 5}

1
CCCCCCCCA

Parts (A) and (B) of Figure 4.429 respectively show the initial and final graph.
Since we use the NSOURCE and NSINK graph properties, the source and sink
vertices of the final graph are stressed with a double circle. Since there is a constraint
on each connected component of the final graph we also show the different connected
components. Each of them corresponds to an equivalence class according to the arc
constraint. Note that the vertex corresponding to the variable assigned to value 9 was
removed from the final graph since there is no arc for which the associated equality
constraint holds. The used by constraint holds since:

• For each connected component of the final graph the number of sources is greater
than or equal to the number of sinks.

• The number of sinks of the final graph is equal to |VARIABLES2|.
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Signature Since the initial graph contains only sources and sinks, and since sources of the initial graph
cannot become sinks of the final graph, we have that the maximum number of sinks of the
final graph is equal to |VARIABLES2|. Therefore we can rewrite NSINK = |VARIABLES2|
to NSINK ≥ |VARIABLES2| and simplify NSINK to NSINK.

Automaton Figure 4.430 depicts the automaton associated to the used by constraint. To each item of
the collection VARIABLES1 corresponds a signature variable Si, which is equal to 0. To
each item of the collection VARIABLES2 corresponds a signature variable Si+|VARIABLES1|,
which is equal to 1.

Algorithm As described in [141] we can pad VARIABLES2 with dummy variables such that its cardi-
nality will be equal to that cardinality of VARIABLES1. The domain of a dummy variable
contains all of the values. Then, we have a same constraint between the two sets. Direct
arc-consistency and bound-consistency algorithms are also proposed in [141] and in [142].

Key words constraint between two collections of variables, inclusion, flow, bound-consistency,
automaton, automaton with array of counters.
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VARIABLES1

VARIABLES2

1

1234

2 3456

CC#1:NSINK=2,CC#2:NSINK=1,CC#3:NSINK=1
NSINK=4

CC#1 CC#2 CC#3

1:1

1:1 2:1

3:16:1 4:5

4:5

5:2

3:2

(A) (B)

Figure 4.429: Initial and final graph of the used by constraint

i       i

1,
{C[VAR ]=C[VAR ]+1}

i       i

1,
{C[VAR ]=C[VAR ]+1}

0,

i       i{C[VAR ]=C[VAR ]−1}

i

$

greatereq(C,0)

t:

{C[_]=0}

s

Figure 4.430: Automaton of the used by constraint
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4.230 used by interval

Origin Derived from used by.

Constraint used by interval(VARIABLES1, VARIABLES2, SIZE INTERVAL)

Argument(s) VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
SIZE INTERVAL : int

Restriction(s) |VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
SIZE INTERVAL > 0

Purpose
LetNi (respectivelyMi) denote the number of variables of the collection VARIABLES1 (respec-
tively VARIABLES2) that take a value in the interval [SIZE INTERVAL · i, SIZE INTERVAL · i+
SIZE INTERVAL − 1]. For all integer i we have Mi > 0⇒ Ni > 0.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var/SIZE INTERVAL = variables2.var/SIZE INTERVAL

Graph property(ies) • for all connected components: NSOURCE ≥ NSINK
• NSINK = |VARIABLES2|

Example used by interval

0
BBBBBBBBBBBBBB@

8
>>>>>><
>>>>>>:

var − 1,
var − 9,
var − 1,
var − 8,
var − 6,
var − 2

9
>>>>>>=
>>>>>>;

,

8
>><
>>:

var − 1,
var − 0,
var − 7,
var − 7

9
>>=
>>;
, 3

1
CCCCCCCCCCCCCCA

In the previous example, the third parameter SIZE INTERVAL defines the following
family of intervals [3 · k, 3 · k+ 2], where k is an integer. Parts (A) and (B) of Figure 4.431
respectively show the initial and final graph. Since we use the NSOURCE and
NSINK graph properties, the source and sink vertices of the final graph are stressed
with a double circle. Since there is a constraint on each connected component of the final
graph we also show the different connected components. Each of them corresponds to
an equivalence class according to the arc constraint. Note that the vertex corresponding
to the variable that takes value 9 was removed from the final graph since there is no arc
for which the associated equivalence constraint holds. The used by interval constraint
holds since:
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• For each connected component of the final graph the number of sources is greater
than or equal to the number of sinks.

• The number of sinks of the final graph is equal to |VARIABLES2|.

VARIABLES1

VARIABLES2

1

1234

2 3456

CC#1:NSINK=2,CC#2:NSINK=1,CC#3:NSINK=1
NSINK=4

CC#1 CC#2 CC#3

1:1

1:1 2:0

3:16:2 4:8

4:7

5:6

3:7

(A) (B)

Figure 4.431: Initial and final graph of the used by interval constraint

Signature Since the initial graph contains only sources and sinks, and since sources of the initial graph
cannot become sinks of the final graph, we have that the maximum number of sinks of the
final graph is equal to |VARIABLES2|. Therefore we can rewrite NSINK = |VARIABLES2|
to NSINK ≥ |VARIABLES2| and simplify NSINK to NSINK.

See also used by.

Key words constraint between two collections of variables, inclusion, interval.
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4.231 used by modulo

Origin Derived from used by.

Constraint used by modulo(VARIABLES1, VARIABLES2, M)

Argument(s) VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
M : int

Restriction(s) |VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
M > 0

Purpose
For each integer R in [0, M− 1], let N1R (respectively N2R) denote the number of variables of
VARIABLES1 (respectively VARIABLES2) which have R as a rest when divided by M. For all R
in [0, M− 1] we have N2R > 0⇒ N1R > 0.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var mod M = variables2.var mod M

Graph property(ies) • for all connected components: NSOURCE ≥ NSINK
• NSINK = |VARIABLES2|

Example used by modulo

0
BBBBBBBBBBBBBB@

8
>>>>>><
>>>>>>:

var− 1,
var− 9,
var− 4,
var− 5,
var− 2,
var− 1

9
>>>>>>=
>>>>>>;

,

8
>><
>>:

var− 7,
var− 1,
var− 2,
var− 5

9
>>=
>>;
, 3

1
CCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.432 respectively show the initial and final graph.
Since we use the NSOURCE and NSINK graph properties, the source and sink
vertices of the final graph are stressed with a double circle. Since there is a constraint
on each connected component of the final graph we also show the different connected
components. Each of them corresponds to an equivalence class according to the arc
constraint. Note that the vertex corresponding to the variable that takes value 9 was
removed from the final graph since there is no arc for which the associated equivalence
constraint holds. The used by modulo constraint holds since:
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• For each connected component of the final graph the number of sources is greater
than or equal to the number of sinks.

• The number of sinks of the final graph is equal to |VARIABLES2|.

VARIABLES1

VARIABLES2

1

1234

2 3456

CC#1:NSINK=2,CC#2:NSINK=2
NSINK=4

CC#1 CC#2 CC#3

1:1

1:7 2:1

3:46:1 4:5

4:5 3:2

5:2

(A) (B)

Figure 4.432: Initial and final graph of the used by modulo constraint

Signature Since the initial graph contains only sources and sinks, and since sources of the initial graph
cannot become sinks of the final graph, we have that the maximum number of sinks of the
final graph is equal to |VARIABLES2|. Therefore we can rewrite NSINK = |VARIABLES2|
to NSINK ≥ |VARIABLES2| and simplify NSINK to NSINK.

See also used by.

Key words constraint between two collections of variables, inclusion, modulo.
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4.232 used by partition

Origin Derived from used by.

Constraint used by partition(VARIABLES1, VARIABLES2, PARTITIONS)

Type(s) VALUES : collection(val− int)

Argument(s) VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
PARTITIONS : collection(p− VALUES)

Restriction(s) required(VALUES, val)
distinct(VALUES, val)
|VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose
For each integer i in [1, |PARTITIONS|], let N1 i (respectively N2 i) denote the number of vari-
ables of VARIABLES1 (respectively VARIABLES2) which take their value in the ith partition of
the collection PARTITIONS. For all i in [1, |PARTITIONS|] we have N2 i > 0⇒ N1 i > 0.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) in same partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) • for all connected components: NSOURCE ≥ NSINK
• NSINK = |VARIABLES2|

Example used by partition

0
BBBBBBBBBBBBBBBBBBBB@

8
>>>>>><
>>>>>>:

var − 1,
var − 9,
var − 1,
var − 6,
var − 2,
var − 3

9
>>>>>>=
>>>>>>;

,

8
>><
>>:

var − 1,
var − 3,
var − 6,
var − 6

9
>>=
>>;
,

8
<
:

p − {val − 1, val − 3},
p − {val − 4},
p − {val − 2, val − 6}

9
=
;

1
CCCCCCCCCCCCCCCCCCCCA
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Parts (A) and (B) of Figure 4.433 respectively show the initial and final graph.
Since we use the NSOURCE and NSINK graph properties, the source and sink
vertices of the final graph are stressed with a double circle. Since there is a constraint
on each connected component of the final graph we also show the different connected
components. Each of them corresponds to an equivalence class according to the arc
constraint. Note that the vertex corresponding to the variable that takes value 9 was
removed from the final graph since there is no arc for which the associated equivalence
constraint holds. The used by partition constraint holds since:

• For each connected component of the final graph the number of sources is greater
than or equal to the number of sinks.

• The number of sinks of the final graph is equal to |VARIABLES2|.

VARIABLES1

VARIABLES2

1

1234

2 3456

CC#1:NSINK=2,CC#2:NSINK=2
NSINK=4

CC#1 CC#2 CC#3

1:1

1:1 2:3

3:16:3 4:6

4:6 3:6

5:2

(A) (B)

Figure 4.433: Initial and final graph of the used by partition constraint

Signature Since the initial graph contains only sources and sinks, and since sources of the initial graph
cannot become sinks of the final graph, we have that the maximum number of sinks of the
final graph is equal to |VARIABLES2|. Therefore we can rewrite NSINK = |VARIABLES2|
to NSINK ≥ |VARIABLES2| and simplify NSINK to NSINK.

See also used by, in same partition.

Key words constraint between two collections of variables, inclusion, partition.
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4.233 valley

Origin Derived from inflexion.

Constraint valley(N, VARIABLES)

Argument(s) N : dvar

VARIABLES : collection(var − dvar)

Restriction(s) N ≥ 0
2 ∗ N ≤ max(|VARIABLES| − 1, 0)
required(VARIABLES, var)

Purpose
A variable Vk (1 < k < m) of the sequence of variables VARIABLES = V1, . . . , Vm is a valley
if and only if there exist an i (1 < i ≤ k) such that Vi−1 > Vi and Vi = Vi+1 = . . . = Vk and
Vk < Vk+1. N is the total number of valleys of the sequence of variables VARIABLES.

Example valley

0
BBBBBBBBBB@

1,

8
>>>>>>>>>><
>>>>>>>>>>:

var − 1,
var − 1,
var − 4,
var − 8,
var − 8,
var − 2,
var − 7,
var − 1

9
>>>>>>>>>>=
>>>>>>>>>>;

1
CCCCCCCCCCA

The previous constraint holds since the sequence 1 1 4 8 8 2 7 1 contains one
valley which corresponds to the variable which is assigned to value 2.

1

5 6 7 8

2

3

4

5

6

43

7

8

1 1

Values

Variables 1 2

4

8 8

2

7

1

Figure 4.434: The sequence and its unique valley

Automaton Figure 4.435 depicts the automaton associated to the valley constraint. To each pair of
consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a signature
variable Si. The following signature constraint links VARi, VARi+1 and Si: (VARi <
VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi > VARi+1 ⇔ Si = 2).
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VAR = VARi i+1

VAR < VARi i+1

u

t:
N=C

$

$

i i+1
{C=C+1}

VAR > VARi i+1

VAR = VARi i+1

i i+1VAR > VAR

VAR < VAR   ,

s

{C=0}

Figure 4.435: Automaton of the valley constraint

Q =s0

C =00 C1

Q1

VAR
1

S1

VAR
2

S2

VAR
n

VAR
3

Sn−1

VAR
n−1

S3

Q2

C2

Q   =tn−1

C   =Nn−1

Figure 4.436: Hypergraph of the reformulation corresponding to the automaton of the
valley constraint
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Usage Useful for constraining the number of valleys of a sequence of domain variables.

Remark Since the arity of the arc constraint is not fixed, the valley constraint cannot be currently
described. However, this would not hold anymore if we were introducing a slot that speci-
fies how to merge adjacent vertices of the final graph.

See also no valley, inflexion, peak.

Key words sequence, automaton, automaton with counters, sliding cyclic(1) constraint network(2).
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4.234 vec eq tuple

Origin Used for defining in relation.

Constraint vec eq tuple(VARIABLES, TUPLE)

Argument(s) VARIABLES : collection(var − dvar)
TUPLE : collection(val − int)

Restriction(s) required(VARIABLES, var)
required(TUPLE, val)
|VARIABLES| = |TUPLE|

Purpose Enforce a vector of domain variables to be equal to a tuple of values.

Arc input(s) VARIABLES TUPLE

Arc generator PRODUCT (=) 7→ collection(variables, tuple)

Arc arity 2

Arc constraint(s) variables.var = tuple.val

Graph property(ies) NARC = |VARIABLES|

Example vec eq tuple

„
{var − 5, var − 3, var − 3},
{val − 5, val − 3, val − 3}

«

Parts (A) and (B) of Figure 4.437 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

VARIABLES

TUPLE

1

1

2

2

3

3

NARC=3

1:5

1:5

2:3

2:3

3:3

3:3

(A) (B)

Figure 4.437: Initial and final graph of the vec eq tuple constraint

Signature Since we use the arc generator PRODUCT (=) on the collections VARIABLES and TUPLE,
and because of the restriction |VARIABLES| = |TUPLE|, the maximum number of arcs of
the final graph is equal to |VARIABLES|. Therefore we can rewrite the graph property
NARC = |VARIABLES| to NARC ≥ |VARIABLES| and simplify NARC to NARC.
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Used in in relation.

Key words value constraint, tuple.
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4.235 weighted partial alldiff

Origin [160, page 71]

Constraint weighted partial alldiff(VARIABLES, UNDEFINED, VALUES, COST)

Synonym(s) weighted partial alldifferent, weighted partial alldistinct, wpa.

Argument(s) VARIABLES : collection(var − dvar)
UNDEFINED : int

VALUES : collection(val − int, weight − int)
COST : dvar

Restriction(s) required(VARIABLES, var)
required(VALUES, [val, weight])
in attr(VARIABLES, var, VALUES, val)
distinct(VALUES, val)

Purpose

All variables of the VARIABLES collection which are not assigned to value UNDEFINED must
have pairwise distinct values from the val attribute of the VALUES collection. In addition
COST is the sum of the weight attributes associated to the values assigned to the variables
of VARIABLES. Within the VALUES collection, value UNDEFINED must be explicitely defined
with a weight of 0.

Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→ collection(variables, values)

Arc arity 2

Arc constraint(s) • variables.var 6= UNDEFINED

• variables.var = values.val

Graph property(ies) •MAX ID ≤ 1
• SUM(VALUES, weight) = COST

Example weighted partial alldiff

0
BBBBBBBBBBBBBBBBBB@

8
>>>>>><
>>>>>>:

var − 4,
var − 0,
var − 1,
var − 2,
var − 0,
var − 0

9
>>>>>>=
>>>>>>;

, 0,

8
>>>>>><
>>>>>>:

val − 0 weight − 0,
val − 1 weight − 2,
val − 2 weight −−1,
val − 4 weight − 7,
val − 5 weight −−8,
val − 6 weight − 2

9
>>>>>>=
>>>>>>;

, 8

1
CCCCCCCCCCCCCCCCCCA
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Parts (A) and (B) of Figure 4.438 respectively show the initial and final graph.
Since we also use the SUM graph property we show the vertices of the final graph from
which we compute the total cost in a box. The weighted partial alldiff constraint
holds since no value, except for value UNDEFINED = 0, is used more than once and
COST = 8 is equal to the sum of the weights 2, −1 and 7 of the values 1, 2 and 4 assigned
to the variables of VARIABLES.

VARIABLES

VALUES

1

1234 56

2 3456

SUM(VALUES,weight)=2-1+7=8

1:4

4:4,7

3:1

2:1,2

4:2

3:2,-1

(A) (B)

Figure 4.438: Initial and final graph of the weighted partial alldiff constraint

Graph model The restriction in attr(VARIABLES, var, VALUES, val) imposes all variables of the
VARIABLES collection to take a value from the val attribute of the VALUES collection.
We use the PRODUCT to generate an arc from every variables of the VARIABLES collec-
tion to every value of the VALUES collection. Because of the arc constraint, the final graph
contains only those arcs arriving at a value different from UNDEFINED. The graph property
MAX ID ≤ 1 enforces that no vertex of the final graph has more than one predecessor.
As a consequence, all variables of the VARIABLES collection which are not assigned to
value UNDEFINED must have pairwise distinct values.

Usage In his PhD thesis [160, pages 71–72], Sven Thiel describes the following three potential
scenarios of the weighted partial alldiff constraint:

• Given a set of tasks (i.e. the items of the VARIABLES collection), assign to each task
a resource (i.e. an item of the VALUES collection). Except for the resource associated
to value UNDEFINED, every resource can be used at most once. The cost of a resource
is independent from the task to which the resource is assigned. The cost of value
UNDEFINED is equal to 0. The total cost COST of an assignment corresponds to the
sum of the costs of the resources effectively assigned to the tasks. Finally we impose
an upper bound on the total cost.

• Given a set of persons (i.e. the items of the VARIABLES collection), select for each
person an offer (i.e. an item of the VALUES collection). Except for the offer asso-
ciated to value UNDEFINED, every offer should be selected at most once. The profit
associated to an offer is independant from the person which select that offer. The
profit of value UNDEFINED is equal to 0. The total benefit COST is equal to the sum
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of the profits of the offers effectively selected. In addition we impose a lower bound
on the total benefit.

• The last scenario deals with an application to an over-constraint problem involving
the alldifferent constraint. Allowing some variables to take an ”undefined” value
is done by setting all weights of all the values different from UNDEFINED to 1. As
a consequence all variables assigned to a value different from UNDEFINED will have
to take distinct values. The COST variable allows to control the number of such
variables.

Algorithm A filtering algorithm is given in [160, pages 73–104]. After showing that, deciding whether
the weighted partial alldiff has a solution is NP-complete, [160, pages 105–106]
gives the following results of his filtering algorithm with respect to consistency under the
three scenarios previously decribed:

• For scenario 1, if there is no restriction of the lower bound of the COST variable,
the filtering algorithm achieves arc-consistency for all variables of the VARIABLES

collection (but not for the COST variable itself).

• For scenario 2, if there is no restriction of the upper bound of the COST variable,
the filtering algorithm achieves arc-consistency for all variables of the VARIABLES

collection (but not for the COST variable itself).

• Finally, for scenario 3, the filtering algorithm achieves arc-consistency for all vari-
ables of the VARIABLES collection as well as for the COST variable.

See also alldifferent, alldifferent except 0, minimum weight alldifferent,
global cardinality with costs, soft alldifferent var,
sum of weights of distinct values.

Key words cost filtering constraint, soft constraint, all different, assignment, relaxation, joker value,
weighted assignment.
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Legend for the description

This section provides the list of restrictions, of arc generators, of graph generators and
of set generators sorted in alphabetic order with the page where there are defined.
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Restrictions :

• Term1 Comparison Term2 p. 9

• distinct p. 7

• in attr p. 6

• in list p. 6

• increasing seq p. 7

• required p. 8

• require at least p. 8

• same size p. 9

Arc generators :

• CHAIN p. 27

• CIRCUIT p. 27

• CLIQUE p. 27

• CLIQUE(C) p. 28

• GRID p. 28

• LOOP p. 28

• PATH p. 28

• PATH 1 p. 28

• PATH N p. 29

• PRODUCT p. 29

• PRODUCT (C) p. 29

• SELF p. 29

• SYMMETRIC PRODUCT p. 29

• SYMMETRIC PRODUCT(C) p. 29

• VOID p. 29

Graph characteristics :

• DISTANCE p. 42

• MAX DRG p. 34

• MAX ID p. 34

• MAX NCC p. 34

• MAX NSCC p. 35

• MAX OD p. 35

• MIN DRG p. 35

• MIN ID p. 35

• MIN NCC p. 35

• MIN NSCC p. 36

• MIN OD p. 36

• NARC p. 36

• NARC NO LOOP p. 36

• NCC p. 37

• NSCC p. 37

• NSINK p. 37

• NSINK NSOURCE p. 37

• NSOURCE p. 38

• NTREE p. 38

• NVERTEX p. 38

• RANGE DRG p. 38

• RANGE NCC p. 39

• RANGE NSCC p. 39

• ORDER p. 39

• PATH FROM TO p. 39

• PRODUCT p. 40

• RANGE p. 40

• SUM p. 41

• SUM WEIGHT ARC p. 42

Set generators :

• ALL VERTICES p. 47
• CC p. 47
• PATH LENGTH p. 48

• PRED p. 48

• SUCC p. 48
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B.1 all differ from at least k pos
ctr_date(

all_differ_from_at_least_k_pos,
[’20030820’,’20040530’]).

ctr_origin(
all_differ_from_at_least_k_pos,
’Inspired by \\cite{Frutos97}.’,
[]).

ctr_types(
all_differ_from_at_least_k_pos,
[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
all_differ_from_at_least_k_pos,
[’K’-int,’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
all_differ_from_at_least_k_pos,
[required(’VECTOR’,var),
’K’>=0,
required(’VECTORS’,vec),
same_size(’VECTORS’,vec)]).

ctr_graph(
all_differ_from_at_least_k_pos,
[’VECTORS’],
2,
[’CLIQUE’(=\=)>>collection(vectors1,vectors2)],
[differ_from_at_least_k_pos(

’K’,
vectors1ˆvec,
vectors2ˆvec)],

[’NARC’=size(’VECTORS’)*size(’VECTORS’)-size(’VECTORS’)]).

ctr_example(
all_differ_from_at_least_k_pos,
all_differ_from_at_least_k_pos(

2,
[[vec-[[var-2],[var-5],[var-2],[var-0]]],
[vec-[[var-3],[var-6],[var-2],[var-1]]],
[vec-[[var-3],[var-6],[var-1],[var-0]]]])).
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B.2 all min dist
ctr_date(all_min_dist,[’20050508’]).

ctr_origin(all_min_dist,’\\cite{Regin97}’,[]).

ctr_synonyms(all_min_dist,[minimum_distance]).

ctr_arguments(
all_min_dist,
[’MINDIST’-int,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
all_min_dist,
[’MINDIST’>0,required(’VARIABLES’,var),’VARIABLES’ˆvar>=0]).

ctr_graph(
all_min_dist,
[’VARIABLES’],
2,
[’CLIQUE’(<)>>collection(variables1,variables2)],
[abs(variables1ˆvar-variables2ˆvar)>=’MINDIST’],
[’NARC’=size(’VARIABLES’)*(size(’VARIABLES’)-1)/2]).

ctr_example(
all_min_dist,
all_min_dist(2,[[var-5],[var-1],[var-9],[var-3]])).
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B.3 alldifferent
ctr_date(alldifferent,[’20000128’,’20030820’,’20040530’]).

ctr_origin(alldifferent,’\\cite{Lauriere78}’,[]).

ctr_synonyms(alldifferent,[alldiff,alldistinct]).

ctr_arguments(alldifferent,[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(alldifferent,[required(’VARIABLES’,var)]).

ctr_graph(
alldifferent,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’MAX_NSCC’=<1]).

ctr_example(
alldifferent,
alldifferent([[var-5],[var-1],[var-9],[var-3]])).
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B.4 alldifferent between sets
ctr_date(alldifferent_between_sets,[’20030820’]).

ctr_origin(alldifferent_between_sets,’ILOG’,[]).

ctr_synonyms(
alldifferent_between_sets,
[all_null_intersect,
alldiff_between_sets,
alldistinct_between_sets]).

ctr_arguments(
alldifferent_between_sets,
[’VARIABLES’-collection(var-svar)]).

ctr_restrictions(
alldifferent_between_sets,
[required(’VARIABLES’,var)]).

ctr_graph(
alldifferent_between_sets,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[eq_set(variables1ˆvar,variables2ˆvar)],
[’MAX_NSCC’=<1]).

ctr_example(
alldifferent_between_sets,
alldifferent_between_sets(

[[var-{3,5}],[var-{}],[var-{3}],[var-{3,5,7}]])).
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B.5 alldifferent except 0
ctr_date(

alldifferent_except_0,
[’20000128’,’20030820’,’20040530’]).

ctr_origin(
alldifferent_except_0,
’Derived from %c.’,
[alldifferent]).

ctr_synonyms(
alldifferent_except_0,
[alldiff_except_0,alldistinct_except_0]).

ctr_arguments(
alldifferent_except_0,
[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
alldifferent_except_0,
[required(’VARIABLES’,var)]).

ctr_graph(
alldifferent_except_0,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=\=0,variables1ˆvar=variables2ˆvar],
[’MAX_NSCC’=<1]).

ctr_example(
alldifferent_except_0,
alldifferent_except_0(

[[var-5],[var-0],[var-1],[var-9],[var-0],[var-3]])).
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B.6 alldifferent interval
ctr_date(alldifferent_interval,[’20030820’]).

ctr_origin(
alldifferent_interval,
’Derived from %c.’,
[alldifferent]).

ctr_synonyms(
alldifferent_interval,
[alldiff_interval,alldistinct_interval]).

ctr_arguments(
alldifferent_interval,
[’VARIABLES’-collection(var-dvar),’SIZE_INTERVAL’-int]).

ctr_restrictions(
alldifferent_interval,
[required(’VARIABLES’,var),’SIZE_INTERVAL’>0]).

ctr_graph(
alldifferent_interval,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[=(variables1ˆvar/’SIZE_INTERVAL’,

variables2ˆvar/’SIZE_INTERVAL’)],
[’MAX_NSCC’=<1]).

ctr_example(
alldifferent_interval,
alldifferent_interval([[var-2],[var-3],[var-10]],3)).
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B.7 alldifferent modulo
ctr_date(alldifferent_modulo,[’20030820’]).

ctr_origin(
alldifferent_modulo,
’Derived from %c.’,
[alldifferent]).

ctr_synonyms(
alldifferent_modulo,
[alldiff_modulo,alldistinct_modulo]).

ctr_arguments(
alldifferent_modulo,
[’VARIABLES’-collection(var-dvar),’M’-int]).

ctr_restrictions(
alldifferent_modulo,
[required(’VARIABLES’,var),’M’=\=0,’M’>=size(’VARIABLES’)]).

ctr_graph(
alldifferent_modulo,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar mod ’M’=variables2ˆvar mod ’M’],
[’MAX_NSCC’=<1]).

ctr_example(
alldifferent_modulo,
alldifferent_modulo([[var-25],[var-1],[var-14],[var-3]],5)).
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B.8 alldifferent on intersection
ctr_date(alldifferent_on_intersection,[’20040530’]).

ctr_origin(
alldifferent_on_intersection,
’Derived from %c and %c.’,
[common,alldifferent]).

ctr_synonyms(
alldifferent_on_intersection,
[alldiff_on_intersection,alldistinct_on_intersection]).

ctr_arguments(
alldifferent_on_intersection,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
alldifferent_on_intersection,
[required(’VARIABLES1’,var),required(’VARIABLES2’,var)]).

ctr_graph(
alldifferent_on_intersection,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’MAX_NCC’=<2]).

ctr_example(
alldifferent_on_intersection,
alldifferent_on_intersection(

[[var-5],[var-9],[var-1],[var-5]],
[[var-2],[var-1],[var-6],[var-9],[var-6],[var-2]])).
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B.9 alldifferent partition

ctr_date(alldifferent_partition,[’20030820’]).

ctr_origin(
alldifferent_partition,
’Derived from %c.’,
[alldifferent]).

ctr_synonyms(
alldifferent_partition,
[alldiff_partition,alldistinct_partition]).

ctr_types(
alldifferent_partition,
[’VALUES’-collection(val-int)]).

ctr_arguments(
alldifferent_partition,
[’VARIABLES’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
alldifferent_partition,
[required(’VALUES’,val),
distinct(’VALUES’,val),
size(’VARIABLES’)=<size(’PARTITIONS’),
required(’VARIABLES’,var),
size(’PARTITIONS’)>=2,
required(’PARTITIONS’,p)]).

ctr_graph(
alldifferent_partition,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
’PARTITIONS’)],

[’MAX_NSCC’=<1]).

ctr_example(
alldifferent_partition,
alldifferent_partition(

[[var-6],[var-3],[var-4]],
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[[p-[[val-1],[val-3]]],
[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).



967

B.10 alldifferent same value
ctr_date(alldifferent_same_value,[’20000128’,’20030820’]).

ctr_origin(
alldifferent_same_value,
’Derived from %c.’,
[alldifferent]).

ctr_synonyms(
alldifferent_same_value,
[alldiff_same_value,alldistinct_same_value]).

ctr_arguments(
alldifferent_same_value,
[’NSAME’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
alldifferent_same_value,
[’NSAME’>=0,
’NSAME’=<size(’VARIABLES1’),
size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var)]).

ctr_graph(
alldifferent_same_value,
[’VARIABLES1’,’VARIABLES2’],
2,
[>>(’PRODUCT’(’CLIQUE’,’LOOP’,=),

collection(variables1,variables2))],
[variables1ˆvar=variables2ˆvar],
[’MAX_NSCC’=<1,’NARC_NO_LOOP’=’NSAME’]).

ctr_example(
alldifferent_same_value,
alldifferent_same_value(

2,
[[var-7],[var-3],[var-1],[var-5]],
[[var-1],[var-3],[var-1],[var-7]])).
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B.11 allperm
ctr_predefined(allperm).

ctr_date(allperm,[’20031008’]).

ctr_origin(allperm,’\\cite{FrischJeffersonMiguel03}’,[]).

ctr_types(allperm,[’VECTOR’-collection(var-dvar)]).

ctr_arguments(allperm,[’MATRIX’-collection(vec-’VECTOR’)]).

ctr_restrictions(
allperm,
[required(’VECTOR’,var),
required(’MATRIX’,vec),
same_size(’MATRIX’,vec)]).

ctr_example(
allperm,
allperm(

[[vec-[[var-1],[var-2],[var-3]]],
[vec-[[var-3],[var-1],[var-2]]]])).
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B.12 among

ctr_automaton(among,among).

ctr_date(among,[’20000128’,’20030820’,’20040807’]).

ctr_origin(among,’\\cite{BeldiceanuContejean94}’,[]).

ctr_arguments(
among,
[’NVAR’-dvar,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_restrictions(
among,
[’NVAR’>=0,
’NVAR’=<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_graph(
among,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[in(variablesˆvar,’VALUES’)],
[’NARC’=’NVAR’]).

ctr_example(
among,
among(

3,
[[var-4],[var-5],[var-5],[var-4],[var-1]],
[[val-1],[val-5],[val-8]])).

among(A,B,C) :-
col_to_list(C,D),
list_to_fdset(D,E),
among_signature(B,F,E),
automaton(

F,
G,
F,
0..1,
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[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[H+1]),arc(s,$,t)],
[H],
[0],
[A]).

among_signature([],[],A).

among_signature([[var-A]|B],[C|D],E) :-
in_set(A,E)#<=>C,
among_signature(B,D,E).
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B.13 among diff 0

ctr_automaton(among_diff_0,among_diff_0).

ctr_date(among_diff_0,[’20040807’]).

ctr_origin(
among_diff_0,
’Used in the automaton of %c.’,
[nvalue]).

ctr_arguments(
among_diff_0,
[’NVAR’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
among_diff_0,
[’NVAR’>=0,
’NVAR’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_graph(
among_diff_0,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[variablesˆvar=\=0],
[’NARC’=’NVAR’]).

ctr_example(
among_diff_0,
among_diff_0(3,[[var-0],[var-5],[var-5],[var-0],[var-1]])).

among_diff_0(A,B) :-
among_diff_0_signature(B,C),
automaton(

C,
D,
C,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[E+1]),arc(s,$,t)],
[E],
[0],
[A]).
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among_diff_0_signature([],[]).

among_diff_0_signature([[var-A]|B],[C|D]) :-
A#\=0#<=>C,
among_diff_0_signature(B,D).
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B.14 among interval

ctr_automaton(among_interval,among_interval).

ctr_date(among_interval,[’20030820’,’20040530’]).

ctr_origin(among_interval,’Derived from %c.’,[among]).

ctr_arguments(
among_interval,
[’NVAR’-dvar,
’VARIABLES’-collection(var-dvar),
’LOW’-int,
’UP’-int]).

ctr_restrictions(
among_interval,
[’NVAR’>=0,
’NVAR’=<size(’VARIABLES’),
required(’VARIABLES’,var),
’LOW’=<’UP’]).

ctr_graph(
among_interval,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[’LOW’=<variablesˆvar,variablesˆvar=<’UP’],
[’NARC’=’NVAR’]).

ctr_example(
among_interval,
among_interval(

3,
[[var-4],[var-5],[var-8],[var-4],[var-1]],
3,
5)).

among_interval(A,B,C,D) :-
among_interval_signature(B,E,C,D),
automaton(

E,
F,
E,
0..1,
[source(s),sink(t)],
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[arc(s,0,s),arc(s,1,s,[G+1]),arc(s,$,t)],
[G],
[0],
[A]).

among_interval_signature([],[],A,B).

among_interval_signature([[var-A]|B],[C|D],E,F) :-
E#=<A#/\A#=<F#<=>C,
among_interval_signature(B,D,E,F).
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B.15 among low up

ctr_automaton(among_low_up,among_low_up).

ctr_date(among_low_up,[’20030820’,’20040530’]).

ctr_origin(among_low_up,’\\cite{BeldiceanuContejean94}’,[]).

ctr_arguments(
among_low_up,
[’LOW’-int,
’UP’-int,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_restrictions(
among_low_up,
[’LOW’>=0,
’LOW’=<size(’VARIABLES’),
’UP’>=’LOW’,
required(’VARIABLES’,var),
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_graph(
among_low_up,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=valuesˆval],
[’NARC’>=’LOW’,’NARC’=<’UP’]).

ctr_example(
among_low_up,
among_low_up(

1,
2,
[[var-9],[var-2],[var-4],[var-5]],
[[val-0],[val-2],[val-4],[val-6],[val-8]])).

among_low_up(A,B,C,D) :-
col_to_list(D,E),
list_to_fdset(E,F),
among_low_up_signature(C,G,F),
in(H,A..B),
automaton(
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G,
I,
G,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[J+1]),arc(s,$,t)],
[J],
[0],
[H]).

among_low_up_signature([],[],A).

among_low_up_signature([[var-A]|B],[C|D],E) :-
in_set(A,E)#<=>C,
among_low_up_signature(B,D,E).
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B.16 among modulo

ctr_automaton(among_modulo,among_modulo).

ctr_date(among_modulo,[’20030820’,’20040530’]).

ctr_origin(among_modulo,’Derived from %c.’,[among]).

ctr_arguments(
among_modulo,
[’NVAR’-dvar,
’VARIABLES’-collection(var-dvar),
’REMAINDER’-int,
’QUOTIENT’-int]).

ctr_restrictions(
among_modulo,
[’NVAR’>=0,
’NVAR’=<size(’VARIABLES’),
required(’VARIABLES’,var),
’REMAINDER’>=0,
’REMAINDER’<’QUOTIENT’,
’QUOTIENT’>0]).

ctr_graph(
among_modulo,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[variablesˆvar mod ’QUOTIENT’=’REMAINDER’],
[’NARC’=’NVAR’]).

ctr_example(
among_modulo,
among_modulo(

3,
[[var-4],[var-5],[var-8],[var-4],[var-1]],
0,
2)).

among_modulo(A,B,C,D) :-
among_modulo_signature(B,E,C,D),
automaton(

E,
F,
E,
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0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[G+1]),arc(s,$,t)],
[G],
[0],
[A]).

among_modulo_signature([],[],A,B).

among_modulo_signature([[var-A]|B],[C|D],E,F) :-
A mod F#=E#<=>C,
among_modulo_signature(B,D,E,F).
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B.17 among seq

ctr_date(among_seq,[’20000128’,’20030820’]).

ctr_origin(among_seq,’\\cite{BeldiceanuContejean94}’,[]).

ctr_arguments(
among_seq,
[’LOW’-int,
’UP’-int,
’SEQ’-int,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_restrictions(
among_seq,
[’LOW’>=0,
’LOW’=<size(’VARIABLES’),
’UP’>=’LOW’,
’SEQ’>0,
’SEQ’>=’LOW’,
’SEQ’=<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_graph(
among_seq,
[’VARIABLES’],
’SEQ’,
[’PATH’>>collection],
[among_low_up(’LOW’,’UP’,collection,’VALUES’)],
[’NARC’=size(’VARIABLES’)-’SEQ’+1]).

ctr_example(
among_seq,
among_seq(

1,
2,
4,
[[var-9],
[var-2],
[var-4],
[var-5],
[var-5],
[var-7],
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[var-2]],
[[val-0],[val-2],[val-4],[val-6],[val-8]])).
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B.18 arith

ctr_automaton(arith,arith).

ctr_date(arith,[’20040814’]).

ctr_origin(
arith,
’Used in the definition of several automata’,
[]).

ctr_arguments(
arith,
[’VARIABLES’-collection(var-dvar),
’RELOP’-atom,
’VALUE’-int]).

ctr_restrictions(
arith,
[required(’VARIABLES’,var),
in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
arith,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[’RELOP’(variablesˆvar,’VALUE’)],
[’NARC’=size(’VARIABLES’)]).

ctr_example(
arith,
arith([[var-4],[var-5],[var-7],[var-4],[var-5]],<,9)).

arith(A,B,C) :-
arith_signature(A,D,B,C),
automaton(

D,
E,
D,
0..1,
[source(s),sink(t)],
[arc(s,1,s),arc(s,$,t)],
[],
[],
[]).
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arith_signature([],[],A,B).

arith_signature([[var-A]|B],[C|D],=,E) :-
A#=E#<=>C,
arith_signature(B,D,=,E).

arith_signature([[var-A]|B],[C|D],=\=,E) :-
A#\=E#<=>C,
arith_signature(B,D,=\=,E).

arith_signature([[var-A]|B],[C|D],<,E) :-
A#<E#<=>C,
arith_signature(B,D,<,E).

arith_signature([[var-A]|B],[C|D],>=,E) :-
A#>=E#<=>C,
arith_signature(B,D,>=,E).

arith_signature([[var-A]|B],[C|D],>,E) :-
A#>E#<=>C,
arith_signature(B,D,>,E).

arith_signature([[var-A]|B],[C|D],=<,E) :-
A#=<E#<=>C,
arith_signature(B,D,=<,E).
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B.19 arith or

ctr_automaton(arith_or,arith_or).

ctr_date(arith_or,[’20040814’]).

ctr_origin(
arith_or,
’Used in the definition of several automata’,
[]).

ctr_arguments(
arith_or,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’RELOP’-atom,
’VALUE’-int]).

ctr_restrictions(
arith_or,
[required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
size(’VARIABLES1’)=size(’VARIABLES2’),
in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
arith_or,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’(=)>>collection(variables1,variables2)],
[#\/(’RELOP’(variables1ˆvar,’VALUE’),

’RELOP’(variables2ˆvar,’VALUE’))],
[’NARC’=size(’VARIABLES1’)]).

ctr_example(
arith_or,
arith_or(

[[var-0],[var-1],[var-0],[var-0],[var-1]],
[[var-0],[var-0],[var-0],[var-1],[var-0]],
=,
0)).

arith_or(A,B,C,D) :-
arith_or_signature(A,B,E,C,D),
automaton(

E,
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F,
E,
0..1,
[source(s),sink(t)],
[arc(s,1,s),arc(s,$,t)],
[],
[],
[]).

arith_or_signature([],[],[],A,B).

arith_or_signature([[var-A]|B],[[var-C]|D],[E|F],=,G) :-
A#=G#\/C#=G#<=>E,
arith_or_signature(B,D,F,=,G).

arith_or_signature([[var-A]|B],[[var-C]|D],[E|F],=\=,G) :-
A#\=G#\/C#\=G#<=>E,
arith_or_signature(B,D,F,=\=,G).

arith_or_signature([[var-A]|B],[[var-C]|D],[E|F],<,G) :-
A#<G#\/C#<G#<=>E,
arith_or_signature(B,D,F,<,G).

arith_or_signature([[var-A]|B],[[var-C]|D],[E|F],>=,G) :-
A#>=G#\/C#>=G#<=>E,
arith_or_signature(B,D,F,>=,G).

arith_or_signature([[var-A]|B],[[var-C]|D],[E|F],>,G) :-
A#>G#\/C#>G#<=>E,
arith_or_signature(B,D,F,>,G).

arith_or_signature([[var-A]|B],[[var-C]|D],[E|F],=<,G) :-
A#=<G#\/C#=<G#<=>E,
arith_or_signature(B,D,F,=<,G).
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B.20 arith sliding

ctr_automaton(arith_sliding,arith_sliding).

ctr_date(arith_sliding,[’20040814’]).

ctr_origin(
arith_sliding,
’Used in the definition of some automaton’,
[]).

ctr_arguments(
arith_sliding,
[’VARIABLES’-collection(var-dvar),
’RELOP’-atom,
’VALUE’-int]).

ctr_restrictions(
arith_sliding,
[required(’VARIABLES’,var),
in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
arith_sliding,
[’VARIABLES’],
*,
[’PATH_1’>>collection],
[arith(collection,’RELOP’,’VALUE’)],
[’NARC’=size(’VARIABLES’)]).

ctr_example(
arith_sliding,
arith_sliding(

[[var-0],
[var-0],
[var-1],
[var-2],
[var-0],
[var-0],
[var- -3]],

<,
4)).

arith_sliding(A,=,B) :-
length(A,C),
length(D,C),
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domain(D,0,0),
arith_sliding_signature(A,E,D),
automaton(

E,
F,
D,
0..0,
[source(s),node(i),sink(t)],
[arc(s,0,i,[G+F]),
arc(s,$,t,[G]),
arc(i,0,i,(G#=B->[G+F])),
arc(i,$,t,(G#=B->[G]))],
[G],
[0],
[H]).

arith_sliding(A,=\=,B) :-
length(A,C),
length(D,C),
domain(D,0,0),
arith_sliding_signature(A,E,D),
automaton(

E,
F,
D,
0..0,
[source(s),node(i),sink(t)],
[arc(s,0,i,[G+F]),
arc(s,$,t,[G]),
arc(i,0,i,(G#\=B->[G+F])),
arc(i,$,t,(G#\=B->[G]))],
[G],
[0],
[H]).

arith_sliding(A,<,B) :-
length(A,C),
length(D,C),
domain(D,0,0),
arith_sliding_signature(A,E,D),
automaton(

E,
F,
D,
0..0,
[source(s),node(i),sink(t)],
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[arc(s,0,i,[G+F]),
arc(s,$,t,[G]),
arc(i,0,i,(G#<B->[G+F])),
arc(i,$,t,(G#<B->[G]))],

[G],
[0],
[H]).

arith_sliding(A,>=,B) :-
length(A,C),
length(D,C),
domain(D,0,0),
arith_sliding_signature(A,E,D),
automaton(

E,
F,
D,
0..0,
[source(s),node(i),sink(t)],
[arc(s,0,i,[G+F]),
arc(s,$,t,[G]),
arc(i,0,i,(G#>=B->[G+F])),
arc(i,$,t,(G#>=B->[G]))],

[G],
[0],
[H]).

arith_sliding(A,>,B) :-
length(A,C),
length(D,C),
domain(D,0,0),
arith_sliding_signature(A,E,D),
automaton(

E,
F,
D,
0..0,
[source(s),node(i),sink(t)],
[arc(s,0,i,[G+F]),
arc(s,$,t,[G]),
arc(i,0,i,(G#>B->[G+F])),
arc(i,$,t,(G#>B->[G]))],

[G],
[0],
[H]).
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arith_sliding(A,=<,B) :-
length(A,C),
length(D,C),
domain(D,0,0),
arith_sliding_signature(A,E,D),
automaton(

E,
F,
D,
0..0,
[source(s),node(i),sink(t)],
[arc(s,0,i,[G+F]),
arc(s,$,t,[G]),
arc(i,0,i,(G#=<B->[G+F])),
arc(i,$,t,(G#=<B->[G]))],
[G],
[0],
[H]).

arith_sliding_signature([],[],[]).

arith_sliding_signature([[var-A]|B],[A|C],[0|D]) :-
arith_sliding_signature(B,C,D).
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B.21 assign and counts

ctr_date(assign_and_counts,[’20000128’,’20030820’]).

ctr_origin(assign_and_counts,’N.˜Beldiceanu’,[]).

ctr_arguments(
assign_and_counts,
[’COLOURS’-collection(val-int),
’ITEMS’-collection(bin-dvar,colour-dvar),
’RELOP’-atom,
’LIMIT’-dvar]).

ctr_restrictions(
assign_and_counts,
[required(’COLOURS’,val),
distinct(’COLOURS’,val),
required(’ITEMS’,[bin,colour]),
in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_derived_collections(
assign_and_counts,
[col(’VALUES’-collection(val-int),

[item(val-’COLOURS’ˆval)])]).

ctr_graph(
assign_and_counts,
[’ITEMS’,’ITEMS’],
2,
[’PRODUCT’>>collection(items1,items2)],
[items1ˆbin=items2ˆbin],
[],
[>>(’SUCC’,

[source,
-(variables,

col(’VARIABLES’-collection(var-dvar),
[item(var-’ITEMS’ˆcolour)]))])],

[counts(’VALUES’,variables,’RELOP’,’LIMIT’)]).

ctr_example(
assign_and_counts,
assign_and_counts(

[[val-4]],
[[bin-1,colour-4],
[bin-3,colour-4],
[bin-1,colour-4],
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[bin-1,colour-5]],
=<,
2)).



991

B.22 assign and nvalues

ctr_date(
assign_and_nvalues,
[’20000128’,’20030820’,’20040530’,’20050321’]).

ctr_origin(
assign_and_nvalues,
’Derived from %c and %c.’,
[assign_and_counts,nvalues]).

ctr_arguments(
assign_and_nvalues,
[’ITEMS’-collection(bin-dvar,value-dvar),
’RELOP’-atom,
’LIMIT’-dvar]).

ctr_restrictions(
assign_and_nvalues,
[required(’ITEMS’,[bin,value]),
in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
assign_and_nvalues,
[’ITEMS’,’ITEMS’],
2,
[’PRODUCT’>>collection(items1,items2)],
[items1ˆbin=items2ˆbin],
[],
[>>(’SUCC’,

[source,
-(variables,

col(’VARIABLES’-collection(var-dvar),
[item(var-’ITEMS’ˆvalue)]))])],

[nvalues(variables,’RELOP’,’LIMIT’)]).

ctr_example(
assign_and_nvalues,
assign_and_nvalues(

[[bin-2,value-3],
[bin-1,value-5],
[bin-2,value-3],
[bin-2,value-3],
[bin-2,value-4]],

=<,
2)).
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B.23 atleast

ctr_automaton(atleast,atleast).

ctr_date(atleast,[’20030820’,’20040807’]).

ctr_origin(atleast,’CHIP’,[]).

ctr_arguments(
atleast,
[’N’-int,’VARIABLES’-collection(var-dvar),’VALUE’-int]).

ctr_restrictions(
atleast,
[’N’>=0,’N’=<size(’VARIABLES’),required(’VARIABLES’,var)]).

ctr_graph(
atleast,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[variablesˆvar=’VALUE’],
[’NARC’>=’N’]).

ctr_example(
atleast,
atleast(2,[[var-4],[var-2],[var-4],[var-5]],4)).

atleast(A,B,C) :-
atleast_signature(B,D,C),
length(B,E),
in(F,A..E),
automaton(

D,
G,
D,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[H+1]),arc(s,$,t)],
[H],
[0],
[F]).

atleast_signature([],[],A).

atleast_signature([[var-A]|B],[C|D],E) :-
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A#=E#<=>C,
atleast_signature(B,D,E).
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B.24 atmost

ctr_automaton(atmost,atmost).

ctr_date(atmost,[’20030820’,’20040807’]).

ctr_origin(atmost,’CHIP’,[]).

ctr_arguments(
atmost,
[’N’-int,’VARIABLES’-collection(var-dvar),’VALUE’-int]).

ctr_restrictions(atmost,[’N’>=0,required(’VARIABLES’,var)]).

ctr_graph(
atmost,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[variablesˆvar=’VALUE’],
[’NARC’=<’N’]).

ctr_example(
atmost,
atmost(1,[[var-4],[var-2],[var-4],[var-5]],2)).

atmost(A,B,C) :-
atmost_signature(B,D,C),
in(E,0..A),
automaton(

D,
F,
D,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[G+1]),arc(s,$,t)],
[G],
[0],
[E]).

atmost_signature([],[],A).

atmost_signature([[var-A]|B],[C|D],E) :-
A#=E#<=>C,
atmost_signature(B,D,E).
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B.25 balance
ctr_date(balance,[’20000128’,’20030820’]).

ctr_origin(balance,’N.˜Beldiceanu’,[]).

ctr_arguments(
balance,
[’BALANCE’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
balance,
[’BALANCE’>=0,
’BALANCE’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_graph(
balance,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’RANGE_NSCC’=’BALANCE’]).

ctr_example(
balance,
balance(2,[[var-3],[var-1],[var-7],[var-1],[var-1]])).
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B.26 balance interval
ctr_date(balance_interval,[’20030820’]).

ctr_origin(balance_interval,’Derived from %c.’,[balance]).

ctr_arguments(
balance_interval,
[’BALANCE’-dvar,
’VARIABLES’-collection(var-dvar),
’SIZE_INTERVAL’-int]).

ctr_restrictions(
balance_interval,
[’BALANCE’>=0,
’BALANCE’=<size(’VARIABLES’),
required(’VARIABLES’,var),
’SIZE_INTERVAL’>0]).

ctr_graph(
balance_interval,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[=(variables1ˆvar/’SIZE_INTERVAL’,

variables2ˆvar/’SIZE_INTERVAL’)],
[’RANGE_NSCC’=’BALANCE’]).

ctr_example(
balance_interval,
balance_interval(

3,
[[var-6],[var-4],[var-3],[var-3],[var-4]],
3)).
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B.27 balance modulo
ctr_date(balance_modulo,[’20030820’]).

ctr_origin(balance_modulo,’Derived from %c.’,[balance]).

ctr_arguments(
balance_modulo,
[’BALANCE’-dvar,’VARIABLES’-collection(var-dvar),’M’-int]).

ctr_restrictions(
balance_modulo,
[’BALANCE’>=0,
’BALANCE’=<size(’VARIABLES’),
required(’VARIABLES’,var),
’M’>0]).

ctr_graph(
balance_modulo,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar mod ’M’=variables2ˆvar mod ’M’],
[’RANGE_NSCC’=’BALANCE’]).

ctr_example(
balance_modulo,
balance_modulo(

2,
[[var-6],[var-1],[var-7],[var-1],[var-5]],
3)).
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B.28 balance partition
ctr_date(balance_partition,[’20030820’]).

ctr_origin(balance_partition,’Derived from %c.’,[balance]).

ctr_types(balance_partition,[’VALUES’-collection(val-int)]).

ctr_arguments(
balance_partition,
[’BALANCE’-dvar,
’VARIABLES’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
balance_partition,
[required(’VALUES’,val),
distinct(’VALUES’,val),
’BALANCE’>=0,
’BALANCE’=<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_graph(
balance_partition,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
’PARTITIONS’)],

[’RANGE_NSCC’=’BALANCE’]).

ctr_example(
balance_partition,
balance_partition(

1,
[[var-6],[var-2],[var-6],[var-4],[var-4]],
[[p-[[val-1],[val-3]]],
[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).
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B.29 bin packing
ctr_date(bin_packing,[’20000128’,’20030820’,’20040530’]).

ctr_origin(bin_packing,’Derived from %c.’,[cumulative]).

ctr_arguments(
bin_packing,
[’CAPACITY’-int,’ITEMS’-collection(bin-dvar,weight-int)]).

ctr_restrictions(
bin_packing,
[’CAPACITY’>=0,
required(’ITEMS’,[bin,weight]),
’ITEMS’ˆweight>=0,
’ITEMS’ˆweight=<’CAPACITY’]).

ctr_graph(
bin_packing,
[’ITEMS’,’ITEMS’],
2,
[’PRODUCT’>>collection(items1,items2)],
[items1ˆbin=items2ˆbin],
[],
[>>(’SUCC’,

[source,
-(variables,

col(’VARIABLES’-collection(var-dvar),
[item(var-’ITEMS’ˆweight)]))])],

[sum_ctr(variables,=<,’CAPACITY’)]).

ctr_example(
bin_packing,
bin_packing(

5,
[[bin-3,weight-4],[bin-1,weight-3],[bin-3,weight-1]])).
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B.30 binary tree
ctr_date(binary_tree,[’20000128’,’20030820’]).

ctr_origin(binary_tree,’Derived from %c.’,[tree]).

ctr_arguments(
binary_tree,
[’NTREES’-dvar,’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
binary_tree,
[’NTREES’>=0,
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_graph(
binary_tree,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’MAX_NSCC’=<1,’NCC’=’NTREES’,’MAX_ID’=<2]).

ctr_example(
binary_tree,
binary_tree(

2,
[[index-1,succ-1],
[index-2,succ-3],
[index-3,succ-5],
[index-4,succ-7],
[index-5,succ-1],
[index-6,succ-1],
[index-7,succ-7],
[index-8,succ-5]])).
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B.31 cardinality atleast
ctr_date(cardinality_atleast,[’20030820’,’20040530’]).

ctr_origin(
cardinality_atleast,
’Derived from %c.’,
[global_cardinality]).

ctr_arguments(
cardinality_atleast,
[’ATLEAST’-dvar,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_restrictions(
cardinality_atleast,
[’ATLEAST’>=0,
’ATLEAST’=<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_graph(
cardinality_atleast,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=\=valuesˆval],
[’MAX_ID’=size(’VARIABLES’)-’ATLEAST’]).

ctr_example(
cardinality_atleast,
cardinality_atleast(

1,
[[var-3],[var-3],[var-8]],
[[val-3],[val-8]])).



1003

B.32 cardinality atmost
ctr_date(cardinality_atmost,[’20030820’,’20040530’]).

ctr_origin(
cardinality_atmost,
’Derived from %c.’,
[global_cardinality]).

ctr_arguments(
cardinality_atmost,
[’ATMOST’-dvar,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_restrictions(
cardinality_atmost,
[’ATMOST’>=0,
’ATMOST’=<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_graph(
cardinality_atmost,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=valuesˆval],
[’MAX_ID’=’ATMOST’]).

ctr_example(
cardinality_atmost,
cardinality_atmost(

2,
[[var-2],[var-1],[var-7],[var-1],[var-2]],
[[val-5],[val-7],[val-2],[val-9]])).
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B.33 cardinality atmost partition

ctr_date(cardinality_atmost_partition,[’20030820’]).

ctr_origin(
cardinality_atmost_partition,
’Derived from %c.’,
[global_cardinality]).

ctr_types(
cardinality_atmost_partition,
[’VALUES’-collection(val-int)]).

ctr_arguments(
cardinality_atmost_partition,
[’ATMOST’-dvar,
’VARIABLES’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
cardinality_atmost_partition,
[required(’VALUES’,val),
distinct(’VALUES’,val),
’ATMOST’>=0,
’ATMOST’=<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_graph(
cardinality_atmost_partition,
[’VARIABLES’,’PARTITIONS’],
2,
[’PRODUCT’>>collection(variables,partitions)],
[in(variablesˆvar,partitionsˆp)],
[’MAX_ID’=’ATMOST’]).

ctr_example(
cardinality_atmost_partition,
cardinality_atmost_partition(

2,
[[var-2],[var-3],[var-7],[var-1],[var-6],[var-0]],
[[p-[[val-1],[val-3]]],
[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).
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B.34 change

ctr_automaton(change,change).

ctr_date(change,[’20000128’,’20030820’,’20040530’]).

ctr_origin(change,’CHIP’,[]).

ctr_synonyms(change,[nbchanges,similarity]).

ctr_arguments(
change,
[’NCHANGE’-dvar,
’VARIABLES’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
change,
[’NCHANGE’>=0,
’NCHANGE’<size(’VARIABLES’),
required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
change,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[’CTR’(variables1ˆvar,variables2ˆvar)],
[’NARC’=’NCHANGE’]).

ctr_example(
change,
[change(3,[[var-4],[var-4],[var-3],[var-4],[var-1]],=\=),
change(1,[[var-1],[var-2],[var-4],[var-3],[var-7]],>)]).

change(A,B,C) :-
change_signature(B,D,C),
automaton(

D,
E,
D,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[F+1]),arc(s,$,t)],
[F],
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[0],
[A]).

change_signature([],[],A).

change_signature([A],[],B) :-
!.

change_signature([[var-A],[var-B]|C],[D|E],=) :-
!,
A#=B#<=>D,
change_signature([[var-B]|C],E,=).

change_signature([[var-A],[var-B]|C],[D|E],=\=) :-
!,
A#\=B#<=>D,
change_signature([[var-B]|C],E,=\=).

change_signature([[var-A],[var-B]|C],[D|E],<) :-
!,
A#<B#<=>D,
change_signature([[var-B]|C],E,<).

change_signature([[var-A],[var-B]|C],[D|E],>=) :-
!,
A#>=B#<=>D,
change_signature([[var-B]|C],E,>=).

change_signature([[var-A],[var-B]|C],[D|E],>) :-
!,
A#>B#<=>D,
change_signature([[var-B]|C],E,>).

change_signature([[var-A],[var-B]|C],[D|E],=<) :-
!,
A#=<B#<=>D,
change_signature([[var-B]|C],E,=<).
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B.35 change continuity

ctr_automaton(change_continuity,change_continuity).

ctr_date(change_continuity,[’20000128’,’20030820’,’20040530’]).

ctr_origin(change_continuity,’N.˜Beldiceanu’,[]).

ctr_arguments(
change_continuity,
[’NB_PERIOD_CHANGE’-dvar,
’NB_PERIOD_CONTINUITY’-dvar,
’MIN_SIZE_CHANGE’-dvar,
’MAX_SIZE_CHANGE’-dvar,
’MIN_SIZE_CONTINUITY’-dvar,
’MAX_SIZE_CONTINUITY’-dvar,
’NB_CHANGE’-dvar,
’NB_CONTINUITY’-dvar,
’VARIABLES’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
change_continuity,
[’NB_PERIOD_CHANGE’>=0,
’NB_PERIOD_CONTINUITY’>=0,
’MIN_SIZE_CHANGE’>=0,
’MAX_SIZE_CHANGE’>=’MIN_SIZE_CHANGE’,
’MIN_SIZE_CONTINUITY’>=0,
’MAX_SIZE_CONTINUITY’>=’MIN_SIZE_CONTINUITY’,
’NB_CHANGE’>=0,
’NB_CONTINUITY’>=0,
required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
change_continuity,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[’CTR’(variables1ˆvar,variables2ˆvar)],
[’NCC’=’NB_PERIOD_CHANGE’,
’MIN_NCC’=’MIN_SIZE_CHANGE’,
’MAX_NCC’=’MAX_SIZE_CHANGE’,
’NARC’=’NB_CHANGE’]).

ctr_graph(
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change_continuity,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[#\’CTR’(variables1ˆvar,variables2ˆvar)],
[’NCC’=’NB_PERIOD_CONTINUITY’,
’MIN_NCC’=’MIN_SIZE_CONTINUITY’,
’MAX_NCC’=’MAX_SIZE_CONTINUITY’,
’NARC’=’NB_CONTINUITY’]).

ctr_example(
change_continuity,
change_continuity(

3,
2,
2,
4,
2,
4,
6,
4,
[[var-1],
[var-3],
[var-1],
[var-8],
[var-8],
[var-4],
[var-7],
[var-7],
[var-7],
[var-7],
[var-2]],

=\=)).

change_continuity(A,B,C,D,E,F,G,H,I,J) :-
length(I,K),
change_continuity_signature(I,L,1,J),
change_continuity_signature(I,M,0,J),
change_continuity_nb_period(A,L),
change_continuity_nb_period(B,M),
change_continuity_min_size(C,L),
change_continuity_min_size(E,M),
change_continuity_max_size(D,L),
change_continuity_max_size(F,M),
change_continuity_nb(G,L),
change_continuity_nb(H,M).
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change_continuity_nb_period(A,B) :-
automaton(

B,
C,
B,
0..1,
[source(s),node(i),sink(t)],
[arc(s,0,s),
arc(s,1,i,[D+1]),
arc(s,$,t),
arc(i,1,i),
arc(i,0,s),
arc(i,$,t)],

[D],
[0],
[A]).

change_continuity_min_size(A,B) :-
automaton(

B,
C,
B,
0..1,
[source(s),node(i),node(j),node(k),sink(t)],
[arc(s,0,s),
arc(s,1,i,[D,2]),
arc(s,$,t,[D,E]),
arc(i,0,j,[E,E]),
arc(i,1,i,[D,E+1]),
arc(i,$,t,[E,E]),
arc(j,0,j),
arc(j,1,k,[D,2]),
arc(j,$,t,[D,E]),
arc(k,0,j,[min(D,E),E]),
arc(k,1,k,[D,E+1]),
arc(k,$,t,[min(D,E),E])],

[D,E],
[0,1],
[A,F]).

change_continuity_max_size(A,B) :-
automaton(

B,
C,
B,
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0..1,
[source(s),node(i),sink(t)],
[arc(s,0,s,[D,E]),
arc(s,1,i,[D,E+1]),
arc(s,$,t,[D,E]),
arc(i,0,i,[max(D,E),1]),
arc(i,1,i,[D,E+1]),
arc(i,$,t,[max(D,E),E])],
[D,E],
[0,1],
[A,F]).

change_continuity_nb(A,B) :-
automaton(

B,
C,
B,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[D+1]),arc(s,$,t)],
[D],
[0],
[A]).

change_continuity_signature([],[],A,B).

change_continuity_signature([A],[],B,C) :-
!.

change_continuity_signature([[var-A],[var-B]|C],[D|E],1,=) :-
!,
A#=B#<=>D,
change_continuity_signature([[var-B]|C],E,1,=).

change_continuity_signature([[var-A],[var-B]|C],[D|E],1,=\=) :-
!,
A#\=B#<=>D,
change_continuity_signature([[var-B]|C],E,1,=\=).

change_continuity_signature([[var-A],[var-B]|C],[D|E],1,<) :-
!,
A#<B#<=>D,
change_continuity_signature([[var-B]|C],E,1,<).

change_continuity_signature([[var-A],[var-B]|C],[D|E],1,>=) :-
!,
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A#>=B#<=>D,
change_continuity_signature([[var-B]|C],E,1,>=).

change_continuity_signature([[var-A],[var-B]|C],[D|E],1,>) :-
!,
A#>B#<=>D,
change_continuity_signature([[var-B]|C],E,1,>).

change_continuity_signature([[var-A],[var-B]|C],[D|E],1,=<) :-
!,
A#=<B#<=>D,
change_continuity_signature([[var-B]|C],E,1,=<).

change_continuity_signature([[var-A],[var-B]|C],[D|E],0,=) :-
!,
A#\=B#<=>D,
change_continuity_signature([[var-B]|C],E,0,=).

change_continuity_signature([[var-A],[var-B]|C],[D|E],0,=\=) :-
!,
A#=B#<=>D,
change_continuity_signature([[var-B]|C],E,0,=\=).

change_continuity_signature([[var-A],[var-B]|C],[D|E],0,<) :-
!,
A#>=B#<=>D,
change_continuity_signature([[var-B]|C],E,0,<).

change_continuity_signature([[var-A],[var-B]|C],[D|E],0,>=) :-
!,
A#<B#<=>D,
change_continuity_signature([[var-B]|C],E,0,>=).

change_continuity_signature([[var-A],[var-B]|C],[D|E],0,>) :-
!,
A#=<B#<=>D,
change_continuity_signature([[var-B]|C],E,0,>).

change_continuity_signature([[var-A],[var-B]|C],[D|E],0,=<) :-
!,
A#>B#<=>D,
change_continuity_signature([[var-B]|C],E,0,=<).
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B.36 change pair

ctr_automaton(change_pair,change_pair).

ctr_date(change_pair,[’20030820’,’20040530’]).

ctr_origin(change_pair,’Derived from %c.’,[change]).

ctr_arguments(
change_pair,
[’NCHANGE’-dvar,
’PAIRS’-collection(x-dvar,y-dvar),
’CTRX’-atom,
’CTRY’-atom]).

ctr_restrictions(
change_pair,
[’NCHANGE’>=0,
’NCHANGE’<size(’PAIRS’),
required(’PAIRS’,[x,y]),
in_list(’CTRX’,[=,=\=,<,>=,>,=<]),
in_list(’CTRY’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
change_pair,
[’PAIRS’],
2,
[’PATH’>>collection(pairs1,pairs2)],
[’CTRX’(pairs1ˆx,pairs2ˆx)#\/’CTRY’(pairs1ˆy,pairs2ˆy)],
[’NARC’=’NCHANGE’]).

ctr_example(
change_pair,
change_pair(

3,
[[x-3,y-5],
[x-3,y-7],
[x-3,y-7],
[x-3,y-8],
[x-3,y-4],
[x-3,y-7],
[x-1,y-3],
[x-1,y-6],
[x-1,y-6],
[x-3,y-7]],

=\=,
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>)).

change_pair(A,B,C,D) :-
change_pair_signature(B,E,C,D),
automaton(

E,
F,
E,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[G+1]),arc(s,$,t)],
[G],
[0],
[A]).

change_pair_signature([],[],A,B).

change_pair_signature([A],[],B,C) :-
!.

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=,=) :-
!,
A#=C#\/B#=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=,=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=,=\=) :-
!,
A#=C#\/B#\=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=,=\=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=,<) :-
!,
A#=C#\/B#<D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=,<).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=,>=) :-
!,
A#=C#\/B#>=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=,>=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=,>) :-
!,
A#=C#\/B#>D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=,>).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=,=<) :-
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!,
A#=C#\/B#=<D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=,=<).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=\=,=) :-
!,
A#\=C#\/B#=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=\=,=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=\=,=\=) :-
!,
A#\=C#\/B#\=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=\=,=\=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=\=,<) :-
!,
A#\=C#\/B#<D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=\=,<).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=\=,>=) :-
!,
A#\=C#\/B#>=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=\=,>=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=\=,>) :-
!,
A#\=C#\/B#>D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=\=,>).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=\=,=<) :-
!,
A#\=C#\/B#=<D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=\=,=<).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],<,=) :-
!,
A#<C#\/B#=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,<,=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],<,=\=) :-
!,
A#<C#\/B#\=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,<,=\=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],<,<) :-
!,
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A#<C#\/B#<D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,<,<).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],<,>=) :-
!,
A#<C#\/B#>=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,<,>=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],<,>) :-
!,
A#<C#\/B#>D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,<,>).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],<,=<) :-
!,
A#<C#\/B#=<D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,<,=<).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>=,=) :-
!,
A#>=C#\/B#=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,>=,=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>=,=\=) :-
!,
A#>=C#\/B#\=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,>=,=\=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>=,<) :-
!,
A#>=C#\/B#<D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,>=,<).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>=,>=) :-
!,
A#>=C#\/B#>=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,>=,>=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>=,>) :-
!,
A#>=C#\/B#>D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,>=,>).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>=,=<) :-
!,
A#>=C#\/B#=<D#<=>F,
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change_pair_signature([[x-C,y-D]|E],G,>=,=<).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>,=) :-
!,
A#>C#\/B#=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,>,=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>,=\=) :-
!,
A#>C#\/B#\=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,>,=\=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>,<) :-
!,
A#>C#\/B#<D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,>,<).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>,>=) :-
!,
A#>C#\/B#>=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,>,>=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>,>) :-
!,
A#>C#\/B#>D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,>,>).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>,=<) :-
!,
A#>C#\/B#=<D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,>,=<).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=<,=) :-
!,
A#=<C#\/B#=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=<,=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=<,=\=) :-
!,
A#=<C#\/B#\=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=<,=\=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=<,<) :-
!,
A#=<C#\/B#<D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=<,<).
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change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=<,>=) :-
!,
A#=<C#\/B#>=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=<,>=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=<,>) :-
!,
A#=<C#\/B#>D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=<,>).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=<,=<) :-
!,
A#=<C#\/B#=<D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=<,=<).
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B.37 change partition

ctr_date(change_partition,[’20000128’,’20030820’,’20040530’]).

ctr_origin(change_partition,’Derived from %c.’,[change]).

ctr_types(change_partition,[’VALUES’-collection(val-int)]).

ctr_arguments(
change_partition,
[’NCHANGE’-dvar,
’VARIABLES’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
change_partition,
[required(’VALUES’,val),
distinct(’VALUES’,val),
’NCHANGE’>=0,
’NCHANGE’<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_graph(
change_partition,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
’PARTITIONS’)],

[’NARC’=’NCHANGE’]).

ctr_example(
change_partition,
change_partition(

2,
[[var-6],
[var-6],
[var-2],
[var-1],
[var-3],
[var-3],
[var-1],
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[var-6],
[var-2],
[var-2],
[var-2]],

[[p-[[val-1],[val-3]]],
[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).
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B.38 circuit
ctr_date(circuit,[’20030820’,’20040530’]).

ctr_origin(circuit,’\\cite{Lauriere78}’,[]).

ctr_synonyms(circuit,[atour,cycle]).

ctr_arguments(
circuit,
[’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
circuit,
[required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_graph(
circuit,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’MIN_NSCC’=size(’NODES’),’MAX_ID’=1]).

ctr_example(
circuit,
circuit(

[[index-1,succ-2],
[index-2,succ-3],
[index-3,succ-4],
[index-4,succ-1]])).
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B.39 circuit cluster

ctr_date(circuit_cluster,[’20000128’,’20030820’]).

ctr_origin(
circuit_cluster,
’Inspired by \\cite{LaporteAsefVaziriSriskandarajah96}.’,
[]).

ctr_arguments(
circuit_cluster,
[’NCIRCUIT’-dvar,
’NODES’-collection(index-int,cluster-int,succ-dvar)]).

ctr_restrictions(
circuit_cluster,
[’NCIRCUIT’>=1,
’NCIRCUIT’=<size(’NODES’),
required(’NODES’,[index,cluster,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_graph(
circuit_cluster,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=\=nodes1ˆindex,nodes1ˆsucc=nodes2ˆindex],
[’NTREE’=0,’NSCC’=’NCIRCUIT’],
[>>(’ALL_VERTICES’,

[-(variables,
col(’VARIABLES’-collection(var-dvar),

[item(var-’NODES’ˆcluster)]))])],
[alldifferent(variables),
nvalues(variables,=,size(’NODES’,cluster))]).

ctr_example(
circuit_cluster,
[circuit_cluster(

1,
[[index-1,cluster-1,succ-1],
[index-2,cluster-1,succ-4],
[index-3,cluster-2,succ-3],
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[index-4,cluster-2,succ-5],
[index-5,cluster-3,succ-8],
[index-6,cluster-3,succ-6],
[index-7,cluster-3,succ-7],
[index-8,cluster-4,succ-2],
[index-9,cluster-4,succ-9]]),

circuit_cluster(
2,
[[index-1,cluster-1,succ-1],
[index-2,cluster-1,succ-4],
[index-3,cluster-2,succ-3],
[index-4,cluster-2,succ-2],
[index-5,cluster-3,succ-5],
[index-6,cluster-3,succ-9],
[index-7,cluster-3,succ-7],
[index-8,cluster-4,succ-8],
[index-9,cluster-4,succ-6]])]).
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B.40 circular change

ctr_automaton(circular_change,circular_change).

ctr_date(circular_change,[’20030820’,’20040530’]).

ctr_origin(circular_change,’Derived from %c.’,[change]).

ctr_arguments(
circular_change,
[’NCHANGE’-dvar,
’VARIABLES’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
circular_change,
[’NCHANGE’>=0,
’NCHANGE’=<size(’VARIABLES’),
required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
circular_change,
[’VARIABLES’],
2,
[’CIRCUIT’>>collection(variables1,variables2)],
[’CTR’(variables1ˆvar,variables2ˆvar)],
[’NARC’=’NCHANGE’]).

ctr_example(
circular_change,
circular_change(

4,
[[var-4],[var-4],[var-3],[var-4],[var-1]],
=\=)).

circular_change(A,B,C) :-
B=[D|E],
append(B,[D],F),
circular_change_signature(F,G,C),
automaton(

G,
H,
G,
0..1,
[source(s),sink(t)],
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[arc(s,0,s),arc(s,1,s,[I+1]),arc(s,$,t)],
[I],
[0],
[A]).

circular_change_signature([],[],A).

circular_change_signature([A],[],B) :-
!.

circular_change_signature([[var-A],[var-B]|C],[D|E],=) :-
!,
A#=B#<=>D,
circular_change_signature([[var-B]|C],E,=).

circular_change_signature([[var-A],[var-B]|C],[D|E],=\=) :-
!,
A#\=B#<=>D,
circular_change_signature([[var-B]|C],E,=\=).

circular_change_signature([[var-A],[var-B]|C],[D|E],<) :-
!,
A#<B#<=>D,
circular_change_signature([[var-B]|C],E,<).

circular_change_signature([[var-A],[var-B]|C],[D|E],>=) :-
!,
A#>=B#<=>D,
circular_change_signature([[var-B]|C],E,>=).

circular_change_signature([[var-A],[var-B]|C],[D|E],>) :-
!,
A#>B#<=>D,
circular_change_signature([[var-B]|C],E,>).

circular_change_signature([[var-A],[var-B]|C],[D|E],=<) :-
!,
A#=<B#<=>D,
circular_change_signature([[var-B]|C],E,=<).
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B.41 clique
ctr_date(clique,[’20030820’,’20040530’]).

ctr_origin(clique,’\\cite{Fahle02}’,[]).

ctr_arguments(
clique,
[’SIZE_CLIQUE’-dvar,
’NODES’-collection(index-int,succ-svar)]).

ctr_restrictions(
clique,
[’SIZE_CLIQUE’>=0,
’SIZE_CLIQUE’=<size(’NODES’),
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index)]).

ctr_graph(
clique,
[’NODES’],
2,
[’CLIQUE’(=\=)>>collection(nodes1,nodes2)],
[in_set(nodes2ˆindex,nodes1ˆsucc)],
[’NARC’=’SIZE_CLIQUE’*’SIZE_CLIQUE’-’SIZE_CLIQUE’,
’NVERTEX’=’SIZE_CLIQUE’]).

ctr_example(
clique,
clique(

3,
[[index-1,succ-{}],
[index-2,succ-{3,5}],
[index-3,succ-{2,5}],
[index-4,succ-{}],
[index-5,succ-{2,3}]])).
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B.42 colored matrix

ctr_predefined(colored_matrix).

ctr_date(colored_matrix,[’20031017’,’20040530’]).

ctr_origin(colored_matrix,’KOALOG’,[]).

ctr_synonyms(colored_matrix,[cardinality_matrix,card_matrix]).

ctr_arguments(
colored_matrix,
[’C’-int,
’L’-int,
’K’-int,
’MATRIX’-collection(column-int,line-int,var-dvar),
’CPROJ’-collection(column-int,val-int,noccurrence-dvar),
’LPROJ’-collection(line-int,val-int,noccurrence-dvar)]).

ctr_restrictions(
colored_matrix,
[’C’>=0,
’L’>=0,
’K’>=0,
required(’MATRIX’,[column,line,var]),
increasing_seq(’MATRIX’,[column,line]),
size(’MATRIX’)=’C’*’L’+’C’+’L’+1,
’MATRIX’ˆcolumn>=0,
’MATRIX’ˆcolumn=<’C’,
’MATRIX’ˆline>=0,
’MATRIX’ˆline=<’L’,
’MATRIX’ˆvar>=0,
’MATRIX’ˆvar=<’K’,
required(’CPROJ’,[column,val,noccurrence]),
increasing_seq(’CPROJ’,[column,val]),
size(’CPROJ’)=’C’*’K’+’C’+’K’+1,
’CPROJ’ˆcolumn>=0,
’CPROJ’ˆcolumn=<’C’,
’CPROJ’ˆval>=0,
’CPROJ’ˆval=<’K’,
required(’LPROJ’,[line,val,noccurrence]),
increasing_seq(’LPROJ’,[line,val]),
size(’LPROJ’)=’L’*’K’+’L’+’K’+1,
’LPROJ’ˆline>=0,
’LPROJ’ˆline=<’L’,
’LPROJ’ˆval>=0,
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’LPROJ’ˆval=<’K’]).

ctr_example(
colored_matrix,
colored_matrix(

1,
2,
4,
[[column-0,line-0,var-3],
[column-0,line-1,var-1],
[column-0,line-2,var-3],
[column-1,line-0,var-4],
[column-1,line-1,var-4],
[column-1,line-2,var-3]],

[[column-0,val-0,nocc-0],
[column-0,val-1,nocc-1],
[column-0,val-2,nocc-0],
[column-0,val-3,nocc-2],
[column-0,val-4,nocc-0],
[column-1,val-0,nocc-0],
[column-1,val-1,nocc-0],
[column-1,val-2,nocc-0],
[column-1,val-3,nocc-1],
[column-1,val-4,nocc-2]],

[[line-0,val-0,nocc-0],
[line-0,val-1,nocc-0],
[line-0,val-2,nocc-0],
[line-0,val-3,nocc-1],
[line-0,val-4,nocc-1],
[line-1,val-0,nocc-0],
[line-1,val-1,nocc-1],
[line-1,val-2,nocc-0],
[line-1,val-3,nocc-0],
[line-1,val-4,nocc-1],
[line-2,val-0,nocc-0],
[line-2,val-1,nocc-0],
[line-2,val-2,nocc-0],
[line-2,val-3,nocc-2],
[line-2,val-4,nocc-0]])).
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B.43 coloured cumulative

ctr_date(coloured_cumulative,[’20000128’,’20030820’]).

ctr_origin(
coloured_cumulative,
’Derived from %c and %c.’,
[cumulative,nvalues]).

ctr_arguments(
coloured_cumulative,
[-(’TASKS’,

collection(
origin-dvar,
duration-dvar,
end-dvar,
colour-dvar)),

’LIMIT’-int]).

ctr_restrictions(
coloured_cumulative,
[require_at_least(2,’TASKS’,[origin,duration,end]),
required(’TASKS’,colour),
’TASKS’ˆduration>=0,
’LIMIT’>=0]).

ctr_graph(
coloured_cumulative,
[’TASKS’],
1,
[’SELF’>>collection(tasks)],
[tasksˆorigin+tasksˆduration=tasksˆend],
[’NARC’=size(’TASKS’)]).

ctr_graph(
coloured_cumulative,
[’TASKS’,’TASKS’],
2,
[’PRODUCT’>>collection(tasks1,tasks2)],
[tasks1ˆduration>0,
tasks2ˆorigin=<tasks1ˆorigin,
tasks1ˆorigin<tasks2ˆend],

[],
[>>(’SUCC’,

[source,
-(variables,
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col(’VARIABLES’-collection(var-dvar),
[item(var-’TASKS’ˆcolour)]))])],

[nvalues(variables,=<,’LIMIT’)]).

ctr_example(
coloured_cumulative,
coloured_cumulative(

[[origin-1,duration-2,end-3,colour-1],
[origin-2,duration-9,end-11,colour-2],
[origin-3,duration-10,end-13,colour-3],
[origin-6,duration-6,end-12,colour-2],
[origin-7,duration-2,end-9,colour-3]],

2)).
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B.44 coloured cumulatives

ctr_date(coloured_cumulatives,[’20000128’,’20030820’]).

ctr_origin(
coloured_cumulatives,
’Derived from %c and %c.’,
[cumulatives,nvalues]).

ctr_arguments(
coloured_cumulatives,
[-(’TASKS’,

collection(
machine-dvar,
origin-dvar,
duration-dvar,
end-dvar,
colour-dvar)),

’MACHINES’-collection(id-int,capacity-int)]).

ctr_restrictions(
coloured_cumulatives,
[required(’TASKS’,[machine,colour]),
require_at_least(2,’TASKS’,[origin,duration,end]),
’TASKS’ˆduration>=0,
required(’MACHINES’,[id,capacity]),
distinct(’MACHINES’,id),
’MACHINES’ˆcapacity>=0]).

ctr_graph(
coloured_cumulatives,
[’TASKS’],
1,
[’SELF’>>collection(tasks)],
[tasksˆorigin+tasksˆduration=tasksˆend],
[’NARC’=size(’TASKS’)]).

ctr_graph(
coloured_cumulatives,
[’TASKS’,’TASKS’],
2,
foreach(’MACHINES’,[’PRODUCT’>>collection(tasks1,tasks2)]),
[tasks1ˆmachine=’MACHINES’ˆid,
tasks1ˆmachine=tasks2ˆmachine,
tasks1ˆduration>0,
tasks2ˆorigin=<tasks1ˆorigin,
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tasks1ˆorigin<tasks2ˆend],
[],
[>>(’SUCC’,

[source,
-(variables,

col(’VARIABLES’-collection(var-dvar),
[item(var-’TASKS’ˆcolour)]))])],

[nvalues(variables,=<,’MACHINES’ˆcapacity)]).

ctr_example(
coloured_cumulatives,
coloured_cumulatives(

[[machine-1,origin-6,duration-6,end-12,colour-1],
[machine-1,origin-2,duration-9,end-11,colour-2],
[machine-2,origin-7,duration-3,end-10,colour-2],
[machine-1,origin-1,duration-2,end-3,colour-1],
[machine-2,origin-4,duration-5,end-9,colour-2],
[machine-1,origin-3,duration-10,end-13,colour-1]],

[[id-1,capacity-2],[id-2,capacity-1]])).
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B.45 common
ctr_date(common,[’20000128’,’20030820’]).

ctr_origin(common,’N.˜Beldiceanu’,[]).

ctr_arguments(
common,
[’NCOMMON1’-dvar,
’NCOMMON2’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
common,
[’NCOMMON1’>=0,
’NCOMMON1’=<size(’VARIABLES1’),
’NCOMMON2’>=0,
’NCOMMON2’=<size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var)]).

ctr_graph(
common,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NSOURCE’=’NCOMMON1’,’NSINK’=’NCOMMON2’]).

ctr_example(
common,
common(

3,
4,
[[var-1],[var-9],[var-1],[var-5]],
[[var-2],[var-1],[var-9],[var-9],[var-6],[var-9]])).
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B.46 common interval
ctr_date(common_interval,[’20030820’]).

ctr_origin(common_interval,’Derived from %c.’,[common]).

ctr_arguments(
common_interval,
[’NCOMMON1’-dvar,
’NCOMMON2’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’SIZE_INTERVAL’-int]).

ctr_restrictions(
common_interval,
[’NCOMMON1’>=0,
’NCOMMON1’=<size(’VARIABLES1’),
’NCOMMON2’>=0,
’NCOMMON2’=<size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’SIZE_INTERVAL’>0]).

ctr_graph(
common_interval,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[=(variables1ˆvar/’SIZE_INTERVAL’,

variables2ˆvar/’SIZE_INTERVAL’)],
[’NSOURCE’=’NCOMMON1’,’NSINK’=’NCOMMON2’]).

ctr_example(
common_interval,
common_interval(

3,
2,
[[var-8],[var-6],[var-6],[var-0]],
[[var-7],[var-3],[var-3],[var-3],[var-3],[var-7]],
3)).
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B.47 common modulo
ctr_date(common_modulo,[’20030820’]).

ctr_origin(common_modulo,’Derived from %c.’,[common]).

ctr_arguments(
common_modulo,
[’NCOMMON1’-dvar,
’NCOMMON2’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’M’-int]).

ctr_restrictions(
common_modulo,
[’NCOMMON1’>=0,
’NCOMMON1’=<size(’VARIABLES1’),
’NCOMMON2’>=0,
’NCOMMON2’=<size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’M’>0]).

ctr_graph(
common_modulo,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar mod ’M’=variables2ˆvar mod ’M’],
[’NSOURCE’=’NCOMMON1’,’NSINK’=’NCOMMON2’]).

ctr_example(
common_modulo,
common_modulo(

3,
4,
[[var-0],[var-4],[var-0],[var-8]],
[[var-7],[var-5],[var-4],[var-9],[var-2],[var-4]],
5)).
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B.48 common partition

ctr_date(common_partition,[’20030820’]).

ctr_origin(common_partition,’Derived from %c.’,[common]).

ctr_types(common_partition,[’VALUES’-collection(val-int)]).

ctr_arguments(
common_partition,
[’NCOMMON1’-dvar,
’NCOMMON2’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
common_partition,
[required(’VALUES’,val),
distinct(’VALUES’,val),
’NCOMMON1’>=0,
’NCOMMON1’=<size(’VARIABLES1’),
’NCOMMON2’>=0,
’NCOMMON2’=<size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_graph(
common_partition,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
’PARTITIONS’)],

[’NSOURCE’=’NCOMMON1’,’NSINK’=’NCOMMON2’]).

ctr_example(
common_partition,
common_partition(

3,
4,
[[var-2],[var-3],[var-6],[var-0]],
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[[var-0],[var-6],[var-3],[var-3],[var-7],[var-1]],
[[p-[[val-1],[val-3]]],
[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).



1037

B.49 connect points

ctr_date(connect_points,[’20000128’,’20030820’,’20040530’]).

ctr_origin(connect_points,’N.˜Beldiceanu’,[]).

ctr_arguments(
connect_points,
[’SIZE1’-int,
’SIZE2’-int,
’SIZE3’-int,
’NGROUP’-dvar,
’POINTS’-collection(p-dvar)]).

ctr_restrictions(
connect_points,
[’SIZE1’>0,
’SIZE2’>0,
’SIZE3’>0,
’NGROUP’>=0,
’NGROUP’=<size(’POINTS’),
’SIZE1’*’SIZE2’*’SIZE3’=size(’POINTS’),
required(’POINTS’,p)]).

ctr_graph(
connect_points,
[’POINTS’],
2,
[>>(’GRID’([’SIZE1’,’SIZE2’,’SIZE3’]),

collection(points1,points2))],
[points1ˆp=\=0,points1ˆp=points2ˆp],
[’NSCC’=’NGROUP’]).

ctr_example(
connect_points,
connect_points(

8,
4,
2,
2,
[[p-0],
[p-0],
[p-1],
[p-1],
[p-0],
[p-2],
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[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-1],
[p-0],
[p-2],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-1],
[p-1],
[p-1],
[p-1],
[p-1],
[p-0],
[p-2],
[p-0],
[p-1],
[p-0],
[p-2],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-2],
[p-0],
[p-0],
[p-0],
[p-2],
[p-2],
[p-2],
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[p-2],
[p-2],
[p-0],
[p-0],
[p-0],
[p-2],
[p-0],
[p-0],
[p-0],
[p-2],
[p-0],
[p-0]])).
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B.50 correspondence

ctr_date(correspondence,[’20030820’]).

ctr_origin(
correspondence,
’Derived from %c by removing the sorting condition.’,
[sort_permutation]).

ctr_arguments(
correspondence,
[’FROM’-collection(fvar-dvar),
’PERMUTATION’-collection(var-dvar),
’TO’-collection(tvar-dvar)]).

ctr_restrictions(
correspondence,
[size(’PERMUTATION’)=size(’FROM’),
size(’PERMUTATION’)=size(’TO’),
’PERMUTATION’ˆvar>=1,
’PERMUTATION’ˆvar=<size(’PERMUTATION’),
alldifferent(’PERMUTATION’),
required(’FROM’,fvar),
required(’PERMUTATION’,var),
required(’TO’,tvar)]).

ctr_derived_collections(
correspondence,
[col(’FROM_PERMUTATION’-collection(fvar-dvar,var-dvar),

[item(fvar-’FROM’ˆfvar,var-’PERMUTATION’ˆvar)])]).

ctr_graph(
correspondence,
[’FROM_PERMUTATION’,’TO’],
2,
[’PRODUCT’>>collection(from_permutation,to)],
[from_permutationˆfvar=toˆtvar,
from_permutationˆvar=toˆkey],

[’NARC’=size(’PERMUTATION’)]).

ctr_example(
correspondence,
correspondence(

[[fvar-1],
[fvar-9],
[fvar-1],



1041

[fvar-5],
[fvar-2],
[fvar-1]],

[[var-6],[var-1],[var-3],[var-5],[var-4],[var-2]],
[[tvar-9],
[tvar-1],
[tvar-1],
[tvar-2],
[tvar-5],
[tvar-1]])).
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B.51 count

ctr_automaton(count,count_).

ctr_date(count,[’20000128’,’20030820’,’20040530’]).

ctr_origin(count,’\\cite{Sicstus95}’,[]).

ctr_arguments(
count,
[’VALUE’-int,
’VARIABLES’-collection(var-dvar),
’RELOP’-atom,
’NVAR’-dvar]).

ctr_restrictions(
count,
[required(’VARIABLES’,var),
in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
count,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[variablesˆvar=’VALUE’],
[’RELOP’(’NARC’,’NVAR’)]).

ctr_example(
count,
count(5,[[var-4],[var-5],[var-5],[var-4],[var-5]],>=,2)).

count_(A,B,C,D) :-
length(B,E),
in(F,0..E),
count_signature(B,G,A),
automaton(

G,
H,
G,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[I+1]),arc(s,$,t)],
[I],
[0],
[F]),
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count_relop(C,F,D).

count_signature([],[],A).

count_signature([[var-A]|B],[C|D],E) :-
A#=E#<=>C,
count_signature(B,D,E).

count_relop(=,A,B) :-
A#=B.

count_relop(=\=,A,B) :-
A#\=B.

count_relop(<,A,B) :-
A#<B.

count_relop(>=,A,B) :-
A#>=B.

count_relop(>,A,B) :-
A#>B.

count_relop(=<,A,B) :-
A#=<B.
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B.52 counts

ctr_automaton(counts,counts).

ctr_date(counts,[’20030820’,’20040530’]).

ctr_origin(counts,’Derived from %c.’,[count]).

ctr_arguments(
counts,
[’VALUES’-collection(val-int),
’VARIABLES’-collection(var-dvar),
’RELOP’-atom,
’LIMIT’-dvar]).

ctr_restrictions(
counts,
[required(’VALUES’,val),
distinct(’VALUES’,val),
required(’VARIABLES’,var),
in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
counts,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=valuesˆval],
[’RELOP’(’NARC’,’LIMIT’)]).

ctr_example(
counts,
counts(

[[val-1],[val-3],[val-4],[val-9]],
[[var-4],[var-5],[var-5],[var-4],[var-1],[var-5]],
=,
3)).

counts(A,B,C,D) :-
length(B,E),
in(F,0..E),
col_to_list(A,G),
list_to_fdset(G,H),
counts_signature(B,I,H),
automaton(

I,
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J,
I,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[K+1]),arc(s,$,t)],
[K],
[0],
[F]),

count_relop(C,F,D).

counts_signature([],[],A).

counts_signature([[var-A]|B],[C|D],E) :-
in_set(A,E)#<=>C,
counts_signature(B,D,E).
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B.53 crossing

ctr_date(crossing,[’20000128’,’20030820’]).

ctr_origin(
crossing,
’Inspired by \\cite{CormenLeisersonRivest90}.’,
[]).

ctr_arguments(
crossing,
[’NCROSS’-dvar,
’SEGMENTS’-collection(ox-dvar,oy-dvar,ex-dvar,ey-dvar)]).

ctr_restrictions(
crossing,
[’NCROSS’>=0,
=<(’NCROSS’,

/(-(size(’SEGMENTS’)*size(’SEGMENTS’),
size(’SEGMENTS’)),

2)),
required(’SEGMENTS’,[ox,oy,ex,ey])]).

ctr_graph(
crossing,
[’SEGMENTS’],
2,
[’CLIQUE’(<)>>collection(s1,s2)],
[max(s1ˆox,s1ˆex)>=min(s2ˆox,s2ˆex),
max(s2ˆox,s2ˆex)>=min(s1ˆox,s1ˆex),
max(s1ˆoy,s1ˆey)>=min(s2ˆoy,s2ˆey),
max(s2ˆoy,s2ˆey)>=min(s1ˆoy,s1ˆey),
#\/(#\/(=(-((s2ˆox-s1ˆex)*(s1ˆey-s1ˆoy),

(s1ˆex-s1ˆox)*(s2ˆoy-s1ˆey)),
0),

=(-((s2ˆex-s1ˆex)*(s2ˆoy-s1ˆoy),
(s2ˆox-s1ˆox)*(s2ˆey-s1ˆey)),

0)),
=\=(sign(

-((s2ˆox-s1ˆex)*(s1ˆey-s1ˆoy),
(s1ˆex-s1ˆox)*(s2ˆoy-s1ˆey))),

sign(
-((s2ˆex-s1ˆex)*(s2ˆoy-s1ˆoy),
(s2ˆox-s1ˆox)*(s2ˆey-s1ˆey)))))],

[’NARC’=’NCROSS’]).
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ctr_example(
crossing,
crossing(

3,
[[ox-1,oy-4,ex-9,ey-2],
[ox-1,oy-1,ex-3,ey-5],
[ox-3,oy-2,ex-7,ey-4],
[ox-9,oy-1,ex-9,ey-4]])).



1048 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.54 cumulative

ctr_date(cumulative,[’20000128’,’20030820’,’20040530’]).

ctr_origin(cumulative,’\\cite{AggounBeldiceanu93}’,[]).

ctr_arguments(
cumulative,
[-(’TASKS’,

collection(
origin-dvar,
duration-dvar,
end-dvar,
height-dvar)),

’LIMIT’-int]).

ctr_restrictions(
cumulative,
[require_at_least(2,’TASKS’,[origin,duration,end]),
required(’TASKS’,height),
’TASKS’ˆduration>=0,
’TASKS’ˆheight>=0,
’LIMIT’>=0]).

ctr_graph(
cumulative,
[’TASKS’],
1,
[’SELF’>>collection(tasks)],
[tasksˆorigin+tasksˆduration=tasksˆend],
[’NARC’=size(’TASKS’)]).

ctr_graph(
cumulative,
[’TASKS’,’TASKS’],
2,
[’PRODUCT’>>collection(tasks1,tasks2)],
[tasks1ˆduration>0,
tasks2ˆorigin=<tasks1ˆorigin,
tasks1ˆorigin<tasks2ˆend],

[],
[>>(’SUCC’,

[source,
-(variables,

col(’VARIABLES’-collection(var-dvar),
[item(var-’TASKS’ˆheight)]))])],
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[sum_ctr(variables,=<,’LIMIT’)]).

ctr_example(
cumulative,
cumulative(

[[origin-1,duration-3,end-4,height-1],
[origin-2,duration-9,end-11,height-2],
[origin-3,duration-10,end-13,height-1],
[origin-6,duration-6,end-12,height-1],
[origin-7,duration-2,end-9,height-3]],

8)).
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B.55 cumulative product

ctr_date(cumulative_product,[’20030820’]).

ctr_origin(cumulative_product,’Derived from %c.’,[cumulative]).

ctr_arguments(
cumulative_product,
[-(’TASKS’,

collection(
origin-dvar,
duration-dvar,
end-dvar,
height-dvar)),

’LIMIT’-int]).

ctr_restrictions(
cumulative_product,
[require_at_least(2,’TASKS’,[origin,duration,end]),
required(’TASKS’,height),
’TASKS’ˆduration>=0,
’TASKS’ˆheight>=1,
’LIMIT’>=0]).

ctr_graph(
cumulative_product,
[’TASKS’],
1,
[’SELF’>>collection(tasks)],
[tasksˆorigin+tasksˆduration=tasksˆend],
[’NARC’=size(’TASKS’)]).

ctr_graph(
cumulative_product,
[’TASKS’,’TASKS’],
2,
[’PRODUCT’>>collection(tasks1,tasks2)],
[tasks1ˆduration>0,
tasks2ˆorigin=<tasks1ˆorigin,
tasks1ˆorigin<tasks2ˆend],

[],
[>>(’SUCC’,

[source,
-(variables,

col(’VARIABLES’-collection(var-dvar),
[item(var-’ITEMS’ˆheight)]))])],
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[product_ctr(variables,=<,’LIMIT’)]).

ctr_example(
cumulative_product,
cumulative_product(

[[origin-1,duration-3,end-4,height-1],
[origin-2,duration-9,end-11,height-2],
[origin-3,duration-10,end-13,height-1],
[origin-6,duration-6,end-12,height-1],
[origin-7,duration-2,end-9,height-3]],

6)).
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B.56 cumulative two d

ctr_date(cumulative_two_d,[’20000128’,’20030820’]).

ctr_origin(
cumulative_two_d,
’Inspired by %c and %c.’,
[cumulative,diffn]).

ctr_arguments(
cumulative_two_d,
[-(’RECTANGLES’,

collection(
start1-dvar,
size1-dvar,
last1-dvar,
start2-dvar,
size2-dvar,
last2-dvar,
height-dvar)),

’LIMIT’-int]).

ctr_restrictions(
cumulative_two_d,
[require_at_least(2,’RECTANGLES’,[start1,size1,last1]),
require_at_least(2,’RECTANGLES’,[start2,size2,last2]),
required(’RECTANGLES’,height),
’RECTANGLES’ˆsize1>=0,
’RECTANGLES’ˆsize2>=0,
’RECTANGLES’ˆheight>=0,
’LIMIT’>=0]).

ctr_derived_collections(
cumulative_two_d,
[col(-(’CORNERS’,

collection(size1-dvar,size2-dvar,x-dvar,y-dvar)),
[item(

size1-’RECTANGLES’ˆsize1,
size2-’RECTANGLES’ˆsize2,
x-’RECTANGLES’ˆstart1,
y-’RECTANGLES’ˆstart2),

item(
size1-’RECTANGLES’ˆsize1,
size2-’RECTANGLES’ˆsize2,
x-’RECTANGLES’ˆstart1,
y-’RECTANGLES’ˆlast2),
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item(
size1-’RECTANGLES’ˆsize1,
size2-’RECTANGLES’ˆsize2,
x-’RECTANGLES’ˆlast1,
y-’RECTANGLES’ˆstart2),

item(
size1-’RECTANGLES’ˆsize1,
size2-’RECTANGLES’ˆsize2,
x-’RECTANGLES’ˆlast1,
y-’RECTANGLES’ˆlast2)])]).

ctr_graph(
cumulative_two_d,
[’RECTANGLES’],
1,
[’SELF’>>collection(rectangles)],
[rectanglesˆstart1+rectanglesˆsize1-1=rectanglesˆlast1,
rectanglesˆstart2+rectanglesˆsize2-1=rectanglesˆlast2],

[’NARC’=size(’RECTANGLES’)]).

ctr_graph(
cumulative_two_d,
[’CORNERS’,’RECTANGLES’],
2,
[’PRODUCT’>>collection(corners,rectangles)],
[cornersˆsize1>0,
cornersˆsize2>0,
rectanglesˆstart1=<cornersˆx,
cornersˆx=<rectanglesˆlast1,
rectanglesˆstart2=<cornersˆy,
cornersˆy=<rectanglesˆlast2],

[],
[>>(’SUCC’,

[source,
-(variables,

col(’VARIABLES’-collection(var-dvar),
[item(var-’RECTANGLES’ˆheight)]))])],

[sum_ctr(variables,=<,’LIMIT’)]).

ctr_example(
cumulative_two_d,
cumulative_two_d(

[[start1-1,
size1-4,
last1-4,
start2-3,
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size2-3,
last2-5,
height-4],

[start1-3,
size1-2,
last1-4,
start2-1,
size2-2,
last2-2,
height-2],

[start1-1,
size1-2,
last1-2,
start2-1,
size2-2,
last2-2,
height-3],

[start1-4,
size1-1,
last1-4,
start2-1,
size2-1,
last2-1,
height-1]],

4)).
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B.57 cumulative with level of priority

ctr_date(cumulative_with_level_of_priority,[’20040530’]).

ctr_origin(cumulative_with_level_of_priority,’H.˜Simonis’,[]).

ctr_arguments(
cumulative_with_level_of_priority,
[-(’TASKS’,

collection(
priority-int,
origin-dvar,
duration-dvar,
end-dvar,
height-dvar)),

’PRIORITIES’-collection(id-int,capacity-int)]).

ctr_restrictions(
cumulative_with_level_of_priority,
[required(’TASKS’,[priority,height]),
require_at_least(2,’TASKS’,[origin,duration,end]),
’TASKS’ˆpriority>=1,
’TASKS’ˆpriority=<size(’PRIORITIES’),
’TASKS’ˆduration>=0,
’TASKS’ˆheight>=0,
required(’PRIORITIES’,[id,capacity]),
’PRIORITIES’ˆid>=1,
’PRIORITIES’ˆid=<size(’PRIORITIES’),
increasing_seq(’PRIORITIES’,id),
increasing_seq(’PRIORITIES’,capacity)]).

ctr_derived_collections(
cumulative_with_level_of_priority,
[col(-(’TIME_POINTS’,

collection(idp-int,duration-dvar,point-dvar)),
[item(

idp-’TASKS’ˆpriority,
duration-’TASKS’ˆduration,
point-’TASKS’ˆorigin),

item(
idp-’TASKS’ˆpriority,
duration-’TASKS’ˆduration,
point-’TASKS’ˆend)])]).

ctr_graph(
cumulative_with_level_of_priority,
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[’TASKS’],
1,
[’SELF’>>collection(tasks)],
[tasksˆorigin+tasksˆduration=tasksˆend],
[’NARC’=size(’TASKS’)]).

ctr_graph(
cumulative_with_level_of_priority,
[’TIME_POINTS’,’TASKS’],
2,
foreach(

’PRIORITIES’,
[’PRODUCT’>>collection(time_points,tasks)]),

[time_pointsˆidp=’PRIORITIES’ˆid,
time_pointsˆidp>=tasksˆpriority,
time_pointsˆduration>0,
tasksˆorigin=<time_pointsˆpoint,
time_pointsˆpoint<tasksˆend],

[],
[>>(’SUCC’,

[source,
-(variables,

col(’VARIABLES’-collection(var-dvar),
[item(var-’TASKS’ˆheight)]))])],

[sum_ctr(variables,=<,’PRIORITIES’ˆcapacity)]).

ctr_example(
cumulative_with_level_of_priority,
cumulative_with_level_of_priority(

[[priority-1,origin-1,duration-2,end-3,height-1],
[priority-1,origin-2,duration-3,end-5,height-1],
[priority-1,origin-5,duration-2,end-7,height-2],
[priority-2,origin-3,duration-2,end-5,height-2],
[priority-2,origin-6,duration-3,end-9,height-1]],

[[id-1,capacity-2],[id-2,capacity-3]])).
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B.58 cumulatives

ctr_date(cumulatives,[’20000128’,’20030820’,’20040530’]).

ctr_origin(cumulatives,’\\cite{BeldiceanuCarlsson02a}’,[]).

ctr_arguments(
cumulatives,
[-(’TASKS’,

collection(
machine-dvar,
origin-dvar,
duration-dvar,
end-dvar,
height-dvar)),

’MACHINES’-collection(id-int,capacity-int),
’CTR’-atom]).

ctr_restrictions(
cumulatives,
[required(’TASKS’,[machine,height]),
require_at_least(2,’TASKS’,[origin,duration,end]),
in_attr(’TASKS’,machine,’MACHINES’,id),
’TASKS’ˆduration>=0,
required(’MACHINES’,[id,capacity]),
distinct(’MACHINES’,id),
in_list(’CTR’,[=<,>=])]).

ctr_derived_collections(
cumulatives,
[col(-(’TIME_POINTS’,

collection(idm-int,duration-dvar,point-dvar)),
[item(

idm-’TASKS’ˆmachine,
duration-’TASKS’ˆduration,
point-’TASKS’ˆorigin),

item(
idm-’TASKS’ˆmachine,
duration-’TASKS’ˆduration,
point-’TASKS’ˆend)])]).

ctr_graph(
cumulatives,
[’TASKS’],
1,
[’SELF’>>collection(tasks)],
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[tasksˆorigin+tasksˆduration=tasksˆend],
[’NARC’=size(’TASKS’)]).

ctr_graph(
cumulatives,
[’TIME_POINTS’,’TASKS’],
2,
foreach(

’MACHINES’,
[’PRODUCT’>>collection(time_points,tasks)]),

[time_pointsˆidm=’MACHINES’ˆid,
time_pointsˆidm=tasksˆmachine,
time_pointsˆduration>0,
tasksˆorigin=<time_pointsˆpoint,
time_pointsˆpoint<tasksˆend],

[],
[>>(’SUCC’,

[source,
-(variables,

col(’VARIABLES’-collection(var-dvar),
[item(var-’TASKS’ˆheight)]))])],

[sum_ctr(variables,’CTR’,’MACHINES’ˆcapacity)]).

ctr_example(
cumulatives,
cumulatives(

[[machine-1,origin-2,duration-2,end-4,height- -2],
[machine-1,origin-1,duration-4,end-5,height-1],
[machine-1,origin-4,duration-2,end-6,height- -1],
[machine-1,origin-2,duration-3,end-5,height-2],
[machine-1,origin-5,duration-2,end-7,height-2],
[machine-2,origin-3,duration-2,end-5,height- -1],
[machine-2,origin-1,duration-4,end-5,height-1]],

[[id-1,capacity-0],[id-2,capacity-0]],
>=)).
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B.59 cutset
ctr_date(cutset,[’20030820’,’20040530’]).

ctr_origin(cutset,’\\cite{FagesLal03}’,[]).

ctr_arguments(
cutset,
[’SIZE_CUTSET’-dvar,
’NODES’-collection(index-int,succ-sint,bool-dvar)]).

ctr_restrictions(
cutset,
[’SIZE_CUTSET’>=0,
’SIZE_CUTSET’=<size(’NODES’),
required(’NODES’,[index,succ,bool]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆbool>=0,
’NODES’ˆbool=<1]).

ctr_graph(
cutset,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[in_set(nodes2ˆindex,nodes1ˆsucc),
nodes1ˆbool=1,
nodes2ˆbool=1],

[’MAX_NSCC’=<1,’NVERTEX’=size(’NODES’)-’SIZE_CUTSET’]).

ctr_example(
cutset,
cutset(

1,
[[index-1,succ-{2,3,4},bool-1],
[index-2,succ-{3},bool-1],
[index-3,succ-{4},bool-1],
[index-4,succ-{1},bool-0]])).
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B.60 cycle
ctr_date(cycle,[’20000128’,’20030820’]).

ctr_origin(cycle,’\\cite{BeldiceanuContejean94}’,[]).

ctr_arguments(
cycle,
[’NCYCLE’-dvar,’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
cycle,
[’NCYCLE’>=1,
’NCYCLE’=<size(’NODES’),
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_graph(
cycle,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’NTREE’=0,’NCC’=’NCYCLE’]).

ctr_example(
cycle,
cycle(

2,
[[index-1,succ-2],
[index-2,succ-1],
[index-3,succ-5],
[index-4,succ-3],
[index-5,succ-4]])).
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B.61 cycle card on path

ctr_date(cycle_card_on_path,[’20000128’,’20030820’,’20040530’]).

ctr_origin(cycle_card_on_path,’CHIP’,[]).

ctr_arguments(
cycle_card_on_path,
[’NCYCLE’-dvar,
’NODES’-collection(index-int,succ-dvar,colour-dvar),
’ATLEAST’-int,
’ATMOST’-int,
’PATH_LEN’-int,
’VALUES’-collection(val-int)]).

ctr_restrictions(
cycle_card_on_path,
[’NCYCLE’>=1,
’NCYCLE’=<size(’NODES’),
required(’NODES’,[index,succ,colour]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’),
’ATLEAST’>=0,
’ATLEAST’=<’PATH_LEN’,
’ATMOST’>=’ATLEAST’,
’PATH_LEN’>=0,
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_graph(
cycle_card_on_path,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’NTREE’=0,’NCC’=’NCYCLE’],
[>>(’PATH_LENGTH’(’PATH_LEN’),

[-(variables,
col(’VARIABLES’-collection(var-dvar),

[item(var-’NODES’ˆcolour)]))])],
[among_low_up(’ATLEAST’,’ATMOST’,variables,’VALUES’)]).

ctr_example(
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cycle_card_on_path,
cycle_card_on_path(

2,
[[index-1,succ-7,colour-2],
[index-2,succ-4,colour-3],
[index-3,succ-8,colour-2],
[index-4,succ-9,colour-1],
[index-5,succ-1,colour-2],
[index-6,succ-2,colour-1],
[index-7,succ-5,colour-1],
[index-8,succ-6,colour-1],
[index-9,succ-3,colour-1]],

1,
2,
3,
[[val-1]])).
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B.62 cycle or accessibility

ctr_date(cycle_or_accessibility,[’20000128’,’20030820’]).

ctr_origin(
cycle_or_accessibility,
’Inspired by \\cite{LabbeLaporteRodriguezMartin98}.’,
[]).

ctr_arguments(
cycle_or_accessibility,
[’MAXDIST’-int,
’NCYCLE’-dvar,
’NODES’-collection(index-int,succ-dvar,x-int,y-int)]).

ctr_restrictions(
cycle_or_accessibility,
[’MAXDIST’>=0,
’NCYCLE’>=1,
’NCYCLE’=<size(’NODES’),
required(’NODES’,[index,succ,x,y]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=0,
’NODES’ˆsucc=<size(’NODES’),
’NODES’ˆx>=0,
’NODES’ˆy>=0]).

ctr_graph(
cycle_or_accessibility,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’NTREE’=0,’NCC’=’NCYCLE’]).

ctr_graph(
cycle_or_accessibility,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[#\/(nodes1ˆsucc=nodes2ˆindex,

#/\(nodes1ˆsucc=0#/\nodes2ˆsucc=\=0,
=<(+(abs(nodes1ˆx-nodes2ˆx),

abs(nodes1ˆy-nodes2ˆy)),
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’MAXDIST’)))],
[’NVERTEX’=size(’NODES’)],
[>>(’PRED’,

[-(variables,
col(’VARIABLES’-collection(var-dvar),

[item(var-’NODES’ˆsucc)])),
destination])],

[nvalues_except_0(variables,=,1)]).

ctr_example(
cycle_or_accessibility,
cycle_or_accessibility(

3,
2,
[[index-1,succ-6,x-4,y-5],
[index-2,succ-0,x-9,y-1],
[index-3,succ-0,x-2,y-4],
[index-4,succ-1,x-2,y-6],
[index-5,succ-5,x-7,y-2],
[index-6,succ-4,x-4,y-7],
[index-7,succ-0,x-6,y-4]])).
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B.63 cycle resource

ctr_date(cycle_resource,[’20030820’,’20040530’]).

ctr_origin(cycle_resource,’CHIP’,[]).

ctr_arguments(
cycle_resource,
[-(’RESOURCE’,

collection(id-int,first_task-dvar,nb_task-dvar)),
’TASK’-collection(id-int,next_task-dvar,resource-dvar)]).

ctr_restrictions(
cycle_resource,
[required(’RESOURCE’,[id,first_task,nb_task]),
’RESOURCE’ˆid>=1,
’RESOURCE’ˆid=<size(’RESOURCE’),
distinct(’RESOURCE’,id),
’RESOURCE’ˆfirst_task>=1,
’RESOURCE’ˆfirst_task=<size(’RESOURCE’)+size(’TASK’),
’RESOURCE’ˆnb_task>=0,
’RESOURCE’ˆnb_task=<size(’TASK’),
required(’TASK’,[id,next_task,resource]),
’TASK’ˆid>size(’RESOURCE’),
’TASK’ˆid=<size(’RESOURCE’)+size(’TASK’),
distinct(’TASK’,id),
’TASK’ˆnext_task>=1,
’TASK’ˆnext_task=<size(’RESOURCE’)+size(’TASK’),
’TASK’ˆresource>=1,
’TASK’ˆresource=<size(’RESOURCE’)]).

ctr_derived_collections(
cycle_resource,
[col(-(’RESOURCE_TASK’,

collection(index-int,succ-dvar,name-dvar)),
[item(

index-’RESOURCE’ˆid,
succ-’RESOURCE’ˆfirst_task,
name-’RESOURCE’ˆid),

item(
index-’TASK’ˆid,
succ-’TASK’ˆnext_task,
name-’TASK’ˆresource)])]).

ctr_graph(
cycle_resource,
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[’RESOURCE_TASK’],
2,
[’CLIQUE’>>collection(resource_task1,resource_task2)],
[resource_task1ˆsucc=resource_task2ˆindex,
resource_task1ˆname=resource_task2ˆname],

[’NTREE’=0,
’NCC’=size(’RESOURCE’),
’NVERTEX’=size(’RESOURCE’)+size(’TASK’)]).

ctr_graph(
cycle_resource,
[’RESOURCE_TASK’],
2,
foreach(

’RESOURCE’,
[’CLIQUE’>>collection(resource_task1,resource_task2)]),

[resource_task1ˆsucc=resource_task2ˆindex,
resource_task1ˆname=resource_task2ˆname,
resource_task1ˆname=’RESOURCE’ˆid],

[’NVERTEX’=’RESOURCE’ˆnb_task+1]).

ctr_example(
cycle_resource,
cycle_resource(

[[id-1,first_task-5,nb_task-3],
[id-2,first_task-2,nb_task-0],
[id-3,first_task-8,nb_task-2]],

[[id-4,next_task-7,resource-1],
[id-5,next_task-4,resource-1],
[id-6,next_task-3,resource-3],
[id-7,next_task-1,resource-1],
[id-8,next_task-6,resource-3]])).
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B.64 cyclic change

ctr_automaton(cyclic_change,cyclic_change).

ctr_date(cyclic_change,[’20000128’,’20030820’,’20040530’]).

ctr_origin(cyclic_change,’Derived from %c.’,[change]).

ctr_arguments(
cyclic_change,
[’NCHANGE’-dvar,
’CYCLE_LENGTH’-int,
’VARIABLES’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
cyclic_change,
[’NCHANGE’>=0,
’NCHANGE’<size(’VARIABLES’),
’CYCLE_LENGTH’>0,
required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
cyclic_change,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[’CTR’(

(variables1ˆvar+1)mod ’CYCLE_LENGTH’,
variables2ˆvar)],

[’NARC’=’NCHANGE’]).

ctr_example(
cyclic_change,
cyclic_change(

2,
4,
[[var-3],[var-0],[var-2],[var-3],[var-1]],
=\=)).

cyclic_change(A,B,C,D) :-
cyclic_change_signature(C,E,D),
automaton(

E,
F,



1068 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

E,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[G+1]),arc(s,$,t)],
[G],
[0],
[A]).

cyclic_change_signature([],[],A).

cyclic_change_signature([A],[],B) :-
!.

cyclic_change_signature([[var-A],[var-B]|C],[D|E],=) :-
!,
(A+1)mod F#=B#<=>D,
cyclic_change_signature([[var-B]|C],E,=).

cyclic_change_signature([[var-A],[var-B]|C],[D|E],=\=) :-
!,
(A+1)mod F#\=B#<=>D,
cyclic_change_signature([[var-B]|C],E,=\=).

cyclic_change_signature([[var-A],[var-B]|C],[D|E],<) :-
!,
(A+1)mod F#<B#<=>D,
cyclic_change_signature([[var-B]|C],E,<).

cyclic_change_signature([[var-A],[var-B]|C],[D|E],>=) :-
!,
(A+1)mod F#>=B#<=>D,
cyclic_change_signature([[var-B]|C],E,>=).

cyclic_change_signature([[var-A],[var-B]|C],[D|E],>) :-
!,
(A+1)mod F#>B#<=>D,
cyclic_change_signature([[var-B]|C],E,>).

cyclic_change_signature([[var-A],[var-B]|C],[D|E],=<) :-
!,
(A+1)mod F#=<B#<=>D,
cyclic_change_signature([[var-B]|C],E,=<).
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B.65 cyclic change joker

ctr_automaton(cyclic_change_joker,cyclic_change_joker).

ctr_date(
cyclic_change_joker,
[’20000128’,’20030820’,’20040530’]).

ctr_origin(
cyclic_change_joker,
’Derived from %c.’,
[cyclic_change]).

ctr_arguments(
cyclic_change_joker,
[’NCHANGE’-dvar,
’CYCLE_LENGTH’-int,
’VARIABLES’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
cyclic_change_joker,
[’NCHANGE’>=0,
’NCHANGE’<size(’VARIABLES’),
required(’VARIABLES’,var),
’CYCLE_LENGTH’>0,
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
cyclic_change_joker,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[’CTR’(

(variables1ˆvar+1)mod ’CYCLE_LENGTH’,
variables2ˆvar),

variables1ˆvar<’CYCLE_LENGTH’,
variables2ˆvar<’CYCLE_LENGTH’],

[’NARC’=’NCHANGE’]).

ctr_example(
cyclic_change_joker,
cyclic_change_joker(

2,
4,
[[var-3],
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[var-0],
[var-2],
[var-4],
[var-4],
[var-4],
[var-3],
[var-1],
[var-4]],

=\=)).

cyclic_change_joker(A,B,C,D) :-
cyclic_change_joker_signature(C,E,B,D),
automaton(

E,
F,
E,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[G+1]),arc(s,$,t)],
[G],
[0],
[A]).

cyclic_change_joker_signature([],[],A,B).

cyclic_change_joker_signature([A],[],B,C) :-
!.

cyclic_change_joker_signature([[var-A],[var-B]|C],[D|E],F,=) :-
!,
(A+1)mod F#=B#/\A#<F#/\B#<F#<=>D,
cyclic_change_joker_signature([[var-B]|C],E,F,=).

cyclic_change_joker_signature([[var-A],[var-B]|C],[D|E],F,=\=) :-
!,
(A+1)mod F#\=B#/\A#<F#/\B#<F#<=>D,
cyclic_change_joker_signature([[var-B]|C],E,F,=\=).

cyclic_change_joker_signature([[var-A],[var-B]|C],[D|E],F,<) :-
!,
(A+1)mod F#<B#/\A#<F#/\B#<F#<=>D,
cyclic_change_joker_signature([[var-B]|C],E,F,<).

cyclic_change_joker_signature([[var-A],[var-B]|C],[D|E],F,>=) :-
!,
(A+1)mod F#>=B#/\A#<F#/\B#<F#<=>D,



1071

cyclic_change_joker_signature([[var-B]|C],E,F,>=).

cyclic_change_joker_signature([[var-A],[var-B]|C],[D|E],F,>) :-
!,
(A+1)mod F#>B#/\A#<F#/\B#<F#<=>D,
cyclic_change_joker_signature([[var-B]|C],E,F,>).

cyclic_change_joker_signature([[var-A],[var-B]|C],[D|E],F,=<) :-
!,
(A+1)mod F#=<B#/\A#<F#/\B#<F#<=>D,
cyclic_change_joker_signature([[var-B]|C],E,F,=<).
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B.66 decreasing

ctr_automaton(decreasing,decreasing).

ctr_date(decreasing,[’20040814’]).

ctr_origin(decreasing,’Inspired by %c.’,[increasing]).

ctr_arguments(decreasing,[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
decreasing,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_graph(
decreasing,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[variables1ˆvar>=variables2ˆvar],
[’NARC’=size(’VARIABLES’)-1]).

ctr_example(
decreasing,
decreasing([[var-8],[var-4],[var-1],[var-1]])).

decreasing(A) :-
decreasing_signature(A,B),
automaton(

B,
C,
B,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,$,t)],
[],
[],
[]).

decreasing_signature([A],[]).

decreasing_signature([[var-A],[var-B]|C],[D|E]) :-
in(D,0..1),
A#<B#<=>D,
decreasing_signature([[var-B]|C],E).
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B.67 deepest valley

ctr_automaton(deepest_valley,deepest_valley).

ctr_date(deepest_valley,[’20040530’]).

ctr_origin(deepest_valley,’Derived from %c.’,[valley]).

ctr_arguments(
deepest_valley,
[’DEPTH’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
deepest_valley,
[’DEPTH’>=0,’VARIABLES’ˆvar>=0,required(’VARIABLES’,var)]).

ctr_example(
deepest_valley,
deepest_valley(

2,
[[var-5],
[var-3],
[var-4],
[var-8],
[var-8],
[var-2],
[var-7],
[var-1]])).

deepest_valley(A,B) :-
C=1000000,
deepest_valley_signature(B,D,E),
automaton(

E,
F-G,
D,
0..2,
[source(s),node(u),sink(t)],
[arc(s,0,s),
arc(s,1,s),
arc(s,2,u),
arc(s,$,t),
arc(u,0,s,[min(H,F)]),
arc(u,1,u),
arc(u,2,u),
arc(u,$,t)],
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[H],
[C],
[A]).

deepest_valley_signature([],[],[]).

deepest_valley_signature([A],[],[]).

deepest_valley_signature([[var-A],[var-B]|C],[D|E],[A-B|F]) :-
in(D,0..2),
A#<B#<=>D#=0,
A#=B#<=>D#=1,
A#>B#<=>D#=2,
deepest_valley_signature([[var-B]|C],E,F).
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B.68 derangement
ctr_date(derangement,[’20000128’,’20030820’,’20040530’]).

ctr_origin(derangement,’Derived from %c.’,[cycle]).

ctr_arguments(
derangement,
[’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
derangement,
[required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_graph(
derangement,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex,nodes1ˆsucc=\=nodes1ˆindex],
[’NTREE’=0]).

ctr_example(
derangement,
derangement(

[[index-1,succ-2],
[index-2,succ-1],
[index-3,succ-5],
[index-4,succ-3],
[index-5,succ-4]])).
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B.69 differ from at least k pos

ctr_automaton(
differ_from_at_least_k_pos,
differ_from_at_least_k_pos).

ctr_date(differ_from_at_least_k_pos,[’20030820’,’20040530’]).

ctr_origin(
differ_from_at_least_k_pos,
’Inspired by \\cite{Frutos97}.’,
[]).

ctr_types(
differ_from_at_least_k_pos,
[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
differ_from_at_least_k_pos,
[’K’-int,’VECTOR1’-’VECTOR’,’VECTOR2’-’VECTOR’]).

ctr_restrictions(
differ_from_at_least_k_pos,
[required(’VECTOR’,var),
’K’>=0,
’K’=<size(’VECTOR1’),
size(’VECTOR1’)=size(’VECTOR2’)]).

ctr_graph(
differ_from_at_least_k_pos,
[’VECTOR1’,’VECTOR2’],
2,
[’PRODUCT’(=)>>collection(vector1,vector2)],
[vector1ˆvar=\=vector2ˆvar],
[’NARC’>=’K’]).

ctr_example(
differ_from_at_least_k_pos,
differ_from_at_least_k_pos(

2,
[[var-2],[var-5],[var-2],[var-0]],
[[var-3],[var-6],[var-2],[var-1]])).

differ_from_at_least_k_pos(A,B,C) :-
differ_from_at_least_k_pos_signature(B,C,D),
E#>=A,
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automaton(
D,
F,
D,
0..1,
[source(s),sink(t)],
[arc(s,0,s,[G+1]),arc(s,1,s),arc(s,$,t)],
[G],
[0],
[E]).

differ_from_at_least_k_pos_signature([],[],[]).

differ_from_at_least_k_pos_signature(
[[var-A]|B],
[[var-C]|D],
[E|F]) :-

A#=C#<=>E,
differ_from_at_least_k_pos_signature(B,D,F).



1078 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.70 diffn

ctr_date(diffn,[’20000128’,’20030820’,’20040530’]).

ctr_origin(diffn,’\\cite{BeldiceanuContejean94}’,[]).

ctr_types(
diffn,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
diffn,
[’ORTHOTOPES’-collection(orth-’ORTHOTOPE’)]).

ctr_restrictions(
diffn,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
required(’ORTHOTOPES’,orth),
same_size(’ORTHOTOPES’,orth)]).

ctr_graph(
diffn,
[’ORTHOTOPES’],
1,
[’SELF’>>collection(orthotopes)],
[orth_link_ori_siz_end(orthotopesˆorth)],
[’NARC’=size(’ORTHOTOPES’)]).

ctr_graph(
diffn,
[’ORTHOTOPES’],
2,
[’CLIQUE’(=\=)>>collection(orthotopes1,orthotopes2)],
[two_orth_do_not_overlap(

orthotopes1ˆorth,
orthotopes2ˆorth)],

[=(’NARC’,
-(size(’ORTHOTOPES’)*size(’ORTHOTOPES’),
size(’ORTHOTOPES’)))]).

ctr_example(
diffn,
diffn(

[[orth-[[ori-2,siz-2,end-4],[ori-1,siz-3,end-4]]],
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[orth-[[ori-4,siz-4,end-8],[ori-3,siz-3,end-3]]],
[orth-[[ori-9,siz-2,end-11],[ori-4,siz-3,end-7]]]])).
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B.71 diffn column
ctr_date(diffn_column,[’20030820’]).

ctr_origin(
diffn_column,
’CHIP: option guillotine cut (column) of %c.’,
[diffn]).

ctr_types(
diffn_column,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
diffn_column,
[’ORTHOTOPES’-collection(orth-’ORTHOTOPE’),’N’-int]).

ctr_restrictions(
diffn_column,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
required(’ORTHOTOPES’,orth),
same_size(’ORTHOTOPES’,orth),
’N’>0,
’N’=<size(’ORTHOTOPE’),
diffn(’ORTHOTOPES’)]).

ctr_graph(
diffn_column,
[’ORTHOTOPES’],
2,
[’CLIQUE’(<)>>collection(orthotopes1,orthotopes2)],
[two_orth_column(orthotopes1ˆorth,orthotopes2ˆorth,’N’)],
[’NARC’=size(’ORTHOTOPES’)*(size(’ORTHOTOPES’)-1)/2]).

ctr_example(
diffn_column,
diffn_column(

[[orth-[[ori-1,siz-3,end-4],[ori-1,siz-1,end-2]]],
[orth-[[ori-4,siz-2,end-6],[ori-1,siz-3,end-4]]]],

1)).
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B.72 diffn include
ctr_date(diffn_include,[’20030820’]).

ctr_origin(
diffn_include,
’CHIP: option guillotine cut (include) of %c.’,
[diffn]).

ctr_types(
diffn_include,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
diffn_include,
[’ORTHOTOPES’-collection(orth-’ORTHOTOPE’),’N’-int]).

ctr_restrictions(
diffn_include,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
required(’ORTHOTOPES’,orth),
same_size(’ORTHOTOPES’,orth),
’N’>0,
’N’=<size(’ORTHOTOPE’),
diffn(’ORTHOTOPES’)]).

ctr_graph(
diffn_include,
[’ORTHOTOPES’],
2,
[’CLIQUE’(<)>>collection(orthotopes1,orthotopes2)],
[two_orth_include(orthotopes1ˆorth,orthotopes2ˆorth,’N’)],
[’NARC’=size(’ORTHOTOPES’)*(size(’ORTHOTOPES’)-1)/2]).

ctr_example(
diffn_include,
diffn_include(

[[orth-[[ori-1,siz-3,end-4],[ori-1,siz-1,end-2]]],
[orth-[[ori-1,siz-2,end-3],[ori-2,siz-3,end-5]]]],

1)).
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B.73 discrepancy
ctr_date(discrepancy,[’20050506’]).

ctr_origin(
discrepancy,
’\\cite{Focacci01} and \\cite{vanHoeve05}’,
[]).

ctr_arguments(
discrepancy,
[’VARIABLES’-collection(var-dvar,bad-sint),’K’-int]).

ctr_restrictions(
discrepancy,
[required(’VARIABLES’,var),
required(’VARIABLES’,bad),
’K’>=0,
’K’=<size(’VARIABLES’)]).

ctr_graph(
discrepancy,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[in_set(variablesˆvar,variablesˆbad)],
[’NARC’=’K’]).

ctr_example(
discrepancy,
discrepancy(

[[var-4,bad-{1,4,6}],
[var-5,bad-{0,1}],
[var-5,bad-{1,6,9}],
[var-4,bad-{1,4}],
[var-1,bad-{}]],

2)).
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B.74 disjoint
ctr_date(disjoint,[’20000315’,’20031017’,’20040530’]).

ctr_origin(disjoint,’Derived from %c.’,[alldifferent]).

ctr_arguments(
disjoint,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
disjoint,
[required(’VARIABLES1’,var),required(’VARIABLES2’,var)]).

ctr_graph(
disjoint,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NARC’=0]).

ctr_example(
disjoint,
disjoint(

[[var-1],[var-9],[var-1],[var-5]],
[[var-2],[var-7],[var-7],[var-0],[var-6],[var-8]])).
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B.75 disjoint tasks

ctr_date(disjoint_tasks,[’20030820’]).

ctr_origin(disjoint_tasks,’Derived from %c.’,[disjoint]).

ctr_arguments(
disjoint_tasks,
[’TASKS1’-collection(origin-dvar,duration-dvar,end-dvar),
’TASKS2’-collection(origin-dvar,duration-dvar,end-dvar)]).

ctr_restrictions(
disjoint_tasks,
[require_at_least(2,’TASKS1’,[origin,duration,end]),
’TASKS1’ˆduration>=0,
require_at_least(2,’TASKS2’,[origin,duration,end]),
’TASKS2’ˆduration>=0]).

ctr_graph(
disjoint_tasks,
[’TASKS1’],
1,
[’SELF’>>collection(tasks1)],
[tasks1ˆorigin+tasks1ˆduration=tasks1ˆend],
[’NARC’=size(’TASKS1’)]).

ctr_graph(
disjoint_tasks,
[’TASKS2’],
1,
[’SELF’>>collection(tasks2)],
[tasks2ˆorigin+tasks2ˆduration=tasks2ˆend],
[’NARC’=size(’TASKS2’)]).

ctr_graph(
disjoint_tasks,
[’TASKS1’,’TASKS2’],
2,
[’PRODUCT’>>collection(tasks1,tasks2)],
[tasks1ˆduration>0,
tasks2ˆduration>0,
tasks1ˆorigin<tasks2ˆend,
tasks2ˆorigin<tasks1ˆend],

[’NARC’=0]).

ctr_example(
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disjoint_tasks,
disjoint_tasks(

[[origin-6,duration-5,end-11],
[origin-8,duration-2,end-10]],

[[origin-2,duration-2,end-4],
[origin-3,duration-3,end-6],
[origin-12,duration-1,end-13]])).
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B.76 disjunctive
ctr_date(disjunctive,[’20050506’]).

ctr_origin(disjunctive,’\\cite{Carlier82}’,[]).

ctr_synonyms(disjunctive,[one_machine]).

ctr_arguments(
disjunctive,
[’TASKS’-collection(origin-dvar,duration-dvar)]).

ctr_restrictions(
disjunctive,
[required(’TASKS’,[origin,duration]),’TASKS’ˆduration>=0]).

ctr_graph(
disjunctive,
[’TASKS’],
2,
[’CLIQUE’(<)>>collection(tasks1,tasks2)],
[#\/(#\/(tasks1ˆduration=0#\/tasks2ˆduration=0,

tasks1ˆorigin+tasks1ˆduration=<tasks2ˆorigin),
tasks2ˆorigin+tasks2ˆduration=<tasks1ˆorigin)],

[’NARC’=size(’TASKS’)*(size(’TASKS’)-1)/2]).

ctr_example(
disjunctive,
disjunctive(

[[origin-1,duration-3],
[origin-2,duration-0],
[origin-7,duration-2],
[origin-4,duration-1]])).
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B.77 distance between
ctr_date(distance_between,[’20000128’,’20030820’]).

ctr_origin(distance_between,’N.˜Beldiceanu’,[]).

ctr_arguments(
distance_between,
[’DIST’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
distance_between,
[’DIST’>=0,
’DIST’=<size(’VARIABLES1’)*size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
size(’VARIABLES1’)=size(’VARIABLES2’),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
distance_between,
[[’VARIABLES1’],[’VARIABLES2’]],
2,
[’CLIQUE’(=\=)>>collection(variables1,variables2)],
[’CTR’(variables1ˆvar,variables2ˆvar)],
[’DISTANCE’=’DIST’]).

ctr_example(
distance_between,
distance_between(

2,
[[var-3],[var-4],[var-6],[var-2],[var-4]],
[[var-2],[var-6],[var-9],[var-3],[var-6]],
<)).
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B.78 distance change

ctr_automaton(distance_change,distance_change).

ctr_date(distance_change,[’20000128’,’20030820’,’20040530’]).

ctr_origin(distance_change,’Derived from %c.’,[change]).

ctr_arguments(
distance_change,
[’DIST’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
distance_change,
[’DIST’>=0,
’DIST’<size(’VARIABLES1’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
size(’VARIABLES1’)=size(’VARIABLES2’),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
distance_change,
[[’VARIABLES1’],[’VARIABLES2’]],
2,
[’PATH’>>collection(variables1,variables2)],
[’CTR’(variables1ˆvar,variables2ˆvar)],
[’DISTANCE’=’DIST’]).

ctr_example(
distance_change,
distance_change(

1,
[[var-3],[var-3],[var-1],[var-2],[var-2]],
[[var-4],[var-4],[var-3],[var-3],[var-3]],
=\=)).

distance_change(A,B,C,D) :-
distance_change_signature(B,C,E,D),
automaton(

E,
F,
E,
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0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[G+1]),arc(s,$,t)],
[G],
[0],
[A]).

distance_change_signature([],[],[],A).

distance_change_signature([A],[B],[],C) :-
!.

distance_change_signature(
[[var-A],[var-B]|C],
[[var-D],[var-E]|F],
[G|H],
=) :-

!,
A#=B#/\D#\=E#\/A#\=B#/\D#=E#<=>G,
distance_change_signature([[var-B]|C],[[var-E]|F],H,=).

distance_change_signature(
[[var-A],[var-B]|C],
[[var-D],[var-E]|F],
[G|H],
=\=) :-

!,
A#\=B#/\D#=E#\/A#=B#/\D#\=E#<=>G,
distance_change_signature(

[[var-B]|C],
[[var-E]|F],
H,
=\=).

distance_change_signature(
[[var-A],[var-B]|C],
[[var-D],[var-E]|F],
[G|H],
<) :-

!,
A#<B#/\D#>=E#\/A#>=B#/\D#<E#<=>G,
distance_change_signature([[var-B]|C],[[var-E]|F],H,<).

distance_change_signature(
[[var-A],[var-B]|C],
[[var-D],[var-E]|F],
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[G|H],
>=) :-

!,
A#>=B#/\D#<E#\/A#<B#/\D#>=E#<=>G,
distance_change_signature([[var-B]|C],[[var-E]|F],H,>=).

distance_change_signature(
[[var-A],[var-B]|C],
[[var-D],[var-E]|F],
[G|H],
>) :-

!,
A#>B#/\D#=<E#\/A#=<B#/\D#>E#<=>G,
distance_change_signature([[var-B]|C],[[var-E]|F],H,>).

distance_change_signature(
[[var-A],[var-B]|C],
[[var-D],[var-E]|F],
[G|H],
=<) :-

!,
A#=<B#/\D#>E#\/A#>B#/\D#=<E#<=>G,
distance_change_signature([[var-B]|C],[[var-E]|F],H,=<).
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B.79 domain constraint

ctr_automaton(domain_constraint,domain_constraint).

ctr_date(domain_constraint,[’20030820’,’20040530’]).

ctr_origin(domain_constraint,’\\cite{Refalo00}’,[]).

ctr_arguments(
domain_constraint,
[’VAR’-dvar,’VALUES’-collection(var01-dvar,value-int)]).

ctr_restrictions(
domain_constraint,
[required(’VALUES’,[var01,value]),
’VALUES’ˆvar01>=0,
’VALUES’ˆvar01=<1,
distinct(’VALUES’,value)]).

ctr_derived_collections(
domain_constraint,
[col(’VALUE’-collection(var01-int,value-dvar),

[item(var01-1,value-’VAR’)])]).

ctr_graph(
domain_constraint,
[’VALUE’,’VALUES’],
2,
[’PRODUCT’>>collection(value,values)],
[valueˆvalue=valuesˆvalue#<=>valuesˆvar01=1],
[’NARC’=size(’VALUES’)]).

ctr_example(
domain_constraint,
domain_constraint(

5,
[[var01-0,value-9],
[var01-1,value-5],
[var01-0,value-2],
[var01-0,value-7]])).

domain_constraint(A,B) :-
domain_constraint_signature(B,C,A),
automaton(

C,
D,
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C,
0..1,
[source(s),sink(t)],
[arc(s,1,s),arc(s,$,t)],
[],
[],
[]).

domain_constraint_signature([],[],A).

domain_constraint_signature([[var01-A,value-B]|C],[D|E],F) :-
F#=B#<=>A#<=>D,
domain_constraint_signature(C,E,F).
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B.80 elem

ctr_automaton(elem,elem).

ctr_date(elem,[’20030820’,’20040530’]).

ctr_origin(elem,’Derived from %c.’,[element]).

ctr_usual_name(elem,element).

ctr_arguments(
elem,
[’ITEM’-collection(index-dvar,value-dvar),
’TABLE’-collection(index-int,value-dvar)]).

ctr_restrictions(
elem,
[required(’ITEM’,[index,value]),
’ITEM’ˆindex>=1,
’ITEM’ˆindex=<size(’TABLE’),
size(’ITEM’)=1,
required(’TABLE’,[index,value]),
’TABLE’ˆindex>=1,
’TABLE’ˆindex=<size(’TABLE’),
distinct(’TABLE’,index)]).

ctr_graph(
elem,
[’ITEM’,’TABLE’],
2,
[’PRODUCT’>>collection(item,table)],
[itemˆindex=tableˆindex,itemˆvalue=tableˆvalue],
[’NARC’=1]).

ctr_example(
elem,
elem(

[[index-3,value-2]],
[[index-1,value-6],
[index-2,value-9],
[index-3,value-2],
[index-4,value-9]])).

elem(A,B) :-
A=[[index-C,value-D]],
elem_signature(B,E,C,D),
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automaton(
E,
F,
E,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t)],
[],
[],
[]).

elem_signature([],[],A,B).

elem_signature([[index-A,value-B]|C],[D|E],F,G) :-
F#=A#/\G#=B#<=>D,
elem_signature(C,E,F,G).
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B.81 element

ctr_automaton(element,element_).

ctr_date(element,[’20000128’,’20030820’,’20040530’]).

ctr_origin(element,’\\cite{VanHentenryckCarillon88}’,[]).

ctr_arguments(
element,
[’INDEX’-dvar,’TABLE’-collection(value-dvar),’VALUE’-dvar]).

ctr_restrictions(
element,
[’INDEX’>=1,
’INDEX’=<size(’TABLE’),
required(’TABLE’,value)]).

ctr_derived_collections(
element,
[col(’ITEM’-collection(index-dvar,value-dvar),

[item(index-’INDEX’,value-’VALUE’)])]).

ctr_graph(
element,
[’ITEM’,’TABLE’],
2,
[’PRODUCT’>>collection(item,table)],
[itemˆindex=tableˆkey,itemˆvalue=tableˆvalue],
[’NARC’=1]).

ctr_example(
element,
element(3,[[value-6],[value-9],[value-2],[value-9]],2)).

element_(A,B,C) :-
length(B,D),
in(A,1..D),
element_signature(B,A,C,1,E),
automaton(

E,
F,
E,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t)],
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[],
[],
[]).

element_signature([],A,B,C,[]).

element_signature([[value-A]|B],C,D,E,[F|G]) :-
C#=E#/\D#=A#<=>F,
H is E+1,
element_signature(B,C,D,H,G).
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B.82 element greatereq

ctr_automaton(element_greatereq,element_greatereq).

ctr_date(element_greatereq,[’20030820’,’20040530’]).

ctr_origin(
element_greatereq,
’\\cite{OttossonThorsteinssonHooker99}’,
[]).

ctr_arguments(
element_greatereq,
[’ITEM’-collection(index-dvar,value-dvar),
’TABLE’-collection(index-int,value-int)]).

ctr_restrictions(
element_greatereq,
[required(’ITEM’,[index,value]),
’ITEM’ˆindex>=1,
’ITEM’ˆindex=<size(’TABLE’),
size(’ITEM’)=1,
required(’TABLE’,[index,value]),
’TABLE’ˆindex>=1,
’TABLE’ˆindex=<size(’TABLE’),
distinct(’TABLE’,index)]).

ctr_graph(
element_greatereq,
[’ITEM’,’TABLE’],
2,
[’PRODUCT’>>collection(item,table)],
[itemˆindex=tableˆindex,itemˆvalue>=tableˆvalue],
[’NARC’=1]).

ctr_example(
element_greatereq,
element_greatereq(

[[index-1,value-8]],
[[index-1,value-6],
[index-2,value-9],
[index-3,value-2],
[index-4,value-9]])).

element_greatereq(A,B) :-
A=[[index-C,value-D]],
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element_greatereq_signature(B,E,C,D),
automaton(

E,
F,
E,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t)],
[],
[],
[]).

element_greatereq_signature([],[],A,B).

element_greatereq_signature([[index-A,value-B]|C],[D|E],F,G) :-
F#=A#/\G#>=B#<=>D,
element_greatereq_signature(C,E,F,G).
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B.83 element lesseq

ctr_automaton(element_lesseq,element_lesseq).

ctr_date(element_lesseq,[’20030820’,’20040530’]).

ctr_origin(
element_lesseq,
’\\cite{OttossonThorsteinssonHooker99}’,
[]).

ctr_arguments(
element_lesseq,
[’ITEM’-collection(index-dvar,value-dvar),
’TABLE’-collection(index-int,value-int)]).

ctr_restrictions(
element_lesseq,
[required(’ITEM’,[index,value]),
’ITEM’ˆindex>=1,
’ITEM’ˆindex=<size(’TABLE’),
size(’ITEM’)=1,
required(’TABLE’,[index,value]),
’TABLE’ˆindex>=1,
’TABLE’ˆindex=<size(’TABLE’),
distinct(’TABLE’,index)]).

ctr_graph(
element_lesseq,
[’ITEM’,’TABLE’],
2,
[’PRODUCT’>>collection(item,table)],
[itemˆindex=tableˆindex,itemˆvalue=<tableˆvalue],
[’NARC’=1]).

ctr_example(
element_lesseq,
element_lesseq(

[[index-3,value-1]],
[[index-1,value-6],
[index-2,value-9],
[index-3,value-2],
[index-4,value-9]])).

element_lesseq(A,B) :-
A=[[index-C,value-D]],
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element_lesseq_signature(B,E,C,D),
automaton(

E,
F,
E,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t)],
[],
[],
[]).

element_lesseq_signature([],[],A,B).

element_lesseq_signature([[index-A,value-B]|C],[D|E],F,G) :-
F#=A#/\G#=<B#<=>D,
element_lesseq_signature(C,E,F,G).
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B.84 element matrix

ctr_automaton(element_matrix,element_matrix).

ctr_date(element_matrix,[’20031101’]).

ctr_origin(element_matrix,’CHIP’,[]).

ctr_arguments(
element_matrix,
[’MAX_I’-int,
’MAX_J’-int,
’INDEX_I’-dvar,
’INDEX_J’-dvar,
’MATRIX’-collection(i-int,j-int,v-int),
’VALUE’-dvar]).

ctr_restrictions(
element_matrix,
[’MAX_I’>=1,
’MAX_J’>=1,
’INDEX_I’>=1,
’INDEX_I’=<’MAX_I’,
’INDEX_J’>=1,
’INDEX_J’=<’MAX_J’,
required(’MATRIX’,[i,j,v]),
increasing_seq(’MATRIX’,[i,j]),
’MATRIX’ˆi>=1,
’MATRIX’ˆi=<’MAX_I’,
’MATRIX’ˆj>=1,
’MATRIX’ˆj=<’MAX_J’,
size(’MATRIX’)=’MAX_I’*’MAX_J’]).

ctr_derived_collections(
element_matrix,
[col(-(’ITEM’,

collection(index_i-dvar,index_j-dvar,value-dvar)),
[item(

index_i-’INDEX_I’,
index_j-’INDEX_J’,
value-’VALUE’)])]).

ctr_graph(
element_matrix,
[’ITEM’,’MATRIX’],
2,
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[’PRODUCT’>>collection(item,matrix)],
[itemˆindex_i=matrixˆi,
itemˆindex_j=matrixˆj,
itemˆvalue=matrixˆv],

[’NARC’=1]).

ctr_example(
element_matrix,
element_matrix(

4,
3,
1,
3,
[[i-1,j-1,v-4],
[i-1,j-2,v-1],
[i-1,j-3,v-7],
[i-2,j-1,v-1],
[i-2,j-2,v-0],
[i-2,j-3,v-8],
[i-3,j-1,v-3],
[i-3,j-2,v-2],
[i-3,j-3,v-1],
[i-4,j-1,v-0],
[i-4,j-2,v-0],
[i-4,j-3,v-6]],

7)).

element_matrix(A,B,C,D,E,F) :-
in(C,1..A),
in(D,1..B),
element_matrix_signature(E,C,D,F,G),
automaton(

G,
H,
G,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t)],
[],
[],
[]).

element_matrix_signature([],A,B,C,[]).

element_matrix_signature([[i-A,j-B,v-C]|D],E,F,G,[H|I]) :-
E#=A#/\F#=B#/\G#=C#<=>H,
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element_matrix_signature(D,E,F,G,I).
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B.85 element sparse

ctr_automaton(element_sparse,element_sparse).

ctr_date(element_sparse,[’20030820’,’20040530’]).

ctr_origin(element_sparse,’CHIP’,[]).

ctr_usual_name(element_sparse,element).

ctr_arguments(
element_sparse,
[’ITEM’-collection(index-dvar,value-dvar),
’TABLE’-collection(index-int,value-int),
’DEFAULT’-int]).

ctr_restrictions(
element_sparse,
[required(’ITEM’,[index,value]),
’ITEM’ˆindex>=1,
size(’ITEM’)=1,
required(’TABLE’,[index,value]),
’TABLE’ˆindex>=1,
distinct(’TABLE’,index)]).

ctr_derived_collections(
element_sparse,
[col(’DEF’-collection(index-int,value-int),

[item(index-0,value-’DEFAULT’)]),
col(’TABLE_DEF’-collection(index-dvar,value-dvar),

[item(index-’TABLE’ˆindex,value-’TABLE’ˆvalue),
item(index-’DEF’ˆindex,value-’DEF’ˆvalue)])]).

ctr_graph(
element_sparse,
[’ITEM’,’TABLE_DEF’],
2,
[’PRODUCT’>>collection(item,table_def)],
[itemˆvalue=table_defˆvalue,
itemˆindex=table_defˆindex#\/table_defˆindex=0],

[’NARC’>=1]).

ctr_example(
element_sparse,
element_sparse(

[[index-2,value-5]],
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[[index-1,value-6],
[index-2,value-5],
[index-4,value-2],
[index-8,value-9]],

5)).

element_sparse(A,B,C) :-
A=[[index-D,value-E]],
element_sparse_signature(B,F,D,E,C),
automaton(

F,
G,
F,
0..2,
[source(s),node(d),sink(t)],
[arc(s,0,s),
arc(s,1,t),
arc(s,2,d),
arc(d,1,t),
arc(d,2,d),
arc(d,$,t)],

[],
[],
[]).

element_sparse_signature([],[],A,B,C).

element_sparse_signature([[index-A,value-B]|C],[D|E],F,G,H) :-
in(D,0..2),
F#\=A#/\G#\=H#<=>D#=0,
F#=A#/\G#=B#<=>D#=1,
F#\=A#/\G#=H#<=>D#=2,
element_sparse_signature(C,E,F,G,H).
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B.86 elements
ctr_date(elements,[’20030820’]).

ctr_origin(elements,’Derived from %c.’,[element]).

ctr_arguments(
elements,
[’ITEMS’-collection(index-dvar,value-dvar),
’TABLE’-collection(index-int,value-dvar)]).

ctr_restrictions(
elements,
[required(’ITEMS’,[index,value]),
’ITEMS’ˆindex>=1,
’ITEMS’ˆindex=<size(’TABLE’),
required(’TABLE’,[index,value]),
’TABLE’ˆindex>=1,
’TABLE’ˆindex=<size(’TABLE’),
distinct(’TABLE’,index)]).

ctr_graph(
elements,
[’ITEMS’,’TABLE’],
2,
[’PRODUCT’>>collection(items,table)],
[itemsˆindex=tableˆindex,itemsˆvalue=tableˆvalue],
[’NARC’=size(’ITEMS’)]).

ctr_example(
elements,
elements(

[[index-4,value-9],[index-1,value-6]],
[[index-1,value-6],
[index-2,value-9],
[index-3,value-2],
[index-4,value-9]])).
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B.87 elements alldifferent

ctr_date(elements_alldifferent,[’20030820’]).

ctr_origin(
elements_alldifferent,
’Derived from %c and %c.’,
[elements,alldifferent]).

ctr_synonyms(
elements_alldifferent,
[elements_alldiff,elements_alldistinct]).

ctr_arguments(
elements_alldifferent,
[’ITEMS’-collection(index-dvar,value-dvar),
’TABLE’-collection(index-int,value-dvar)]).

ctr_restrictions(
elements_alldifferent,
[required(’ITEMS’,[index,value]),
’ITEMS’ˆindex>=1,
’ITEMS’ˆindex=<size(’TABLE’),
size(’ITEMS’)=size(’TABLE’),
required(’TABLE’,[index,value]),
’TABLE’ˆindex>=1,
’TABLE’ˆindex=<size(’TABLE’),
distinct(’TABLE’,index)]).

ctr_graph(
elements_alldifferent,
[’ITEMS’,’TABLE’],
2,
[’PRODUCT’>>collection(items,table)],
[itemsˆindex=tableˆindex,itemsˆvalue=tableˆvalue],
[’NVERTEX’=size(’ITEMS’)+size(’TABLE’)]).

ctr_example(
elements_alldifferent,
elements_alldifferent(

[[index-2,value-9],
[index-1,value-6],
[index-4,value-9],
[index-3,value-2]],

[[index-1,value-6],
[index-2,value-9],
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[index-3,value-2],
[index-4,value-9]])).
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B.88 elements sparse

ctr_date(elements_sparse,[’20030820’]).

ctr_origin(elements_sparse,’Derived from %c.’,[element_sparse]).

ctr_arguments(
elements_sparse,
[’ITEMS’-collection(index-dvar,value-dvar),
’TABLE’-collection(index-int,value-int),
’DEFAULT’-int]).

ctr_restrictions(
elements_sparse,
[required(’ITEMS’,[index,value]),
’ITEMS’ˆindex>=1,
required(’TABLE’,[index,value]),
’TABLE’ˆindex>=1,
distinct(’TABLE’,index)]).

ctr_derived_collections(
elements_sparse,
[col(’DEF’-collection(index-int,value-int),

[item(index-0,value-’DEFAULT’)]),
col(’TABLE_DEF’-collection(index-dvar,value-dvar),

[item(index-’TABLE’ˆindex,value-’TABLE’ˆindex),
item(index-’DEF’ˆindex,value-’DEF’ˆvalue)])]).

ctr_graph(
elements_sparse,
[’ITEMS’,’TABLE_DEF’],
2,
[’PRODUCT’>>collection(items,table_def)],
[itemsˆvalue=table_defˆvalue,
itemsˆindex=table_defˆindex#\/table_defˆindex=0],

[’NSOURCE’=size(’ITEMS’)]).

ctr_example(
elements_sparse,
elements_sparse(

[[index-8,value-9],
[index-3,value-5],
[index-2,value-5]],

[[index-1,value-6],
[index-2,value-5],
[index-4,value-2],
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[index-8,value-9]],
5)).



1111

B.89 eq set
ctr_predefined(eq_set).

ctr_date(eq_set,[’20030820’]).

ctr_origin(
eq_set,
’Used for defining %c.’,
[alldifferent_between_sets]).

ctr_arguments(eq_set,[’SET1’-svar,’SET2’-svar]).

ctr_example(eq_set,eq_set({3,5},{3,5})).
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B.90 exactly

ctr_automaton(exactly,exactly).

ctr_date(exactly,[’20040807’]).

ctr_origin(exactly,’Derived from %c and %c.’,[atleast,atmost]).

ctr_arguments(
exactly,
[’N’-int,’VARIABLES’-collection(var-dvar),’VALUE’-int]).

ctr_restrictions(
exactly,
[’N’>=0,’N’=<size(’VARIABLES’),required(’VARIABLES’,var)]).

ctr_graph(
exactly,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[variablesˆvar=’VALUE’],
[’NARC’=’N’]).

ctr_example(
exactly,
exactly(2,[[var-4],[var-2],[var-4],[var-5]],4)).

exactly(A,B,C) :-
exactly_signature(B,D,C),
automaton(

D,
E,
D,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[F+1]),arc(s,$,t)],
[F],
[0],
[A]).

exactly_signature([],[],A).

exactly_signature([[var-A]|B],[C|D],E) :-
A#=E#<=>C,
exactly_signature(B,D,E).
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B.91 global cardinality
ctr_date(global_cardinality,[’20030820’,’20040530’]).

ctr_origin(global_cardinality,’CHARME’,[]).

ctr_synonyms(
global_cardinality,
[distribute,distribution,gcc,card_var_gcc,egcc]).

ctr_arguments(
global_cardinality,
[’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int,noccurrence-dvar)]).

ctr_restrictions(
global_cardinality,
[required(’VARIABLES’,var),
required(’VALUES’,[val,noccurrence]),
distinct(’VALUES’,val),
’VALUES’ˆnoccurrence>=0,
’VALUES’ˆnoccurrence=<size(’VARIABLES’)]).

ctr_graph(
global_cardinality,
[’VARIABLES’],
1,
foreach(’VALUES’,[’SELF’>>collection(variables)]),
[variablesˆvar=’VALUES’ˆval],
[’NVERTEX’=’VALUES’ˆnoccurrence]).

ctr_example(
global_cardinality,
global_cardinality(

[[var-3],[var-3],[var-8],[var-6]],
[[val-3,noccurrence-2],
[val-5,noccurrence-0],
[val-6,noccurrence-1]])).
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B.92 global cardinality low up
ctr_date(global_cardinality_low_up,[’20031008’,’20040530’]).

ctr_origin(
global_cardinality_low_up,
’Used for defining %c.’,
[sliding_distribution]).

ctr_arguments(
global_cardinality_low_up,
[’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int,omin-int,omax-int)]).

ctr_restrictions(
global_cardinality_low_up,
[required(’VARIABLES’,var),
size(’VALUES’)>0,
required(’VALUES’,[val,omin,omax]),
distinct(’VALUES’,val),
’VALUES’ˆomin>=0,
’VALUES’ˆomax=<size(’VARIABLES’),
’VALUES’ˆomin=<’VALUES’ˆomax]).

ctr_graph(
global_cardinality_low_up,
[’VARIABLES’],
1,
foreach(’VALUES’,[’SELF’>>collection(variables)]),
[variablesˆvar=’VALUES’ˆval],
[’NVERTEX’>=’VALUES’ˆomin,’NVERTEX’=<’VALUES’ˆomax]).

ctr_example(
global_cardinality_low_up,
global_cardinality_low_up(

[[var-3],[var-3],[var-8],[var-6]],
[[val-3,omin-2,omax-3],
[val-5,omin-0,omax-1],
[val-6,omin-1,omax-2]])).
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B.93 global cardinality with costs

ctr_date(global_cardinality_with_costs,[’20030820’,’20040530’]).

ctr_origin(global_cardinality_with_costs,’\\cite{Regin99a}’,[]).

ctr_synonyms(global_cardinality_with_costs,[gccc,cost_gcc]).

ctr_arguments(
global_cardinality_with_costs,
[’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int,noccurrence-dvar),
’MATRIX’-collection(i-int,j-int,c-int),
’COST’-dvar]).

ctr_restrictions(
global_cardinality_with_costs,
[required(’VARIABLES’,var),
required(’VALUES’,[val,noccurrence]),
distinct(’VALUES’,val),
’VALUES’ˆnoccurrence>=0,
’VALUES’ˆnoccurrence=<size(’VARIABLES’),
required(’MATRIX’,[i,j,c]),
increasing_seq(’MATRIX’,[i,j]),
’MATRIX’ˆi>=1,
’MATRIX’ˆi=<size(’VARIABLES’),
’MATRIX’ˆj>=1,
’MATRIX’ˆj=<size(’VALUES’),
size(’MATRIX’)=size(’VARIABLES’)*size(’VALUES’)]).

ctr_graph(
global_cardinality_with_costs,
[’VARIABLES’],
1,
foreach(’VALUES’,[’SELF’>>collection(variables)]),
[variablesˆvar=’VALUES’ˆval],
[’NVERTEX’=’VALUES’ˆnoccurrence]).

ctr_graph(
global_cardinality_with_costs,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=valuesˆval],
[=(’SUM_WEIGHT_ARC’(

ˆ(@(’MATRIX’,
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+((variablesˆkey-1)*size(’VALUES’),
valuesˆkey)),

c)),
’COST’)]).

ctr_example(
global_cardinality_with_costs,
global_cardinality_with_costs(

[[var-3],[var-3],[var-3],[var-6]],
[[val-3,noccurrence-3],
[val-5,noccurrence-0],
[val-6,noccurrence-1]],

[[i-1,j-1,c-4],
[i-1,j-2,c-1],
[i-1,j-3,c-7],
[i-2,j-1,c-1],
[i-2,j-2,c-0],
[i-2,j-3,c-8],
[i-3,j-1,c-3],
[i-3,j-2,c-2],
[i-3,j-3,c-1],
[i-4,j-1,c-0],
[i-4,j-2,c-0],
[i-4,j-3,c-6]],

14)).
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B.94 global contiguity

ctr_automaton(global_contiguity,global_contiguity).

ctr_date(global_contiguity,[’20030820’,’20040530’]).

ctr_origin(global_contiguity,’\\cite{Maher02}’,[]).

ctr_arguments(
global_contiguity,
[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
global_contiguity,
[required(’VARIABLES’,var),
’VARIABLES’ˆvar>=0,
’VARIABLES’ˆvar=<1]).

ctr_graph(
global_contiguity,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2),
’LOOP’>>collection(variables1,variables2)],

[variables1ˆvar=variables2ˆvar,variables1ˆvar=1],
[’NCC’=<1]).

ctr_example(
global_contiguity,
global_contiguity([[var-0],[var-1],[var-1],[var-0]])).

global_contiguity(A) :-
col_to_list(A,B),
automaton(

B,
C,
B,
0..1,
[source(s),node(n),node(z),sink(t)],
[arc(s,0,s),
arc(s,1,n),
arc(s,$,t),
arc(n,0,z),
arc(n,1,n),
arc(n,$,t),
arc(z,0,z),
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arc(z,$,t)],
[],
[],
[]).
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B.95 golomb
ctr_date(golomb,[’20000128’,’20030820’,’20040530’]).

ctr_origin(golomb,’Inspired by \\cite{Golomb72}.’,[]).

ctr_arguments(golomb,[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
golomb,
[required(’VARIABLES’,var),’VARIABLES’ˆvar>=0]).

ctr_derived_collections(
golomb,
[col(’PAIRS’-collection(x-dvar,y-dvar),

[> -item(x-’VARIABLES’ˆvar,y-’VARIABLES’ˆvar)])]).

ctr_graph(
golomb,
[’PAIRS’],
2,
[’CLIQUE’>>collection(pairs1,pairs2)],
[pairs1ˆy-pairs1ˆx=pairs2ˆy-pairs2ˆx],
[’MAX_NSCC’=<1]).

ctr_example(golomb,golomb([[var-0],[var-1],[var-4],[var-6]])).
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B.96 graph crossing

ctr_date(graph_crossing,[’20000128’,’20030820’,’20040530’]).

ctr_origin(graph_crossing,’N.˜Beldiceanu’,[]).

ctr_arguments(
graph_crossing,
[’NCROSS’-dvar,’NODES’-collection(succ-dvar,x-int,y-int)]).

ctr_restrictions(
graph_crossing,
[’NCROSS’>=0,
required(’NODES’,[succ,x,y]),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_graph(
graph_crossing,
[’NODES’],
2,
[’CLIQUE’(<)>>collection(n1,n2)],
[>=(max(n1ˆx,’NODES’@(n1ˆsucc)ˆx),

min(n2ˆx,’NODES’@(n2ˆsucc)ˆx)),
>=(max(n2ˆx,’NODES’@(n2ˆsucc)ˆx),

min(n1ˆx,’NODES’@(n1ˆsucc)ˆx)),
>=(max(n1ˆy,’NODES’@(n1ˆsucc)ˆy),

min(n2ˆy,’NODES’@(n2ˆsucc)ˆy)),
>=(max(n2ˆy,’NODES’@(n2ˆsucc)ˆy),

min(n1ˆy,’NODES’@(n1ˆsucc)ˆy)),
=\=(-(*(n2ˆx-’NODES’@(n1ˆsucc)ˆx,

’NODES’@(n1ˆsucc)ˆy-n1ˆy),
*(’NODES’@(n1ˆsucc)ˆx-n1ˆx,
n2ˆy-’NODES’@(n1ˆsucc)ˆy)),

0),
=\=(-(*(’NODES’@(n2ˆsucc)ˆx-’NODES’@(n1ˆsucc)ˆx,

n2ˆy-n1ˆy),
*(n2ˆx-n1ˆx,
’NODES’@(n2ˆsucc)ˆy-’NODES’@(n1ˆsucc)ˆy)),

0),
=\=(sign(

-(*(n2ˆx-’NODES’@(n1ˆsucc)ˆx,
’NODES’@(n1ˆsucc)ˆy-n1ˆy),

*(’NODES’@(n1ˆsucc)ˆx-n1ˆx,
n2ˆy-’NODES’@(n1ˆsucc)ˆy))),

sign(
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-(*(’NODES’@(n2ˆsucc)ˆx-’NODES’@(n1ˆsucc)ˆx,
n2ˆy-n1ˆy),

*(n2ˆx-n1ˆx,
’NODES’@(n2ˆsucc)ˆy-’NODES’@(n1ˆsucc)ˆy))))],

[’NARC’=’NCROSS’]).

ctr_example(
graph_crossing,
graph_crossing(

2,
[[succ-1,x-4,y-7],
[succ-1,x-2,y-5],
[succ-1,x-7,y-6],
[succ-2,x-1,y-2],
[succ-3,x-2,y-2],
[succ-2,x-5,y-3],
[succ-3,x-8,y-2],
[succ-9,x-6,y-2],
[succ-10,x-10,y-6],
[succ-8,x-10,y-1]])).
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B.97 group

ctr_automaton(group,group).

ctr_date(group,[’20000128’,’20030820’,’20040530’]).

ctr_origin(group,’CHIP’,[]).

ctr_arguments(
group,
[’NGROUP’-dvar,
’MIN_SIZE’-dvar,
’MAX_SIZE’-dvar,
’MIN_DIST’-dvar,
’MAX_DIST’-dvar,
’NVAL’-dvar,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_restrictions(
group,
[’NGROUP’>=0,
’MIN_SIZE’>=0,
’MAX_SIZE’>=’MIN_SIZE’,
’MIN_DIST’>=0,
’MAX_DIST’>=’MIN_DIST’,
’NVAL’>=0,
required(’VARIABLES’,var),
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_graph(
group,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2),
’LOOP’>>collection(variables1,variables2)],

[in(variables1ˆvar,’VALUES’),in(variables2ˆvar,’VALUES’)],
[’NCC’=’NGROUP’,
’MIN_NCC’=’MIN_SIZE’,
’MAX_NCC’=’MAX_SIZE’,
’NVERTEX’=’NVAL’]).

ctr_graph(
group,
[’VARIABLES’],
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2,
[’PATH’>>collection(variables1,variables2),
’LOOP’>>collection(variables1,variables2)],

[not_in(variables1ˆvar,’VALUES’),
not_in(variables2ˆvar,’VALUES’)],

[’MIN_NCC’=’MIN_DIST’,’MAX_NCC’=’MAX_DIST’]).

ctr_example(
group,
group(

2,
1,
2,
2,
4,
3,
[[var-2],
[var-8],
[var-1],
[var-7],
[var-4],
[var-5],
[var-1],
[var-1],
[var-1]],

[[val-0],[val-2],[val-4],[val-6],[val-8]])).

group(A,B,C,D,E,F,G,H) :-
group_ngroup(A,G,H),
group_min_size(B,G,H),
group_max_size(C,G,H),
group_min_dist(D,G,H),
group_max_dist(E,G,H),
group_nval(F,G,H).

group_ngroup(A,B,C) :-
col_to_list(C,D),
list_to_fdset(D,E),
group_signature_in(B,F,E),
automaton(

F,
G,
F,
0..1,
[source(s),node(i),sink(t)],
[arc(s,0,s),
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arc(s,1,i,[H+1]),
arc(s,$,t),
arc(i,1,i),
arc(i,0,s),
arc(i,$,t)],

[H],
[0],
[A]).

group_min_size(A,B,C) :-
length(B,D),
col_to_list(C,E),
list_to_fdset(E,F),
group_signature_in(B,G,F),
automaton(

G,
H,
G,
0..1,
[source(s),node(j),node(k),sink(t)],
[arc(s,0,s),
arc(s,1,j,[D,I]),
arc(s,$,t),
arc(j,1,j,[J,I+1]),
arc(j,0,k,[min(J,I),I]),
arc(j,$,t,[min(J,I),I]),
arc(k,0,k),
arc(k,1,j,[J,1]),
arc(k,$,t)],

[J,I],
[0,1],
[A,K]).

group_max_size(A,B,C) :-
col_to_list(C,D),
list_to_fdset(D,E),
group_signature_in(B,F,E),
automaton(

F,
G,
F,
0..1,
[source(s),sink(t)],
[arc(s,1,s,[H,I+1]),
arc(s,0,s,[max(H,I),0]),
arc(s,$,t,[max(H,I),I])],
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[H,I],
[0,0],
[A,J]).

group_min_dist(A,B,C) :-
length(B,D),
col_to_list(C,E),
list_to_fdset(E,F),
group_signature_not_in(B,G,F),
automaton(

G,
H,
G,
0..1,
[source(s),node(j),node(k),sink(t)],
[arc(s,0,s),
arc(s,1,j,[D,I]),
arc(s,$,t),
arc(j,1,j,[J,I+1]),
arc(j,0,k,[min(J,I),I]),
arc(j,$,t,[min(J,I),I]),
arc(k,0,k),
arc(k,1,j,[J,1]),
arc(k,$,t)],
[J,I],
[0,1],
[A,K]).

group_max_dist(A,B,C) :-
col_to_list(C,D),
list_to_fdset(D,E),
group_signature_not_in(B,F,E),
automaton(

F,
G,
F,
0..1,
[source(s),sink(t)],
[arc(s,1,s,[H,I+1]),
arc(s,0,s,[max(H,I),0]),
arc(s,$,t,[max(H,I),I])],
[H,I],
[0,0],
[A,J]).

group_nval(A,B,C) :-



1127

col_to_list(C,D),
list_to_fdset(D,E),
group_signature_in(B,F,E),
automaton(

F,
G,
F,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[H+1]),arc(s,$,t)],
[H],
[0],
[A]).

group_signature_in([],[],A).

group_signature_in([[var-A]|B],[C|D],E) :-
in_set(A,E)#<=>C,
group_signature_in(B,D,E).

group_signature_not_in([],[],A).

group_signature_not_in([[var-A]|B],[C|D],E) :-
in_set(A,E)#<=> #\C,
group_signature_not_in(B,D,E).
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B.98 group skip isolated item

ctr_automaton(
group_skip_isolated_item,
group_skip_isolated_item).

ctr_date(
group_skip_isolated_item,
[’20000128’,’20030820’,’20040530’]).

ctr_origin(group_skip_isolated_item,’Derived from %c.’,[group]).

ctr_arguments(
group_skip_isolated_item,
[’NGROUP’-dvar,
’MIN_SIZE’-dvar,
’MAX_SIZE’-dvar,
’NVAL’-dvar,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_restrictions(
group_skip_isolated_item,
[’NGROUP’>=0,
’MIN_SIZE’>=0,
’MAX_SIZE’>=’MIN_SIZE’,
’NVAL’>=0,
required(’VARIABLES’,var),
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_graph(
group_skip_isolated_item,
[’VARIABLES’],
2,
[’CHAIN’>>collection(variables1,variables2)],
[in(variables1ˆvar,’VALUES’),in(variables2ˆvar,’VALUES’)],
[’NSCC’=’NGROUP’,
’MIN_NSCC’=’MIN_SIZE’,
’MAX_NSCC’=’MAX_SIZE’,
’NVERTEX’=’NVAL’]).

ctr_example(
group_skip_isolated_item,
group_skip_isolated_item(

1,
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2,
2,
3,
[[var-2],
[var-8],
[var-1],
[var-7],
[var-4],
[var-5],
[var-1],
[var-1],
[var-1]],

[[val-0],[val-2],[val-4],[val-6],[val-8]])).

group_skip_isolated_item(A,B,C,D,E,F) :-
group_skip_isolated_item_ngroup(A,E,F),
group_skip_isolated_item_min_size(B,E,F),
group_skip_isolated_item_max_size(C,E,F),
group_skip_isolated_item_nval(D,E,F).

group_skip_isolated_item_ngroup(A,B,C) :-
col_to_list(C,D),
list_to_fdset(D,E),
group_skip_isolated_item_signature(B,F,E),
automaton(

F,
G,
F,
0..1,
[source(s),node(i),node(j),sink(t)],
[arc(s,0,s),
arc(s,1,i),
arc(s,$,t),
arc(i,0,s),
arc(i,1,j,[H+1]),
arc(i,$,t),
arc(j,1,j),
arc(j,0,s),
arc(j,$,t)],

[H],
[0],
[A]).

group_skip_isolated_item_min_size(A,B,C) :-
length(B,D),
col_to_list(C,E),
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list_to_fdset(E,F),
group_skip_isolated_item_signature(B,G,F),
automaton(

G,
H,
G,
0..1,
[source(s),
node(j),
node(k),
node(l),
node(m),
sink(t)],
[arc(s,0,s),
arc(s,1,j),
arc(s,$,t),
arc(j,0,s),
arc(j,1,k,[D,I]),
arc(j,$,t),
arc(k,1,k,[J,I+1]),
arc(k,0,l,[min(J,I),I]),
arc(k,$,t,[min(J,I),I]),
arc(l,0,l),
arc(l,1,m),
arc(l,$,t),
arc(m,0,l),
arc(m,1,k,[J,2]),
arc(m,$,t)],
[J,I],
[0,2],
[A,K]).

group_skip_isolated_item_max_size(A,B,C) :-
col_to_list(C,D),
list_to_fdset(D,E),
group_skip_isolated_item_signature(B,F,E),
automaton(

F,
G,
F,
0..1,
[source(s),node(i),sink(t)],
[arc(s,0,s),
arc(s,1,i,[H,1]),
arc(s,$,t),
arc(i,0,s,[max(H,I),I]),
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arc(i,1,i,[H,I+1]),
arc(i,$,t,[max(H,I),I])],

[H,I],
[0,0],
[A,J]).

group_skip_isolated_item_nval(A,B,C) :-
col_to_list(C,D),
list_to_fdset(D,E),
group_skip_isolated_item_signature(B,F,E),
automaton(

F,
G,
F,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[H+1]),arc(s,$,t)],
[H],
[0],
[A]).

group_skip_isolated_item_signature([],[],A).

group_skip_isolated_item_signature([[var-A]|B],[C|D],E) :-
in_set(A,E)#<=>C,
group_skip_isolated_item_signature(B,D,E).
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B.99 heighest peak

ctr_automaton(heighest_peak,heighest_peak).

ctr_date(heighest_peak,[’20040530’]).

ctr_origin(heighest_peak,’Derived from %c.’,[peak]).

ctr_arguments(
heighest_peak,
[’HEIGHT’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
heighest_peak,
[’HEIGHT’>=0,’VARIABLES’ˆvar>=0,required(’VARIABLES’,var)]).

ctr_example(
heighest_peak,
heighest_peak(

8,
[[var-1],
[var-1],
[var-4],
[var-8],
[var-6],
[var-2],
[var-7],
[var-1]])).

heighest_peak(A,B) :-
heighest_peak_signature(B,C,D),
automaton(

D,
E-F,
C,
0..2,
[source(s),node(u),sink(t)],
[arc(s,0,s),
arc(s,1,s),
arc(s,2,u),
arc(s,$,t),
arc(u,0,s,[max(G,E)]),
arc(u,1,u),
arc(u,2,u),
arc(u,$,t)],
[G],
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[0],
[A]).

heighest_peak_signature([],[],[]).

heighest_peak_signature([A],[],[]).

heighest_peak_signature([[var-A],[var-B]|C],[D|E],[A-B|F]) :-
in(D,0..2),
A#>B#<=>D#=0,
A#=B#<=>D#=1,
A#<B#<=>D#=2,
heighest_peak_signature([[var-B]|C],E,F).
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B.100 in

ctr_automaton(in,in_).

ctr_date(in,[’20030820’,’20040530’]).

ctr_origin(in,’Domain definition.’,[]).

ctr_arguments(in,[’VAR’-dvar,’VALUES’-collection(val-int)]).

ctr_restrictions(
in,
[required(’VALUES’,val),distinct(’VALUES’,val)]).

ctr_derived_collections(
in,
[col(’VARIABLES’-collection(var-dvar),[item(var-’VAR’)])]).

ctr_graph(
in,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=valuesˆval],
[’NARC’=1]).

ctr_example(in,in(3,[[val-1],[val-3]])).

in_(A,B) :-
in_signature(B,C,A),
automaton(

C,
D,
C,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t)],
[],
[],
[]).

in_signature([],[],A).

in_signature([[val-A]|B],[C|D],E) :-
E#=A#<=>C,
in_signature(B,D,E).
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B.101 in relation

ctr_date(in_relation,[’20030820’,’20040530’]).

ctr_origin(
in_relation,
’Constraint explicitely defined by tuples of values.’,
[]).

ctr_synonyms(in_relation,[extension]).

ctr_types(
in_relation,
[’TUPLE_OF_VARS’-collection(var-dvar),
’TUPLE_OF_VALS’-collection(val-int)]).

ctr_arguments(
in_relation,
[’VARIABLES’-’TUPLE_OF_VARS’,
’TUPLES_OF_VALS’-collection(tuple-’TUPLE_OF_VALS’)]).

ctr_restrictions(
in_relation,
[required(’TUPLE_OF_VARS’,var),
required(’TUPLE_OF_VALS’,val),
required(’TUPLES_OF_VALS’,tuple),
min_size(’TUPLES_OF_VALS’,tuple)=size(’VARIABLES’),
max_size(’TUPLES_OF_VALS’,tuple)=size(’VARIABLES’)]).

ctr_derived_collections(
in_relation,
[col(’TUPLES_OF_VARS’-collection(vec-’TUPLE_OF_VARS’),

[item(vec-’VARIABLES’)])]).

ctr_graph(
in_relation,
[’TUPLES_OF_VARS’,’TUPLES_OF_VALS’],
2,
[’PRODUCT’>>collection(tuples_of_vars,tuples_of_vals)],
[vec_eq_tuple(tuples_of_varsˆvec,tuples_of_valsˆtuple)],
[’NARC’>=1]).

ctr_example(
in_relation,
in_relation(

[[var-5],[var-3],[var-3]],
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[[tuple-[[val-5],[val-2],[val-3]]],
[tuple-[[val-5],[val-2],[val-6]]],
[tuple-[[val-5],[val-3],[val-3]]]])).
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B.102 in same partition

ctr_automaton(in_same_partition,in_same_partition).

ctr_date(in_same_partition,[’20030820’,’20040530’]).

ctr_origin(
in_same_partition,
’Used for defining several entries of this catalog.’,
[]).

ctr_types(in_same_partition,[’VALUES’-collection(val-int)]).

ctr_arguments(
in_same_partition,
[’VAR1’-dvar,
’VAR2’-dvar,
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
in_same_partition,
[required(’VALUES’,val),
distinct(’VALUES’,val),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_derived_collections(
in_same_partition,
[col(’VARIABLES’-collection(var-dvar),

[item(var-’VAR1’),item(var-’VAR2’)])]).

ctr_graph(
in_same_partition,
[’VARIABLES’,’PARTITIONS’],
2,
[’PRODUCT’>>collection(variables,partitions)],
[in(variablesˆvar,partitionsˆp)],
[’NSOURCE’=2,’NSINK’=1]).

ctr_example(
in_same_partition,
in_same_partition(

6,
2,
[[p-[[val-1],[val-3]]],
[p-[[val-4]]],
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[p-[[val-2],[val-6]]]])).

in_same_partition(A,B,C) :-
in_same_partition_signature(C,D,A,B),
automaton(

D,
E,
D,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t)],
[],
[],
[]).

in_same_partition_signature([],[],A,B).

in_same_partition_signature([[p-A]|B],[C|D],E,F) :-
col_to_list(A,G),
list_to_fdset(G,H),
in_set(E,H)#/\in_set(F,H)#<=>C,
in_same_partition_signature(B,D,E,F).
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B.103 in set
ctr_predefined(in_set).

ctr_date(in_set,[’20030820’]).

ctr_origin(
in_set,
’Used for defining constraints with set variables.’,
[]).

ctr_arguments(in_set,[’VAL’-dvar,’SET’-svar]).

ctr_example(in_set,in_set(3,{1,3})).
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B.104 increasing

ctr_automaton(increasing,increasing).

ctr_date(increasing,[’20040814’]).

ctr_origin(increasing,’KOALOG’,[]).

ctr_arguments(increasing,[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
increasing,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_graph(
increasing,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[variables1ˆvar=<variables2ˆvar],
[’NARC’=size(’VARIABLES’)-1]).

ctr_example(
increasing,
increasing([[var-1],[var-1],[var-4],[var-8]])).

increasing(A) :-
increasing_signature(A,B),
automaton(

B,
C,
B,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,$,t)],
[],
[],
[]).

increasing_signature([A],[]).

increasing_signature([[var-A],[var-B]|C],[D|E]) :-
in(D,0..1),
A#>B#<=>D,
increasing_signature([[var-B]|C],E).



1142 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.105 indexed sum
ctr_date(indexed_sum,[’20040814’]).

ctr_origin(indexed_sum,’N.˜Beldiceanu’,[]).

ctr_arguments(
indexed_sum,
[’ITEMS’-collection(index-dvar,weight-dvar),
’TABLE’-collection(index-int,sum-dvar)]).

ctr_restrictions(
indexed_sum,
[size(’ITEMS’)>0,
size(’TABLE’)>0,
required(’ITEMS’,[index,weight]),
’ITEMS’ˆindex>=0,
’ITEMS’ˆindex<size(’TABLE’),
required(’TABLE’,[index,sum]),
’TABLE’ˆindex>=0,
’TABLE’ˆindex<size(’TABLE’),
increasing_seq(’TABLE’,index)]).

ctr_graph(
indexed_sum,
[’ITEMS’,’TABLE’],
2,
foreach(’TABLE’,[’PRODUCT’>>collection(items,table)]),
[itemsˆindex=tableˆindex],
[],
[>>(’SUCC’,

[source,
-(variables,

col(’VARIABLES’-collection(var-dvar),
[item(var-’ITEMS’ˆweight)]))])],

[sum_ctr(variables,=,’TABLE’ˆsum)]).

ctr_example(
indexed_sum,
indexed_sum(

[[index-2,weight- -4],
[index-0,weight-6],
[index-2,weight-1]],

[[index-0,sum-6],[index-1,sum-0],[index-2,sum- -3]])).
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B.106 inflexion

ctr_automaton(inflexion,inflexion).

ctr_date(inflexion,[’20000128’,’20030820’,’20040530’]).

ctr_origin(inflexion,’N.˜Beldiceanu’,[]).

ctr_arguments(
inflexion,
[’N’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
inflexion,
[’N’>=1,’N’=<size(’VARIABLES’),required(’VARIABLES’,var)]).

ctr_example(
inflexion,
inflexion(

3,
[[var-1],
[var-1],
[var-4],
[var-8],
[var-8],
[var-2],
[var-7],
[var-1]])).

inflexion(A,B) :-
inflexion_signature(B,C),
automaton(

C,
D,
C,
0..2,
[source(s),node(i),node(j),sink(t)],
[arc(s,1,s),
arc(s,2,i),
arc(s,0,j),
arc(s,$,t),
arc(i,1,i),
arc(i,2,i),
arc(i,0,j,[E+1]),
arc(i,$,t),
arc(j,1,j),



1144 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

arc(j,0,j),
arc(j,2,i,[E+1]),
arc(j,$,t)],
[E],
[0],
[A]).

inflexion_signature([],[]).

inflexion_signature([A],[]).

inflexion_signature([[var-A],[var-B]|C],[D|E]) :-
in(D,0..2),
A#>B#<=>D#=0,
A#=B#<=>D#=1,
A#<B#<=>D#=2,
inflexion_signature([[var-B]|C],E).



1145

B.107 int value precede
ctr_automaton(int_value_precede,int_value_precede).

ctr_date(int_value_precede,[’20041003’]).

ctr_origin(int_value_precede,’\\cite{YatChiuLawJimmyLee04}’,[]).

ctr_arguments(
int_value_precede,
[’S’-int,’T’-int,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
int_value_precede,
[’S’=\=’T’,required(’VARIABLES’,var)]).

ctr_example(
int_value_precede,
int_value_precede(

0,
1,
[[var-4],[var-0],[var-6],[var-1],[var-0]])).

int_value_precede(A,B,C) :-
int_value_precede_signature(C,D,A,B),
automaton(

D,
E,
D,
1..3,
[source(s),sink(t)],
[arc(s,3,s),arc(s,1,t),arc(s,$,t)],
[],
[],
[]).

int_value_precede_signature([],[],A,B).

int_value_precede_signature([[var-A]|B],[C|D],E,F) :-
in(C,1..3),
A#=E#<=>C#=1,
A#=F#<=>C#=2,
A#\=E#/\A#\=F#<=>C#=3,
int_value_precede_signature(B,D,E,F).
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B.108 int value precede chain
ctr_automaton(int_value_precede_chain,int_value_precede_chain).

ctr_date(int_value_precede_chain,[’20041003’]).

ctr_origin(
int_value_precede_chain,
’\\cite{YatChiuLawJimmyLee04}’,
[]).

ctr_arguments(
int_value_precede_chain,
[’VALUES’-collection(val-int),
’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
int_value_precede_chain,
[required(’VALUES’,val),
distinct(’VALUES’,val),
required(’VARIABLES’,var)]).

ctr_example(
int_value_precede_chain,
int_value_precede_chain(

[[val-4],[val-0],[val-1]],
[[var-4],[var-0],[var-6],[var-1],[var-0]])).

int_value_precede_chain(A,B).
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B.109 interval and count

ctr_date(interval_and_count,[’20000128’,’20030820’,’20040530’]).

ctr_origin(interval_and_count,’\\cite{Cousin93}’,[]).

ctr_arguments(
interval_and_count,
[’ATMOST’-int,
’COLOURS’-collection(val-int),
’TASKS’-collection(origin-dvar,colour-dvar),
’SIZE_INTERVAL’-int]).

ctr_restrictions(
interval_and_count,
[’ATMOST’>=0,
required(’COLOURS’,val),
distinct(’COLOURS’,val),
required(’TASKS’,[origin,colour]),
’SIZE_INTERVAL’>0]).

ctr_graph(
interval_and_count,
[’TASKS’,’TASKS’],
2,
[’PRODUCT’>>collection(tasks1,tasks2)],
[=(tasks1ˆorigin/’SIZE_INTERVAL’,

tasks2ˆorigin/’SIZE_INTERVAL’)],
[],
[>>(’SUCC’,

[source,
-(variables,

col(’VARIABLES’-collection(var-dvar),
[item(var-’TASKS’ˆcolour)]))])],

[among_low_up(0,’ATMOST’,variables,’COLOURS’)]).

ctr_example(
interval_and_count,
interval_and_count(

2,
[[val-4]],
[[origin-1,colour-4],
[origin-0,colour-9],
[origin-10,colour-4],
[origin-4,colour-4]],

5)).



1148 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG



1149

B.110 interval and sum
ctr_date(interval_and_sum,[’20000128’,’20030820’]).

ctr_origin(interval_and_sum,’Derived from %c.’,[cumulative]).

ctr_arguments(
interval_and_sum,
[’SIZE_INTERVAL’-int,
’TASKS’-collection(origin-dvar,height-dvar),
’LIMIT’-int]).

ctr_restrictions(
interval_and_sum,
[’SIZE_INTERVAL’>0,
required(’TASKS’,[origin,height]),
’TASKS’ˆheight>=0,
’LIMIT’>=0]).

ctr_graph(
interval_and_sum,
[’TASKS’,’TASKS’],
2,
[’PRODUCT’>>collection(tasks1,tasks2)],
[=(tasks1ˆorigin/’SIZE_INTERVAL’,

tasks2ˆorigin/’SIZE_INTERVAL’)],
[],
[>>(’SUCC’,

[source,
-(variables,

col(’VARIABLES’-collection(var-dvar),
[item(var-’TASKS’ˆheight)]))])],

[sum_ctr(variables,=<,’LIMIT’)]).

ctr_example(
interval_and_sum,
interval_and_sum(

5,
[[origin-1,height-2],
[origin-10,height-2],
[origin-10,height-3],
[origin-4,height-1]],

5)).
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B.111 inverse
ctr_date(inverse,[’20000128’,’20030820’,’20040530’]).

ctr_origin(inverse,’CHIP’,[]).

ctr_synonyms(inverse,[assignment]).

ctr_arguments(
inverse,
[’NODES’-collection(index-int,succ-dvar,pred-dvar)]).

ctr_restrictions(
inverse,
[required(’NODES’,[index,succ,pred]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’),
’NODES’ˆpred>=1,
’NODES’ˆpred=<size(’NODES’)]).

ctr_graph(
inverse,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex,nodes2ˆpred=nodes1ˆindex],
[’NARC’=size(’NODES’)]).

ctr_example(
inverse,
inverse(

[[index-1,succ-2,pred-2],
[index-2,succ-1,pred-1],
[index-3,succ-5,pred-4],
[index-4,succ-3,pred-5],
[index-5,succ-4,pred-3]])).
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B.112 inverse set

ctr_date(inverse_set,[’20041211’]).

ctr_origin(inverse_set,’Derived from %c.’,[inverse]).

ctr_arguments(
inverse_set,
[’X’-collection(index-int,set-svar),
’Y’-collection(index-int,set-svar)]).

ctr_restrictions(
inverse_set,
[required(’X’,[index,set]),
required(’Y’,[index,set]),
increasing_seq(’X’,index),
increasing_seq(’Y’,index),
’X’ˆindex>=1,
’X’ˆindex=<size(’Y’),
’Y’ˆindex>=1,
’Y’ˆindex=<size(’X’),
’X’ˆset>=1,
’X’ˆset=<size(’Y’),
’Y’ˆset>=1,
’Y’ˆset=<size(’X’)]).

ctr_graph(
inverse_set,
[’X’,’Y’],
2,
[’PRODUCT’>>collection(x,y)],
[in_set(yˆindex,xˆset)#<=>in_set(xˆindex,yˆset)],
[’NARC’=size(’X’)*size(’Y’)]).

ctr_example(
inverse_set,
inverse_set(

[[index-1,set-{2,4}],
[index-2,set-{4}],
[index-3,set-{1}],
[index-4,set-{4}]],

[[index-1,set-{3}],
[index-2,set-{1}],
[index-3,set-{}],
[index-4,set-{1,2,4}],
[index-5,set-{}]])).
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B.113 ith pos different from 0

ctr_automaton(
ith_pos_different_from_0,
ith_pos_different_from_0).

ctr_date(ith_pos_different_from_0,[’20040811’]).

ctr_origin(
ith_pos_different_from_0,
’Used for defining the automaton of %c.’,
[min_n]).

ctr_arguments(
ith_pos_different_from_0,
[’ITH’-int,’POS’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
ith_pos_different_from_0,
[’ITH’>=1,
’ITH’=<size(’VARIABLES’),
’POS’>=’ITH’,
’POS’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_example(
ith_pos_different_from_0,
ith_pos_different_from_0(

2,
4,
[[var-3],[var-0],[var-0],[var-8],[var-6]])).

ith_pos_different_from_0(A,B,C) :-
ith_pos_different_from_0_signature(C,D),
automaton(

D,
E,
D,
0..1,
[source(s),sink(t)],
[arc(s,0,s,(F#<A->[F+1,G+1])),
arc(s,1,s,(F#<A->[F,G+1])),
arc(s,$,t)],

[F,G],
[0,0],
[A,B]).
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ith_pos_different_from_0_signature([],[]).

ith_pos_different_from_0_signature([[var-A]|B],[C|D]) :-
A#=0#<=>C,
ith_pos_different_from_0_signature(B,D).
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B.114 k cut
ctr_date(k_cut,[’20030820’,’20041230’]).

ctr_origin(k_cut,’E.˜Althaus’,[]).

ctr_arguments(
k_cut,
[’K’-int,’NODES’-collection(index-int,succ-svar)]).

ctr_restrictions(
k_cut,
[’K’>=1,
’K’=<size(’NODES’),
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index)]).

ctr_graph(
k_cut,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[#\/(nodes1ˆindex=nodes2ˆindex,

in_set(nodes2ˆindex,nodes1ˆsucc))],
[’NCC’>=’K’]).

ctr_example(
k_cut,
k_cut(

3,
[[index-1,succ-{}],
[index-2,succ-{3,5}],
[index-3,succ-{5}],
[index-4,succ-{}],
[index-5,succ-{2,3}]])).
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B.115 lex2
ctr_predefined(lex2).

ctr_date(lex2,[’20031008’,’20040530’]).

ctr_origin(
lex2,
’\\cite{FlenerFrischHnichKiziltanMiguelPearsonWalsh02}’,
[]).

ctr_synonyms(lex2,[double_lex,row_and_column_lex]).

ctr_types(lex2,[’VECTOR’-collection(var-dvar)]).

ctr_arguments(lex2,[’MATRIX’-collection(vec-’VECTOR’)]).

ctr_restrictions(
lex2,
[required(’VECTOR’,var),
required(’MATRIX’,vec),
same_size(’MATRIX’,vec)]).

ctr_example(
lex2,
lex2(

[[vec-[[var-2],[var-2],[var-3]]],
[vec-[[var-2],[var-3],[var-1]]]])).
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B.116 lex alldifferent
ctr_date(lex_alldifferent,[’20030820’,’20040530’]).

ctr_origin(lex_alldifferent,’J.˜Pearson’,[]).

ctr_synonyms(lex_alldifferent,[lex_alldiff,lex_alldistinct]).

ctr_types(lex_alldifferent,[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
lex_alldifferent,
[’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
lex_alldifferent,
[required(’VECTOR’,var),
required(’VECTORS’,vec),
same_size(’VECTORS’,vec)]).

ctr_graph(
lex_alldifferent,
[’VECTORS’],
2,
[’CLIQUE’(<)>>collection(vectors1,vectors2)],
[lex_different(vectors1ˆvec,vectors2ˆvec)],
[’NARC’=size(’VECTORS’)*(size(’VECTORS’)-1)/2]).

ctr_example(
lex_alldifferent,
lex_alldifferent(

[[vec-[[var-5],[var-2],[var-3]]],
[vec-[[var-5],[var-2],[var-6]]],
[vec-[[var-5],[var-3],[var-3]]]])).
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B.117 lex between

ctr_automaton(lex_between,lex_between).

ctr_date(lex_between,[’20030820’,’20040530’]).

ctr_origin(lex_between,’\\cite{BeldiceanuCarlsson02c}’,[]).

ctr_arguments(
lex_between,
[’LOWER_BOUND’-collection(var-int),
’VECTOR’-collection(var-dvar),
’UPPER_BOUND’-collection(var-int)]).

ctr_restrictions(
lex_between,
[required(’LOWER_BOUND’,var),
required(’VECTOR’,var),
required(’UPPER_BOUND’,var),
size(’LOWER_BOUND’)=size(’VECTOR’),
size(’UPPER_BOUND’)=size(’VECTOR’),
lex_lesseq(’LOWER_BOUND’,’VECTOR’),
lex_lesseq(’VECTOR’,’UPPER_BOUND’)]).

ctr_example(
lex_between,
lex_between(

[[var-5],[var-2],[var-3],[var-9]],
[[var-5],[var-2],[var-6],[var-2]],
[[var-5],[var-2],[var-6],[var-3]])).

lex_between(A,B,C) :-
lex_between_signature(A,B,C,D),
automaton(

D,
E,
D,
0..8,
[source(s),node(a),node(b),sink(t)],
[arc(s,4,s),
arc(s,0,t),
arc(s,$,t),
arc(s,3,a),
arc(s,1,b),
arc(a,3,a),
arc(a,4,a),
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arc(a,5,a),
arc(a,0,t),
arc(a,1,t),
arc(a,2,t),
arc(a,$,t),
arc(b,1,b),
arc(b,4,b),
arc(b,7,b),
arc(b,0,t),
arc(b,3,t),
arc(b,6,t),
arc(b,$,t)],

[],
[],
[]).

lex_between_signature([],[],[],[]).

lex_between_signature(
[[var-A]|B],
[[var-C]|D],
[[var-E]|F],
[G|H]) :-

I is A-1,
J is A+1,
K is E-1,
L is E+1,
( A<E ->

case(
M-N,
[C-G],
[node(

-1,
M,
[(inf..I)-6,
(A..A)-3,
(J..K)-0,
(E..E)-1,
(L..sup)-2]),

node(0,N,[0..0]),
node(1,N,[1..1]),
node(2,N,[2..2]),
node(3,N,[3..3]),
node(6,N,[6..6])])

; A=:=E ->
case(
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M-N,
[C-G],
[node(-1,M,[(inf..I)-6,(A..A)-4,(J..sup)-2]),
node(2,N,[2..2]),
node(4,N,[4..4]),
node(6,N,[6..6])])

; A>E ->
case(

M-N,
[C-G],
[node(

-1,
M,
[(inf..K)-6,
(E..E)-7,
(L..I)-8,
(A..A)-5,
(J..sup)-2]),

node(2,N,[2..2]),
node(5,N,[5..5]),
node(6,N,[6..6]),
node(7,N,[7..7]),
node(8,N,[8..8])])

),
lex_between_signature(B,D,F,H).
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B.118 lex chain less
ctr_date(lex_chain_less,[’20030820’,’20040530’]).

ctr_origin(lex_chain_less,’\\cite{BeldiceanuCarlsson02c}’,[]).

ctr_usual_name(lex_chain_less,lex_chain).

ctr_types(lex_chain_less,[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
lex_chain_less,
[’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
lex_chain_less,
[required(’VECTOR’,var),
required(’VECTORS’,vec),
same_size(’VECTORS’,vec)]).

ctr_graph(
lex_chain_less,
[’VECTORS’],
2,
[’PATH’>>collection(vectors1,vectors2)],
[lex_less(vectors1ˆvec,vectors2ˆvec)],
[’NARC’=size(’VECTORS’)-1]).

ctr_example(
lex_chain_less,
lex_chain_less(

[[vec-[[var-5],[var-2],[var-3],[var-9]]],
[vec-[[var-5],[var-2],[var-6],[var-2]]],
[vec-[[var-5],[var-2],[var-6],[var-3]]]])).
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B.119 lex chain lesseq
ctr_date(lex_chain_lesseq,[’20030820’,’20040530’]).

ctr_origin(lex_chain_lesseq,’\\cite{BeldiceanuCarlsson02c}’,[]).

ctr_usual_name(lex_chain_lesseq,lex_chain).

ctr_types(lex_chain_lesseq,[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
lex_chain_lesseq,
[’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
lex_chain_lesseq,
[required(’VECTOR’,var),
required(’VECTORS’,vec),
same_size(’VECTORS’,vec)]).

ctr_graph(
lex_chain_lesseq,
[’VECTORS’],
2,
[’PATH’>>collection(vectors1,vectors2)],
[lex_lesseq(vectors1ˆvec,vectors2ˆvec)],
[’NARC’=size(’VECTORS’)-1]).

ctr_example(
lex_chain_lesseq,
lex_chain_lesseq(

[[vec-[[var-5],[var-2],[var-3],[var-9]]],
[vec-[[var-5],[var-2],[var-6],[var-2]]],
[vec-[[var-5],[var-2],[var-6],[var-2]]]])).
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B.120 lex different

ctr_automaton(lex_different,lex_different).

ctr_date(lex_different,[’20030820’,’20040530’]).

ctr_origin(
lex_different,
’Used for defining %c.’,
[lex_alldifferent]).

ctr_arguments(
lex_different,
[’VECTOR1’-collection(var-dvar),
’VECTOR2’-collection(var-dvar)]).

ctr_restrictions(
lex_different,
[required(’VECTOR1’,var),
required(’VECTOR2’,var),
size(’VECTOR1’)=size(’VECTOR2’)]).

ctr_graph(
lex_different,
[’VECTOR1’,’VECTOR2’],
2,
[’PRODUCT’(=)>>collection(vector1,vector2)],
[vector1ˆvar=\=vector2ˆvar],
[’NARC’>=1]).

ctr_example(
lex_different,
lex_different(

[[var-5],[var-2],[var-7],[var-1]],
[[var-5],[var-3],[var-7],[var-1]])).

lex_different(A,B) :-
lex_different_signature(A,B,C),
automaton(

C,
D,
C,
0..1,
[source(s),sink(t)],
[arc(s,1,s),arc(s,0,t)],
[],
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[],
[]).

lex_different_signature([],[],[]).

lex_different_signature([[var-A]|B],[[var-C]|D],[E|F]) :-
A#=C#<=>E,
lex_different_signature(B,D,F).
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B.121 lex greater

ctr_automaton(lex_greater,lex_greater).

ctr_date(lex_greater,[’20030820’,’20040530’]).

ctr_origin(lex_greater,’CHIP’,[]).

ctr_arguments(
lex_greater,
[’VECTOR1’-collection(var-dvar),
’VECTOR2’-collection(var-dvar)]).

ctr_restrictions(
lex_greater,
[required(’VECTOR1’,var),
required(’VECTOR2’,var),
size(’VECTOR1’)=size(’VECTOR2’)]).

ctr_derived_collections(
lex_greater,
[col(’DESTINATION’-collection(index-int,x-int,y-int),

[item(index-0,x-0,y-0)]),
col(’COMPONENTS’-collection(index-int,x-dvar,y-dvar),

[item(
index-’VECTOR1’ˆkey,
x-’VECTOR1’ˆvar,
y-’VECTOR2’ˆvar)])]).

ctr_graph(
lex_greater,
[’COMPONENTS’,’DESTINATION’],
2,
[’PRODUCT’(’PATH’,’VOID’)>>collection(item1,item2)],
[#\/(item2ˆindex>0#/\item1ˆx=item1ˆy,

item2ˆindex=0#/\item1ˆx>item1ˆy)],
[’PATH_FROM_TO’(index,1,0)=1]).

ctr_example(
lex_greater,
lex_greater(

[[var-5],[var-2],[var-7],[var-1]],
[[var-5],[var-2],[var-6],[var-2]])).

lex_greater(A,B) :-
lex_greater_signature(A,B,C),
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automaton(
C,
D,
C,
1..3,
[source(s),sink(t)],
[arc(s,2,s),arc(s,3,t)],
[],
[],
[]).

lex_greater_signature([],[],[]).

lex_greater_signature([[var-A]|B],[[var-C]|D],[E|F]) :-
in(E,1..3),
A#<C#<=>E#=1,
A#=C#<=>E#=2,
A#>C#<=>E#=3,
lex_greater_signature(B,D,F).
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B.122 lex greatereq

ctr_automaton(lex_greatereq,lex_greatereq).

ctr_date(lex_greatereq,[’20030820’,’20040530’]).

ctr_origin(lex_greatereq,’CHIP’,[]).

ctr_arguments(
lex_greatereq,
[’VECTOR1’-collection(var-dvar),
’VECTOR2’-collection(var-dvar)]).

ctr_restrictions(
lex_greatereq,
[required(’VECTOR1’,var),
required(’VECTOR2’,var),
size(’VECTOR1’)=size(’VECTOR2’)]).

ctr_derived_collections(
lex_greatereq,
[col(’DESTINATION’-collection(index-int,x-int,y-int),

[item(index-0,x-0,y-0)]),
col(’COMPONENTS’-collection(index-int,x-dvar,y-dvar),

[item(
index-’VECTOR1’ˆkey,
x-’VECTOR1’ˆvar,
y-’VECTOR2’ˆvar)])]).

ctr_graph(
lex_greatereq,
[’COMPONENTS’,’DESTINATION’],
2,
[’PRODUCT’(’PATH’,’VOID’)>>collection(item1,item2)],
[#\/(#\/(item2ˆindex>0#/\item1ˆx=item1ˆy,

#/\(#/\(item1ˆindex<size(’VECTOR1’),
item2ˆindex=0),

item1ˆx>item1ˆy)),
#/\(item1ˆindex=size(’VECTOR1’)#/\item2ˆindex=0,

item1ˆx>=item1ˆy))],
[’PATH_FROM_TO’(index,1,0)=1]).

ctr_example(
lex_greatereq,
[lex_greatereq(

[[var-5],[var-2],[var-8],[var-9]],
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[[var-5],[var-2],[var-6],[var-2]]),
lex_greatereq(

[[var-5],[var-2],[var-3],[var-9]],
[[var-5],[var-2],[var-3],[var-9]])]).

lex_greatereq(A,B) :-
lex_greatereq_signature(A,B,C),
automaton(

C,
D,
C,
1..3,
[source(s),sink(t)],
[arc(s,2,s),arc(s,3,t),arc(s,$,t)],
[],
[],
[]).

lex_greatereq_signature([],[],[]).

lex_greatereq_signature([[var-A]|B],[[var-C]|D],[E|F]) :-
in(E,1..3),
A#<C#<=>E#=1,
A#=C#<=>E#=2,
A#>C#<=>E#=3,
lex_greatereq_signature(B,D,F).
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B.123 lex less

ctr_automaton(lex_less,lex_less).

ctr_date(lex_less,[’20030820’,’20040530’]).

ctr_origin(lex_less,’CHIP’,[]).

ctr_arguments(
lex_less,
[’VECTOR1’-collection(var-dvar),
’VECTOR2’-collection(var-dvar)]).

ctr_restrictions(
lex_less,
[required(’VECTOR1’,var),
required(’VECTOR2’,var),
size(’VECTOR1’)=size(’VECTOR2’)]).

ctr_derived_collections(
lex_less,
[col(’DESTINATION’-collection(index-int,x-int,y-int),

[item(index-0,x-0,y-0)]),
col(’COMPONENTS’-collection(index-int,x-dvar,y-dvar),

[item(
index-’VECTOR1’ˆkey,
x-’VECTOR1’ˆvar,
y-’VECTOR2’ˆvar)])]).

ctr_graph(
lex_less,
[’COMPONENTS’,’DESTINATION’],
2,
[’PRODUCT’(’PATH’,’VOID’)>>collection(item1,item2)],
[#\/(item2ˆindex>0#/\item1ˆx=item1ˆy,

item2ˆindex=0#/\item1ˆx<item1ˆy)],
[’PATH_FROM_TO’(index,1,0)=1]).

ctr_example(
lex_less,
lex_less(

[[var-5],[var-2],[var-3],[var-9]],
[[var-5],[var-2],[var-6],[var-2]])).

lex_less(A,B) :-
lex_less_signature(A,B,C),
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automaton(
C,
D,
C,
1..3,
[source(s),sink(t)],
[arc(s,2,s),arc(s,1,t)],
[],
[],
[]).

lex_less_signature([],[],[]).

lex_less_signature([[var-A]|B],[[var-C]|D],[E|F]) :-
in(E,1..3),
A#<C#<=>E#=1,
A#=C#<=>E#=2,
A#>C#<=>E#=3,
lex_less_signature(B,D,F).
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B.124 lex lesseq

ctr_automaton(lex_lesseq,lex_lesseq).

ctr_date(lex_lesseq,[’20030820’,’20040530’]).

ctr_origin(lex_lesseq,’CHIP’,[]).

ctr_arguments(
lex_lesseq,
[’VECTOR1’-collection(var-dvar),
’VECTOR2’-collection(var-dvar)]).

ctr_restrictions(
lex_lesseq,
[required(’VECTOR1’,var),
required(’VECTOR2’,var),
size(’VECTOR1’)=size(’VECTOR2’)]).

ctr_derived_collections(
lex_lesseq,
[col(’DESTINATION’-collection(index-int,x-int,y-int),

[item(index-0,x-0,y-0)]),
col(’COMPONENTS’-collection(index-int,x-dvar,y-dvar),

[item(
index-’VECTOR1’ˆkey,
x-’VECTOR1’ˆvar,
y-’VECTOR2’ˆvar)])]).

ctr_graph(
lex_lesseq,
[’COMPONENTS’,’DESTINATION’],
2,
[’PRODUCT’(’PATH’,’VOID’)>>collection(item1,item2)],
[#\/(#\/(item2ˆindex>0#/\item1ˆx=item1ˆy,

#/\(#/\(item1ˆindex<size(’VECTOR1’),
item2ˆindex=0),

item1ˆx<item1ˆy)),
#/\(item1ˆindex=size(’VECTOR1’)#/\item2ˆindex=0,

item1ˆx=<item1ˆy))],
[’PATH_FROM_TO’(index,1,0)=1]).

ctr_example(
lex_lesseq,
[lex_lesseq(

[[var-5],[var-2],[var-3],[var-1]],
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[[var-5],[var-2],[var-6],[var-2]]),
lex_lesseq(

[[var-5],[var-2],[var-3],[var-9]],
[[var-5],[var-2],[var-3],[var-9]])]).

lex_lesseq(A,B) :-
lex_lesseq_signature(A,B,C),
automaton(

C,
D,
C,
1..3,
[source(s),sink(t)],
[arc(s,2,s),arc(s,1,t),arc(s,$,t)],
[],
[],
[]).

lex_lesseq_signature([],[],[]).

lex_lesseq_signature([[var-A]|B],[[var-C]|D],[E|F]) :-
in(E,1..3),
A#<C#<=>E#=1,
A#=C#<=>E#=2,
A#>C#<=>E#=3,
lex_lesseq_signature(B,D,F).
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B.125 link set to booleans
ctr_date(link_set_to_booleans,[’20030820’]).

ctr_origin(
link_set_to_booleans,
’Inspired by %c.’,
[domain_constraint]).

ctr_arguments(
link_set_to_booleans,
[’SVAR’-svar,’BOOLEANS’-collection(bool-dvar,val-int)]).

ctr_restrictions(
link_set_to_booleans,
[required(’BOOLEANS’,[bool,val]),
’BOOLEANS’ˆbool>=0,
’BOOLEANS’ˆbool=<1,
distinct(’BOOLEANS’,val)]).

ctr_derived_collections(
link_set_to_booleans,
[col(’SET’-collection(one-int,setvar-svar),

[item(one-1,setvar-’SVAR’)])]).

ctr_graph(
link_set_to_booleans,
[’SET’,’BOOLEANS’],
2,
[’PRODUCT’>>collection(set,booleans)],
[booleansˆbool=setˆone#<=>in_set(booleansˆval,setˆsetvar)],
[’NARC’=size(’BOOLEANS’)]).

ctr_example(
link_set_to_booleans,
link_set_to_booleans(

{1,3,4},
[[bool-0,val-0],
[bool-1,val-1],
[bool-0,val-2],
[bool-1,val-3],
[bool-1,val-4],
[bool-0,val-5]])).
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B.126 longest change

ctr_automaton(longest_change,longest_change).

ctr_date(longest_change,[’20000128’,’20030820’,’20040530’]).

ctr_origin(longest_change,’Derived from %c.’,[change]).

ctr_arguments(
longest_change,
[’SIZE’-dvar,’VARIABLES’-collection(var-dvar),’CTR’-atom]).

ctr_restrictions(
longest_change,
[’SIZE’>=0,
’SIZE’<size(’VARIABLES’),
required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
longest_change,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[’CTR’(variables1ˆvar,variables2ˆvar)],
[’MAX_NCC’=’SIZE’]).

ctr_example(
longest_change,
longest_change(

4,
[[var-8],
[var-8],
[var-3],
[var-4],
[var-1],
[var-1],
[var-5],
[var-5],
[var-2]],

=\=)).

longest_change(A,B,C) :-
longest_change_signature(B,D,C),
automaton(

D,
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E,
D,
0..1,
[source(s),sink(t)],
[arc(s,1,s,[F,G+1]),
arc(s,0,s,[max(F,G),1]),
arc(s,$,t,[max(F,G),G])],

[F,G],
[0,1],
[A,H]).

longest_change_signature([],[],A).

longest_change_signature([A],[],B) :-
!.

longest_change_signature([[var-A],[var-B]|C],[D|E],=) :-
!,
A#=B#<=>D,
longest_change_signature([[var-B]|C],E,=).

longest_change_signature([[var-A],[var-B]|C],[D|E],=\=) :-
!,
A#\=B#<=>D,
longest_change_signature([[var-B]|C],E,=\=).

longest_change_signature([[var-A],[var-B]|C],[D|E],<) :-
!,
A#<B#<=>D,
longest_change_signature([[var-B]|C],E,<).

longest_change_signature([[var-A],[var-B]|C],[D|E],>=) :-
!,
A#>=B#<=>D,
longest_change_signature([[var-B]|C],E,>=).

longest_change_signature([[var-A],[var-B]|C],[D|E],>) :-
!,
A#>B#<=>D,
longest_change_signature([[var-B]|C],E,>).

longest_change_signature([[var-A],[var-B]|C],[D|E],=<) :-
!,
A#=<B#<=>D,
longest_change_signature([[var-B]|C],E,=<).
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B.127 map
ctr_date(map,[’20000128’,’20030820’]).

ctr_origin(map,’Inspired by \\cite{SedgewickFlajolet96}’,[]).

ctr_arguments(
map,
[’NBCYCLE’-dvar,
’NBTREE’-dvar,
’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
map,
[’NBCYCLE’>=0,
’NBTREE’>=0,
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_graph(
map,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’NCC’=’NBCYCLE’,’NTREE’=’NBTREE’]).

ctr_example(
map,
map(2,

3,
[[index-1,succ-5],
[index-2,succ-9],
[index-3,succ-8],
[index-4,succ-2],
[index-5,succ-9],
[index-6,succ-2],
[index-7,succ-9],
[index-8,succ-8],
[index-9,succ-1]])).
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B.128 max index

ctr_automaton(max_index,max_index).

ctr_date(max_index,[’20030820’,’20040530’,’20041230’]).

ctr_origin(max_index,’N.˜Beldiceanu’,[]).

ctr_arguments(
max_index,
[’MAX_INDEX’-dvar,
’VARIABLES’-collection(index-int,var-dvar)]).

ctr_restrictions(
max_index,
[size(’VARIABLES’)>0,
’MAX_INDEX’>=0,
’MAX_INDEX’=<size(’VARIABLES’),
required(’VARIABLES’,[index,var]),
’VARIABLES’ˆindex>=1,
’VARIABLES’ˆindex=<size(’VARIABLES’),
distinct(’VARIABLES’,index)]).

ctr_graph(
max_index,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[#\/(variables1ˆkey=variables2ˆkey,

variables1ˆvar>variables2ˆvar)],
[’ORDER’(0,0,index)=’MAX_INDEX’]).

ctr_example(
max_index,
max_index(

3,
[[index-1,var-3],
[index-2,var-2],
[index-3,var-7],
[index-4,var-2],
[index-5,var-6]])).

max_index(A,B) :-
length(B,C),
length(D,C),
domain(D,0,0),
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max_index_signature(B,E,D),
automaton(

E,
F,
D,
0..0,
[source(s),sink(t)],
[arc(s,0,s,(F#=<G->[G,H,I+1];F#>G->[F,I+1,I+1])),
arc(s,$,t)],
[G,H,I],
[-1000000,0,0],
[J,A,K]).

max_index_signature([],[],[]).

max_index_signature([[index-A,var-B]|C],[B|D],[0|E]) :-
max_index_signature(C,D,E).
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B.129 max n
ctr_date(max_n,[’20000128’,’20030820’,’20041230’]).

ctr_origin(max_n,’\\cite{Beldiceanu01}’,[]).

ctr_arguments(
max_n,
[’MAX’-dvar,’RANK’-int,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
max_n,
[size(’VARIABLES’)>0,
’RANK’>=0,
’RANK’<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_graph(
max_n,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[#\/(variables1ˆkey=variables2ˆkey,

variables1ˆvar>variables2ˆvar)],
[’ORDER’(’RANK’,’MININT’,var)=’MAX’]).

ctr_example(
max_n,
max_n(6,1,[[var-3],[var-1],[var-7],[var-1],[var-6]])).
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B.130 max nvalue
ctr_date(max_nvalue,[’20000128’,’20030820’]).

ctr_origin(max_nvalue,’Derived from %c.’,[nvalue]).

ctr_arguments(
max_nvalue,
[’MAX’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
max_nvalue,
[’MAX’>=1,
’MAX’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_graph(
max_nvalue,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’MAX_NSCC’=’MAX’]).

ctr_example(
max_nvalue,
max_nvalue(

3,
[[var-9],
[var-1],
[var-7],
[var-1],
[var-1],
[var-6],
[var-7],
[var-7],
[var-4],
[var-9]])).
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B.131 max size set of consecutive var
ctr_date(

max_size_set_of_consecutive_var,
[’20030820’,’20040530’]).

ctr_origin(max_size_set_of_consecutive_var,’N.˜Beldiceanu’,[]).

ctr_arguments(
max_size_set_of_consecutive_var,
[’MAX’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
max_size_set_of_consecutive_var,
[’MAX’>=1,
’MAX’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_graph(
max_size_set_of_consecutive_var,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[abs(variables1ˆvar-variables2ˆvar)=<1],
[’MAX_NSCC’=’MAX’]).

ctr_example(
max_size_set_of_consecutive_var,
max_size_set_of_consecutive_var(

6,
[[var-3],
[var-1],
[var-3],
[var-7],
[var-4],
[var-1],
[var-2],
[var-8],
[var-7],
[var-6]])).
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B.132 maximum

ctr_automaton(maximum,maximum).

ctr_date(maximum,[’20000128’,’20030820’,’20040530’,’20041230’]).

ctr_origin(maximum,’CHIP’,[]).

ctr_arguments(
maximum,
[’MAX’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
maximum,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_graph(
maximum,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[#\/(variables1ˆkey=variables2ˆkey,

variables1ˆvar>variables2ˆvar)],
[’ORDER’(0,’MININT’,var)=’MAX’]).

ctr_example(
maximum,
maximum(7,[[var-3],[var-2],[var-7],[var-2],[var-6]])).

maximum(A,B) :-
maximum_signature(B,C,A),
automaton(

C,
D,
C,
0..2,
[source(s),node(e),sink(t)],
[arc(s,0,s),
arc(s,1,e),
arc(e,1,e),
arc(e,0,e),
arc(e,$,t)],
[],
[],
[]).
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maximum_signature([],[],A).

maximum_signature([[var-A]|B],[C|D],E) :-
in(C,0..2),
E#>A#<=>C#=0,
E#=A#<=>C#=1,
E#<A#<=>C#=2,
maximum_signature(B,D,E).
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B.133 maximum modulo
ctr_date(maximum_modulo,[’20000128’,’20030820’,’20041230’]).

ctr_origin(maximum_modulo,’Derived from %c.’,[maximum]).

ctr_arguments(
maximum_modulo,
[’MAX’-dvar,’VARIABLES’-collection(var-dvar),’M’-int]).

ctr_restrictions(
maximum_modulo,
[size(’VARIABLES’)>0,’M’>0,required(’VARIABLES’,var)]).

ctr_graph(
maximum_modulo,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[#\/(variables1ˆkey=variables2ˆkey,

variables1ˆvar mod ’M’>variables2ˆvar mod ’M’)],
[’ORDER’(0,’MININT’,var)=’MAX’]).

ctr_example(
maximum_modulo,
maximum_modulo(

5,
[[var-9],[var-1],[var-7],[var-6],[var-5]],
3)).
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B.134 min index

ctr_automaton(min_index,min_index).

ctr_date(min_index,[’20030820’,’20040530’,’20041230’]).

ctr_origin(min_index,’N.˜Beldiceanu’,[]).

ctr_arguments(
min_index,
[’MIN_INDEX’-dvar,
’VARIABLES’-collection(index-int,var-dvar)]).

ctr_restrictions(
min_index,
[size(’VARIABLES’)>0,
’MIN_INDEX’>=0,
’MIN_INDEX’=<size(’VARIABLES’),
required(’VARIABLES’,[index,var]),
’VARIABLES’ˆindex>=1,
’VARIABLES’ˆindex=<size(’VARIABLES’),
distinct(’VARIABLES’,index)]).

ctr_graph(
min_index,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[#\/(variables1ˆkey=variables2ˆkey,

variables1ˆvar<variables2ˆvar)],
[’ORDER’(0,0,index)=’MIN_INDEX’]).

ctr_example(
min_index,
[min_index(

2,
[[index-1,var-3],
[index-2,var-2],
[index-3,var-7],
[index-4,var-2],
[index-5,var-6]]),

min_index(
4,
[[index-1,var-3],
[index-2,var-2],
[index-3,var-7],
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[index-4,var-2],
[index-5,var-6]])]).

min_index(A,B) :-
length(B,C),
length(D,C),
domain(D,0,0),
min_index_signature(B,E,D),
automaton(

E,
F,
D,
0..0,
[source(s),sink(t)],
[arc(s,0,s,(F#>=G->[G,H,I+1];F#<G->[F,I+1,I+1])),
arc(s,$,t)],
[G,H,I],
[1000000,0,0],
[J,A,K]).

min_index_signature([],[],[]).

min_index_signature([[index-A,var-B]|C],[B|D],[0|E]) :-
min_index_signature(C,D,E).
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B.135 min n
ctr_date(min_n,[’20000128’,’20030820’,’20040530’,’20041230’]).

ctr_origin(min_n,’\\cite{Beldiceanu01}’,[]).

ctr_arguments(
min_n,
[’MIN’-dvar,’RANK’-int,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
min_n,
[size(’VARIABLES’)>0,
’RANK’>=0,
’RANK’<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_graph(
min_n,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[#\/(variables1ˆkey=variables2ˆkey,

variables1ˆvar<variables2ˆvar)],
[’ORDER’(’RANK’,’MAXINT’,var)=’MIN’]).

ctr_example(
min_n,
min_n(3,1,[[var-3],[var-1],[var-7],[var-1],[var-6]])).
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B.136 min nvalue
ctr_date(min_nvalue,[’20000128’,’20030820’]).

ctr_origin(min_nvalue,’N.˜Beldiceanu’,[]).

ctr_arguments(
min_nvalue,
[’MIN’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
min_nvalue,
[’MIN’>=1,
’MIN’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_graph(
min_nvalue,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’MIN_NSCC’=’MIN’]).

ctr_example(
min_nvalue,
min_nvalue(

2,
[[var-9],
[var-1],
[var-7],
[var-1],
[var-1],
[var-7],
[var-7],
[var-7],
[var-7],
[var-9]])).
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B.137 min size set of consecutive var
ctr_date(

min_size_set_of_consecutive_var,
[’20030820’,’20040530’]).

ctr_origin(min_size_set_of_consecutive_var,’N.˜Beldiceanu’,[]).

ctr_arguments(
min_size_set_of_consecutive_var,
[’MIN’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
min_size_set_of_consecutive_var,
[’MIN’>=1,
’MIN’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_graph(
min_size_set_of_consecutive_var,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[abs(variables1ˆvar-variables2ˆvar)=<1],
[’MIN_NSCC’=’MIN’]).

ctr_example(
min_size_set_of_consecutive_var,
min_size_set_of_consecutive_var(

4,
[[var-3],
[var-1],
[var-3],
[var-7],
[var-4],
[var-1],
[var-2],
[var-8],
[var-7],
[var-6]])).
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B.138 minimum

ctr_automaton(minimum,minimum).

ctr_date(minimum,[’20000128’,’20030820’,’20040530’,’20041230’]).

ctr_origin(minimum,’CHIP’,[]).

ctr_arguments(
minimum,
[’MIN’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
minimum,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_graph(
minimum,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[#\/(variables1ˆkey=variables2ˆkey,

variables1ˆvar<variables2ˆvar)],
[’ORDER’(0,’MAXINT’,var)=’MIN’]).

ctr_example(
minimum,
minimum(2,[[var-3],[var-2],[var-7],[var-2],[var-6]])).

minimum(A,B) :-
minimum_signature(B,C,A),
automaton(

C,
D,
C,
0..2,
[source(s),node(e),sink(t)],
[arc(s,0,s),
arc(s,1,e),
arc(e,1,e),
arc(e,0,e),
arc(e,$,t)],
[],
[],
[]).
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minimum_signature([],[],A).

minimum_signature([[var-A]|B],[C|D],E) :-
in(C,0..2),
E#<A#<=>C#=0,
E#=A#<=>C#=1,
E#>A#<=>C#=2,
minimum_signature(B,D,E).
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B.139 minimum except 0

ctr_automaton(minimum_except_0,minimum_except_0).

ctr_date(minimum_except_0,[’20030820’,’20040530’,’20041230’]).

ctr_origin(minimum_except_0,’Derived from %c.’,[minimum]).

ctr_arguments(
minimum_except_0,
[’MIN’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
minimum_except_0,
[size(’VARIABLES’)>0,
required(’VARIABLES’,var),
’VARIABLES’ˆvar>=0]).

ctr_graph(
minimum_except_0,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=\=0,
variables2ˆvar=\=0,
#\/(variables1ˆkey=variables2ˆkey,

variables1ˆvar<variables2ˆvar)],
[’ORDER’(0,’MAXINT’,var)=’MIN’]).

ctr_example(
minimum_except_0,
[minimum_except_0(

3,
[[var-3],[var-7],[var-6],[var-7],[var-4],[var-7]]),

minimum_except_0(
2,
[[var-3],[var-2],[var-0],[var-7],[var-2],[var-6]]),

minimum_except_0(
1000000,
[[var-0],[var-0],[var-0],[var-0],[var-0],[var-0]])]).

minimum_except_0(A,B) :-
minimum_except_0_signature(B,C,A),
automaton(

C,
D,
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C,
0..4,
[source(s),node(j),node(k),sink(t)],
[arc(s,0,s),
arc(s,3,s),
arc(s,2,j),
arc(s,1,k),
arc(j,0,j),
arc(j,1,j),
arc(j,2,j),
arc(j,3,j),
arc(j,$,t),
arc(k,1,k),
arc(k,$,t)],

[],
[],
[]).

minimum_except_0_signature([],[],A).

minimum_except_0_signature([[var-A]|B],[C|D],E) :-
in(C,0..4),
F=1000000,
A#=0#/\E#\=F#<=>C#=0,
A#=0#/\E#=F#<=>C#=1,
A#\=0#/\E#=A#<=>C#=2,
A#\=0#/\E#<A#<=>C#=3,
A#\=0#/\E#>A#<=>C#=4,
minimum_except_0_signature(B,D,E).
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B.140 minimum greater than

ctr_automaton(minimum_greater_than,minimum_greater_than).

ctr_date(minimum_greater_than,[’20030820’]).

ctr_origin(minimum_greater_than,’N.˜Beldiceanu’,[]).

ctr_arguments(
minimum_greater_than,
[’VAR1’-dvar,’VAR2’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
minimum_greater_than,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_derived_collections(
minimum_greater_than,
[col(’ITEM’-collection(var-dvar),[item(var-’VAR2’)])]).

ctr_graph(
minimum_greater_than,
[’ITEM’,’VARIABLES’],
2,
[’PRODUCT’>>collection(item,variables)],
[itemˆvar<variablesˆvar],
[’NARC’>0],
[’SUCC’>>[source,variables]],
[minimum(’VAR1’,variables)]).

ctr_example(
minimum_greater_than,
minimum_greater_than(

5,
3,
[[var-8],[var-5],[var-3],[var-8]])).

minimum_greater_than(A,B,C) :-
minimum_greater_than_signature(C,D,A,B),
automaton(

D,
E,
D,
0..5,
[source(s),node(e),sink(t)],
[arc(s,0,s),
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arc(s,1,s),
arc(s,2,s),
arc(s,5,s),
arc(s,4,e),
arc(e,0,e),
arc(e,1,e),
arc(e,2,e),
arc(e,4,e),
arc(e,5,e),
arc(e,$,t)],

[],
[],
[]).

minimum_greater_than_signature([],[],A,B).

minimum_greater_than_signature([[var-A]|B],[C|D],E,F) :-
in(C,0..5),
A#<E#/\A#=<F#<=>C#=0,
A#=E#/\A#=<F#<=>C#=1,
A#>E#/\A#=<F#<=>C#=2,
A#<E#/\A#>F#<=>C#=3,
A#=E#/\A#>F#<=>C#=4,
A#>E#/\A#>F#<=>C#=5,
minimum_greater_than_signature(B,D,E,F).
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B.141 minimum modulo
ctr_date(minimum_modulo,[’20000128’,’20030820’,’20041230’]).

ctr_origin(minimum_modulo,’Derived from %c.’,[minimum]).

ctr_arguments(
minimum_modulo,
[’MIN’-dvar,’VARIABLES’-collection(var-dvar),’M’-int]).

ctr_restrictions(
minimum_modulo,
[size(’VARIABLES’)>0,’M’>0,required(’VARIABLES’,var)]).

ctr_graph(
minimum_modulo,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[#\/(variables1ˆkey=variables2ˆkey,

variables1ˆvar mod ’M’<variables2ˆvar mod ’M’)],
[’ORDER’(0,’MAXINT’,var)=’MIN’]).

ctr_example(
minimum_modulo,
[minimum_modulo(

6,
[[var-9],[var-1],[var-7],[var-6],[var-5]],
3),

minimum_modulo(
9,
[[var-9],[var-1],[var-7],[var-6],[var-5]],
3)]).
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B.142 minimum weight alldifferent

ctr_date(minimum_weight_alldifferent,[’20030820’,’20040530’]).

ctr_origin(
minimum_weight_alldifferent,
’\\cite{FocacciLodiMilano99}’,
[]).

ctr_synonyms(
minimum_weight_alldifferent,
[minimum_weight_alldiff,
minimum_weight_alldistinct,
min_weight_alldiff,
min_weight_alldifferent,
min_weight_alldistinct]).

ctr_arguments(
minimum_weight_alldifferent,
[’VARIABLES’-collection(var-dvar),
’MATRIX’-collection(i-int,j-int,c-int),
’COST’-dvar]).

ctr_restrictions(
minimum_weight_alldifferent,
[size(’VARIABLES’)>0,
required(’VARIABLES’,var),
’VARIABLES’ˆvar>=1,
’VARIABLES’ˆvar=<size(’VARIABLES’),
required(’MATRIX’,[i,j,c]),
increasing_seq(’MATRIX’,[i,j]),
’MATRIX’ˆi>=1,
’MATRIX’ˆi=<size(’VARIABLES’),
’MATRIX’ˆj>=1,
’MATRIX’ˆj=<size(’VARIABLES’),
size(’MATRIX’)=size(’VARIABLES’)*size(’VARIABLES’)]).

ctr_graph(
minimum_weight_alldifferent,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆkey],
[’NTREE’=0,
=(’SUM_WEIGHT_ARC’(

ˆ(@(’MATRIX’,
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+((variables1ˆkey-1)*size(’VARIABLES’),
variables1ˆvar)),

c)),
’COST’)]).

ctr_example(
minimum_weight_alldifferent,
minimum_weight_alldifferent(

[[var-2],[var-3],[var-1],[var-4]],
[[i-1,j-1,c-4],
[i-1,j-2,c-1],
[i-1,j-3,c-7],
[i-1,j-4,c-0],
[i-2,j-1,c-1],
[i-2,j-2,c-0],
[i-2,j-3,c-8],
[i-2,j-4,c-2],
[i-3,j-1,c-3],
[i-3,j-2,c-2],
[i-3,j-3,c-1],
[i-3,j-4,c-6],
[i-4,j-1,c-0],
[i-4,j-2,c-0],
[i-4,j-3,c-6],
[i-4,j-4,c-5]],

17)).



1199

B.143 nclass
ctr_date(nclass,[’20000128’,’20030820’]).

ctr_origin(nclass,’Derived from %c.’,[nvalue]).

ctr_types(nclass,[’VALUES’-collection(val-int)]).

ctr_arguments(
nclass,
[’NCLASS’-dvar,
’VARIABLES’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
nclass,
[required(’VALUES’,val),
distinct(’VALUES’,val),
’NCLASS’>=0,
’NCLASS’=<min(size(’VARIABLES’),size(’PARTITIONS’)),
required(’VARIABLES’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_graph(
nclass,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
’PARTITIONS’)],

[’NSCC’=’NCLASS’]).

ctr_example(
nclass,
nclass(

2,
[[var-3],[var-2],[var-7],[var-2],[var-6]],
[[p-[[val-1],[val-3]]],
[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).
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B.144 nequivalence
ctr_date(nequivalence,[’20000128’,’20030820’]).

ctr_origin(nequivalence,’Derived from %c.’,[nvalue]).

ctr_arguments(
nequivalence,
[’NEQUIV’-dvar,’M’-int,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
nequivalence,
[’NEQUIV’>=min(1,size(’VARIABLES’)),
’NEQUIV’=<min(’M’,size(’VARIABLES’)),
’M’>0,
required(’VARIABLES’,var)]).

ctr_graph(
nequivalence,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar mod ’M’=variables2ˆvar mod ’M’],
[’NSCC’=’NEQUIV’]).

ctr_example(
nequivalence,
nequivalence(

2,
3,
[[var-3],
[var-2],
[var-5],
[var-6],
[var-15],
[var-3],
[var-3]])).
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B.145 next element

ctr_automaton(next_element,next_element).

ctr_date(next_element,[’20030820’,’20040530’]).

ctr_origin(next_element,’N.˜Beldiceanu’,[]).

ctr_arguments(
next_element,
[’THRESHOLD’-dvar,
’INDEX’-dvar,
’TABLE’-collection(index-int,value-dvar),
’VAL’-dvar]).

ctr_restrictions(
next_element,
[’INDEX’>=1,
’INDEX’=<size(’TABLE’),
required(’TABLE’,[index,value]),
’TABLE’ˆindex>=1,
’TABLE’ˆindex=<size(’TABLE’),
distinct(’TABLE’,index)]).

ctr_derived_collections(
next_element,
[col(’ITEM’-collection(index-dvar,value-dvar),

[item(index-’THRESHOLD’,value-’VAL’)])]).

ctr_graph(
next_element,
[’ITEM’,’TABLE’],
2,
[’PRODUCT’>>collection(item,table)],
[itemˆindex<tableˆindex,itemˆvalue=tableˆvalue],
[’NARC’>0],
[>>(’SUCC’,

[source,
-(variables,

col(’VARIABLES’-collection(var-dvar),
[item(var-’TABLE’ˆindex)]))])],

[minimum(’INDEX’,variables)]).

ctr_example(
next_element,
next_element(
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2,
3,
[[index-1,value-1],
[index-2,value-8],
[index-3,value-9],
[index-4,value-5],
[index-5,value-9]],

9)).

next_element(A,B,C,D) :-
next_element_signature(C,E,A,B,D),
automaton(

E,
F,
E,
0..11,
[source(s),node(e),sink(t)],
[arc(s,0,s),
arc(s,1,s),
arc(s,2,s),
arc(s,3,s),
arc(s,4,s),
arc(s,5,s),
arc(s,7,s),
arc(s,9,s),
arc(s,10,s),
arc(s,11,s),
arc(s,8,e),
arc(e,0,e),
arc(e,1,e),
arc(e,2,e),
arc(e,3,e),
arc(e,4,e),
arc(e,5,e),
arc(e,7,e),
arc(e,8,e),
arc(e,9,e),
arc(e,10,e),
arc(e,11,e),
arc(e,$,t)],
[],
[],
[]).

next_element_signature([],[],A,B,C).
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next_element_signature([[index-A,value-B]|C],[D|E],F,G,H) :-
in(D,0..11),
A#=<F#/\A#<G#/\B#=H#<=>D#=0,
A#=<F#/\A#<G#/\B#\=H#<=>D#=1,
A#=<F#/\A#=G#/\B#=H#<=>D#=2,
A#=<F#/\A#=G#/\B#\=H#<=>D#=3,
A#=<F#/\A#>G#/\B#=H#<=>D#=4,
A#=<F#/\A#>G#/\B#\=H#<=>D#=5,
A#>F#/\A#<G#/\B#=H#<=>D#=6,
A#>F#/\A#<G#/\B#\=H#<=>D#=7,
A#>F#/\A#=G#/\B#=H#<=>D#=8,
A#>F#/\A#=G#/\B#\=H#<=>D#=9,
A#>F#/\A#>G#/\B#=H#<=>D#=10,
A#>F#/\A#>G#/\B#\=H#<=>D#=11,
next_element_signature(C,E,F,G,H).
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B.146 next greater element
ctr_date(next_greater_element,[’20030820’,’20040530’]).

ctr_origin(next_greater_element,’M.˜Carlsson’,[]).

ctr_arguments(
next_greater_element,
[’VAR1’-dvar,’VAR2’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
next_greater_element,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_derived_collections(
next_greater_element,
[col(’V’-collection(var-dvar),[item(var-’VAR1’)])]).

ctr_graph(
next_greater_element,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[variables1ˆvar<variables2ˆvar],
[’NARC’=size(’VARIABLES’)-1]).

ctr_graph(
next_greater_element,
[’V’,’VARIABLES’],
2,
[’PRODUCT’>>collection(v,variables)],
[vˆvar<variablesˆvar],
[’NARC’>0],
[’SUCC’>>[source,variables]],
[minimum(’VAR2’,variables)]).

ctr_example(
next_greater_element,
next_greater_element(

7,
8,
[[var-3],[var-5],[var-8],[var-9]])).
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B.147 ninterval
ctr_date(ninterval,[’20030820’,’20040530’]).

ctr_origin(ninterval,’Derived from %c.’,[nvalue]).

ctr_arguments(
ninterval,
[’NVAL’-dvar,
’VARIABLES’-collection(var-dvar),
’SIZE_INTERVAL’-int]).

ctr_restrictions(
ninterval,
[’NVAL’>=min(1,size(’VARIABLES’)),
’NVAL’=<size(’VARIABLES’),
required(’VARIABLES’,var),
’SIZE_INTERVAL’>0]).

ctr_graph(
ninterval,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[=(variables1ˆvar/’SIZE_INTERVAL’,

variables2ˆvar/’SIZE_INTERVAL’)],
[’NSCC’=’NVAL’]).

ctr_example(
ninterval,
ninterval(2,[[var-3],[var-1],[var-9],[var-1],[var-9]],4)).
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B.148 no peak

ctr_automaton(no_peak,no_peak).

ctr_date(no_peak,[’20031101’,’20040530’]).

ctr_origin(no_peak,’Derived from %c.’,[peak]).

ctr_arguments(no_peak,[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
no_peak,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_example(
no_peak,
no_peak([[var-1],[var-1],[var-4],[var-8],[var-8]])).

no_peak(A) :-
no_peak_signature(A,B),
automaton(

B,
C,
B,
0..2,
[source(s),node(i),sink(t)],
[arc(s,0,s),
arc(s,1,s),
arc(s,2,i),
arc(s,$,t),
arc(i,1,i),
arc(i,2,i),
arc(i,$,t)],
[],
[],
[]).

no_peak_signature([],[]).

no_peak_signature([A],[]).

no_peak_signature([[var-A],[var-B]|C],[D|E]) :-
in(D,0..2),
A#<B#<=>D#=0,
A#=B#<=>D#=1,
A#>B#<=>D#=2,
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no_peak_signature([[var-B]|C],E).



1208 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.149 no valley

ctr_automaton(no_valley,no_valley).

ctr_date(no_valley,[’20031101’,’20040530’]).

ctr_origin(no_valley,’Derived from %c.’,[valley]).

ctr_arguments(no_valley,[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
no_valley,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_example(
no_valley,
no_valley(

[[var-1],[var-1],[var-4],[var-8],[var-8],[var-2]])).

no_valley(A) :-
no_valley_signature(A,B),
automaton(

B,
C,
B,
0..2,
[source(s),node(i),sink(t)],
[arc(s,0,s),
arc(s,1,s),
arc(s,2,i),
arc(s,$,t),
arc(i,1,i),
arc(i,2,i),
arc(i,$,t)],
[],
[],
[]).

no_valley_signature([],[]).

no_valley_signature([A],[]).

no_valley_signature([[var-A],[var-B]|C],[D|E]) :-
in(D,0..2),
A#<B#<=>D#=0,
A#=B#<=>D#=1,
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A#>B#<=>D#=2,
no_valley_signature([[var-B]|C],E).
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B.150 not all equal

ctr_automaton(not_all_equal,not_all_equal).

ctr_date(not_all_equal,[’20030820’,’20040530’,’20040726’]).

ctr_origin(not_all_equal,’CHIP’,[]).

ctr_arguments(not_all_equal,[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
not_all_equal,
[required(’VARIABLES’,var),size(’VARIABLES’)>1]).

ctr_graph(
not_all_equal,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NSCC’>1]).

ctr_example(
not_all_equal,
not_all_equal([[var-3],[var-1],[var-3],[var-3],[var-3]])).

not_all_equal(A) :-
length(A,B),
B>1,
not_all_equal_signature(A,C),
automaton(

C,
D,
C,
0..1,
[source(s),sink(t)],
[arc(s,1,s),arc(s,0,t)],
[],
[],
[]).

not_all_equal_signature([],[]).

not_all_equal_signature([A],[]).

not_all_equal_signature([[var-A],[var-B]|C],[D|E]) :-
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A#=B#<=>D,
not_all_equal_signature([[var-B]|C],E).
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B.151 not in

ctr_automaton(not_in,not_in).

ctr_date(not_in,[’20030820’,’20040530’]).

ctr_origin(not_in,’Derived from %c.’,[in]).

ctr_arguments(not_in,[’VAR’-dvar,’VALUES’-collection(val-int)]).

ctr_restrictions(
not_in,
[required(’VALUES’,val),distinct(’VALUES’,val)]).

ctr_derived_collections(
not_in,
[col(’VARIABLES’-collection(var-dvar),[item(var-’VAR’)])]).

ctr_graph(
not_in,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=valuesˆval],
[’NARC’=0]).

ctr_example(not_in,not_in(2,[[val-1],[val-3]])).

not_in(A,B) :-
not_in_signature(B,C,A),
automaton(

C,
D,
C,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,$,t)],
[],
[],
[]).

not_in_signature([],[],A).

not_in_signature([[val-A]|B],[C|D],E) :-
E#=A#<=>C,
not_in_signature(B,D,E).
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B.152 npair
ctr_date(npair,[’20030820’]).

ctr_origin(npair,’Derived from %c.’,[nvalue]).

ctr_arguments(
npair,
[’NVAL’-dvar,’PAIRS’-collection(x-dvar,y-dvar)]).

ctr_restrictions(
npair,
[’NVAL’>=min(1,size(’PAIRS’)),
’NVAL’=<size(’PAIRS’),
required(’PAIRS’,[x,y])]).

ctr_graph(
npair,
[’PAIRS’],
2,
[’CLIQUE’>>collection(pairs1,pairs2)],
[pairs1ˆx=pairs2ˆx,pairs1ˆy=pairs2ˆy],
[’NSCC’=’NVAL’]).

ctr_example(
npair,
npair(

2,
[[x-3,y-1],[x-1,y-5],[x-3,y-1],[x-3,y-1],[x-1,y-5]])).
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B.153 nset of consecutive values
ctr_date(nset_of_consecutive_values,[’20030820’,’20040530’]).

ctr_origin(nset_of_consecutive_values,’N.˜Beldiceanu’,[]).

ctr_arguments(
nset_of_consecutive_values,
[’N’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
nset_of_consecutive_values,
[’N’>=1,’N’=<size(’VARIABLES’),required(’VARIABLES’,var)]).

ctr_graph(
nset_of_consecutive_values,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[abs(variables1ˆvar-variables2ˆvar)=<1],
[’NSCC’=’N’]).

ctr_example(
nset_of_consecutive_values,
nset_of_consecutive_values(

2,
[[var-3],
[var-1],
[var-7],
[var-1],
[var-1],
[var-2],
[var-8]])).
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B.154 nvalue
ctr_date(nvalue,[’20000128’,’20030820’,’20040530’]).

ctr_origin(nvalue,’\\cite{PachetRoy99}’,[]).

ctr_synonyms(nvalue,[cardinality_on_attributes_values]).

ctr_arguments(
nvalue,
[’NVAL’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
nvalue,
[’NVAL’>=min(1,size(’VARIABLES’)),
’NVAL’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_graph(
nvalue,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NSCC’=’NVAL’]).

ctr_example(
nvalue,
nvalue(4,[[var-3],[var-1],[var-7],[var-1],[var-6]])).
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B.155 nvalue on intersection
ctr_date(nvalue_on_intersection,[’20040530’]).

ctr_origin(
nvalue_on_intersection,
’Derived from %c and %c.’,
[common,nvalue]).

ctr_arguments(
nvalue_on_intersection,
[’NVAL’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
nvalue_on_intersection,
[’NVAL’>=0,
’NVAL’=<size(’VARIABLES1’),
’NVAL’=<size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var)]).

ctr_graph(
nvalue_on_intersection,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NCC’=’NVAL’]).

ctr_example(
nvalue_on_intersection,
nvalue_on_intersection(

2,
[[var-1],[var-9],[var-1],[var-5]],
[[var-2],[var-1],[var-9],[var-9],[var-6],[var-9]])).
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B.156 nvalues
ctr_date(nvalues,[’20030820’]).

ctr_origin(nvalues,’Inspired by %c and %c.’,[nvalue,count]).

ctr_arguments(
nvalues,
[’VARIABLES’-collection(var-dvar),
’RELOP’-atom,
’LIMIT’-dvar]).

ctr_restrictions(
nvalues,
[required(’VARIABLES’,var),
in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
nvalues,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’RELOP’(’NSCC’,’LIMIT’)]).

ctr_example(
nvalues,
nvalues(

[[var-4],[var-5],[var-5],[var-4],[var-1],[var-5]],
=,
3)).
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B.157 nvalues except 0
ctr_date(nvalues_except_0,[’20030820’]).

ctr_origin(nvalues_except_0,’Derived from %c.’,[nvalues]).

ctr_arguments(
nvalues_except_0,
[’VARIABLES’-collection(var-dvar),
’RELOP’-atom,
’LIMIT’-dvar]).

ctr_restrictions(
nvalues_except_0,
[required(’VARIABLES’,var),
in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
nvalues_except_0,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=\=0,variables1ˆvar=variables2ˆvar],
[’RELOP’(’NSCC’,’LIMIT’)]).

ctr_example(
nvalues_except_0,
nvalues_except_0(

[[var-4],[var-5],[var-5],[var-4],[var-0],[var-1]],
=,
3)).



1220 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.158 one tree

ctr_date(one_tree,[’20031001’,’20040530’]).

ctr_origin(
one_tree,
’Inspired by \\cite{GentProsserSmithWei03}’,
[]).

ctr_arguments(
one_tree,
[-(’NODES’,

collection(
id-atom,
index-int,
type-int,
father-dvar,
depth1-dvar,
depth2-dvar))]).

ctr_restrictions(
one_tree,
[required(’NODES’,[id,index,type,father,depth1,depth2]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
in_list(’NODES’,type,[2,3,6]),
’NODES’ˆfather>=1,
’NODES’ˆfather=<size(’NODES’),
’NODES’ˆdepth1>=0,
’NODES’ˆdepth1=<size(’NODES’),
’NODES’ˆdepth2>=0,
’NODES’ˆdepth2=<size(’NODES’)]).

ctr_graph(
one_tree,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[#\/(#/\(nodes1ˆindex=nodes2ˆindex,

nodes1ˆfather=nodes1ˆindex),
#/\(#/\(#/\(nodes1ˆindex=\=nodes2ˆindex,

nodes1ˆfather=nodes2ˆindex),
#\/(#/\(nodes1ˆtype mod 2=0,

nodes1ˆdepth1>nodes2ˆdepth1),
#/\(nodes1ˆtype mod 2>0,
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nodes1ˆdepth1=nodes2ˆdepth1))),
#\/(#/\(nodes1ˆtype mod 3=0,

nodes1ˆdepth2>nodes2ˆdepth2),
#/\(nodes1ˆtype mod 3>0,

nodes1ˆdepth2=nodes2ˆdepth2))))],
[’MAX_NSCC’=<1,’NCC’=1,’NVERTEX’=size(’NODES’)]).

ctr_example(
one_tree,
one_tree(

[[id-x,index-1,type-2,father-6,depth1-2,depth2-2],
[id-x,index-2,type-2,father-2,depth1-1,depth2-0],
[id-x,index-3,type-3,father-6,depth1-1,depth2-3],
[id-x,index-4,type-3,father-5,depth1-2,depth2-4],
[id-x,index-5,type-3,father-1,depth1-2,depth2-3],
[id-x,index-6,type-3,father-7,depth1-1,depth2-2],
[id-x,index-7,type-3,father-2,depth1-1,depth2-1],
[id-g,index-8,type-2,father-1,depth1-3,depth2-2],
[id-a,index-9,type-6,father-4,depth1-3,depth2-5],
[id-f,index-10,type-6,father-7,depth1-2,depth2-2],
[id-b,index-11,type-3,father-4,depth1-2,depth2-5],
[id-c,index-12,type-3,father-5,depth1-2,depth2-4],
[id-e,index-13,type-3,father-3,depth1-1,depth2-4],
[id-d,index-14,type-3,father-3,depth1-1,depth2-4]])).
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B.159 orchard
ctr_date(orchard,[’20000128’,’20030820’]).

ctr_origin(orchard,’\\cite{Jackson1821}’,[]).

ctr_arguments(
orchard,
[’NROW’-dvar,’TREES’-collection(index-int,x-dvar,y-dvar)]).

ctr_restrictions(
orchard,
[’NROW’>=0,
’TREES’ˆindex>=1,
’TREES’ˆindex=<size(’TREES’),
required(’TREES’,[index,x,y]),
distinct(’TREES’,index),
’TREES’ˆx>=0,
’TREES’ˆy>=0]).

ctr_graph(
orchard,
[’TREES’],
3,
[’CLIQUE’(<)>>collection(trees1,trees2,trees3)],
[=(+(+(trees1ˆx*trees2ˆy-trees1ˆx*trees3ˆy,

trees1ˆy*trees3ˆx-trees1ˆy*trees2ˆx),
trees2ˆx*trees3ˆy-trees2ˆy*trees3ˆx),

0)],
[’NARC’=’NROW’]).

ctr_example(
orchard,
orchard(

10,
[[index-1,x-0,y-0],
[index-2,x-4,y-0],
[index-3,x-8,y-0],
[index-4,x-2,y-4],
[index-5,x-4,y-4],
[index-6,x-6,y-4],
[index-7,x-0,y-8],
[index-8,x-4,y-8],
[index-9,x-8,y-8]])).
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B.160 orth link ori siz end
ctr_date(orth_link_ori_siz_end,[’20030820’]).

ctr_origin(
orth_link_ori_siz_end,
’Used by several constraints between orthotopes’,
[]).

ctr_arguments(
orth_link_ori_siz_end,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_restrictions(
orth_link_ori_siz_end,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0]).

ctr_graph(
orth_link_ori_siz_end,
[’ORTHOTOPE’],
1,
[’SELF’>>collection(orthotope)],
[orthotopeˆori+orthotopeˆsiz=orthotopeˆend],
[’NARC’=size(’ORTHOTOPE’)]).

ctr_example(
orth_link_ori_siz_end,
orth_link_ori_siz_end(

[[ori-2,siz-2,end-4],[ori-1,siz-3,end-4]])).
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B.161 orth on the ground
ctr_date(orth_on_the_ground,[’20030820’,’20040726’]).

ctr_origin(
orth_on_the_ground,
’Used for defining %c.’,
[place_in_pyramid]).

ctr_arguments(
orth_on_the_ground,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar),
’VERTICAL_DIM’-int]).

ctr_restrictions(
orth_on_the_ground,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
’VERTICAL_DIM’>=1,
’VERTICAL_DIM’=<size(’ORTHOTOPE’),
orth_link_ori_siz_end(’ORTHOTOPE’)]).

ctr_graph(
orth_on_the_ground,
[’ORTHOTOPE’],
1,
[’SELF’>>collection(orthotope)],
[orthotopeˆkey=’VERTICAL_DIM’,orthotopeˆori=1],
[’NARC’=1]).

ctr_example(
orth_on_the_ground,
orth_on_the_ground(

[[ori-1,siz-2,end-3],[ori-2,siz-3,end-5]],
1)).
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B.162 orth on top of orth

ctr_date(orth_on_top_of_orth,[’20030820’,’20040726’]).

ctr_origin(
orth_on_top_of_orth,
’Used for defining %c.’,
[place_in_pyramid]).

ctr_types(
orth_on_top_of_orth,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
orth_on_top_of_orth,
[’ORTHOTOPE1’-’ORTHOTOPE’,
’ORTHOTOPE2’-’ORTHOTOPE’,
’VERTICAL_DIM’-int]).

ctr_restrictions(
orth_on_top_of_orth,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
size(’ORTHOTOPE1’)=size(’ORTHOTOPE2’),
’VERTICAL_DIM’>=1,
’VERTICAL_DIM’=<size(’ORTHOTOPE1’),
orth_link_ori_siz_end(’ORTHOTOPE1’),
orth_link_ori_siz_end(’ORTHOTOPE2’)]).

ctr_graph(
orth_on_top_of_orth,
[’ORTHOTOPE1’,’ORTHOTOPE2’],
2,
[’PRODUCT’(=)>>collection(orthotope1,orthotope2)],
[orthotope1ˆkey=\=’VERTICAL_DIM’,
orthotope2ˆori=<orthotope1ˆori,
orthotope1ˆend=<orthotope2ˆend],

[’NARC’=size(’ORTHOTOPE1’)-1]).

ctr_graph(
orth_on_top_of_orth,
[’ORTHOTOPE1’,’ORTHOTOPE2’],
2,
[’PRODUCT’(=)>>collection(orthotope1,orthotope2)],
[orthotope1ˆkey=’VERTICAL_DIM’,
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orthotope1ˆori=orthotope2ˆend],
[’NARC’=1]).

ctr_example(
orth_on_top_of_orth,
orth_on_top_of_orth(

[[ori-5,siz-2,end-7],[ori-3,siz-3,end-6]],
[[ori-3,siz-5,end-8],[ori-1,siz-2,end-3]],
2)).
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B.163 orths are connected

ctr_date(orths_are_connected,[’20000128’,’20030820’]).

ctr_origin(orths_are_connected,’N.˜Beldiceanu’,[]).

ctr_types(
orths_are_connected,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
orths_are_connected,
[’ORTHOTOPES’-collection(orth-’ORTHOTOPE’)]).

ctr_restrictions(
orths_are_connected,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>0,
required(’ORTHOTOPES’,orth),
same_size(’ORTHOTOPES’,orth)]).

ctr_graph(
orths_are_connected,
[’ORTHOTOPES’],
1,
[’SELF’>>collection(orthotopes)],
[orth_link_ori_siz_end(orthotopesˆorth)],
[’NARC’=size(’ORTHOTOPES’)]).

ctr_graph(
orths_are_connected,
[’ORTHOTOPES’],
2,
[’CLIQUE’(=\=)>>collection(orthotopes1,orthotopes2)],
[two_orth_are_in_contact(

orthotopes1ˆorth,
orthotopes2ˆorth)],

[’NVERTEX’=size(’ORTHOTOPES’),’NCC’=1]).

ctr_example(
orths_are_connected,
orths_are_connected(

[[orth-[[ori-2,siz-4,end-6],[ori-2,siz-2,end-4]]],
[orth-[[ori-1,siz-2,end-3],[ori-4,siz-3,end-7]]],
[orth-[[ori-7,siz-4,end-11],[ori-1,siz-2,end-3]]],
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[orth-[[ori-6,siz-2,end-8],[ori-3,siz-2,end-5]]]])).
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B.164 path from to

ctr_date(path_from_to,[’20030820’,’20040530’]).

ctr_origin(
path_from_to,
’\\cite{AlthausBockmayrElfKasperJungerMehlhorn02}’,
[]).

ctr_usual_name(path_from_to,path).

ctr_arguments(
path_from_to,
[’FROM’-int,
’TO’-int,
’NODES’-collection(index-int,succ-svar)]).

ctr_restrictions(
path_from_to,
[’FROM’>=1,
’FROM’=<size(’NODES’),
’TO’>=1,
’TO’=<size(’NODES’),
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index)]).

ctr_graph(
path_from_to,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[in_set(nodes2ˆindex,nodes1ˆsucc)],
[’PATH_FROM_TO’(index,’FROM’,’TO’)=1]).

ctr_example(
path_from_to,
path_from_to(

4,
3,
[[index-1,succ-{}],
[index-2,succ-{}],
[index-3,succ-{5}],
[index-4,succ-{5}],
[index-5,succ-{2,3}]])).
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B.165 pattern
ctr_predefined(pattern).

ctr_date(pattern,[’20031008’]).

ctr_origin(pattern,’\\cite{BourdaisGalinierPesant03}’,[]).

ctr_types(pattern,[’PATTERN’-collection(var-int)]).

ctr_arguments(
pattern,
[’VARIABLES’-collection(var-dvar),
’PATTERNS’-collection(pat-’PATTERN’)]).

ctr_restrictions(
pattern,
[required(’PATTERN’,var),
change(0,’PATTERN’,=),
required(’VARIABLES’,var),
required(’PATTERNS’,pat),
same_size(’PATTERNS’,pat)]).

ctr_example(
pattern,
pattern(

[[var-1],
[var-1],
[var-2],
[var-2],
[var-2],
[var-1],
[var-3],
[var-3]],

[[pat-[[var-1],[var-2],[var-1]]],
[pat-[[var-1],[var-2],[var-3]]],
[pat-[[var-2],[var-1],[var-3]]]])).
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B.166 peak

ctr_automaton(peak,peak).

ctr_date(peak,[’20040530’]).

ctr_origin(peak,’Derived from %c.’,[inflexion]).

ctr_arguments(peak,[’N’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
peak,
[’N’>=0,
2*’N’=<max(size(’VARIABLES’)-1,0),
required(’VARIABLES’,var)]).

ctr_example(
peak,
peak(

2,
[[var-1],
[var-1],
[var-4],
[var-8],
[var-6],
[var-2],
[var-7],
[var-1]])).

peak(A,B) :-
peak_signature(B,C),
automaton(

C,
D,
C,
0..2,
[source(s),node(u),sink(t)],
[arc(s,0,s),
arc(s,1,s),
arc(s,2,u),
arc(s,$,t),
arc(u,0,s,[E+1]),
arc(u,1,u),
arc(u,2,u),
arc(u,$,t)],
[E],
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[0],
[A]).

peak_signature([],[]).

peak_signature([A],[]).

peak_signature([[var-A],[var-B]|C],[D|E]) :-
in(D,0..2),
A#>B#<=>D#=0,
A#=B#<=>D#=1,
A#<B#<=>D#=2,
peak_signature([[var-B]|C],E).
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B.167 period
ctr_predefined(period).

ctr_date(period,[’20000128’,’20030820’,’20040530’]).

ctr_origin(period,’N.˜Beldiceanu’,[]).

ctr_arguments(
period,
[’PERIOD’-dvar,
’VARIABLES’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
period,
[’PERIOD’>=1,
’PERIOD’=<size(’VARIABLES’),
required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
period,
period(

3,
[[var-1],
[var-1],
[var-4],
[var-1],
[var-1],
[var-4],
[var-1],
[var-1]],

=)).
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B.168 period except 0
ctr_predefined(period_except_0).

ctr_date(period_except_0,[’20030820’,’20040530’]).

ctr_origin(period_except_0,’Derived from %c.’,[period]).

ctr_arguments(
period_except_0,
[’PERIOD’-dvar,
’VARIABLES’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
period_except_0,
[’PERIOD’>=1,
’PERIOD’=<size(’VARIABLES’),
required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
period_except_0,
period_except_0(

3,
[[var-1],
[var-1],
[var-4],
[var-1],
[var-1],
[var-0],
[var-1],
[var-1]],

=)).



1236 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.169 place in pyramid

ctr_date(place_in_pyramid,[’20000128’,’20030820’,’20041230’]).

ctr_origin(place_in_pyramid,’N.˜Beldiceanu’,[]).

ctr_types(
place_in_pyramid,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
place_in_pyramid,
[’ORTHOTOPES’-collection(orth-’ORTHOTOPE’),
’VERTICAL_DIM’-int]).

ctr_restrictions(
place_in_pyramid,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
same_size(’ORTHOTOPES’,orth),
’VERTICAL_DIM’>=1,
diffn(’ORTHOTOPES’)]).

ctr_graph(
place_in_pyramid,
[’ORTHOTOPES’],
2,
[’CLIQUE’>>collection(orthotopes1,orthotopes2)],
[#\/(#/\(orthotopes1ˆkey=orthotopes2ˆkey,

orth_on_the_ground(
orthotopes1ˆorth,
’VERTICAL_DIM’)),

#/\(orthotopes1ˆkey=\=orthotopes2ˆkey,
orth_on_top_of_orth(

orthotopes1ˆorth,
orthotopes2ˆorth,
’VERTICAL_DIM’)))],

[’NARC’=size(’ORTHOTOPES’)]).

ctr_example(
place_in_pyramid,
place_in_pyramid(

[[orth-[[ori-1,siz-3,end-4],[ori-1,siz-2,end-3]]],
[orth-[[ori-1,siz-2,end-3],[ori-3,siz-3,end-6]]],
[orth-[[ori-5,siz-6,end-11],[ori-1,siz-2,end-3]]],
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[orth-[[ori-5,siz-2,end-7],[ori-3,siz-2,end-5]]],
[orth-[[ori-8,siz-3,end-11],[ori-3,siz-2,end-5]]],
[orth-[[ori-8,siz-2,end-10],[ori-5,siz-2,end-7]]]],

2)).
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B.170 polyomino

ctr_date(polyomino,[’20000128’,’20030820’]).

ctr_origin(polyomino,’Inspired by \\cite{Golomb65}.’,[]).

ctr_arguments(
polyomino,
[-(’CELLS’,

collection(
index-int,
right-dvar,
left-dvar,
up-dvar,
down-dvar))]).

ctr_restrictions(
polyomino,
[’CELLS’ˆindex>=1,
’CELLS’ˆindex=<size(’CELLS’),
size(’CELLS’)>=1,
required(’CELLS’,[index,right,left,up,down]),
distinct(’CELLS’,index),
’CELLS’ˆright>=0,
’CELLS’ˆright=<size(’CELLS’),
’CELLS’ˆleft>=0,
’CELLS’ˆleft=<size(’CELLS’),
’CELLS’ˆup>=0,
’CELLS’ˆup=<size(’CELLS’),
’CELLS’ˆdown>=0,
’CELLS’ˆdown=<size(’CELLS’)]).

ctr_graph(
polyomino,
[’CELLS’],
2,
[’CLIQUE’(=\=)>>collection(cells1,cells2)],
[#\/(#\/(#\/(#/\(cells1ˆright=cells2ˆindex,

cells2ˆleft=cells1ˆindex),
#/\(cells1ˆleft=cells2ˆindex,

cells2ˆright=cells1ˆindex)),
#/\(cells1ˆup=cells2ˆindex,

cells2ˆdown=cells1ˆindex)),
cells1ˆdown=cells2ˆindex#/\cells2ˆup=cells1ˆindex)],

[’NVERTEX’=size(’CELLS’),’NCC’=1]).
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ctr_example(
polyomino,
polyomino(

[[index-1,right-0,left-0,up-2,down-0],
[index-2,right-3,left-0,up-0,down-1],
[index-3,right-0,left-2,up-4,down-0],
[index-4,right-5,left-0,up-0,down-3],
[index-5,right-0,left-4,up-0,down-0]])).



1240 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.171 product ctr
ctr_date(product_ctr,[’20030820’]).

ctr_origin(product_ctr,’Arithmetic constraint.’,[]).

ctr_arguments(
product_ctr,
[’VARIABLES’-collection(var-dvar),’CTR’-atom,’VAR’-dvar]).

ctr_restrictions(
product_ctr,
[required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
product_ctr,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[’TRUE’],
[’CTR’(’PRODUCT’(’VARIABLES’,var),’VAR’)]).

ctr_example(
product_ctr,
product_ctr([[var-2],[var-1],[var-4]],=,8)).
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B.172 range ctr
ctr_date(range_ctr,[’20030820’]).

ctr_origin(range_ctr,’Arithmetic constraint.’,[]).

ctr_arguments(
range_ctr,
[’VARIABLES’-collection(var-dvar),’CTR’-atom,’VAR’-dvar]).

ctr_restrictions(
range_ctr,
[required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
range_ctr,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[’TRUE’],
[’CTR’(’RANGE’(’VARIABLES’,var),’VAR’)]).

ctr_example(range_ctr,range_ctr([[var-1],[var-9],[var-4]],=,8)).
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B.173 relaxed sliding sum

ctr_date(relaxed_sliding_sum,[’20000128’,’20030820’]).

ctr_origin(relaxed_sliding_sum,’CHIP’,[]).

ctr_arguments(
relaxed_sliding_sum,
[’ATLEAST’-int,
’ATMOST’-int,
’LOW’-int,
’UP’-int,
’SEQ’-int,
’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
relaxed_sliding_sum,
[’ATLEAST’>=0,
’ATMOST’>=’ATLEAST’,
’ATMOST’=<size(’VARIABLES’)-’SEQ’+1,
’UP’>=’LOW’,
’SEQ’>0,
’SEQ’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_graph(
relaxed_sliding_sum,
[’VARIABLES’],
’SEQ’,
[’PATH’>>collection],
[sum_ctr(collection,>=,’LOW’),sum_ctr(collection,=<,’UP’)],
[’NARC’>=’ATLEAST’,’NARC’=<’ATMOST’]).

ctr_example(
relaxed_sliding_sum,
relaxed_sliding_sum(

3,
4,
3,
7,
4,
[[var-2],
[var-4],
[var-2],
[var-0],
[var-0],
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[var-3],
[var-4]])).
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B.174 same
ctr_date(same,[’20000128’,’20030820’,’20040530’]).

ctr_origin(same,’N.˜Beldiceanu’,[]).

ctr_arguments(
same,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
same,
[size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var)]).

ctr_graph(
same,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[for_all(’CC’,’NSOURCE’=’NSINK’),
’NSOURCE’=size(’VARIABLES1’),
’NSINK’=size(’VARIABLES2’)]).

ctr_example(
same,
same(

[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]],
[[var-9],[var-1],[var-1],[var-1],[var-2],[var-5]])).
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B.175 same and global cardinality

ctr_date(same_and_global_cardinality,[’20040530’]).

ctr_origin(
same_and_global_cardinality,
’Derived from %c and %c’,
[same,global_cardinality]).

ctr_synonyms(
same_and_global_cardinality,
[sgcc,same_gcc,same_and_gcc,swc,same_with_cardinalities]).

ctr_arguments(
same_and_global_cardinality,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’VALUES’-collection(val-int,noccurrence-dvar)]).

ctr_restrictions(
same_and_global_cardinality,
[size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
required(’VALUES’,[val,noccurrence]),
distinct(’VALUES’,val),
’VALUES’ˆnoccurrence>=0,
’VALUES’ˆnoccurrence=<size(’VARIABLES1’)]).

ctr_graph(
same_and_global_cardinality,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[for_all(’CC’,’NSOURCE’=’NSINK’),
’NSOURCE’=size(’VARIABLES1’),
’NSINK’=size(’VARIABLES2’)]).

ctr_graph(
same_and_global_cardinality,
[’VARIABLES1’],
1,
foreach(’VALUES’,[’SELF’>>collection(variables)]),
[variablesˆvar=’VALUES’ˆval],
[’NVERTEX’=’VALUES’ˆnoccurrence]).
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ctr_example(
same_and_global_cardinality,
same_and_global_cardinality(

[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]],
[[var-9],[var-1],[var-1],[var-1],[var-2],[var-5]],
[[val-1,noccurrence-3],
[val-2,noccurrence-1],
[val-5,noccurrence-1],
[val-7,noccurrence-0],
[val-9,noccurrence-1]])).
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B.176 same intersection
ctr_date(same_intersection,[’20040530’]).

ctr_origin(
same_intersection,
’Derived from %c and %c.’,
[same,common]).

ctr_arguments(
same_intersection,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
same_intersection,
[required(’VARIABLES1’,var),required(’VARIABLES2’,var)]).

ctr_graph(
same_intersection,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[for_all(’CC’,’NSOURCE’=’NSINK’)]).

ctr_example(
same_intersection,
same_intersection(

[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]],
[[var-9],
[var-1],
[var-1],
[var-1],
[var-3],
[var-5],
[var-8]])).
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B.177 same interval
ctr_date(same_interval,[’20030820’]).

ctr_origin(same_interval,’Derived from %c.’,[same]).

ctr_arguments(
same_interval,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’SIZE_INTERVAL’-int]).

ctr_restrictions(
same_interval,
[size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’SIZE_INTERVAL’>0]).

ctr_graph(
same_interval,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[=(variables1ˆvar/’SIZE_INTERVAL’,

variables2ˆvar/’SIZE_INTERVAL’)],
[for_all(’CC’,’NSOURCE’=’NSINK’),
’NSOURCE’=size(’VARIABLES1’),
’NSINK’=size(’VARIABLES2’)]).

ctr_example(
same_interval,
same_interval(

[[var-1],[var-7],[var-6],[var-0],[var-1],[var-7]],
[[var-8],[var-8],[var-8],[var-0],[var-1],[var-2]],
3)).
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B.178 same modulo
ctr_date(same_modulo,[’20030820’]).

ctr_origin(same_modulo,’Derived from %c.’,[same]).

ctr_arguments(
same_modulo,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’M’-int]).

ctr_restrictions(
same_modulo,
[size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’M’>0]).

ctr_graph(
same_modulo,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar mod ’M’=variables2ˆvar mod ’M’],
[for_all(’CC’,’NSOURCE’=’NSINK’),
’NSOURCE’=size(’VARIABLES1’),
’NSINK’=size(’VARIABLES2’)]).

ctr_example(
same_modulo,
same_modulo(

[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]],
[[var-6],[var-4],[var-1],[var-1],[var-5],[var-5]],
3)).
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B.179 same partition

ctr_date(same_partition,[’20030820’]).

ctr_origin(same_partition,’Derived from %c.’,[same]).

ctr_types(same_partition,[’VALUES’-collection(val-int)]).

ctr_arguments(
same_partition,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
same_partition,
[required(’VALUES’,val),
distinct(’VALUES’,val),
size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_graph(
same_partition,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
’PARTITIONS’)],

[for_all(’CC’,’NSOURCE’=’NSINK’),
’NSOURCE’=size(’VARIABLES1’),
’NSINK’=size(’VARIABLES2’)]).

ctr_example(
same_partition,
same(

[[var-1],[var-2],[var-6],[var-3],[var-1],[var-2]],
[[var-6],[var-6],[var-2],[var-3],[var-1],[var-3]],
[[p-[[val-1],[val-3]]],
[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).
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B.180 sequence folding

ctr_automaton(sequence_folding,sequence_folding).

ctr_date(sequence_folding,[’20030820’,’20040530’]).

ctr_origin(sequence_folding,’J.˜Pearson’,[]).

ctr_arguments(
sequence_folding,
[’LETTERS’-collection(index-int,next-dvar)]).

ctr_restrictions(
sequence_folding,
[size(’LETTERS’)>=1,
required(’LETTERS’,[index,next]),
’LETTERS’ˆindex>=1,
’LETTERS’ˆindex=<size(’LETTERS’),
increasing_seq(’LETTERS’,index),
’LETTERS’ˆnext>=1,
’LETTERS’ˆnext=<size(’LETTERS’)]).

ctr_graph(
sequence_folding,
[’LETTERS’],
1,
[’SELF’>>collection(letters)],
[lettersˆnext>=lettersˆindex],
[’NARC’=size(’LETTERS’)]).

ctr_graph(
sequence_folding,
[’LETTERS’],
2,
[’CLIQUE’(<)>>collection(letters1,letters2)],
[#\/(letters2ˆindex>=letters1ˆnext,

letters2ˆnext=<letters1ˆnext)],
[’NARC’=size(’LETTERS’)*(size(’LETTERS’)-1)/2]).

ctr_example(
sequence_folding,
sequence_folding(

[[index-1,next-1],
[index-2,next-8],
[index-3,next-3],
[index-4,next-5],
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[index-5,next-5],
[index-6,next-7],
[index-7,next-7],
[index-8,next-8],
[index-9,next-9]])).

sequence_folding(A) :-
sequence_folding_signature(A,B),
automaton(

B,
C,
B,
0..2,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s),arc(s,$,t)],
[],
[],
[]).

sequence_folding_signature([],[]).

sequence_folding_signature([A],[]).

sequence_folding_signature([A,B|C],D) :-
sequence_folding_signature([B|C],A,E),
sequence_folding_signature([B|C],F),
append(E,F,D).

sequence_folding_signature([],A,[]).

sequence_folding_signature([A|B],C,[D|E]) :-
C=[index-F,next-G],
A=[index-H,next-I],
F#=<G#/\H#=<I#/\G#=<H#<=>D#=0,
F#=<G#/\H#=<I#/\G#>H#/\I#=<G#<=>D#=1,
sequence_folding_signature(B,C,E).
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B.181 set value precede
ctr_predefined(set_value_precede).

ctr_date(set_value_precede,[’20041003’]).

ctr_origin(set_value_precede,’\\cite{YatChiuLawJimmyLee04}’,[]).

ctr_arguments(
set_value_precede,
[’S’-int,’T’-int,’VARIABLES’-collection(var-svar)]).

ctr_restrictions(
set_value_precede,
[’S’=\=’T’,required(’VARIABLES’,var)]).

ctr_example(
set_value_precede,
set_value_precede(

2,
1,
[[var-{0,2}],[var-{0,1}],[var-{}],[var-{1}]])).
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B.182 shift

ctr_date(shift,[’20030820’]).

ctr_origin(shift,’N.˜Beldiceanu’,[]).

ctr_arguments(
shift,
[’MIN_BREAK’-int,
’MAX_RANGE’-int,
’TASKS’-collection(id-int,origin-dvar,end-dvar)]).

ctr_restrictions(
shift,
[’MIN_BREAK’>0,
’MAX_RANGE’>0,
required(’TASKS’,[id,origin,end]),
distinct(’TASKS’,id)]).

ctr_graph(
shift,
[’TASKS’],
1,
[’SELF’>>collection(tasks)],
[tasksˆend>=tasksˆorigin,
tasksˆend-tasksˆorigin=<’MAX_RANGE’],

[’NARC’=size(’TASKS’)]).

ctr_graph(
shift,
[’TASKS’],
2,
[’CLIQUE’>>collection(tasks1,tasks2)],
[#\/(#\/(#/\(tasks2ˆorigin>=tasks1ˆend,

tasks2ˆorigin-tasks1ˆend=<’MIN_BREAK’),
#/\(tasks1ˆorigin>=tasks2ˆend,

tasks1ˆorigin-tasks2ˆend=<’MIN_BREAK’)),
tasks2ˆorigin<tasks1ˆend#/\tasks1ˆorigin<tasks2ˆend)],

[],
[>>(’CC’,

[-(variables,
col(’VARIABLES’-collection(var-dvar),

[item(var-’TASKS’ˆorigin),
item(var-’TASKS’ˆend)]))])],

[range_ctr(variables,=<,’MAX_RANGE’)]).
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ctr_example(
shift,
shift(

6,
8,
[[id-1,origin-17,end-20],
[id-2,origin-7,end-10],
[id-3,origin-2,end-4],
[id-4,origin-21,end-22],
[id-5,origin-5,end-6]])).
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B.183 size maximal sequence alldifferent
ctr_date(size_maximal_sequence_alldifferent,[’20030820’]).

ctr_origin(
size_maximal_sequence_alldifferent,
’N.˜Beldiceanu’,
[]).

ctr_synonyms(
size_maximal_sequence_alldifferent,
[size_maximal_sequence_alldiff,
size_maximal_sequence_alldistinct]).

ctr_arguments(
size_maximal_sequence_alldifferent,
[’SIZE’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
size_maximal_sequence_alldifferent,
[’SIZE’>=0,
’SIZE’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_graph(
size_maximal_sequence_alldifferent,
[’VARIABLES’],
*,
[’PATH_N’>>collection],
[alldifferent(collection)],
[’NARC’=’SIZE’]).

ctr_example(
size_maximal_sequence_alldifferent,
size_maximal_sequence_alldifferent(

4,
[[var-2],
[var-2],
[var-4],
[var-5],
[var-2],
[var-7],
[var-4]])).
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B.184 size maximal starting sequence alldifferent

ctr_date(
size_maximal_starting_sequence_alldifferent,
[’20030820’]).

ctr_origin(
size_maximal_starting_sequence_alldifferent,
’N.˜Beldiceanu’,
[]).

ctr_synonyms(
size_maximal_starting_sequence_alldifferent,
[size_maximal_starting_sequence_alldiff,
size_maximal_starting_sequence_alldistinct]).

ctr_arguments(
size_maximal_starting_sequence_alldifferent,
[’SIZE’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
size_maximal_starting_sequence_alldifferent,
[’SIZE’>=0,
’SIZE’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_graph(
size_maximal_starting_sequence_alldifferent,
[’VARIABLES’],
*,
[’PATH_1’>>collection],
[alldifferent(collection)],
[’NARC’=’SIZE’]).

ctr_example(
size_maximal_starting_sequence_alldifferent,
size_maximal_starting_sequence_alldifferent(

4,
[[var-9],
[var-2],
[var-4],
[var-5],
[var-2],
[var-7],
[var-4]])).
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B.185 sliding card skip0

ctr_automaton(sliding_card_skip0,sliding_card_skip0).

ctr_date(sliding_card_skip0,[’20000128’,’20030820’,’20040530’]).

ctr_origin(sliding_card_skip0,’N.˜Beldiceanu’,[]).

ctr_arguments(
sliding_card_skip0,
[’ATLEAST’-int,
’ATMOST’-int,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_restrictions(
sliding_card_skip0,
[’ATLEAST’>=0,
’ATMOST’>=’ATLEAST’,
required(’VARIABLES’,var),
required(’VALUES’,val),
distinct(’VALUES’,val),
’VALUES’ˆval=\=0]).

ctr_graph(
sliding_card_skip0,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2),
’LOOP’>>collection(variables1,variables2)],

[variables1ˆvar=\=0,variables2ˆvar=\=0],
[],
[’CC’>>[variables]],
[among_low_up(’ATLEAST’,’ATMOST’,variables,’VALUES’)]).

ctr_example(
sliding_card_skip0,
sliding_card_skip0(

2,
3,
[[var-0],
[var-7],
[var-2],
[var-9],
[var-0],
[var-0],
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[var-9],
[var-4],
[var-9]],

[[val-7],[val-9]])).

sliding_card_skip0(A,B,C,D) :-
col_to_list(D,E),
list_to_fdset(E,F),
sliding_card_skip0_signature(C,G,F),
automaton(

G,
H,
G,
0..2,
[source(s),node(i),sink(t)],
[arc(s,0,s),
arc(s,1,i,[0]),
arc(s,2,i,[1]),
arc(s,$,t),
arc(i,0,s,(in(I,A..B)->[I])),
arc(i,1,i),
arc(i,2,i,[I+1]),
arc(i,$,t,(in(I,A..B)->[I]))],

[I],
[0],
[J]).

sliding_card_skip0_signature([],[],A).

sliding_card_skip0_signature([[var-A]|B],[C|D],E) :-
A#\=0#<=>F,
in_set(A,E)#<=>G,
in(C,0..2),
C#=max(2*F+G-1,0),
sliding_card_skip0_signature(B,D,E).
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B.186 sliding distribution

ctr_date(sliding_distribution,[’20031008’]).

ctr_origin(sliding_distribution,’\\cite{ReginPuget97}’,[]).

ctr_arguments(
sliding_distribution,
[’SEQ’-int,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int,omin-int,omax-int)]).

ctr_restrictions(
sliding_distribution,
[’SEQ’>0,
’SEQ’=<size(’VARIABLES’),
required(’VARIABLES’,var),
size(’VALUES’)>0,
required(’VALUES’,[val,omin,omax]),
distinct(’VALUES’,val),
’VALUES’ˆomin>=0,
’VALUES’ˆomax=<’SEQ’,
’VALUES’ˆomin=<’VALUES’ˆomax]).

ctr_graph(
sliding_distribution,
[’VARIABLES’],
’SEQ’,
[’PATH’>>collection],
[global_cardinality_low_up(collection,’VALUES’)],
[’NARC’=size(’VARIABLES’)-’SEQ’+1]).

ctr_example(
sliding_distribution,
sliding_distribution(

4,
[[var-0],
[var-5],
[var-6],
[var-6],
[var-5],
[var-0],
[var-0]],

[[val-0,omin-1,omax-2],
[val-1,omin-0,omax-4],
[val-4,omin-0,omax-4],
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[val-5,omin-1,omax-2],
[val-6,omin-0,omax-2]])).
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B.187 sliding sum
ctr_date(sliding_sum,[’20000128’,’20030820’]).

ctr_origin(sliding_sum,’CHIP’,[]).

ctr_arguments(
sliding_sum,
[’LOW’-int,
’UP’-int,
’SEQ’-int,
’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
sliding_sum,
[’UP’>=’LOW’,
’SEQ’>0,
’SEQ’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_graph(
sliding_sum,
[’VARIABLES’],
’SEQ’,
[’PATH’>>collection],
[sum_ctr(collection,>=,’LOW’),sum_ctr(collection,=<,’UP’)],
[’NARC’=size(’VARIABLES’)-’SEQ’+1]).

ctr_example(
sliding_sum,
sliding_sum(

3,
7,
4,
[[var-1],
[var-4],
[var-2],
[var-0],
[var-0],
[var-3],
[var-4]])).
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B.188 sliding time window

ctr_date(sliding_time_window,[’20030820’]).

ctr_origin(sliding_time_window,’N.˜Beldiceanu’,[]).

ctr_arguments(
sliding_time_window,
[’WINDOW_SIZE’-int,
’LIMIT’-int,
’TASKS’-collection(id-int,origin-dvar,duration-dvar)]).

ctr_restrictions(
sliding_time_window,
[’WINDOW_SIZE’>0,
’LIMIT’>=0,
required(’TASKS’,[id,origin,duration]),
distinct(’TASKS’,id),
’TASKS’ˆduration>=0]).

ctr_graph(
sliding_time_window,
[’TASKS’],
2,
[’CLIQUE’>>collection(tasks1,tasks2)],
[tasks1ˆorigin=<tasks2ˆorigin,
tasks2ˆorigin-tasks1ˆorigin<’WINDOW_SIZE’],

[],
[’SUCC’>>[source,tasks]],
[sliding_time_window_from_start(

’WINDOW_SIZE’,
’LIMIT’,
tasks,
sourceˆorigin)]).

ctr_example(
sliding_time_window,
sliding_time_window(

9,
6,
[[id-1,origin-10,duration-3],
[id-2,origin-5,duration-1],
[id-3,origin-6,duration-2],
[id-4,origin-14,duration-2],
[id-5,origin-2,duration-2]])).
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B.189 sliding time window from start

ctr_date(sliding_time_window_from_start,[’20030820’]).

ctr_origin(
sliding_time_window_from_start,
’Used for defining %c.’,
[sliding_time_window]).

ctr_arguments(
sliding_time_window_from_start,
[’WINDOW_SIZE’-int,
’LIMIT’-int,
’TASKS’-collection(id-int,origin-dvar,duration-dvar),
’START’-dvar]).

ctr_restrictions(
sliding_time_window_from_start,
[’WINDOW_SIZE’>0,
’LIMIT’>=0,
required(’TASKS’,[id,origin,duration]),
distinct(’TASKS’,id),
’TASKS’ˆduration>=0]).

ctr_derived_collections(
sliding_time_window_from_start,
[col(’S’-collection(var-dvar),[item(var-’START’)])]).

ctr_graph(
sliding_time_window_from_start,
[’S’,’TASKS’],
2,
[’PRODUCT’>>collection(s,tasks)],
[’TRUE’],
[=<(’SUM_WEIGHT_ARC’(

max(0,
-(min(sˆvar+’WINDOW_SIZE’,

tasksˆorigin+tasksˆduration),
max(sˆvar,tasksˆorigin)))),

’LIMIT’)]).

ctr_example(
sliding_time_window_from_start,
sliding_time_window(

9,
6,
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[[id-1,origin-10,duration-3],
[id-2,origin-5,duration-1],
[id-3,origin-6,duration-2]],

5)).
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B.190 sliding time window sum

ctr_date(sliding_time_window_sum,[’20030820’]).

ctr_origin(
sliding_time_window_sum,
’Derived from %c.’,
[sliding_time_window]).

ctr_arguments(
sliding_time_window_sum,
[’WINDOW_SIZE’-int,
’LIMIT’-int,
-(’TASKS’,

collection(id-int,origin-dvar,end-dvar,npoint-dvar))]).

ctr_restrictions(
sliding_time_window_sum,
[’WINDOW_SIZE’>0,
’LIMIT’>=0,
required(’TASKS’,[id,origin,end,npoint]),
distinct(’TASKS’,id),
’TASKS’ˆnpoint>=0]).

ctr_graph(
sliding_time_window_sum,
[’TASKS’],
1,
[’SELF’>>collection(tasks)],
[tasksˆorigin=<tasksˆend],
[’NARC’=size(’TASKS’)]).

ctr_graph(
sliding_time_window_sum,
[’TASKS’],
2,
[’CLIQUE’>>collection(tasks1,tasks2)],
[tasks1ˆend=<tasks2ˆend,
tasks2ˆorigin-tasks1ˆend<’WINDOW_SIZE’-1],

[],
[>>(’SUCC’,

[source,
-(variables,

col(’VARIABLES’-collection(var-dvar),
[item(var-’TASKS’ˆnpoint)]))])],

[sum_ctr(variables,=<,’LIMIT’)]).
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ctr_example(
sliding_time_window_sum,
sliding_time_window_sum(

9,
16,
[[id-1,origin-10,end-13,npoint-2],
[id-2,origin-5,end-6,npoint-3],
[id-3,origin-6,end-8,npoint-4],
[id-4,origin-14,end-16,npoint-5],
[id-5,origin-2,end-4,npoint-6]])).
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B.191 smooth

ctr_automaton(smooth,smooth).

ctr_date(smooth,[’20000128’,’20030820’,’20040530’]).

ctr_origin(smooth,’Derived from %c.’,[change]).

ctr_arguments(
smooth,
[’NCHANGE’-dvar,
’TOLERANCE’-int,
’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
smooth,
[’NCHANGE’>=0,
’NCHANGE’<size(’VARIABLES’),
’TOLERANCE’>=0,
required(’VARIABLES’,var)]).

ctr_graph(
smooth,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[abs(variables1ˆvar-variables2ˆvar)>’TOLERANCE’],
[’NARC’=’NCHANGE’]).

ctr_example(
smooth,
smooth(1,2,[[var-1],[var-3],[var-4],[var-5],[var-2]])).

smooth(A,B,C) :-
smooth_signature(C,D,B),
automaton(

D,
E,
D,
0..1,
[source(s),sink(t)],
[arc(s,1,s,[F+1]),arc(s,0,s),arc(s,$,t)],
[F],
[0],
[A]).
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smooth_signature([],[],A).

smooth_signature([A],[],B).

smooth_signature([[var-A],[var-B]|C],[D|E],F) :-
abs(A-B)#>F#<=>D#=1,
smooth_signature([[var-B]|C],E,F).
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B.192 soft alldifferent ctr
ctr_date(soft_alldifferent_ctr,[’20030820’]).

ctr_origin(
soft_alldifferent_ctr,
’\\cite{PetitReginBessiere01}’,
[]).

ctr_synonyms(
soft_alldifferent_ctr,
[soft_alldiff_ctr,soft_alldistinct_ctr]).

ctr_arguments(
soft_alldifferent_ctr,
[’C’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
soft_alldifferent_ctr,
[’C’>=0,
=<(’C’,

/(-(size(’VARIABLES’)*size(’VARIABLES’),
size(’VARIABLES’)),

2)),
required(’VARIABLES’,var)]).

ctr_graph(
soft_alldifferent_ctr,
[’VARIABLES’],
2,
[’CLIQUE’(<)>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NARC’=’C’]).

ctr_example(
soft_alldifferent_ctr,
soft_alldifferent_ctr(

4,
[[var-5],[var-1],[var-9],[var-1],[var-5],[var-5]])).
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B.193 soft alldifferent var
ctr_date(soft_alldifferent_var,[’20030820’]).

ctr_origin(
soft_alldifferent_var,
’\\cite{PetitReginBessiere01}’,
[]).

ctr_synonyms(
soft_alldifferent_var,
[soft_alldiff_var,soft_alldistinct_var]).

ctr_arguments(
soft_alldifferent_var,
[’C’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
soft_alldifferent_var,
[’C’>=0,’C’<size(’VARIABLES’),required(’VARIABLES’,var)]).

ctr_graph(
soft_alldifferent_var,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NSCC’=size(’VARIABLES’)-’C’]).

ctr_example(
soft_alldifferent_var,
soft_alldifferent_var(

3,
[[var-5],[var-1],[var-9],[var-1],[var-5],[var-5]])).
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B.194 soft same interval var
ctr_date(soft_same_interval_var,[’20050507’]).

ctr_origin(
soft_same_interval_var,
’Derived from %c’,
[same_interval]).

ctr_synonyms(soft_same_interval_var,[soft_same_interval]).

ctr_arguments(
soft_same_interval_var,
[’C’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’SIZE_INTERVAL’-int]).

ctr_restrictions(
soft_same_interval_var,
[’C’>=0,
’C’=<size(’VARIABLES1’),
size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’SIZE_INTERVAL’>0]).

ctr_graph(
soft_same_interval_var,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[=(variables1ˆvar/’SIZE_INTERVAL’,

variables2ˆvar/’SIZE_INTERVAL’)],
[’NSINK_NSOURCE’=size(’VARIABLES1’)-’C’]).

ctr_example(
soft_same_interval_var,
soft_same_interval_var(

4,
[[var-9],[var-9],[var-9],[var-9],[var-9],[var-1]],
[[var-9],[var-1],[var-1],[var-1],[var-1],[var-8]],
3)).
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B.195 soft same modulo var
ctr_date(soft_same_modulo_var,[’20050507’]).

ctr_origin(
soft_same_modulo_var,
’Derived from %c’,
[same_modulo]).

ctr_synonyms(soft_same_modulo_var,[soft_same_modulo]).

ctr_arguments(
soft_same_modulo_var,
[’C’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’M’-int]).

ctr_restrictions(
soft_same_modulo_var,
[’C’>=0,
’C’=<size(’VARIABLES1’),
size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’M’>0]).

ctr_graph(
soft_same_modulo_var,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar mod ’M’=variables2ˆvar mod ’M’],
[’NSINK_NSOURCE’=size(’VARIABLES1’)-’C’]).

ctr_example(
soft_same_modulo_var,
soft_same_modulo_var(

4,
[[var-9],[var-9],[var-9],[var-9],[var-9],[var-1]],
[[var-9],[var-1],[var-1],[var-1],[var-1],[var-8]],
3)).
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B.196 soft same partition var

ctr_date(soft_same_partition_var,[’20050507’]).

ctr_origin(
soft_same_partition_var,
’Derived from %c’,
[same_partition]).

ctr_synonyms(soft_same_partition_var,[soft_same_partition]).

ctr_types(
soft_same_partition_var,
[’VALUES’-collection(val-int)]).

ctr_arguments(
soft_same_partition_var,
[’C’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
soft_same_partition_var,
[’C’>=0,
’C’=<size(’VARIABLES1’),
size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2,
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_graph(
soft_same_partition_var,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
’PARTITIONS’)],

[’NSINK_NSOURCE’=size(’VARIABLES1’)-’C’]).

ctr_example(
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soft_same_partition_var,
soft_same_partition_var(

4,
[[var-9],[var-9],[var-9],[var-9],[var-9],[var-1]],
[[var-9],[var-1],[var-1],[var-1],[var-1],[var-8]],
[[p-[[val-1],[val-2]]],
[p-[[val-9]]],
[p-[[val-7],[val-8]]]])).
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B.197 soft same var
ctr_date(soft_same_var,[’20050507’]).

ctr_origin(soft_same_var,’\\cite{vanHoeve05}’,[]).

ctr_synonyms(soft_same_var,[soft_same]).

ctr_arguments(
soft_same_var,
[’C’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
soft_same_var,
[’C’>=0,
’C’=<size(’VARIABLES1’),
size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var)]).

ctr_graph(
soft_same_var,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NSINK_NSOURCE’=size(’VARIABLES1’)-’C’]).

ctr_example(
soft_same_var,
soft_same_var(

4,
[[var-9],[var-9],[var-9],[var-9],[var-9],[var-1]],
[[var-9],[var-1],[var-1],[var-1],[var-1],[var-8]])).
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B.198 soft used by interval var
ctr_date(soft_used_by_interval_var,[’20050507’]).

ctr_origin(
soft_used_by_interval_var,
’Derived from %c.’,
[used_by_interval]).

ctr_synonyms(soft_used_by_interval_var,[soft_used_by_interval]).

ctr_arguments(
soft_used_by_interval_var,
[’C’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’SIZE_INTERVAL’-int]).

ctr_restrictions(
soft_used_by_interval_var,
[’C’>=0,
’C’=<size(’VARIABLES2’),
size(’VARIABLES1’)>=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’SIZE_INTERVAL’>0]).

ctr_graph(
soft_used_by_interval_var,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[=(variables1ˆvar/’SIZE_INTERVAL’,

variables2ˆvar/’SIZE_INTERVAL’)],
[’NSINK_NSOURCE’=size(’VARIABLES2’)-’C’]).

ctr_example(
soft_used_by_interval_var,
soft_used_by_interval_var(

2,
[[var-9],[var-1],[var-1],[var-8],[var-8]],
[[var-9],[var-9],[var-9],[var-1]],
3)).
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B.199 soft used by modulo var
ctr_date(soft_used_by_modulo_var,[’20050507’]).

ctr_origin(
soft_used_by_modulo_var,
’Derived from %c’,
[used_by_modulo]).

ctr_synonyms(soft_used_by_modulo_var,[soft_used_by_modulo]).

ctr_arguments(
soft_used_by_modulo_var,
[’C’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’M’-int]).

ctr_restrictions(
soft_used_by_modulo_var,
[’C’>=0,
’C’=<size(’VARIABLES2’),
size(’VARIABLES1’)>=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’M’>0]).

ctr_graph(
soft_used_by_modulo_var,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar mod ’M’=variables2ˆvar mod ’M’],
[’NSINK_NSOURCE’=size(’VARIABLES2’)-’C’]).

ctr_example(
soft_used_by_modulo_var,
soft_used_by_modulo_var(

2,
[[var-9],[var-1],[var-1],[var-8],[var-8]],
[[var-9],[var-9],[var-9],[var-1]],
3)).
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B.200 soft used by partition var

ctr_date(soft_used_by_partition_var,[’20050507’]).

ctr_origin(
soft_used_by_partition_var,
’Derived from %c.’,
[used_by_partition]).

ctr_synonyms(
soft_used_by_partition_var,
[soft_used_by_partition]).

ctr_types(
soft_used_by_partition_var,
[’VALUES’-collection(val-int)]).

ctr_arguments(
soft_used_by_partition_var,
[’C’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
soft_used_by_partition_var,
[’C’>=0,
’C’=<size(’VARIABLES2’),
size(’VARIABLES1’)>=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2,
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_graph(
soft_used_by_partition_var,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
’PARTITIONS’)],

[’NSINK_NSOURCE’=size(’VARIABLES2’)-’C’]).
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ctr_example(
soft_used_by_partition_var,
soft_used_by_partition_var(

2,
[[var-9],[var-1],[var-1],[var-8],[var-8]],
[[var-9],[var-9],[var-9],[var-1]],
[[p-[[val-1],[val-2]]],
[p-[[val-9]]],
[p-[[val-7],[val-8]]]])).
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B.201 soft used by var
ctr_date(soft_used_by_var,[’20050507’]).

ctr_origin(soft_used_by_var,’Derived from %c’,[used_by]).

ctr_synonyms(soft_used_by_var,[soft_used_by]).

ctr_arguments(
soft_used_by_var,
[’C’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
soft_used_by_var,
[’C’>=0,
’C’=<size(’VARIABLES2’),
size(’VARIABLES1’)>=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var)]).

ctr_graph(
soft_used_by_var,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NSINK_NSOURCE’=size(’VARIABLES2’)-’C’]).

ctr_example(
soft_used_by_var,
soft_used_by_var(

2,
[[var-9],[var-1],[var-1],[var-8],[var-8]],
[[var-9],[var-9],[var-9],[var-1]])).
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B.202 sort
ctr_date(sort,[’20030820’]).

ctr_origin(sort,’\\cite{OlderSwinkelsEmden95}’,[]).

ctr_arguments(
sort,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
sort,
[size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var)]).

ctr_graph(
sort,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[for_all(’CC’,’NSOURCE’=’NSINK’),
’NSOURCE’=size(’VARIABLES1’),
’NSINK’=size(’VARIABLES2’)]).

ctr_graph(
sort,
[’VARIABLES2’],
2,
[’PATH’>>collection(variables1,variables2)],
[variables1ˆvar=<variables2ˆvar],
[’NARC’=size(’VARIABLES2’)-1]).

ctr_example(
sort,
sort(

[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]],
[[var-1],[var-1],[var-1],[var-2],[var-5],[var-9]])).
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B.203 sort permutation

ctr_date(sort_permutation,[’20030820’]).

ctr_origin(sort_permutation,’\\cite{Zhou97}’,[]).

ctr_usual_name(sort_permutation,sort).

ctr_arguments(
sort_permutation,
[’FROM’-collection(var-dvar),
’PERMUTATION’-collection(var-dvar),
’TO’-collection(var-dvar)]).

ctr_restrictions(
sort_permutation,
[size(’PERMUTATION’)=size(’FROM’),
size(’PERMUTATION’)=size(’TO’),
’PERMUTATION’ˆvar>=1,
’PERMUTATION’ˆvar=<size(’PERMUTATION’),
alldifferent(’PERMUTATION’),
required(’FROM’,var),
required(’PERMUTATION’,var),
required(’TO’,var)]).

ctr_derived_collections(
sort_permutation,
[col(’FROM_PERMUTATION’-collection(var-dvar,ind-dvar),

[item(var-’FROM’ˆvar,ind-’PERMUTATION’ˆvar)])]).

ctr_graph(
sort_permutation,
[’FROM_PERMUTATION’,’TO’],
2,
[’PRODUCT’>>collection(from_permutation,to)],
[from_permutationˆvar=toˆvar,from_permutationˆind=toˆkey],
[’NARC’=size(’PERMUTATION’)]).

ctr_graph(
sort_permutation,
[’TO’],
2,
[’PATH’>>collection(to1,to2)],
[to1ˆvar=<to2ˆvar],
[’NARC’=size(’TO’)-1]).
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ctr_example(
sort_permutation,
sort_permutation(

[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]],
[[var-1],[var-6],[var-3],[var-5],[var-4],[var-2]],
[[var-1],[var-1],[var-1],[var-2],[var-5],[var-9]])).
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B.204 stage element

ctr_automaton(stage_element,stage_element).

ctr_date(stage_element,[’20040828’]).

ctr_origin(stage_element,’CHOCO, derived from %c.’,[element]).

ctr_usual_name(stage_element,stage_elt).

ctr_arguments(
stage_element,
[’ITEM’-collection(index-dvar,value-dvar),
’TABLE’-collection(low-int,up-int,value-int)]).

ctr_restrictions(
stage_element,
[required(’ITEM’,[index,value]),
size(’ITEM’)=1,
required(’TABLE’,[low,up,value])]).

ctr_graph(
stage_element,
[’TABLE’],
2,
[’PATH’>>collection(table1,table2)],
[table1ˆlow=<table1ˆup,
table1ˆup+1=table2ˆlow,
table2ˆlow=<table2ˆup],

[’NARC’=size(’TABLE’)-1]).

ctr_graph(
stage_element,
[’ITEM’,’TABLE’],
2,
[’PRODUCT’>>collection(item,table)],
[itemˆindex>=tableˆlow,
itemˆindex=<tableˆup,
itemˆvalue=tableˆvalue],

[’NARC’=1]).

ctr_example(
stage_element,
stage_element(

[[index-5,value-6]],
[[low-3,up-7,value-6],
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[low-8,up-8,value-9],
[low-9,up-14,value-2],
[low-15,up-19,value-9]])).

stage_element(A,B) :-
A=[[index-C,value-D]],
stage_element_signature(B,E,C,D),
automaton(

E,
F,
E,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t)],
[],
[],
[]).

stage_element_signature([],[],A,B).

stage_element_signature([[low-A,up-B,value-C]|D],[E|F],G,H) :-
A#=<G#/\G#=<B#/\H#=C#<=>E,
stage_element_signature(D,F,G,H).
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B.205 stretch circuit

ctr_date(stretch_circuit,[’20030820’]).

ctr_origin(stretch_circuit,’\\cite{Pesant01}’,[]).

ctr_usual_name(stretch_circuit,stretch).

ctr_arguments(
stretch_circuit,
[’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int,lmin-int,lmax-int)]).

ctr_restrictions(
stretch_circuit,
[size(’VARIABLES’)>0,
required(’VARIABLES’,var),
size(’VALUES’)>0,
required(’VALUES’,[val,lmin,lmax]),
distinct(’VALUES’,val),
’VALUES’ˆlmin=<’VALUES’ˆlmax]).

ctr_graph(
stretch_circuit,
[’VARIABLES’],
2,
foreach(

’VALUES’,
[’CIRCUIT’>>collection(variables1,variables2),
’LOOP’>>collection(variables1,variables2)]),

[variables1ˆvar=’VALUES’ˆval,variables2ˆvar=’VALUES’ˆval],
[not_in(’MIN_NCC’,1,’VALUES’ˆlmin-1),
’MAX_NCC’=<’VALUES’ˆlmax]).

ctr_example(
stretch_circuit,
stretch_circuit(

[[var-6],
[var-6],
[var-3],
[var-1],
[var-1],
[var-1],
[var-6],
[var-6]],

[[val-1,lmin-2,lmax-4],
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[val-2,lmin-2,lmax-3],
[val-3,lmin-1,lmax-6],
[val-6,lmin-2,lmax-4]])).
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B.206 stretch path

ctr_date(stretch_path,[’20030820’]).

ctr_origin(stretch_path,’\\cite{Pesant01}’,[]).

ctr_usual_name(stretch_path,stretch).

ctr_arguments(
stretch_path,
[’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int,lmin-int,lmax-int)]).

ctr_restrictions(
stretch_path,
[size(’VARIABLES’)>0,
required(’VARIABLES’,var),
size(’VALUES’)>0,
required(’VALUES’,[val,lmin,lmax]),
distinct(’VALUES’,val),
’VALUES’ˆlmin=<’VALUES’ˆlmax]).

ctr_graph(
stretch_path,
[’VARIABLES’],
2,
foreach(

’VALUES’,
[’PATH’>>collection(variables1,variables2),
’LOOP’>>collection(variables1,variables2)]),

[variables1ˆvar=’VALUES’ˆval,variables2ˆvar=’VALUES’ˆval],
[not_in(’MIN_NCC’,1,’VALUES’ˆlmin-1),
’MAX_NCC’=<’VALUES’ˆlmax]).

ctr_example(
stretch_path,
stretch_path(

[[var-6],
[var-6],
[var-3],
[var-1],
[var-1],
[var-1],
[var-6],
[var-6]],

[[val-1,lmin-2,lmax-4],
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[val-2,lmin-2,lmax-3],
[val-3,lmin-1,lmax-6],
[val-6,lmin-2,lmax-2]])).
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B.207 strict lex2
ctr_predefined(strict_lex2).

ctr_date(strict_lex2,[’20031016’]).

ctr_origin(
strict_lex2,
’\\cite{FlenerFrischHnichKiziltanMiguelPearsonWalsh02}’,
[]).

ctr_types(strict_lex2,[’VECTOR’-collection(var-dvar)]).

ctr_arguments(strict_lex2,[’MATRIX’-collection(vec-’VECTOR’)]).

ctr_restrictions(
strict_lex2,
[required(’VECTOR’,var),
required(’MATRIX’,vec),
same_size(’MATRIX’,vec)]).

ctr_example(
strict_lex2,
strict_lex2(

[[vec-[[var-2],[var-2],[var-3]]],
[vec-[[var-2],[var-3],[var-1]]]])).
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B.208 strictly decreasing

ctr_automaton(strictly_decreasing,strictly_decreasing).

ctr_date(strictly_decreasing,[’20040814’]).

ctr_origin(
strictly_decreasing,
’Derived from %c.’,
[strictly_increasing]).

ctr_arguments(
strictly_decreasing,
[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
strictly_decreasing,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_graph(
strictly_decreasing,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[variables1ˆvar>variables2ˆvar],
[’NARC’=size(’VARIABLES’)-1]).

ctr_example(
strictly_decreasing,
strictly_decreasing([[var-8],[var-4],[var-3],[var-1]])).

strictly_decreasing(A) :-
strictly_decreasing_signature(A,B),
automaton(

B,
C,
B,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,$,t)],
[],
[],
[]).

strictly_decreasing_signature([A],[]).
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strictly_decreasing_signature([[var-A],[var-B]|C],[D|E]) :-
in(D,0..1),
A#=<B#<=>D,
strictly_decreasing_signature([[var-B]|C],E).
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B.209 strictly increasing

ctr_automaton(strictly_increasing,strictly_increasing).

ctr_date(strictly_increasing,[’20040814’]).

ctr_origin(strictly_increasing,’KOALOG’,[]).

ctr_arguments(
strictly_increasing,
[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
strictly_increasing,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_graph(
strictly_increasing,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[variables1ˆvar<variables2ˆvar],
[’NARC’=size(’VARIABLES’)-1]).

ctr_example(
strictly_increasing,
strictly_increasing([[var-1],[var-3],[var-4],[var-8]])).

strictly_increasing(A) :-
strictly_increasing_signature(A,B),
automaton(

B,
C,
B,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,$,t)],
[],
[],
[]).

strictly_increasing_signature([A],[]).

strictly_increasing_signature([[var-A],[var-B]|C],[D|E]) :-
in(D,0..1),
A#>=B#<=>D,
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strictly_increasing_signature([[var-B]|C],E).
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B.210 strongly connected
ctr_date(strongly_connected,[’20030820’,’20040726’]).

ctr_origin(
strongly_connected,
’\\cite{AlthausBockmayrElfKasperJungerMehlhorn02}’,
[]).

ctr_arguments(
strongly_connected,
[’NODES’-collection(index-int,succ-svar)]).

ctr_restrictions(
strongly_connected,
[required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index)]).

ctr_graph(
strongly_connected,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[in_set(nodes2ˆindex,nodes1ˆsucc)],
[’MIN_NSCC’=size(’NODES’)]).

ctr_example(
strongly_connected,
strongly_connected(

[[index-1,succ-{2}],
[index-2,succ-{3}],
[index-3,succ-{2,5}],
[index-4,succ-{1}],
[index-5,succ-{4}]])).



1297

B.211 sum
ctr_date(sum,[’20030820’,’20040726’]).

ctr_origin(sum,’\\cite{Yunes02}.’,[]).

ctr_arguments(
sum,
[’INDEX’-dvar,
’SETS’-collection(ind-int,set-sint),
’CONSTANTS’-collection(cst-int),
’S’-dvar]).

ctr_restrictions(
sum,
[size(’SETS’)>=1,
required(’SETS’,[ind,set]),
distinct(’SETS’,ind),
size(’CONSTANTS’)>=1,
required(’CONSTANTS’,cst)]).

ctr_graph(
sum,
[’SETS’,’CONSTANTS’],
2,
[’PRODUCT’>>collection(sets,constants)],
[’INDEX’=setsˆind,in_set(constantsˆkey,setsˆset)],
[’SUM’(’CONSTANTS’,cst)=’S’]).

ctr_example(
sum,
sum(8,

[[ind-8,set-{2,3}],
[ind-1,set-{3}],
[ind-3,set-{1,4,5}],
[ind-6,set-{2,4}]],

[[cst-4],[cst-9],[cst-1],[cst-3],[cst-1]],
10)).
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B.212 sum ctr
ctr_date(sum_ctr,[’20030820’,’20040807’]).

ctr_origin(sum_ctr,’Arithmetic constraint.’,[]).

ctr_synonyms(sum_ctr,[constant_sum]).

ctr_arguments(
sum_ctr,
[’VARIABLES’-collection(var-dvar),’CTR’-atom,’VAR’-dvar]).

ctr_restrictions(
sum_ctr,
[required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
sum_ctr,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[’TRUE’],
[’CTR’(’SUM’(’VARIABLES’,var),’VAR’)]).

ctr_example(sum_ctr,sum_ctr([[var-1],[var-1],[var-4]],=,6)).
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B.213 sum of weights of distinct values
ctr_date(

sum_of_weights_of_distinct_values,
[’20030820’,’20040726’]).

ctr_origin(
sum_of_weights_of_distinct_values,
’\\cite{BeldiceanuCarlssonThiel02}’,
[]).

ctr_synonyms(sum_of_weights_of_distinct_values,[swdv]).

ctr_arguments(
sum_of_weights_of_distinct_values,
[’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int,weight-int),
’COST’-dvar]).

ctr_restrictions(
sum_of_weights_of_distinct_values,
[required(’VARIABLES’,var),
required(’VALUES’,[val,weight]),
’VALUES’ˆweight>=0,
distinct(’VALUES’,val),
’COST’>=0]).

ctr_graph(
sum_of_weights_of_distinct_values,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=valuesˆval],
[’NSOURCE’=size(’VARIABLES’),
’SUM’(’VALUES’,weight)=’COST’]).

ctr_example(
sum_of_weights_of_distinct_values,
sum_of_weights_of_distinct_values(

[[var-1],[var-6],[var-1]],
[[val-1,weight-5],[val-2,weight-3],[val-6,weight-7]],
12)).
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B.214 sum set
ctr_date(sum_set,[’20031001’]).

ctr_origin(sum_set,’H.˜Cambazard’,[]).

ctr_arguments(
sum_set,
[’SV’-svar,
’VALUES’-collection(val-int,coef-int),
’CTR’-atom,
’VAR’-dvar]).

ctr_restrictions(
sum_set,
[required(’VALUES’,[val,coef]),
distinct(’VALUES’,val),
’VALUES’ˆcoef>=0,
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
sum_set,
[’VALUES’],
1,
[’SELF’>>collection(values)],
[in_set(valuesˆval,’SV’)],
[’CTR’(’SUM’(’VALUES’,coef),’VAR’)]).

ctr_example(
sum_set,
sum_set(

{2,3,6},
[[val-2,coef-7],
[val-9,coef-1],
[val-5,coef-7],
[val-6,coef-2]],

=,
9)).
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B.215 symmetric alldifferent
ctr_date(symmetric_alldifferent,[’20000128’,’20030820’]).

ctr_origin(symmetric_alldifferent,’\\cite{Regin99}’,[]).

ctr_synonyms(
symmetric_alldifferent,
[symmetric_alldiff,
symmetric_alldistinct,
symm_alldifferent,
symm_alldiff,
symm_alldistinct,
one_factor]).

ctr_arguments(
symmetric_alldifferent,
[’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
symmetric_alldifferent,
[required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_graph(
symmetric_alldifferent,
[’NODES’],
2,
[’CLIQUE’(=\=)>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex,nodes2ˆsucc=nodes1ˆindex],
[’NARC’=size(’NODES’)]).

ctr_example(
symmetric_alldifferent,
symmetric_alldifferent(

[[index-1,succ-3],
[index-2,succ-4],
[index-3,succ-1],
[index-4,succ-2]])).
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B.216 symmetric cardinality

ctr_date(symmetric_cardinality,[’20040530’]).

ctr_origin(
symmetric_cardinality,
’Derived from %c by W.˜Kocjan.’,
[global_cardinality]).

ctr_arguments(
symmetric_cardinality,
[’VARS’-collection(idvar-int,var-svar,l-int,u-int),
’VALS’-collection(idval-int,val-svar,l-int,u-int)]).

ctr_restrictions(
symmetric_cardinality,
[required(’VARS’,[idvar,var,l,u]),
size(’VARS’)>=1,
’VARS’ˆidvar>=1,
’VARS’ˆidvar=<size(’VARS’),
distinct(’VARS’,idvar),
’VARS’ˆl>=0,
’VARS’ˆl=<’VARS’ˆu,
’VARS’ˆu=<size(’VALS’),
required(’VALS’,[idval,val,l,u]),
size(’VALS’)>=1,
’VALS’ˆidval>=1,
’VALS’ˆidval=<size(’VALS’),
distinct(’VALS’,idval),
’VALS’ˆl>=0,
’VALS’ˆl=<’VALS’ˆu,
’VALS’ˆu=<size(’VARS’)]).

ctr_graph(
symmetric_cardinality,
[’VARS’,’VALS’],
2,
[’PRODUCT’>>collection(vars,vals)],
[#<=>(

in_set(varsˆidvar,valsˆval),
in_set(valsˆidval,varsˆvar)),

varsˆl=<card_set(varsˆvar),
varsˆu>=card_set(varsˆvar),
valsˆl=<card_set(valsˆval),
valsˆu>=card_set(valsˆval)],

[’NARC’=size(’VARS’)*size(’VALS’)]).
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ctr_example(
symmetric_cardinality,
symmetric_cardinality(

[[idvar-1,var-{3},l-0,u-1],
[idvar-2,var-{1},l-1,u-2],
[idvar-3,var-{1,2},l-1,u-2],
[idvar-4,var-{1,3},l-2,u-3]],

[[idval-1,val-{2,3,4},l-3,u-4],
[idval-2,val-{3},l-1,u-1],
[idval-3,val-{1,4},l-1,u-2],
[idval-4,val-{},l-0,u-1]])).
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B.217 symmetric gcc

ctr_date(symmetric_gcc,[’20030820’,’20040530’]).

ctr_origin(
symmetric_gcc,
’Derived from %c by W.˜Kocjan.’,
[global_cardinality]).

ctr_synonyms(symmetric_gcc,[sgcc]).

ctr_arguments(
symmetric_gcc,
[’VARS’-collection(idvar-int,var-svar,nocc-dvar),
’VALS’-collection(idval-int,val-svar,nocc-dvar)]).

ctr_restrictions(
symmetric_gcc,
[required(’VARS’,[idvar,var,nocc]),
size(’VARS’)>=1,
’VARS’ˆidvar>=1,
’VARS’ˆidvar=<size(’VARS’),
distinct(’VARS’,idvar),
’VARS’ˆnocc>=0,
’VARS’ˆnocc=<size(’VALS’),
required(’VALS’,[idval,val,nocc]),
size(’VALS’)>=1,
’VALS’ˆidval>=1,
’VALS’ˆidval=<size(’VALS’),
distinct(’VALS’,idval),
’VALS’ˆnocc>=0,
’VALS’ˆnocc=<size(’VARS’)]).

ctr_graph(
symmetric_gcc,
[’VARS’,’VALS’],
2,
[’PRODUCT’>>collection(vars,vals)],
[#<=>(

in_set(varsˆidvar,valsˆval),
in_set(valsˆidval,varsˆvar)),

varsˆnocc=card_set(varsˆvar),
valsˆnocc=card_set(valsˆval)],

[’NARC’=size(’VARS’)*size(’VALS’)]).

ctr_example(
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symmetric_gcc,
symmetric_gcc(

[[idvar-1,var-{3},nocc-1],
[idvar-2,var-{1},nocc-1],
[idvar-3,var-{1,2},nocc-2],
[idvar-4,var-{1,3},nocc-2]],

[[idval-1,val-{2,3,4},nocc-3],
[idval-2,val-{3},nocc-1],
[idval-3,val-{1,4},nocc-2],
[idval-4,val-{},nocc-0]])).
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B.218 temporal path

ctr_date(temporal_path,[’20000128’,’20030820’]).

ctr_origin(temporal_path,’ILOG’,[]).

ctr_arguments(
temporal_path,
[’NPATH’-dvar,
-(’NODES’,

collection(index-int,succ-dvar,start-dvar,end-dvar))]).

ctr_restrictions(
temporal_path,
[’NPATH’>=1,
’NPATH’=<size(’NODES’),
required(’NODES’,[index,succ,start,end]),
size(’NODES’)>0,
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_graph(
temporal_path,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex,
nodes1ˆsucc=nodes1ˆindex#\/nodes1ˆend=<nodes2ˆstart,
nodes1ˆstart=<nodes1ˆend,
nodes2ˆstart=<nodes2ˆend],

[’MAX_ID’=1,’NCC’=’NPATH’,’NVERTEX’=size(’NODES’)]).

ctr_example(
temporal_path,
temporal_path(

2,
[[index-1,succ-2,start-0,end-1],
[index-2,succ-6,start-3,end-5],
[index-3,succ-4,start-0,end-3],
[index-4,succ-5,start-4,end-6],
[index-5,succ-7,start-7,end-8],
[index-6,succ-6,start-7,end-9],
[index-7,succ-7,start-9,end-10]])).
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B.219 tour

ctr_date(tour,[’20030820’]).

ctr_origin(
tour,
’\\cite{AlthausBockmayrElfKasperJungerMehlhorn02}’,
[]).

ctr_synonyms(tour,[atour,cycle]).

ctr_arguments(tour,[’NODES’-collection(index-int,succ-svar)]).

ctr_restrictions(
tour,
[size(’NODES’)>=3,
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index)]).

ctr_graph(
tour,
[’NODES’],
2,
[’CLIQUE’(=\=)>>collection(nodes1,nodes2)],
[#<=>(

in_set(nodes2ˆindex,nodes1ˆsucc),
in_set(nodes1ˆindex,nodes2ˆsucc))],

[’NARC’=size(’NODES’)*size(’NODES’)-size(’NODES’)]).

ctr_graph(
tour,
[’NODES’],
2,
[’CLIQUE’(=\=)>>collection(nodes1,nodes2)],
[in_set(nodes2ˆindex,nodes1ˆsucc)],
[’MIN_NSCC’=size(’NODES’),
’MIN_ID’=2,
’MAX_ID’=2,
’MIN_OD’=2,
’MAX_OD’=2]).

ctr_example(
tour,
tour(
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[[index-1,succ-{2,4}],
[index-2,succ-{1,3}],
[index-3,succ-{2,4}],
[index-4,succ-{1,3}]])).
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B.220 track

ctr_date(track,[’20030820’]).

ctr_origin(track,’\\cite{Marte01}’,[]).

ctr_arguments(
track,
[’NTRAIL’-int,
’TASKS’-collection(trail-int,origin-dvar,end-dvar)]).

ctr_restrictions(
track,
[’NTRAIL’>0,
required(’TASKS’,[trail,origin,end]),
’TASKS’ˆtrail>0,
’TASKS’ˆtrail=<’NTRAIL’]).

ctr_derived_collections(
track,
[col(-(’TIME_POINTS’,

collection(origin-dvar,end-dvar,point-dvar)),
[item(

origin-’TASKS’ˆorigin,
end-’TASKS’ˆend,
point-’TASKS’ˆorigin),

item(
origin-’TASKS’ˆorigin,
end-’TASKS’ˆend,
point-’TASKS’ˆend-1)])]).

ctr_graph(
track,
[’TASKS’],
1,
[’SELF’>>collection(tasks)],
[tasksˆorigin=<tasksˆend],
[’NARC’=size(’TASKS’)]).

ctr_graph(
track,
[’TIME_POINTS’,’TASKS’],
2,
[’PRODUCT’>>collection(time_points,tasks)],
[time_pointsˆend>time_pointsˆorigin,
tasksˆorigin=<time_pointsˆpoint,
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time_pointsˆpoint<tasksˆend],
[],
[>>(’SUCC’,

[source,
-(variables,

col(’VARIABLES’-collection(var-dvar),
[item(var-’TASKS’ˆtrail)]))])],

[nvalue(’NTRAIL’,variables)]).

ctr_example(
track,
track(

2,
[[trail-1,origin-1,end-2],
[trail-2,origin-1,end-2],
[trail-1,origin-2,end-4],
[trail-2,origin-2,end-3],
[trail-2,origin-3,end-4]])).
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B.221 tree
ctr_date(tree,[’20000128’,’20030820’]).

ctr_origin(tree,’N.˜Beldiceanu’,[]).

ctr_arguments(
tree,
[’NTREES’-dvar,’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
tree,
[’NTREES’>=0,
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_graph(
tree,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’MAX_NSCC’=<1,’NCC’=’NTREES’]).

ctr_example(
tree,
tree(

2,
[[index-1,succ-1],
[index-2,succ-5],
[index-3,succ-5],
[index-4,succ-7],
[index-5,succ-1],
[index-6,succ-1],
[index-7,succ-7],
[index-8,succ-5]])).
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B.222 tree range

ctr_date(tree_range,[’20030820’,’20040727’]).

ctr_origin(tree_range,’Derived from %c.’,[tree]).

ctr_arguments(
tree_range,
[’NTREES’-dvar,
’R’-dvar,
’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
tree_range,
[’NTREES’>=0,
’R’>=0,
’R’<size(’NODES’),
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_graph(
tree_range,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’MAX_NSCC’=<1,’NCC’=’NTREES’,’RANGE_DRG’=’R’]).

ctr_example(
tree_range,
tree_range(

2,
1,
[[index-1,succ-1],
[index-2,succ-5],
[index-3,succ-5],
[index-4,succ-7],
[index-5,succ-1],
[index-6,succ-1],
[index-7,succ-7],
[index-8,succ-5]])).
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B.223 tree resource

ctr_date(tree_resource,[’20030820’]).

ctr_origin(tree_resource,’Derived from %c.’,[tree]).

ctr_arguments(
tree_resource,
[’RESOURCE’-collection(id-int,nb_task-dvar),
’TASK’-collection(id-int,father-dvar,resource-dvar)]).

ctr_restrictions(
tree_resource,
[required(’RESOURCE’,[id,nb_task]),
’RESOURCE’ˆid>=1,
’RESOURCE’ˆid=<size(’RESOURCE’),
distinct(’RESOURCE’,id),
’RESOURCE’ˆnb_task>=0,
’RESOURCE’ˆnb_task=<size(’TASK’),
required(’TASK’,[id,father,resource]),
’TASK’ˆid>size(’RESOURCE’),
’TASK’ˆid=<size(’RESOURCE’)+size(’TASK’),
distinct(’TASK’,id),
’TASK’ˆfather>=1,
’TASK’ˆfather=<size(’RESOURCE’)+size(’TASK’),
’TASK’ˆresource>=1,
’TASK’ˆresource=<size(’RESOURCE’)]).

ctr_derived_collections(
tree_resource,
[col(-(’RESOURCE_TASK’,

collection(index-int,succ-dvar,name-dvar)),
[item(

index-’RESOURCE’ˆid,
succ-’RESOURCE’ˆid,
name-’RESOURCE’ˆid),

item(
index-’TASK’ˆid,
succ-’TASK’ˆfather,
name-’TASK’ˆresource)])]).

ctr_graph(
tree_resource,
[’RESOURCE_TASK’],
2,
[’CLIQUE’>>collection(resource_task1,resource_task2)],
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[resource_task1ˆsucc=resource_task2ˆindex,
resource_task1ˆname=resource_task2ˆname],

[’MAX_NSCC’=<1,
’NCC’=size(’RESOURCE’),
’NVERTEX’=size(’RESOURCE’)+size(’TASK’)]).

ctr_graph(
tree_resource,
[’RESOURCE_TASK’],
2,
foreach(

’RESOURCE’,
[’CLIQUE’>>collection(resource_task1,resource_task2)]),

[resource_task1ˆsucc=resource_task2ˆindex,
resource_task1ˆname=resource_task2ˆname,
resource_task1ˆname=’RESOURCE’ˆid],

[’NVERTEX’=’RESOURCE’ˆnb_task+1]).

ctr_example(
tree_resource,
tree_resource(

[[id-1,nb_task-4],[id-2,nb_task-0],[id-3,nb_task-1]],
[[id-4,father-8,resource-1],
[id-5,father-3,resource-3],
[id-6,father-8,resource-1],
[id-7,father-1,resource-1],
[id-8,father-1,resource-1]])).
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B.224 two layer edge crossing

ctr_date(two_layer_edge_crossing,[’20030820’]).

ctr_origin(
two_layer_edge_crossing,
’Inspired by \\cite{HararySchwenk72}.’,
[]).

ctr_arguments(
two_layer_edge_crossing,
[’NCROSS’-dvar,
’VERTICES_LAYER1’-collection(id-int,pos-dvar),
’VERTICES_LAYER2’-collection(id-int,pos-dvar),
’EDGES’-collection(id-int,vertex1-int,vertex2-int)]).

ctr_restrictions(
two_layer_edge_crossing,
[’NCROSS’>=0,
required(’VERTICES_LAYER1’,[id,pos]),
’VERTICES_LAYER1’ˆid>=1,
’VERTICES_LAYER1’ˆid=<size(’VERTICES_LAYER1’),
distinct(’VERTICES_LAYER1’,id),
required(’VERTICES_LAYER2’,[id,pos]),
’VERTICES_LAYER2’ˆid>=1,
’VERTICES_LAYER2’ˆid=<size(’VERTICES_LAYER2’),
distinct(’VERTICES_LAYER2’,id),
required(’EDGES’,[id,vertex1,vertex2]),
’EDGES’ˆid>=1,
’EDGES’ˆid=<size(’EDGES’),
distinct(’EDGES’,id),
’EDGES’ˆvertex1>=1,
’EDGES’ˆvertex1=<size(’VERTICES_LAYER1’),
’EDGES’ˆvertex2>=1,
’EDGES’ˆvertex2=<size(’VERTICES_LAYER2’)]).

ctr_derived_collections(
two_layer_edge_crossing,
[col(-(’EDGES_EXTREMITIES’,

collection(layer1-dvar,layer2-dvar)),
[item(

-(layer1,
’EDGES’ˆvertex1(’VERTICES_LAYER1’,pos,id)),

-(layer2,
’EDGES’ˆvertex2(’VERTICES_LAYER2’,pos,id)))])]).
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ctr_graph(
two_layer_edge_crossing,
[’EDGES_EXTREMITIES’],
2,
[>>(’CLIQUE’(<),

collection(edges_extremities1,edges_extremities2))],
[#\/(#/\(<(edges_extremities1ˆlayer1,

edges_extremities2ˆlayer1),
>(edges_extremities1ˆlayer2,

edges_extremities2ˆlayer2)),
#/\(>(edges_extremities1ˆlayer1,

edges_extremities2ˆlayer1),
<(edges_extremities1ˆlayer2,

edges_extremities2ˆlayer2)))],
[’NARC’=’NCROSS’]).

ctr_example(
two_layer_edge_crossing,
two_layer_edge_crossing(

2,
[[id-1,pos-1],[id-2,pos-2]],
[[id-1,pos-3],[id-2,pos-1],[id-3,pos-2]],
[[id-1,vertex1-2,vertex2-2],
[id-2,vertex1-2,vertex2-3],
[id-3,vertex1-1,vertex2-1]])).
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B.225 two orth are in contact

ctr_automaton(two_orth_are_in_contact,two_orth_are_in_contact).

ctr_date(two_orth_are_in_contact,[’20030820’,’20040530’]).

ctr_origin(
two_orth_are_in_contact,
’Used for defining %c.’,
[orths_are_connected]).

ctr_types(
two_orth_are_in_contact,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
two_orth_are_in_contact,
[’ORTHOTOPE1’-’ORTHOTOPE’,’ORTHOTOPE2’-’ORTHOTOPE’]).

ctr_restrictions(
two_orth_are_in_contact,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>0,
size(’ORTHOTOPE1’)=size(’ORTHOTOPE2’),
orth_link_ori_siz_end(’ORTHOTOPE1’),
orth_link_ori_siz_end(’ORTHOTOPE2’)]).

ctr_graph(
two_orth_are_in_contact,
[’ORTHOTOPE1’,’ORTHOTOPE2’],
2,
[’PRODUCT’(=)>>collection(orthotope1,orthotope2)],
[orthotope1ˆend>orthotope2ˆori,
orthotope2ˆend>orthotope1ˆori],

[’NARC’=size(’ORTHOTOPE1’)-1]).

ctr_graph(
two_orth_are_in_contact,
[’ORTHOTOPE1’,’ORTHOTOPE2’],
2,
[’PRODUCT’(=)>>collection(orthotope1,orthotope2)],
[=(max(0,

-(max(orthotope1ˆori,orthotope2ˆori),
min(orthotope1ˆend,orthotope2ˆend))),

0)],



1319

[’NARC’=size(’ORTHOTOPE1’)]).

ctr_example(
two_orth_are_in_contact,
two_orth_are_in_contact(

[[ori-1,siz-3,end-4],[ori-5,siz-2,end-7]],
[[ori-3,siz-2,end-5],[ori-2,siz-3,end-5]])).

two_orth_are_in_contact(A,B) :-
two_orth_are_in_contact_signature(A,B,C),
automaton(

C,
D,
C,
0..2,
[source(s),node(z),sink(t)],
[arc(s,0,s),arc(s,1,z),arc(z,0,z),arc(z,$,t)],
[],
[],
[]).

two_orth_are_in_contact_signature([],[],[]).

two_orth_are_in_contact_signature(
[[ori-A,siz-B,end-C]|D],
[[ori-E,siz-F,end-G]|H],
[I|J]) :-

in(I,0..2),
B#>0#/\F#>0#/\C#>E#/\G#>A#<=>I#=0,
B#>0#/\F#>0#/\(C#=E#\/G#=A)#<=>I#=1,
two_orth_are_in_contact_signature(D,H,J).



1320 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.226 two orth column

ctr_date(two_orth_column,[’20030820’]).

ctr_origin(
two_orth_column,
’Used for defining %c.’,
[diffn_column]).

ctr_types(
two_orth_column,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
two_orth_column,
[’ORTHOTOPE1’-’ORTHOTOPE’,
’ORTHOTOPE2’-’ORTHOTOPE’,
’N’-int]).

ctr_restrictions(
two_orth_column,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
size(’ORTHOTOPE1’)=size(’ORTHOTOPE2’),
orth_link_ori_siz_end(’ORTHOTOPE1’),
orth_link_ori_siz_end(’ORTHOTOPE2’),
’N’>0,
’N’=<size(’ORTHOTOPE1’)]).

ctr_graph(
two_orth_column,
[’ORTHOTOPE1’,’ORTHOTOPE2’],
2,
[’PRODUCT’(=)>>collection(orthotope1,orthotope2)],
[#=>(#/\(#/\(#/\(#/\(orthotope1ˆkey=’N’,

orthotope1ˆori<orthotope2ˆend),
orthotope2ˆori<orthotope1ˆend),

orthotope1ˆsiz>0),
orthotope2ˆsiz>0),

#/\(=(-(min(orthotope1ˆend,orthotope2ˆend),
max(orthotope1ˆori,orthotope2ˆori)),

orthotope1ˆsiz),
orthotope1ˆsiz=orthotope2ˆsiz))],

[’NARC’=1]).
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ctr_example(
two_orth_column,
two_orth_column(

[[ori-1,siz-3,end-4],[ori-1,siz-1,end-2]],
[[ori-4,siz-2,end-6],[ori-1,siz-3,end-4]],
1)).
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B.227 two orth do not overlap

ctr_automaton(two_orth_do_not_overlap,two_orth_do_not_overlap).

ctr_date(two_orth_do_not_overlap,[’20030820’,’20040530’]).

ctr_origin(
two_orth_do_not_overlap,
’Used for defining %c.’,
[diffn]).

ctr_types(
two_orth_do_not_overlap,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
two_orth_do_not_overlap,
[’ORTHOTOPE1’-’ORTHOTOPE’,’ORTHOTOPE2’-’ORTHOTOPE’]).

ctr_restrictions(
two_orth_do_not_overlap,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
size(’ORTHOTOPE1’)=size(’ORTHOTOPE2’),
orth_link_ori_siz_end(’ORTHOTOPE1’),
orth_link_ori_siz_end(’ORTHOTOPE2’)]).

ctr_graph(
two_orth_do_not_overlap,
[’ORTHOTOPE1’,’ORTHOTOPE2’],
2,
[>>(’SYMMETRIC_PRODUCT’(=),

collection(orthotope1,orthotope2))],
[orthotope1ˆend=<orthotope2ˆori#\/orthotope1ˆsiz=0],
[’NARC’>=1]).

ctr_example(
two_orth_do_not_overlap,
two_orth_do_not_overlap(

[[ori-2,siz-2,end-4],[ori-1,siz-3,end-4]],
[[ori-4,siz-4,end-8],[ori-3,siz-3,end-6]])).

two_orth_do_not_overlap(A,B) :-
two_orth_do_not_overlap_signature(A,B,C),
automaton(
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C,
D,
C,
0..1,
[source(s),sink(t)],
[arc(s,1,s),arc(s,0,t)],
[],
[],
[]).

two_orth_do_not_overlap_signature([],[],[]).

two_orth_do_not_overlap_signature(
[[ori-A,siz-B,end-C]|D],
[[ori-E,siz-F,end-G]|H],
[I|J]) :-

B#>0#/\F#>0#/\C#>E#/\G#>A#<=>I,
two_orth_do_not_overlap_signature(D,H,J).
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B.228 two orth include

ctr_date(two_orth_include,[’20030820’]).

ctr_origin(
two_orth_include,
’Used for defining %c.’,
[diffn_include]).

ctr_types(
two_orth_include,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
two_orth_include,
[’ORTHOTOPE1’-’ORTHOTOPE’,
’ORTHOTOPE2’-’ORTHOTOPE’,
’N’-int]).

ctr_restrictions(
two_orth_include,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
size(’ORTHOTOPE1’)=size(’ORTHOTOPE2’),
orth_link_ori_siz_end(’ORTHOTOPE1’),
orth_link_ori_siz_end(’ORTHOTOPE2’),
’N’>0,
’N’=<size(’ORTHOTOPE1’)]).

ctr_graph(
two_orth_include,
[’ORTHOTOPE1’,’ORTHOTOPE2’],
2,
[’PRODUCT’(=)>>collection(orthotope1,orthotope2)],
[#=>(#/\(#/\(#/\(#/\(orthotope1ˆkey=’N’,

orthotope1ˆori<orthotope2ˆend),
orthotope2ˆori<orthotope1ˆend),

orthotope1ˆsiz>0),
orthotope2ˆsiz>0),

#\/(=(-(min(orthotope1ˆend,orthotope2ˆend),
max(orthotope1ˆori,orthotope2ˆori)),

orthotope1ˆsiz),
=(-(min(orthotope1ˆend,orthotope2ˆend),

max(orthotope1ˆori,orthotope2ˆori)),
orthotope2ˆsiz)))],
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[’NARC’=1]).

ctr_example(
two_orth_include,
two_orth_include(

[[ori-1,siz-3,end-4],[ori-1,siz-1,end-2]],
[[ori-1,siz-2,end-3],[ori-2,siz-3,end-5]],
1)).
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B.229 used by
ctr_date(used_by,[’20000128’,’20030820’,’20040530’]).

ctr_origin(used_by,’N.˜Beldiceanu’,[]).

ctr_arguments(
used_by,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
used_by,
[size(’VARIABLES1’)>=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var)]).

ctr_graph(
used_by,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[for_all(’CC’,’NSOURCE’>=’NSINK’),
’NSINK’=size(’VARIABLES2’)]).

ctr_example(
used_by,
used_by(

[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]],
[[var-1],[var-1],[var-2],[var-5]])).
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B.230 used by interval
ctr_date(used_by_interval,[’20030820’]).

ctr_origin(used_by_interval,’Derived from %c.’,[used_by]).

ctr_arguments(
used_by_interval,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’SIZE_INTERVAL’-int]).

ctr_restrictions(
used_by_interval,
[size(’VARIABLES1’)>=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’SIZE_INTERVAL’>0]).

ctr_graph(
used_by_interval,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[=(variables1ˆvar/’SIZE_INTERVAL’,

variables2ˆvar/’SIZE_INTERVAL’)],
[for_all(’CC’,’NSOURCE’>=’NSINK’),
’NSINK’=size(’VARIABLES2’)]).

ctr_example(
used_by_interval,
used_by_interval(

[[var-1],[var-9],[var-1],[var-8],[var-6],[var-2]],
[[var-1],[var-0],[var-7],[var-7]],
3)).
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B.231 used by modulo
ctr_date(used_by_modulo,[’20030820’]).

ctr_origin(used_by_modulo,’Derived from %c.’,[used_by]).

ctr_arguments(
used_by_modulo,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’M’-int]).

ctr_restrictions(
used_by_modulo,
[size(’VARIABLES1’)>=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’M’>0]).

ctr_graph(
used_by_modulo,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar mod ’M’=variables2ˆvar mod ’M’],
[for_all(’CC’,’NSOURCE’>=’NSINK’),
’NSINK’=size(’VARIABLES2’)]).

ctr_example(
used_by_modulo,
used_by_modulo(

[[var-1],[var-9],[var-4],[var-5],[var-2],[var-1]],
[[var-7],[var-1],[var-2],[var-5]],
3)).
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B.232 used by partition
ctr_date(used_by_partition,[’20030820’]).

ctr_origin(used_by_partition,’Derived from %c.’,[used_by]).

ctr_types(used_by_partition,[’VALUES’-collection(val-int)]).

ctr_arguments(
used_by_partition,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
used_by_partition,
[required(’VALUES’,val),
distinct(’VALUES’,val),
size(’VARIABLES1’)>=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_graph(
used_by_partition,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
’PARTITIONS’)],

[for_all(’CC’,’NSOURCE’>=’NSINK’),
’NSINK’=size(’VARIABLES2’)]).

ctr_example(
used_by_partition,
used_by_partition(

[[var-1],[var-9],[var-1],[var-6],[var-2],[var-3]],
[[var-1],[var-3],[var-6],[var-6]],
[[p-[[val-1],[val-3]]],
[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).
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B.233 valley

ctr_automaton(valley,valley).

ctr_date(valley,[’20040530’]).

ctr_origin(valley,’Derived from %c.’,[inflexion]).

ctr_arguments(
valley,
[’N’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
valley,
[’N’>=0,
2*’N’=<max(size(’VARIABLES’)-1,0),
required(’VARIABLES’,var)]).

ctr_example(
valley,
valley(

1,
[[var-1],
[var-1],
[var-4],
[var-8],
[var-8],
[var-2],
[var-7],
[var-1]])).

valley(A,B) :-
valley_signature(B,C),
automaton(

C,
D,
C,
0..2,
[source(s),node(u),sink(t)],
[arc(s,0,s),
arc(s,1,s),
arc(s,2,u),
arc(s,$,t),
arc(u,0,s,[E+1]),
arc(u,1,u),
arc(u,2,u),
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arc(u,$,t)],
[E],
[0],
[A]).

valley_signature([],[]).

valley_signature([A],[]).

valley_signature([[var-A],[var-B]|C],[D|E]) :-
in(D,0..2),
A#<B#<=>D#=0,
A#=B#<=>D#=1,
A#>B#<=>D#=2,
valley_signature([[var-B]|C],E).
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B.234 vec eq tuple
ctr_date(vec_eq_tuple,[’20030820’]).

ctr_origin(vec_eq_tuple,’Used for defining %c.’,[in_relation]).

ctr_arguments(
vec_eq_tuple,
[’VARIABLES’-collection(var-dvar),
’TUPLE’-collection(val-int)]).

ctr_restrictions(
vec_eq_tuple,
[required(’VARIABLES’,var),
required(’TUPLE’,val),
size(’VARIABLES’)=size(’TUPLE’)]).

ctr_graph(
vec_eq_tuple,
[’VARIABLES’,’TUPLE’],
2,
[’PRODUCT’(=)>>collection(variables,tuple)],
[variablesˆvar=tupleˆval],
[’NARC’=size(’VARIABLES’)]).

ctr_example(
vec_eq_tuple,
vec_eq_tuple(

[[var-5],[var-3],[var-3]],
[[val-5],[val-3],[val-3]])).
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B.235 weighted partial alldiff

ctr_date(weighted_partial_alldiff,[’20040814’]).

ctr_origin(
weighted_partial_alldiff,
’\\cite[page 71]{Thiel04}’,
[]).

ctr_synonyms(
weighted_partial_alldiff,
[weighted_partial_alldifferent,
weighted_partial_alldistinct,
wpa]).

ctr_arguments(
weighted_partial_alldiff,
[’VARIABLES’-collection(var-dvar),
’UNDEFINED’-int,
’VALUES’-collection(val-int,weight-int),
’COST’-dvar]).

ctr_restrictions(
weighted_partial_alldiff,
[required(’VARIABLES’,var),
required(’VALUES’,[val,weight]),
in_attr(’VARIABLES’,var,’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_graph(
weighted_partial_alldiff,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=\=’UNDEFINED’,variablesˆvar=valuesˆval],
[’MAX_ID’=<1,’SUM’(’VALUES’,weight)=’COST’]).

ctr_example(
weighted_partial_alldiff,
weighted_partial_alldiff(

[[var-4],[var-0],[var-1],[var-2],[var-0],[var-0]],
0,
[[val-0,weight-0],
[val-1,weight-2],
[val-2,weight- -1],
[val-4,weight-7],
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[val-5,weight- -8],
[val-6,weight-2]],

8)).
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J.-C. Régin and M. Rueher, editors, Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimisation Problems (CP-AI-OR
2004), volume 3011 of LNCS, pages 335–347. Springer-Verlag, 2004.

[110] L. Péridy and D. Rivreau. An O(n log n) stable algorithm for immediate selec-
tions adjustments. Kluwer, 2005. To appear.

[111] P. Refalo. Linear formulation of constraint programming models and hybrid
solvers. In Principles and Practice of Constraint Programming (CP’2000), vol-
ume 1894 of LNCS. Springer-Verlag, 2000.

[112] G. Ottosson, E. Thorsteinsson, and J.N. Hooker. Mixed global constraints and
inference in hybrid IP-CLP solvers. In CP’99 Post-Conference Workshop on
Large-Scale Combinatorial Optimization and Constraints, pages 57–78, 1999.

[113] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press,
1989.

[114] C. Bessière, E. Hebrard, B. Hnich, and T. Walsh. The tractability of global
constraints. In M. Wallace, editor, Principles and Practice of Constraint Pro-
gramming (CP’2004), volume 3258 of LNCS, pages 716–720. Springer-Verlag,
2004.



1344 BIBLIOGRAPHY
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[117] J.-C. Régin. Arc consistency for global cardinality constraints with costs. In
J. Jaffar, editor, Principles and Practice of Constraint Programming (CP’99),
volume 1713 of LNCS, pages 390–404. Springer-Verlag, 1999.

[118] S.W. Golomb. How to number a graph. In R.C. Read, editor, Graph Theory and
Computing, pages 23–37. Academic Press, New York, 1972.

[119] J.B. Shearer. Golomb rulers. http://www.research.ibm.com/people/s/shearer/grule.html.

[120] B.M. Smith, K. Stergiou, and T. Walsh. Modelling the golomb ruler problem.
In IJCAI-99 Workshop on Non Binary Constraints, 1999.

[121] Y.C. Law and J.H.M. Lee. Global constraints for integer and set value prece-
dence. In M. Wallace, editor, Principles and Practice of Constraint Program-
ming (CP’2004), volume 3258 of LNCS, pages 362–376. Springer-Verlag, 2004.

[122] X. Cousin. Application of Constraint Logic Programming on Timetable Prob-
lem. PhD thesis, INRIA, June 1993. In French.

[123] P. Flener, A. Frisch, B. Hnich, Z. Kızıltan, I. Miguel, J. Pearson, and T. Walsh.
Breaking row and column symmetries in matrix models. In F. Rossi, editor,
Principles and Practice of Constraint Programming (CP’2003), volume 2833
of LNCS, pages 462–476. Springer-Verlag, 2003.

[124] A. Lubiw. Doubly lexical orderings of matrices. In Proceedings of the 17th An-
nual Association for Computing Machinery Symposium on Theory of Computing
(STOC-85), pages 396–404. ACM Press, 1985.

[125] A. Lubiw. Doubly lexical orderings of matrices. SIAM Journal on Computing,
16(5):854–879, October 1987.

[126] M. Carlsson and N. Beldiceanu. Arc-consistency for a chain of lexicographic or-
dering constraints. Technical Report T2002-18, Swedish Institute of Computer
Science, 2002.

[127] A. Frisch, B. Hnich, Z. Kızıltan, I. Miguel, and T. Walsh. Multiset ordering
constraints. In 18th Int. Joint Conf. on Artificial Intelligence (IJCAI-2003), 1999.

[128] M. Carlsson and N. Beldiceanu. Revisiting the lexicographic ordering con-
straint. Technical Report T2002-17, Swedish Institute of Computer Science,
2002.



BIBLIOGRAPHY 1345

[129] Z. Kızıltan. Symmetry Breaking Ordering Constraints. PhD thesis, Uppsala
University, March 2004.

[130] R. Sedgewick and O. Flajolet. An introduction to the analysis of algorithms.
Addison-Wesley, 1996.

[131] F. Focacci, A. Lodi, and M. Milano. Cost-based domain filtering. In Principles
and Practice of Constraint Programming (CP’99), volume 1713 of LNCS, pages
189–203. Springer-Verlag, 1999.

[132] M. Sellman. An arc consistency algorithm for the minimum weight all different
constraint. In P. Van Hentenryck, editor, Principles and Practice of Constraint
Programming (CP’2002), volume 2470 of LNCS, pages 744–749. Springer-
Verlag, 2002.
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minimum weight alldifferent, 666

NVERTEX,PRODUCT

elements alldifferent, 482

NVERTEX, SELF , ∀
global cardinality, 496

global cardinality low up, 500
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path from to, 726

PATH FROM TO,PRODUCT (PATH ,VOID)

lex greater, 598

lex greatereq, 602



INDEX 1381

lex less, 606

lex lesseq, 610

PATH ,LOOP ,CC

sliding card skip0, 786

PREDEFINED
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