
HAL Id: hal-00485396
https://hal.science/hal-00485396v1

Submitted on 20 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Global Constraint Catalog
Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon

To cite this version:
Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon. Global Constraint Catalog. 2005. �hal-
00485396�

https://hal.science/hal-00485396v1
https://hal.archives-ouvertes.fr

Global Constraint Catalog

Nicolas Beldiceanu1

École des Mines de Nantes
LINA, 4 rue Alfred Kastler

BP-20722, FR-44307 Nantes Cedex 3, France

Mats Carlsson
SICS, Box 1263, SE-16 429 Kista, Sweden

Jean-Xavier Rampon
LINA, 2 rue de la Houssinière

BP-92208, FR-44322 Nantes Cedex 3, France

SICS Technical Report T2005:08

ISSN: 1100-3154

ISRN: SICS-T–2005/08-SE

Abstract: This report presents a catalog of global constraints where
each constraint is explicitly described in terms of graph properties and/or
automata. When available, it also presents some typical usage as well as
some pointers to existing filtering algorithms.

Keywords: global constraint, catalog, graph, meta-data.

May 13, 2005

1Corresponding author, Email: Nicolas.Beldiceanu@emn.fr

Contents

Preface i

1 Describing global constraints 1
1.1 Describing the arguments of a global constraint 3
1.1.1 Basic data types . 3
1.1.2 Compound data types . 4
1.1.3 Restrictions . 5
1.1.4 Declaring a global constraint . 13
1.2 Describing global constraints in terms of graph properties 14
1.2.1 Basic ideas and illustrative example 14
1.2.2 Ingredients used for describing global constraints 16
1.2.3 Graph constraint . 42
1.3 Describing global constraints in terms of automata 51
1.3.1 Selecting an appropriate description 51
1.3.2 Defining an automaton . 55

2 Description of the catalog 57
2.1 Which global constraints are included? 57
2.2 Which global constraints are missing? 58
2.3 Searching in the catalog . 58
2.3.1 How to see if a global constraint is in the catalog? 58
2.3.2 How to search for all global constraints sharing the same structure . . 59
2.3.3 Searching all places where a global constraint is referenced 60
2.4 Figures of the catalog . 61
2.5 Keywords attached to the global constraints 62

3 Further topics 111
3.1 Differences from the 2000 report . 111
3.2 Graph invariants . 114
3.2.1 Graph classes . 115
3.2.2 Format of an invariant . 116
3.2.3 Using the database of invariants . 117
3.2.4 The database of graph invariants . 118
3.3 The electronic version of the catalog 160

1

2 CONTENTS

4 Global constraint catalog 165
4.1 all differ from at least k pos . 172
4.2 all min dist . 174
4.3 alldifferent . 176
4.4 alldifferent between sets . 180
4.5 alldifferent except 0 . 182
4.6 alldifferent interval . 186
4.7 alldifferent modulo . 190
4.8 alldifferent on intersection . 194
4.9 alldifferent partition . 198
4.10 alldifferent same value . 200
4.11 allperm . 204
4.12 among . 206
4.13 among diff 0 . 208
4.14 among interval . 212
4.15 among low up . 214
4.16 among modulo . 218
4.17 among seq . 222
4.18 arith . 224
4.19 arith or . 228
4.20 arith sliding . 232
4.21 assign and counts . 234
4.22 assign and nvalues . 238
4.23 atleast . 242
4.24 atmost . 246
4.25 balance . 250
4.26 balance interval . 252
4.27 balance modulo . 256
4.28 balance partition . 260
4.29 bin packing . 264
4.30 binary tree . 268
4.31 cardinality atleast . 272
4.32 cardinality atmost . 276
4.33 cardinality atmost partition . 280
4.34 change . 284
4.35 change continuity . 288
4.36 change pair . 298
4.37 change partition . 302
4.38 circuit . 306
4.39 circuit cluster . 310
4.40 circular change . 314
4.41 clique . 318
4.42 colored matrix . 322
4.43 coloured cumulative . 324
4.44 coloured cumulatives . 328
4.45 common . 332

CONTENTS 3

4.46 common interval . 336
4.47 common modulo . 338
4.48 common partition . 340
4.49 connect points . 342
4.50 correspondence . 346
4.51 count . 350
4.52 counts . 354
4.53 crossing . 358
4.54 cumulative . 362
4.55 cumulative product . 366
4.56 cumulative two d . 370
4.57 cumulative with level of priority . 374
4.58 cumulatives . 378
4.59 cutset . 382
4.60 cycle . 386
4.61 cycle card on path . 390
4.62 cycle or accessibility . 394
4.63 cycle resource . 398
4.64 cyclic change . 402
4.65 cyclic change joker . 406
4.66 decreasing . 410
4.67 deepest valley . 414
4.68 derangement . 418
4.69 differ from at least k pos . 422
4.70 diffn . 426
4.71 diffn column . 430
4.72 diffn include . 432
4.73 discrepancy . 434
4.74 disjoint . 436
4.75 disjoint tasks . 440
4.76 disjunctive . 444
4.77 distance between . 446
4.78 distance change . 448
4.79 domain constraint . 452
4.80 elem . 456
4.81 element . 460
4.82 element greatereq . 464
4.83 element lesseq . 468
4.84 element matrix . 472
4.85 element sparse . 476
4.86 elements . 480
4.87 elements alldifferent . 482
4.88 elements sparse . 486
4.89 eq set . 490
4.90 exactly . 492
4.91 global cardinality . 496

4 CONTENTS

4.92 global cardinality low up . 500
4.93 global cardinality with costs . 502
4.94 global contiguity . 506
4.95 golomb . 508
4.96 graph crossing . 512
4.97 group . 516
4.98 group skip isolated item . 524
4.99 heighest peak . 532
4.100in . 536
4.101in relation . 538
4.102in same partition . 542
4.103in set . 546
4.104increasing . 548
4.105indexed sum . 552
4.106inflexion . 554
4.107int value precede . 556
4.108int value precede chain . 558
4.109interval and count . 560
4.110interval and sum . 564
4.111inverse . 568
4.112inverse set . 572
4.113ith pos different from 0 . 576
4.114k cut . 578
4.115lex2 . 580
4.116lex alldifferent . 582
4.117lex between . 584
4.118lex chain less . 588
4.119lex chain lesseq . 592
4.120lex different . 596
4.121lex greater . 598
4.122lex greatereq . 602
4.123lex less . 606
4.124lex lesseq . 610
4.125link set to booleans . 614
4.126longest change . 618
4.127map . 622
4.128max index . 624
4.129max n . 626
4.130max nvalue . 628
4.131max size set of consecutive var . 632
4.132maximum . 634
4.133maximum modulo . 638
4.134min index . 640
4.135min n . 644
4.136min nvalue . 646
4.137min size set of consecutive var . 650

CONTENTS 5

4.138minimum . 652
4.139minimum except 0 . 656
4.140minimum greater than . 660
4.141minimum modulo . 664
4.142minimum weight alldifferent . 666
4.143nclass . 670
4.144nequivalence . 674
4.145next element . 676
4.146next greater element . 680
4.147ninterval . 682
4.148no peak . 684
4.149no valley . 686
4.150not all equal . 688
4.151not in . 690
4.152npair . 694
4.153nset of consecutive values . 696
4.154nvalue . 698
4.155nvalue on intersection . 702
4.156nvalues . 704
4.157nvalues except 0 . 706
4.158one tree . 708
4.159orchard . 712
4.160orth link ori siz end . 716
4.161orth on the ground . 718
4.162orth on top of orth . 720
4.163orths are connected . 722
4.164path from to . 726
4.165pattern . 730
4.166peak . 732
4.167period . 736
4.168period except 0 . 738
4.169place in pyramid . 740
4.170polyomino . 744
4.171product ctr . 748
4.172range ctr . 750
4.173relaxed sliding sum . 752
4.174same . 754
4.175same and global cardinality . 760
4.176same intersection . 764
4.177same interval . 766
4.178same modulo . 768
4.179same partition . 770
4.180sequence folding . 772
4.181set value precede . 776
4.182shift . 778
4.183size maximal sequence alldifferent 782

6 CONTENTS

4.184size maximal starting sequence alldifferent 784
4.185sliding card skip0 . 786
4.186sliding distribution . 790
4.187sliding sum . 792
4.188sliding time window . 794
4.189sliding time window from start . 798
4.190sliding time window sum . 802
4.191smooth . 806
4.192soft alldifferent ctr . 810
4.193soft alldifferent var . 814
4.194soft same interval var . 818
4.195soft same modulo var . 820
4.196soft same partition var . 822
4.197soft same var . 824
4.198soft used by interval var . 828
4.199soft used by modulo var . 832
4.200soft used by partition var . 836
4.201soft used by var . 838
4.202sort . 842
4.203sort permutation . 846
4.204stage element . 850
4.205stretch circuit . 854
4.206stretch path . 858
4.207strict lex2 . 862
4.208strictly decreasing . 864
4.209strictly increasing . 866
4.210strongly connected . 868
4.211sum . 870
4.212sum ctr . 874
4.213sum of weights of distinct values 876
4.214sum set . 880
4.215symmetric alldifferent . 882
4.216symmetric cardinality . 886
4.217symmetric gcc . 890
4.218temporal path . 892
4.219tour . 896
4.220track . 900
4.221tree . 902
4.222tree range . 906
4.223tree resource . 910
4.224two layer edge crossing . 914
4.225two orth are in contact . 918
4.226two orth column . 922
4.227two orth do not overlap . 924
4.228two orth include . 928
4.229used by . 930

CONTENTS 7

4.230used by interval . 934
4.231used by modulo . 936
4.232used by partition . 938
4.233valley . 940
4.234vec eq tuple . 944
4.235weighted partial alldiff . 946

A Legend for the description 949

B Electronic constraint catalog 951
B.1 all differ from at least k pos . 957
B.2 all min dist . 958
B.3 alldifferent . 959
B.4 alldifferent between sets . 960
B.5 alldifferent except 0 . 961
B.6 alldifferent interval . 962
B.7 alldifferent modulo . 963
B.8 alldifferent on intersection . 964
B.9 alldifferent partition . 965
B.10 alldifferent same value . 967
B.11 allperm . 968
B.12 among . 969
B.13 among diff 0 . 971
B.14 among interval . 973
B.15 among low up . 975
B.16 among modulo . 977
B.17 among seq . 979
B.18 arith . 981
B.19 arith or . 983
B.20 arith sliding . 985
B.21 assign and counts . 989
B.22 assign and nvalues . 991
B.23 atleast . 993
B.24 atmost . 995
B.25 balance . 996
B.26 balance interval . 997
B.27 balance modulo . 998
B.28 balance partition . 999
B.29 bin packing . 1000
B.30 binary tree . 1001
B.31 cardinality atleast . 1002
B.32 cardinality atmost . 1003
B.33 cardinality atmost partition . 1004
B.34 change . 1005
B.35 change continuity . 1007
B.36 change pair . 1012

8 CONTENTS

B.37 change partition . 1018
B.38 circuit . 1020
B.39 circuit cluster . 1021
B.40 circular change . 1023
B.41 clique . 1025
B.42 colored matrix . 1026
B.43 coloured cumulative . 1028
B.44 coloured cumulatives . 1030
B.45 common . 1032
B.46 common interval . 1033
B.47 common modulo . 1034
B.48 common partition . 1035
B.49 connect points . 1037
B.50 correspondence . 1040
B.51 count . 1042
B.52 counts . 1044
B.53 crossing . 1046
B.54 cumulative . 1048
B.55 cumulative product . 1050
B.56 cumulative two d . 1052
B.57 cumulative with level of priority . 1055
B.58 cumulatives . 1057
B.59 cutset . 1059
B.60 cycle . 1060
B.61 cycle card on path . 1061
B.62 cycle or accessibility . 1063
B.63 cycle resource . 1065
B.64 cyclic change . 1067
B.65 cyclic change joker . 1069
B.66 decreasing . 1072
B.67 deepest valley . 1073
B.68 derangement . 1075
B.69 differ from at least k pos . 1076
B.70 diffn . 1078
B.71 diffn column . 1080
B.72 diffn include . 1081
B.73 discrepancy . 1082
B.74 disjoint . 1083
B.75 disjoint tasks . 1084
B.76 disjunctive . 1086
B.77 distance between . 1087
B.78 distance change . 1088
B.79 domain constraint . 1091
B.80 elem . 1093
B.81 element . 1095
B.82 element greatereq . 1097

CONTENTS 9

B.83 element lesseq . 1099
B.84 element matrix . 1101
B.85 element sparse . 1104
B.86 elements . 1106
B.87 elements alldifferent . 1107
B.88 elements sparse . 1109
B.89 eq set . 1111
B.90 exactly . 1112
B.91 global cardinality . 1114
B.92 global cardinality low up . 1115
B.93 global cardinality with costs . 1116
B.94 global contiguity . 1118
B.95 golomb . 1120
B.96 graph crossing . 1121
B.97 group . 1123
B.98 group skip isolated item . 1128
B.99 heighest peak . 1132
B.100in . 1134
B.101in relation . 1136
B.102in same partition . 1138
B.103in set . 1140
B.104increasing . 1141
B.105indexed sum . 1142
B.106inflexion . 1143
B.107int value precede . 1145
B.108int value precede chain . 1146
B.109interval and count . 1147
B.110interval and sum . 1149
B.111inverse . 1150
B.112inverse set . 1151
B.113ith pos different from 0 . 1153
B.114k cut . 1155
B.115lex2 . 1156
B.116lex alldifferent . 1157
B.117lex between . 1158
B.118lex chain less . 1161
B.119lex chain lesseq . 1162
B.120lex different . 1163
B.121lex greater . 1165
B.122lex greatereq . 1167
B.123lex less . 1169
B.124lex lesseq . 1171
B.125link set to booleans . 1173
B.126longest change . 1174
B.127map . 1176
B.128max index . 1177

10 CONTENTS

B.129max n . 1179
B.130max nvalue . 1180
B.131max size set of consecutive var . 1181
B.132maximum . 1182
B.133maximum modulo . 1184
B.134min index . 1185
B.135min n . 1187
B.136min nvalue . 1188
B.137min size set of consecutive var . 1189
B.138minimum . 1190
B.139minimum except 0 . 1192
B.140minimum greater than . 1194
B.141minimum modulo . 1196
B.142minimum weight alldifferent . 1197
B.143nclass . 1199
B.144nequivalence . 1200
B.145next element . 1201
B.146next greater element . 1204
B.147ninterval . 1205
B.148no peak . 1206
B.149no valley . 1208
B.150not all equal . 1210
B.151not in . 1212
B.152npair . 1214
B.153nset of consecutive values . 1215
B.154nvalue . 1216
B.155nvalue on intersection . 1217
B.156nvalues . 1218
B.157nvalues except 0 . 1219
B.158one tree . 1220
B.159orchard . 1222
B.160orth link ori siz end . 1223
B.161orth on the ground . 1224
B.162orth on top of orth . 1225
B.163orths are connected . 1227
B.164path from to . 1229
B.165pattern . 1231
B.166peak . 1232
B.167period . 1234
B.168period except 0 . 1235
B.169place in pyramid . 1236
B.170polyomino . 1238
B.171product ctr . 1240
B.172range ctr . 1241
B.173relaxed sliding sum . 1242
B.174same . 1244

CONTENTS 11

B.175same and global cardinality . 1245
B.176same intersection . 1247
B.177same interval . 1248
B.178same modulo . 1249
B.179same partition . 1250
B.180sequence folding . 1251
B.181set value precede . 1253
B.182shift . 1254
B.183size maximal sequence alldifferent 1256
B.184size maximal starting sequence alldifferent 1257
B.185sliding card skip0 . 1258
B.186sliding distribution . 1260
B.187sliding sum . 1262
B.188sliding time window . 1263
B.189sliding time window from start . 1264
B.190sliding time window sum . 1266
B.191smooth . 1268
B.192soft alldifferent ctr . 1270
B.193soft alldifferent var . 1271
B.194soft same interval var . 1272
B.195soft same modulo var . 1273
B.196soft same partition var . 1274
B.197soft same var . 1276
B.198soft used by interval var . 1277
B.199soft used by modulo var . 1278
B.200soft used by partition var . 1279
B.201soft used by var . 1281
B.202sort . 1282
B.203sort permutation . 1283
B.204stage element . 1285
B.205stretch circuit . 1287
B.206stretch path . 1289
B.207strict lex2 . 1291
B.208strictly decreasing . 1292
B.209strictly increasing . 1294
B.210strongly connected . 1296
B.211sum . 1297
B.212sum ctr . 1298
B.213sum of weights of distinct values 1299
B.214sum set . 1300
B.215symmetric alldifferent . 1301
B.216symmetric cardinality . 1302
B.217symmetric gcc . 1304
B.218temporal path . 1306
B.219tour . 1308
B.220track . 1310

12 CONTENTS

B.221tree . 1312
B.222tree range . 1313
B.223tree resource . 1314
B.224two layer edge crossing . 1316
B.225two orth are in contact . 1318
B.226two orth column . 1320
B.227two orth do not overlap . 1322
B.228two orth include . 1324
B.229used by . 1326
B.230used by interval . 1327
B.231used by modulo . 1328
B.232used by partition . 1329
B.233valley . 1330
B.234vec eq tuple . 1332
B.235weighted partial alldiff . 1333

Bibliography 1335

Index 1349

Preface

This catalog presents a list of global constraints. It contains about 235 constraints,
which are explicitly described in terms of graph properties and/or automata.

This Global Constraint Catalog is an expanded version of the list of global con-
straints presented in [1]. The principle used for describing global constraints has been
slightly modified in order to deal with a larger number of global constraints. Since
2003, we try to provide an automaton that recognizes the solutions associated with a
global constraint.

Writing a dictionary is a long process, especially in a field where new words are
defined every year. In this context, one difficulty has been related to the fact that we
want to express explicitly the meaning of global constraints in terms of meta-data.
Finding an appropriate description that easily captures the meaning of most global
constraints seems to be a tricky task.

Goal of the catalog. This catalog has four main goals. First, it provides an overview
of most of the different global constraints that were gradually introduced in the area
of constraint programming since the work of Jean-Louis Laurière on ALICE [2]. It
also identifies new global constraints for which no existing published work exists. The
global constraints are arranged in alphabetic order, and for all of them a description and
an example are systematically provided. When available, it also presents some typical
usage as well as some pointers to existing filtering algorithms.

Second, the global constraints described in this catalog are not only accessible to
humans, who can read the catalog for searching for some information. It is also avail-
able to machines, which can read and interpret it. This is why there exists an electronic
version of this catalog where one can get, for most global constraints, a complete de-
scription in terms of meta-data. In fact, most of this catalog and its figures were auto-
matically generated from this electronic version by a computer program. This descrip-
tion is based on two complementary ways to look at a global constraint. The first one
defines a global constraint as searching for a graph with specific properties [3], while
the second one characterizes a global constraint in terms of an automaton that only rec-
ognizes the solutions associated to that global constraint [4, 5]. The key point of these
descriptions is their ability to define explicitly in a concise way the meaning of most
global constraints. In addition these descriptions can also be systematically turned into
polynomial filtering algorithms.

i

ii PREFACE

Third, we hope that this unified description of apparently diverse global constraints
will allow for establishing a systematic link between the properties of basic concepts
used for describing global constraints and the properties of the global constraints as a
whole.

Finally, we also hope that it will attract more people from the algorithmic
community into the area of constraints. To a certain extent this has already started at
places like CWI in Amsterdam, the Max-Planck für Informatik (Saarbrücken) or the
university of Waterloo.

Use of the catalog. The catalog is organized into four chapters:

• Chapter 1 explains how the meaning of global constraints is described in terms
of graph-properties or in terms of automata. On the one hand, if one wants
to consult the catalog for getting the informal definition of a global constraint,
examples of use of that constraint or pointers to filtering algorithms, then one
only needs to read the first section of Chapter 1: Describing the arguments of a
global constraint, page 3 . On the other hand, if one wants to understand those
entries describing explicitly the meaning of a constraint then all the material of
Chapter 1 is required.

• Chapter 2 describes the content of the catalog as well as different ways for
searching through the catalog. This material is essential.

• Chapter 3 covers additional topics such as the differences from the 2000 re-
port [1] on global constraints, the generation of implied constraints that are sys-
tematically linked to the graph-based description of a global constraint, and the
electronic version of the catalog. The material describing the format of the en-
tries of a global constraint is mandatory for those who want to exploit the elec-
tronic version in order to write preprocessors for performing various tasks for a
global constraint.

• Finally, Chapter 4 corresponds to the catalog itself, which gives the global
constraints in alphabetical order.

Acknowledgments. Nicolas Beldiceanu was the principal investigator and main ar-
chitect of the constraint catalog, provided the main ideas, and wrote a checker for the
constraint descriptions and the figure generation program for the constraint descrip-
tions.

Jean-Xavier Rampon provided the proofs for the graph invariants.
Mats Carlsson contributed to the design of the meta-data format, generated some

of the automata, and wrote the program that created the LATEX version of this catalog
from the constraint descriptions.

The idea of describing explicitly the meaning of global constraints in a declarative
way has been inspired by the work on meta-knowledge of Jacques Pitrat.

iii

We are grateful to Magnus Ågren, Abderrahmane Aggoun, Ernst Althaus, Gre-
gor Baues, Christian Bessière, Éric Bourreau, Pascal Brisset, Hadrien Cambazard,
Peter Chan, Philippe Charlier, Evelyne Contejean, Romuald Debruyne, Frédéric De-
ces, Mehmet Dincbas, François Fage, Pierre Flener, Xavier Gandibleux, Yan Georget,
David Hanak, Narendra Jussien, Irit Katriel, Waldemar Kocjan, Per Kreuger, Krzysztof
Kuchcinski, Per Mildner, Michel Leconte, Michael Marte, Nicolas Museux, Justin
Pearson, Thierry Petit, Emmanuel Poder, Guillaume Rochart, Xavier Savalle, Helmut
Simonis, Péter Szeredi, Sven Thiel and Charlotte Truchet for discussion, information
exchange or common work about specific global constraints.

Furthermore, we are grateful to Irit Katriel who contributed by updating the de-
scription of some filtering algorithms related to flow and matching of the catalog.

Finally, we want to acknowledge the support of SICS and EMN for providing
excellent working conditions. The part of this work related to graph properties in
Chapter 4 was done while the corresponding author was working at SICS.

Readers may send their suggestion via email to the corresponding author with
catalog as subject.

Uppsala, Sweden, August 2003
Nantes, France, May 2005 — NB, MC, JXR

iv PREFACE

Chapter 1

Describing global constraints

Contents
1.1 Describing the arguments of a global constraint 3
1.1.1 Basic data types . 3
1.1.2 Compound data types . 4
1.1.3 Restrictions . 5
1.1.4 Declaring a global constraint . 13
1.2 Describing global constraints in terms of graph properties . . . 14
1.2.1 Basic ideas and illustrative example 14
1.2.2 Ingredients used for describing global constraints 16
Collection generators . 17
Elementary constraints attached to the arcs 22

Simple arithmetic expressions 22
Arithmetic expressions 23
Arc constraints 24

Graph generators . 26
Graph properties . 31

Graph terminology and notations 31
Graph characteristics 34

1.2.3 Graph constraint . 42
Simple graph constraint . 43
Dynamic graph constraint . 47
1.3 Describing global constraints in terms of automata 51
1.3.1 Selecting an appropriate description 51
1.3.2 Defining an automaton . 55

We first motivate the need for an explicit description of global constraints and then
present the graph-based as well as the automaton-based descriptions used throughout
the catalog. On the one hand, the graph-based representation considers a global con-
straint as a subgraph of an initial given graph. This subgraph has to satisfy a set of

1

2 CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS

required graph properties. On the other hand, the automaton-based representation de-
notes a global constraint as a hypergraph constructed from a given constraint checker1.
Both, the initial graph of the graph-based representation, as well as the hypergraph of
the automaton-based representation have a very regular structure, which should give
the opportunity for efficient filtering algorithms taking advantage of this structure.

We now present our motivations for an explicit description of the meaning of global
constraints. The current trend2 is to first use natural language for describing the mean-
ing of a global constraint and second to work out a specialized filtering algorithm.
Since we have a huge number of potential global constraints that can be combined in
a lot of ways, this is an immense task. Since we are also interested in providing other
services such as visualization [6], explanations [7], cuts for linear programming [8],
moves for local search [9], soft global constraints [10, 11, 12], specialized heuristics
for each global constraint this is even worse. One could argue that a candidate for
describing explicitly the meaning of global constraints would be second order predi-
cates calculus. This could perhaps solve our description problem but would, at least
currently, not be useful for deriving any filtering algorithm. For a similar reason Pro-
log was restricted to Horn clauses for which one had a reasonable solving mechanism.
What we want to stress through this example is the fact that a declarative description is
really useful only if it also provides some hints about how to deal with that description.
Our first choice of a graph-based representation has been influenced by the following
observations:

• The concept of graph takes its roots in the area of mathematical recreations (see
for instance L. Euler [13], H. E. Dudeney [14], E. Lucas [15] and T. P. Kirk-
man [16]), which was somehow the ancestor of combinatorial problems. In this
perspective a graph-based description makes sense.

• In one of the first book introducing graph theory [17], C. Berge presents graph
theory as a way of grouping apparently diverse problems and results. This was
also the case for global constraints.

• The characteristics associated with graphs are concrete and concise.

• Finally, it is well known that graph theory is an important tool with respect to the
development of efficient filtering algorithms [18, 19, 20, 21, 22, 23, 24, 25, 26,
27].

Our second choice of an automaton-based representation has been motivated by the
following observation. Writing a constraint checker is usually a straightforward task.
The corresponding program can usually be turned into an automaton. Of course an
automaton is typically used on a fixed sequence of symbols. But, within the context
of filtering algorithms, we have to deal with a sequence of variables. For this purpose
we have shown [4] for some automata how to decompose them into a conjunction of
smaller constraints. In this context, a global constraint can be seen as a hypergraph
corresponding to its decomposition.

1A constraint checker is a program that takes an instance of a constraint for which all variables are fixed
and tests whether the constraint is satisfied or not.

2This can be observed in all constraint manuals where the description of the meaning is always informal.

1.1. DESCRIBING THE ARGUMENTS OF A GLOBAL CONSTRAINT 3

1.1 Describing the arguments of a global constraint
Since global constraints have to receive their arguments in some form, no matter
whether we use the graph-based or the automaton-based description, we start by de-
scribing the abstract data types that we use in order to specify the arguments of a
global constraint. These abstract data types are not related to any specific program-
ming language like Caml, C, C++, Java or Prolog. If one wants to focus on a specific
language, then one has to map these abstract data types to the data types that are avail-
able within the considered programming language. In a second phase we describe all
the restrictions that one can impose on the arguments of a global constraint. Finally, in
a third phase we show how to use these ingredients in order to declare the arguments
of a global constraint.

1.1.1 Basic data types
We provide the following basic data types:

• atom corresponds to an atom. Predefined atoms are MININT and MAXINT, which
respectively correspond to the smallest and to the largest integer.

• int corresponds to an integer value.

• dvar corresponds to a domain variable. A domain variable is a variable that will
be assigned an integer value taken from an initial finite set of integer values.

• sint corresponds to a finite set of integer values.

• svar corresponds to a set variable. A set variable is a variable that will be
assigned to a finite set of integer values.

• mint corresponds to a multiset of integer values.

• mvar corresponds to a multiset variable. A multiset variable is a variable that
will be assigned to a multiset of integer values.

• flt corresponds to a float number.

• fvar corresponds to a float variable. A float variable is a variable that will be
assigned a float number taken from an initial finite set of intervals.

4 CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS

1.1.2 Compound data types

We provide the following compound data types:

• list(T) corresponds to a list of elements of type T , where T is a basic or a
compound data type.

• c : collection(A1, A2, . . . , An) corresponds to a collection c of ordered
items, where each item consists of n > 0 attributes A1, A2, . . . , An. Each at-
tribute is an expression of the form a − T , where a is the name of the attribute
and T the type of the attribute (a basic or a compound data type). All names
of the attributes of a given collection should be distinct and different from the
keyword key, which corresponds to an implicit3 attribute. Its value corresponds
to the position of an item within the collection. The first item of a collection is
associated with position 1.

The following notations are used for instantiated arguments:

• A list of elements e1, e2, . . . , en is denoted [e1, e2, . . . , en].

• A finite set of integers i1, i2, . . . , in is denoted {i1, i2, . . . , in}.

• A multiset of integers i1, i2, . . . , in is denoted {{i1, i2, . . . , in}}.

• A collection of n items, each item having m attributes, is denoted by
{a1−v11 . . .am−v1m, a1−v21 . . .am−v2m, . . . , a1−vn1 . . .am−vnm}.
Each item is separated from the previous item by a comma.

• The ith item of a collection c is denoted c[i].

• The number of items of a collection c is denoted |c|.

3This attribute is not explicitly defined.

1.1. DESCRIBING THE ARGUMENTS OF A GLOBAL CONSTRAINT 5

EXAMPLE: Let us illustrate with three examples, the types one can create. These
examples concern the creation of a collection of variables, a collection of tasks and a
collection of orthotopesa.

• In the first example we define VARIABLES so that it corresponds to a collection
of variables. VARIABLES is for instance used in the alldifferent constraint.
The declaration VARIABLES : collection(var − dvar) defines a collection of
items, each of which having one attribute var that is a domain variable.

• In the second example we define TASKS so that it corresponds to a collection
of tasks, each task being defined by its origin, its duration, its end and its re-
source consumption. Such a collection is for instance used in the cumulative

constraint. The declaration TASKS : collection(origin− dvar, duration−
dvar, end− dvar, height− dvar) defines a collection of items, each of which
having the four attributes origin, duration, end and height which all are
domain variables.

• In the last example we define ORTHOTOPES so that is corresponds to a collection
of orthotopes. Each orthotope is described by an attribute orth. Unlike the
previous examples, the type of this attribute does not correspond any more to a
basic data type but rather to a collection of n items, where n is the number of
dimensions of the orthotopeb. This collection, named ORTHOTOPE, defines for a
given dimension the origin, the size and the end of the object in this dimension.
This leads to the two declarations:

– ORTHOTOPE − collection(ori− dvar, siz − dvar, end − dvar),

– ORTHOTOPES − collection(orth − ORTHOTOPE).

ORTHOTOPE is for instance used in the diffn constraint.
aAn orthotope corresponds to the generalization of a segment, a rectangle and a box to the

n-dimensional case.
b1 for a segment, 2 for a rectangle, 3 for a box,

1.1.3 Restrictions
When defining the arguments of a global constraint, it is often the case that one needs to
express additional conditions that refine the type declaration of its arguments. For this
purpose we provide restrictions that allow for specifying these additional conditions.
Each restriction has a name and a set of arguments and is described by the following
items:

• A small paragraph first describes the effect of the restriction,

• An example points to a constraint using the restriction,

• Finally, a ground instance, preceded by the symbolB, which satisfies the restric-
tion is given. Similarly, a ground instance, preceded by the symbol I, which
violates the restriction is proposed. In this latter case, a bold font may be used
for pointing to the source of the problem.

Currently the list of restrictions is:

6 CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS

• in list(Arg, ListAtoms):

– Arg is an argument of type atom,

– ListAtoms is a non-empty list of distinct atoms.

This restriction forces Arg to be one of the atoms specified in the list ListAtoms.

EXAMPLE: An example of use of such restriction can be found in the
change(NCHANGE, VARIABLES, CTR) constraint: in list(CTR, [=, 6=, <,≥, >,≤])
forces the last argument CTR of the change constraint to take its value in the list of
atoms [=, 6=, <,≥, >,≤].
B change(1, {var − 4, var − 4, var − 4, var − 6}, 6=)
I change(1, {var − 4, var − 4, var − 4, var − 6}, 3)

• in list(Arg, Attr, ListInt):

– Arg is an argument of type collection,

– Attr is an attribute of type int of the collection denoted by Arg,

– ListInt is a non-empty list of integers.

This restriction enforces for all items of the collection Arg, the attribute Attr to
take its value within the list of integers ListInt.

EXAMPLE: An example of use of such restriction can be found in the one tree con-
straint: in list(NODES, type, [2, 3, 6]) forces the attribute type of the NODES collec-
tion to take its value in the list of integers [2, 3, 6].
Bone tree({ id− a index − 1 type − 2 father − 1 depth1 − 1 depth2 − 0,

id − b index − 2 type − 2 father − 2 depth1 − 0 depth2 − 0,
id − c index − 3 type − 3 father − 2 depth1 − 0 depth2 − 0,
id − d index − 4 type − 3 father − 2 depth1 − 0 depth2 − 0})

Ione tree({ id− a index − 1 type − 9 father − 1 depth1 − 1 depth2 − 0,
id − b index − 2 type − 2 father − 2 depth1 − 0 depth2 − 0,
id − c index − 3 type − 3 father − 2 depth1 − 0 depth2 − 0,
id − d index − 4 type − 3 father − 2 depth1 − 0 depth2 − 0})

• in attr(Arg1, Attr1, Arg2, Attr2):

– Arg1 is an argument of type collection,

– Attr1 is an attribute of type dvar of the collection denoted by Arg1,

– Arg2 is an argument of type collection,

– Attr2 is an attribute of type int of the collection denoted by Arg2.

Let S2 denote the set of values assigned to the Attr2 attributes of the items of
the collection Arg2. This restriction enforces the following condition: For all
items of the collection Arg1, the attribute Attr1 takes its value in the set S2.

1.1. DESCRIBING THE ARGUMENTS OF A GLOBAL CONSTRAINT 7

EXAMPLE: An example of use of such restriction can be found in the
cumulatives(TASKS, MACHINES, CTR) constraint: in attr(TASKS, machine,
MACHINES, id) enforces that the machine attribute of each task of the TASKS collection
correspond to a machine identifier (i.e. an id attribute of the MACHINES collection).
Bcumulatives({ machine − 1 origin − 2 duration − 2 end − 4 height − 2,

machine − 1 origin − 2 duration − 2 end − 4 height − 2,
machine − 2 origin − 1 duration − 4 end − 5 height − 5,
machine − 1 origin − 4 duration − 2 end − 6 height − 1},
{id − 1 capacity − 9, id− 2 capacity − 8}, ≤)

Icumulatives({ machine − 5 origin − 2 duration − 2 end − 4 height − 2,
machine − 1 origin − 2 duration − 2 end − 4 height − 2,
machine − 2 origin − 1 duration − 4 end − 5 height − 5,
machine − 1 origin − 4 duration − 2 end − 6 height − 1},
{id − 1 capacity − 9, id − 2 capacity − 8}, ≤)

• distinct(Arg, Attrs):

– Arg is an argument of type collection,

– Attrs is an attribute of type int or a list of distinct attributes of type int
of the collection denoted by Arg.

For all pairs of distinct items of the collection Arg this restriction enforces that
there be at least one attribute specified by Attrs with two distinct values.

EXAMPLE: An example of use of such restriction can be found in the
cycle(NCYCLE, NODES) constraint: distinct(NODES, index) enforces that all index
attributes of the NODES collection take distinct values.
Bcycle(2, {index − 1 succ − 2, index − 2 succ − 1, index − 3 succ − 3})
Icycle(2, {index − 1 succ − 2, index − 1 succ − 1, index − 3 succ − 3})

• increasing seq(Arg, Attrs):

– Arg is an argument of type collection,

– Attrs is an attribute of type int or a list of distinct attributes of type int
of the collection denoted by Arg.

Let n and m respectively denote the number of items of the collection Arg, and
the number of attributes of Attrs. For the ith item of the collection Arg let
ti denote the tuple of values 〈vi,1, vi,2, . . . , vi,m〉 where vi,j is the value of the
jth attribute of Attrs of the ith item of Arg. The restriction enforces a strict
lexicographical ordering on the tuples t1, t2, . . . , tn.

8 CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS

EXAMPLE: An example of use of such restriction can be found in the
element matrix(MAX I, MAX J, INDEX I, INDEX J, MATRIX, VALUE) constraint:
increasing seq(MATRIX, [i, j]) enforces that all items of the MATRIX collection be
sorted in strictly increasing lexicographic order on the pair (i, j).
B element matrix(2, 2, 1, 2, {i − 1 j − 1 v− 4, i − 1 j − 2 v− 7,

i− 2 j− 1 v − 1, i− 2 j− 2 v − 1}, 7)
I element matrix(2, 2, 1, 2, {i − 1 j − 2 v − 4, i− 1 j− 1 v− 7,

i− 2 j− 1 v − 1, i− 2 j− 2 v − 1}, 7)

• required(Arg, Attrs):

– Arg is an argument of type collection,

– Attrs is an attribute or a list of distinct attributes of the collection denoted
by Arg.

This restriction enforces that all attributes denoted by Attrs be explicitly used
within all items of the collection Arg.

EXAMPLE: An example of use of such restriction can be found in the
cumulative(TASKS, LIMIT) constraint: required(TASKS, height) enforces that all
items of the TASKS collection mention the height attribute.
Bcumulative({ origin − 2 duration − 2 end− 4 height − 2,

origin − 2 duration − 2 end − 4 height − 2,
origin − 1 duration − 4 end − 5 height − 5,
origin − 4 duration − 2 end − 6 height − 1}, 12)

Icumulative({ origin− 2 duration − 2 end− 4,
origin − 2 duration − 2 end − 4 height − 2,
origin − 1 duration − 4 end − 5 height − 5,
origin − 4 duration − 2 end − 6 height − 1}, 12)

The required restriction is usually systematically used for every attribute of a
collection. It is not used when some attributes may be implicitly defined accord-
ing to other attributes. In this context, we use the require at least restriction,
which we now introduce.

• require at least(Atleast, Arg, Attrs):

– Atleast is a positive integer,

– Arg is an argument of type collection,

– Attrs is a non-empty list of distinct attributes of the collection denoted by
Arg. The length of this list should be strictly greater than Atleast.

This restriction enforces that at least Atleast attributes of the list Attrs be
explicitly used within all items of the collection Arg.

1.1. DESCRIBING THE ARGUMENTS OF A GLOBAL CONSTRAINT 9

EXAMPLE: An example of use of such restriction can be found in the
cumulative(TASKS, LIMIT) constraint:
require at least(2, TASKS, [origin, duration, end]) enforces that all items of
the TASKS collection mention at least two attributes from the list of attributes
[origin, duration, end]. In this context, this stems from the fact that we have the
equality origin + duration = end. This allows for retrieving the third attribute from
the values of the two others.
Bcumulative({ origin − 2 duration − 2 height − 2,

origin − 2 end − 4 height − 2,
duration − 4 end − 5 height − 5,
origin − 4 duration − 2 end − 6 height − 1}, 12)

Icumulative({ origin − 2 height − 2,
origin − 2 duration − 2 end − 4 height − 2,
origin − 1 duration − 4 end − 5 height − 5,
origin − 4 duration − 2 end − 6 height − 1}, 12)

• same size(Arg, Attr):

– Arg is an argument of type collection,

– Attr is an attribute of the collection denoted by Arg. This attribute should
be of type collection.

This restriction enforces that all collections denoted by Attr have the same num-
ber of items.

EXAMPLE: An example of use of such restriction can be found in the
diffn(ORTHOTOPES) constrainta: same size(ORTHOTOPES, orth) forces all the items
of the ORTHOTOPES collection to be constituted from the same number of items (of type
ORTHOTOPE). From a practical point of view, this forces the diffn constraint to take as
its argument a set of points, a set of rectangles, a set of parallelepipeds,
Bdiffn({ {orth − {ori − 2 siz − 2 end − 4, ori − 1 siz − 3 end− 4},

orth − {ori − 4 siz − 4 end− 8, ori − 3 siz− 3 end − 3},
orth − {ori − 9 siz − 2 end− 11, ori − 4 siz − 3 end− 7}}

Idiffn({ {orth − {ori − 2 siz − 2 end − 4},
orth − {ori − 4 siz − 4 end− 8, ori − 3 siz− 3 end − 3},
orth − {ori − 9 siz − 2 end− 11, ori − 4 siz − 3 end− 7}}

aORTHOTOPES corresponds to the third item of the example presented at page 5.

• Term1 Comparison Term2:

– Term1 is a term. A term is an expression that can be evaluated to one or
possibly several integer values. The expressions we allow for a term are
defined in the next paragraph.

– Comparison is one of the following comparison operators≤, ≥, <, >, =,
6=.

– Term2 is a term.

10 CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS

Let v1,1, v1,2, . . . , v1,n1 and v2,1, v2,2, . . . , v2,n2 be the values respectively asso-
ciated with Term1 and with Term2. The restriction Term1 Comparison Term2

forces v1,i Comparison v2,j to hold for every i ∈ [1, n1] and every j ∈ [1, n2].
A term is one of the following expressions:

– e, where e is an integer. The corresponding value is e.
– |c|, where c is an argument of type collection. The value of |c| is the

number of items of the collection denoted by c.

EXAMPLE: This kind of expression is for instance used in the restrictions of the
atleast(N, VARIABLES, VALUE) constraint: N ≤ |VARIABLES| restricts N to be
less than or equal to the number of items of the VARIABLES collection.
Batleast(2, {var − 5, var− 8, var− 5}, 5)
Iatleast(4, {var − 5, var − 8, var − 5}, 5)

– min size(c, a), where c is an argument of type collection and a an
attribute of c of type collection. The value of min size(c, a) is the
smallest number of items over all collections denoted by a.

EXAMPLE: This kind of expression is for instance used in the restric-
tions of the in relation(VARIABLES, TUPLES OF VALS) constraint:
min size(TUPLES OF VALS, tuple) = |VARIABLES| forces the smallest
number of items associated with the tuple attribute to equal the number of items
of the VARIABLES collection.
Bin relation({{var − 5, var− 3, var − 3},

{tuple − {val − 5, val − 2, val− 3},
tuple − {val − 5, val − 2, val− 6},
tuple − {val − 5, val − 3, val− 3}})

Iin relation({{var − 5, var− 3, var − 3},
{tuple− {val − 5, val − 2},
tuple − {val − 5, val − 2, val− 6},
tuple − {val − 5, val − 3, val− 3}})

– max size(c, a), where c is an argument of type collection and a an
attribute of c of type collection. The value of max size(c, a) is the
largest number of items over all collections denoted by a.

EXAMPLE: This kind of expression is for instance used in the re-
strictions of the in relation(VARIABLES, TUPLES OF VALS) constraint:
max size(TUPLES OF VALS, tuple) = |VARIABLES| forces the largest number
of items associated with the tuple attribute to equal the number of items of the
VARIABLES collection.
Bin relation({{var − 5, var− 3, var − 3},

{tuple − {val − 5, val − 2, val− 3},
tuple − {val − 5, val − 2, val− 6},
tuple − {val − 5, val − 3, val− 3}})

Iin relation({{var − 5, var− 3, var − 3},
{tuple− {val − 5, val − 2, val − 8, val − 2},
tuple − {val − 5, val − 2, val− 6},
tuple − {val − 5, val − 3, val− 3}})

1.1. DESCRIBING THE ARGUMENTS OF A GLOBAL CONSTRAINT 11

– t, where t is an argument of type int. The value of t is the value of the
corresponding argument.

EXAMPLE: This kind of expression is for instance used in the restrictions of the
atleast(N, VARIABLES, VALUE) constraint: N ≥ 0 forces the first argument of
the atleast constraint to be greater than or equal to 0.
Batleast(2, {var − 5, var − 8, var − 5}, 5)
Iatleast(−1, {var − 5, var− 8, var − 5}, 5)

– v, where v is an argument of type dvar. The value of v will be the value
assigned to variable v 4.

EXAMPLE: This kind of expression is for instance used in the restrictions of the
among(NVAR, VARIABLES, VALUES) constraint: NVAR ≥ 0 forces the first argu-
ment of the among constraint to be greater than or equal to 0.
Bamong(2, {var − 5, var− 8, var − 5}, {val − 1, val− 5})
Iamong(−9, {var − 5, var − 8, var − 5}, {val − 1, val − 5})

– c.a, where c is an argument of type collection and a an attribute of c of
type int or dvar. The values denoted by c.a are all the values correspond-
ing to attribute a for the different items of c. When c.a designates a domain
variable we consider the value assigned to that variable.

EXAMPLE: This kind of expression is for instance used in the restrictions of the
cumulative(TASKS, LIMIT) constraint: TASKS.duration ≥ 0 enforces for all
items of the TASKS collection that the duration attribute be greater than or equal
to 0.
Bcumulative({ origin − 2 duration − 2 end − 4 height − 2,

origin − 2 duration − 2 end− 4 height − 2,
origin − 1 duration − 4 end− 5 height − 5,
origin − 4 duration − 2 end− 6 height − 1}, 12)

Icumulative({ origin − 2 duration −−2 end− 4 height − 2,
origin − 2 duration − 2 end− 4 height − 2,
origin − 1 duration − 4 end− 5 height − 5,
origin − 4 duration − 2 end− 6 height − 1}, 12)

– c.a, where c is an argument of type collection and a an attribute of c of
type sint or svar. The values denoted by c.a are all the values belonging
to the sets corresponding to attribute a for the different items of c. When
c.a designates a set variable we consider the values that finally belong to
that set.

4This stems from the fact that restrictions are defined on the ground instance of a global constraint.

12 CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS

EXAMPLE: This kind of expression is for instance used in the restrictions of the
inverse set(X, Y) constraint: X.x ≥ 1 enforces for all items of the X collection
that all the potential elements of the set variable associated with the x attribute be
greater than or equal to 1.
Binverse set({ index − 1 x − {2, 4}, index − 2 x− {4},

index − 3 x− {1}, index − 4 x− {4} },
index − 1 y− {3}, index − 2 y− {1},
index − 3 y− {}, index − 4 y− {1, 2, 4},
index − 5 y− {} })

Iinverse set({ index − 1 x − {0, 2, 4}, index − 2 x − {4},
index − 3 x− {1}, index − 4 x− {4} },
index − 1 y− {3}, index − 2 y− {1},
index − 3 y− {}, index − 4 y− {1, 2, 4},
index − 5 y− {} })

– min(t1, t2) or max(t1, t2), where t1 and t2 are terms. Let V1 and V2 de-
note the sets of values respectively associated with the terms t1 and t2.
Let min(V1), max(V1) and min(V2), max(V2) denote the minimum and
maximum values of V1 and V2. The value associated with min(t1, t2) is
min(min(V1),min(V2)), while the value associated with max(t1, t2) is
max(max(V1),max(V2)).

EXAMPLE: This kind of expression is for instance used in the restrictions
of the ninterval(NVAL, VARIABLES, SIZE INTERVAL) constraint: NVAL ≥
min(1, |VARIABLES|) forces NVAL to be greater than or equal to the minimum
of 1 and the number of items of the VARIABLES collection.
B ninterval(2, {var − 3, var− 1, var− 9, var − 1, var − 9}, 4)
I ninterval(0, {var − 3, var − 1, var− 9, var− 1, var− 9}, 4)

– t1 op t2, where t1 and t2 are terms and op one of the operators +, −, ∗
or / 5. Let V1 and V2 denote the sets of values respectively associated
with the terms t1 and t2. The set of values associated with t1 op t2 is
V12 = {v : v = v1 op v2, v1 ∈ V1, v2 ∈ V2}.

EXAMPLE: This kind of expression is for instance used in the restrictions of
the relaxed sliding sum(ATLEAST, ATMOST, LOW, UP, SEQ, VARIABLES) con-
straint: ATMOST ≤ |VARIABLES| − SEQ + 1 forces ATMOST to be less than or
equal to an arithmetic expression that corresponds to the number of sequences of
SEQ consecutive variables in a sequence of |VARIABLES| variables.
B relaxed sliding sum(3, 4, 3, 7, 4, {var − 2, var − 4, var − 2, var− 0,

var − 0, var − 3, var − 4})
I relaxed sliding sum(3, 9, 3, 7, 4, {var − 2, var − 4, var − 2, var − 0,

var − 0, var − 3, var − 4})

• Finally, we can also use a constraint C of the catalog for expressing a restriction
as long as that constraint is not defined according to the constraint under con-
sideration. The constraint C should have a graph-based or an automaton-based
description so that its meaning is explicitly defined.

5/ denotes an integer division, a division in which the fractional part is discarded.

1.1. DESCRIBING THE ARGUMENTS OF A GLOBAL CONSTRAINT 13

EXAMPLE: An example of use of such restriction can be found in the
sort permutation(FROM, PERMUTATION, TO) constraint: alldifferent(PERMUTA-
TION) is used to express the fact that the variables of the second argument of the
sort permutation constraint should take distinct values.

1.1.4 Declaring a global constraint
Declaring a global constraint consists of providing the following information:

• A term ctr(A1, A2, . . . , An), where ctr corresponds to the name of the global
constraint and A1, A2, . . . , An to its arguments.

• A possibly empty list of type declarations, where each declaration has the form
type:type declaration; type is the name of the new type we define and
type declaration is a basic data type, a compound data type or a type pre-
viously defined.

• An argument declaration A1:T1, A2:T2, . . . , An:Tn giving for each argument
A1, A2, . . . , An of the global constraint ctr its type. Each type is a basic data
type, a compound data type, or a type that was declared in the list of type decla-
rations.

• A possibly empty list of restrictions, where each restriction is one of the restric-
tions described in Section 1.1.3 (page 5).

EXAMPLE: The arguments of the all differ from at least k pos constraint are de-
scribed by:

Constraint all differ from at least k pos(K, VECTORS)

Type(s) VECTOR − collection(var − dvar)

Argument(s) K − int

VECTORS − collection(vec − VECTOR)

Restriction(s) required(VECTOR, var)

K ≥ 0

required(VECTORS, vec)

same size(VECTORS, vec)

The first line indicates that the all differ from at least k pos constraint has two ar-
guments: K and VECTORS. The second line declares a new type VECTOR, which corresponds
to a collection of variables. The third line indicates that the first argument K is an integer,
while the fourth line tells that the second argument VECTORS corresponds to a collection
of vectors of type VECTOR. Finally the four restrictions respectively enforce that:

• All the items of the VECTOR collection mention the var attribute,

• K be greater than or equal to 0,

• All the items of the VECTORS collection mention the vec attribute,

• All the vectors have the same number of components.

14 CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS

1.2 Describing global constraints in terms of graph
properties

Through a practical example, we first present in a simplified form the basic principles
used for describing the meaning of global constraints in terms of graph properties. We
then give the full details about the different features used in the description process.

1.2.1 Basic ideas and illustrative example

Within the graph-based representation, a global constraint is represented as a digraph
where each vertex corresponds to a variable and each arc to a binary arc constraint be-
tween the variables associated with the extremities of the corresponding arc. The main
difference with classical constraint networks [28], stems from the fact that we don’t
force any more all arc constraints to hold. We rather consider this graph from which
we discard all the arc constraints that do not hold and impose one or several graph prop-
erties on this remaining graph. These properties can for instance be a restriction on the
number of connected components, on the size of the smallest connected component or
on the size of the largest connected component.

number of connected
components = 5

1 1

1

2

2

3

3

6 8

8

8

8

smallest connected component
(1 vertex)

largest connected component
(4 vertices)

Figure 1.1: Illustration of the link between graph-properties and global constraints

1.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES15

EXAMPLE: We give an example of interpretation of such graph properties in terms
of global constraints. For this purpose we consider the sequence s of values
1 3 1 1 2 8 8 2 3 6 8 8 3 from which we construct the following graph G:

• To each value associated with a position in s corresponds a vertex of G,

• There is an arc from a vertex v1 to a vertex v2 if these vertices correspond to the
same value.

Figure 1.1 depicts graph G. Since G is symmetric, we omit the directions of the arcs.
We have the following correspondence between graph properties and constraints on the
sequence s:

• The number of connected components of G corresponds to the number of distinct
values of s.

• The size of the smallest connected component of G is the smallest number of oc-
currences of the same value in s.

• The size of the largest connected component of G is the largest number of occur-
rences of the same value in s.

As a result, in this context, putting a restriction on the number of connected components
of G can been seen as a global constraint on the number of distinct values of a sequence of
variables. Similar global constraints can be associated with the two other graph properties.

We now explain how to generate the initial graph associated with a global constraint.
A global constraint has one or more arguments, which usually correspond to an integer
value, to one variable or to a collection of variables. Therefore we have to describe the
process that allows for generating the vertices and the arcs of the initial graph from the
arguments of a global constraint under consideration. For this purpose we will take a
concrete example.

Consider the constraint nvalue(NVAL, VARIABLES) where NVAL and VARIABLES

respectively correspond to a domain variable and to a collection of domain variables
{var− V1, var − V2, . . . , var− Vm}6. This constraint holds if NVAL is equal to the
number of distinct values assigned to the variables V1, V2, . . . , Vm. We first show how
to generate the initial graph associated with the nvalue constraint. We then describe
the arc constraint associated with each arc of this graph. Finally, we give the graph
characteristic we impose on the final graph.

To each variable of the collection VARIABLES corresponds a vertex of the initial
graph. We generate an arc between each pair of vertices. To each arc, we associate
an equality constraint between the variables corresponding to the extremities of that
arc. We impose that NVAL, the variable corresponding to the first argument of nvalue,
be equal to the number of strongly connected components of the final graph. This
final graph consists of the initial graph from which we discard all arcs such that the
corresponding equality constraint does not hold.

Part (A) of Figure 1.2 shows the graph initially generated for the constraint nvalue
(NVAL, {var−V1, var−V2, var−V3, var−V4}), where NVAL, V1, V2, V3 and V4 are
domain variables. Part (B) presents the final graph associated with the ground instance
nvalue(3, {var−5, var−5, var−1, var−8}). For each vertex of the initial and final

6var corresponds to the name of the attribute used in the collection of variables.

16 CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS

graph we respectively indicate the corresponding variable and the value assigned to that
variable. We have removed from the final graph all the arcs associated to equalities that
do not hold. The constraint nvalue(3, {var−5, var−5, var−1, var−8}) holds since
the final graph contains three strongly connected components, which, in the context of
the definition of the nvalue constraint, can be reinterpreted as the fact that NVAL is the
number of distinct values assigned to variables V1, V2, V3, V4.

1V

2V 3V

4V 5

5 1

8

(A) (B)

Figure 1.2: Initial and final graph associated with nvalue

Now that we have illustrated the basic ideas for describing a global constraint in
terms of graph properties, we go into more details.

1.2.2 Ingredients used for describing global constraints
We first introduce the basic ingredients used for describing a global constraint and
illustrate them shortly on the example of the nvalue constraint introduced in the pre-
vious section (page 15). We then go through each basic ingredient in more detail. The
graph-based description is founded on the following basic ingredients:

• Data types and restrictions used in order to describe the arguments of a global
constraint. Data types and restrictions were already described in the previous
section (from page 3 to page 13).

• Collection generators used in order to derive new collections from the arguments
of a global constraint for one of the following reasons:

– Collection generators are sometimes required since the initial graph of a
global constraint cannot always be directly generated from the arguments
of the global constraint. The nvalue(NVAL, VARIABLES) constraint did not
require any collection generator since the vertices of its initial graph were
directly generated from the VARIABLES collection.

– A second use of collection generators is for deriving a collection of items
for different set of vertices of the final graph. This is sometimes required
when we use set generators (see the last item of the enumeration).

• Elementary constraints associated with the arcs of the initial and final graph of
a global constraint. The nvalue constraint was using an equality constraint, but
other constraints are usually required.

1.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES17

• Graph generators employed for constructing the initial graph of a global con-
straint. In the context of the nvalue constraint the initial graph was a clique. As
we will see later, other patterns are needed for generating an initial graph.

• Graph characteristics used for constraining the final graph we want to obtain.
In the context of the nvalue constraint we were using the number of strongly
connected components for expressing the fact that we want to count the number
of distinct values.

• Set generators which may be used for generating specific sets of vertices of the
final graph on which we want to enforce a given constraint. Since the nvalue

constraint enforces a graph property on the final graph (and not on subparts of
the final graph) we did not use this feature.

We first start to explain each ingredient separately and then show how one can
describe most global constraints in terms of these basic ingredients.

Collection generators

The vertices of the initial graph are usually directly generated from collections of items
that are arguments of the global constraint G under consideration. However, it some-
times happens that we would like to derive a new collection from existing arguments
of G in order to produce the vertices of the initial graph.

EXAMPLE: This is for instance the case of the element(INDEX, TABLE, VALUE) con-
straint, where INDEX and VALUE are domain variables that we would like to group as a
single item I (with two attributes) of a new derived collection. This is in fact done in order
to generate the following initial graph:

• The item I as well as all items of TABLE constitute the vertices,

• There is an arc from I to each item of the TABLE collection.
We provide the following mechanism for deriving new collections:

• In a first phase we declare the name of the new collection as well as the names
of its attributes and their respective types. This is achieved exactly in the same
way as those collections that are used in the arguments of a global constraint (see
page 4).

EXAMPLE: Consider again the example of the element(INDEX, TABLE, VALUE) con-
straint. The declaration ITEM − collection(index − dvar, value − dvar) intro-
duces a new collection called ITEM where each item has an index and a value attribute.
Both attributes correspond to domain variables.

• In a second phase we give a list of patterns that are used for generating the items
of the new collection. A pattern o − item(a1 − v1, a2 − v2, . . . , an − vn) or
item(a1 − v1, a2 − v2, . . . , an − vn) specifies for each attribute ai(1 ≤ i ≤ n)
of the new collection how to fill it7. This is done by providing for each attribute
ai one of the following element vi:

7o is one of the comparison operators =, 6=, <,≥,>,≤. When omitted its default value is =.

18 CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS

– A constant,

– A parameter of the global constraint G,

– An attribute of a collection that is a parameter of the global constraint G,

– An attribute of a derived collection that was previously declared.

This element vi must be compatible with the type declaration of the correspond-
ing attribute of the new collection.

EXAMPLE: We continue the example of the element(INDEX, TABLE, VALUE) constraint
and the derived collection ITEM− collection(index − dvar, value − dvar). The
pattern item(index − INDEX, value − VALUE) indicates that:

• The index attribute of the ITEM collection will be generated by using the INDEX

argument of the element constraint. Since INDEX is a domain variable, it is com-
patible with the declaration ITEM − collection(index − dvar, value − dvar)
of the new collection.

• The value attribute of the ITEM collection will be generated by using the VALUE

argument of the element constraint. VALUE is also compatible with the declaration
statement of the new collection.

We now describe how we use the pattern for generating the items of a derived collec-
tion. We have the following two cases:

• If the pattern o − item(a1 − v1, a2 − v2, . . . , an − vn) does not contain any
reference to an attribute of a collection then we generate one single item for
such pattern8. In this context the value vi of the attribute ai (1 ≤ i ≤ n)
corresponds to a constant, to an argument of the global constraint or to a new
derived collection.

• If the pattern o − item(a1 − v1, a2 − v2, . . . , an − vn), where o is one of the
comparison operators =, 6=, <,≥, >,≤, contains one or several references to an
attribute of a collection9 we denote by:

– k1, k2, . . . , km the indices of the positions corresponding to the attribute of
a collection within item(a1 − v1, a2 − v2, . . . , an − vn),

– cα1 , cα2 , . . . , cαm the corresponding collections,

– aα1 , aα2 , . . . , aαm the corresponding attributes.

For each combination of items cα1 [i1], cα2 [i2], . . . , cαm [im] such that:

i1 ∈ [1, |cα1 |], i2 ∈ [1, |cα2 |], . . . , im ∈ [1, |cαm |] and i1 o i2 o . . . o in

we generate an item of the new derived collection (a1−w1 a2−w2 . . . an−wn)
defined by:

wj(1 ≤ j ≤ n) =

{
cαp [ip].aαp ifj ∈ {k1, k2, . . . , km}, j = kp

vj ifj /∈ {k1, k2, . . . , km} .

8In this first case the value of o is irrelevant.
9This collection is a parameter of the global constraint or corresponds to a newly derived collection.

1.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES19

We illustrate this generation process on a set of examples. Each example is de-
scribed by providing:

• The global constraint and its arguments,

• The declaration of the new derived collection,

• The pattern used for creating an item of the new collection,

• The items generated by applying this pattern to the global constraint,

• A comment about the generation process.

We first start with four examples that don’t mention any references to an attribute of a
collection. A box surrounds an argument of a global constraint that is mentioned in a
generated item.

EXAMPLE

CONSTRAINT : element(INDEX , TABLE, VALUE)

DERIVED COLLECTION: ITEM − collection(index − dvar, value − dvar)

PATTERN(S) : item(index − INDEX, value − VALUE)

GENERATED ITEM(S) : {index− INDEX value− VALUE }
We generate one single item where the two attributes index and value respectively take
the first argument INDEX and the third argument VALUE of the element constraint.

EXAMPLE

CONSTRAINT : lex lesseq(VECTOR1, VECTOR2)

DERIVED COLLECTION: DESTINATION − collection(index − int, x− int, y − int)

PATTERN(S) : item(index − 0, x− 0, y − 0)

GENERATED ITEM(S) : {index − 0 x − 0 y− 0}
We generate one single item where the three attributes index, x and y take value 0.

EXAMPLE

CONSTRAINT : in relation(VARIABLES , TUPLES OF VALS)

DERIVED COLLECTION: TUPLES OF VARS − collection(vec − TUPLE OF VARS)

PATTERN(S) : item(vec − VARIABLES)

GENERATED ITEM(S) : {vec− VARIABLES }
We generate one single item where the unique attribute vec takes the first argument of the
in relation constraint as its value.

20 CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS

EXAMPLE

CONSTRAINT : domain constraint(VAR , VALUES)

DERIVED COLLECTION: VALUE − collection(var01 − int, value − dvar)

PATTERN(S) : item(var01 − 1, value − VAR)

GENERATED ITEM(S) : {var01 − 1 value− VAR }
We generate one single item where the two attributes var01 and value respectively take
value 1 and the first argument of the domain constraint constraint.

We continue with three examples that mention one or several references to an at-
tribute of some collections. We now need to explicitly give the items of these collec-
tions in order to generate the items of the derived collection.

EXAMPLE

CONSTRAINT : lex lesseq(VECTOR1 , VECTOR2)

VECTOR1 : {var − 5, var − 2, var − 3, var − 1}
VECTOR2 : {var − 5, var − 2, var − 6, var − 2}
DERIVED COLLECTION: COMPONENTS − collection(index − int,

x− dvar, y − dvar)

PATTERN(S) : item(index − VECTOR1.keya,

x− VECTOR1.var, y− VECTOR2.var)

GENERATED ITEM(S) : {index − 1 x− 5 y− 5, index − 2 x− 2 y− 2,

index − 3 x − 3 y − 6, index − 4 x− 1 y− 2}
The pattern mentions three references VECTOR1.key, VECTOR1.var and VECTOR2.var to
the collections VECTOR1 and VECTOR2 used in the arguments of the lex lesseq con-
straint. ∀i1 ∈ [1, |VECTOR1|], ∀i2 ∈ [1, |VECTOR2|] such that i1 = i2

b we generate an item
index − v1 x − v2 y− v3 where:

v1 = i1, v2 = VECTOR1[i1].var, v3 = VECTOR2[i1].var.
This leads to the four items listed in the GENERATED ITEM(S) field.

aAs defined in Section 1.1.2 page 4, key is an implicit attribute corresponding to the position of
an item within a collection.

bWe use an equality since this is the default value of the comparison operator o when we don’t use
a pattern of the form o− item(. . .).

1.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES21

EXAMPLE

CONSTRAINT : cumulatives(TASKS , MACHINES, CTR)

TASKS : {machine − 1 origin − 1 duration − 4 end − 5 height − 1,

machine − 1 origin − 4 duration − 2 end − 6 height − 3,

machine − 1 origin − 2 duration − 3 end − 5 height − 2,

machine − 2 origin − 5 duration − 2 end − 7 height − 2}
DERIVED COLLECTION: TIME POINTS − collection(idm − int,

duration − dvar, point − dvar)

PATTERN(S) : item(idm − TASKS.machine,

duration − TASKS.duration, point − TASKS.origin)

item(idm − TASKS.machine,

duration − TASKS.duration, point − TASKS.end)

GENERATED ITEM(S) : {idm − 1 duration − 4 point − 1,

idm − 1 duration − 2 point − 4,

idm − 1 duration − 3 point − 2,

idm − 2 duration − 2 point − 5,

idm − 1 duration − 4 point − 5,

idm − 1 duration − 2 point − 6,

idm − 1 duration − 3 point − 5,

idm − 2 duration − 2 point − 7}
The two patterns mention the references TASKS.machine, TASKS.duration,
TASKS.origin and TASKS.end of the TASKS collection used in the arguments
of the cumulatives constraint. ∀i ∈ [1, |TASKS|], we generate two items
idm − u1 duration − u2 point − u3 , idm − v1 duration − v2 point − v3

where:
u1 = TASKS[i].machine, u2 = TASKS[i].duration, u3 = TASKS[i].origin,
v1 = TASKS[i].machine, v2 = TASKS[i].duration, v3 = TASKS[i].end.

This leads to the eight items listed in the GENERATED ITEM(S) field.

22 CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS

EXAMPLE

CONSTRAINT : golomb(VARIABLES)

VARIABLES : {var − 0, var − 1, var − 4, var − 6}
DERIVED COLLECTION: PAIRS − collection(x − dvar, y− dvar)

PATTERN(S) : > −item(x − VARIABLES.var, y− VARIABLES.var)

GENERATED ITEM(S) : {x− 1 y− 0,

x − 4 y − 0, x − 4 y − 1,

x − 6 y − 0, x − 6 y − 1, x− 6 y− 4}
The pattern mentions two references VARIABLES.var and VARIABLES.var to the
VARIABLES collection used in the arguments of the golomb constraint. ∀i1 ∈
[1, |VARIABLES|], ∀i2 ∈ [1, |VARIABLES|] such that i1 > i2

a we generate the item
x− u1 y − u2 where:

u1 = VARIABLES[i1].var, u2 = VARIABLES[i2].var.
This leads to the six items listed in the GENERATED ITEM(S) field.

aWe use the comparison operator > since we have a pattern of the form > −item(. . .).

Elementary constraints attached to the arcs

This section describes the constraints that are associated with the arcs of the initial
graph of a global constraint. These constraints are called arc constraints. To each
arc one can associate one or several arc constraints. An arc will belong to the final
graph if and only if all its arc constraints hold. An arc constraint from a vertex v1 to a
vertex v2 mentions variables and/or values associated with v1 and v2. Before defining
an arc constraint, we first need to introduce simple arithmetic expressions as well as
arithmetic expressions. Simple arithmetic expressions and arithmetic expressions are
defined recursively.

Simple arithmetic expressions A simple arithmetic expression is defined by one of
the five following expressions.

• I : I is an integer.

• Arg: Arg is an argument of the global constraint of type int or dvar.

• Arg: Arg is a formal parameter provided by the arc generator10 of the graph-
constraint.

• Col.Attr: Col is a formal parameter provided by the arc generator or the col-
lection used in the For all items of iterator11. Attr is an attribute of the col-
lection referenced by Col.

10Arc generators are described in Section 1.2.2 (page 26).
11The For all items of iterator is described in Section 1.2.3 (page 43).

1.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES23

EXAMPLE: As an example consider the first graph-constraint associated with the
global cardinality with costs(VARIABLES, VALUES, MATRIX, COST) constraint
and its arc constraint variables.var = VALUES.val. Both, variables.var as well
as VALUES.val are simple arithmetic expressions of the form Col.Attr:

– In variables.var, variables corresponds to the formal parameter provided by
the arc generator SELF 7→ collection(variables), while var is an attribute
of the VARIABLES collection.

– In VALUES.val, VALUES corresponds to the collection denoted by the For

all items of iterator, while val is an attribute of the VALUES collection.

• Col[Expr].Attr: Col is an argument of type collection, Attr one attribute
of Col and Expr an arithmetic expression.

Col[Expr].Attr denotes the value of attribute Attr of the Exprth item of the
collection denoted by Col.

EXAMPLE: As an example consider the global cardinality with costs(
VARIABLES, VALUES, MATRIX, COST) constraint and its second graph-constraint, which
defines the COST variable. The expression MATRIX[(variables.key − 1) ∗ |VALUES|+
values.key].c is a simple arithmetic expression of the form Col[Expr].Attr:

– MATRIX is a collection of items collection(i − int, j− int, c− int) where
all items are sorted in increasing order on attributes i, j (because of the restriction
increasing seq(MATRIX, [i, j])).

– MATRIX[(variables.key − 1) ∗ |VALUES| + values.key].c denotes the value
of attribute c of an item of the MATRIX collection. The position of this item within
the MATRIX collection depends on the position of a variable of the VARIABLES

collection a as well as on the position of a value of the VALUES collection b.

aThis position is denoted by the expression variables.key. As defined in Section 1.1.2 page
4, key is an implicit attribute corresponding to the position of an item within a collection.

bThis position is denoted by the expression values.key.

Arithmetic expressions An arithmetic expression is recursively defined by one of
the following expressions:

• A simple arithmetic expression.

• Exp1 Op Exp2:

– Exp1 is an arithmetic expression,

– Op is one of the following symbols +, −, ∗, / 12,

– Exp2 is an arithmetic expression.

• |Collection|:
– Collection is an argument of type collection and |Collection| de-

notes the number of items of that collection.
12/ denotes an integer division, a division in which the fractional part is discarded.

24 CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS

• |Exp|:

– Exp is an arithmetic expression, and |Exp| denotes the absolute value of
this expression.

• sign(Exp):

– Exp is an arithmetic expression, and sign(Exp) the sign of Exp (−1 if Exp
is negative, 0 if Exp is equal to 0, 1 if Exp is positive).

EXAMPLE: An example of use of sign can be found in the last part of the arc con-
straint of the crossing constraint:
sign((s2.ox − s1.ex) ∗ (s1.ey − s1.oy) − (s1.ex − s1.ox) ∗ (s2.oy − s1.ey)) 6=
sign((s2.ex − s1.ex) ∗ (s2.oy − s1.oy) − (s2.ox − s1.ox) ∗ (s2.ey − s1.ey))

• card set(Set):

– Set is a reference to a set of integers or to a set variable. card set(Set)
denotes the number of elements of that set.

EXAMPLE: An example of use of card set can be found in the symmetric gcc

constraint: vars.nocc = card set(vars.var).

• SimpleExp1 mod SimpleExp2,

min(SimpleExp1, SimpleExp2) or max(SimpleExp1, SimpleExp2):

– SimpleExp1 is a simple arithmetic expression,

– SimpleExp2 is a simple arithmetic expression.

Arc constraints Now that we have introduced simple arithmetic expressions as well
as arithmetic expressions we define an arc constraint. An arc constraint is recursively
defined by one of the following expressions:

• TRUE:

This stands for an arc constraint that always holds. As a result, the corresponding
arc always belongs to the final graph.

EXAMPLE: An example of use of TRUE can be found in the sum ctr(VARIABLES, CTR,
VAR) constraint, where it is used in order to enforce keeping all items of the VARIABLES
collection in the final graph.

• Exp1 Comparison Exp2:

– Exp1 is an arithmetic expression,

– Comparison is one of the comparison operators≤, ≥, <, >, =, 6=,

– Exp2 is an arithmetic expression.

1.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES25

EXAMPLE: As an example of such arc constraint, the second graph-constraint of the
cumulative(TASKS, LIMIT) constraint uses the following arc constraints:

– tasks1.duration > 0,

– tasks2.origin ≤ tasks1.origin,

– tasks1.origin < tasks2.end.

The conjunction of these three arc constraints can be interpreted in the following way:
An arc from a task tasks1 to a task tasks2 will belong to the final graph if and only if
tasks2 overlaps the origin of tasks1.

• Exp1 SimpleCtr Exp2:

– Exp1 is an arithmetic expression,

– SimpleCtr is an argument of type atom that can only take one of the values
≤, ≥, <, >, =, 6=,

– Exp2 is an arithmetic expression.

EXAMPLE: An example of use of such an arc constraint can be found
in the change(NCHANGE, VARIABLES, CTR) constraint: variables1.var CTR

variables2.var. Within this expression, variables1 and variables2 correspond
to consecutive items of the VARIABLES collection.

• Exp1 ¬SimpleCtr Exp2:

– Exp1 is an arithmetic expression,

– SimpleCtr is an argument of type atom that can only take one of the values
≤, ≥, <, >, =, 6=,

– Exp2 is an arithmetic expression.

EXAMPLE: An example of use of such an arc constraint can be found
in the change continuity(NB PERIOD CHANGE, NB PERIOD CONTINUITY,
MIN SIZE CHANGE, MAX SIZE CHANGE, MIN SIZE CONTINUITY,
MAX SIZE CONTINUITY, NB CHANGE, NB CONTINUITY, VARIABLES, CTR) constraint:
variables1.var ¬CTR variables2.var. Within this expression, variables1 and
variables2 correspond to consecutive items of the VARIABLES collection.

• Ctr(Exp1, . . . , Expn):

– Ctr is a global constraint defined in the catalog for which there exists a
graph-based and/or an automaton-based representation,

– Exp1, . . . , Expn correspond to the arguments of the global constraint Ctr.
Each argument should be a simple arithmetic expression that is compatible
with the type declaration of the argument of Ctr.

26 CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS

EXAMPLE: An example of such arc constraint can be found in the definition
of diffn: diffn(ORTHOTOPES) uses the two orth do not overlap(ORTHOTOPE1,
ORTHOTOPE2) global constraint for defining its arc constraint. Since ORTHOTOPES is
a collection of type collection(ori − dvar, siz− dvar, end− dvar) and since
both ORTHOTOPE1 and ORTHOTOPE2 correspond to items of ORTHOTOPES there is no
type compatibility problem between the call to two orth do not overlap and its def-
inition.

• ArcCtr1 LogicalConnector ArcCtr2:

– ArcCtr1 is an arc constraint,

– LogicalConnector is one of the logical connectors ∨, ∧,⇒,⇔,

– ArcCtr2 is an arc constraint.

EXAMPLE: As shown by the following example, minimum(MIN, VARIABLES) uses
this kind of arc constraint: variables1 = variables2 ∨ variables1.var <
variables2.var, where variables1 and variables2 correspond to items of the
VARIABLES collection, holds if and only if one of the following conditions holds:

– variables1 and variables2 correspond to the same item of the VARIABLES

collection,

– The var attribute of variables1 is strictly less than the var attribute of
variables2.

Graph generators

This section describes how to generate the initial graph associated with a global con-
straint. Initial graphs correspond to directed hypergraphs [29], which have a very reg-
ular structure. They are defined in the following way:

• The vertices of the directed hypergraph are generated from collections of items
such that each item corresponds to one vertex of the directed hypergraph. These
collections are either collections that arise as arguments of the global constraint,
or collections that are derived from one or several arguments of the global con-
straint. In this latter case these derived collections are computed by using the
collection generators previously introduced (see Section 1.2.2, page 17).

• To all arcs of the directed hypergraph corresponds the same arc constraint that
involves vertices in a given order13. These arc constraints, which are mainly
unary and binary constraints, were described in the previous section (see Sec-
tion 1.2.2, page 22). We describe all the arcs of an initial graph with a set of
predefined arc generators, which correspond to classical regular structures one
can find in the graph literature [30, pages 140–153]. An arc generator of arity a

13Usually the edges of a hypergraph are not oriented [29, pages 1–2]. However for our purpose we need
to define an order on the vertices of an edge since the corresponding arc constraint takes its arguments in a
given order.

1.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES27

takes n collections of items, denoted ci(1 ≤ i ≤ n), as input and returns the cor-
responding hypergraph where the vertices are the items of the input collections
ci(1 ≤ i ≤ n) and where all arcs involve a vertices. Specific arc generators al-
low for giving an a-ary constraint for which a is not fixed, which means that the
corresponding hypergraph contains arcs involving various number of vertices.

Each arc generator has a name and takes one or several collections of items as input
and generates a set of arcs. Each arc is made from a sequence of items i1 i2 . . . ia and
is denoted by (i1, i2, . . . , ia). a is called the arity of the arc generator. We have the
following types of arc generators:

• Arc generators with a fixed predefined arity. In fact most arc generators have a
fixed predefined arity of 2. The graphs they generate correspond to digraphs.

• Arc generators that can be used with any arity a greater than or equal to 1. These
arc generators generate directed hypergraphs where all arcs consist of a items.

• Arc generators that generate arcs that don’t involve the same number of items.

We now give the list of arc generators, listed in alphabetic order, and the arcs they
generate. For each arc generator we point to a global constraint where it is used in
practice. Finally, Figure 1.4 illustrates the different arc generators. At present the
following arc generators are in use:

• CHAIN has a predefined arity of 2. It takes one collection c and generates the
following arcs14:

– ∀i ∈ [1, |c| − 1]: (c[i], c[i+ 1]), – ∀i ∈ [1, |c| − 1]: (c[i+ 1], c[i]).

EXAMPLE: The arc generator CHAIN is for instance used in the
group skip isolated item constraint.

• CIRCUIT has a predefined arity of 2. It takes one collection c and generates
the following arcs:

– ∀i ∈ [1, |c| − 1]: (c[i], c[i+ 1]), – (c[|c|], c[1]).

EXAMPLE: The arc generator CIRCUIT is for instance used in the
circular change constraint.

• CLIQUE can be used with any arity a greater than or equal to 2. It takes
one collection c and generates the arcs: ∀i1 ∈ [1, |c|], ∀i2 ∈ [1, |c|], . . . , ∀ia ∈
[1, |c|] : (c[i1], c[i2], . . . , c[ia]).

EXAMPLE: The arc generator CLIQUE is usually used with an arity a = 2. This is
for instance the case of the alldifferent constraint.

14As defined in Section 1.1.2 (page 4) we use the following notation: For a given collection c, |c| and c[i]
respectively denote the number of items of c and the ith item of c.

28 CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS

• CLIQUE (Comparison) , where Comparison is one of the comparison opera-
tors ≤, ≥, <, >, =, 6=, can be used with any arity a greater than or equal to 2. It
takes one collection c and generates the arcs:

∀i1 ∈ [1, |c|],
∀i2 ∈ [1, |c|] such that i1 Comparison i2,

. ,

∀ia ∈ [1, |c|] such that ia−1 Comparison ia : (c[i1], c[i2], . . . , c[ia]).

EXAMPLE: The orchard(TREES) constraint is an example of constraint that uses the
CLIQUE(<) arc generator with an arity a = 3. It generates an arc for each set of three
trees.

• GRID([d1, d2, . . . , dn]) takes a collection c consisting of d1 ·d2 · · · · ·dn items
and generates the arcs (c[i], c[j]) where i and j satisfy the following condition.
There exists a natural number α (0 ≤ α ≤ n− 1) such that (1) and (2) hold:

(1) |i− j| = ∏
1≤k≤α dk (when α = 0 we have

∏
1≤k≤α = 1),

(2) b iQ
1≤k≤α+1 dk

c = b jQ
1≤k≤α+1 dk

c.

EXAMPLE: The connect points constraint uses the GRID arc generator.

• LOOP has a predefined arity of 2. It takes one collection c and generates the
arcs: ∀i ∈ [1, |c|]: (c[i], c[i]). LOOP is usually used in order to generate a loop
on some vertices, so that they don’t disappear from the final graph.

EXAMPLE: The global contiguity(VARIABLES) constraint is an example of con-
straint that uses the LOOP arc generator so that each variable of the VARIABLES col-
lection belongs to the final graph.

• PATH can be used with any arity a greater than or equal to 1. It takes one
collection c, and generates the following arcs: ∀i ∈ [1, |c| − a+ 1] : (c[i], c[i+
1], . . . , c[i+ a− 1]).

EXAMPLE: PATH is for instance used in the sliding sum(LOW, UP, SEQ,
VARIABLES) constraint with an arity SEQ, where SEQ is an argument of the
sliding sum constraint.

• PATH 1 generates arcs that don’t involve the same number of items. It takes
one collection c, and generates the following arcs: (c[1]), (c[1], c[2]), . . . ,
(c[1], c[2], . . . , c[|c|]).

EXAMPLE: PATH 1 is used in the
size maximal starting sequence alldifferent constraint.

1.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES29

• PATH N generates arcs that don’t involve the same number of items. It takes
one collection c, and generates the following arcs: ∀i ∈ [1, |c|], ∀j ∈ [i, |c|] :
(c[i], c[i+ 1], . . . , c[j]).

EXAMPLE: PATH N is for instance used in the
size maximal sequence alldifferent constraint.

• PRODUCT has a predefined arity of 2. It takes two collections c1, c2 and
generates the arcs: ∀i ∈ [1, |c1|], ∀j ∈ [1, |c2|] : (c1[i], c2[j]).

EXAMPLE: PRODUCT is for instance used in the same(VARIABLES1,
VARIABLES2) constraint for generating an arc from every item of the VARIABLES1

collection to every item of the VARIABLES2 collection.

• PRODUCT (Comparison) , where Comparison is one of the comparison op-
erators ≤, ≥, <, >, =, 6=, has a predefined arity of 2. It takes two collec-
tions c1, c2 and generates the arcs: ∀i ∈ [1, |c1|], ∀j ∈ [1, |c2|] such that
i Comparison j : (c1[i], c2[j]).

EXAMPLE: PRODUCT (=) is for instance used in the
differ from at least k pos(K, VECTOR1, VECTOR2) constraint in order to generate
an arc between the ith component of VECTOR1 and the ith component of VECTOR2.

• SELF has a predefined arity of 1. It takes one collection c and generates the
arcs: ∀i ∈ [1, |c|]: (c[i]).

EXAMPLE: SELF is for instance used in the among(NVAR, VARIABLES, VALUES) con-
straint in order to generate a unary arc constraint in(variables.var, VALUES) for each
variable of the VARIABLES collection.

• SYMMETRIC PRODUCT has a predefined arity of 2. It takes two collec-
tions c1, c2 and generates the following arcs: ∀i ∈ [1, |c1|], ∀j ∈ [1, |c2|] :
(c1[i], c2[j]) and (c2[j], c1[i]). SYMMETRIC PRODUCT is currently not
used.

• SYMMETRIC PRODUCT (Comparison) , where Comparison is one of the
comparison operators≤,≥, <, >, =, 6=, has a predefined arity of 2. It takes two
collections c1, c2 and generates the arcs: ∀i ∈ [1, |c1|], ∀j ∈ [1, |c2|] such that
i Comparison j : (c1[i], c2[j]) and (c2[j], c1[i]).

EXAMPLE: The two orth do not overlap constraint is an example of constraint
that uses the SYMMETRIC PRODUCT (=) arc generator.

• VOID takes one collection and does not generate any arc.

EXAMPLE: VOID is for instance used in the lex lesseq constraint.

30 CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS

Finally, we can combine the PRODUCT arc generator with the arc generators
from the following set Generator = {CIRCUIT , CHAIN , CLIQUE , LOOP ,
PATH , VOID}. This is achieved by using the construction PRODUCT (G1, G2)
where G1 and G2 belong to Generator . It applies G1 to the first collection c1 passed
to PRODUCT and G2 to the second collection c2 passed to PRODUCT . Finally, it
applies PRODUCT on c1 and c2. In a similar way the PRODUCT (Comparison)
arc generator is extended to PRODUCT (G1, G2, Comparison).

EXAMPLE: As an illustrative example, consider the
alldifferent same value(NSAME, VARIABLES1, VARIABLES2) constraint, which
uses the arc generator PRODUCT (CLIQUE ,LOOP ,=) on the collections
VARIABLES1 and VARIABLES2. It generates the following arcs:

• Since the first argument of PRODUCT is CLIQUE it generates an arc between
each pair of items of the VARIABLES1 collection.

• Since the second argument of PRODUCT is LOOP it generates a loop for each
item of the VARIABLES2 collection.

• Since the third argument is the comparison operator = it finally generates an arc
between an item of the VARIABLES1 collection and an item of the VARIABLES2

collection when the two items have the same position.

Figure 1.3 shows the generated graph under the hypothesis that VARIABLES1 and
VARIABLES2 have respectively 3 and 3 items.

1i

2i

3i

j1

VARIABLES2VARIABLES1

j2

j3

Figure 1.3: Example of initial graph generated by PRODUCT (CLIQUE ,LOOP ,=)

Figure 1.4 illustrates the different arc generators. On the one hand, for those arc
generators that take one single collection, we apply them on the collection of items
{i − 1, i − 2, i − 3, i − 4}. On the other hand, for those arc generators that take two
collections, we apply them on {i− 1, i− 2} and {i− 3, i− 4}. We use the following
pictogram for the graphical representation of a constraint network:

• A line for an arc constraint of arity 1,

• An arrow for an arc constraint of arity 2,

• A closed line for an arc constraint with an arity strictly greater than 2. In this
last case, since the vertices of an arc are ordered, a black circle at one of the
extremities indicates the direction of the closed line. For instance consider the

1.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES31

example of PATH 1 in Figure 1.4. The closed line that contains vertices 1, 2
and 3 means that a 3-ary arc constraint involves items 1, 2, and 3 in this specific
order.

Dotted circles represent vertices that don’t belong to the graph. This stems from
the fact that the arc generator did not produce any arc involving these vertices. The
leftmost lowest corner indicates the arity of the corresponding arc generator:

• An integer if it has a fixed predefined arity,

• n if it can be used with any arity greater than or equal to 1,

• ∗ if it generates arcs that don’t necessarily involve the same number of items.

Graph properties

We represent a global constraint as the search of a subgraph (i.e. a final graph) of a
known initial graph, so that this final graph satisfies a given set of graph properties.
Most graph properties have the form Char Comparison Exp or the form Char /∈
[Exp1, Exp2], where Char is a graph characteristic [17], [31], Comparison is one of
the comparison operators =, <, ≥, >, ≤, 6=, and Exp, Exp1, Exp2 are expressions
that can be evaluated to an integer. Before defining each graph characteristic, let’s first
introduce some basic vocabulary on graphs.

Graph terminology and notations A digraph G = (V (G), E(G)) is a pair where
V (G) is a finite set, called the set of vertices, and where E(G) is a set of ordered
pairs of vertices, called the set of arcs. The arc, path, circuit and strongly connected
component of a graph G correspond to oriented concepts, while the edge, chain, cycle
and connected component are non-oriented concepts. However, as reported in [17,
page 6] an undirected graph can be seen as a digraph where to each edge we associate
the corresponding two arcs. Parts (A) and (B) of Figure 1.5 respectively illustrate the
terms for undirected graphs and digraphs.

• We say that e2 is a successor of e1 if there exists an arc that starts from e1 and
ends at e2. In the same way, we say that e2 is a predecessor of e1 if there exists
an arc that starts from e2 and ends at e1.

• A vertex of G that does not have any predecessor is called a source. A vertex of
G that does not have any successor is called a sink.

• A sequence (e1, e2, . . . , ek) of edges of G such that each edge has a common
vertex with the previous edge, and the other vertex common to the next edge is
called a chain of length k. A chain where all vertices are distinct is called an
elementary chain. Each equivalence class of the relation ”ei is equal to ej or
there exists a chain between ei and ej” is a connected component of the graph
G.

32 CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS

1 2 3 4

1 2 3 4

1

2

1

2

1

2

1

2

2

11

2

1 2

4 3

1

22

1

1

2

1

2

1 2

4 3

1 2

4 3

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1 2 3 4

LOOP

1

1 2 3 4

CIRCUIT

2

1 2 3 4

CYCLE

2

1 2

4 3

1 2

4 3

1 2

4 3

1 2

3 4

1 2 3

1 2 3 4

1 2 3 4

1

2

1

2

2

11

2

1

22

1

1

2

1

2

1

2

1

2

1

2

1

2

CHAIN

2

CLIQUE SELF

1

CLIQUE(<=) SYMMETRIC_PRODUCT

2 2

CLIQUE(>=) SYMMETRIC_PRODUCT(<=)

2 2
CLIQUE(<) SYMMETRIC_PRODUCT(>=)

2 2

CLIQUE(>) SYMMETRIC_PRODUCT(<)

2 2

CLIQUE(<>) SYMMETRIC_PRODUCT(>)

2 2

GRID([2,2]) SYMMETRIC_PRODUCT(=)

2 2

SYMMETRIC_PRODUCT(<>)

2

PRODUCT(PATH,VOID)

2

PRODUCT(<>)

2

2

PATH

PATH_1

*
PATH_N

*
PRODUCT

PRODUCT(<=)

2
PRODUCT(>=)

2

PRODUCT(<)

2

PRODUCT(>)

2

PRODUCT(=)

2

n

n

Figure 1.4: Examples of arc generators

1.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES33

edge

cycle

vertex connected component

chain

vertex strongly connected component

arc

circuit

path

sink

source

(A) Undirected graph (B) Digraph

Figure 1.5: Graph terminology for an undirected graph and a digraph

• A sequence (e1, e2, . . . , ek) of arcs ofG such that for each arc ei (1 ≤ i < k) the
end of ei is equal to the start of the arc ei+1 is called a path of length k. A path
where all vertices are distinct is called an elementary path. Each equivalence
class of the relation ”ei is equal to ej or there exists a path between ei and ej” is
a strongly connected component of the graph G.

• A chain (e1, e2, . . . , ek) of G is called a cycle if the same edge does not occur
more than once in the chain and if the two extremities of the chain coincide. A
cycle (e1, e2, . . . , ek) of G is called a circuit if for each edge ei (1 ≤ i < k), the
end of ei is equal to the start of the edge ei+1.

• Given a graph G, we define the reduced graph R(G) of G as follows: To each
strongly connected component of G corresponds a vertex of R(G). To each arc
of G that connects different strongly connected components corresponds an arc
in R(G).

• The rank function associated with the vertices V (G) of a graph G that does not
contain any circuit is defined in the following way:

– The rank of the vertices that do not have any predecessor (i.e. the sources)
is equal to 0,

– The rank r of a vertex v that is not a source is the length of longest path
(e1, e2, . . . , er) such that the start of the arc e1 is a source and the end of
arc er is the vertex v.

We now present the different notations used in the catalog:

• [k] corresponds to {1, · · · , k} for k any positive integer.

• Given a set X , |X | is the number of its elements.

• Given two sets X and Y , X
⊎
Y denotes the union of the two sets when they are

disjoint.

• Given a digraph G and x ∈ V (G), d+
G(x) = |{y : y ∈ V (G) : (x, y) ∈ E(G)}|

and d−G(x) = |{y : y ∈ V (G) : (y, x) ∈ E(G)}|.

34 CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS

• Given a digraph G and X a subset of V (G), the subdigraph of G induced by X
is the digraphG[X] where V (G[X]) = X andE(G[X]) = X2∩E(G). By aim
of simplicity, we denote G[V (G) −X] by G −X . Moreover, if X = {x}, we
use G− x instead of G− {x}.
• Given two digraphG1 and G2 such that V (G1)∩ V (G2) = ∅, G1 ⊕G2 denotes

the graph whose vertices set is V (G1) ∪ V (G2) and whose arcs set is E(G1) ∪
E(G2).

• Given a graph characteristic CH ∈ {NCC,NSCC}, a digraph G and an inte-
ger k, CH(G, k) is the number of connected components (respectively strongly
connected components) of G with cardinal k.

Given a graph characteristics, for instance the number of connected components,
NCCINITIAL will denote the number of connected components of the initial graph (i.e.
the graph induced by the constraint under consideration), NCC will denote the number
of connected components of the final graph (i.e. a subgraph of the initial graph). The
use of NCC(G) will denote the number of connected components of the digraph G.

Given a global constraintC, and a graph characteristics GC used in the description
of C, GC (resp. GC) denotes a lower bound (resp. upper bound) of GC among all
possible final graphs compatible with the current status of C.

Graph characteristics We list in alphabetic order the different graph characteris-
tics we consider for a final graph Gf = (V (Gf), E(Gf)) associated with a global
constraint and give an example of constraint where they are used:

• MAX DRG : largest distance between sources and sinks in the reduced graph
associated with Gf (adjacent vertices are at a distance of 1).

EXAMPLE: We don’t provide any example since MAX DRG is currently not used.

• MAX ID : number of predecessors of the vertex of Gf that has the maximum
number of predecessors without counting an arc from a vertex to itself.

EXAMPLE: The circuit constraint uses the graph property MAX ID = 1 in order
to force each vertex of the final graph to have at most one predecessor.

• MAX NCC : number of vertices of the largest connected component of Gf .

EXAMPLE: The longest change(SIZE, VARIABLES, CTR) constraint uses the graph
property MAX NCC = SIZE in order to catch in SIZE the maximum number of
consecutive variables of the VARIABLES collection for which constraint CTR holds.

1.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES35

• MAX NSCC : number of vertices of the largest strongly connected compo-
nent of Gf .

EXAMPLE: The tree constraint covers a digraph by a set of trees in such a way that
each vertex belongs to a distinct tree. It uses the graph-property MAX NSCC ≤ 1 in
order to avoid to have any circuit involving more than one vertex.

• MAX OD : number of successors of the vertex of Gf that has the maximum
number of successors without counting an arc from a vertex to itself.

EXAMPLE: The tour constraint enforces to cover a graph with a Hamiltonian cycle.
It uses the graph-property MAX OD = 2 to enforce that each vertex of Gf have at
most twoa successors.

aSince the tour constraint uses the CLIQUE(6=) arc generator the vertices of Gf don’t have
any loop.

• MIN DRG : smallest distance between sources and sinks in the reduced graph
associated with Gf (adjacent vertices are at a distance of 1).

EXAMPLE: We don’t provide any example since MIN DRG is currently not used
by any constraint.

• MIN ID : number of predecessors of the vertex of Gf that has the minimum
number of predecessors without counting an arc from a vertex to itself.

EXAMPLE: The tour constraint enforces to cover a graph with a Hamiltonian cycle.
It uses the graph-property MIN ID = 2 to enforce that each vertex ofGf have at most
twoa predecessors.

aSince the tour constraint uses the CLIQUE(6=) arc generator the vertices of Gf don’t have
any loop.

• MIN NCC : number of vertices of the smallest connected component of Gf .

EXAMPLE: Within the group constraint, each connected component of Gf corre-
sponds to a maximum sequence of consecutive variables that take their value in a given
set of values. Therefore, the graph-property MIN NCC = MIN SIZE enforces that
the smallest sequence of such variables consist of MIN SIZE variables.

36 CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS

• MIN NSCC : number of vertices of the smallest strongly connected compo-
nent of Gf .

EXAMPLE: The circuit(NODES) constraint enforces covering a digraph with one
circuit visiting once all its vertices. The graph-property MIN NSCC = |NODES|
enforces that the smallest strongly connected component ofGf contain |NODES| vertices.
Since |NODES| also corresponds to the number of vertices of the initial graph this means
that Gf is a strongly connected component involving all the vertices. This is clearly a
necessary conditiona for having a circuit visiting once all vertices.

aOf course, this is not enough, and the description of the circuit constraint asks for some
other properties.

• MIN OD : number of successors of the vertex of Gf that has the minimum
number of successors without counting an arc from a vertex to itself.

EXAMPLE: The tour constraint enforces to cover a graph with a Hamiltonian cycle.
It uses the graph-property MIN OD = 2 to enforce that each vertex of Gf have at
most twoa successors.

aSince the tour constraint uses the CLIQUE(6=) arc generator the vertices of Gf don’t have
any loop.

• NARC : cardinality of the set E(Gf).

EXAMPLE: The disjoint(VARIABLES1, VARIABLES2) constraint enforces that each
variable of the collection VARIABLES1 take a value that is distinct from all the values
assigned to the variables of the collection VARIABLES2.
This is imposed by creating an arc from each variable of VARIABLES1 to each variable
of VARIABLES2. To each arc corresponds an equality constraint involving the variables
associated to the extremities of the arc. Finally, the graph property NARC = 0 forces
Gf to be empty so that no value is both assigned to a variable of VARIABLES1 as well
as to a variable of VARIABLES2.

• NARC NO LOOP : cardinality of the set E(Gf) without considering the
arcs linking the same vertex (i.e. a loop).

EXAMPLE: The constraint alldifferent same value uses the
NARC NO LOOP graph-property.

1.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES37

• NCC : number of connected components of Gf .

EXAMPLE: The tree constraint covers a digraph by NTREES trees in such a way that
each vertex belongs to a distinct tree. It uses the graph-property NCC = NTREES in
order to state that Gf is made up from NTREES connected components.

• NSCC : number of strongly connected components of Gf .

EXAMPLE: The constraint nvalue(NVAL, VARIABLES) forces NVAL to be equal to the
number of distinct values assigned to the variables of the collection VARIABLES. This
is enforced by using the graph-property NSCC = NVAL. Each strongly connected
component of the final graph corresponds to the variables that are assigned to the same
value.

• NSINK : number of vertices of Gf that do not have any successor.

EXAMPLE: The same(VARIABLES1, VARIABLES2) enforces that the variables of the
VARIABLES1 collection correspond to the variables of the VARIABLES2 collection ac-
cording to a permutation.
We first create an arc from each variable of VARIABLES1 to each variable of
VARIABLES2. To each arc corresponds an equality constraint involving the variables
associated with the extremities of the arc. We use the graph-property NSINK =
|VARIABLES2| in order to express the fact that each value assigned to a variable of
VARIABLES2 should also be assigned to a variable of VARIABLES1.

• NSINK NSOURCE : sum over the different connected components of Gf
of the minimum of the number of sinks and the number of sources of a connected
component.

EXAMPLE: The soft same var(C, VARIABLES1, VARIABLES2) constraint enforces C
to be the minimum number of values to change in the VARIABLES1 and the VARIABLES2
collections of variablesa, so that the variables of VARIABLES2 correspond to the vari-
ables of VARIABLES1 according to a permutation.
A connected component Cval of the final graph Gf corresponds to all variables that are
assigned to the same value val : the sources and the sinks of Cval respectively correspond
to the variables of VARIABLES1 and to the variables of VARIABLES2 that are assigned to
val . For a connected component, the minimum of the number of sources and sinks ex-
presses the number of variables for which we don’t need to make any change. Therefore
we use the graph-property NSINK NSOURCE = |VARIABLES1| − C for encoding
the meaning of the soft same var constraint.

aBoth collections have the same number of variables.

38 CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS

• NSOURCE : number of vertices of Gf that do not have any predecessor.

EXAMPLE: The same(VARIABLES1, VARIABLES2) enforces that the variables of the
VARIABLES1 collection correspond to the variables of the VARIABLES2 collection ac-
cording to a permutation.
We first create an arc from each variable of VARIABLES1 to each variable of
VARIABLES2. To each arc corresponds an equality constraint involving the variables
associated with the extremities of the arc. We use the graph-property NSOURCE =
|VARIABLES1| in order to express the fact that each value assigned to a variable of
VARIABLES1 should also be assigned to a variable of VARIABLES2.

• NTREE : number of vertices of Gf that do not belong to any circuit and for
which at least one successor belongs to a circuit. Such vertices can be interpreted
as root nodes of a tree.

EXAMPLE: The cycle(NCYCLE, NODES) enforces that NCYCLE equal the number of
circuits for covering an initial graph in such a way that each vertex belongs to one single
circuit.
The graph-property NTREE = 0 enforces that all vertices of the final graph belong to
a circuit.

• NVERTEX : cardinality of the set V (Gf).

EXAMPLE: The cutset(SIZE CUTSET, NODES) constraint considers a digraph with n
vertices described by the NODES collection. It enforces that the subset of kept vertices
of cardinality n − SIZE CUTSET and their corresponding arcs form a graph without a
circuit. It uses the graph-property NVERTEX = n − SIZE CUTSET for enforcing
that the final graph Gf contain the required number of vertices.

• RANGE DRG : difference between the largest distance between sources and
sinks in the reduced graph associated withGf and the smallest distance between
sources and sinks in the reduced graph associated with Gf .

EXAMPLE: The tree range constraint enforces to cover a digraph in such a way that
each vertex belongs to a distinct tree. In addition it forces the difference between the
longest and the shortest paths of Gf to be equal to the variable R. For this purpose it
uses the graph-property RANGE DRG = R.

1.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES39

• RANGE NCC : difference between the number of vertices of the largest
connected component ofGf and the number of vertices of the smallest connected
component of Gf .

EXAMPLE: We don’t provide any example since RANGE NCC is currently not
used by any constraint.

• RANGE NSCC : difference between the number of vertices of the largest
strongly connected component of Gf and the number of vertices of the smallest
strongly connected component of Gf .

EXAMPLE: The balance(BALANCE, VARIABLES) constraint forces BALANCE to be
equal to the difference between the number of occurrence of the value that occurs the
most and the value that occurs the least within the collection of variables VARIABLES.
Each strongly connected component ofGf corresponds to the variables that are assigned
to the same value. The graph property RANGE NSCC = BALANCE allows for ex-
pressing this definition.

• ORDER(rank, default, attr) :

– rank is an integer or an argument of type integer of the global constraint,

– default is an integer,

– attr is an attribute corresponding to an integer or to a domain variable that
occurs in all the collections that were used for generating the vertices of the
initial graph.

We explain what is the value associated with ORDER(rank, default, attr).
Let V denote the vertices of rank rank of Gf from which we remove any loops.

– When V is not empty, it corresponds to the values of attribute attr of the
items associated with the vertices of V ,

– Otherwise, when V is empty, it corresponds to the default value default.

EXAMPLE: The minimum(MIN, VARIABLES) forces MIN to be the minimum value
of the collection of domain variables VARIABLES. There is an arc from a vari-
able var1 to a variable var2 if and only if var1 < var2. The graph-property
ORDER(0, MAXINT, var) = MIN expresses the fact that MIN is equal to the value
of the source of Gf (since rank = 0).

• PATH FROM TO(attr, from, to) :

40 CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS

– attr is an attribute corresponding to an integer or to a domain variable that
occurs in all the collections that were used for generating the vertices of the
initial graph,

– from is an integer or an argument of type integer of the global constraint,

– to is an integer or an argument of type integer of the global constraint.

Let F (respectively T) denote the vertices ofGf such that attr is equal to from

(respectively to). PATH FROM TO(attr, from, to) is equal to 1 if there
exists a path between each vertex of F and each vertex of T , and 0 otherwise.

EXAMPLE: The constraint lex lesseq uses the PATH FROM TO graph-
property.

• PRODUCT(col, attr)

– col is a collection that was used for generating the vertices of the initial
graph,

– attr is an attribute corresponding to an integer or to a domain variable of
the collection col.

Let V be the set of vertices of Gf that were generated from the items of the
collection col.

– If V is not empty, PRODUCT(col, attr) corresponds to the product of
the values of attribute attr associated with the vertices of V ,

– Otherwise, if V is empty, PRODUCT(col, attr) is equal to 1.

EXAMPLE: The constraint product ctr(VARIABLES, CTR, VAR) forces the product
of the variables of the VARIABLES collection to be equal, less than or equal, . . . to a
given domain variable VAR.
To each variable of VARIABLES corresponds a vertex of the initial graph. Since we want
to keep all the vertices of the initial graph we use the SELF arc generator together with
the TRUE arc constraint. Finally, PRODUCT(VARIABLES, var) CTR VAR expresses
the required condition. In this expression var and CTR respectively corresponds to the
attribute of the collection VARIABLES (a domain variable) and to the condition we want
to enforce. Since the final graph Gf contains all the vertices of the initial graph, the
expression PRODUCT(VARIABLES, var) corresponds to the product of the variables
of the VARIABLES collection.

• RANGE(col, attr) :

– col is a collection that was used for generating the vertices of the initial
graph,

1.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES41

– attr is an attribute corresponding to an integer or to a domain variable of
the collection col.

Let V be the set of vertices of Gf that were generated from the items of the
collection col.

– If V is not empty, RANGE(col, attr) corresponds to the difference be-
tween the maximum and the minimum values of attribute attr associated
with the vertices of V ,

– Otherwise, if V is empty, RANGE(col, attr) is equal to 0.

EXAMPLE: The constraint range ctr(VARIABLES, CTR, VAR) forces the difference
between the maximum value and the minimum value of the variables of the VARIABLES
collection to be equal, less than or equal, . . . to a given domain variable VAR.
To each variable of VARIABLES corresponds a vertex of the initial graph. Since we want
to keep all the vertices of the initial graph we use the SELF arc generator together with
the TRUE arc constraint. Finally, RANGE(VARIABLES, var) CTR VAR expresses the
required condition. In this expression var and CTR respectively corresponds to the at-
tribute of the collection VARIABLES (a domain variable) and to the condition we want to
enforce. Since the final graphGf contains all the vertices of the initial graph, the expres-
sion RANGE(VARIABLES, var) corresponds to the difference between the maximum
value and the minimum value of the variables of the VARIABLES collection.

• SUM(col, attr) :

– col is a collection that was used for generating the vertices of the initial
graph,

– attr is an attribute corresponding to an integer or to a domain variable of
the collection col.

Let V be the set of vertices of Gf that were generated from the items of the
collection col.

– If V is not empty, SUM(col, attr) corresponds to the sum of the values
of attribute attr associated with the vertices of V ,

– Otherwise, if V is empty, SUM(col, attr) is equal to 0.

42 CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS

EXAMPLE: The constraint sum ctr(VARIABLES, CTR, VAR) forces the sum of the vari-
ables of the VARIABLES collection to be equal, less than or equal, . . . to a given domain
variable VAR.
To each variable of VARIABLES corresponds a vertex of the initial graph. Since we want
to keep all the vertices of the initial graph we use the SELF arc generator together
with the TRUE arc constraint. Finally, SUM(VARIABLES, var) CTR VAR expresses the
required condition. In this expression var and CTR respectively correspond to the at-
tribute of the collection VARIABLES (a domain variable) and to the condition we want to
enforce. Since the final graphGf contains all the vertices of the initial graph, the expres-
sion SUM(VARIABLES, var) corresponds to the sum of the variables of the VARIABLES
collection.

• SUM WEIGHT ARC(Expr) : Expr is an arithmetic expression.
For each arc a of E(Gf), let f(a) denote the value of Expr.
SUM WEIGHT ARC(Expr) is equal to

∑
a∈E(Gf) f(a). The value of

Expr usually depends on the attributes of the items located at the extremities
of an arc.

EXAMPLE: The constraint global cardinality with costs(VARIABLES,
VALUES, MATRIX, COST) enforces that each value VALUES[i].val be assigned to exactly
VALUES[i].noccurrence variables of the VARIABLES collection. In addition the COST

of an assignment is equal to the sum of the elementary costs associated with the fact
that we assign the ith variable of the VARIABLES collection to the jth value of the
VALUES collection. These elementary costs are given by the MATRIX collection.
The graph-property SUM WEIGHT ARC(MATRIX[(variables.key−1)∗size(VALUES)+
values.key].c) = COST expresses the fact that the COST variable is equal to the sum of
the elementary costs associated with each variable-value assignment. All these elemen-
tary costs are recorded in the MATRIX collection. More precisely, the cost cij is recorded
in the attribute c of the ((i− 1) ∗ |VALUES)|+ j)th entry of the MATRIX collection.

A last graph characteristic, DISTANCE , is computed on two final graphsG1 and
G2 that have the same set V of vertices and the sets E(G1) and E(G2) of arcs. This
graph characteristic is the cardinality of the set (E(G1)−E(G2))∪(E(G2)−E(G1)).
This corresponds to the number of arcs that belong to E(G1) but not to E(G2), plus
the number of arcs that are in E(G2) but not in E(G1).

1.2.3 Graph constraint
A global constraint can be defined as a conjunction of several simple or dynamic graph
constraints15 that all share the same name, the same arguments and the same argument
restrictions16. This section first describes simple graph constraints and then dynamic
graph constraints, which are an extension of simple graph constraints.

15For an example of global constraint that is defined by more than one graph constraint see for instance
the sort constraint and its two graph constraints.

16The arguments and the argument restrictions were described in Section 1.1.4, page 13.

1.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES43

Simple graph constraint

To a simple graph constraint correspond several initial graphs, usually one, where all
the initial graphs have the same vertices and arcs. Specifying more than one initial
graph is achieved by using the FOR ALL ITEMS OF iterator, which takes a collection
C and generates an initial graph Gi(t) for each item t of C. In this context, the arc
constraints and/or graph properties of an initial graph may depend of the attributes of
the item t of C from which they were generated. All arc constraints attached to a given
arc17 have to be pairwise mutually incompatible18.

The graphs of a simple graph constraint are defined by the following fields:

• An Arc input(s) field, which consists of a sequence of collections
C1, C2, . . . , Cd (d ≥ 1). To each item of these collections corresponds a vertex
of the initial graph.

• An Arc generator field, which can be one or several expressions19 of the fol-
lowing forms:

– ARC GENERATOR 7→ collection(item1, item2, . . . , itema),
where ARC GENERATOR is one of the arc generators with a fixed ar-
ity20 defined in Section 1.2.2 page 26, and itemi (1 ≤ i ≤ a) denotes the
ith item associated with the ith vertex of an arc. These items correspond
to formal parameters21 which can be used within an arc constraint. When
the Arc input(s) field consists of one single collection (d = 1), itemi
(1 ≤ i ≤ a) represents an item of the collection C1. Otherwise, when
d > 1, we must have a = d and, in this context, itemi (1 ≤ i ≤ a)
represents an item of Ci.

EXAMPLE: The alldifferent(VARIABLES) constraint has the following Arc
input(s) and Arc generator fields:

∗ Its Arc input(s) field refers only to the collection VARIABLES (i.e. d = 1).

∗ Its Arc generator field consists of
CLIQUE 7→ collection (variables1, variables2) (i.e. a = 2).

In this context, where d = 1, both variables1 and variables1 are items of the
VARIABLES collection.

17As we previously said, even if we have more than one initial graph, all vertices and arcs of the different
initial graphs are identical.

18Two arc constraints ctr1(X1,X2, . . . ,Xn) and ctr2(X1,X2, . . . ,Xn) are incompatible if there
does not exist any tuple of values 〈v1, v2, . . . , vn〉 such that both ctr1(X1,X2, . . . , Xn) and
ctr2(X1,X2, . . . ,Xn) hold.

19Usually one single expression.
20Any arc generator different from PATH 1 and PATH N .
21See the description of simple arithmetic expressions page 22.

44 CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS

EXAMPLE: The same(VARIABLES1, VARIABLES2) constraint has the following
Arc input(s) and Arc generator fields:

∗ Its Arc input(s) field refers to the collections VARIABLES1 and
VARIABLES2 (i.e. d = 2).

∗ Its Arc generator field consists of
PRODUCT 7→ collection(variables1, variables2) (i.e. a = 2).

In this context, where d > 1, variables1 and variables1 respectively corre-
spond to items of the VARIABLES1 and the VARIABLES2 collections.

– ARC GENERATOR 7→ collection, where ARC GENERATOR
is one of the arc generators PATH 1 or PATH N . In this context,
collection denotes a collection of items corresponding to the vertices
of an arc of the initial graph. An arc constraint enforces a restriction on the
items of this collection.

EXAMPLE:
The size maximal sequence alldifferent (SIZE, VARIABLES) constraint
has the following Arc input(s) and Arc generator fields:

∗ Its Arc input(s) field refers to the VARIABLES collection.

∗ Its Arc generator field consists of PRODUCT 7→ collection.

In this context, collection is a collection of the same type as the VARIABLES

collection. It corresponds to the variables associated with an arc of the initial
graph.

When the Arc generator field consists of n (n > 1) expressions then these
expressions have the form:

ARC GENERATOR1 7→ collection(item1, item2, . . . , itema)

ARC GENERATOR2 7→ collection(item1, item2, . . . , itema)

. .

ARC GENERATORn 7→ collection(item1, item2, . . . , itema)

All leftmost part of the expressions must be the same since they will be involved
in one single Arc constraint(s) field. The global contiguity constraint is an
example of global constraint where more than one arc generator is used.

• An Arc arity field, which corresponds to the number of vertices a of each
arc of the initial graph. a is either a strictly positive integer, an argument
of the global constraint of type int, or the character *. In this last case,
this is used for denoting the fact that all the arc constraints don’t involve
the same number of vertices. This is for instance the case when we use
the arc generators PATH 1 or PATH N as in the arith sliding or the
size maximal sequence alldifferent constraints.

• An Arc constraint(s) field, which corresponds to a conjunction of arc con-
straints22 those were introduced in Section 1.2.2 page 22.

22Usually this conjunction consists of one single arc constraint.

1.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES45

• A Graph property(ies) field, which corresponds to one or several graph prop-
erties (see Section 1.2.2 page 31) to be satisfied on the final graphs associated
with an instantiated solution of the global constraint. To each initial graph corre-
sponds one final graph obtained by removing all arcs for which the corresponding
arc constraints do not hold as well as all vertices that don’t have any arc.

We now give several examples of descriptions of simple graph constraints, start-
ing from the nvalue constraint, which was introduced as a first example of global
constraint that can be modeled by a graph property in Section 1.2.1 page 14.

EXAMPLE: The constraint nvalue(NVAL, VARIABLES) restricts NVAL to be the number
of distinct values taken by the variables of the collection VARIABLES. Its meaning is
described by a simple graph constraint corresponding to the following items:

Arc input(s) : VARIABLES

Arc generator : CLIQUE 7→ collection(variables1, variables2)

Arc arity : 2

Arc constraint(s) : variables1.var = variables2.var

Graph property(ies): NSCC = NVAL

Since this description does not use the FOR ALL ITEMS OF iterator we generate one single
initial graph. Each vertex of this graph corresponds to one item of the VARIABLES col-
lection. Since we use the CLIQUE arc generator we have an arc between each pair of
vertices. An arc constraint corresponds to an equality constraint between the two variables
that are associated with the extremities of the arc. Finally, the Graph property(ies) field
forces the final graph to have NVAL strongly connected components.

46 CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS

EXAMPLE: The constraint global contiguity(VARIABLES) forces all variables of the
VARIABLES collection to be assigned to 0 or 1. In addition, all variables assigned to value 1
appear contiguously. Its meaning is described by a simple graph constraint corresponding
to the following items:

Arc input(s) : VARIABLES

Arc generator : PATH 7→ collection(variables1, variables2)

LOOP 7→ collection(variables1, variables2)

Arc arity : 2

Arc constraint(s) : variables1.var = variables2.var

variables1.var = 1

Graph property(ies): NCC ≤ 1

Since this description does not use the FOR ALL ITEMS OF iterator we generate one single
initial graph. Each vertex of this graph corresponds to one item of the VARIABLES collec-
tion. Since we use the PATH arc generator we generate an arc from item VARIABLES[i] to
item VARIABLES[i+ 1] (1 ≤ i < |VARIABLES|). In addition, since we use the LOOP arc
generator, we generate also an arc from each item of the VARIABLES collection to itselfa.
The effect of the arc constraint is to keep in the final graph those vertices for which the
corresponding variable is assigned to 1. Adjacent variables assigned to 1 form a connected
component of the final graph and the graph property NCC ≤ 1 enforces to have at most
one such group of adjacent variables assigned to 1.

aWe use the LOOP arc generator in order to keep in the final graph those isolated variables
assigned to 1. This is because isolated vertices with no arcs are always removed from the final graph.

EXAMPLE:
The global cardinality(VARIABLES, VALUES) constraint enforces that each value
VALUES[i].val (1 ≤ i ≤ |VALUES|) be taken by exactly VALUES[i].noccurrence vari-
ables of the VARIABLES collection. Its meaning is described by a simple graph constraint
corresponding to the following items:

For all items of VALUES:

Arc input(s) : VARIABLES

Arc generator : SELF 7→ collection(variables)

Arc arity : 1

Arc constraint(s) : variables.var = VALUES.val

Graph property(ies): NVERTEX = VALUES.noccurrence

Since this description uses the For all items of VALUES iterator on the VALUES collection
we generate an initial graph for each item of the VALUES collection (i.e. one graph for
each value). Each vertex of an initial graph corresponds to one item of the VARIABLES

collection. Since we use the SELF arc generator we have an arc for each vertex. For an
initial graph associated with a value val an arc constraint on a vertex v corresponds to an
equality constraint between the variable associated with v and the value val . Finally, the
Graph property(ies) field forces the final graph to have a given number of vertices (i.e.
associated with the attribute val).

1.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES47

Dynamic graph constraint

The purpose of a dynamic graph constraint is to enforce a condition on different subsets
of variables, not known in advance. This situation occurs frequently in practice and is
hard to express since one cannot use a classical constraint for which it is required
to provide all variables right from the beginning. One good example of such global
constraint is the cumulative constraint where one wants to force the sum of some
variables to be less than or equal to a given limit. In the context of the cumulative

constraint, each set of variables is defined by the height of the different tasks that
overlap a given instant i. Since the origins of the tasks are not initially fixed, we don’t
know in advance which task will overlap a given instant and so, we cannot state any
sum constraint initially.

A dynamic graph constraint is defined in exactly the same way as a simple graph
constraint, except that we may omit the Graph property(ies) field, and that we have
to provide the two following additional fields:

• The Set field denotes a generator of sets of vertices. Such a generator takes as
argument a final graph and produces different sets of vertices. In order to have
something tractable, we force the total number of generated sets to be polynomial
in the number of vertices.

In practice each set of vertices is represented by a collection of items. The type
of this collection corresponds either to the type of the items associated with the
vertices, or to the type of a new derived collection. This is achieved by providing
an expression of the form name or name-derived collection, where name

represents a formal parameter, and derived collection a declaration of a new
derived collection (as specified in Section 1.2.2, page 17).

• The Constraint(s) on sets field provides a global constraint defined in the cata-
log that has to hold for each set created by the previous generator.

We now describe the different generators of sets of vertices currently available:

• ALL VERTICES generates one single set containing all the vertices of the final
graph. It is specified by a declaration of the form

ALL VERTICES>> [vertices]

where vertices represents all the vertices of the final graph.

• CC generates one set of vertices for each connected component of the final
graph. These sets correspond to all the vertices of a given connected component.
It is specified by a declaration of the form

CC>> [connected component]

where connected component represents the vertices of a connected component
of the final graph.

48 CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS

• PATH LENGTH(L) generates all elementary paths23 of L vertices of the final
graph such that, discarding loops, all vertices of a path have no more than one
successor and one predecessor in the final graph. It is specified by a declaration
of the form

PATH LENGTH(L)>> [path]

where path represents the vertices of an elementary path, ordered according to
their occurrence in the path.

• PRED generates the non-empty sets corresponding to the predecessors of each
vertex of the final graph. It is specified by a declaration of the form

PRED>> [predecessor, destination]

where destination represents a vertex of the final graph and predecessor its
predecessors.

• SUCC generates the non-empty sets corresponding to the successors of each
vertex of the final graph. It is specified by a declaration of the form

SUCC>> [source, successor]

where source represents a vertex of the final graph and successor its succes-
sors.

As an illustrative example of dynamic graph constraint we now consider the
cumulative constraint.

23A path where all vertices are distinct is called an elementary path.

1.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES49

EXAMPLE: The cumulative(TASKS, LIMIT) constraint, where TASKS is a col-
lection of the form collection(origin − dvar, duration − dvar, end − dvar,
height − dvar), and where LIMIT is a non-negative integer, holds if, for any point the
cumulated height of the set of tasks that overlap that point, does not exceed LIMIT.

The first graph constraint of cumulative enforces for each task of the TASKS collection
the equality origin + duration = end. We focus on the second graph constraint,
which uses a dynamic graph constraint described by the following items:

Arc input(s) : TASKS TASKS

Arc generator : PRODUCT 7→ collection(tasks1, tasks2)

Arc arity : 2

Arc constraint(s) : tasks1.duration > 0

tasks2.origin ≤ tasks1.origin

tasks1.origin ≤ tasks2.end

Sets : SUCC>>

[source,

variables − col(VARIABLES − collection(var − dvar),

[item(var − TASKS.height)])]

Constraint(s) on sets: sum ctr(variables,≤, LIMIT)

The second graph constraint is defined by:

• To each item of the TASKS collection correspond two vertices of the initial graph.

• The arity of the arc constraint is 2.

• The arcs of the initial graph are constructed with the PRODUCT arc generator
between the TASKS collection and the TASKS collection. Therefore, each vertex
associated with a task is linked to all the vertices related to the different tasks.

• The arc constraint that is associated with an arc between a task tasks1 and a task
tasks2 is an overlapping constraint that holds if both, the duration of tasks1
is strictly greater than zero, and if the origin of tasks1 is overlapped by task
tasks2.

• The set generator is SUCC. The final graph will consist of those tasks for which
the origin is covered by at least one task and of those corresponding tasks.

• The dynamic constraint on a set forces the sum of the heights of the tasks that
belong to a successor set to not exceed LIMIT.

50 CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS

(A) (B)

time_points tasks time_points tasks
(origins of the tasks) (origins of the tasks)

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

Figure 1.6: Initial and final graph of an instance of the cumulative constraint

Parts (A) and (B) of Figure 1.6 respectively show the initial and the final graph corre-
sponding to the following instance:
cumulative({origin − 1 duration − 3 height − 1,

origin − 2 duration − 9 height − 2,
origin − 3 duration − 10 height − 1,
origin − 6 duration − 6 height − 1,
origin − 7 duration − 2 height − 3}, 8).

We label the vertices of the initial and final graph by giving the keya of the correspond-
ing task. On both graphs the edges are oriented from left to right. On the final graph we
consider the sets that consist of the successors of the different vertices; those are the sets
of tasks {1}, {1, 2}, {1, 2, 3}, {2, 3, 4} and {2, 3, 4, 5}. Since the SUCC set generator
uses a derived collection that only considers the height attribute of a task, these sets
respectively correspond to the following collection of items:

• {var − 1},
• {var − 1, var − 2},
• {var − 1, var − 2, var − 1},
• {var − 2, var − 1, var − 1},
• {var − 2, var − 1, var − 1, var − 3}.

The cumulative constraint holds since, for each successors set, the corresponding con-
straint holds:

• sum ctr({var − 1}, ≤, 8),

• sum ctr({var − 1, var − 2}, ≤, 8),

• sum ctr({var − 1, var − 2, var − 1}, ≤, 8),

• sum ctr({var − 2, var − 1, var − 1}, ≤, 8),

• sum ctr({var − 2, var − 1, var − 1, var − 3}, ≤, 8).

The sum ctr(VARIABLES, CTR, VAR) constraint holds if the sum S of the variables of the
VARIABLES collection satisfies S CTR VARIABLES, where CTR is a comparison operator.

akey is an implicit attribute corresponding to the position of an item within a collection that
was introduced in Section 1.1.2, page 4.

1.3. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF AUTOMATA 51

1.3 Describing global constraints in terms of automata
This section is based on the paper describing global constraint in terms of automata [4].
The main difference with the original paper is the introduction of array of counters
within the description of an automaton. We consider global constraints for which any
ground instance can be checked in linear time by scanning once through their variables
without using any data structure, except counters or arrays of counters. In order to
concretely illustrate this point we first select a set of global constraints and write down
a checker for each of them. Finally, we give for each checker a sketch of the corre-
sponding automaton. Based on these observations, we define the type of automaton we
use in the catalog.

1.3.1 Selecting an appropriate description
As we previously said, we focus on those global constraints that can be checked by
scanning once through their variables. This is for instance the case of:

• element [32],

• minimum [33],

• pattern [34],

• global contiguity [35],

• lex lesseq [36],

• among [37],

• inflexion [3],

• alldifferent [18].

Since they illustrate key points needed for characterizing the set of solutions asso-
ciated with a global constraint, our discussion will be based on the last five constraints
for which we now recall the definition:

• The global contiguity(vars) constraint forces the sequence of 0-1 variables
vars to have at most one group of consecutive 1. For instance, the constraint
global contiguity([0, 1, 1, 0]) holds since we have only one group of con-
secutive 1.

• The lexicographic ordering constraint−→x≤lex
−→y (see lex lesseq) over two vec-

tors of variables −→x = 〈x0, . . . , xn−1〉 and −→y = 〈y0, . . . , yn−1〉 holds iff n = 0
or x0 < y0 or x0 = y0 and 〈x1, . . . , xn−1〉≤lex〈y1, . . . , yn−1〉.

• The among(nvar, vars, values) constraint restricts the number of variables of
the sequence of variables vars that take their value in a given set values, to be
equal to the variable nvar. For instance, among(3, [4, 5, 5, 4, 1], [1, 5, 8]) holds
since exactly 3 values of the sequence 45541 are located in {1, 5, 8}.

• The inflexion(ninf, vars) constraint forces the number of inflexions of the
sequence of variables vars to be equal to the variable ninf. An inflexion is de-
scribed by one of the following patterns: a strict increase followed by a strict de-
crease or, conversely, a strict decrease followed by a strict increase. For instance,
inflexion(4, [3, 3, 1, 4, 5, 5, 6, 5, 5, 6, 3]) holds since we can extract from the

52 CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS

sequence 33145565563 the four subsequences 314, 565, 6556 and 563, which
all follow one of these two patterns.

• The alldifferent(vars) constraint forces all pairs of distinct variables of the
collection vars to take distinct values. For instance alldifferent([6, 1, 5, 9])
holds since we have four distinct values.

x[i]=y[i]

1 BEGIN
2 i=0;
3 WHILE i<n AND vars[i]=0 DO i++;
4 WHILE i<n AND vars[i]=1 DO i++;
5 WHILE i<n AND vars[i]=0 DO i++;
6 RETURN (i=n);
7 END.

global_contiguity(vars[0..n−1]):BOOLEAN

1 BEGIN
2 i=0;
3 WHILE i<n AND x[i]=y[i] DO i++;
4 RETURN (i=n OR x[i]<y[i]);
5 END.

among
1 BEGIN
2 i=0; c=0;
3 WHILE i<n DO
4 IF vars[i] in values THEN c++;

6 RETURN (nvar=c);
5 i++;

7 END.

(nvar,vars[0..n−1],values):BOOLEAN

vars[i]=0

vars[i]=1

vars[i]=0

vars[i]=0

$

$

vars[i]=1

$

t

z

n

global_contiguity

i j

$

vars[i+1]

vars[i]=

$

vars[i]=vars[i+1]

vars[i]<vars[i+1]

vars[i]<
vars[i+1]

vars[i]=
vars[i+1]

$

vars[i+1]

vars[i]>
vars[i+1]

vars[i]>

ninf=c
t:

c++
vars[i]>vars[i+1],

vars[i]<vars[i+1],
c++

(A1)

(B1)

(C1)

(A2)

(D2)

07 IF vars[i]>vars[i+1] THEN c++; less=FALSE;

lex_lesseq(x[0..n−1],y[0..n−1]):BOOLEAN x[i]<y[i] $

$

vars[i]
notin values

vars[i]
in values,
c++

t nvar=c
t:

among

(B2) (C2)

lex_lesseq

01 BEGIN
alldifferent(vars[0..n−1]):BOOLEAN

02 u=vars[0]; v=vars[0]; i=1;

04 IF vars[i]<u THEN u=vars[i];
03 WHILE i<n DO

01 BEGIN
02 i=0; c=0;
03 WHILE i<n−1 AND vars[i]=vars[i+1] DO i++;
04 IF i<n−1 THEN less=(vars[i]<vars[i+1]);
05 WHILE i<n−1 DO
06 IF less THEN

08 ELSE

10 i++;
11 RETURN (ninf=c);
12 END.

(D1)

09 IF vars[i]<vars[i+1] THEN c++; less=TRUE;

inflection(ninf,vars[0..n−1]):BOOLEAN

$

t:

c[vars[i]]=c[vars[i]]+1

(E2)

c[_]<2

<>$,

s

s s

{c=0}

s

{c=0}inflection

s

{c[_]=0}

alldifferent

05 IF vars[i]>v THEN v=vars[i];
06 i++;
07 FOR i=u TO v DO c[i]=0;
08 FOR i=0 TO n−1 DO c[vars[i]]=c[vars[i]]+1;
09 FOR i=u TO v DO
10 IF c[i]>1 THEN RETURN FALSE;
11 RETURN TRUE;
12 END.

(E1)

Figure 1.7: Five checkers and their corresponding automata

Parts (A1), (B1), (C1), (D1) and (E1) of Figure 1.7 depict the five checkers re-
spectively associated with global contiguity, with lex lesseq, with among, with

1.3. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF AUTOMATA 53

inflexion and with alldifferent. For each checker we observe the following facts:

• Within the checker depicted by part (A1) of Figure 1.7, the values of the sequence
vars[0], . . . , vars[n− 1] are successively compared against 0 and 1 in order to
check that we have at most one group of consecutive 1. This can be translated to
the automaton depicted by part (A2) of Figure 1.7. The automaton takes as input
the sequence vars[0], . . . , vars[n−1], and triggers successively a transition for
each term of this sequence. Transitions labeled by 0, 1 and $ are respectively
associated with the conditions vars[i] = 0, vars[i] = 1 and i = n. Transitions
leading to failure are systematically skipped. This is why no transition labeled
with a 1 starts from state z.

• Within the checker given by part (B1) of Figure 1.7, the components of vectors−→x and −→y are scanned in parallel. We first skip all the components that are
equal and then perform a final check. This is represented by the automaton
depicted by part (B2) of Figure 1.7. The automaton takes as input the sequence
〈x[0], y[0]〉, . . . , 〈x[n − 1], y[n − 1]〉 and triggers a transition for each term of
this sequence. Unlike the global contiguity constraint, some transitions now
correspond to a condition (e.g. x[i] = y[i], x[i] < y[i]) between two variables of
the lex lesseq constraint.

• Note that the among(nvar, vars, values) constraint involves a variable nvar

whose value is computed from a given collection of variables vars. The
checker depicted by part (C1) of Figure 1.7 counts the number of variables of
vars[0], . . . , vars[n − 1] that take their value in values. For this purpose it
uses a counter c, which is eventually tested against the value of nvar. This con-
vinced us to allow the use of counters in an automaton. Each counter has an
initial value, which can be updated while triggering certain transitions. The final
state of an automaton can force a variable of the constraint to be equal to a given
counter. Part (C2) of Figure 1.7 describes the automaton corresponding to the
code given in part (C1) of the same figure. The automaton uses the counter vari-
able c initially set to 0 and takes as input the sequence vars[0], . . . , vars[n−1].
It triggers a transition for each variable of this sequence and increments c when
the corresponding variable takes its value in values. The final state returns a
success when the value of c is equal to nvar. At this point we want to stress the
following fact: It would have been possible to use an automaton that avoids the
use of counters. However, this automaton would depend on the effective value of
the argument nvar. In addition, it would require more states than the automaton
of part (C2) of Figure 1.7. This is typically a problem if we want to have a fixed
number of states in order to save memory as well as time.

• As the among constraint, the inflexion(ninf, vars) constraint involves a vari-
able ninf whose value is computed from a given sequence of variables vars[0],
. . . , vars[n − 1]. Therefore, the checker depicted in part (D1) of Figure 1.7
uses also a counter c for counting the number of inflexions, and compares its
final value to the ninf argument. The automaton depicted by part (D2) of
Figure 1.7 represents this program. It takes as input the sequence of pairs

54 CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS

〈vars[0], vars[1]〉, 〈vars[1], vars[2]〉 , . . . , 〈vars[n − 2], vars[n − 1]〉 and
triggers a transition for each pair. Note that a given variable may occur in more
than one pair. Each transition compares the respective values of two consecutive
variables of vars[0..n−1] and increments the counter c when a new inflexion is
detected. The final state returns a success when the value of c is equal to ninf.

• The checker associated with alldifferent is depicted by part (E1) of Fig-
ure 1.7. It first initializes an array of counters to 0. The entries of the array
correspond to the potential values of the sequence vars[0], . . . , vars[n − 1].
In a second phase the checker computes for each potential value its number of
occurrences in the sequence vars[0], . . . , vars[n − 1]. This is done by scan-
ning this sequence. Finally in a third phase the checker verifies that no value
is used more than once. These three phases are represented by the automaton
depicted by part (E2) of Figure 1.7. The automaton depicted by part (E2) takes
as input the sequence vars[0], . . . , vars[n − 1]. Its initial state initializes an
array of counters to 0. Then it triggers successively a transition for each element
vars[i] of the input sequence and increments by 1 the entry corresponding to
vars[i]. The final state checks that all entries of the array of counters are strictly
less than 2, which means that no value occurs more than once in the sequence
vars[0], . . . , vars[n− 1].

Synthesizing all the observations we got from these examples leads to the following
remarks and definitions for a given global constraint C:

• For a given state, no transition can be triggered indicates that the constraint C
does not hold.

• Since all transitions starting from a given state are mutually incompatible all
automata are deterministic. LetM denote the set of mutually incompatible con-
ditions associated with the different transitions of an automaton.

• Let S0, . . . ,Sm−1 denote the sequence of subsets of variables of C on which the
transitions are successively triggered. All these subsets contain the same num-
ber of elements and refer to some variables of C. Since these subsets typically
depend on the constraint, we leave the computation of S0, . . . ,Sm−1 outside the
automaton. To each subset Si of this sequence corresponds a variable Si with an
initial domain ranging over [min,min + |M| − 1], where min is a fixed inte-
ger. To each integer of this range corresponds one of the mutually incompatible
conditions ofM. The sequences S0, . . . , Sm−1 and S0, . . . ,Sm−1 are respec-
tively called the signature and the signature argument of the constraint. The
constraint between Si and the variables of Si is called the signature constraint
and is denoted by ΨC(Si,Si).

• From a pragmatic point the view, the task of writing a constraint checker is nat-
urally done by writing down an imperative program where local variables, ar-
rays, assignment statements and control structures are used. This suggested us
to consider deterministic finite automata augmented with local variables and as-
signment statements on these variables. Regarding control structures, we did not

1.3. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF AUTOMATA 55

introduce any extra feature since the deterministic choice of which transition to
trigger next seemed to be good enough.

• Many global constraints involve a variable whose value is computed from a given
collection of variables. This convinced us to allow the final state of an automaton
to optionally return a result. In practice, this result corresponds to the value of a
local variable of the automaton in the final state.

1.3.2 Defining an automaton
An automatonA of a global constraint C is defined by

〈Signature , SignatureDomain , SignatureArg , SignatureArgPattern,
Counters, Arrays , States , T ransitions〉

where:

• Signature is the sequence of variables S0, . . . , Sm−1 corresponding to the sig-
nature of the constraint C.

• SignatureDomain is an interval that defines the range of possible values of the
variables of Signature .

• SignatureArg is the signature argument S0, . . . ,Sm−1 of the constraint C. The
link between the variables of Si and the variable Si (0 ≤ i < m) is done by
writing down the signature constraint ΨC(Si,Si).

• When used, SignatureArgPattern defines a symbolic name for each term of
SignatureArg . These names can be used within the description of a transition
for expressing an additional condition for triggering the corresponding transition.

• Counters is the, possibly empty, list of all counters used in the automaton A.
Each counter is described by a term t(Counter , InitialValue , FinalVariable)
where Counter is a symbolic name representing the counter, InitialValue is an
integer giving the value of the counter in the initial state ofA, and FinalVariable
gives the variable that should be unified with the value of the counter in the final
state of A.

• Arrays is the, possibly empty, list of all arrays used in the automaton A.
Each array is described by a term t(Array , InitialValue , FinalConstraint)
where Array is a symbolic name representing the array, InitialValue is an in-
teger giving the value of all the entries of the array in the initial state of A.
FinalConstraint denotes an existing constraint of the catalog that should hold
in the final state of A. Arguments of this constraint correspond to collections of
variables that are bound to array of counters, or to variables that are bound to
counters declared in Counters. For an array of counters we only consider those
entries that are located between the first and the last entries that were modified
while triggering a transition ofA.

56 CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS

• States is the list of states of A, where each state has the form source(id),
sink(id) or node(id). id is a unique identifier associated with each state. Fi-
nally, source(id) and sink(id) respectively denote the initial and the final state
of A.

• T ransitions is the list of transitions ofA. Each transition t has the form arc(id 1,
label , id 2) or arc(id1, label , id 2, counters). id 1 and id 2 respectively corre-
spond to the state just before and just after t, while label denotes the value that
the signature variable should have in order to trigger t. When used, counters
gives for each counter of Counters its value after firing the corresponding tran-
sition. This value is specified by an arithmetic expression involving counters,
constants, as well as usual arithmetic functions such as +, −, min or max. The
order used in the counters list is identical to the order used in Counters.

EXAMPLE: As an illustrative example we give the description of the automaton asso-
ciated with the inflexion(ninf , vars) constraint. We have:

• Signature = S0, S1, . . . , Sn−2,

• SignatureDomain = 0..2,

• SignatureArg = 〈vars [0], vars [1]〉, . . . , 〈vars [n − 2], vars [n− 1]〉,
• SignatureArgPattern is not used,

• Counters = t(c, 0, ninf),

• States = [source(s), node(i), node(j), sink(t)],

• T ransitions = [arc(s, 1, s), arc(s, 2, i), arc(s, 0, j), arc(s, $, t), arc(i, 1, i),
arc(i, 2, i), arc(i, 0, j, [c + 1]), arc(i, $, t), arc(j, 1, j), arc(j, 0, j),
arc(j, 2, i, [c + 1]), arc(j, $, t)].

The signature constraint relating each pair of variables 〈vars [i], vars [i + 1]〉 to the
signature variable Si is defined as follows: Ψinflexion(Si, vars [i], vars [i + 1]) ≡
vars [i] > vars [i + 1] ⇔ Si = 0 ∧ vars [i] = vars [i + 1] ⇔ Si = 1 ∧ vars [i] <
vars [i + 1] ⇔ Si = 2. The sequence of transitions triggered on the ground in-

stance inflexion(4, [3, 3, 1, 4, 5, 5, 6, 5, 5, 6, 3]) is s
c=0

3=3⇔S0=1−−−−−−−→ s
3>1⇔S1=0−−−−−−−→

j
1<4⇔S2=2−−−−−−−→

c=1
i

4<5⇔S3=2−−−−−−−→ i
5=5⇔S4=1−−−−−−−→ i

5<6⇔S5=2−−−−−−−→ i
6>5⇔S6=0−−−−−−−→

c=2
j

5=5⇔S7=1−−−−−−−→

j
5<6⇔S8=2−−−−−−−→

c=3
i

6>3⇔S9=0−−−−−−−→
c=4

j
$−→ t

ninf =4
. Each transition gives the corresponding

condition and, possibly, the value of the counter c just after firing that transition.

Chapter 2

Description of the catalog

Contents
2.1 Which global constraints are included? 57
2.2 Which global constraints are missing? 58
2.3 Searching in the catalog . 58
2.3.1 How to see if a global constraint is in the catalog? 58
2.3.2 How to search for all global constraints sharing the same structure . 59
Searching from a graph property perspective 59
Searching from an automaton perspective 59
2.3.3 Searching all places where a global constraint is referenced 60
2.4 Figures of the catalog . 61
2.5 Keywords attached to the global constraints 62

2.1 Which global constraints are included?
The global constraints of this catalog come from the following sources:

• Existing constraint systems like:

– Alice [2],

– CHARME in C,

– CHIP [38] in Prolog, C and C++ http://www.cosytec.com

– CHOCO [39] in Java http://choco.sourceforge.net/

– ECLAIR [40] in Claire,

– ECLiPSe [41] in Prolog http://www-icparc.doc.ic.ac.uk/eclipse

– FaCile in OCaml http://www.recherche.enac.fr/opti/facile/

57

58 CHAPTER 2. DESCRIPTION OF THE CATALOG

– IF/PROLOG in Prolog
http://www.ifcomputer.com/IFProlog/Constraints/home_en.html

– Ilog Solver [42] in C++ and later in Java http://www.ilog.com

– Koalog in Java http://www.koalog.com/php/index.php

– Mozart [43] in Oz http://www.mozart-oz.org/

– SICStus [44] in Prolog http://www.sics.se/sicstus/

• Constraint programming papers mostly from conferences like:

– The Principles and Practice of Constraint Programming (CP)
http://www.informatik.uni-trier.de/˜ley/db/conf/cp/index.html

– The International Joint Conference on Artificial Intelligence (IJCAI)
http://www.informatik.uni-trier.de/˜ley/db/conf/ijcai/index.html

– The National Conference on Artificial Intelligence (AAAI)
http://www.informatik.uni-trier.de/˜ley/db/conf/aaai/index.html

– The International Conference on Logic Programming (ICLP)
http://www.informatik.uni-trier.de/˜ley/db/conf/iclp/index.html

– The International Conference of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems (CPAIOR)
http://www.informatik.uni-trier.de/˜ley/db/conf/cpaior/

• New constraints inspired by variations of existing constraints, practical applica-
tions, combinatorial problems, puzzles or discussions with colleagues.

2.2 Which global constraints are missing?
Constraints with too many arguments (like for instance the original cycle [45] con-
straint with 16 arguments), which are in fact a combination of several constraints,
were not directly put into the catalog. Constraints that have complex arguments were
also omitted. Beside this, the following constraints should be added in some fu-
ture version of the catalog: case [46], choquet, cumulative trapeze [47, 48],
inequality sum [49], no cycle [50], range [51], regular [5], roots [51],
soft gcc [12], soft regular [12]. Finally we only consider a restricted number of
constraints involving set variables since this is a relatively new area, which is currently
growing rapidly since 2003.

2.3 Searching in the catalog

2.3.1 How to see if a global constraint is in the catalog?
Searching a given global constraint through the catalog can be achieved in the following
ways:

2.3. SEARCHING IN THE CATALOG 59

• If you have an idea of the name of the global constraint you are looking for,
then put all its letters in lower case, separate distinct words by an underscore and
search the resulting name in the index. The entry where the constraint is defined
is shown in bold. Common abbreviations or synonyms found in papers have also
been put in the index.

• You can also search a global constraint through the list of keywords that is at-
tached to each global constraint. All available keywords are listed alphabetically
in Section 2.5 page 62. For each keyword we give the list of global constraints
using the corresponding keyword as well as the definition of the keyword.

2.3.2 How to search for all global constraints sharing the same
structure

Since we have two ways of defining global constraints (e.g. searching for a graph with
specific properties or coming up with an automaton that only recognizes the solutions
associated with the global constraint) we can look to the global constraints from these
two perspectives.

Searching from a graph property perspective

The index contains all the arc generators as well as all the graph properties and the
pages where they are mentioned1. This allows for finding all global constraints that
use a given arc generator or a given graph property in their definition. You can fur-
ther restrict your search to those global constraints using a specific combination of arc
generators and graph properties. All these combinations are listed at the ”signature”
entry of the index. Within these combinations, a graph property with an underline
means that the constraint should be evaluated each time the minimum of this graph
property increases. Similarly a graph property with an overline indicates that the con-
straint should be evaluated each time the maximum of this graph property decreases.
For instance if we look for those constraints that both use the CLIQUE arc generator
as well as the NARC graph-property we find the inverse and place in pyramid

constraints. Since NARC is underlined and overlined these constraints will have to
be woken each time the minimum or the maximum of NARC changes. The signa-
ture associated with a global constraint is also shown in the header of the even pages
corresponding to the description of the global constraint.

Searching from an automaton perspective

We have created the following list of keywords, which allow for finding all global
constraints defined by a specific type of automaton that recognizes its solutions2:

• ”automaton” indicates that the catalog provides a deterministic automaton,
1Arc generators and graph properties are introduced in the section ”Describing Explicitly Global Con-

straints”.
2Automata that recognize the solutions of a global constraint were introduced in the section ”Describing

Explicitly Global Constraints”.

60 CHAPTER 2. DESCRIPTION OF THE CATALOG

• ”automaton without counters” indicates that the catalog provides a deter-
ministic automaton without counters as well as without array of counters,

• ”automaton with counters” indicates that the catalog provides a determinis-
tic automaton with counters but without array of counters,

• ”automaton with array of counters” indicates that the catalog provides a
deterministic automaton with array of counters and possibly with counters.

In addition we also provide a list of keywords that characterize the structure of the
hypergraph associated with the decomposition of the automaton of a global constraints.
Note that, when a global constraint is defined by several graph properties it is also
defined by several automata (usually one automata for each graph property). This is
for instance the case of the change continuity constraint. Currently we have these
keywords:

• ”Berge-acyclic constraint network”,

• ”alpha-acyclic constraint network(2)”,

• ”alpha-acyclic constraint network(3)”,

• ”alpha-acyclic constraint network(4)”,

• ”sliding cyclic(1) constraint network(1)”,

• ”sliding cyclic(1) constraint network(2)”,

• ”sliding cyclic(1) constraint network(3)”,

• ”sliding cyclic(2) constraint network(2)”,

• ”circular sliding cyclic(1) constraint network(2)”,

• ”centered cyclic(1) constraint network(1)”,

• ”centered cyclic(2) constraint network(1)”,

• ”centered cyclic(3) constraint network(1)”.

When a global constraint is only defined by one or several automaton its signature is
set to the keyword AUTOMATON.

2.3.3 Searching all places where a global constraint is referenced
Beside the page where a global constraint is defined (in bold), the index also gives all
the pages where a global constraint is referenced. Since a global constraint can also
be used for defining another global constraint the item Used in of the description of a
global constraint provides this information.

2.4. FIGURES OF THE CATALOG 61

2.4 Figures of the catalog
The catalog contains the following types of figures:

• Figures that illustrate a global constraint or a keyword,

• Figures that depict the initial as well as the final graphs associated with a global
constraint,

• Figures that provide an automaton that only recognizes the solutions associated
with a given global constraint,

• Figures that give the hypergraph associated with the decomposition of an au-
tomaton in terms of signature and transition constraints.

Most of the graph figures that depict the initial and final graph of a global constraint
of this catalog were automatically generated by using the open source graph drawing
software Graphviz available from AT&T3.

3http://www.research.att.com/sw/tools/graphviz

62 CHAPTER 2. DESCRIPTION OF THE CATALOG

2.5 Keywords attached to the global constraints

This section explains the meaning of the keywords attached to the global constraints
of the catalog. For each keyword it first gives the list of global constraints using
the corresponding keyword and then defines the keyword. At present the following
keywords are in use.

Acyclic:

• alldifferent on intersection ,

• among low up,

• arith or,

• cardinality atleast,

• cardinality atmost,

• cardinality atmost partition,

• change,

• change continuity,

• change pair,

• change partition,

• common,

• common interval,

• common modulo,

• common partition,

• correspondence,

• counts,

• cyclic change,

• cyclic change joker.

Denotes the fact that a constraint is defined by one single graph constraint for
which the final graph doesn’t have any circuit.

All different:

• alldifferent,

• alldifferent between sets,

• alldifferent except 0,

• alldifferent interval,

• alldifferent modulo,

• alldifferent on intersection ,

• alldifferent partition,

• soft alldifferent ctr,

• soft alldifferent var,

• symmetric alldifferent,

• weighted partial alldiff.

Denotes the fact that we have a clique of disequalities or that a con-
straint is a variation of the alldifferent constraint. Variations may be re-
lated to relaxations (e.g. alldifferent except 0, soft alldifferent ctr,
soft alldifferent var), or to specializations (e.g. symmetric alldifferent),
of the alldifferent constraint. Variations may also result from an extension of
the notion of disequality (e.g.alldifferent interval, alldifferent modulo,
alldifferent partition).

2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 63

Alignment:

• orchard.

Denotes the fact that a constraint enforces the alignment of different sets of points.

Alpha-acyclic constraint network(2):

• among,

• among diff 0,

• among interval,

• among low up,

• among modulo,

• atleast,

• atmost,

• count,

• counts,

• differ from at least k pos,

• exactly,

• group,

• group skip isolated item,

• sliding card skip0.

Before defining alpha-acyclic constraint network(2) we first need to introduce the
following notions:

• The dual graph of a constraint network N is defined in the following way: To
each constraint ofN corresponds a vertex in the dual graph and if two constraints
have a non-empty set S of shared variables, there is an edge labeled S between
their corresponding vertices in the dual graph.

• An edge in the dual graph of a constraint network is redundant if its variables are
shared by every edge along an alternative path between the two end points [52].

• If the subgraph resulting from the removal of the redundant edges of the dual
graph is a tree the original constraint network is called α-acyclic [53].

Alpha-acyclic constraint network(2) denotes an α-acyclic constraint network such
that for any pair of constraints the two sets of involved variables share at most two
variables.

Alpha-acyclic constraint network(3):

• group,
• group skip isolated item,

• ith pos different from 0.

Alpha-acyclic constraint network(3) denotes an α-acyclic constraint network (see
alpha-acyclic constraint network(2)) such that for any pair of constraints the two sets
of involved variables share at most three variables.

64 CHAPTER 2. DESCRIPTION OF THE CATALOG

Alpha-acyclic constraint network(4):

• max index, • min index.

Alpha-acyclic constraint network(4) denotes an α-acyclic constraint network (see
alpha-acyclic constraint network(2)) such that for any pair of constraints the two sets
of involved variables share at most four variables.

Apartition:

• change continuity.

Denotes the fact that a constraint is defined by two graph constraints having the
same initial graph, where each arc of the initial graph belongs to one of the final graph
(but not to both).

Arithmetic constraint:

• product ctr,

• range ctr,

• sum ctr,

• sum set.

An arithmetic constraint involving a sum, a product, or a difference between a
maximum and a minimum value. Such constraints were introduced within the catalog
since they are required for defining a given global constraint. For instance the sum ctr

constraint is used within the definition of the cumulative constraint.

Array constraint:

• elem,

• element,

• element lesseq,

• element greatereq,

• element matrix,

• element sparse.

A constraint that allows for expressing simple array equations.

Assignment:

• assign and counts,

• assign and nvalues,

• balance,

• balance interval,

• balance modulo,

• balance partition,

• bin packing,

• cardinality atleast,

• cardinality atmost,

• global cardinality,

• global cardinality low up,

• global cardinality with costs,

• indexed sum,

• interval and count,

• interval and sum,

• max nvalue,

• min nvalue,

2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 65

• min size set consecutive var,
• minimum weight alldifferent,
• same and global cardinality,
• sum of weights of distinct values,

• symmetric cardinality,

• symmetric gcc,

• weighted partial alldiff.

A constraint putting a restriction on all items that are assigned to the same
equivalence class or on all equivalence classes that are effectively used. Usually an
equivalence class corresponds to one single value (e.g. balance, bin packing,
global cardinality, sum of weights of distinct values), to an inter-
val of consecutive values (e.g. balance interval, interval and count,
interval and sum) or to all values that are congruent modulo a given num-
ber (e.g. balance modulo). The restriction on all items that are assigned to the
same equivalence class can for instance be a constraint on the number of items
(e.g. cardinality atleast,
cardinality atmost, global cardinality, global cardinality low up) or
a constraint on the sum of a specific attribute (e.g. bin packing, interval and sum).

At least:

• atleast, • cardinality atleast.

A constraint enforcing that one or several values occur a minimum number of time
within a given collection of domain variables.

At most:

• atmost,
• cardinality atmost,

• cardinality atmost partition.

A constraint enforcing that one or several values occur a maximum number of time
within a given collection of domain variables.

Automaton:

• alldifferent,

• alldifferent except 0,

• alldifferent interval,

• alldifferent modulo,

• alldifferent on intersection,

• alldifferent same value,

• among,

• among diff 0,

• among interval,

• among low up,

• among modulo,

• arith,

• arith or,

• arith sliding,

• assign and counts,

• atleast,

• atmost,

• balance,

• balance interval,

• balance modulo,

• bin packing,

• cardinality atleast,

• cardinality atmost,

66 CHAPTER 2. DESCRIPTION OF THE CATALOG

• change,

• change continuity,

• change pair,

• circular change,

• count,

• counts,

• cumulative,

• cyclic change,

• cyclic change joker,

• decreasing,

• deepest valley,

• differ from at least k pos,

• disjoint,

• distance change,

• domain constraint,

• elem,

• element,

• element greatereq,

• element lesseq,

• element matrix,

• element sparse,

• exactly,

• global cardinality,

• global contiguity,

• group,

• group skip isolated item,

• heighest peak,

• in,

• in same partition,

• increasing,

• inflexion,

• int value precede,

• int value precede chain,

• interval and count,

• interval and sum,

• inverse,

• ith pos different from 0,

• lex between,

• lex different,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq,

• longest change,

• max index,

• max nvalue,

• maximum,

• min index,

• min n,

• min nvalue,

• minimum,

• minimum except 0,

• minimum greater than,

• next element,

• no peak,

• no valley,

• not all equal,

• not in,

• nvalue,

• peak,

• same,

• sequence folding,

• sliding card skip0,

• smooth,

• stage element,

• strictly decreasing,

• strictly increasing,

• two orth are in contact,

• two orth do not overlap,

• used by,

• valley.

A constraint for which the catalog provides a deterministic automaton for the
ground case. This automaton can usually be used for deriving mechanically a filter-
ing algorithm for the general case. We have the following three types of deterministic
automata:

• Deterministic automata without counters and without array of counters,

2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 67

• Deterministic automata with counters but without array of counters,

• Deterministic automata with array of counters and possibly with counters.

VAR <>VALUEi
VAR =VALUE,i
{C=C+1} {c[VAR]=c[VAR]+1} i i

1,

VAR =0i

VAR =1i

VAR =1i

VAR =0i

VAR =0i

global_contiguity exactly alldifferent

$

N=C

t:

$

t:
arith(C,<,2)

s

n

z

t

$

$

$

s s

{C=0} {C[_]=0}

Figure 2.1: Examples of automata

Figure 2.1 shows three automata respectively associated with the
global contiguity, the exactly and the alldifferent constraints. These
automata correspond to the three types we described above.

Automaton with array of counters:

• alldifferent,

• alldifferent except 0,

• alldifferent interval,

• alldifferent modulo,

• alldifferent on intersection,

• alldifferent same value,

• assign and counts,

• balance,

• balance interval,

• balance modulo,

• bin packing,

• cardinality atleast,

• cardinality atmost,

• cumulative,

• disjoint,

• global cardinality ,

• interval and count,

• interval and sum,

• inverse,

• max nvalue,

• min n,

• min nvalue,

• nvalue,

• same,

• used by.

A constraint for which the catalog provides a deterministic automaton with array
of counters and possibly with counters.

68 CHAPTER 2. DESCRIPTION OF THE CATALOG

Automaton with counters:

• among,

• among diff 0,

• among interval,

• among low up,

• among modulo,

• arith sliding,

• atleast,

• atmost,

• change,

• change continuity,

• change pair,

• circular change,

• count,

• counts,

• cyclic change,

• cyclic change joker,

• deepest valley,

• differ from at least k pos,

• distance change,

• exactly,

• group,

• group skip isolated item,

• heighest peak,

• inflexion,

• ith pos different from 0,

• longest change,

• max index,

• min index,

• peak,

• sliding card skip0,

• smooth,

• valley.

A constraint for which the catalog provides a deterministic automaton with
counters but without array of counters.

Automaton without counters:

• arith,

• arith or,

• decreasing,

• domain constraint,

• elem,

• element,

• element greatereq,

• element lesseq,

• element matrix,

• element sparse,

• global contiguity,

• in,

• in same partition,

• increasing,

• int value precede,

• int value precede chain,

• lex between,

• lex different,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq,

• maximum,

• minimum,

• minimum except 0,

• minimum greater than,

• next element,

• no peak,

• no valley,

• not all equal,

• not in,

• sequence folding,

• stage element,

• strictly decreasing,

• strictly increasing,

• two orth are in contact,

• two orth do not overlap.

2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 69

A constraint for which the catalog provides a deterministic automaton without
counters and without array of counters.

Balanced tree:

• tree range.

A constraint that allows for expressing the fact that we want to cover a digraph by
one (or more) balanced tree. A balanced tree is a tree where no leaf is much farther
away than a given threshold from the root than any other leaf. The distance between
a leaf and the root of a tree is the number of vertices on the path from the root to the leaf.

Balanced assignment:

• balance,

• balance interval,

• balance modulo,

• balance partition.

A constraint that allows for expressing a restriction on the maximum value of the
difference between the maximum number of items assigned to the same equivalence
class and the minimum number of items assigned to the same equivalence class.

Berge-acyclic constraint network:

• int value precede,

• int value precede chain,

• global contiguity,

• lex between,

• lex different,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq,

• two orth are in contact,

• two orth do not overlap.

A constraint for which the decomposition associated with its counter-free au-
tomaton is Berge-acyclic. Arc-consistency for a Berge-acyclic constraint network is
achieved by making each constraint of the corresponding network arc-consistent. A
constraint network for which the corresponding intersection graph does not contain
any cycle and such that for any pair of constraints the two sets of involved variables
share at most one variable is so-called Berge-acyclic. The intersection graph of a con-
straint network is built in the following way: to each vertex corresponds a constraint
and there is an edge between two vertices if and only if the sets of variables involved
in the two corresponding constraints intersect.

Parts (A), (B) and (C) of Figure 2.2 provide three examples of constraint networks,
while parts (D), (E) and (F) give their corresponding intersection graph. The constraint
network corresponding to part (A) is Berge-acyclic, while the constraint network
associated with (B) is not (since its corresponding intersection graph (E) contains a
cycle). Finally the constraint network depicted by (C) is also not Berge-acyclic since
its third and fourth constraints share more than one variable.

70 CHAPTER 2. DESCRIPTION OF THE CATALOG

CTR 3 CTR 2

V1

V4

CTR 1

 V
2

 V
3

V5 V6

1
CTR 1 CTR 2

CTR 3CTR 4

V5

 V V
2

 V
3

 V
4

V6 V7

1
CTR 1 CTR 2

CTR 3CTR 4

V5

V6
V7

 V V
2

 V
3

 V
4

V8

CTR 1 CTR 2

CTR 3CTR 4

CTR 1 CTR 2

CTR 3CTR 4CTR 2
CTR 3

CTR 1

(A) (B) (C)

(D) (E) (F)

Figure 2.2: Illustration of Berge-acyclic constraint network

Binary constraint:

• element greatereq,

• element lesseq,

• element sparse,

• eq set,

• stage element,

• sum set.

A constraint involving only two variables.

Bioinformatics:

• all differ from at least k pos,
• one tree,

• sequence folding.

Denotes the fact that, for a given constraint, either there is a reference to its uses in
Bioinformatics, or it was inspired by a problem from the area of Bioinformatics.

Bipartite:

• alldifferent on intersection ,

• among low up,

• arith or,

• cardinality atleast,

• cardinality atmost,

• cardinality atmost partition,

• common,

• common interval,

• common modulo,

• common partition,

• correspondence,

• counts.

Denotes the fact that a constraint is defined by one graph constraint for which the
final graph is bipartite.

2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 71

Bipartite matching:

• alldifferent,

• alldifferent between sets,

• disjoint,

• lex alldifferent.

(A) (B)

Figure 2.3: A bipartite graph and one of its bipartite matching

Denotes the fact that, for a given constraint, a bipartite matching algorithm can be
used within its filtering algorithm. A bipartite matching is a subgraph that pairs every
vertex of a bipartite graph with exactly one other vertex. A bipartite graph is a graph
for which the set of vertices can be partitioned in two parts such that no two vertices
in the same part are joined by an edge. Part (A) of Figure 2.3 shows a bipartite graph
with a possible division of the vertices in black and white, while part (B) depicts with
a thick line a bipartite matching of this graph.

Boolean channel:

• domain constraint.

A constraint that allows for making the link between a set of 0-1 variables
B1, B2, . . . , Bn and a domain variable V . It enforces a condition of the form
V = i⇔ Bi = 1.

Border:

• period.

A constraint that can be related to the notion of border, which we define now.
Given a sequence s = urv, r is a prefix of s when u is empty, r is a suffix of s when v
is empty, r is a proper factor of s when r 6= s. A border of a non-empty sequence s is
a proper factor of s, which is both a prefix and a suffix of s. We have that the smallest
period of a sequence s is equal to the size of s minus the length of the longest border
of s.

72 CHAPTER 2. DESCRIPTION OF THE CATALOG

Bound-consistency:

• alldifferent,

• global cardinality,

• same,

• used by.

Denotes the fact that, for a given constraint, there is a filtering algorithm that
ensures bound-consistency for its variables. A filtering algorithm ensures bound-
consistency for a given constraint ctr if and only if for every variable V of ctr:

• There exists at least one solution for ctr such that V = min(V) and every other
variable W of ctr is assigned to a value located in its range min(W)..max(W),

• There exists at least one solution for ctr such that V = max(V) and every other
variable W of ctr is assigned to a value located in its range min(W)..max(W).

One interest of this definition is that it sometimes gives the opportunity to come up
with a filtering algorithm that has a lower complexity than the algorithm that achieves
arc-consistency. Discarding holes from the variables usually leads to graphs with a
specific structure for which one can take advantage in order to derive more efficient
graph algorithms. Filtering algorithms that achieve bound-consistency can also be
used in a preprocessing phase before applying a more costly filtering algorithm that
achieves arc-consistency. Note that there is a second definition of bound-consistency
where the range min(W)..max(W) is replaced by the domain of the variable W .
However within the context of global constraints all current filtering algorithms don’t
refer to this second definition.

Centered cyclic(1) constraint network(1):

• domain constraint,

• in,

• maximum,

• minimum,

• minimum except 0,

• not in.

...

Figure 2.4: Hypergraph associated with a centered cyclic(1) constraint network(1)

A constraint network corresponding to the pattern depicted by Figure 2.4. Circles
depict variables, while arcs are represented by a set of variables. Gray circles
correspond to optional variables. All pairs of constraints have at most one variable in
common.

2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 73

Centered cyclic(2) constraint network(1):

• elem,

• element,

• element greatereq,

• element lesseq,

• element sparse,

• in same partition,

• minimum greater than,

• stage element.

...

Figure 2.5: Hypergraph associated with a centered cyclic(2) constraint network(1)

A constraint network corresponding to the pattern depicted by Figure 2.5. Circles
depict variables, while arcs are represented by a set of variables. Gray circles
correspond to optional variables.

Centered cyclic(3) constraint network(1):

• element matrix, • next element.

...

Figure 2.6: Hypergraph associated with a centered cyclic(3) constraint network(1)

A constraint network corresponding to the pattern depicted by Figure 2.6. Circles
depict variables, while arcs are represented by a set of variables. Gray circles
correspond to optional variables.

74 CHAPTER 2. DESCRIPTION OF THE CATALOG

Channel routing:

• connect points.

A constraint that can be used for modeling channel routing problems. Channel
routing consists of creating a layout in a rectangular region of a VLSI chip in order to
link together the terminals of different modules of the chip. Connections are usually
made by wire segments on two different layers: Horizontal wire segments on the first
layer are placed along lines called tracks, while vertical wire segments on the second
layer connect terminals to the horizontal wire segments, with vias at the intersection.

Channeling constraint:

• domain constraint,
• inverse,
• inverse set,

• link set to booleans,

• same.

Constraints that allow for linking two models of the same problem. Usually chan-
neling constraints show up in the following context:

• When a problem can be modeled by using different types of variables (e.g. 0-1
variables, domain variables, set variables),

• When a problem can be modeled by using two distinct matrices of variables
representing the same information redundantly,

• When, in a problem, the roles of the variables and the values can be inter-
changed. This is typically the case when we have a bijection between a set of
variables and the values they can take.

Circuit:

• circuit,

• cutset,

• cycle,

• symmetric alldifferent.

A constraint such that its initial or its final graph corresponds to zero (e.g. cutset),
one (e.g. circuit) or several (e.g. cycle, symmetric alldifferent) vertex-
disjoint circuits.

Circular sliding cyclic(1) constraint network(2):

• circular change.

A constraint network corresponding to the pattern depicted by Figure 2.7. Circles
depict variables, while arcs are represented by a set of variables.

2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 75
These two circles correspond to the same variable

Figure 2.7: Hypergraph corresponding to a circular sliding cyclic(1) constraint net-
work(2)

Cluster:

• circuit cluster.

A constraint that partitions the vertices of an initial graph into several clusters.

Coloured:

• assign and counts,
• coloured cumulative,
• coloured cumulatives,

• cycle card on path,

• interval and count.

A constraint with a collection where one of the attributes is a color.

Conditional constraint:

• size maximal sequence alldifferent , • size maximal starting sequence alldifferent .

A constraint that allows for expressing the fact that some constraints can be
enforced during the enumeration phase.

Connected component:

• alldifferent on intersection,

• binary tree,

• change continuity,

• circuit cluster,

• cycle,

• cycle card on path,

• cycle resource,

• global contiguity,

• group,

• k cut,

• map,

• nvalue on intersection,

• temporal path,

• tree,

• tree range,

• tree resource.

Denotes the fact that a constraint uses in its definition a graph property (e.g.
MAX NCC, MIN NCC, NCC) constraining the connected components of its
associated final graph.

76 CHAPTER 2. DESCRIPTION OF THE CATALOG

Consecutive loops are connected:

• group.

Denotes the fact that the graph constraints of a global constraint use only the
PATH and the LOOP arc generators and that their final graphs do not contain
consecutive vertices that have a loop and that are not connected together by an arc.

Consecutive values:

• max size set of consecutive var,
• min size set of consecutive var,

• nset of consecutive values.

A constraint for which the definition involves the notion of consecutive values
assigned to the variables of a collection of domain variables.

Constraint between two collections of variables:

• common,

• common interval,

• common modulo,

• common partition,

• same,

• same and global cardinality,

• same intersection,

• same interval,

• same modulo,

• same partition,

• soft same interval var,

• soft same modulo var,

• soft same partition var,

• soft same var,

• soft used by interval var,

• soft used by modulo var,

• soft used by partition var,

• soft used by var,

• sort,

• used by,

• used by interval,

• used by modulo,

• used by partition.

A constraint involving only two collections of domain variables in its arguments.

Constraint between three collections of variables:

• correspondence, • sort permutation.

A constraint involving only three collections of domain variables in its arguments.

Constraint involving set variables:

• alldifferent between sets,

• clique,

• eq set,

• in set,

• inverse set,

• k cut,

• link set to booleans,

• path from to,

2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 77

• set value precede,

• strongly connected,

• sum set,

• symmetric cardinality,

• symmetric gcc,

• tour.

A constraint involving set variables in its arguments.

Constraint on the intersection:

• alldifferent on intersection,
• nvalue on intersection ,

• same intersection .

Denotes the fact that a constraint involving two collections of variables imposes a
restriction on the values that occur in both collections.

Contact:

• orths are connected, • two orth are in contact.

A constraint enforcing that some orthotopes touch each other. Part (A) of
Figure 2.8 shows two orthotopes that are in contact while parts (B) and (C) give two
examples of orthotopes that are not in contact.

(A) (B) (C)

Figure 2.8: Illustration of the notion of contact

Convex:

• global contiguity.

A constraint involving the notion of convexity. A subset S of the plane is called
convex if and only if for any pair of points p, q of this subset the corresponding
line-segment is contained in S. Part (A) of Figure 2.9 gives an example of convex set,
while part (B) depicts an example of non-convex set.

(B)(A)

p

q p q

Figure 2.9: A convex set and a non-convex set

78 CHAPTER 2. DESCRIPTION OF THE CATALOG

Convex hull relaxation:

• sum.

Given a non-convex set S, R is a convex outer approximation of S if:

• R is convex,

• If s ∈ S, then s ∈ R.

Given a non-convex set S, R is the convex hull of S if:

• R is a convex outer approximation of S,

• For every T where T is a convex outer approximation of S, R ⊆ T .

Part (A) of Figure 2.10 depicts a non-convex set, while part (B) gives its corresponding
convex hull.

(A) (B)

Figure 2.10: Convex hull of a non-convex set

Within the context of linear programming the convex hull relaxation of a non-
convex set S corresponds to the set of linear constraints characterizing the convex hull
of S.

Cost filtering constraint:

• global cardinality with costs,

• minimum weight alldifferent,

• sum of weights of distinct values,

• weighted partial alldiff.

A constraint that has a set of decision variables as well as a cost variable and
for which there exists a filtering algorithm that restricts the state variables from the
minimum or maximum value of the cost variable.

Cost matrix:

• global cardinality with costs, • minimum weight alldifferent.

A constraint for which a first argument corresponds to a collection of variables
Vars, a second argument to a cost matrix M, and a third argument to a cost variable C.
Let Vals denote the set of values that can be assigned to the variables of Vars. The
cost matrix defines for each pair v, u (v ∈ Vars, u ∈ Vals) an elementary cost, which
is used for computing C when value u is assigned to variable v.

2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 79

Counting constraint:

• among,

• among diff 0,

• among interval,

• among low up,

• among modulo,

• count,

• counts,

• discrepancy,

• exactly,

• nclass,

• nequivalence,

• ninterval,

• npair,

• nvalue,

• nvalue on intersection,

• nvalues,

• nvalues except 0.

A constraint restricting the number of occurrences of some values (respectively
some pairs of values) within a given collection of domain variables (respectively pairs
of domain variables).

Cycle:

• cycle, • symmetric alldifferent .

A constraint that can be used for restricting the number of cycles of a permutation
or for restricting the size of the cycles of a permutation.

Cyclic:

• circular change,

• cyclic change,

• cyclic change joker,

• stretch circuit.

A constraint that involves a kind of cyclicity in its definition. It either uses the arc
generator CIRCUIT or an arc constraint involving mod .

Data constraint:

• elem,

• element,

• element greatereq,

• element lesseq,

• element matrix,

• element sparse,

• elements,

• elements alldifferent ,

• elements sparse,

• in relation,

• ith pos different from 0,

• next element,

• next greater element,

• stage element,

• sum.

A constraint that allows for representing an access to an element of a data structure
(e.g. a table, a matrix, a relation) or to compute a value from a given data structure.

80 CHAPTER 2. DESCRIPTION OF THE CATALOG

Decomposition:

• all min dist ,

• all differ from at least k pos,

• among seq ,

• arith ,

• arith or ,

• arith sliding ,

• decreasing ,

• diffn ,

• diffn column ,

• diffn include ,

• disjunctive ,

• domain constraint ,

• increasing ,

• lex alldifferent ,

• lex chain less ,

• lex chain lesseq ,

• link set to booleans ,

• orth link ori siz end ,

• sequence folding ,

• sliding distribution ,

• sliding sum ,

• strictly decreasing ,

• strictly increasing ,

• symmetric cardinality ,

• symmetric gcc .

A constraint for which the catalog provides a description in terms of a conjunction
of more elementary constraints. This is the case when the constraint is described by
one or several graph constraints that all satisfy the following property: The description
uses the NARC graph property and forces all arcs of the initial graph to belong to
the final graph. Most of the time we have only one single graph constraint. But some
constraints (e.g. diffn) use more than one. Note that the arc constraint can some-
times be a logical expression involving several constraints (e.g. domain constraint).

Decomposition-based violation measure:

• soft alldifferent ctr.

A soft constraint associated to a constraint which can be described in terms of a
conjunction of more elementary constraints for which the violation cost is the number
of violated elementary constraints.

Demand profile:

• cumulatives, • same and global cardinality.

A constraint that allows for representing problems where one has to allocate
resources in order to cover a given demand. A profile specifies for each instant the
minimum, and possibly maximum, required demand.

2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 81

Derived collection:

• assign and counts,

• correspondence,

• cumulative two d,

• cumulative with level of priority,

• cumulatives,

• cycle resource,

• domain constraint,

• element,

• element matrix,

• element sparse,

• elements sparse,

• golomb,

• in,

• in relation,

• in same partition,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq,

• link set to booleans,

• minimum greater than,

• next element,

• next greater element,

• not in,

• sliding time window from start,

• sort permutation,

• track,

• tree resource,

• two layer edge crossing.

A constraint that uses one or several derived collections.

Difference:

• golomb.

Denotes the fact that the definition in terms of graph property of a constraint
involves a difference between two variables within its arc constraint.

Directed acyclic graph:

• cutset.

A constraint that forces the final graph to be a directed acyclic graph. A directed
acyclic graph is a digraph with no path starting and ending at the same vertex.

Disequality:

• all differ from at least k pos,

• alldifferent,

• alldifferent between sets,

• disjoint,

• elements alldifferent ,

• golomb,

• lex different,

• not all equal,

• not in,

• soft alldifferent ctr,

• soft alldifferent var,

• symmetric alldifferent .

Denotes the fact that a disequality between two domain variables, one domain
variable and a fixed value, or two set variables is used within the definition of

82 CHAPTER 2. DESCRIPTION OF THE CATALOG

a constraint. Denotes also the fact that the notion of disequality can be used
within the informal definition of a constraint. This is for instance the case for
the relaxation of the alldifferent constraint (i.e. soft alldifferent ctr,
soft alldifferent var), which do not strictly enforce a disequality.

Domain channel:

• domain constraint.

A constraint that allows for making the link between a domain variable V and a set
of 0-1 variables B1, B2, . . . , Bn. It enforces a condition of the form V = i⇔ Bi = 1.

Domain definition:

• arith,
• in,

• not in.

A constraint that is used for defining the initial domain of one or several domain
variables or for removing some values from the domain of one or several domain
variables.

Domination:

• nvalue, • sum of weights of distinct values.

A constraint that can be used for expressing directly the fact that we search for a
dominating set in an undirected graph. Given an undirected graph G = (V,E) where
V is a finite set of vertices and E a finite set of unordered pairs of distinct elements
from V , a set S is a dominating set if for every vertex u ∈ V − S there exists a vertex
v ∈ S such that u is adjacent to v. Part (A) of Figure 2.11 gives an undirected graph
G, while part (B) depicts a dominating set S = {e, f, g} in G.

(A) (B)
S= {e,f,g }

a b c d

e
f

g

h i j k

a b c d

e
f

g

h i j k

Figure 2.11: A graph and one of its dominating set

2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 83

Dual model:

• inverse, • inverse set.

A constraint that can be used as a channeling constraint in a problem where the
roles of the variables and the values can be interchanged. This is for instance the case
when we have a bijection between a set of variables and the values they can take.

Duplicated variables:

• global cardinality,
• lex greater,
• lex greatereq,

• lex less,

• lex lesseq.

A constraint for which the situation where the same variable can occur more
than once was considered in order to derive a better filtering algorithm or to prove a
complexity result for achieving arc-consistency.

Empty intersection:

• disjoint.

A constraint that enforces an empty intersection between two sets of variables.

Equality:

• eq set.

Denotes the fact that the notion of equality can be used within the informal
definition of a constraint.

Equality between multisets:

• same, • same and global cardinality.

A constraint that can be used for modeling an equality constraint between two
multisets.

Equivalence:

• balance interval,

• balance modulo,

• balance partition,

• balance,

• max nvalue,

• min nvalue,

• nclass,

• nequivalence,

• ninterval,

• not all equal,

• npair,

84 CHAPTER 2. DESCRIPTION OF THE CATALOG

• nvalue,
• nvalues,

• soft alldifferent var.

Denotes the fact that a constraint is defined by a graph constraint for which the
final graph is reflexive, symmetric and transitive.

Euler knight:

• cycle.

Denotes the fact that a constraint can be used for modeling the Euler knight
problem. The Euler knight problem consists of finding a sequence of moves on a
chessboard by a knight such that each square of the board is visited exactly once.

Excluded:

• not in.

A constraint that prevents certain values to be taken by a variable.

Extension:

• in relation.

A constraint that is defined by explicitly providing all its solutions.

Facilities location problem:

• cycle or accessibility , • sum of weights of distinct values.

A constraint that allows for modeling a facilities location problem. In a facilities
location problem one has to select a subset of locations from a given initial set so that
a given set of conditions holds.

Flow:

• global cardinality,
• global cardinality low up,
• same,
• soft alldifferent ctr,

• symmetric cardinality,

• symmetric gcc,

• used by.

A constraint for which there is a filtering algorithm based on an algorithm that
finds a feasible flow in a graph. This graph is constructed from the variables of the
constraint as well as from their potential values.

2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 85

Frequency allocation problem:

• all min dist.

A constraint that was used for modeling frequency allocation problems.

Functional dependency:

• elem,
• element,
• elements,

• elements alldifferent,

• stage element.

A constraint that allows for representing a functional dependency between two
domain variables. A variable X is said to functionally determine another variable Y if
and only if each potential value of X is associated with exactly one potential value of
Y .

Geometrical constraint:

• connect points,

• crossing,

• cumulative two d,

• cycle or accessibility ,

• diffn,

• diffn column,

• diffn include,

• graph crossing,

• orchard,

• orth on the ground,

• orth on to of orth,

• orths are connected,

• place in pyramid,

• polyomino,

• sequence folding,

• two layer edge crossing,

• two orth are in contact,

• two orth column,

• two orth do not overlap,

• two orth include.

A constraint between geometrical objects (e.g. points, line-segments, rectangles,
parallelepipeds, orthotopes) or a constraint selecting a subset of points so that a given
geometrical property holds (e.g. distance).

Golomb ruler:

• golomb.

A constraint that allows for expressing the Golomb ruler problem. A Golomb ruler
is a set of integers (marks) a1 < · · · < ak such that all the differences ai − aj (i > j)
are distinct.

86 CHAPTER 2. DESCRIPTION OF THE CATALOG

Graph constraint:

• binary tree,

• circuit,

• circuit cluster,

• clique,

• cutset,

• cycle,

• cycle card on path,

• cycle or accessibility ,

• cycle resource,

• derangement,

• inverse,

• k cut,

• map,

• one tree,

• path from to,

• strongly connected,

• symmetric alldifferent,

• temporal path,

• tour,

• tree,

• tree range,

• tree resource.

A constraint that selects a subgraph from a given initial graph so that this subgraph
satisfies a given property.

Graph partitioning constraint:

• binary tree,

• circuit,

• cycle,

• cycle resource,

• map,

• symmetric alldifferent,

• temporal path,

• tree,

• tree range,

• tree resource.

A constraint that partitions the vertices of a given initial graph and that keeps one
single successor for each vertex so that each partition corresponds to a specific pattern.

Guillotine cut:

• diffn column, • two orth column.

A constraint that can enforce some kind of guillotine cut. In a lot of cutting
problems the stock sheet as well as the pieces to be cut are all shaped as rectangles.
In a guillotine cutting pattern all cuts must go from one edge of the rectangle
corresponding to the stock sheet to the opposite edge.

2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 87

Hall interval:

• alldifferent, • global cardinality .

A constraint for which some filtering algorithms take advantage of Hall intervals.
Given a set of domain variables, a Hall set is a set of values H = {v1, v2, . . . , vh}
such that there are h variables whose domains are contained in H . A Hall interval is
a Hall set that consists of an interval of values (and can therefore be specified by its
endpoints).

Hamiltonian:

• circuit, • tour.

A constraint enforcing to cover a graph with one Hamiltonian circuit or cycle. This
corresponds to finding a circuit (respectively a cycle) passing all the vertices exactly
once of a given digraph (respectively undirected graph).

Heuristics:

• discrepancy.

A constraint that was introduced for expressing a heuristics.

Hypergraph:

• among seq,

• arith sliding,

• orchard,

• relaxed sliding sum,

• size maximal sequence alldifferent,

• size maximal starting sequence alldifferent ,

• sliding distribution,

• sliding sum.

Denotes the fact that a constraint uses in its definition at least one arc constraint
involving more than two vertices.

Included:

• in, • in set.

Enforces that a domain or a set variable take a value within a list of values (possibly
one single value).

88 CHAPTER 2. DESCRIPTION OF THE CATALOG

Inclusion:

• used by,

• used by interval,

• used by modulo,

• used by partition.

Denotes the fact that a constraint can model the inclusion of one multiset within
another multiset. Usually we consider multiset of values (e.g. used by) but this can
also be multisets of equivalence classes (e.g. used by interval,used by modulo,
used by partition).

Indistinguishable values:

• int value precede,
• int value precede chain,

• set value precede.

A constraint which can be used for breaking symmetries of indistinguishable
values. Indistinguishable values in a solution of a problem can be swapped to construct
another solution of the same problem.

Interval:

• alldifferent interval,

• among interval,

• balance interval,

• common interval,

• interval and count,

• interval and sum,

• ninterval,

• same interval,

• soft same interval var,

• soft used by interval var,

• used by interval.

Denotes the fact that a constraint puts a restriction related to a set of fixed intervals
(or on one fixed interval).

Joker value:

• alldifferent except 0,
• among diff 0,
• connect points,
• cyclic change joker,
• ith pos different from 0,

• minimum except 0,

• nvalues except 0,

• period except 0,

• weighted partial alldiff.

Denotes the fact that, for some variables of a given constraint, there exist specific
values that have a special meaning: for instance they can be assigned without breaking
the constraint. As an example consider the alldifferent except 0 constraint,
which forces a set of variables to take distinct values, except those variables that are
assigned to 0.

2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 89

Lexicographic order:

• allperm,

• lex2,

• lex between,

• lex chain less,

• lex chain lesseq,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq,

• strict lex2.

A constraint involving a lexicographic ordering relation in its definition.

Limited discrepancy search:

• discrepancy.

A constraint for simulating limited discrepancy search. Limited discrepancy
search is useful for problems for which there is a successor ordering heuristics
that usually leads directly to a solution. It consists of systematically searching all
paths that differ from the heuristic path in at most a very small number of discrepancies.

Linear programming:

• circuit,

• cumulative,

• domain constraint,

• element greatereq,

• element lesseq,

• k cut,

• link set to booleans,

• path from to,

• strongly connected,

• sum,

• tour.

A constraint for which a reference provides a linear relaxation (e.g. cumulative,
sum) or a constraint that was also proposed within the context of linear programming
(e.g. circuit, domain constraint).

Line-segments intersection:

• crossing,
• graph crossing,

• two layer edge crossing.

A constraint on the number of line-segment intersections.

90 CHAPTER 2. DESCRIPTION OF THE CATALOG

Magic hexagon:

• global cardinality with costs.

A constraint that can be used for modeling the magic hexagon problem. The magic
hexagon problem consists of finding an arrangement of n hexagons, where an integer
from 1 to n is assigned to each hexagon so that:

• Each integer from 1 to n occurs exactly once,

• The sum of the numbers along any straight line is the same.

Figure 2.12 shows a magic hexagon.

9
14

15
13

8

6

10

4
511 12

21
18 7 16

17 19

3

Figure 2.12: A magic hexagon

Magic series:

• global cardinality.

A constraint that allows for modeling the magic series problem with one single
constraint. A non-empty finite series S = (s0, s1, . . . , sn) is magic if and only if there
are si occurrences of i in S for each integer i ranging from 0 to n. 3, 2, 1, 1, 0, 0, 0 is
an example of such a magic series for n = 6.

Magic square:

• global cardinality with costs.

A constraint that can be used for modeling the magic square problem. The magic
square problem consists in filling an n by n square with n2 distinct integers so that the
sum of each row and column and of both main diagonals be the same.

2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 91

Matching:

• symmetric alldifferent.

A constraint that allows for expressing the fact that we want to find a perfect
matching on a graph with an even number of vertices. A perfect matching on a graph
G with n vertices is a set of n/2 edges of G such that no two edges have a vertex in
common.

Matrix:

• allperm,
• colored matrix,
• element matrix,

• lex2,

• strict lex2.

A constraint on a matrix of domain variables (e.g. allperm, colored matrix,
lex2, strict lex2) or a constraint that allows for representing the access to an
element of a matrix (e.g. element matrix).

Matrix model:

• allperm,

• colored matrix,

• lex2,

• strict lex2.

A constraint on a matrix of domain variables. A matrix model is a model involving
one matrix of domain variables.

Matrix symmetry:

• lex2,
• lex chain less,
• lex chain lesseq,
• lex greater,

• lex greatereq,

• lex less,

• lex lesseq.

A constraint that can be used for breaking certain types of symmetries within a
matrix of domain variables.

Maximum:

• max index,

• max n,

• max nvalue,

• max size set of consecutive var,

• maximum,

• maximum modulo.

A constraint for which the definition involves the notion of maximum.

92 CHAPTER 2. DESCRIPTION OF THE CATALOG

Maximum clique:

• clique.

A constraint that can be used for searching for a maximum clique in a graph. A
maximum clique is a clique of maximum size, a clique being a subset of vertices such
that each vertex is connected to all other vertices of the clique.

Maximum number of occurrences:

• max nvalue.

A constraint that restricts the maximum number of times that a given value is taken.

maxint:

• deepest valley,
• min n,
• minimum,

• minimum except 0,

• minimum modulo.

A constraint that uses maxint in its definition in terms of graph properties or in
terms of automata. maxint is the largest integer that can be represented on a machine.

Minimum:

• min index,

• min n,

• min nvalue,

• min size set of consecutive var,

• minimum,

• minimum except 0,

• minimum greater than,

• minimum modulo,

• next element,

• next greater element.

A constraint for which the definition involves the notion of minimum.

Minimum number of occurrences:

• min nvalue.

A constraint that restricts the minimum number of times that a given value is taken.

Modulo:

• alldifferent modulo,

• among modulo,

• balance modulo,

• common modulo,

• maximum modulo,

• minimum modulo,

• same modulo,

• soft same modulo var,

• soft used by modulo var,

• used by modulo.

2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 93

Denotes the fact that the arc constraint associated with a given constraint mentions
the function mod .

Multiset:

• same, • same and global cardinality.

A constraint using domain variables that can be used for modeling some constraint
between multisets.

Multiset ordering:

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq.

Similar constraints exist also within the context of multisets.

no loop:

• alldifferent on intersection,

• all differ from at least k pos,

• among low up,

• arith or,

• cardinality atleast,

• cardinality atmost partition,

• cardinality atmost,

• change continuity,

• change pair,

• change partition,

• change,

• common interval,

• common modulo,

• common partition,

• common,

• correspondence,

• counts,

• crossing,

• cyclic change joker,

• cyclic change.

Denotes a constraint defined by a graph constraint for which the final graph doesn’t
have any loop.

n-queen:

• alldifferent, • inverse.

A constraint that can be used for modeling the n-queen problem. Place n queens
on a n by n chessboard in such a way that no queen attacks another. Two queens
attack each other if they are located on the same column, on the same row or on the
same diagonal.

94 CHAPTER 2. DESCRIPTION OF THE CATALOG

Non-overlapping:

• diffn,
• disjoint tasks,
• orth on top of orth,
• orths are connected,

• place in pyramid,

• two orth are in contact,

• two orth do not overlap.

A constraint that forces a collection of geometrical objets to not pairwise overlap.

Number of changes:

• change,
• change pair,
• change partition,
• circular change,

• cyclic change,

• cyclic change joker,

• smooth.

A constraint restricting the number of times that a given binary constraint holds on
consecutive items of a given collection.

Number of distinct equivalence classes:

• nclass,

• nequivalence,

• ninterval,

• npair,

• nvalue,

• nvalues.

A constraint on the number of distinct equivalence classes assigned to a collection
of domain variables.

Number of distinct values:

• assign and nvalues,
• coloured cumulative,
• coloured cumulatives,
• nvalue,

• nvalue on intersection ,

• nvalues,

• nvalues except 0.

A constraint on the number of distinct values assigned to one or several set of
variables.

Obscure:

• one tree.

A constraint for which a better description is needed.

2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 95

One succ:

• alldifferent between sets,

• alldifferent except 0,

• alldifferent interval,

• alldifferent modulo,

• alldifferent partition,

• alldifferent,

• binary tree,

• circuit cluster,

• circuit,

• cycle card on path,

• cycle,

• minimum weight alldifferent .

Denotes the fact that a constraint is defined by one single graph constraint such
that:

• All the vertices of its initial graph belong to the final graph,

• All the vertices of its final graph have exactly one successor.

Order constraint:

• allperm,

• decreasing,

• increasing,

• int value precede,

• int value precede chain,

• lex2,

• lex between,

• lex chain less,

• lex chain lesseq,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq,

• max index,

• max n,

• maximum,

• maximum modulo,

• min index,

• min n,

• minimum,

• minimum except 0,

• minimum greater than,

• minimum modulo,

• next greater element,

• set value precede,

• strict lex2,

• strictly decreasing,

• strictly increasing.

A constraint involving an ordering relation in its definition. An ordering relation
R on a set S is a relation such that, for every a, b, c ∈ S:

• a R b or b R a,

• If a R b and b R c, then a R c,

• If a R b and b R a then a = b.

96 CHAPTER 2. DESCRIPTION OF THE CATALOG

Orthotope:

• diffn,

• diffn column,

• diffn include,

• orth link ori siz end,

• orth on the ground,

• orth on top of orth,

• orths are connected,

• place in pyramid,

• two orth are in contact,

• two orth column,

• two orth do not overlap,

• two orth include.

A constraint involving orthotopes. An orthotope corresponds to the generalization
of the rectangle and box to the n-dimensional case.

Pair:

• change pair, • npair.

A constraint involving a collection of pairs of variables.

Partition:

• alldifferent partition,

• balance partition,

• cardinality atmost partition,

• change partition,

• common partition,

• in same partition,

• nclass,

• same partition,

• soft same partition var,

• soft used by partition var,

• used by partition.

A constraint involving in one of its argument a partitioning of a given finite set of
integers.

Path:

• path from to, • temporal path.

A constraint allowing for expressing the fact that we search for one or several
vertex-disjoint simple paths. Within a digraph a simple path is a set of links that are
traversed in the same direction and such that each vertex of the simple path is visited
exactly once.

Pentomino:

• polyomino.

Can be used to model a pentomino. A pentomino is an arrangement of five unit
squares that are joined along their edges.

2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 97

Periodic:

• period, • period except 0.

A constraint that can be used for modeling the fact that we are looking for a
sequence that has some kind of periodicity.

Permutation:

• alldifferent,

• change continuity,

• circuit,

• correspondence,

• cycle,

• derangement,

• elements alldifferent ,

• inverse,

• same,

• same and global cardinality,

• same interval,

• same modulo,

• same partition,

• sort,

• sort permutation,

• symmetric alldifferent .

A constraint that can be used for modeling a permutation or a specific type or
characteristic of a permutation. A permutation is a rearrangement of elements, where
none are changed, added or lost.

Permutation channel:

• inverse.

A constraint that allows for modeling the link between a permutation and its
inverse permutation. A permutation is a rearrangement of n distinct integers between
1 and n, where none are changed, added or lost. An inverse permutation is a
permutation in which each number and the number of its position are swapped.

Phylogeny:

• one tree.

A constraint inspired by the area of phylogeny. Phylogeny is concerned by the
classification of organism based on genetic connections between species.

Pick-up delivery:

• cycle.

A constraint that was used for modeling a pick-up delivery problem. In a pick-up
delivery problem, vehicles have to transport loads from origins to destinations without
any transshipment at intermediate locations.

98 CHAPTER 2. DESCRIPTION OF THE CATALOG

Polygon:

• diffn.

A constraint that can be generalized to handle polygons.

Positioning constraint:

• diffn column,

• diffn include,

• two orth column,

• two orth include.

A constraint restricting the relative positioning of two or more geometrical objects.

Predefined constraint:

• allperm,

• colored matrix,

• eq set,

• in set,

• lex2,

• pattern,

• period,

• period except 0,

• set value precede,

• strict lex2.

A constraint for which the meaning is not explicitly described in terms of graph
properties or in terms of automata.

Producer-consumer:

• cumulative, • cumulatives.

A constraint that can be used for modeling problems where a first set of tasks
produces a resource, while a second set of tasks consumes this resource. The constraint
allows for imposing a limit on the minimum or the maximum stock at each instant.

Product:

• cumulative product, • product ctr.

A constraint involving a product in its definition.

Proximity constraint:

• alldifferent same value,
• distance between,

• distance change.

A constraint restricting the distance between two collections of variables according
to some measure.

2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 99

Range:

• range ctr.

An arithmetic constraint involving a difference between a maximum and a
minimum value.

Rank:

• max n, • min n.

A positioning constraint according to an ordering relation.

Relation:

• in relation,
• symmetric cardinality,

• symmetric gcc.

A constraint that allows for representing the access to an element of a relation or
to model a relation. A relation is a subset of the product of several finite sets.

Relaxation:

• alldifferent except 0,

• relaxed sliding sum,

• soft alldifferent ctr,

• soft alldifferent var,

• soft same interval var,

• soft same modulo var,

• soft same partition var,

• soft same var,

• soft used by interval var,

• soft used by modulo var,

• soft used by partition var,

• soft used by var,

• sum of weights of distinct values,

• weighted partial alldiff.

Denotes the fact that a constraint allows for specifying a partial degree of satisfac-
tion.

Resource constraint:

• bin packing,

• coloured cumulative,

• coloured cumulatives,

• cumulative,

• cumulative product,

• cumulative with level of priority,

• cumulatives,

• cycle resource,

• disjunctive,

• interval and count,

• interval and sum,

• track,

• tree resource.

A constraint restricting the utilization of a resource. The utilization of a resource
is computed from all items that are assigned to that resource.

100 CHAPTER 2. DESCRIPTION OF THE CATALOG

Run of a permutation:

• change continuity.

A constraint that can be used for putting a restriction on the size of the longest
run of a permutation. A run is a maximal increasing contiguous subsequence in a
permutation.

Scalar product:

• global cardinality with costs.

A constraint that can be used for modeling a scalar product constraint.

Sequence:

• among seq,

• arith sliding,

• cycle card on path,

• deepest valley,

• heighest peak,

• inflexion,

• no peak,

• no valley,

• peak,

• period,

• period except 0,

• relaxed sliding sum,

• sequence folding,

• size maximal sequence alldifferent ,

• size maximal starting sequence alldifferent ,

• sliding card skip0,

• sliding distribution,

• sliding sum,

• valley.

Constrains consecutive variables (possibly not all) of a given collection of domain
variables or consecutive vertices of a simple path or a simple circuit. Also a constraint
restricting a variable (when fixed to 0 the variable may be omitted) according to
consecutive variables of a given collection of domain variables.

Set channel:

• inverse set, • link set to booleans.

A channeling constraint involving one or several set variables.

Scheduling constraint:

• coloured cumulative,

• coloured cumulatives,

• cumulative,

• cumulative product,

• cumulative with level of priority,

• cumulatives,

• disjoint tasks,

• disjunctive,

• period,

• period except 0,

2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 101

• shift.

A constraint useful for the area of scheduling. Scheduling is concerned with the
allocation or assignment of resources (e.g. manpower, machines, money), over time,
to a set of tasks.

Shared table:

• elements, • elements sparse.

A constraint for which the same table is shared by several element constraints.

Sliding cyclic(1) constraint network(1):

• decreasing,
• increasing,
• no peak,
• no valley,

• not all equal,

• strictly decreasing,

• strictly increasing.

A constraint network corresponding to the pattern depicted by Figure 2.13. Circles
depict variables, while arcs are represented by a set of variables.

Figure 2.13: Hypergraph associated with a sliding cyclic(1) constraint network(1)

Sliding cyclic(1) constraint network(2):

• change,

• change continuity,

• cyclic change,

• cyclic change joker,

• deepest valley,

• heighest peak,

• inflexion,

• peak,

• smooth,

• valley.

A constraint network corresponding to the pattern depicted by Figure 2.14. Circles
depict variables, while arcs are represented by a set of variables.

102 CHAPTER 2. DESCRIPTION OF THE CATALOG

Figure 2.14: Hypergraph associated with a sliding cyclic(1) constraint network(2)

Sliding cyclic(1) constraint network(3):

• change,
• change continuity,

• longest change.

A constraint network corresponding to the pattern depicted by Figure 2.15. Circles
depict variables, while arcs are represented by a set of variables.

Figure 2.15: Hypergraph associated with a sliding cyclic(1) constraint network(3)

Sliding cyclic(2) constraint network(2):

• change pair, • distance change.

Figure 2.16: Hypergraph associated with a sliding cyclic(2) constraint network(2)

A constraint network corresponding to the pattern depicted by Figure 2.16. Circles
depict variables, while arcs are represented by a set of variables.

2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 103

Sliding sequence constraint:

• among seq,

• arith sliding,

• cycle card on path,

• pattern,

• relaxed sliding sum,

• sliding card skip0,

• sliding distribution,

• size maximal sequence alldifferent ,

• size maximal starting sequence alldifferent ,

• sliding sum,

• sliding time window,

• sliding time window from start,

• sliding time window sum,

• stretch circuit,

• stretch path.

A constraint enforcing a condition on sliding sequences of domain variables that
partially overlap or a constraint computing a quantity from a set of sliding sequences.
These sliding sequences can be either initially given or dynamically constructed. In
the latter case they can for instance correspond to adjacent vertices of a path that has
to be built.

Soft constraint:

• relaxed sliding sum,

• soft alldifferent ctr,

• soft alldifferent var,

• soft same interval var,

• soft same modulo var,

• soft same partition var,

• soft same var,

• soft used by interval var,

• soft used by modulo var,

• soft used by partition var,

• soft used by var,

• weighted partial alldiff.

A constraint that is a relaxed form of one other constraint.

Sort:

104 CHAPTER 2. DESCRIPTION OF THE CATALOG

• sort, • sort permutation.

A constraint involving the notion of sorting in its definition.

Sparse functional dependency:

• element sparse, • elements sparse.

A constraint that allows for representing a functional dependency between two
domain variables, where both variables have a restricted number of values. A variable
X is said to functionally determine another variable Y if and only if each potential
value of X is associated with exactly one potential value of Y .

Sparse table:

• element sparse, • elements sparse.

An element constraint for which the table is sparse.

Sport timetabling:

• symmetric alldifferent.

A constraint used for creating sports schedules.

Squared squares:

• cumulative, • diffn.

A constraint that can be used for modeling the squared squares problem: It
consists of tiling a square with smaller squares such that each of the smaller squares
has a different integer size.

Strongly connected component:

• connect points,

• cycle,

• cycle or accessibility ,

• cycle resource,

• group skip isolated item,

• nclass,

• nequivalence,

• ninterval,

• npair,

• nset of consecutive values,

• nvalue,

• nvalues,

• nvalues except 0,

• polyomino,

• soft alldifferent var,

• strongly connected.

Denotes the fact that a constraint restricts the strongly connected components
of its associated final graph. This is usually done by using a graph property like

2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 105

MAX NSCC, MIN NSCC or NSCC.

Sum:

• sliding sum,
• sliding time window sum,
• sum,

• sum ctr,

• sum set.

A constraint involving one or several sums.

Sweep:

• diffn.

A constraint for which the filtering algorithm may use a sweep algorithm. A sweep
algorithm solves a problem by moving an imaginary object (usually a line or a plane).
The object does not move continuously, but only at particular points where we actually
do something. A sweep algorithm uses the following two data structures:

• A data structure called the sweep status, which contains information related to
the current position of the object that moves,

• A data structure named the event point series, which holds the events to process.

The algorithm initializes the sweep status for the initial position of the imaginary
object. Then the object jumps from one event to the next event; each event is handled
by updating the status of the sweep.

Symmetry:

• allperm,

• int value precede,

• int value precede chain,

• lex2,

• lex between,

• lex chain less,

• lex chain lesseq,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq,

• set value precede,

• strict lex2.

A constraint that can be used for breaking certain types of symmetries.

Symmetric:

• connect points.

Denotes the fact that a constraint is defined by a graph constraint for which the
final graph is symmetric.

106 CHAPTER 2. DESCRIPTION OF THE CATALOG

Table:

• elem,

• element,

• element greatereq,

• element lesseq,

• element sparse,

• elements,

• elements alldifferent ,

• elements sparse,

• ith pos different from 0,

• next element,

• next greater element,

• stage element.

A constraint that allows for representing the access to an element of a table.

Temporal constraint:

• coloured cumulative,

• coloured cumulatives,

• cumulative,

• cumulative product,

• cumulative with level of priority,

• cumulatives,

• disjoint tasks,

• interval and count,

• interval and sum,

• shift,

• sliding time window,

• sliding time window from start,

• sliding time window sum,

• track.

A constraint involving the notion of time.

Ternary constraint:

• element matrix.

A constraint involving only three variables.

Timetabling constraint:

• change,

• change continuity,

• change pair,

• change partition,

• circular change,

• colored matrix,

• cyclic change,

• cyclic change joker,

• group,

• group skip isolated item,

• interval and count,

• interval and sum,

• longest change,

• pattern,

• period,

• period except 0,

• shift,

• sliding card skip0,

• smooth,

• stretch circuit,

• stretch path,

• symmetric alldifferent,

• symmetric cardinality,

• symmetric gcc,

• track.

2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 107

A constraint that can occur in timetabling problems.

Time window:

• sliding time window sum.

A constraint involving one or several date ranges.

Touch:

• orths are connected, • two orth are in contact.

A constraint enforcing that some orthotopes touch each other (see Contact).

Tree:

• binary tree,
• one tree,
• tree,

• tree range,

• tree resource.

A constraint that partitions the vertices of a given initial graph and that keeps one
single successor for each vertex so that each partition corresponds to one tree. Each
vertex points to its father or to itself if it corresponds to the root of a tree.

Tuple:

• in relation, • vec eq tuple.

A constraint involving a tuple. A tuple is an element of a relation, where a relation
is a subset of the product of several finite sets.

Unary constraint:

• in, • not in.

A constraint involving only one variable.

Undirected graph:

• tour.

A constraint that deals with an undirected graph. An undirected graph is a graph
whose edges consist of unordered pairs of vertices.

108 CHAPTER 2. DESCRIPTION OF THE CATALOG

Value constraint:

• all min dist ,

• alldifferent ,

• alldifferent except 0 ,

• alldifferent interval ,

• alldifferent modulo ,

• alldifferent on intersection ,

• alldifferent partition ,

• among ,

• among diff 0 ,

• among interval ,

• among low up ,

• among modulo ,

• arith ,

• arith or ,

• atleast ,

• atmost ,

• balance ,

• balance interval ,

• balance modulo ,

• balance partition ,

• cardinality atleast ,

• cardinality atmost ,

• cardinality atmost partition ,

• count ,

• counts ,

• differ from at least k pos ,

• discrepancy ,

• disjoint ,

• exactly ,

• global cardinality ,

• global cardinality low up ,

• in ,

• in same partition ,

• in set ,

• link set to booleans ,

• max nvalue ,

• max size set of consecutive var,

• min nvalue ,

• min size set of consecutive var,

• not all equal ,

• not in ,

• nset of consecutive values ,

• same and global cardinality ,

• soft alldifferent ctr ,

• soft alldifferent var ,

• vec eq tuple .

A constraint that puts a restriction on how values can be assigned to usually one
or several collections of variables, or possibly one or two variables. These variables
usually correspond to domain variables but can sometimes be set variables.

Value partitioning constraint:

• nclass,
• nequivalence,
• ninterval,
• npair,

• nvalue,

• nvalues,

• nvalues except 0.

A constraint involving a partitioning of values in its definition.

2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 109

Value precedence:

• int value precede,
• int value precede chain,

• set value precede.

A constraint that allows for expressing symmetries between values that are
assigned to variables.

Variable-based violation measure:

• soft alldifferent var,
• soft same interval var,
• soft same modulo var,
• soft same partition var,
• soft same var,

• soft used by interval var,

• soft used by modulo var,

• soft used by partition var,

• soft used by var.

A soft constraint for which the violation cost is the minimum number of variables
to unassign in order to get back to a solution.

Variable indexing:

• indexed sum,

• elem,

• element,

• element greatereq,

• element lesseq,

• element sparse.

A constraint where one or several variables are used as an index into an array.

Variable subscript:

• indexed sum,
• elem,
• element,

• element greatereq,

• element lesseq.

A constraint that can be used to model one or several variables that have a variable
subscript.

Vector:

• all differ from at least k pos,

• differ from at least k pos,

• lex alldifferent,

• lex between,

• lex chain less,

• lex chain lesseq,

• lex different,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq.

Denotes the fact that one (or more) argument of a constraint corresponds to a
collection of vectors that all have the same number of components.

110 CHAPTER 2. DESCRIPTION OF THE CATALOG

Vpartition:

• group.

Denotes the fact that a constraint is defined by two graph constraints C1 and C2 such
that:

• The two graph constraints have the same initial graph Gi,

• Each vertex of the initial graph Gi belongs to exactly one of the final graphs
associated with C1 and C2.

Weighted assignment:

• global cardinality with costs,

• minimum weight alldifferent,

• sum of weights of distinct values,

• weighted partial alldiff.

A constraint expressing an assignment problem such that a cost can be computed
from each solution.

Workload covering:

• cumulatives.

A constraint that can be used for modeling problems where a first set of tasks T1

has to cover a second set of tasks T2. Each task of T1 and T2 is defined by an origin, a
duration and a height. At each point in time t the sum of the heights of the tasks of the
first set T1 that overlap t has to be greater than or equal to the sum of the heights of the
tasks of the second set T2 that also overlap t.

Chapter 3

Further topics

Contents
3.1 Differences from the 2000 report 111
3.2 Graph invariants . 114
3.2.1 Graph classes . 115
3.2.2 Format of an invariant . 116
3.2.3 Using the database of invariants 117
3.2.4 The database of graph invariants 118
Graph invariants involving one characteristic of a final graph 121
Graph invariants involving two characteristics of a final graph 123
Graph invariants involving three characteristics of a final graph 131
Graph invariants involving four characteristics of a final graph 144
Graph invariants involving five characteristics of a final graph 149
Graph invariants relating two characteristics of two final graphs 150
Graph invariants relating three characteristics of two final graphs 152
Graph invariants relating four characteristics of two final graphs 153
Graph invariants relating five characteristics of two final graphs 154
Graph invariants relating six characteristics of two final graphs 159
3.3 The electronic version of the catalog 160

3.1 Differences from the 2000 report
This section summarizes the main differences with the SICS report [3] as well as of the
corresponding paper [1]. The main differences are listed below:

• We have both simplified and extended the way to generate the vertices of the
initial graph and we have introduced a new way of defining set of vertices. We

111

112 CHAPTER 3. FURTHER TOPICS

have also removed the CLIQUE(MAX) set of vertices generator since it can-
not in general be evaluated in polynomial time. Therefore, we have modified
the description of the constraints assign and counts, assign and nvalues,
interval and count, interval and sum, bin packing, cumulative,
cumulatives, coloured cumulative, coloured cumulatives,
cumulative two d, which all used this feature.

• We have introduced the new arc generators PATH 1 and PATH N , which al-
low for specifying an n-ary constraint for which n is not fixed.
The size maximal starting sequence alldifferent and the
size maximal sequence alldifferent are examples of global constraints
that use these arc generators in order to generate a set of sliding
alldifferent constraints.

• In addition to traditional domain variables we have introduced float, set and
multiset variables as well as several global constraints mentioning float and set
variables (see for instance the choquet and the alldifferent between sets

constraints). This decision was initially motivated by the fact that several con-
straint systems and papers mention global constraints dealing with these types
of variables. Later on, we realized that set variables also greatly simplify the
interface of existing global constraints. This was especially true for those global
constraints that explicitly deal with a graph, like clique or cutset. In this con-
text, using a set variable for catching the successors of a vertex is quite natural.
This is especially true when a vertex of the final graph can have more than one
successor since it allows for avoiding a lot of 0-1 variables.

• We have introduced the possibility of using more than one graph constraint for
defining a given global constraint (see for instance the cumulative or the sort
constraints). Therefore we have removed the notion of dual graph, which was
initially introduced in the original report. In this context, we now use two graph
constraints (see for instance change continuity).

• On the one hand, we have introduced the following new graph characteristics:

– MAX DRG,

– MAX OD,

– MIN DRG,

– MIN ID,

– MIN OD,

– NTREE,

– PATH FROM TO,

– PRODUCT,

– RANGE,

– RANGE DRG,

– RANGE NCC,

– SUM,

– SUM WEIGHT ARC.

On the other hand, we have removed the following graph characteristics:

– NCC(COMP, val),

– NSCC(COMP, val),

3.1. DIFFERENCES FROM THE 2000 REPORT 113

– NTREE(ATTR, COMP, val),

– NSOURCE EQ NSINK,

– NSOURCE GREATEREQ NSINK.

Finally, MAX IN DEGREE has been renamed MAX ID.

• We have introduced an iterator over the items of a collection in order to spec-
ify in a generic way a set of similar elementary constraints or a set of simi-
lar graph properties. This was required for describing some global constraints
such as global cardinality, cycle resource or stretch. All these global
constraints mention a condition involving some limit depending on the specific
values that are effectively used. For instance the global cardinality con-
straint forces each value v to be respectively used at least atleastv and at most
atmostv times. This iterator was also necessary in the context of graph cover-
ing constraints where one wants to cover a digraph with some patterns. Each
pattern consists of one resource and several tasks. One can now attach spe-
cific constraints to the different resources. Both the cycle resource and the
tree resource constraints illustrate this point.

• We have added some standard existing global constraints that were obviously
missing from the previous report. This was for instance the case of the element
constraint.

• In order to make clear the notion of family of global constraints we have com-
puted for each global constraint a signature, which summarizes its structure.
Each signature was inserted into the index so that one can retrieve all the global
constraints sharing the same structure.

• We have generalized some existing global constraints. For instance the
change pair constraint extends the change constraint. Finally we have intro-
duced some novel global constraints like disjoint tasks or symmetric gcc.

• We have defined the rules for specifying arc constraints.

114 CHAPTER 3. FURTHER TOPICS

3.2 Graph invariants

Within the scope of the graph-based description this section shows how to use implied
constraints, which are systematically linked to the description of a global constraint.
This usually occurs in the following context:

• Quite often, it happens that one wants to enforce the final graph to satisfy more
than one graph property. In this context, these graph properties involve several
graph characteristics that cannot vary independently.

EXAMPLE: As a practical example, consider the group constraint and its first
graph constraint. It involves the four graph characteristics NCC, MIN NCC,
MAX NCC and NVERTEX, which respectively correspond to the number of con-
nected components, the number of vertices of the smallest connected component, the
number of vertices of the largest connected component and the number of vertices of the
final graph. In this example the number of connected components of the final graph can-
not vary independently from the size of the smallest connected component. The same
remark applies also for the size of the largest connected component. Having a graph
invariant that directly relates the four graph characteristics can dramatically improve the
propagation.

• Even if the description of a global constraint involves one single graph character-
istic C, we can introduce the number of vertices, NVERTEX, and the number
of arcs, NARC, of the final digraph. In this context, we can take advantage of
graph invariants linking C, NARC and NVERTEX.

• It also happens that we enforce two graph constraints GC1 and GC2 that have the
same initial graph G. In this context we consider the following situations:

– Each arc of G belongs to one of the final graphs associated with GC1 or
with GC2 (but not to both). An example of such global constraint is the
change continuity constraint. Within the graph invariants this situation
is denoted by apartition.

– Each vertex of G belongs to one of the final graphs associated with GC1

or with GC2 (but not to both). An example of such global constraint is the
group constraint. Within the graph invariants this situation is denoted by
vpartition.

In these situations the graph properties associated with the two graph constraints
are also not independent.

In practice the graphs associated with global constraints have a regular structure
which comes from the initial graph or from the property of the arc constraints. So,
in addition to graph invariants that hold for any graph, we want also tighter graph
invariants that hold for specific graph classes. The next section introduces the graph
classes we consider, while the two other sections give the graph invariants on one and
two graphs.

3.2. GRAPH INVARIANTS 115

3.2.1 Graph classes
By definition, a graph invariant has to hold for any digraph. For instance, we have
the graph invariant NARC ≤ NVERTEX2, which relates the number of arcs and
the number of vertices of any digraph. This invariant is sharp since the equality is
reached for a clique. However, by considering the structure of a digraph, we can get
sharper invariants. For instance, if our digraph is a subset of an elementary path (e.g.
we use the PATH arc generator depicted by Figure 1.4) we have that NARC ≤
NVERTEX − 1, which is a tighter bound of the maximum number of arcs since
NVERTEX − 1 < NVERTEX2. For this reason, we consider recurring graph
classes that show up for different global constraints of the catalog. For a given global
constraint, a graph class specifies a general property that holds on its final digraph.
We list the different graph classes and, for each of them, we point to some global
constraints that fit in that class. Finding all the global constraints corresponding to a
given graph class can be done by looking into the list of keywords (see Section 2.5
page 62).

• acyclic: graph constraint for which the final graph doesn’t have any circuit.

• apartition: constraint defined by two graph constraints having the same initial
graph, where each arc of the initial graph belongs to one of the final graph (but
not to both).

• bipartite: graph constraint for which the final graph is bipartite.

• consecutive loops are connected: denotes the fact that the graph con-
straints of a global constraint use only the PATH and the LOOP arc generators
and that their final graphs do not contain consecutive vertices that have a loop
and that are not connected together by an arc.

• equivalence: graph constraint for which the final graph is reflexive, symmetric
and transitive.

• no loop: graph constraint for which the final graph doesn’t have any loop.

• one succ: graph constraint for which all the vertices of the initial graph belong
to the final graph and for which all vertices of the final graph have exactly one
successor.

• symmetric: graph constraint for which the final graph is symmetric.

• vpartition: constraint defined by two graph constraints having the same initial
graph, where each vertex of the initial graph belongs to one of the final graph (but
not to both).

116 CHAPTER 3. FURTHER TOPICS

In addition, we also consider graph constraints such that their final graphs is a
subset of the graph generated by the arc generators:

• CHAIN ,

• CIRCUIT ,

• CLIQUE ,

• CLIQUE(Comparison),

• GRID ,

• LOOP ,

• PATH ,

• PRODUCT ,

• PRODUCT (Comparison),

• SYMMETRIC PRODUCT ,

• SYMMETRIC PRODUCT(Comparison),

where Comparison is one of the following comparison operators≤, ≥, <, >, =, 6=.

3.2.2 Format of an invariant

As we previously saw, we have graph invariants that hold for any digraph as well as
tighter graph invariants for specific graph classes. As a consequence, we partition the
database in groups of graph invariants. A group of graph invariants corresponds to
several invariants such that all invariants relate the same subset of graph characteristics
and such that all invariants are variations of the first invariant of the group taking into
accounts the graph class. Therefore, the first invariant of a group has no precondition,
while all other invariants have a non-empty precondition that characterizes the graph
class for which they hold.

EXAMPLE: As a first example consider the group of invariants denoted by Proposition
64, which relate the number of arcs NARC with the number of vertices of the smallest
and largest connected component (i.e. MIN NCC and MAX NCC).

MIN NCC 6= MAX NCC⇒ NARC ≥MIN NCC + MAX NCC− 2+

(MIN NCC = 1)

equivalence : MIN NCC 6= MAX NCC⇒
NARC ≥MIN NCC2 + MAX NCC2

On the one hand, since the first rule has no precondition it corresponds to a gen-
eral graph invariant. On the other hand the second rule specifies a tighter condition
(since MIN NCC2 + MAX NCC2 is greater than or equal to MIN NCC +
MAX NCC − 2 + (MIN NCC = 1)), which only holds for a final graph, which
is reflexive, symmetric and transitive.

3.2. GRAPH INVARIANTS 117

EXAMPLE: As a second example, consider the following group of invariants correspond-
ing to Proposition 49, which relate the number of arcs NARC to the number of vertices
NVERTEX according to the arc generator (see Figure 1.4) used for generating the ini-
tial digraph:

NARC ≤ NVERTEX2

arc gen = CIRCUIT : NARC ≤ NVERTEX

arc gen = CHAIN : NARC ≤ 2 ·NVERTEX − 2

arc gen = CLIQUE(≤) : NARC ≤ NVERTEX · (NVERTEX + 1)

2

arc gen = CLIQUE(≥) : NARC ≤ NVERTEX · (NVERTEX + 1)

2

arc gen = CLIQUE(<) : NARC ≤ NVERTEX · (NVERTEX − 1)

2

arc gen = CLIQUE(>) : NARC ≤ NVERTEX · (NVERTEX − 1)

2

arc gen = CLIQUE(6=) : NARC ≤ NVERTEX2 −NVERTEX

arc gen = CYCLE : NARC ≤ 2 ·NVERTEX

arc gen = PATH : NARC ≤ NVERTEX − 1

3.2.3 Using the database of invariants

The purpose of this section is to provide a set of graph invariants, each invariant relating
a given set of graph characteristics. Once we have these graph invariants we can use
them systematically by applying the following steps:

• For a given graph constraint we extract all the graph characteristics occurring in
its description. This can be done automatically by scanning the corresponding
graph properties. Let GC denote this subset of graph characteristics. For each
graph characteristic gc of GC we check if we have a graph property of the form
gc = var where var is a domain variable. If this is the case we record the pair
(gc, var); if not, we create a new domain variable var and also record the pair
(gc, var).

• We then search for all groups of graph invariants involving a subset of the previ-
ous graph characteristics GC. For each selected group we filter out those graph
invariants for which the preconditions are not compatible with the graph class
of the graph constraint under consideration. In each group we finally keep those
invariants that have the maximum number of preconditions (i.e. the most spe-
cialized graph invariants).

• Finally we state all the previous collected graph invariants as implied constraints.
This is achieved by using the variables associated with each graph characteristic.

118 CHAPTER 3. FURTHER TOPICS

EXAMPLE: We continue with the example of the group constraint and its first graph
constraint. The steps for creating the implied constraints are:

• We first extract the graph characteristics NCC, MIN NCC, MAX NCC and
NVERTEX from the first graph constraint of the group constraint. Since all
the graph properties attached to the previous graph characteristics have the form
gc = var we extract the corresponding domain variables and get the following
pairs (NCC, NGROUP), (MIN NCC, MIN SIZE), (MAX NCC, MAX SIZE)
and (NVERTEX, NVAL).

• We search for all groups of graph invariants involving the graph characteristics
NCC, MIN NCC, MAX NCC and NVERTEX and filter out the irrele-
vant graph invariants that can’t be applied on the graph class associated with the
group constraint.

• We state all the previous invariants by substituting each graph characteristics by its
corresponding variable, which leads to a set of implied constraints.

3.2.4 The database of graph invariants
For each combination of graph characteristics we give the number of graph invariants
we currently have. The items are sorted first in increasing number of graph charac-
teristics of the invariant, second in alphabetic order on the name of the characteristics.
All graph invariants assume a digraph for which each vertex has at least one arc. For
some propositions, a figure depicts the corresponding final graph, which minimizes
or maximizes a given graph characteristics. The propositions of this section and their
corresponding proofs use the notations introduced in Section 1.2.2 page 31.

• Graph invariants involving one graph characteristics of a final graph:

– MAX NCC: 1 (see Proposition 1),

– MAX NSCC: 2 (see Propositions 2 and 3),

– MIN NCC: 1 (see Proposition 4),

– MIN NSCC: 2 (see Propositions 5 and 6),

– NARC: 1 (see Proposition 7),

– NCC: 2 (see Propositions 8 and 9),

– NSCC: 1 (see Proposition 10),

– NSINK: 1 (see Proposition 11),

– NSOURCE: 1 (see Proposition 12),

– NVERTEX: 1 (see Proposition 13).

• Graph invariants involving two graph characteristics of a final graph:

– MAX NCC, MAX NSCC: 2 (see Propositions 14 and 15),

– MAX NCC, MIN NCC: 2 (see Propositions 16 and 17),

– MAX NCC, NARC: 2 (see Propositions 18 and 19),

– MAX NCC, NSINK: 2 (see Propositions 20 and 21),

– MAX NCC, NSOURCE: 2 (see Propositions 22 and 23),

3.2. GRAPH INVARIANTS 119

– MAX NCC, NVERTEX: 2 (see Propositions 24 and 25),

– MAX NSCC, MIN NSCC: 2 (see Propositions 26 and 27),

– MAX NSCC, NARC: 2 (see Propositions 28 and 29),

– MAX NSCC, NVERTEX: 2 (see Propositions 30 and 31),

– MIN NCC, MIN NSCC: 2 (see Propositions 32 and 33),

– MIN NCC, NARC: 2 (see Propositions 34 and 35),

– MIN NCC, NCC: 1 (see Proposition 36),

– MIN NCC, NVERTEX: 3 (see Propositions 37, 38 and 39),

– MIN NSCC, NARC: 2 (see Propositions 40 and 41),

– MIN NSCC, NVERTEX: 2 (see Propositions 42 and 43),

– NARC, NCC: 2 (see Propositions 44 and 45),

– NARC, NSCC: 2 (see Propositions 46 and 47),

– NARC, NVERTEX: 4 (see Propositions 48, 49, 50 and 51),

– NCC, NSCC: 2 (see Propositions 52 and 53),

– NCC, NVERTEX: 3 (see Propositions 54 and 55 and 56),

– NSCC, NVERTEX: 3 (see Propositions 57, 58 and 59),

– NSINK, NVERTEX: 2 (see Propositions 60 and 61),

– NSOURCE, NVERTEX: 2 (see Propositions 62 and 63).

• Graph invariants involving three graph characteristics of a final graph:

– MAX NCC, MIN NCC, NARC: 1 (see Proposition 64),

– MAX NCC, MIN NCC, NCC: 1 (see Proposition 65),

– MAX NCC, MIN NCC, NVERTEX: 5 (see Propositions 66, 67, 68, 69 and 70),

– MAX NCC, NARC, NCC: 2 (see Propositions 71 and 72),

– MAX NCC, NARC, NVERTEX: 2 (see Propositions 73 and 74),

– MAX NCC, NCC, NVERTEX: 2 (see Propositions 75 and 76),

– MAX NSCC, MIN NSCC, NARC: 1 (see Proposition 77),

– MAX NSCC, MIN NSCC, NSCC: 1 (see Proposition 78),

– MAX NSCC, MIN NSCC, NVERTEX: 2 (see Propositions 79 and 80),

– MAX NSCC, NSCC, NVERTEX: 2 (see Propositions 81 and 82),

– MIN NCC, NARC, NVERTEX: 2 (see Propositions 83 and 84),

– MIN NCC, NCC, NVERTEX: 1 (see Proposition 85),

– MIN NSCC, NARC, NVERTEX: 1 (see Proposition 86),

– MIN NSCC, NSCC, NVERTEX: 1 (see Proposition 87),

– NARC, NCC, NVERTEX: 2 (see Propositions 88 and 89),

– NARC, NSCC, NVERTEX: 3 (see Propositions 90, 91 and 92),

– NARC, NSINK, NVERTEX: 2 (see Propositions 93 and 94),

– NARC, NSOURCE, NVERTEX: 2 (see Propositions 95 and 96),

– NSINK, NSOURCE, NVERTEX: 1 (see Proposition 97).

• Graph invariants involving four graph characteristics of a final graph:

– MAX NCC, MIN NCC, NARC, NCC: 2 (see Propositions 98 and 99),

120 CHAPTER 3. FURTHER TOPICS

– MAX NCC, MIN NCC, NCC, NVERTEX: 2 (see Propositions 100 and 101),

– MAX NSCC, MIN NSCC, NARC, NSCC: 2 (see Propositions 102 and 103),

– MAX NSCC, MIN NSCC, NSCC, NVERTEX: 2 (see Propositions 104
and 105),

– MIN NCC, NARC, NCC, NVERTEX: 1 (see Proposition 106),

– NARC, NCC, NSCC, NVERTEX: 2 (see Propositions 107 and 108),

– NARC, NSINK, NSOURCE, NVERTEX: 1 (see Proposition 109).

• Graph invariants involving five graph characteristics of a final graph:

– MAX NCC, MIN NCC, NARC, NCC, NVERTEX: 1 (see Proposition 110),

– MIN NCC, NARC, NCC, NSCC, NVERTEX: 1 (see Proposition 111).

• Graph invariants relating two characteristics of two final graphs:

– MAX NCC1, NCC2: 1 (see Proposition 112),

– MAX NCC2, NCC1: 1 (see Proposition 113),

– MIN NCC1, NCC2: 1 (see Proposition 114),

– MIN NCC2, NCC1: 1 (see Proposition 115),

– NARC1, NARC2: 1 (see Proposition 116),

– NCC1, NCC2: 2 (see Propositions 117 and 118),

– NVERTEX1, NVERTEX2: 1 (see Proposition 119).

• Graph invariants relating three characteristics of two final graphs:

– MAX NCC1,MIN NCC1,MIN NCC2: 2 (see Propositions 120 and 121),

– MAX NCC2,MIN NCC2,MIN NCC1: 2 (see Propositions 122 and 123),

– MIN NCC1,NARC2,NCC1: 1 (see Proposition 124),

– MIN NCC2,NARC1,NCC2: 1 (see Proposition 125).

• Graph invariants relating four characteristics of two final graphs:

– MAX NCC1,MIN NCC1,MIN NCC2,NCC1: 2 (see Propositions 126 and
127),

– MAX NCC2,MIN NCC2,MIN NCC1,NCC2: 2 (see Propositions 128 and
129).

• Graph invariants relating five characteristics of two final graphs:

– MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC1: 7 (see Propo-
sitions 130, 131, 132, 133, 134, 135 and 136).

– MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC2: 7 (see Propo-
sitions 137, 138, 139, 140, 141, 142 and 143).

• Graph invariants relating six characteristics of two final graphs:

– MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC1, NCC2: 2
(see Propositions 144 and 145).

3.2. GRAPH INVARIANTS 121

Graph invariants involving one characteristic of a final graph

MAX NCC

Proposition 1.
no loop : MAX NCC 6= 1 (3.1)

Proof. Since we don’t have any loop, a non-empty connected component has at least two ver-
tices.

MAX NSCC

Proposition 2.
acyclic : MAX NSCC ≤ 1 (3.2)

Proof. Since we don’t have any circuit, a non-empty strongly connected component consists of
one single vertex.

Proposition 3.
no loop : MAX NSCC 6= 1 (3.3)

Proof. Since we don’t have any loop, a non-empty strongly connected component has at least
two vertices.

MIN NCC

Proposition 4.
no loop : MIN NCC 6= 1 (3.4)

Proof. Since we don’t have any loop, a non-empty connected component has at least two ver-
tices.

MIN NSCC

Proposition 5.
acyclic : MIN NSCC ≤ 1 (3.5)

Proof. Since we don’t have any circuit, a non-empty strongly connected component consists of
one single vertex.

Proposition 6.
no loop : MIN NSCC 6= 1 (3.6)

Proof. Since we don’t have any loop, a non-empty strongly connected component has at least
two vertices.

NARC

Proposition 7.
one succ : NARC = NVERTEXINITIAL (3.7)

Proof. By definition of one succ.

122 CHAPTER 3. FURTHER TOPICS

NCC

Proposition 8.
no loop : 2 ·NCC ≤ NVERTEXINITIAL (3.8)

Proof. By definition of no loop, each connected component has at least two vertices.

Proposition 9.

consecutive loops are connected : 2 ·NCC ≤ NVERTEXINITIAL + 1 (3.9)

Proof. By definition of consecutive loops are connected.

NSCC

Proposition 10.
no loop : 2 ·NSCC ≤ NVERTEXINITIAL (3.10)

Proof. By definition of no loop, each strongly connected component has at least two vertices.

NSINK

Proposition 11.
symmetric : NSINK = 0 (3.11)

Proof. Since we don’t have any isolated vertex.

NSOURCE

Proposition 12.
symmetric : NSOURCE = 0 (3.12)

Proof. Since we don’t have any isolated vertex.

NVERTEX

Proposition 13.

one succ : NVERTEX = NVERTEXINITIAL (3.13)

Proof. By definition of one succ.

3.2. GRAPH INVARIANTS 123

Graph invariants involving two characteristics of a final graph

MAX NCC, MAX NSCC

Proposition 14.
MAX NCC = 0⇔MAX NSCC = 0 (3.14)

Proof. By definition of MAX NCC and of MAX NSCC.

Proposition 15.
MAX NSCC ≤MAX NCC (3.15)

Proof. MAX NSCC is a lower bound of the size of the largest connected component since
the largest strongly connected component is for sure included within a connected component.

MAX NCC, MIN NCC

Proposition 16.
MAX NCC = 0⇔MIN NCC = 0 (3.16)

Proof. By definition of MAX NCC and of MIN NCC.

Proposition 17.
MIN NCC ≤MAX NCC (3.17)

Proof. By definition of MIN NCC and of MAX NCC.

MAX NCC, NARC

Proposition 18.
MAX NCC = 0⇔ NARC = 0 (3.18)

Proof. By definition of MAX NCC and of NARC.

Proposition 19.

MAX NCC > 0⇒ NARC ≥ max(1,MAX NCC− 1) (3.19)

symmetric : MAX NCC > 0⇒ NARC ≥ max(1, 2 ·MAX NCC− 2) (3.20)

equivalence : NARC ≥MAX NCC2 (3.21)

arc gen = PATH : NARC ≥MAX NCC− 1 (3.22)

Proof.
(3.19) MAX NCC−1 arcs are needed to connect MAX NCC vertices that belong to a given
connected component containing at least two vertices. And one arc is required for a connected
component containing one single vertex.
(3.20) Similarly, when the graph is symmetric, 2 ·MAX NCC − 2 arcs are needed to con-
nect MAX NCC vertices that belong to a given connected component containing at least two
vertices.

124 CHAPTER 3. FURTHER TOPICS

(3.21) Finally, when the graph is reflexive, symmetric and transitive, MAX NCC2 arcs are
needed to connect MAX NCC vertices that belong to a given connected component.
(3.22) When the initial graph corresponds to a path, the minimum number of arcs of a connected
component involving n vertices is equal to n− 1.

MAX NCC, NSINK

Proposition 20.
MAX NCC = 0⇒ NSINK = 0 (3.23)

Proof. By definition of MAX NCC and of NSINK.

Proposition 21.
NSINK ≥ 1⇒MAX NCC ≥ 2 (3.24)

Proof. Since we don’t have any isolated vertex a sink is connected to at least one other vertex.
Therefore, if the graph has a sink, there exists at least one connected component with at least two
vertices.

MAX NCC, NSOURCE

Proposition 22.
MAX NCC = 0⇒ NSOURCE = 0 (3.25)

Proof. By definition of MAX NCC and of NSOURCE.

Proposition 23.
NSOURCE ≥ 1⇒MAX NCC ≥ 2 (3.26)

Proof. Since we don’t have any isolated vertex a source is connected to at least one other vertex.
Therefore, if the graph has a source, there exists at least one connected component with at least
two vertices.

MAX NCC, NVERTEX

Proposition 24.
MAX NCC = 0⇔ NVERTEX = 0 (3.27)

Proof. By definition of MAX NCC and of NVERTEX.

Proposition 25.
NVERTEX ≥MAX NCC (3.28)

Proof. By definition of MAX NCC.

3.2. GRAPH INVARIANTS 125

MAX NSCC, MIN NSCC

Proposition 26.
MAX NSCC = 0⇔MIN NSCC = 0 (3.29)

Proof. By definition of MAX NSCC and of MIN NSCC.

Proposition 27.
MIN NSCC ≤MAX NSCC (3.30)

Proof. By definition of MIN NSCC and of MAX NSCC.

MAX NSCC, NARC

Proposition 28.
MAX NSCC = 0⇔ NARC = 0 (3.31)

Proof. By definition of MAX NSCC and of NARC.

Proposition 29.
NARC ≥MAX NSCC (3.32)

symmetric : NARC ≥ 2 ·MAX NSCC (3.33)

equivalence : NARC ≥MAX NSCC2 (3.34)

Proof. (3.32) In a strongly connected component at least one arc has to leave each vertex. Since
we have at least one strongly connected component of MAX NSCC vertices this leads to the
previous inequality.

MAX NSCC, NVERTEX

Proposition 30.
MAX NSCC = 0⇔ NVERTEX = 0 (3.35)

Proof. By definition of MAX NSCC and of NVERTEX.

Proposition 31.
NVERTEX ≥MAX NSCC (3.36)

Proof. By definition of MAX NSCC.

MIN NCC, MIN NSCC

Proposition 32.
MIN NCC = 0⇔MIN NSCC = 0 (3.37)

Proof. By definition of MIN NCC and of MIN NSCC.

Proposition 33.
MIN NCC ≥MIN NSCC (3.38)

Proof. By construction MIN NCC is an upper bound of the number of vertices of the smallest
strongly connected component.

126 CHAPTER 3. FURTHER TOPICS

MIN NCC, NARC

Proposition 34.
MIN NCC = 0⇔ NARC = 0 (3.39)

Proof. By definition of MIN NCC and of NARC.

Proposition 35.

MIN NCC > 0⇒ NARC ≥ max(1,MIN NCC− 1) (3.40)

symmetric : MIN NCC > 0⇒ NARC ≥ max(1, 2 ·MIN NCC− 2) (3.41)

equivalence : NARC ≥MIN NCC2 (3.42)

arc gen = PATH : NARC ≥MIN NCC− 1 (3.43)

Proof. Similar to Proposition 19.

MIN NCC, NCC

Proposition 36.

consecutive loops are connected : (MIN NCC+1)·NCC ≤ NVERTEXINITIAL+1
(3.44)

Proof. By definition of consecutive loops are connected.

MIN NCC, NVERTEX

Proposition 37.
MIN NCC = 0⇔ NVERTEX = 0 (3.45)

Proof. By definition of MIN NCC and of NVERTEX.

Proposition 38.
NVERTEX ≥MIN NCC (3.46)

Proof. By definition of MIN NCC.

Proposition 39.

MIN NCC /∈
»
min

„—
NVERTEX

2

�
,

—
NVERTEXINITIAL − 1

2

�«
+ 1,NVERTEX− 1

–

(3.47)

Proof. On the one hand, if NCC ≤ 1, we have that MIN NCC ≥ NVERTEX.
On the other hand, if NCC > 1, we have that MIN NCC + MIN NCC ≤
NVERTEX and that MIN NCC + MIN NCC + 1 ≤ NVERTEXINITIAL , which
by isolating MIN NCC and by grouping the two inequalities leads to MIN NCC ≤
min

`¨
NVERTEX

2

˝
,
¨

NVERTEXINITIAL−1
2

˝´
. The result follows.

3.2. GRAPH INVARIANTS 127

MIN NSCC, NARC

Proposition 40.
MIN NSCC = 0⇔ NARC = 0 (3.48)

Proof. By definition of MIN NSCC and of NARC.

Proposition 41.
NARC ≥MIN NSCC (3.49)

symmetric : NARC ≥ 2 ·MIN NSCC (3.50)

equivalence : NARC ≥MIN NSCC2 (3.51)

Proof. Similar to Proposition 29.

MIN NSCC, NVERTEX

Proposition 42.
MIN NSCC = 0⇔ NVERTEX = 0 (3.52)

Proof. By definition of MIN NSCC and of NVERTEX.

Proposition 43.
NVERTEX ≥MIN NSCC (3.53)

Proof. By definition of MIN NSCC.

NARC, NCC

Proposition 44.
NARC = 0⇔ NCC = 0 (3.54)

Proof. By definition of NARC and of NCC.

Proposition 45.
NARC ≥ NCC (3.55)

Proof. Each connected component contains at least one arc (since, by hypothesis, each vertex
has at least one arc).

NARC, NSCC

Proposition 46.
NARC = 0⇔ NSCC = 0 (3.56)

Proof. By definition of NARC and of NSCC.

Proposition 47.
NARC ≥ NSCC (3.57)

no loop : NARC ≥ 2 ·NSCC (3.58)

Proof. 3.57 (respectively 3.58) holds since each strongly connected component contains at least
one (respectively two) arc(s).

128 CHAPTER 3. FURTHER TOPICS

NARC, NVERTEX

Proposition 48.
NARC = 0⇔ NVERTEX = 0 (3.59)

Proof. By definition of NARC and of NVERTEX.

Proposition 49.
NARC ≤ NVERTEX2 (3.60)

arc gen = CIRCUIT : NARC ≤ NVERTEX (3.61)

arc gen = CHAIN : NARC ≤ 2 ·NVERTEX− 2 (3.62)

arc gen = CLIQUE(≤) : NARC ≤ NVERTEX · (NVERTEX + 1)

2
(3.63)

arc gen = CLIQUE(≥) : NARC ≤ NVERTEX · (NVERTEX + 1)

2
(3.64)

arc gen = CLIQUE(<) : NARC ≤ NVERTEX · (NVERTEX− 1)

2
(3.65)

arc gen = CLIQUE(>) : NARC ≤ NVERTEX · (NVERTEX− 1)

2
(3.66)

arc gen = CLIQUE (6=) : NARC ≤ NVERTEX2 −NVERTEX (3.67)

arc gen = CYCLE : NARC ≤ 2 ·NVERTEX (3.68)

arc gen = PATH : NARC ≤ NVERTEX− 1 (3.69)

Proof. 3.60 holds since each vertex of a digraph can have at most NVERTEX successors.
The next items correspond to the maximum number of arcs that can be achieved according to a
specific arc generator.

Proposition 50.
2 ·NARC ≥ NVERTEX (3.70)

Proof. By induction on the number of vertices of a graph G:

1. If NVERTEX(G) is equal to 1 or 2 Proposition 50 holds.

2. Assume that NVERTEX(G) ≥ 3.

• Assume there exists a vertex v such that, if we remove v, we don’t create any
isolated vertex in the remaining graph. We have NARC(G) ≥ NARC(G −
v) + 1. Thus 2 · NARC(G) ≥ 2 · NARC(G − v) + 1. Since by induction
hypothesis 2 ·NARC(G−v) ≥ NVERTEX(G−v) = NVERTEX(G)−1
the result holds.

3.2. GRAPH INVARIANTS 129

• Otherwise, all the connected components of G are reduced to two elements with
only one arc. We remove one of such connected component (v, w).
Thus NARC(G) = NARC(G − {v, w}) + 1. As by induction hypothesis,
2 ·NARC(G−{v, w}) ≥ NVERTEX(G−{v, w}) = NVERTEX(G)−2
the result holds.

Proposition 51.
arc gen = LOOP : NARC = NVERTEX (3.71)

Proof. From the definition of LOOP .

NCC, NSCC

Proposition 52.
NCC = 0⇔ NSCC = 0 (3.72)

Proof. By definition of NCC and of NSCC.

Proposition 53.
NCC ≤ NSCC (3.73)

Proof. Holds since each connected component contains at least one strongly connected compo-
nent.

NCC, NVERTEX

Proposition 54.
NCC = 0⇔ NVERTEX = 0 (3.74)

Proof. By definition of NCC and of NVERTEX.

Proposition 55.
NCC ≤ NVERTEX (3.75)

no loop : 2 ·NCC ≤ NVERTEX (3.76)

Proof. 3.75 (respectively 3.76) holds since each connected component contains at least one
(respectively two) vertex.

Proposition 56.

vpartition ∧ consecutive loops are connected :

NVERTEX ≤ NVERTEXINITIAL − (NCC− 1)
(3.77)

Proof. Holds since between two ”consecutive” connected components of the initial graph there
is at least one vertex, which is missing.

130 CHAPTER 3. FURTHER TOPICS

NSCC, NVERTEX

Proposition 57.
NSCC = 0⇔ NVERTEX = 0 (3.78)

Proof. By definition of NSCC and of NVERTEX.

Proposition 58.
NSCC ≤ NVERTEX (3.79)

no loop : 2 ·NSCC ≤ NVERTEX (3.80)

Proof. 3.79 (respectively 3.80) holds since each strongly connected component contains at least
one (respectively 2) vertex.

Proposition 59.
acyclic : NSCC = NVERTEX (3.81)

Proof. In a directed acyclic graph we have that each vertex corresponds to a strongly connected
component involving only that vertex.

NSINK, NVERTEX

Proposition 60.
NVERTEX = 0⇒ NSINK = 0 (3.82)

Proof. By definition of NVERTEX and of NSINK.

Proposition 61.

NVERTEX > 0⇒ NSINK < NVERTEX (3.83)

Proof. Holds since each sink must have a predecessor which cannot be a sink and since each
vertex has at least one arc.

NSOURCE, NVERTEX

Proposition 62.
NVERTEX = 0⇒ NSOURCE = 0 (3.84)

Proof. By definition of NVERTEX and of NSOURCE.

Proposition 63.

NVERTEX > 0⇒ NSOURCE < NVERTEX (3.85)

Proof. Holds since each source must have a successor which cannot be a source and since each
vertex has at least one arc.

3.2. GRAPH INVARIANTS 131

Graph invariants involving three characteristics of a final graph

MAX NCC, MIN NCC, NARC

Proposition 64.

MIN NCC 6= MAX NCC⇒
NARC ≥MIN NCC + MAX NCC− 2 + (MIN NCC = 1)

(3.86)

equivalence : MIN NCC 6= MAX NCC⇒
NARC ≥MIN NCC2 + MAX NCC2

(3.87)

Proof. (3.86) n − 1 arcs are needed to connect n (n > 1) vertices that all belong to a
given connected component. Since we have two connected components which respectively
have MIN NCC and MAX NCC vertices this leads to the previous inequality. When
MIN NCC is equal to one we need an extra arc.

MAX NCC, MIN NCC, NCC

Proposition 65.
MIN NCC 6= MAX NCC⇒ NCC ≥ 2 (3.88)

Proof. If MIN NCC and MAX NCC are different then they correspond for sure to at least
two distinct connected components.

MAX NCC, MIN NCC, NVERTEX

Proposition 66.

MIN NCC 6= MAX NCC⇒ NVERTEX ≥MIN NCC + MAX NCC (3.89)

Proof. Since we have at least two distinct connected components which respectively have
MIN NCC and MAX NCC vertices this leads to the previous inequality.

Proposition 67.

MAX NCC ≤ max(MIN NCC,NVERTEX−max(1,MIN NCC)) (3.90)

Proof. On the one hand, if NCC ≤ 1, we have that MAX NCC ≤ MIN NCC. On
the other hand, if NCC > 1, we have that NVERTEX ≥ max(1,MIN NCC) +
MAX NCC (i.e. MAX NCC ≤ NVERTEX − max(1,MIN NCC)). The result
is obtained by taking the maximum value of the right hand side of the two inequalities.

Proposition 68.

MIN NCC /∈ [NVERTEX−max(1,MAX NCC) + 1,NVERTEX− 1] (3.91)

Proof. On the one hand, if NCC ≤ 1, we have that MIN NCC ≥ NVERTEX. On
the other hand, if NCC > 1, we have that MIN NCC + max(1,MAX NCC) ≤
NVERTEX (i.e. MIN NCC ≤ NVERTEX − max(1,MAX NCC)). The result
follows.

132 CHAPTER 3. FURTHER TOPICS

Proposition 69.

NVERTEX /∈ [MIN NCC + 1,MIN NCC + MAX NCC− 1] (3.92)

Proof. On the one hand, if NCC ≤ 1, we have that NVERTEX ≤ MIN NCC. On the
other hand, if NCC > 1, we have that NVERTEX ≥MIN NCC + MAX NCC. Since
MIN NCC ≤MIN NCC + MAX NCC the result follows.

Proposition 70.

if MIN NCC > 0

then kinf =

—
NVERTEX + MIN NCC

MIN NCC

�
else kinf = 1

if MAX NCC > 0

then ksup1
=

—
NVERTEX− 1

MAX NCC

�
else ksup1

= NVERTEX

if MAX NCC < MIN NCC

then ksup2
=

—
MIN NCC− 2

MAX NCC−MIN NCC

�
else ksup2

= NVERTEX

ksup = min(ksup1
, ksup2

)

∀k ∈ [kinf , ksup] : NVERTEX /∈ [k ·MAX NCC+1, (k+1) ·MIN NCC−1] (3.93)

Proof. We make the proof for k ∈ N (the interval [kinf , ksup] is only used for restricting
the number of intervals to check). We have that NVERTEX ∈ [k · MIN NCC, k ·
MAX NCC]. A forbidden interval [k · MAX NCC + 1, (k + 1) · MIN NCC − 1]
corresponds to an interval between the end of interval [k ·MIN NCC, k ·MAX NCC] and
the start of the next interval [(k+ 1) ·MIN NCC, (k+ 1) ·MAX NCC]. Since all intervals
[i ·MIN NCC, i ·MAX NCC] (i < k) end before k ·MAX NCC and since all intervals
[j ·MIN NCC, j ·MAX NCC] (j > k) start after (k+ 1) ·MIN NCC, they do not use
any value in [k ·MAX NCC + 1, (k + 1) ·MIN NCC− 1].

MAX NCC, NARC, NCC

Proposition 71.
NARC ≤ NCC ·MAX NCC2 (3.94)

arc gen = PATH : NARC ≤ NCC · (MAX NCC− 1) (3.95)

Proof. On the one hand, (3.94) holds since the maximum number of arcs is achieved by
taking NCC connected components where each connected component is a clique involving
MAX NCC vertices. On the other hand, (3.95) holds since a tree of n vertices has n − 1
arcs.

3.2. GRAPH INVARIANTS 133

Proposition 72.
NARC ≥MAX NCC + NCC− 2 (3.96)

Proof. The minimum number of arcs is achieved by taking one connected component with
MAX NCC vertices and MAX NCC−1 arcs as well as NCC−1 connected components
with one single vertex and a loop.

MAX NCC, NARC, NVERTEX

Proposition 73.

MAX NCC > 0⇒

NARC ≤MAX NCC2 ·
—

NVERTEX

MAX NCC

�
+ (NVERTEX mod MAX NCC)2

(3.97)

NVERTEX

MAX_NCC
connected components, each of them involving MAX_NCC vertices A connected component with

NVERTEX mod MAX_NCC vertices

Figure 3.1: Illustration of Proposition 73. A graph that achieves the maximum number of arcs
according to the size of the largest connected component as well as to a fixed number of vertices
(MAX NCC = 3,NVERTEX = 11,NARC = 32 ·

¨
11
3

˝
+ (11 mod 3)2 = 31)

Proof. We first begin with the following claim:
Let G be a graph such that V (G) − NCC(G,MAX NCC(G)) ∗ MAX NCC(G) ≥
MAX NCC(G), then there exists a graph G′ such that V (G′) = V (G),
MAX NCC(G′) = MAX NCC(G), NCC(G′,MAX NCC(G′)) =
NCC(G,MAX NCC(G)) + 1 and |E(G)| ≤ |E(G′)|.

Proof of the claim:
Let (Ci)i∈[n] be the connected components of G on less than MAX NCC(G) vertices
and such that |Ci| ≥ |Ci+1|. By hypothesis there exists k ≤ n such that |Sk−1

i=1 Ci| <
MAX NCC(G) and |Ski=1 Ci| ≥MAX NCC(G).

• Either |Ski=1 Ci| = MAX NCC(G), and then with G′ such that G′ restricted to theSk
i=1 Ci be a complete graph and G′ restricted to V (G) − Ski=1 Ci being exactly G

restricted to V (G)−Ski=1 Ci we obtain the claim.

• Or |Ski=1 Ci| > MAX NCC(G). Then Ck = C1
k] C2

k such that
|(Sk−1

i=1 Ci) ∪ C1
k | = MAX NCC(G) and |C2

k | < |C1| (notice that k ≥ 2).
Then with G′ such that G′ restricted to (

Sk−1
i=1 Ci) ∪ C1

k is a complete graph and G′ re-
stricted to V (G)−((

Sk−1
i=1 Ci)∪C1

k) is exactlyG restricted to V (G)−((
Sk−1
i=1 Ci)∪C1

k)

134 CHAPTER 3. FURTHER TOPICS

we obtain the claim.

End of proof of the claim

We prove by induction on r(G) =
j

NVERTEX(G)
MAX NCC(G)

k
− NCC(G,MAX NCC(G)),

where G is any graph. For r(G) = 0 the result holds (see Prop 44). Otherwise, since r(G) > 0
we have that V (G)−NCC(G,MAX NCC(G))∗MAX NCC(G) ≥MAX NCC(G),
by the previous claim there exists G′ with the same number of vertices and the same number of
vertices in the largest connected component, such that r(G′) = r(G) − 1. Consequently the
result holds by induction.

Proposition 74.

NARC ≥MAX NCC− 1 +

—
NVERTEX−MAX NCC + 1

2

�
(3.98)

Proof. Let G be a graph, let X be a maximal size connected component of G, then we have
G = G[X] ⊕ G[V (G) − X]. On the one hand, as G[X] is connected, by setting NCC = 1
in 3.134 of Proposition 89, we have |E(G[X]) ≥ |X| − 1, on the other hand, by Proposition 50,
|E(G[V (G)−X])| ≥

l
|V (G)−X|

2

m
. Thus the result follows.

MAX NCC, NCC, NVERTEX

Proposition 75.
NVERTEX ≤ NCC ·MAX NCC (3.99)

Proof. The number of vertices is less than or equal to the number of connected components
multiplied by the largest number of vertices in a connected component.

Proposition 76.

NVERTEX ≥MAX NCC + max(0,NCC− 1) (3.100)

no loop : NVERTEX ≥MAX NCC + max(0, 2 ·NCC− 2) (3.101)

Proof. (3.100) The minimum number of vertices according to a fixed number of connected
components NCC such that one of the connected component contains MAX NCC vertices
is obtained as follows: We get MAX NCC vertices from the connected component involving
MAX NCC vertices and one vertex for each remaining connected component.

MAX NSCC, MIN NSCC, NARC

Proposition 77.

MIN NSCC 6= MAX NSCC⇒ NARC ≥MIN NSCC + MAX NSCC (3.102)

equivalence : MIN NSCC 6= MAX NSCC⇒
NARC ≥MIN NSCC2 + MAX NSCC2

(3.103)

Proof. (3.102) In a strongly connected component at least one arc has to leave each arc.
Since we have two strongly connected components which respectively have MIN NSCC and
MAX NSCC vertices this leads to the previous inequality.

3.2. GRAPH INVARIANTS 135

MAX NSCC, MIN NSCC, NSCC

Proposition 78.

MIN NSCC 6= MAX NSCC⇒ NSCC ≥ 2 (3.104)

Proof. Follows from the definitions of MIN NSCC and of MAX NSCC.

MAX NSCC, MIN NSCC, NVERTEX

Proposition 79.

MIN NSCC 6= MAX NSCC⇒ NVERTEX ≥MIN NSCC + MAX NSCC
(3.105)

Proof. Since we have at least two distinct strongly connected components which respectively
have MIN NSCC and MAX NSCC vertices this leads to the previous inequality.

Proposition 80.

if MIN NSCC > 0

then kinf =

—
NVERTEX + MIN NSCC

MIN NSCC

�
else kinf = 1

if MAX NSCC > 0

then ksup1
=

—
NVERTEX− 1

MAX NSCC

�
else ksup1

= NVERTEX

if MAX NSCC < MIN NSCC

then ksup2
=

—
MIN NSCC− 2

MAX NSCC−MIN NSCC

�
else ksup2

= NVERTEX

ksup = min(ksup1
, ksup2

)

∀k ∈ [kinf , ksup] : NVERTEX /∈ [k ·MAX NSCC + 1, (k + 1) ·MIN NSCC− 1]
(3.106)

Proof. Similar to Proposition 70.

136 CHAPTER 3. FURTHER TOPICS

MAX NSCC, NSCC, NVERTEX

Proposition 81.
NVERTEX ≤ NSCC ·MAX NSCC (3.107)

Proof. Since each strongly connected component contains at most MAX NSCC vertices the
total number of vertices is less than or equal to NSCC ·MAX NSCC.

Proposition 82.

NVERTEX ≥MAX NSCC + max(0,NSCC− 1) (3.108)

no loop : NVERTEX ≥MAX NSCC + max(0, 2 ·NSCC− 2) (3.109)

Proof. (3.108) The minimum number of vertices according to a fixed number of strongly con-
nected components NSCC such that one of them contains MAX NSCC vertices is equal to
MAX NSCC + max(0,NSCC− 1).

MIN NCC, NARC, NVERTEX

Proposition 83.

NARC ≤MIN NCC2 + (NVERTEX−MIN NCC)2 (3.110)

arc gen = CIRCUIT : NARC ≤ NVERTEX− 2 · (MIN NCC < NVERTEX)
(3.111)

arc gen = CHAIN : NARC ≤ NVERTEX− 2 · (MIN NCC < NVERTEX)
(3.112)

arc gen = CLIQUE (≤) : NARC ≤ MIN NCC · (MIN NCC + 1)

2
+

(NVERTEX−MIN NCC) · (NVERTEX−MIN NCC + 1)

2

(3.113)

arc gen = CLIQUE (≥) : NARC ≤ MIN NCC · (MIN NCC + 1)

2
+

(NVERTEX−MIN NCC) · (NVERTEX−MIN NCC + 1)

2

(3.114)

arc gen = CLIQUE (<) : NARC ≤ MIN NCC · (MIN NCC− 1)

2
+

(NVERTEX−MIN NCC) · (NVERTEX−MIN NCC− 1)

2

(3.115)

arc gen = CLIQUE (>) : NARC ≤ MIN NCC · (MIN NCC− 1)

2
+

(NVERTEX−MIN NCC) · (NVERTEX−MIN NCC− 1)

2

(3.116)

arc gen = CLIQUE(6=) : NARC ≤MIN NCC2 −MIN NCC+

(NVERTEX−MIN NCC)2 − (NVERTEX−MIN NCC)
(3.117)

3.2. GRAPH INVARIANTS 137

arc gen = CYCLE : NARC ≤ NVERTEX− 4 · (MIN NCC < NVERTEX)
(3.118)

arc gen = PATH : NARC ≤ max(0,MIN NCC− 1)+

max(0,NVERTEX−MIN NCC− 1)
(3.119)

Proof. (3.110) The maximum number of vertices according to a fixed number of vertices
NVERTEX and to the fact that there is a connected component with MIN NCC vertices is
obtained by:

• Building a connected component with MIN NCC vertices and creating an arc between
each pair of vertices.

• Building a connected component with all the NVERTEX −MIN NCC remaining
vertices and creating an arc between each pair of vertices.

Proposition 84.

MIN NCC > 1⇒

NARC ≥
—

NVERTEX

MIN NCC

�
· (MIN NCC− 1) + NVERTEX mod MIN NCC

(3.120)

Proof. Achieving the minimum number of arcs with a fixed number of vertices and with a min-
imum number of vertices greater than or equal to one in each connected component is achieved
in the following way:

• Since the minimum number of arcs of a connected component of n vertices is n − 1,
splitting a connected component into k parts that all have more than one vertex saves
k−1 arcs. Therefore we build a maximum number of connected components. Since each
connected component has at least MIN NCC vertices we get

¨
NVERTEX
MIN NCC

˝
connected

components.

• Since we can’t build a connected component with the rest of the vertices (i.e.
NVERTEX mod MIN NCC vertices left) we have to incorporate them in the previ-
ous connected components and this costs one arc for each vertex.

When MIN NCC = 1, note that Proposition 50 provides a lower bound on the number of arcs.

MIN NCC, NCC, NVERTEX

Proposition 85.
NVERTEX ≥ NCC ·MIN NCC (3.121)

Proof. The smallest number of vertices is obtained by taking all connected components to their
minimum number of vertices MIN NCC.

138 CHAPTER 3. FURTHER TOPICS

MIN NSCC, NARC, NVERTEX

Proposition 86.

NARC ≤ NVERTEX2 + MIN NSCC2 −NVERTEX ·MIN NSCC (3.122)

Proof. Achieving the maximum number of arcs, provided that we have at least one strongly
connected component with MIN NSCC vertices, is done by:

• Building a first strongly connected component C1 with MIN NSCC vertices and adding
an arc between each pair of vertices of C1.

• Building a second strongly connected component C2 with NVERTEX −
MIN NSCC vertices and adding an arc between each pair of vertices of C2.

Finally, we add an arc from every vertex of C1 to every vertex of C2. This leads to a total
number of arcs of MIN NSCC2 + (NVERTEX −MIN NSCC)2 + MIN NSCC ·
(NVERTEX−MIN NSCC).

MIN NSCC, NSCC, NVERTEX

Proposition 87.
NVERTEX ≥ NSCC ·MIN NSCC (3.123)

Proof. Since each strongly connected component contains at least MIN NSCC vertices the
total number of vertices is greater than or equal to NSCC ·MIN NSCC.

NARC, NCC, NVERTEX

Proposition 88.

NARC ≤ (NVERTEX−NCC + 1)2 + NCC− 1 (3.124)

arc gen = CIRCUIT : NARC ≤ NVERTEX−NCC + 1 − (NCC 6= 1) (3.125)

arc gen = CHAIN : NARC ≤ 2 ·NVERTEX− 2 ·NCC (3.126)

arc gen = CLIQUE (≤) : NARC ≤ NCC− 1+

(NVERTEX−NCC + 1) · (NVERTEX−NCC + 2)

2

(3.127)

arc gen = CLIQUE (≥) : NARC ≤ NCC− 1+

(NVERTEX−NCC + 1) · (NVERTEX−NCC + 2)

2

(3.128)

arc gen = CLIQUE (<) : NARC ≤ NCC− 1+

(NVERTEX−NCC + 1) · (NVERTEX−NCC)

2

(3.129)

arc gen = CLIQUE (>) : NARC ≤ NCC− 1+

(NVERTEX−NCC + 1) · (NVERTEX−NCC)

2

(3.130)

3.2. GRAPH INVARIANTS 139

arc gen = CLIQUE(6=) : NARC ≤ max(0,NCC− 1)+

(NVERTEX−NCC + 1)2 − (NVERTEX−NCC + 1)
(3.131)

arc gen = CYCLE : NARC ≤ 2 ·NVERTEX− 2 ·NCC + 2 · (NCC = 1) (3.132)

arc gen = PATH : NARC = NVERTEX−NCC (3.133)

vertices
NVERTEX−NCC+1

NCC−1 connected components

Figure 3.2: Illustration of Proposition 88. A graph that achieves the maximum number of arcs
according to a fixed number of connected components as well as to a fixed number of vertices
(NCC = 5,NVERTEX = 7,NARC = (7− 5 + 1)2 + 5− 1 = 13)

Proof. (3.124) We proceed by induction on T (G) = NVERTEX(G)−|X|− (NCC(G)−
1), where X is any connected component of G of maximum cardinality. For T (G) = 0 then
either NCC(G) = 1 and thus the formula is clearly true, or all the connected components ofG,
but possibly X , are reduced to one element. Since isolated vertices are not allowed, the formula
holds.

Assume that T (G) ≥ 1. Then there exists Y , a connected component of G distinct from X ,
with more than one vertex. Let y ∈ Y and let G′ be the graph such that V (G′) = V (G) and
E(G′) is defined by:

• For all Z connected components of G distinct from X and Y we have G′[Z] = G[Z].

• With X ′ = X ∪ {y} and Y ′ = Y − {y}, we have G′[Y ′] = G[Y ′] and E(G′[X ′]) =
E(G[X]) ∪ (

S
x∈X′{(x, y), (y, x)}).

Clearly |E(G′)|−|E(G)| ≥ 2 · |X|+1−(2 · |Y |−1) and sinceX is of maximal cardinality the
difference is strictly positive. Now as NVERTEX(G′) = NVERTEX(G), NCC(G′) =
NCC(G) and as T (G′) = T (G)− 1 the result holds by induction hypothesis.

Proposition 89.
NARC ≥ NVERTEX−NCC (3.134)

equivalence : NCC > 0⇒
NARC ≥ (NVERTEX mod NCC) ·

`¨
NVERTEX

NCC

˝
+ 1
´2

+

(NCC−NVERTEX mod NCC) ·
¨

NVERTEX
NCC

˝2 (3.135)

Proof. (3.134) By induction of the number of vertices. The formula holds for one vertex. Let
G a graph with n+ 1 vertices (n ≥ 1). First assume there exists x in G such that G− x has the
same number of connected components than G. Since NARC(G) ≥ NARC(G − x) + 1,
and by induction hypothesis NARC(G − x) ≥ NVERTEX(G − x) −NCC(G − x) the
result holds. Otherwise all connected components ofG are reduced to one vertex and the formula
holds.

140 CHAPTER 3. FURTHER TOPICS

NARC, NSCC, NVERTEX

Proposition 90.

NARC ≤ (NVERTEX−NSCC+1)·NVERTEX+
NSCC · (NSCC− 1)

2
(3.136)

equivalence : NARC ≤ NSCC− 1 + (NVERTEX−NSCC + 1)2 (3.137)

strongly connected components
NSCC−1 NVERTEX−NSCC+1

vertices

Figure 3.3: Illustration of Proposition 90(3.136). A graph that achieves the maximum number
of arcs according to a fixed number of strongly connected components as well as to a fixed
number of vertices (NSCC = 5,NVERTEX = 6,NARC = (6−5+1)·6+ 5·(5−1)

2
= 22)

Proof. For proving 3.136, it is easier to rewrite the formula as NARC ≤ (NVERTEX −
(NSCC − 1))2 + (NCC − 1) · (NVERTEX− (NSCC − 1)) + NSCC·(NSCC−1)

2
. We

proceed by induction on T (G) = NVERTEX(G) − |X| − (NSCC(G) − 1), where X is
any strongly connected component of G of maximum cardinality.

For T (G) = 0 then either NSCC(G) = 1 and thus the formula is clearly true, or all
the strongly connected components of G, but possibly X , are reduced to one element. Since
the maximum number of arcs in a directed acyclic graph of n vertices is n·(n+1)

2
, and as the

subgraph of G induced by all the strongly connected components of G excepted X is acyclic,
the formula clearly holds.

Assume that T (G) ≥ 1, let (Xi)i∈I be the family of strongly connected components of G,
and let Gr be the reduced graph of G induced by (Xi)i∈I (that is V (Gr) = I and ∀i1, i2 ∈ I ,
(i1, i2) ∈ E(Gr) iff ∃x1 ∈ Xi1 , ∃x2 ∈ Xi2 such that (x1, x2) ∈ E). Consider G′ such that
V (G′) = V (G) and E(G′) is defined by:

• For all strongly connected components Z of G we have G′[Z] = G[Z].

• For σ be any topological sort of Gr , ∀xi ∈ Xi, ∀xj ∈ Xj , (xi, xj) ∈ E(G′) whenever
i is less than j with respect to σ.

Notice that G′ satisfies the following properties: T (G′) = T (G), V (G′) = V (G),
NSCC(G′) = NSCC(G), E(G) ⊆ E(G′), (Xi)i∈I is still the family of strongly con-
nected components of G′, and moreover, for every i ∈ I and every xi ∈ Xi we have that xi
is connected to any vertex outside Xi, that is the number of arcs incident to xi and incident to
vertices outside Xi is exactly |V (G′)| − |Xi|.

Now, as T (G′) ≥ 1, there exists Y , a strongly connected component of G′ distinct from X ,
with more than one vertex. Let y ∈ Y and let G′′ be the graph such that V (G′′) = V (G′) and
E(G′′) is defined by:

• G′′[V (G)− {y}] = G′[V (G)− {y}].

3.2. GRAPH INVARIANTS 141

• With X ′ = X ∪ {y}, we have G′′[Y ′] = G′[Y ′] and E(G′′[X ′]) = E(G′[X]) ∪
(
S
x∈X′{(x, y), (y, x)}).

• Assume that X = Xj for j ∈ I . Then ∀i ∈ I − {j}, ∀xi ∈ Xi, (xi, y) ∈ E(G′′)
whenever i is less than j with respect to σ and (y, xi) ∈ E(G′′) whenever j is less than
i with respect to σ.

Clearly |E(G′′)| − |E(G′)| ≥ 2|X| + 1 + |V (G′)| − |X| − (2 · |Y | − 1 + |V (G′)| − |Y |) =
|X| − |Y | + 2 and since X is of maximal cardinality the difference is strictly positive. As
E(G) ⊆ E(G′), |E(G′′)| − |E(G)| is also stricly positive. Now as NVERTEX(G′′) =
NVERTEX(G′) = NVERTEX(G), NSCC(G′′) = NSCC(G′) = NSCC(G) and as
T (G′′) = T (G′)− 1 = T (G)− 1 the result holds by induction hypothesis.

Proposition 91.

NARC ≥ NVERTEX−
—

NSCC− 1

2

�
(3.138)

equivalence : NSCC > 0⇒
NARC ≥ (NVERTEX mod NSCC) ·

`¨
NVERTEX

NSCC

˝
+ 1
´2

+

(NSCC−NVERTEX mod NSCC) ·
¨

NVERTEX
NSCC

˝2 (3.139)

NSCC

2
2 strongly connected components vertices

NSCC

2
NVERTEX − 2

Figure 3.4: Illustration of Proposition 3.138. A graph that achieves the minimum number of
arcs according to a fixed number of strongly connected components as well as to a fixed number
of vertices (NSCC = 7,NVERTEX = 10,NARC = 10 −

¨
7
2

˝
= 7)

Proof. For proving part 3.138 of Proposition 91 we proceed by induction on NSCC(G). If
NSCC(G) = 1 then, we have NARC(G) ≥ NVERTEX(G) (i.e. for one vertex this is
true since every vertex has at least one arc, otherwise every vertex v has an arc arriving on v as
well as an arc starting from v, thus we have NARC ≥ 2·NVERTEX

2
). If NSCC(G) > 1

let X be a strongly connected component of G. Then NARC(G) ≥ NARC(G[V (G) −
X]) + NARC(G[X]). By induction hypothesis NARC(G[V (G) −X]) ≥ |V (G) −X| −j

NSCC(G[V (G)−X])−1
2

k
, thus NARC(G[V (G)−X]) ≥ |V (G)−X| −

j
(NSCC(G)−1)−1

2

k
.

Since NARC(G[X]) ≥ |X| we obtain NARC(G) ≥ |V (G)| −
j

(NSCC(G)−1)−1
2

k
, and

thus the result holds.

142 CHAPTER 3. FURTHER TOPICS

Proposition 92.

equivalence : NVERTEX > 0⇒ NSCC ≥
‰

NVERTEX2

NARC

ı
(3.140)

Proof. As shown in [54], a lower bound for the minimum number of equivalence classes (e.g.
strongly connected components) is the independence number of the graph and the right-hand
side of Proposition 92 corresponds to a lower bound of the independence number proposed by
Turán [55].

NARC, NSINK, NVERTEX

Proposition 93.

NARC ≤ (NVERTEX−NSINK) ·NVERTEX (3.141)

Proof. The maximum number of arcs is achieved by the following pattern: For all non-sink
vertices we have an arc to all vertices.

Proposition 94.

NARC ≥ NSINK +max(0,NVERTEX− 2 ·NSINK) (3.142)

NVERTEX−NSINK

2.NSINK vertices

vertices
max(0,NVERTEX−2.NSINK)

vertices

NSINK vertices

(A) (B)

Figure 3.5: Illustration of Proposition 94. Graphs that achieve the minimum number of
arcs according to a fixed number of sinks as well as to a fixed number of vertices (A :

NSINK = 3,NVERTEX = 5,NARC = 3 + max(0, 5 − 2 · 3) = 3;B : NSINK =

3,NVERTEX = 9,NARC = 3 +max(0, 9− 2 · 3) = 6)

Proof. Recall that for x ∈ V (G), we have that d+
G(x) + d−G(x) ≥ 1. If x is a sink then

d−G(x) ≥ 1, consequently NARC(G) ≥ NSINK(G). If x is not a sink then d+
G(x) ≥ 1,

consequently NARC(G) ≥ |V (G)| −NSINK(G).

3.2. GRAPH INVARIANTS 143

vertices
NVERTEX−NSOURCE

2.NSOURCE vertices

vertices

(A) (B)

max(0,NVERTEX−2.NSOURCE)

NSOURCE vertices

Figure 3.6: Illustration of Proposition 96. Graphs that achieve the minimum number of
arcs according to a fixed number of sources as well as to a fixed number of vertices (A :

NSOURCE = 3,NVERTEX = 5,NARC = 3 + max(0, 5 − 2 · 3) = 3;B :

NSOURCE = 3,NVERTEX = 9,NARC = 3 +max(0, 9− 2 · 3) = 6)

NARC, NSOURCE, NVERTEX

Proposition 95.

NARC ≤ (NVERTEX−NSOURCE) ·NVERTEX (3.143)

Proof. The maximum number of arcs is achieved by the following pattern: For all non-source
vertices we have an arc from all vertices.

Proposition 96.

NARC ≥ NSOURCE +max(0,NVERTEX− 2 ·NSOURCE) (3.144)

Proof. Similar to Proposition 94.

NSINK, NSOURCE, NVERTEX

Proposition 97.
NVERTEX ≥ NSOURCE + NSINK (3.145)

Proof. No vertex can be both a source and a sink (isolated vertices are removed).

144 CHAPTER 3. FURTHER TOPICS

Graph invariants involving four characteristics of a final graph

MAX NCC, MIN NCC, NARC, NCC

Proposition 98. Let α denote max(0,NCC− 1).

NARC ≤ α ·MAX NCC2 + MIN NCC2 (3.146)

arc gen = CIRCUIT : NARC ≤ α ·MAX NCC + MIN NCC (3.147)

arc gen = CHAIN : NARC ≤ α · (2 ·MAX NCC−2) + 2 ·MIN NCC−2 (3.148)

arc gen ∈ {CLIQUE (≤),CLIQUE(≥)} : NARC ≤
α · MAX NCC·(MAX NCC+1)

2
+ MIN NCC·(MIN NCC+1)

2
(3.149)

arc gen ∈ {CLIQUE (<),CLIQUE(>)} : NARC ≤
α · MAX NCC·(MAX NCC−1)

2
+ MIN NCC·(MIN NCC−1)

2
(3.150)

arc gen = CLIQUE(6=) : NARC ≤MIN NCC2 −MIN NCC+

α · (MAX NCC2 −MAX NCC) (3.151)

arc gen = CYCLE : NARC ≤ 2 · α ·MAX NCC + 2 ·MIN NCC (3.152)

arc gen = PATH : NARC ≤ α · (MAX NCC− 1) + MIN NCC− 1 (3.153)

Proof. We construct NCC − 1 connected components with MAX NCC vertices and one
connected component with MIN NCC vertices. n2 corresponds to the maximum number of
arcs in a connected component. n, 2·n−2, n·(n+1)

2
, n·(n+1)

2
, n·(n−1)

2
, n·(n−1)

2
, n2−n, 2·n and

n − 1 respectively correspond to the maximum number of arcs in a connected component of n
vertices according to the fact that we use the arc generator CIRCUIT , CHAIN , CLIQUE(≤),
CLIQUE(≥), CLIQUE(<), CLIQUE(>), CLIQUE(6=), CYCLE or PATH .

Proposition 99.

NCC > 0⇒ NARC ≥ (NCC−1)·max(1,MIN NCC−1)+max(1,MAX NCC−1)
(3.154)

arc gen = PATH : NARC ≥ max(0,NCC−1) ·(MIN NCC−1)+MAX NCC−1
(3.155)

Proof. (3.154) We construct NCC− 1 connected components with MIN NCC vertices and
one connected component with MAX NCC vertices. The quantity max(1, n−1) corresponds
to the minimum number of arcs in a connected component of n (n > 0) vertices.

3.2. GRAPH INVARIANTS 145

MAX NCC, MIN NCC, NCC, NVERTEX

Proposition 100.

NVERTEX ≤ max(0,NCC− 1) ·MAX NCC + MIN NCC (3.156)

Proof. Derived from the definitions of MIN NCC and MAX NCC.

Proposition 101.

NVERTEX ≥ max(0,NCC− 1) ·MIN NCC + MAX NCC (3.157)

Proof. Derived from the definitions of MIN NCC and MAX NCC.

MAX NSCC, MIN NSCC, NARC, NSCC

Proposition 102.

NARC ≤ max(0,NSCC− 1) ·MAX NSCC2 + MIN NSCC2 +

max(0,NSCC− 1) ·MIN NSCC ·MAX NSCC +

MAX NSCC2 · max(0,NSCC−2)·max(0,NSCC−1)
2

(3.158)

Proof. We assume that we have at least two strongly connected components (the case with one
being obvious). Let (SCCi)i∈[NCC(G)] be the family of strongly connected components of G.
Then |E(G)| ≤ Pi∈[NCC(G)] |E(G[SCCi])| + k, where k is the number of arcs between the
distinct strongly connected components of G. For any strongly connected component SCCi the
number of arcs it has with the other strongly connected components is bounded by |SCCi| ·
(|V (G)−SCCi|). Consequently, k ≤ 1

2
·Pi∈[NCC(G)] |SCCi| · (|V (G)−SCCi|). W.l.o.g.

we assume |SCC1| = MIN NCC. Then we get k ≤ 1
2
· (MIN NCC · (NCC − 1) ·

MAX NCC + MAX NCC · ((NCC− 2) ·MAX NCC + MIN NCC)).

Proposition 103.

NARC ≥ max(0,NSCC− 1) ·MIN NSCC + MAX NSCC (3.159)

Proof. Let (SCCi)i∈[NCC(G)] be the family of strongly connected components of G, as
|E(G)| ≥ P

i∈[NCC(G)] |E(G[SCCi])|, we obtain the result since in a strongly connected
graph the number of edges is at least its number of vertices.

MAX NSCC, MIN NSCC, NSCC, NVERTEX

Proposition 104.

NVERTEX ≤ max(0,NSCC− 1) ·MAX NSCC + MIN NSCC (3.160)

Proof. Derived from the definitions of MIN NSCC and MAX NSCC.

Proposition 105.

NVERTEX ≥ max(0,NSCC− 1) ·MIN NSCC + MAX NSCC (3.161)

Proof. Derived from the definitions of MIN NSCC and MAX NSCC.

146 CHAPTER 3. FURTHER TOPICS

MIN NCC, NARC, NCC, NVERTEX

Proposition 106. Let α, β and γ respectively denote max(0,NCC − 1), NVERTEX −
α ·MIN NCC and MIN NCC.

NARC ≤ α · γ2 + β2 (3.162)

arc gen ∈ {CLIQUE (≤),CLIQUE(≥)} : NARC ≤ α · γ · (γ + 1)

2
+
β · (β + 1)

2
(3.163)

arc gen ∈ {CLIQUE (<),CLIQUE(>)} : NARC ≤ α · γ · (γ − 1)

2
+
β · (β − 1)

2
(3.164)

arc gen = CLIQUE(6=) : NARC ≤ α · γ · (γ − 1) + β · (β − 1) (3.165)

NCC−1 connected components
each of them consisting of
MIN_NCC vertices

NVERTEX−(NCC−1).MIN_NCC
vertices

Figure 3.7: Illustration of Proposition 106(3.162). Graphs that achieve the maximum number
of arcs according to a minimum number of vertices in a connected component, to a number of
connected components, as well as to a fixed number of vertices (MIN NCC = 2,NCC =

5,NVERTEX = 11,NARC = (11− (5− 1) · 2)2 + (5− 1) · 22 = 25)

Proof. For proving inequality 3.162 we proceed by induction on the number of vertices of G.
First note that if all the connected components are reduced to one element the result is obvious.
Thus we assume that the number of vertices in the maximal sized connected component of G
is at least 2. Let x be an element of the maximal sized connected component of G. Then,
G − x satisfies α(G − x) = α(G), γ(G − x) = γ(G) and β(G − x) = β(G) − 1. Since
by induction hypothesis |E(G − x)| ≤ α(G − x) · γ(G − x)2 + β(G − x)2, and since the
number of arcs of G incident to x is at most 2 · (β(G) − 1) + 1, we have that |E(G)| ≤
α(G) · γ(G)2 + (β(G)− 1)2 + 2 · (β(G)− 1) + 1. And thus the result follows.

3.2. GRAPH INVARIANTS 147

NVERTEX−NSCC+1
verticesstrongly connected components

NSCC−NCC
connected components
NCC−1

Figure 3.8: Illustration of Proposition 107. A graph that achieves the maximum number of arcs
according to a fixed number of connected components, to a fixed number of strongly connected
components as well as to a fixed number of vertices (NCC = 3,NSCC = 6,NVERTEX =

7,NARC = 3− 1 + (7 − 6 + 1)(7− 3 + 1) + (6− 3 + 1)(6 − 3)/2 = 18)

NARC, NCC, NSCC, NVERTEX

Proposition 107.

NARC ≤ NCC− 1 + (NVERTEX−NSCC + 1) · (NVERTEX−NCC + 1)

+
(NSCC−NCC + 1) · (NSCC−NCC)

2
(3.166)

Proof. We proceed by induction on T (G) = NVERTEX(G) − |X| − (NCC(G) − 1),
where X is any connected component of G of maximum cardinality. For T (G) = 0 then
either NCC(G) = 1 and thus the formula is clearly true, by Proposition 3.136 or all the
connected components of G, but possibly X , are reduced to one element. Since isolated
vertices are not allowed, again by Proposition 3.136 applied on G[X], the formula holds in-
deed NVERTEX(G[X]) = NVERTEX(G) − (NCC(G) − 1) and NSCC(G[X]) =
NSCC(G)− (NCC(G)− 1).

Assume that T (G) ≥ 1. Then there exists Y , a connected component of G distinct from X ,
with more than one vertex.

• Firstly assume that G[Y] is strongly connected. Let y ∈ Y and let G′ be the graph such
that V (G′) = V (G) and E(G′) is defined by:

– For all Z connected components of G distinct from X and Y we have G′[Z] =
G[Z].

– With X ′ = X ∪ (Y − {y}) and Y ′ = {y}, we have E(G′[Y ′]) = {(y, y)},
E(G′[X ′]) = E(G[X]) ∪ {(z, x) : z ∈ Y − {y}, x ∈ X} ∪ {(z, t) : z, t ∈
Y − {y}}.

Clearly we have that |E(G′)| − |E(G)| ≥ (|Y | − 1) · |X| − 2 · (|Y | − 1) and since
|X| ≥ |Y | ≥ 2, the difference is positive or null. Now as NVERTEX(G′) =
NVERTEX(G), NCC(G′) = NCC(G), NSCC(G′) = NSCC(G) (since
G′[Y −{y}] is strongly connected because E(G′[Y −{y}]) = {(z, t) : z, t ∈ Y −{y}}
and since the reduced graph of the strongly connected components ofG′[X ′] is exactly the
reduced graph of the strongly connected components of G[X] to which a unique source
has been added) and as T (G′) ≤ T (G)− 1, the result holds by induction hypothesis.

148 CHAPTER 3. FURTHER TOPICS

• Secondly assume that G[Y] is not strongly connected. Let Z ⊂ Y such that Z is a
strongly connected component of G[Y] corresponding to a source in the reduced graph
of the strongly connected components of G[Y]. Let G′ be the graph such that V (G′) =
V (G) and E(G′) is defined by:

– For all W connected components of G distinct from X and Y we have G′[W] =
G[W].

– WithX ′ = X ∪Z and Y ′ = Y −Z, we have E(G′[Y ′]) = E(G[Y ′]) if |Y ′| > 1
and E(G′[Y ′]) = {(y, y)} if Y ′ = {y}. E(G′[X ′]) = E(G[X]) ∪ {(z, x) : z ∈
Z, x ∈ X}.

Clearly we have that |E(G′)| − |E(G)| ≥ |Z| · |X| − |Z| · (|Y | − |Z|) and since
|X| > |Y | − |Z|, the difference is strictly positive. Now as NVERTEX(G′) =
NVERTEX(G), NCC(G′) = NCC(G), NSCC(G′) = NSCC(G) and as
T (G′) ≤ T (G)− 1, the result holds by induction hypothesis.

Proposition 108.

NARC ≥ NVERTEX−max(0,min(NCC,NSCC−NCC)) (3.167)

Proof. We prove that the invariant is valid for any digraph G. First notice that for an opera-
tional behavior, since we can’t assume that Proposition 53 (i.e. NCC(G) ≤ NSCC(G)) was
already triggered, we use the max operator. But since any strongly connected component is con-
nected, then NSCC(G)−NCC(G) is never negative. Consequently we only show by induc-
tion on NSCC(G) that NARC(G) ≥ NVERTEX(G) − min(NCC(G),NSCC(G) −
NCC(G)). To begin notice that if X is a strongly (non void) connected component then ei-
ther NARC(G[X]) ≥ |X| or NARC(G[X]) = 0 and in this latter case we have that both
|X| = 1 and X is strictly included in a connected component of G (recall that isolated vertices
are not allowed). Thus we can directly assume that NSCC(G) = k > 1.

First, consider that there exists a connected component of G, say X , which is also strongly
connected. Let G′ = G − X , consequently we have NSCC(G′) = NSCC(G) −
1, NCC(G′) = NCC(G) − 1, NVERTEX(G′) = NVERTEX(G) − |X|, and
NARC(G) ≥ |X| + NARC(G′). Then NARC(G) ≥ |X| + NVERTEX(G′) −
min(NCC(G′),NSCC(G′) − NCC(G′)) and thus NARC(G) ≥ NVERTEX(G) −
min(NCC(G)− 1,NSCC(G)−NCC(G)), which immediately gives the result.

Second consider that any strongly connected component is strictly included in a con-
nected component of G. Then, either there exists a strongly connected component X
such that |X| ≥ 2. Let G′ = G − X , consequently we have NSCC(G′) =
NSCC(G)−1, NCC(G′) = NCC(G), NVERTEX(G′) = NVERTEX(G)−|X|, and
NARC(G) ≥ |X|+ 1 +NARC(G′). Then NARC(G) ≥ |X|+ 1 +NVERTEX(G′)−
min(NCC(G′),NSCC(G′) − NCC(G′)) and thus NARC(G) ≥ NVERTEX(G) +
1 − min(NCC(G),NSCC(G) − NCC(G) + 1), which immediately gives the result. Or,
all the strongly connected components are reduced to one element, so we have NSCC(G) =
NVERTEX(G), and thus we obtain that NVERTEX(G)−min(NCC(G),NSCC(G)−
NCC(G)) = min(NCC(G),NVERTEX(G) −NCC(G)), which gives the result by for
example Proposition 89 (3.134).

This bound is tight: take for example any circuit.

3.2. GRAPH INVARIANTS 149

NARC, NSINK, NSOURCE, NVERTEX

Proposition 109.

NARC ≤ NVERTEX2 −NVERTEX ·NSOURCE

−NVERTEX ·NSINK + NSOURCE ·NSINK

(3.168)

Proof. Since the maximum number of arcs of a digraph is NVERTEX2, and since:

• No vertex can have a source as a successor we lose NVERTEX ·NSOURCE arcs,

• No sink can have a successor we lose NVERTEX ·NSINK arcs.

In these two sets of arcs we count twice the arcs from the sinks to the sources, so we finally get
a maximum number of arcs corresponding to the right-hand side of the inequality to prove.

Graph invariants involving five characteristics of a final graph

MAX NCC, MIN NCC, NARC, NCC, NVERTEX

Proposition 110.
Let:

• ∆ = NVERTEX−NCC ·MIN NCC,

• δ = b ∆
max(1,MAX NCC−MIN NCC)

c,
• r = ∆ mod max(1,MAX NCC−MIN NCC),

• ε = (r > 0).

∆ = 0 ∨ (MAX NCC 6= MIN NCC ∧ δ + ε ≤ NCC) (3.169)

NARC ≤ (NCC− δ − ε) ·MIN NCC2 + ε · (MIN NCC + r)2 + δ ·MAX NCC2

(3.170)

Proposition 110 is currently a conjecture.

MIN NCC, NARC, NCC, NSCC, NVERTEX

Proposition 111.

NARC ≤(NCC− 1) ·max(1, (MIN NCC− 1))+

(NVERTEX−NSCC + 1) · (NVERTEX−NCC + 1)+

(NSCC−NCC + 1) · (NSCC−NCC)

2

(3.171)

Proposition 111 is currently a conjecture.

150 CHAPTER 3. FURTHER TOPICS

Graph invariants relating two characteristics of two final graphs

MAX NCC1, NCC2

Proposition 112.

vpartition : MAX NCC1 < NVERTEXINITIAL ⇔ NCC2 > 0 (3.172)

apartition : MAX NCC1 < NVERTEXINITIAL ⇔ NCC2 > 0 (3.173)

Proof. (3.172) Since we have the precondition vpartition, we know that each vertex of the
initial graph belongs to the first or to the second final graphs (but not to both).

1. On the one hand, if the largest connected component of the first final graph can’t contain
all the vertices of the initial graph, then the second final graph has at least one connected
component.

2. On the other hand, if the second final graph has at least one connected component then
the largest connected component of the first final graph can’t be equal to the initial graph.

(3.173) holds for a similar reason.

MAX NCC2, NCC1

Proposition 113.

vpartition : MAX NCC2 < NVERTEXINITIAL ⇔ NCC1 > 0 (3.174)

apartition : MAX NCC2 < NVERTEXINITIAL ⇔ NCC1 > 0 (3.175)

Proof. Similar to Proposition 112.

MIN NCC1, NCC2

Proposition 114.

vpartition : MIN NCC1 < NVERTEXINITIAL ⇔ NCC2 > 0 (3.176)

Proof. Since we have the precondition vpartition, we know that each vertex of the initial
graph belongs to the first or to the second final graphs (but not to both).

1. On the one hand, if the smallest connected component of the first final graph can’t contain
all the vertices of the initial graph, then the second final graph has at least one connected
component.

2. On the other hand, if the second final graph has at least one connected component then the
smallest connected component of the first final graph can’t be equal to the initial graph.

3.2. GRAPH INVARIANTS 151

MIN NCC2, NCC1

Proposition 115.

vpartition : MIN NCC2 < NVERTEXINITIAL ⇔ NCC1 > 0 (3.177)

Proof. Similar to Proposition 114.

NARC1, NARC2

Proposition 116.

apartition ∧ arc gen = PATH : NARC1 + NARC2 = NVERTEXINITIAL − 1
(3.178)

Proof. Holds since each arc of the initial graph belongs to one of the two final graphs and since
the initial graph has NVERTEXINITIAL − 1 arcs.

NCC1, NCC2

Proposition 117.

apartition ∧ arc gen = PATH : |NCC1 −NCC2| ≤ 1 (3.179)

vpartition ∧ consecutive loops are connected : |NCC1 −NCC2| ≤ 1 (3.180)

Proof. Holds because the two initial graphs correspond to a path and because consecutive con-
nected components do not come from the same graph constraint.

Proposition 118.

apartition ∧ arc gen = PATH : NCC1 + NCC2 < NVERTEXINITIAL (3.181)

Proof. Holds because the initial graph is a path.

NVERTEX1, NVERTEX2

Proposition 119.

vpartition : NVERTEX1 + NVERTEX2 = NVERTEXINITIAL (3.182)

Proof. By definition of vpartition each vertex of the initial graph belongs to one of the two
final graphs (but not to both).

152 CHAPTER 3. FURTHER TOPICS

Graph invariants relating three characteristics of two final graphs

MAX NCC1, MIN NCC1, MIN NCC2

Proposition 120.

apartition ∧ arc gen = PATH :

max(2,MIN NCC1) + max(3,MIN NCC1 + 1,MAX NCC1)+

max(2,MIN NCC2)− 2 > NVERTEXINITIAL ⇒MIN NCC1 = MAX NCC1

(3.183)

Proof. The quantity max(2,MIN NCC1) + max(3,MIN NCC1 + 1,MAX NCC1) +
max(2,MIN NCC2)− 2 corresponds to the minimum number of variables needed for build-
ing two non-empty connected components of respective size MIN NCC1 and MAX NCC1

such that MAX NCC1 is strictly greater than MIN NCC1. If this quantity is greater than
the total number of variables we have that MIN NCC1 = MAX NCC1.

Proposition 121.

vpartition ∧ consecutive loops are connected :

max(1,MIN NCC1) + max(2,MIN NCC1 + 1,MAX NCC1)+

max(1,MIN NCC2) > NVERTEXINITIAL ⇒MIN NCC1 = MAX NCC1

(3.184)

Proof. The quantity max(1,MIN NCC1) + max(2,MIN NCC1 + 1,MAX NCC1) +
max(1,MIN NCC2) corresponds to the minimum number of variables needed for building
two non-empty connected components of respective size MIN NCC1 and MAX NCC1

such that MAX NCC1 is strictly greater than MIN NCC1. If this quantity is greater than
the total number of variables we have that MIN NCC1 = MAX NCC1.

MAX NCC2, MIN NCC2, MIN NCC1

Proposition 122.

apartition ∧ arc gen = PATH :

max(2,MIN NCC2) + max(3,MIN NCC2 + 1,MAX NCC2)+

max(2,MIN NCC1)− 2 > NVERTEXINITIAL ⇒MIN NCC2 = MAX NCC2

(3.185)

Proof. Similar to Proposition 120.

Proposition 123.

vpartition ∧ consecutive loops are connected :

max(1,MIN NCC2) + max(2,MIN NCC2 + 1,MAX NCC2)+

max(1,MIN NCC1) > NVERTEXINITIAL ⇒MIN NCC2 = MAX NCC2

(3.186)

Proof. Similar to Proposition 121.

3.2. GRAPH INVARIANTS 153

MIN NCC1, NARC2, NCC1

Proposition 124.

apartition ∧ arc gen = PATH ∧NVERTEXINITIAL > 0 :

NCC1 = 1⇔MIN NCC1 + NARC2 = NVERTEXINITIAL

(3.187)

Proof. When MIN NCC1 + NARC2 = NVERTEXINITIAL there is no more room for an
extra connected component for the first final graph.

MIN NCC1, NARC2, NCC1

Proposition 125.

apartition ∧ arc gen = PATH ∧NVERTEXINITIAL > 0 :

NCC2 = 1⇔MIN NCC2 + NARC1 = NVERTEXINITIAL

(3.188)

Proof. Similar to Proposition 124.

Graph invariants relating four characteristics of two final graphs

MAX NCC1, MIN NCC1, MIN NCC2, NCC1

Proposition 126.

apartition ∧ arc gen = PATH :

max(2,MIN NCC1) + max(2,MAX NCC1) + max(2,MIN NCC2)− 2 >

NVERTEXINITIAL ⇒ NCC1 ≤ 1

(3.189)

Proof. The quantity max(2,MIN NCC1) + max(2,MAX NCC1) +
max(2,MIN NCC2) − 2 corresponds to the minimum number of variables needed
for building two non-empty connected components of respective size MIN NCC1 and
MAX NCC1. If this quantity is greater than the total number of variables we have that
NCC1 ≤ 1.

Proposition 127.

vpartition ∧ consecutive loops are connected :

max(1,MIN NCC1) + max(1,MAX NCC1) + max(1,MIN NCC2) >

NVERTEXINITIAL ⇒ NCC1 ≤ 1

(3.190)

Proof. The quantity max(1,MIN NCC1) + max(1,MAX NCC1) +
max(1,MIN NCC2) corresponds to the minimum number of variables needed for building
two non-empty connected components of respective size MIN NCC1 and MAX NCC1. If
this quantity is greater than the total number of variables we have that NCC1 ≤ 1.

154 CHAPTER 3. FURTHER TOPICS

MAX NCC2, MIN NCC2, MIN NCC1, NCC2

Proposition 128.

apartition ∧ arc gen = PATH :

max(2,MIN NCC2) + max(2,MAX NCC2) + max(2,MIN NCC1)− 2 >

NVERTEXINITIAL ⇒ NCC2 ≤ 1

(3.191)

Proof. Similar to Proposition 126.

Proposition 129.

vpartition ∧ consecutive loops are connected :

max(1,MIN NCC2) + max(1,MAX NCC2) + max(1,MIN NCC1) >

NVERTEXINITIAL ⇒ NCC2 ≤ 1

(3.192)

Proof. Similar to Proposition 127.

Graph invariants relating five characteristics of two final graphs

MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC1

Proposition 130.

vpartition ∧ consecutive loops are connected :

MIN NCC1 ·max(0,NCC1 − 1) + MAX NCC1+

MIN NCC2 ·max(0,NCC1 − 2) + MAX NCC2 ≤ NVERTEXINITIAL

(3.193)

Proof. The left-hand side of 130 corresponds to the minimum number of vertices of the two
final graphs provided that we build the smallest possible connected components.

Proposition 131.

vpartition ∧ consecutive loops are connected :

NCC1 ≤ (MAX NCC1 > 0) +

—
α

β

�
+
`
αmod β ≥ max(1,MIN NCC1)

´

• α = max(0,NVERTEXINITIAL −max(1,MAX NCC1)−max(1,MAX NCC2)),
• β = max(1,MIN NCC1) + max(1,MIN NCC2).

(3.194)

Proof. The maximum number of connected components is achieved by building non-empty
groups as small as possible, except for two groups of respective size max(1,MAX NCC1)
and max(1,MAX NCC2), which have to be built.

Proposition 132.

vpartition ∧ consecutive loops are connected :

MAX NCC1 ·max(0,NCC1 − 1) + MIN NCC1+

MAX NCC2 ·NCC1 + MIN NCC2 ≥ NVERTEXINITIAL

(3.195)

3.2. GRAPH INVARIANTS 155

Proof. The left-hand side of 132 corresponds to the maximum number of vertices of the two
final graphs provided that we build the largest possible connected components.

Proposition 133.

vpartition ∧ consecutive loops are connected :

NCC1 ≥ (MAX NCC2 < NVERTEXINITIAL) +

—
α

β

�
+
`
α mod β > MAX NCC2

´

• α = max(0,NVERTEXINITIAL −MIN NCC1 −MIN NCC2,

• β = max(1,MAX NCC1) + max(1,MAX NCC2).

(3.196)

Proof. The minimum number of connected components is achieved by taking the groups as
large as possible except for two groups of respective size MIN NCC2 and MIN NCC1,
which have to be built.

Proposition 134.

vpartition ∧ consecutive loops are connected :

MAX NCC2 ≤ max(MIN NCC2,NVERTEXINITIAL − α), with :

• α = MIN NCC1 ·max(0,NCC1 − 1) + MAX NCC1+

MIN NCC2 + MIN NCC2 ·max(0,NCC1 − 3)

(3.197)

Proof. If NCC1 ≤ 1 we have that MAX NCC2 ≤ MIN NCC2. Otherwise, when
NCC1 > 1, we have that MIN NCC1 · max(0,NCC1 − 1) + MAX NCC1 +
MIN NCC2+MAX NCC2+MIN NCC2·max(0,NCC1−3) ≤ NVERTEXINITIAL .
NCC1 − 3 comes from the fact that we build the minimum number of connected components
in the second final graph (i.e.NCC1 − 1 connected components) and that we have already built
two connected components of respective size MIN NCC2 and MAX NCC2. By isolat-
ing MAX NCC2 in the previous expression and by grouping the two inequalities the result
follows.

Proposition 135.

apartition ∧ arc gen = PATH ∧MIN NCC1 > 1 ∧MIN NCC2 > 1 :

NCC1 ≤ (MAX NCC1 > 0) +

—
α

β

�
+ ((αmod β) + 1 ≥MIN NCC1), with :

• α = max(0,NVERTEXINITIAL −MAX NCC1 −MAX NCC2 + 1),
• β = MIN NCC1 + MIN NCC2 − 2.

(3.198)

Proof. The maximum number of connected components of G1 is achieved by:

• Building a first connected component of G1 involving MAX NCC1 vertices,

• Building a first connected component of G2 involving MAX NCC2 vertices,

• Building alternatively a connected component of G1 and a connected component of G2

involving respectively MIN NCC1 and MIN NCC2 vertices,

• Finally, if this is possible, building a connected component of G1 involving
MIN NCC1 vertices.

156 CHAPTER 3. FURTHER TOPICS

graph G2

graph G1

MAX_NCC1 MIN_NCC 1

MIN_NCC 2MAX_NCC2

initial graph

Figure 3.9: Illustration of Proposition 135. Configuration achieving the maximum number of
connected components forG1 according to the size of the smallest and largest connected compo-
nents ofG1 andG2 and to an initial number of vertices (MAX NCC1 = 4,MAX NCC2 =

5,MIN NCC1 = 3,MIN NCC2 = 4,NVERTEXINITIAL = 14, α = max(0, 14 − 4 −
5+1) = 6, β = max(2, 3+4−2) = 5,NCC1 = (4 > 0)+

¨
6
5

˝
+(((6mod5)+1) ≥ 3) = 2)

Proposition 136.

apartition ∧ arc gen = PATH ∧MIN NCC1 > 1 ∧MIN NCC2 > 1 :

NCC1 ≥ (MIN NCC1 > 0) +

—
α

β

�
+ ((α mod β) + 1 > MAX NCC2), with :

• α = max(0,NVERTEXINITIAL −MIN NCC1 −MIN NCC2 + 1),
• β = MAX NCC1 + MAX NCC2 − 2.

(3.199)

MIN_NCC2

MIN_NCC1

graph G2

graph G1

initial graph

MAX_NCC

MAX_NCCMAX_NCC

1

2 2

Figure 3.10: Illustration of Proposition 136. Configuration achieving the minimum num-
ber of connected components for G1 according to the size of the smallest and largest con-
nected components of G1 and G2 and to an initial number of vertices (MAX NCC1 =

4,MAX NCC2 = 5,MIN NCC1 = 3,MIN NCC2 = 4,NVERTEXINITIAL =

18, α = max(0, 18 − 3 − 4 + 1) = 12, β = max(2, 4 + 5 − 2) = 7,NCC1 = (3 >

0) +
¨

12
7

˝
+ (((12 mod 7) + 1) > 5) = 3)

Proof. The minimum number of connected components of G1 is achieved by:

• Building a first connected component of G2 involving MIN NCC2 vertices,

• Building a first connected component of G1 involving MIN NCC1 vertices,

3.2. GRAPH INVARIANTS 157

• Building alternatively a connected component of G2 and a connected component of G1

involving respectively MAX NCC2 and MAX NCC1 vertices,

• Finally, if this is possible, building a connected component of G2 involving
MAX NCC2 vertices and a connected component of G1 with the remaining vertices.
Note that these remaining vertices cannot be incorporated in the connected components
previously built.

MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC2

Proposition 137.

vpartition ∧ consecutive loops are connected :

MIN NCC2 ·max(0,NCC2 − 1) + MAX NCC2+

MIN NCC1 ·max(0,NCC2 − 2) + MAX NCC1 ≤ NVERTEXINITIAL

(3.200)

Proof. Similar to Proposition 130.

Proposition 138.

vpartition ∧ consecutive loops are connected :

NCC2 ≤ (MAX NCC2 > 0) +

—
α

β

�
+
`
α mod β ≥ max(1,MIN NCC2)

´

• α = max(0,NVERTEXINITIAL −max(1,MAX NCC2)−max(1,MAX NCC1)),
• β = max(1,MIN NCC2) + max(1,MIN NCC1).

(3.201)

Proof. Similar to Proposition 131.

Proposition 139.

vpartition ∧ consecutive loops are connected :

MAX NCC2 ·max(0,NCC2 − 1) + MIN NCC2+

MAX NCC1 ·NCC2 + MIN NCC1 ≥ NVERTEXINITIAL

(3.202)

Proof. Similar to Proposition 132.

Proposition 140.

vpartition ∧ consecutive loops are connected :

NCC2 ≥ (MAX NCC1 < NVERTEXINITIAL) +

—
α

β

�
+
`
α mod β > MAX NCC1

´

• α = max(0,NVERTEXINITIAL −MIN NCC2 −MIN NCC1,

• β = max(1,MAX NCC2) + max(1,MAX NCC1).

(3.203)

Proof. Similar to Proposition 133.

158 CHAPTER 3. FURTHER TOPICS

Proposition 141.

vpartition ∧ consecutive loops are connected :

MAX NCC1 ≤ max(MIN NCC1,NVERTEXINITIAL − α), with :

• α = MIN NCC2 ·max(0,NCC2 − 1) + MAX NCC2+

MIN NCC1 + MIN NCC1 ·max(0,NCC2 − 3)

(3.204)

Proof. Similar to Proposition 134.

Proposition 142.

apartition ∧ arc gen = PATH ∧MIN NCC1 > 1 ∧MIN NCC2 > 1 :

NCC2 ≤ (MAX NCC2 > 0) +

—
α

β

�
+ ((α mod β) + 1 ≥MIN NCC2), with :

• α = max(0,NVERTEXINITIAL −MAX NCC1 −MAX NCC2 + 1),
• β = MIN NCC1 + MIN NCC2 − 2.

(3.205)

Proof. Similar to Proposition 135.

Proposition 143.

apartition ∧ arc gen = PATH ∧MIN NCC1 > 1 ∧MIN NCC2 > 1 :

NCC2 ≥ (MIN NCC2 > 0) +

—
α

β

�
+ ((αmod β) + 1 > MAX NCC1, with :

• α = max(0,NVERTEXINITIAL −MIN NCC1 −MIN NCC2 + 1),
• β = MAX NCC1 + MAX NCC2 − 2.

(3.206)

Proof. Similar to Proposition 136.

3.2. GRAPH INVARIANTS 159

Graph invariants relating six characteristics of two final graphs

MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC1, NCC2

Proposition 144.

apartition ∧ arc gen = PATH ∧NVERTEXINITIAL > 0 :

α ·MIN NCC1 + MAX NCC1+

β ·MIN NCC2 + MAX NCC2 ≤ NVERTEXINITIAL + NCC1 + NCC2 − 1, with :

• α = max(0,NCC1 − 1),
• β = max(0,NCC2 − 1).

(3.207)

Proof. Let CC(G1) = {CC1
a : a ∈ [NCC1]} and CC(G2) = {CC2

a : a ∈ [NCC2]} be
respectively the set of connected components of the first and the second final graphs. Since the
initial graph is a path, and since each arc of the initial graph belongs to the first or to the second
final graphs (but not to both), there exists (Ai)i∈[NCC1+NCC2] and there exists j ∈ [2] such that
Ai ∈ CC(G1+(j mod 2)), for i mod 2 = 0 and Ai ∈ CC(G1+((j+1) mod 2)) for i mod 2 = 1
and Ai ∩Ai+1 6= ∅ for i ∈ [NCC1 + NCC2 − 1].
By inclusion-exclusion principle, since Ai ∩ Aj = ∅ whenever j 6= i + 1, we obtain
NVERTEXINITIAL = Σa∈[NCC1]|CC1

a| + Σa∈[NCC2]|CC2
a| − Σi∈[NCC1+NCC2−1]|Ai ∩

Ai+1|. Since |Ai ∩ Ai+1| is equal to 1 for every well defined i, we obtain Σa∈[NCC1]|CC1
a| +

Σa∈[NCC2]|CC2
a| = NVERTEXINITIAL + NCC1 + NCC2− 1.

Since α · MIN NCC1 + MAX NCC1 + β · MIN NCC2 + MAX NCC2 ≤
Σa∈[NCC1]|CC1

a|+ Σa∈[NCC2]|CC2
a | the result follows.

Proposition 145.

apartition ∧ arc gen = PATH ∧NVERTEXINITIAL > 0 :

α ·MAX NCC1 + MIN NCC1+

β ·MAX NCC2 + MIN NCC2 ≥ NVERTEXINITIAL + NCC1 + NCC2 − 1, with :

• α = max(0,NCC1 − 1),
• β = max(0,NCC2 − 1).

(3.208)

Proof. Similar to Proposition 144.

160 CHAPTER 3. FURTHER TOPICS

3.3 The electronic version of the catalog

An electronic version of the catalog containing every global constraint of the catalog
is given in Appendix B. This electronic version was used for generating the LATEX file
of this catalog, the figures associated with the graph-based description and a filtering
algorithm for some of the constraints that use the automaton-based description. Within
the electronic version, each constraint is described in terms of meta-data. A typical
entry is:

ctr_date(minimum,[’20000128’,’20030820’,’20040530’,’20041230’]).

ctr_origin(minimum, ’CHIP’, []).

ctr_arguments(minimum,
[’MIN’-dvar ,
’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(minimum,
[size(’VARIABLES’) > 0 ,
required(’VARIABLES’,var)]).

ctr_graph(minimum,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆkey = variables2ˆkey #\/ variables1ˆvar < variables2ˆvar],
[’ORDER’(0,’MAXINT’,var) = ’MIN’]).

ctr_example(minimum,
minimum(2,[[var-3],[var-2],[var-7],[var-2],[var-6]])).

ctr_see_also(minimum,[maximum]).

ctr_key_words(minimum,[’order constraint’ ,
’minimum’ ,
’maxint’ ,
’automaton’ ,
’automaton without counters’ ,
’centered cyclic(1) constraint network(1)’]).

ctr_automaton(minimum,minimum).

minimum(MIN, VARIABLES) :-
minimum_signature(VARIABLES, SIGNATURE, MIN),
automaton(SIGNATURE, _,

SIGNATURE, 0..2,
[source(s),node(e),sink(t)],
[arc(s,0,s), arc(s,1,e),
arc(e,1,e), arc(e,0,e), arc(e,$,t)],

[],[],[]).

minimum_signature([], [], _).
minimum_signature([[var-VAR]|VARs], [S|Ss], MIN) :-

S in 0..2,
MIN #< VAR #<=> S #= 0,
MIN #= VAR #<=> S #= 1,
MIN #> VAR #<=> S #= 2,
minimum_signature(VARs, Ss, MIN).

and consists of the following Prolog facts, where CONSTRAINT NAME is the name of the
constraint under consideration. The facts are organized in the following 13 items:

• Items 1, 2, 5, 10 and 11 provide general information about a global constraint,

3.3. THE ELECTRONIC VERSION OF THE CATALOG 161

• Items 3, 4 and 6 describe the parameters of a global constraint.

• Items 7 and 8 describes the meaning of a global constraint in terms of a graph-
based representation.

• Item 9 provides a ground instance which holds.

• Items 12 and 13 describe the meaning of a global constraint in term of an
automaton-based representation.

Items 1, 2, 4 and 9 are mandatory, while all other items are optional. We now give the
different items:

1. ctr date(CONSTRAINT NAME, LIST OF DATES OF MODIFICATIONS)

• LIST OF DATES OF MODIFICATIONS is a list of dates when the description of the
constraint was modified.

2. ctr origin(CONSTRAINT NAME, STRING, LIST OF CONSTRAINTS NAMES)

• STRING is a string denoting the origin of the constraint.
LIST OF CONSTRAINTS NAMES is an eventually empty list of constraint names
related to the origin of the constraint.

3. ctr types(CONSTRAINT NAME, LIST OF TYPES DECLARATIONS)

• LIST OF TYPES DECLARATIONS is a list of elements of the form name-type, where
name is the name of a new type and type the type itself (usually a collection). Basic
and compound data types were respectively introduced in sections 1.1.1 and 1.1.2
page 3. This field is only used when we need to declare a new type that will be used
for specifying the type of the arguments of the constraint. This is for instance the
case when one argument of the constraint is a collection for which the type of one
attribute is also a collection. This is for instance the case of the diffn constraint
where the unique argument ORTHOTOPES is a collection of ORTHOTOPE; ORTHOTOPE
refers to a new type declared in LIST OF TYPES DECLARATIONS.

4. ctr arguments(CONSTRAINT NAME, LIST OF ARGUMENTS DECLARATIONS)

• LIST OF ARGUMENTS DECLARATIONS is a list of elements of the form arg-type,
where arg is the name of an argument of the constraint and type the type of the
argument. Basic and compound data types were respectively introduced in sec-
tions 1.1.1 and 1.1.2 page 3.

5. ctr synonyms(CONSTRAINT NAME, LIST OF SYNONYMS)

• LIST OF SYNONYMS is a list of synonyms for the constraint. This stems from
the fact that, quite often, different authors use a different name for the same
constraint. This is for instance the case for the alldifferent and the
symmetric alldifferent constraints.

6. ctr restrictions(CONSTRAINT NAME, LIST OF RESTRICTIONS)

162 CHAPTER 3. FURTHER TOPICS

• LIST OF RESTRICTIONS is a list of restrictions on the different argument of the
constraint. Possible restrictions were described in Section 1.1.3 page 5.

7. ctr derived collections(CONSTRAINT NAME, LIST OF DERIVED COLLECTIONS)

• LIST OF DERIVED COLLECTIONS is a list of derived collections. Derived collec-
tions are collections that are computed from the arguments of the constraint and
are used in the graph-based description. Derived collections were described in Sec-
tion 1.2.2 page 17.

8. ctr graph(CONSTRAINT NAME, LIST OF ARC INPUT, ARC ARITY,

ARC GENERATORS, ARC CONSTRAINTS, GRAPH PROPERTIES)

• LIST OF ARC INPUT is a list of collections used for creating the vertices of the
initial graph. This was described at page 43 of Section 1.2.3.

• ARC ARITY is the number of vertices of an arc. Arc arity was explained at page 44
of Section 1.2.3.

• ARC GENERATORS is a list of arc generators. Arc generators were introduced at page
43 of Section 1.2.3.

• ARC CONSTRAINTS is a list of arc constraints. Arc constraints were defined in Sec-
tion 1.2.2 page 22.

• GRAPH PROPERTIES is a list of graph properties. Graph properties were described
in Section 1.2.2 page 31.

9. ctr example(CONSTRAINT NAME, LIST OF EXAMPLES)

• LIST OF EXAMPLES is a list of examples (usually one). Each example corresponds
to a ground instance for which the constraint holds.

10. ctr see also(CONSTRAINT NAME, LIST OF CONSTRAINTS)

• LIST OF CONSTRAINTS is a list of constraints that are related in some way to the
constraint.

11. ctr key words(CONSTRAINT NAME, LIST OF KEYWORDS)

• LIST OF KEYWORDS is a list of keywords associated with the constraint. Keywords
may be linked to the meaning of the constraint, to a typical pattern where the con-
straint can be applied or to a specific problem where the constraint is useful. All
keywords used in the catalog are listed in alphabetic order in Section 2.5 page 62.
Each keyword has an entry explaining its meaning and providing the list of global
constraints using that keyword.

12. ctr automaton(CONSTRAINT NAME, PREDICATE NAME)

• PREDICATE NAME is the name of the Prolog predicate that creates the automata
(usually one) associated with the constraint. This predicate name is usually the
same as the constraint name, except for those constraints corresponding to a SICS-
tus built-in (e.g. in, element).

3.3. THE ELECTRONIC VERSION OF THE CATALOG 163

13. constraint name(LIST OF ARGUMENTS) :- BODY:

• LIST OF ARGUMENTS is the list of argument of the constraint.

• BODY corresponds to the Prolog code that creates the signature constraints as well
as the automata (usually one) associated with the constraint. Within BODY, a fact
of the form automaton/9 describes the states and the transitions of the automata
used for describing the set of solutions accepted by the constraint. It follows the
description provided in Section 1.3.2 page 55.

164 CHAPTER 3. FURTHER TOPICS

Chapter 4

Global constraint catalog

Contents
4.1 all differ from at least k pos 172
4.2 all min dist . 174
4.3 alldifferent . 176
4.4 alldifferent between sets . 180
4.5 alldifferent except 0 . 182
4.6 alldifferent interval . 186
4.7 alldifferent modulo . 190
4.8 alldifferent on intersection . 194
4.9 alldifferent partition . 198
4.10 alldifferent same value . 200
4.11 allperm . 204
4.12 among . 206
4.13 among diff 0 . 208
4.14 among interval . 212
4.15 among low up . 214
4.16 among modulo . 218
4.17 among seq . 222
4.18 arith . 224
4.19 arith or . 228
4.20 arith sliding . 232
4.21 assign and counts . 234
4.22 assign and nvalues . 238
4.23 atleast . 242
4.24 atmost . 246
4.25 balance . 250
4.26 balance interval . 252
4.27 balance modulo . 256

165

166 CHAPTER 4. GLOBAL CONSTRAINT CATALOG

4.28 balance partition . 260
4.29 bin packing . 264
4.30 binary tree . 268
4.31 cardinality atleast . 272
4.32 cardinality atmost . 276
4.33 cardinality atmost partition . 280
4.34 change . 284
4.35 change continuity . 288
4.36 change pair . 298
4.37 change partition . 302
4.38 circuit . 306
4.39 circuit cluster . 310
4.40 circular change . 314
4.41 clique . 318
4.42 colored matrix . 322
4.43 coloured cumulative . 324
4.44 coloured cumulatives . 328
4.45 common . 332
4.46 common interval . 336
4.47 common modulo . 338
4.48 common partition . 340
4.49 connect points . 342
4.50 correspondence . 346
4.51 count . 350
4.52 counts . 354
4.53 crossing . 358
4.54 cumulative . 362
4.55 cumulative product . 366
4.56 cumulative two d . 370
4.57 cumulative with level of priority 374
4.58 cumulatives . 378
4.59 cutset . 382
4.60 cycle . 386
4.61 cycle card on path . 390
4.62 cycle or accessibility . 394
4.63 cycle resource . 398
4.64 cyclic change . 402
4.65 cyclic change joker . 406
4.66 decreasing . 410
4.67 deepest valley . 414
4.68 derangement . 418
4.69 differ from at least k pos . 422
4.70 diffn . 426

167

4.71 diffn column . 430
4.72 diffn include . 432
4.73 discrepancy . 434
4.74 disjoint . 436
4.75 disjoint tasks . 440
4.76 disjunctive . 444
4.77 distance between . 446
4.78 distance change . 448
4.79 domain constraint . 452
4.80 elem . 456
4.81 element . 460
4.82 element greatereq . 464
4.83 element lesseq . 468
4.84 element matrix . 472
4.85 element sparse . 476
4.86 elements . 480
4.87 elements alldifferent . 482
4.88 elements sparse . 486
4.89 eq set . 490
4.90 exactly . 492
4.91 global cardinality . 496
4.92 global cardinality low up . 500
4.93 global cardinality with costs 502
4.94 global contiguity . 506
4.95 golomb . 508
4.96 graph crossing . 512
4.97 group . 516
4.98 group skip isolated item . 524
4.99 heighest peak . 532
4.100in . 536
4.101in relation . 538
4.102in same partition . 542
4.103in set . 546
4.104increasing . 548
4.105indexed sum . 552
4.106inflexion . 554
4.107int value precede . 556
4.108int value precede chain . 558
4.109interval and count . 560
4.110interval and sum . 564
4.111inverse . 568
4.112inverse set . 572
4.113ith pos different from 0 . 576

168 CHAPTER 4. GLOBAL CONSTRAINT CATALOG

4.114k cut . 578
4.115lex2 . 580
4.116lex alldifferent . 582
4.117lex between . 584
4.118lex chain less . 588
4.119lex chain lesseq . 592
4.120lex different . 596
4.121lex greater . 598
4.122lex greatereq . 602
4.123lex less . 606
4.124lex lesseq . 610
4.125link set to booleans . 614
4.126longest change . 618
4.127map . 622
4.128max index . 624
4.129max n . 626
4.130max nvalue . 628
4.131max size set of consecutive var 632
4.132maximum . 634
4.133maximum modulo . 638
4.134min index . 640
4.135min n . 644
4.136min nvalue . 646
4.137min size set of consecutive var 650
4.138minimum . 652
4.139minimum except 0 . 656
4.140minimum greater than . 660
4.141minimum modulo . 664
4.142minimum weight alldifferent 666
4.143nclass . 670
4.144nequivalence . 674
4.145next element . 676
4.146next greater element . 680
4.147ninterval . 682
4.148no peak . 684
4.149no valley . 686
4.150not all equal . 688
4.151not in . 690
4.152npair . 694
4.153nset of consecutive values . 696
4.154nvalue . 698
4.155nvalue on intersection . 702
4.156nvalues . 704

169

4.157nvalues except 0 . 706
4.158one tree . 708
4.159orchard . 712
4.160orth link ori siz end . 716
4.161orth on the ground . 718
4.162orth on top of orth . 720
4.163orths are connected . 722
4.164path from to . 726
4.165pattern . 730
4.166peak . 732
4.167period . 736
4.168period except 0 . 738
4.169place in pyramid . 740
4.170polyomino . 744
4.171product ctr . 748
4.172range ctr . 750
4.173relaxed sliding sum . 752
4.174same . 754
4.175same and global cardinality . 760
4.176same intersection . 764
4.177same interval . 766
4.178same modulo . 768
4.179same partition . 770
4.180sequence folding . 772
4.181set value precede . 776
4.182shift . 778
4.183size maximal sequence alldifferent 782
4.184size maximal starting sequence alldifferent 784
4.185sliding card skip0 . 786
4.186sliding distribution . 790
4.187sliding sum . 792
4.188sliding time window . 794
4.189sliding time window from start 798
4.190sliding time window sum . 802
4.191smooth . 806
4.192soft alldifferent ctr . 810
4.193soft alldifferent var . 814
4.194soft same interval var . 818
4.195soft same modulo var . 820
4.196soft same partition var . 822
4.197soft same var . 824
4.198soft used by interval var . 828
4.199soft used by modulo var . 832

170 CHAPTER 4. GLOBAL CONSTRAINT CATALOG

4.200soft used by partition var . 836
4.201soft used by var . 838
4.202sort . 842
4.203sort permutation . 846
4.204stage element . 850
4.205stretch circuit . 854
4.206stretch path . 858
4.207strict lex2 . 862
4.208strictly decreasing . 864
4.209strictly increasing . 866
4.210strongly connected . 868
4.211sum . 870
4.212sum ctr . 874
4.213sum of weights of distinct values 876
4.214sum set . 880
4.215symmetric alldifferent . 882
4.216symmetric cardinality . 886
4.217symmetric gcc . 890
4.218temporal path . 892
4.219tour . 896
4.220track . 900
4.221tree . 902
4.222tree range . 906
4.223tree resource . 910
4.224two layer edge crossing . 914
4.225two orth are in contact . 918
4.226two orth column . 922
4.227two orth do not overlap . 924
4.228two orth include . 928
4.229used by . 930
4.230used by interval . 934
4.231used by modulo . 936
4.232used by partition . 938
4.233valley . 940
4.234vec eq tuple . 944
4.235weighted partial alldiff . 946

171

172 NARC,CLIQUE (6=)

4.1 all differ from at least k pos

Origin Inspired by [56].

Constraint all differ from at least k pos(K, VECTORS)

Type(s) VECTOR : collection(var− dvar)

Argument(s) K : int

VECTORS : collection(vec− VECTOR)

Restriction(s) required(VECTOR, var)
K ≥ 0
required(VECTORS, vec)
same size(VECTORS, vec)

Purpose Enforce all pairs of distinct vectors of the VECTORS collection to differ from at least K positions.

Arc input(s) VECTORS

Arc generator CLIQUE(6=) 7→ collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) differ from at least k pos(K, vectors1.vec, vectors2.vec)

Graph property(ies) NARC = |VECTORS| ∗ |VECTORS| − |VECTORS|

Example all differ from at least k pos

0
BBBBBBBBBBBBBBBBBB@

2,

8
>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

vec −

8
>><
>>:

var− 2,
var− 5,
var− 2,
var− 0

9
>>=
>>;
,

vec −

8
>><
>>:

var− 3,
var− 6,
var− 2,
var− 1

9
>>=
>>;
,

vec −

8
>><
>>:

var− 3,
var− 6,
var− 1,
var− 0

9
>>=
>>;

9
>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

1
CCCCCCCCCCCCCCCCCCA

The previous constraint holds since exactly 3 · (3 − 1) = 6 arc constraints hold,
namely1:

• The first and second vectors differ from 3 positions which is greater than or equal to
K = 2.

1Each item corresponds to two arc constraints.

20030820 173

• The first and third vectors differ from 3 positions which is greater than or equal to
K = 2.

• The second and third vectors differ from 2 positions which is greater than or equal to
K = 2.

Parts (A) and (B) of Figure 4.1 respectively show the initial and final graph. Since we use
the NARC graph property, the arcs of the final graph are stressed in bold.

VECTORS

1

2

3

NARC=6

1:2
 5
 2
 0

2:3
 6
 2
 1

3:3
 6
 1
 0

(A) (B)

Figure 4.1: Initial and final graph of the all differ from at least k pos con-
straint

Graph model The arc constraint(s) field uses the differ from at least k pos constraint defined in
this catalog.

Signature Since we use the CLIQUE(6=) arc generator on the items of the VECTORS collection, the
expression |VECTORS| · |VECTORS| − |VECTORS| corresponds to the maximum number of
arcs of the final graph. Therefore we can rewrite the graph property NARC = |VECTORS|·
|VECTORS| − |VECTORS| to NARC ≥ |VECTORS| · |VECTORS| − |VECTORS|. This leads to
simplify NARC to NARC.

See also differ from at least k pos.

Key words decomposition, disequality, bioinformatics, vector, no loop.

174 NARC,CLIQUE (<)

4.2 all min dist

Origin [57]

Constraint all min dist(MINDIST, VARIABLES)

Synonym(s) minimum distance.

Argument(s) MINDIST : int

VARIABLES : collection(var − dvar)

Restriction(s) MINDIST > 0
required(VARIABLES, var)
VARIABLES.var ≥ 0

Purpose Enforce for each pair (vari, varj) of distinct variables of the collection VARIABLES that
|vari − varj | ≥ MINDIST.

Arc input(s) VARIABLES

Arc generator CLIQUE(<) 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) abs(variables1.var − variables2.var) ≥ MINDIST

Graph property(ies) NARC = |VARIABLES| ∗ (|VARIABLES| − 1)/2

Example all min dist
`

2, {var − 5, var − 1, var − 9, var − 3}
´

Parts (A) and (B) of Figure 4.2 respectively show the initial and final graph. The
all min dist constraint holds since all the arcs of the initial graph belong to the final
graph: all the minimum distance constraints are satisfied.

Graph model We generate a clique with a minimum distance constraint between each pair of distinct
vertices and state that the number of arcs of the final graph should be equal to the number
of arcs of the initial graph.

Usage The all min dist constraint was initially created for handling frequency allocation prob-
lems.

Remark The all min dist constraint can be modeled as a set of tasks which should not overlap.
For each variable var of the VARIABLES collection we create a task t where var and
MINDIST respectively correspond to the origin and the duration of t.

See also alldifferent, diffn.

Key words value constraint, decomposition, frequency allocation problem.

20050508 175

VARIABLES

1

2

3

4

NARC=6

1:5

2:1

3:9

4:3

(A) (B)

Figure 4.2: Initial and final graph of the all min dist constraint

176 MAX NSCC,CLIQUE

4.3 alldifferent

Origin [2]

Constraint alldifferent(VARIABLES)

Synonym(s) alldiff, alldistinct.

Argument(s) VARIABLES : collection(var − dvar)

Restriction(s) required(VARIABLES, var)

Purpose Enforce all variables of the collection VARIABLES to take distinct values.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) MAX NSCC ≤ 1

Example alldifferent({var − 5, var − 1, var − 9, var − 3})

Parts (A) and (B) of Figure 4.3 respectively show the initial and final graph. Since
we use the MAX NSCC graph property we show one of the largest strongly connected
component of the final graph. The alldifferent holds since all the strongly connected
components have at most one vertex: A value is used at most once.

Graph model We generate a clique with an equality constraint between each pair of vertices (including a
vertex and itself) and state that the size of the largest strongly connected component should
not exceed one.

Automaton Figure 4.4 depicts the automaton associated to the alldifferent constraint. To each item
of the collection VARIABLES corresponds a signature variable Si, which is equal to 1. The
automaton counts the number of occurrences of each value and finally imposes that each
value is taken at most one time.

Usage The alldifferent constraint occurs in most practical problems. A classical example is
the n-queen chess puzzle problem: Place n queens on a n by n chessboard in such a way
that no queen attacks another. Two queens attack each other if they are located on the same
column, on the same row or on the same diagonal. This can be modelled as the conjunction
of three alldifferent constraints. We associate to the ith column of the chessboard a
domain variable Xi that gives the line number where the corresponding queen is located.
The three alldifferent constraints are:

20000128 177

VARIABLES

1

2

3

4

MAX_NSCC=1

MAX_NSCC

1:5 2:1 3:9 4:3

(A) (B)

Figure 4.3: Initial and final graph of the alldifferent constraint

1,

i i{C[VAR]=C[VAR]+1}

$

t:
arith(C,<,2)

s

{C[_]=0}

Figure 4.4: Automaton of the alldifferent constraint

178 MAX NSCC,CLIQUE

• alldifferent(X1, X2 + 1, . . . , Xn + n − 1) for the upper-left to lower-right di-
agonals,

• alldifferent(X1, X2, . . . , Xn) for the lines,
• alldifferent(X1 + n− 1, X2 + n− 2, . . . , Xn) for the lower-right to upper-left

diagonals.

They are respectively depicted by parts (A), (C) and (D) of Figure 4.5.

4

7

1

2

3

5

6

8

X X X X X X XX 2 3 4 5 6 7 81

4

7

1

2

3

5

6

8

X X X X X X XX 2 3 4 5 6 7 81 X X X X X X XX 2 3 4 5 6 7 81

4

7

1

2

3

5

6

8

(E)(B)

(A) (C) (D)

Figure 4.5: Upper-left to lower-right diagonals (A-B), lines (C) and lower-right to
upper-left diagonals (D-E)

Remark Even if the alldifferent constraint had not this form, it was specified in ALICE [58, 2]
by asking for an injective correspondence between variables and values: x 6= y ⇒ f(x) 6=
f(y).

For possible relaxations of the alldifferent constraints see the
alldifferent except 0, the soft alldifferent ctr, the soft alldifferent var

and the weighted partial alldiff constraints.

Algorithm The first complete filtering algorithm was independently found by Marie-Christine
Costa [59] and Jean-Charles Régin [18]. This algorithm is based on a corollary of Claude
Berge which characterizes the edges of a graph that belong to a maximum matching but not
to all [17, page 120]. A short time after, assuming that all variables have no holes in their
domain, Michel Leconte came up with a filtering algorithm [60] based on edge finding. A
first bound-consistency algorithm was proposed by Bleuzen-Guernalec et al. [61]. Later
on, two different approaches were used to design bound-consistency algorithms. Both ap-
proaches model the constraint as a bipartite graph. The first identifies Hall intervals in
this graph [62, 63] and the second applies the same algorithm that is used to compute arc-
consistency, but achieves a speedup by exploiting the simpler structure of the graph [23].

Used in circuit cluster, correspondence, size maximal sequence alldifferent,
size maximal starting sequence alldifferent, sort permutation.

20000128 179

See also alldifferent except 0, soft alldifferent var, soft alldifferent ctr,
cycle, symmetric alldifferent, lex alldifferent,
alldifferent on intersection, weighted partial alldiff.

Key words value constraint, permutation, all different, disequality, bipartite matching, n-queen,
Hall interval, bound-consistency, automaton, automaton with array of counters, one succ.

180 MAX NSCC,CLIQUE

4.4 alldifferent between sets

Origin ILOG

Constraint alldifferent between sets(VARIABLES)

Synonym(s) all null intersect, alldiff between sets, alldistinct between sets.

Argument(s) VARIABLES : collection(var − svar)

Restriction(s) required(VARIABLES, var)

Purpose Enforce all sets of the collection VARIABLES to be distinct.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) eq set(variables1.var, variables2.var)

Graph property(ies) MAX NSCC ≤ 1

Example alldifferent between sets

0
BB@

8
>><
>>:

var − {3, 5},
var − ∅,
var − {3},
var − {3, 5, 7}

9
>>=
>>;

1
CCA

Parts (A) and (B) of Figure 4.6 respectively show the initial and final graph. Since
we use the MAX NSCC graph property we show one of the largest strongly connected
component of the final graph. The alldifferent between sets holds since all the
strongly connected components have at most one vertex.

Graph model We generate a clique with binary set equalities constraints between each pair of vertices
(including a vertex and itself) and state that the size of the largest strongly connected com-
ponent should not exceed one.

Usage This constraint is available in some configuration library offered by Ilog.

See also alldifferent, link set to booleans.

Key words all different, disequality, bipartite matching, constraint involving set variables, one succ.

20030820 181

VARIABLES

1

2

3

4

MAX_NSCC=1

MAX_NSCC

1:{3,5} 2:{} 3:{3} 4:{3,5,7}

(A) (B)

Figure 4.6: Initial and final graph of the alldifferent between sets constraint

182 MAX NSCC,CLIQUE

4.5 alldifferent except 0

Origin Derived from alldifferent.

Constraint alldifferent except 0(VARIABLES)

Synonym(s) alldiff except 0, alldistinct except 0.

Argument(s) VARIABLES : collection(var − dvar)

Restriction(s) required(VARIABLES, var)

Purpose Enforce all variables of the collection VARIABLES to take distinct values, except those variables
which are assigned to 0.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • variables1.var 6= 0
• variables1.var = variables2.var

Graph property(ies) MAX NSCC ≤ 1

Example alldifferent except 0

0
BBBBBB@

8
>>>>>><
>>>>>>:

var − 5,
var − 0,
var − 1,
var − 9,
var − 0,
var − 3

9
>>>>>>=
>>>>>>;

1
CCCCCCA

Parts (A) and (B) of Figure 4.7 respectively show the initial and final graph. Since
we use the MAX NSCC graph property we show one of the largest strongly connected
component of the final graph. The alldifferent except 0 holds since all the strongly
connected components have at most one vertex: A value different from 0 is used at most
once.

Graph model The graph model is the same as the one used for the alldifferent constraint, except that
we discard all variables that are assigned to 0.

Automaton Figure 4.8 depicts the automaton associated to the alldifferent except 0 constraint.
To each variable VARi of the collection VARIABLES corresponds a 0-1 signature variable
Si. The following signature constraint links VARi and Si: VARi 6= 0⇔ Si. The automaton
counts the number of occurrences of each value different from 0 and finally imposes that
each non-zero value is taken at most one time.

20000128 183

VARIABLES

1

2

3

4

5

6

MAX_NSCC=1

MAX_NSCC

1:5 3:1 4:9 6:3

(A) (B)

Figure 4.7: Initial and final graph of the alldifferent except 0 constraint

iVAR =0
VAR <>0,

i i

i
{C[VAR]=C[VAR]+1}

$

t:
arith(C,<,2)

s

{C[_]=0}

Figure 4.8: Automaton of the alldifferent except 0 constraint

184 MAX NSCC,CLIQUE

Usage Quite often it appears that for some modelling reason you create a joker value. You don’t
want that normal constraints hold for variables that take this joker value. For this pur-
pose we modify the binary arc constraint in order to discard the vertices for which the
corresponding variables are assigned to 0. This will be effectively the case since all the
corresponding arcs constraints will not hold.

See also alldifferent, weighted partial alldiff.

Key words value constraint, relaxation, joker value, all different, automaton,
automaton with array of counters, one succ.

20000128 185

186 MAX NSCC,CLIQUE

4.6 alldifferent interval

Origin Derived from alldifferent.

Constraint alldifferent interval(VARIABLES, SIZE INTERVAL)

Synonym(s) alldiff interval, alldistinct interval.

Argument(s) VARIABLES : collection(var− dvar)
SIZE INTERVAL : int

Restriction(s) required(VARIABLES, var)
SIZE INTERVAL > 0

Purpose
Enforce all variables of the collection VARIABLES to belong to distinct intervals. The intervals
are defined by [SIZE INTERVAL · k, SIZE INTERVAL · k + SIZE INTERVAL− 1] where k is an
integer.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var/SIZE INTERVAL = variables2.var/SIZE INTERVAL

Graph property(ies) MAX NSCC ≤ 1

Example alldifferent interval({var − 2, var− 3, var− 10}, 3)

In the previous example, the second parameter SIZE INTERVAL defines the follow-
ing family of intervals [3 · k, 3 · k + 2], where k is an integer. Since the three variables
of the collection VARIABLES take values that are respectively located within the three
following distinct intervals [0, 2], [3, 5] and [9, 11], the alldifferent interval

constraint holds. Parts (A) and (B) of Figure 4.9 respectively show the initial and final
graph. Since we use the MAX NSCC graph property we show one of the largest
strongly connected component of the final graph.

Graph model Similar to the alldifferent constraint, but we replace the binary equality constraint of
the alldifferent constraint by the fact that two variables are respectively assigned to
two values that belong to the same interval. We generate a clique with a belong to the same
interval constraint between each pair of vertices (including a vertex and itself) and state
that the size of the largest strongly connected component should not exceed one.

Automaton Figure 4.10 depicts the automaton associated to the alldifferent interval constraint.
To each item of the collection VARIABLES corresponds a signature variable Si, which is
equal to 1. For each interval [SIZE INTERVAL·k, SIZE INTERVAL·k+SIZE INTERVAL−1]
of values the automaton counts the number of occurrences of its values and finally imposes
that the values of an interval are taken at most once.

20030820 187

VARIABLES

1

2

3

MAX_NSCC=1

MAX_NSCC

1:2 2:3 3:10

(A) (B)

Figure 4.9: Initial and final graph of the alldifferent interval constraint

{C[VAR /SIZE_INTERVAL]=C[VAR /SIZE_INTERVAL]+1}

$

t:

1,

i i

arith(C,<,2)

{C[_]=0}

s

Figure 4.10: Automaton of the alldifferent interval constraint

188 MAX NSCC,CLIQUE

See also alldifferent.

Key words value constraint, interval, all different, automaton, automaton with array of counters,
one succ.

20030820 189

190 MAX NSCC,CLIQUE

4.7 alldifferent modulo

Origin Derived from alldifferent.

Constraint alldifferent modulo(VARIABLES, M)

Synonym(s) alldiff modulo, alldistinct modulo.

Argument(s) VARIABLES : collection(var − dvar)
M : int

Restriction(s) required(VARIABLES, var)
M 6= 0
M ≥ |VARIABLES|

Purpose Enforce all variables of the collection VARIABLES to have a distinct rest when divided by M.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var mod M = variables2.var mod M

Graph property(ies) MAX NSCC ≤ 1

Example alldifferent modulo

0
BB@

8
>><
>>:

var − 25,
var − 1,
var − 14,
var − 3

9
>>=
>>;
, 5

1
CCA

The equivalences classes associated to values 25, 1, 14 and 3 are respectively equal
to 25 mod 5 = 0, 1 mod 5 = 1, 14 mod 5 = 4 and 3 mod 5 = 3. Since they are
distinct the alldifferent modulo constraint holds. Parts (A) and (B) of Figure 4.11
respectively show the initial and final graph. Since we use the MAX NSCC graph
property we show one of the largest strongly connected component of the final graph.

Graph model Exploit the same model used for the alldifferent constraint. We replace the binary
equality constraint by an other equivalence relation depicted by the arc constraint. We
generate a clique with a binary equality modulo M constraint between each pair of ver-
tices (including a vertex and itself) and state that the size of the largest strongly connected
component should not exceed one.

Automaton Figure 4.12 depicts the automaton associated to the alldifferent modulo constraint.
To each item of the collection VARIABLES corresponds a signature variable Si, which is
equal to 1. The automaton counts for each equivalence class the number of used values and
finally imposes that each equivalence class is used at most one time.

20030820 191

VARIABLES

1

2

3

4

MAX_NSCC=1

MAX_NSCC

1:25 2:1 3:14 4:3

(A) (B)

Figure 4.11: Initial and final graph of the alldifferent modulo constraint

1,

i i{C[VAR mod M]=C[VAR mod M]+1}

$

t:
arith(C,<,2)

s

{C[_]=0}

Figure 4.12: Automaton of the alldifferent modulo constraint

192 MAX NSCC,CLIQUE

See also alldifferent.

Key words value constraint, modulo, all different, automaton, automaton with array of counters,
one succ.

20030820 193

194 MAX NCC,PRODUCT

4.8 alldifferent on intersection

Origin Derived from common and alldifferent.

Constraint alldifferent on intersection(VARIABLES1, VARIABLES2)

Synonym(s) alldiff on intersection, alldistinct on intersection.

Argument(s) VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)

Restriction(s) required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose The values which both occur in the VARIABLES1 and VARIABLES2 collections have only one
occurrence.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) MAX NCC ≤ 2

Example alldifferent on intersection

0
BBBBBBBBBBBBBB@

8
>><
>>:

var− 5,
var− 9,
var− 1,
var− 5

9
>>=
>>;
,

8
>>>>>><
>>>>>>:

var− 2,
var− 1,
var− 6,
var− 9,
var− 6,
var− 2

9
>>>>>>=
>>>>>>;

1
CCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.13 respectively show the initial and final graph. Since we
use the MAX NCC graph property we show one of the largest connected component
of the final graph. The alldifferent on intersection constraint holds since each
connected component has at most two vertices. Observe that all the vertices corresponding
to the variables that take values 5, 2 or 6 were removed from the final graph since there is
no arc for which the associated equality constraint holds.

Automaton Figure 4.14 depicts the automaton associated to the alldifferent on intersection

constraint. To each variable VAR1i of the collection VARIABLES1 corresponds a signature
variable Si, which is equal to 0. To each variable VAR2i of the collection VARIABLES2 cor-
responds a signature variable Si+|VARIABLES1|, which is equal to 1. The automaton first counts

20040530 195

the number of occurrences of each value assigned to the variables of the VARIABLES1 col-
lection. It then counts the number of occurrences of each value assigned to the variables of
the VARIABLES2 collection. Finally, the automaton imposes that each value is not taken by
two variables of both collections.

See also alldifferent, common, nvalue on intersection, same intersection.

Key words value constraint, all different, connected component, constraint on the intersection,
automaton, automaton with array of counters, acyclic, bipartite, no loop.

196 MAX NCC,PRODUCT

VARIABLES1

VARIABLES2

1

1234 56

234

MAX_NCC=2

MAX_NCC

2:9

4:9

3:1

2:1

(A) (B)

Figure 4.13: Initial and final graph of the alldifferent on intersection con-
straint

i i

1,
{D[VAR]=D[VAR]+1}

i i

1,
{D[VAR]=D[VAR]+1}i

0,

i i
{C[VAR]=C[VAR]+1}

$

t:
arith_or(C,D,<,2)

{C[_]=0,D[_]=0}

s

Figure 4.14: Automaton of the alldifferent on intersection constraint

20040530 197

198 MAX NSCC,CLIQUE

4.9 alldifferent partition

Origin Derived from alldifferent.

Constraint alldifferent partition(VARIABLES, PARTITIONS)

Synonym(s) alldiff partition, alldistinct partition.

Type(s) VALUES : collection(val− int)

Argument(s) VARIABLES : collection(var− dvar)
PARTITIONS : collection(p− VALUES)

Restriction(s) required(VALUES, val)
distinct(VALUES, val)
|VARIABLES| ≤ |PARTITIONS|
required(VARIABLES, var)
|PARTITIONS| ≥ 2
required(PARTITIONS, p)

Purpose Enforce all variables of the collection VARIABLES to take values which belong to distinct parti-
tions.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) in same partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) MAX NSCC ≤ 1

Example alldifferent partition

0
BB@

{var − 6, var − 3, var − 4},8
<
:

p− {val − 1, val − 3},
p− {val − 4},
p− {val − 2, val − 6}

9
=
;

1
CCA

Since all variables take values that are located within distinct partitions the
alldifferent partition constraint holds. Parts (A) and (B) of Figure 4.15 re-
spectively show the initial and final graph. Since we use the MAX NSCC graph
property we show one of the largest strongly connected component of the final graph.

Graph model Similar to the alldifferent constraint, but we replace the binary equality constraint of
the alldifferent constraint by the fact that two variables are respectively assigned to two
values that belong to the same partition. We generate a clique with a in same partition

constraint between each pair of vertices (including a vertex and itself) and state that the
size of the largest strongly connected component should not exceed one.

See also alldifferent, in same partition.

Key words value constraint, partition, all different, one succ.

20030820 199

VARIABLES

1

2

3

MAX_NSCC=1

MAX_NSCC

1:6 2:3 3:4

(A) (B)

Figure 4.15: Initial and final graph of the alldifferent partition constraint

200 MAX NSCC,NARC NO LOOP,PRODUCT (CLIQUE ,LOOP ,=)

4.10 alldifferent same value

Origin Derived from alldifferent.

Constraint alldifferent same value(NSAME, VARIABLES1, VARIABLES2)

Synonym(s) alldiff same value, alldistinct same value.

Argument(s) NSAME : dvar

VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)

Restriction(s) NSAME ≥ 0
NSAME ≤ |VARIABLES1|
|VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose
All the values assigned to the variables of the collection VARIABLES1 are pairwise dis-
tinct. NSAME is equal to number of constraints of the form VARIABLES1[i].var =
VARIABLES2[i].var (1 ≤ i ≤ |VARIABLES1|) that hold.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT (CLIQUE ,LOOP ,=) 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) •MAX NSCC ≤ 1
• NARC NO LOOP = NSAME

Example alldifferent same value

0
BBBBBBBBBB@

2,

8
>><
>>:

var − 7,
var − 3,
var − 1,
var − 5

9
>>=
>>;
,

8
>><
>>:

var− 1,
var− 3,
var− 1,
var− 7

9
>>=
>>;

1
CCCCCCCCCCA

Part (A) of Figure 4.16 gives the initial graph that is generated. Variables of collec-
tion VARIABLES1 are coloured, while variables of collection VARIABLES2 are kept in
white. Part (B) represents the final graph associated to the example. In this graph each
vertex constitutes a strongly connected component and the number of arcs that do not
correspond to a loop is equal to 2 (i.e. NSAME).

20000128 201

Graph model The arc generator PRODUCT (CLIQUE ,LOOP ,=) is used in order to generate all the
arcs of the initial graph:

• The arc generator CLIQUE creates all links between the items of the first collection
VARIABLES1,

• The arc generator LOOP creates one loop for all items of the second collection
VARIABLES2,

• Finally the arc generator PRODUCT (=) creates an arc between items located at
the same position in the collections VARIABLES1 and VARIABLES2.

Automaton Figure 4.17 depicts the automaton associated to the alldifferent same value con-
straint. Let VAR1i and VAR2i respectively denote the ith variables of the VARIABLES1

and VARIABLES2 collections. To each pair of variables (VAR1i, VAR2i) corresponds a
signature variable Si. The following signature constraint links VAR1i, VAR2i and Si:
VAR1i = VAR2i ⇔ Si.

Usage When all variables of the second collection are initially bound to distinct values the
alldifferent same value constraint can be explained in the following way:

• We interpret the variables of the second collection as the previous solution of a prob-
lem where all variables have to be distinct.

• We interpret the variables of the first collection as the current solution to find, where
all variables should again be pairwise distinct.

The variable NSAME mesures the distance of the current solution from the previous solu-
tion. This corresponds to the number of variables of VARIABLES2 that are not assigned to
the same previous value.

Key words proximity constraint, automaton, automaton with array of counters.

2

4 3

4 3

21

2

4 3

4 3

21

(A) (B)

11

Figure 4.16: Initial and final graph of the alldifferent same value constraint

202 MAX NSCC,NARC NO LOOP,PRODUCT (CLIQUE ,LOOP ,=)

VAR1 =VAR2 ,i i

i i{C[VAR1]=C[VAR1]+1,D=D+1}i i

VAR1 <>VAR2 ,i i
{C[VAR1]=C[VAR1]+1}

$

t:

NSAME=D

arith(C,<,2)

{C[_]=0,D=0}

s

Figure 4.17: Automaton of the alldifferent same value constraint

20000128 203

204 PREDEFINED

4.11 allperm

Origin [64]

Constraint allperm(MATRIX)

Type(s) VECTOR : collection(var− dvar)

Argument(s) MATRIX : collection(vec− VECTOR)

Restriction(s) required(VECTOR, var)
required(MATRIX, vec)
same size(MATRIX, vec)

Purpose Given a matrix of domain variables, enforces that the first row is lexicographically less than or
equal to all permutations of all other rows.

Example allperm

„
vec − {var − 1, var − 2, var − 3},
vec − {var − 3, var − 1, var − 2}

ff «

The previous constraint holds since vector 〈1, 2, 3〉 is lexicographically less than or
equal to all the permutations of vector 〈3, 1, 2〉 (i.e. 〈1, 2, 3〉, 〈1, 3, 2〉, 〈2, 1, 3〉, 〈2, 3, 1〉,
〈3, 1, 2〉, 〈3, 2, 1〉).

Usage A symmetry-breaking constraint.

See also lex2, lex lesseq.

Key words predefined constraint, order constraint, matrix, matrix model, symmetry,
lexicographic order.

20031008 205

206 NARC, SELF

4.12 among

Origin [37]

Constraint among(NVAR, VARIABLES, VALUES)

Argument(s) NVAR : dvar

VARIABLES : collection(var − dvar)
VALUES : collection(val − int)

Restriction(s) NVAR ≥ 0
NVAR ≤ |VARIABLES|
required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)

Purpose NVAR is the number of variables of the collection VARIABLES which take their value in VALUES.

Arc input(s) VARIABLES

Arc generator SELF 7→ collection(variables)

Arc arity 1

Arc constraint(s) in(variables.var, VALUES)

Graph property(ies) NARC = NVAR

Example among

0
BBBBBB@

3,

8
>>>><
>>>>:

var− 4,
var− 5,
var− 5,
var− 4,
var− 1

9
>>>>=
>>>>;
,

{val − 1, val − 5, val − 8}

1
CCCCCCA

Parts (A) and (B) of Figure 4.18 respectively show the initial and final graph. Since we use
the NARC graph property, the unary arcs of the final graph are stressed in bold.

VARIABLES

12345

NARC=3

2:5 3:5 5:1

(A) (B)

Figure 4.18: Initial and final graph of the among constraint

Graph model The arc constraint corresponds to the unary constraint in(variables.var, VALUES) de-
fined in this catalog. Since this is a unary constraint we employ the SELF arc generator in
order to produce an initial graph with a single loop on each vertex.

20000128 207

Automaton Figure 4.19 depicts the automaton associated to the among constraint. To each variable
VARi of the collection VARIABLES corresponds a 0-1 signature variable Si. The following
signature constraint links VARi and Si: VARi ∈ VALUES ⇔ Si. The automaton counts the
number of variables of the VARIABLES collection which take their value in VALUES and
finally assigns this number to NVAR.

in(VAR ,VALUES),i
{C=C+1}

$

t:

not_in(VAR ,VALUES)i

NVAR=C

s

{C=0}

Figure 4.19: Automaton of the among constraint

C1

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0

C =00 C =NVARn

Q =tn

Figure 4.20: Hypergraph of the reformulation corresponding to the automaton of the
among constraint

Remark A similar constraint called between was introduced in CHIP in 1990.

The common constraint can be seen as a generalization of the among constraint where we
allow the val attributes of the VALUES collection to be domain variables.

See also among diff 0, exactly, global cardinality, count, common, nvalue, max nvalue,
min nvalue.

Key words value constraint, counting constraint, automaton, automaton with counters,
alpha-acyclic constraint network(2).

208 NARC, SELF

4.13 among diff 0

Origin Used in the automaton of nvalue.

Constraint among diff 0(NVAR, VARIABLES)

Argument(s) NVAR : dvar

VARIABLES : collection(var − dvar)

Restriction(s) NVAR ≥ 0
NVAR ≤ |VARIABLES|
required(VARIABLES, var)

Purpose NVAR is the number of variables of the collection VARIABLES which take a value different from
0.

Arc input(s) VARIABLES

Arc generator SELF 7→ collection(variables)

Arc arity 1

Arc constraint(s) variables.var 6= 0

Graph property(ies) NARC = NVAR

Example among diff 0

0
BBBB@

3,

8
>>>><
>>>>:

var− 0,
var− 5,
var− 5,
var− 0,
var− 1

9
>>>>=
>>>>;

1
CCCCA

Parts (A) and (B) of Figure 4.21 respectively show the initial and final graph. Since we use
the NARC graph property, the unary arcs of the final graph are stressed in bold.

VARIABLES

12345

NARC=3

2:5 3:5 5:1

(A) (B)

Figure 4.21: Initial and final graph of the among diff 0 constraint

Graph model Since this is a unary constraint we employ the SELF arc generator in order to produce an
initial graph with a single loop on each vertex.

20040807 209

{C=C+1}

VAR <>0,
i VAR =0i

$

t:
NVAR=C

s

{C=0}

Figure 4.22: Automaton of the among diff 0 constraint

C1

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0

C =00 C =NVARn

Q =tn

Figure 4.23: Hypergraph of the reformulation corresponding to the automaton of the
among diff 0 constraint

210 NARC, SELF

Automaton Figure 4.22 depicts the automaton associated to the among diff 0 constraint. To each
variable VARi of the collection VARIABLES corresponds a 0-1 signature variable Si. The
following signature constraint links VARi and Si: VARi 6= 0 ⇔ Si. The automaton counts
the number of variables of the VARIABLES collection which take a value different from 0
and finally assigns this number to NVAR.

See also among, nvalue.

Key words value constraint, counting constraint, joker value, automaton, automaton with counters,
alpha-acyclic constraint network(2).

20040807 211

212 NARC, SELF

4.14 among interval

Origin Derived from among.

Constraint among interval(NVAR, VARIABLES, LOW, UP)

Argument(s) NVAR : dvar

VARIABLES : collection(var − dvar)
LOW : int

UP : int

Restriction(s) NVAR ≥ 0
NVAR ≤ |VARIABLES|
required(VARIABLES, var)
LOW ≤ UP

Purpose NVAR is the number of variables of the collection VARIABLES taking a value that is located
within interval [LOW, UP].

Arc input(s) VARIABLES

Arc generator SELF 7→ collection(variables)

Arc arity 1

Arc constraint(s) • LOW ≤ variables.var
• variables.var ≤ UP

Graph property(ies) NARC = NVAR

Example among interval

0
BBBB@

3,

8
>>>><
>>>>:

var − 4,
var − 5,
var − 8,
var − 4,
var − 1

9
>>>>=
>>>>;
, 3, 5

1
CCCCA

The constraint holds since we have 3 values, namely 4, 5 and 4 which are situated
within interval [3, 5]. Parts (A) and (B) of Figure 4.24 respectively show the initial and
final graph. Since we use the NARC graph property, the unary arcs of the final graph are
stressed in bold.

VARIABLES

12345

NARC=3

1:4 2:5 4:4

(A) (B)

Figure 4.24: Initial and final graph of the among interval constraint

20030820 213

Graph model The arc constraint corresponds to a unary constraint. For this reason we employ the SELF
arc generator in order to produce a graph with a single loop on each vertex.

Automaton Figure 4.25 depicts the automaton associated to the among interval constraint. To each
variable VARi of the collection VARIABLES corresponds a 0-1 signature variable Si. The
following signature constraint links VARi and Si: LOW ≤ VARi ∧ VARi ≤ UP ⇔ Si. The
automaton counts the number of variables of the VARIABLES collection which take their
value in [LOW, UP] and finally assigns this number to NVAR.

$

t:
NVAR=C

{C=C+1}

LOW>VAR or VAR >UPLOW<=VAR and VAR <=UPi i i is

{C=0}

Figure 4.25: Automaton of the among interval constraint

C1

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0

C =00 C =NVARn

Q =tn

Figure 4.26: Hypergraph of the reformulation corresponding to the automaton of the
among interval constraint

Remark By giving explicitly all values of the interval [LOW, UP] the among interval constraint can
be modelled with the among constraint. However when LOW − UP + 1 is a large quantity
the among interval constraint provides a more compact form.

See also among.

Key words value constraint, counting constraint, interval, automaton, automaton with counters,
alpha-acyclic constraint network(2).

214 NARC,PRODUCT

4.15 among low up

Origin [37]

Constraint among low up(LOW, UP, VARIABLES, VALUES)

Argument(s) LOW : int

UP : int

VARIABLES : collection(var − dvar)
VALUES : collection(val − int)

Restriction(s) LOW ≥ 0
LOW ≤ |VARIABLES|
UP ≥ LOW

required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)

Purpose Between LOW and UP variables of the VARIABLES collection are assigned to a value of the
VALUES collection.

Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→ collection(variables, values)

Arc arity 2

Arc constraint(s) variables.var = values.val

Graph property(ies) • NARC ≥ LOW

• NARC ≤ UP

Example among low up

0
BBBBBB@

1, 2, {var − 9, var − 2, var − 4, var − 5},8
>>>><
>>>>:

val − 0,
val − 2,
val − 4,
val − 6,
val − 8

9
>>>>=
>>>>;

1
CCCCCCA

Parts (A) and (B) of Figure 4.27 respectively show the initial and final graph. Since
we use the NARC graph property, the arcs of the final graph are stressed in bold.
The among low up constraint holds since between 1 and 2 variables of the VARIABLES

collection are assigned to a value of the VALUES collection.

Graph model Each arc constraint of the final graph corresponds to the fact that a variable is assigned to
a value that belong to the VALUES collection. The two graph properties restrict the total
number of arcs to the interval [LOW, UP].

20030820 215

Automaton Figure 4.28 depicts the automaton associated to the among low up constraint. To each
variable VARi of the collection VARIABLES corresponds a 0-1 signature variable Si. The
following signature constraint links VARi and Si: VARi ∈ VALUES ⇔ Si. The automa-
ton counts the number of variables of the VARIABLES collection which take their value in
VALUES and finally checks that this number is within the interval [LOW, UP].

Used in among seq, cycle card on path, interval and count, sliding card skip0.

See also among.

Key words value constraint, counting constraint, automaton, automaton with counters,
alpha-acyclic constraint network(2), acyclic, bipartite, no loop.

216 NARC,PRODUCT

VARIABLES

VALUES

1

12 345

234

NARC=2

2:2

2:2

3:4

3:4

(A) (B)

Figure 4.27: Initial and final graph of the among low up constraint

in(VAR ,VALUES),i
{C=C+1}

$

not_in(VAR ,VALUES)i

t:
LOW<=C and C<=UP

{C=0}

s

Figure 4.28: Automaton of the among low up constraint

C1

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0

C =00

Q =tn

LOW<=C and C <=UP n n

Figure 4.29: Hypergraph of the reformulation corresponding to the automaton of the
among low up constraint

20030820 217

218 NARC, SELF

4.16 among modulo

Origin Derived from among.

Constraint among modulo(NVAR, VARIABLES, REMAINDER, QUOTIENT)

Argument(s) NVAR : dvar

VARIABLES : collection(var − dvar)
REMAINDER : int

QUOTIENT : int

Restriction(s) NVAR ≥ 0
NVAR ≤ |VARIABLES|
required(VARIABLES, var)
REMAINDER ≥ 0
REMAINDER < QUOTIENT

QUOTIENT > 0

Purpose NVAR is the number of variables of the collection VARIABLES taking a value that is congruent to
REMAINDER modulo QUOTIENT.

Arc input(s) VARIABLES

Arc generator SELF 7→ collection(variables)

Arc arity 1

Arc constraint(s) variables.var mod QUOTIENT = REMAINDER

Graph property(ies) NARC = NVAR

Example among modulo

0
BBBB@

3,

8
>>>><
>>>>:

var − 4,
var − 5,
var − 8,
var − 4,
var − 1

9
>>>>=
>>>>;
, 0, 2

1
CCCCA

In this example REMAINDER = 0 and QUOTIENT = 2 specifies that we count the
number of even values taken by the different variables. Parts (A) and (B) of Figure 4.30
respectively show the initial and final graph. Since we use the NARC graph property, the
unary arcs of the final graph are stressed in bold.

Graph model The arc constraint corresponds to a unary constraint. For this reason we employ the SELF
arc generator in order to produce a graph with a single loop on each vertex.

Automaton Figure 4.31 depicts the automaton associated to the among modulo constraint. To each
variable VARi of the collection VARIABLES corresponds a 0-1 signature variable Si. The
following signature constraint links VARi and Si: VARi mod QUOTIENT = REMAINDER ⇔
Si.

20030820 219

VARIABLES

12345

NARC=3

1:4 3:8 4:4

(A) (B)

Figure 4.30: Initial and final graph of the among modulo constraint

$

t:
NVAR=C

VAR mod QUOTIENT = REMAINDER,i
{C=C+1}

iVAR mod QUOTIENT<>REMAINDERs

{C=0}

Figure 4.31: Automaton of the among modulo constraint

C1

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0

C =00 C =NVARn

Q =tn

Figure 4.32: Hypergraph of the reformulation corresponding to the automaton of the
among modulo constraint

220 NARC, SELF

Remark By giving explicitly all values v which satisfy the equality vmodQUOTIENT = REMAINDER

the among modulo constraint can be modelled with the among constraint. However the
among modulo constraint provides a more compact form.

See also among.

Key words value constraint, counting constraint, modulo, automaton, automaton with counters,
alpha-acyclic constraint network(2).

20030820 221

222 NARC,PATH

4.17 among seq

Origin [37]

Constraint among seq(LOW, UP, SEQ, VARIABLES, VALUES)

Argument(s) LOW : int

UP : int

SEQ : int

VARIABLES : collection(var − dvar)
VALUES : collection(val − int)

Restriction(s) LOW ≥ 0
LOW ≤ |VARIABLES|
UP ≥ LOW

SEQ > 0
SEQ ≥ LOW

SEQ ≤ |VARIABLES|
required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)

Purpose Constrains all sequences of SEQ consecutive variables of the collection VARIABLES to take at
least LOW values in VALUES and at most UP values in VALUES.

Arc input(s) VARIABLES

Arc generator PATH 7→ collection

Arc arity SEQ

Arc constraint(s) among low up(LOW, UP, collection, VALUES)

Graph property(ies) NARC = |VARIABLES| − SEQ + 1

Example among seq

0
BBBBBBBBBBBBBBBBBB@

1, 2, 4,

8
>>>>>>>><
>>>>>>>>:

var − 9,
var − 2,
var − 4,
var − 5,
var − 5,
var − 7,
var − 2

9
>>>>>>>>=
>>>>>>>>;

,

8
>>>><
>>>>:

val− 0,
val− 2,
val− 4,
val− 6,
val− 8

9
>>>>=
>>>>;

1
CCCCCCCCCCCCCCCCCCA

The previous constraint holds since the different sequences of 4 consecutive vari-
ables contains respectively 2, 2, 1 and 1 even numbers.

20000128 223

Graph model A constraint on sliding sequences of consecutives variables. Each vertex of the graph
corresponds to a variable. Since they link SEQ variables, the arcs of the graph correspond
to hyperarcs. In order to link SEQ consecutive variables we use the arc generator PATH .
The constraint associated to an arc corresponds to the among low up constraint defined at
an other entry of this catalog.

Signature Since we use the PATH arc generator with an arity of SEQ on the items of the VARIABLES
collection, the expression |VARIABLES| − SEQ + 1 corresponds to the maximum num-
ber of arcs of the final graph. Therefore we can rewrite the graph property NARC =
|VARIABLES| − SEQ + 1 to NARC ≥ |VARIABLES| − SEQ + 1 and simplify NARC to
NARC.

Algorithm [65].

See also among, among low up.

Key words decomposition, sliding sequence constraint, sequence, hypergraph.

224 NARC, SELF

4.18 arith

Origin Used in the definition of several automata

Constraint arith(VARIABLES, RELOP, VALUE)

Argument(s) VARIABLES : collection(var − dvar)
RELOP : atom

VALUE : int

Restriction(s) required(VARIABLES, var)
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose Enforce for all variables var of the VARIABLES collection to have var RELOP VALUE.

Arc input(s) VARIABLES

Arc generator SELF 7→ collection(variables)

Arc arity 1

Arc constraint(s) variables.var RELOP VALUE

Graph property(ies) NARC = |VARIABLES|

Example arith

0
BBBB@

8
>>>><
>>>>:

var − 4,
var − 5,
var − 7,
var − 4,
var − 5

9
>>>>=
>>>>;
, <, 9

1
CCCCA

The constraint holds since all variables of are stricly less than 9. Parts (A) and (B)
of Figure 4.33 respectively show the initial and final graph. Since we use the NARC
graph property, the unary arcs of the final graph are stressed in bold.

VARIABLES

12345

NARC=5

1:4 2:5 3:7 4:4 5:5

(A) (B)

Figure 4.33: Initial and final graph of the arith constraint

Automaton Figure 4.34 depicts the automaton associated to the arith constraint. To each variable
VARi of the collection VARIABLES corresponds a 0-1 signature variable Si. The following
signature constraint links VARi and Si: VARi RELOP VALUE⇔ Si. The automaton enforces
for each variable VARi the condition VARi RELOP VALUE.

Used in arith sliding.

20040814 225

See also among, count.

Key words decomposition, value constraint, domain definition, automaton,
automaton without counters.

$

t

VAR RELOP VALUEis

Figure 4.34: Automaton of the arith constraint

226 NARC, SELF

Q =tn
Q1Q =s0

S1 S2 Sn

VAR
1

VAR
2

VAR
n

Figure 4.35: Hypergraph of the reformulation corresponding to the automaton of the
arith constraint

20040814 227

228 NARC,PRODUCT (=)

4.19 arith or

Origin Used in the definition of several automata

Constraint arith or(VARIABLES1, VARIABLES2, RELOP, VALUE)

Argument(s) VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
RELOP : atom

VALUE : int

Restriction(s) required(VARIABLES1, var)
required(VARIABLES2, var)
|VARIABLES1| = |VARIABLES2|
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose Enforce for all pairs of variables var1i, var2i of the VARIABLES1 and VARIABLES2 collections
to have var1i RELOP VALUE ∨ var2i RELOP VALUE.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT (=) 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var RELOP VALUE ∨ variables2.var RELOP VALUE

Graph property(ies) NARC = |VARIABLES1|

Example arith or

0
BBBBBBBBBBBBBB@

8
>>>><
>>>>:

var− 0,
var− 1,
var− 0,
var− 0,
var− 1

9
>>>>=
>>>>;
,

8
>>>><
>>>>:

var− 0,
var− 0,
var− 0,
var− 1,
var− 0

9
>>>>=
>>>>;
,=, 0

1
CCCCCCCCCCCCCCA

The constraint holds since for all pairs of variables var1i, var2i of the VARIABLES1 and
VARIABLES2 collections we have that at least one of the variables is equal to 0. Parts (A)
and (B) of Figure 4.36 respectively show the initial and final graphs. Since we use the
NARC graph property, the unary arcs of the final graph are stressed in bold.

Automaton Figure 4.37 depicts the automaton associated to the arith or constraint. Let VAR1i and
VAR2i be the ith variables of the VARIABLES1 and VARIABLES2 collections. To each pair
of variables (VAR1i, VAR2i) corresponds a signature variable Si. The following signature
constraint links VAR1i, VAR2i and Si: VAR1i RELOP VALUE ∨ VAR2i RELOP VALUE ⇔
Si. The automaton enforces for each pair of variables VAR1i,VAR2i the condition
VAR1i RELOP VALUE ∨ VAR2i RELOP VALUE.

20040814 229

VARIABLES1

VARIABLES2

1

1

2

2

3

3

4

4

5

5

NARC=5

1:0

1:0

2:1

2:0

3:0

3:0

4:0

4:1

5:1

5:0

(A) (B)

Figure 4.36: Initial and final graph of the arith or constraint

$

t

s VAR1 RELOP VALUE or VAR2 RELOP VALUEi i

Figure 4.37: Automaton of the arith or constraint

Q =tn

VAR2
 1

VAR2
 2

VAR2
 n

VAR1
 1

VAR1
 2

VAR1
 n

Q1Q =s0

S1 S2 Sn

Figure 4.38: Hypergraph of the reformulation corresponding to the automaton of the
arith or constraint

230 NARC,PRODUCT (=)

See also arith.

Key words decomposition, value constraint, automaton, automaton without counters, acyclic,
bipartite, no loop.

20040814 231

232 NARC,PATH 1

4.20 arith sliding

Origin Used in the definition of some automaton

Constraint arith sliding(VARIABLES, RELOP, VALUE)

Argument(s) VARIABLES : collection(var − dvar)
RELOP : atom

VALUE : int

Restriction(s) required(VARIABLES, var)
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose Enforce for all sequences of variables var1, var2, . . . , vari of the VARIABLES collection to
have (var1 + var2 + . . .+ vari) RELOP VALUE.

Arc input(s) VARIABLES

Arc generator PATH 1 7→ collection

Arc arity ∗

Arc constraint(s) arith(collection, RELOP, VALUE)

Graph property(ies) NARC = |VARIABLES|

Example arith sliding

0
BBBBBBBB@

8
>>>>>>>><
>>>>>>>>:

var− 0,
var− 0,
var− 1,
var− 2,
var− 0,
var− 0,
var−−3

9
>>>>>>>>=
>>>>>>>>;

, <, 4

1
CCCCCCCCA

The previous constraint holds since all the following seven inequalities hold:

• 0 < 4,
• 0 + 0 < 4,
• 0 + 0 + 1 < 4,
• 0 + 0 + 1 + 2 < 4,
• 0 + 0 + 1 + 2 + 0 < 4,
• 0 + 0 + 1 + 2 + 0 + 0 < 4,
• 0 + 0 + 1 + 2 + 0 + 0− 3 < 4.

Automaton Figure 4.39 depicts the automaton associated to the arith sliding constraint. To each
item of the collection VARIABLES corresponds a signature variable Si, which is equal to 0.

See also arith, cumulative.

Key words decomposition, sliding sequence constraint, sequence, hypergraph, automaton,
automaton with counters.

20040814 233

i

0,
{C=C+VAR }

i

0,C RELOP VALUE
{C=C+VAR }i

$, C RELOP VALUE

$

t

s

{C=0}

Figure 4.39: Automaton of the arith sliding constraint

Q =s0
Q1 Q =tn

VAR 1
C =01

VAR 2 VAR n

S1 S2 Sn

C2 Cn

Figure 4.40: Hypergraph of the reformulation corresponding to the automaton of the
arith sliding constraint

234 PRODUCT , SUCC

4.21 assign and counts

Origin N. Beldiceanu

Constraint assign and counts(COLOURS, ITEMS, RELOP, LIMIT)

Argument(s) COLOURS : collection(val− int)
ITEMS : collection(bin− dvar, colour − dvar)
RELOP : atom

LIMIT : dvar

Restriction(s) required(COLOURS, val)
distinct(COLOURS, val)
required(ITEMS, [bin, colour])
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose
Given several items (each of them having a specific colour which may not be initially fixed), and
different bins, assign each item to a bin, so that the total number n of items of colour COLOURS
in each bin satisfies the condition n RELOP LIMIT.

Derived Collection(s) col(VALUES − collection(val− int), [item(val − COLOURS.val)])

Arc input(s) ITEMS ITEMS

Arc generator PRODUCT 7→ collection(items1, items2)

Arc arity 2

Arc constraint(s) items1.bin = items2.bin

Sets

SUCC 7→2
4

source,

variables − col

„
VARIABLES − collection(var− dvar),
[item(var− ITEMS.colour)]

«
3
5

Constraint(s) on sets counts(VALUES, variables, RELOP, LIMIT)

Example assign and counts

0
BBBB@

{val − 4},8
>><
>>:

bin − 1 colour − 4,
bin − 3 colour − 4,
bin − 1 colour − 4,
bin − 1 colour − 5

9
>>=
>>;
,≤, 2

1
CCCCA

Parts (A) and (B) of Figure 4.41 respectively show the initial and final graph. The
final graph consists of the following two connected components:

• The connected component containing six vertices corresponds to the items which are
assigned to bin 1.

20000128 235

• The connected component containing two vertices corresponds to the items which
are assigned to bin 3.

The assign and counts constraint holds since for each set of successors of the vertices
of the final graph no more than two items take colour 4. Figure 4.42 shows the solution
associated to the example. The items and the bins are respectively represented by little
squares and by the different columns. Each little square contains the value of the key

attribute of the item to which it corresponds. The items for which the colour attribute is
equal to 4 are located under the thick line.

ITEMS

ITEMS

1

1234

234

ITEMS

ITEMS

1:1,4

1:1,4 3:1,44:1,5

2:3,4

2:3,4

3:1,44:1,5

(A) (B)

Figure 4.41: Initial and final graph of the assign and counts constraint

<>4

=4

<3

1 2 3 4 5

1

3

4

2

Figure 4.42: Assignment of the items to the bins

Graph model We enforce the counts constraint on the colour of the items that are assigned to the same
bin.

Automaton Figure 4.43 depicts the automaton associated to the assign and counts constraint. To
each colour attribute COLOURi of the collection ITEMS corresponds a 0-1 signature vari-
able Si. The following signature constraint links COLOURi and Si: COLOURi ∈ COLOURS⇔
Si. For all items of the collection ITEMS for which the colour attribute takes its value in
COLOURS, counts for each value assigned to the bin attribute its number of occurrences n,
and finally imposes the condition n RELOP LIMIT.

236 PRODUCT , SUCC

Usage Some persons have pointed out that it is impossible to use constraints such as among,
atleast, atmost, count, or global cardinality if the set of variables is not initially
known. However, this is for instance required in practice for some timetabling problems.

See also count, counts.

Key words assignment, coloured, automaton, automaton with array of counters, derived collection.

not_in(COLOUR ,COLOURS) i
in(COLOUR ,COLOURS), i

$

i i

t:
arith(C,RELOP,LIMIT)

{C[BIN]=C[BIN]+1}
s

{C[_]=0}

Figure 4.43: Automaton of the assign and counts constraint

20000128 237

238 PRODUCT , SUCC

4.22 assign and nvalues

Origin Derived from assign and counts and nvalues.

Constraint assign and nvalues(ITEMS, RELOP, LIMIT)

Argument(s) ITEMS : collection(bin − dvar, value − dvar)
RELOP : atom

LIMIT : dvar

Restriction(s) required(ITEMS, [bin, value])
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose
Given several items (each of them having a specific value which may not be initially fixed),
and different bins, assign each item to a bin, so that the number n of distinct values in each bin
satisfies the condition n RELOP LIMIT.

Arc input(s) ITEMS ITEMS

Arc generator PRODUCT 7→ collection(items1, items2)

Arc arity 2

Arc constraint(s) items1.bin = items2.bin

Sets
SUCC 7→»

source,
variables − col(VARIABLES − collection(var − dvar), [item(var − ITEMS.value)])

–

Constraint(s) on sets nvalues(variables, RELOP, LIMIT)

Example assign and nvalues

0
BBBB@

8
>>>><
>>>>:

bin − 2 value − 3,
bin − 1 value − 5,
bin − 2 value − 3,
bin − 2 value − 3,
bin − 2 value − 4

9
>>>>=
>>>>;
,≤, 2

1
CCCCA

Parts (A) and (B) of Figure 4.44 respectively show the initial and final graph. The
final graph consists of the following two connected components:

• The connected component containing eight vertices corresponds to the items which
are assigned to bin 2.

• The connected component containing two vertices corresponds to the items which
are assigned to bin 1.

The assign and nvalues constraint holds since for each set of successors of the vertices
of the final graph no more than two distinct values are used:

• The unique item assigned to bin 1 uses value 5.

20000128 239

ITEMS

ITEMS

1

12 345

2345

ITEMS

ITEMS

1:2,3

1:2,33:2,3 4:2,35:2,4

2:1,5

2:1,5

3:2,3 4:2,35:2,4

(A) (B)

Figure 4.44: Initial and final graph of the assign and nvalues constraint

<3

Second value

First value 5 3

4

1 2 3 4 5

Figure 4.45: An assignment with at most two distinct values in parallel

240 PRODUCT , SUCC

• Items assigned to bin 2 use values 3 and 4.

Figure 4.45 depicts the solution corresponding to the example.

Graph model We enforce the nvalue constraint on the items that are assigned to the same bin.

Usage Let us give two examples where the assign and nvalues constraint is useful:

• Quite often, in bin-packing problems, each item has a specific type, and one wants to
assign items of similar type to each bin.

• In a vehicle routing problem, one wants to restrict the number of towns visited by
each vehicle. Note that several customers may be located at the same town. In this
example, each bin would correspond to a vehicle, each item would correspond to a
visit to a customer, and the colour of an item would be the location of the correspond-
ing customer.

See also nvalue, nvalues.

Key words assignment, number of distinct values.

20000128 241

242 NARC, SELF

4.23 atleast

Origin CHIP

Constraint atleast(N, VARIABLES, VALUE)

Argument(s) N : int

VARIABLES : collection(var − dvar)
VALUE : int

Restriction(s) N ≥ 0
N ≤ |VARIABLES|
required(VARIABLES, var)

Purpose At least N variables of the VARIABLES collection are assigned to value VALUE.

Arc input(s) VARIABLES

Arc generator SELF 7→ collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUE

Graph property(ies) NARC ≥ N

Example atleast(2, {var − 4, var − 2, var − 4, var − 5}, 4)

Parts (A) and (B) of Figure 4.46 respectively show the initial and final graph. Since we
use the NARC graph property, the unary arcs of the final graph are stressed in bold. The
atleast constraint holds since at least 2 variables are assigned to value 4.

VARIABLES

1234

NARC=2

1:4 3:4

(A) (B)

Figure 4.46: Initial and final graph of the atleast constraint

Graph model Since we use a unary arc constraint (VALUE is fixed) we employ the SELF arc generator in
order to produce a graph with a single loop on each vertex.

Automaton Figure 4.47 depicts the automaton associated to the atleast constraint. To each variable
VARi of the collection VARIABLES corresponds a 0-1 signature variable Si. The following
signature constraint links VARi and Si: VARi = VALUE ⇔ Si. The automaton counts the
number of variables of the VARIABLES collection which are assigned to VALUE and finally
checks that this number is greater than or equal to N.

20030820 243

{C=C+1}
i

VAR =VALUE,
i

VAR <>VALUE

$

t:

N<=C

s

{C=0}

Figure 4.47: Automaton of the atleast constraint

C1

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0

C =00

Q =tn

C >=Nn

Figure 4.48: Hypergraph of the reformulation corresponding to the automaton of the
atleast constraint

244 NARC, SELF

See also atmost, among, exactly.

Key words value constraint, at least, automaton, automaton with counters,
alpha-acyclic constraint network(2).

20030820 245

246 NARC, SELF

4.24 atmost

Origin CHIP

Constraint atmost(N, VARIABLES, VALUE)

Argument(s) N : int

VARIABLES : collection(var − dvar)
VALUE : int

Restriction(s) N ≥ 0
required(VARIABLES, var)

Purpose At most N variables of the VARIABLES collection are assigned to value VALUE.

Arc input(s) VARIABLES

Arc generator SELF 7→ collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUE

Graph property(ies) NARC ≤ N

Example atmost(1, {var − 4, var − 2, var − 4, var − 5}, 2)

Parts (A) and (B) of Figure 4.49 respectively show the initial and final graph. Since we
use the NARC graph property, the unary arcs of the final graph are stressed in bold. The
atmost constraint holds since at most one variable is assigned to value 2.

VARIABLES

1234

NARC=1

2:2

(A) (B)

Figure 4.49: Initial and final graph of the atmost constraint

Graph model Since we use a unary arc constraint (VALUE is fixed) we employ the SELF arc generator in
order to produce a graph with a single loop on each vertex.

Automaton Figure 4.50 depicts the automaton associated to the atmost constraint. To each variable
VARi of the collection VARIABLES corresponds a 0-1 signature variable Si. The following
signature constraint links VARi and Si: VARi = VALUE ⇔ Si. The automaton counts the
number of variables of the VARIABLES collection which are assigned to VALUE and finally
checks that this number is less than or equal to N.

20030820 247

{C=C+1}
i

VAR =VALUE,
i

VAR <>VALUE

$

t:

N>=C

s

{C=0}

Figure 4.50: Automaton of the atmost constraint

C1

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0

C =00

Q =tn

C <=Nn

Figure 4.51: Hypergraph of the reformulation corresponding to the automaton of the
atmost constraint

248 NARC, SELF

See also atleast, among, exactly, cumulative.

Key words value constraint, at most, automaton, automaton with counters,
alpha-acyclic constraint network(2).

20030820 249

250 RANGE NSCC,CLIQUE

4.25 balance

Origin N. Beldiceanu

Constraint balance(BALANCE, VARIABLES)

Argument(s) BALANCE : dvar

VARIABLES : collection(var − dvar)

Restriction(s) BALANCE ≥ 0
BALANCE ≤ |VARIABLES|
required(VARIABLES, var)

Purpose BALANCE is equal to the difference between the number of occurrence of the value that occurs
the most and the value that occurs the least within the collection of variables VARIABLES.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) RANGE NSCC = BALANCE

Example balance

0
BBBB@

2,

8
>>>><
>>>>:

var − 3,
var − 1,
var − 7,
var − 1,
var − 1

9
>>>>=
>>>>;

1
CCCCA

In this example, values 1, 3 and 7 are respectively used 3, 1 and 1 times. BALANCE

is assigned to the difference between the maximum and minimum number of the previous
occurrences (i.e. 3 − 1). Parts (A) and (B) of Figure 4.52 respectively show the initial and
final graph. Since we use the RANGE NSCC graph property, we show the largest and
smallest strongly connected components of the final graph.

Graph model The graph property RANGE NSCC constraints the difference between the sizes of the
largest and smallest strongly connected components.

Automaton Figure 4.53 depicts the automaton associated to the balance constraint. To each item of
the collection VARIABLES corresponds a signature variable Si, which is equal to 1.

Usage One application of this constraint is to enforce a balanced assignment of values, no matter
how many distinct values will be used. In this case one will push down the maximum value
of the first argument of the balance constraint.

See also balance interval, balance modulo, balance partition, tree range.

Key words value constraint, assignment, balanced assignment, automaton,
automaton with array of counters, equivalence.

20000128 251

VARIABLES

1

2

3

4

5

RANGE_NSCC=3-1=2

MIN_NSCC MAX_NSCC

1:3 2:1

4:1

5:1

3:7

(A) (B)

Figure 4.52: Initial and final graph of the balance constraint

$

t:

1,

i i{C[VAR]=C[VAR]+1}

minimum_except_0(N1,C)

BALANCE=N2−N1

maximum(N2,C)

{C[_]=0}

s

Figure 4.53: Automaton of the balance constraint

252 RANGE NSCC,CLIQUE

4.26 balance interval

Origin Derived from balance.

Constraint balance interval(BALANCE, VARIABLES, SIZE INTERVAL)

Argument(s) BALANCE : dvar

VARIABLES : collection(var− dvar)
SIZE INTERVAL : int

Restriction(s) BALANCE ≥ 0
BALANCE ≤ |VARIABLES|
required(VARIABLES, var)
SIZE INTERVAL > 0

Purpose

Consider the largest set S1 (respectively the smallest set S2) of variables of the collection
VARIABLES which take their value in a same interval [SIZE INTERVAL · k, SIZE INTERVAL ·
k + SIZE INTERVAL − 1], where k is an integer. BALANCE is equal to the difference between
the cardinality of S2 and the cardinality of S1.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var/SIZE INTERVAL = variables2.var/SIZE INTERVAL

Graph property(ies) RANGE NSCC = BALANCE

Example balance interval

0
BBBB@

3,

8
>>>><
>>>>:

var − 6,
var − 4,
var − 3,
var − 3,
var − 4

9
>>>>=
>>>>;
, 3

1
CCCCA

In the previous example, the third parameter SIZE INTERVAL defines the following
family of intervals [3 · k, 3 · k + 2], where k is an integer. Values 6,4,3,3 and 4 are
respectively located within intervals [6, 8], [3, 5], [3, 5], [3, 5] and [3, 5]. Therefore
intervals [6, 8] and [3, 5] are respectively used 1 and 4 times. BALANCE is assigned to the
difference between the maximum and minimum number of the previous occurrences (i.e.
4− 1). Parts (A) and (B) of Figure 4.54 respectively show the initial and final graph. Since
we use the RANGE NSCC graph property, we show the largest and smallest strongly
connected components of the final graph.

Graph model The graph property RANGE NSCC constraints the difference between the sizes of the
largest and smallest strongly connected components.

20030820 253

VARIABLES

1

2

3

4

5

RANGE_NSCC=4-1=3

MIN_NSCC MAX_NSCC

1:6 2:4

3:3

4:3

5:4

(A) (B)

Figure 4.54: Initial and final graph of the balance interval constraint

1,
{C[VAR /SIZE_INTERVAL]=C[VAR /SIZE_INTERVAL]+1}i i

$

t:
minimum_except_0(N1,C)

BALANCE=N2−N1

maximum(N2,C)

s

{C[_]=0}

Figure 4.55: Automaton of the balance interval constraint

254 RANGE NSCC,CLIQUE

Automaton Figure 4.55 depicts the automaton associated to the balance interval constraint. To
each item of the collection VARIABLES corresponds a signature variable Si, which is equal
to 1.

Usage One application of this constraint is to enforce a balanced assignment of interval of values,
no matter how many distinct interval of values will be used. In this case one will push down
the maximum value of the first argument of the balance interval constraint.

See also balance.

Key words value constraint, interval, assignment, balanced assignment, automaton,
automaton with array of counters, equivalence.

20030820 255

256 RANGE NSCC,CLIQUE

4.27 balance modulo

Origin Derived from balance.

Constraint balance modulo(BALANCE, VARIABLES, M)

Argument(s) BALANCE : dvar

VARIABLES : collection(var − dvar)
M : int

Restriction(s) BALANCE ≥ 0
BALANCE ≤ |VARIABLES|
required(VARIABLES, var)
M > 0

Purpose
Consider the largest set S1 (respectively the smallest set S2) of variables of the collection
VARIABLES which have the same remainder when divided by M. BALANCE is equal to the differ-
ence between the cardinality of S2 and the cardinality of S1.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var mod M = variables2.var mod M

Graph property(ies) RANGE NSCC = BALANCE

Example balance modulo

0
BBBB@

2,

8
>>>><
>>>>:

var − 6,
var − 1,
var − 7,
var − 1,
var − 5

9
>>>>=
>>>>;
, 3

1
CCCCA

In this example values 6, 1, 7, 1, 5 are respectively associated to the equivalence
classes 0, 1, 1, 1, 2. Therefore the equivalence classes 0, 1 and 2 are respectively used
1, 3 and 1 times. BALANCE is assigned to the difference between the maximum and
minimum number of the previous occurrences (i.e. 3− 1). Parts (A) and (B) of Figure 4.56
respectively show the initial and final graph. Since we use the RANGE NSCC graph
property, we show the largest and smallest strongly connected components of the final
graph.

Graph model The graph property RANGE NSCC constraints the difference between the sizes of the
largest and smallest strongly connected components.

Automaton Figure 4.57 depicts the automaton associated to the balance modulo constraint. To each
item of the collection VARIABLES corresponds a signature variable Si, which is equal to 1.

20030820 257

VARIABLES

1

2

3

4

5

RANGE_NSCC=3-1=2

MIN_NSCC MAX_NSCC

1:6 2:1

3:7

4:1

5:5

(A) (B)

Figure 4.56: Initial and final graph of the balance modulo constraint

1,
{C[VAR mod M]=C[VAR mod M]+1}i i

$

t:
minimum_except_0(N1,C)

BALANCE=N2−N1

maximum(N2,C)

{C[_]=0}

s

Figure 4.57: Automaton of the balance modulo constraint

258 RANGE NSCC,CLIQUE

Usage One application of this constraint is to enforce a balanced assignment of values, no matter
how many distinct equivalence classes will be used. In this case one will push down the
maximum value of the first argument of the balance modulo constraint.

See also balance.

Key words value constraint, modulo, assignment, balanced assignment, automaton,
automaton with array of counters, equivalence.

20030820 259

260 RANGE NSCC,CLIQUE

4.28 balance partition

Origin Derived from balance.

Constraint balance partition(BALANCE, VARIABLES, PARTITIONS)

Type(s) VALUES : collection(val− int)

Argument(s) BALANCE : dvar

VARIABLES : collection(var− dvar)
PARTITIONS : collection(p− VALUES)

Restriction(s) required(VALUES, val)
distinct(VALUES, val)
BALANCE ≥ 0
BALANCE ≤ |VARIABLES|
required(VARIABLES, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose
Consider the largest set S1 (respectively the smallest set S2) of variables of the collection
VARIABLES which take their value in the same partition of the collection PARTITIONS.BALANCE
is equal to the difference between the cardinality of S2 and the cardinality of S1.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) in same partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) RANGE NSCC = BALANCE

Example balance partition

0
BBBBBBBBBB@

1,

8
>>>><
>>>>:

var − 6,
var − 2,
var − 6,
var − 4,
var − 4

9
>>>>=
>>>>;
,

8
<
:

p− {val − 1, val − 3},
p− {val − 4},
p− {val − 2, val − 6}

9
=
;

1
CCCCCCCCCCA

In this example values 6, 2, 6, 4, 4 are respectively associated to the partitions
p − {val − 2, val − 6} and p − {val − 4}. Partitions p − {val − 4} and
p − {val − 2, val − 6} are respectively used 2 and 3 times. BALANCE is assigned to
the difference between the maximum and minimum number of the previous occurrences
(i.e. 3 − 2). Note that we don’t consider those partitions that are not used at all. Parts
(A) and (B) of Figure 4.58 respectively show the initial and final graph. Since we use the
RANGE NSCC graph property, we show the largest and smallest strongly connected
components of the final graph.

20030820 261

Graph model The graph property RANGE NSCC constraints the difference between the sizes of the
largest and smallest strongly connected components.

Usage One application of this constraint is to enforce a balanced assignment of values, no matter
how many distinct partitions will be used. In this case one will push down the maximum
value of the first argument of the balance partition constraint.

See also balance.

Key words value constraint, partition, assignment, balanced assignment, equivalence.

262 RANGE NSCC,CLIQUE

VARIABLES

1

2

3

4

5

RANGE_NSCC=3-2=1

MIN_NSCC MAX_NSCC

4:4

5:4

1:6

2:2

3:6

(A) (B)

Figure 4.58: Initial and final graph of the balance partition constraint

20030820 263

264 PRODUCT , SUCC

4.29 bin packing

Origin Derived from cumulative.

Constraint bin packing(CAPACITY, ITEMS)

Argument(s) CAPACITY : int

ITEMS : collection(bin − dvar, weight − int)

Restriction(s) CAPACITY ≥ 0
required(ITEMS, [bin, weight])
ITEMS.weight ≥ 0
ITEMS.weight ≤ CAPACITY

Purpose
Given several items of the collection ITEMS (each of them having a specific weight), and dif-
ferent bins of a fixed capacity, assign each item to a bin so that the total weight of the items in
each bin does not exceed CAPACITY.

Arc input(s) ITEMS ITEMS

Arc generator PRODUCT 7→ collection(items1, items2)

Arc arity 2

Arc constraint(s) items1.bin = items2.bin

Sets

SUCC 7→2
4

source,

variables − col

„
VARIABLES − collection(var− dvar),
[item(var− ITEMS.weight)]

«
3
5

Constraint(s) on sets sum ctr(variables,≤, CAPACITY)

Example bin packing

0
@ 5,

8
<
:

bin− 3 weight − 4,
bin− 1 weight − 3,
bin− 3 weight − 1

9
=
;

1
A

Parts (A) and (B) of Figure 4.59 respectively show the initial and final graph. Each
connected component of the final graph corresponds to the items which are all assigned
to the same bin. The bin packing constraint holds since the sum of the height of items
which are assigned to bins 1 and 3 is respectively equal to 3 and 5. The previous quantities
are both less than or equal to the maximum CAPACITY 5. Figure 4.60 shows the solution
associated to the previous example.

Graph model We enforce the sum ctr constraint on the weight of the items that are assigned to the same
bin.

Automaton Figure 4.61 depicts the automaton associated to the bin packing constraint. To each item
of the collection ITEMS corresponds a signature variable Si, which is equal to 1.

20000128 265

ITEMS

ITEMS

1

1 23

2 3

ITEMS

ITEMS

1:3,4

1:3,4 3:3,1

2:1,3

2:1,3

3:3,1

(A) (B)

Figure 4.59: Initial and final graph of the bin packing constraint

1 2 3 4 5

1

2

3

4

5
<6

2 1

3

Figure 4.60: Bin-packing solution

1,
{C[BIN]=C[BIN]+WEIGHT }i i i

$

t:
arith(C,<=,CAPACITY)

{C[_]=0}

s

Figure 4.61: Automaton of the bin packing constraint

266 PRODUCT , SUCC

Remark Note the difference with the classical bin-packing problem [66, page 221] where one wants
to find solutions that minimize the number of bins. In our case each item may be assigned
only to specific bins (i.e. the different values of the bin variable) and the goal is to find a
feasible solution. This constraint can be seen as a special case of the cumulative con-
straint [67], where all tasks durations are equal to one.

In [68] the CAPACITY parameter of the bin packing constraint is replaced by a collection
of domain variables representing the load of each bin (i.e. the sum of the weigths of the
items assigned to a bin). This allows representing problems where a minimum level has to
be reached in each bin.

Algorithm [69, 70, 71, 72, 68].

See also cumulative.

Key words resource constraint, assignment, automaton, automaton with array of counters.

20000128 267

268 MAX ID,MAX NSCC,NCC,CLIQUE

4.30 binary tree

Origin Derived from tree.

Constraint binary tree(NTREES, NODES)

Argument(s) NTREES : dvar

NODES : collection(index − int, succ − dvar)

Restriction(s) NTREES ≥ 0
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose
Cover the digraph G described by the NODES collection with NTREES binary trees in such a way
that each vertex of G belongs to one distinct binary tree. The edges of the binary trees are
directed from their leaves to their respective root.

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) •MAX NSCC ≤ 1
• NCC = NTREES

•MAX ID ≤ 2

Example binary tree

0
BBBBBBBBBB@

2,

8
>>>>>>>>>><
>>>>>>>>>>:

index − 1 succ − 1,
index − 2 succ − 3,
index − 3 succ − 5,
index − 4 succ − 7,
index − 5 succ − 1,
index − 6 succ − 1,
index − 7 succ − 7,
index − 8 succ − 5

9
>>>>>>>>>>=
>>>>>>>>>>;

1
CCCCCCCCCCA

Parts (A) and (B) of Figure 4.62 respectively show the initial and final graph. Since we use
the NCC graph property, we display the two connected components of the final graph.
Each of them corresponds to a binary tree. Since we use the MAX ID graph property,
we also show with a double circle a vertex which has a maximum number of predecessors.

The binary tree constraint holds since all strongly connected components of the final
graph have no more than one vertex, since NTREES = NCC = 2 and since MAX ID =
2.

20000128 269

NODES

1

2

3

4

5

6

7

8 MAX_NSCC=1, NCC=2
MAX_ID=2

CC#1 CC#2

1:1,1

2:2,3

3:3,5

5:5,1 6:6,1

8:8,5

4:4,7

7:7,7

(A) (B)

Figure 4.62: Initial and final graph of the binary tree constraint

270 MAX ID,MAX NSCC,NCC,CLIQUE

Graph model We use the same graph constraint as for the tree constraint, except that we add the graph
property MAX ID ≤ 2 which constraints the maximum in-degree of the final graph to
not exceed 2. MAX ID does not consider loops: This is why we do not have any problem
with the root of each tree.

See also tree.

Key words graph constraint, graph partitioning constraint, connected component, tree, one succ.

20000128 271

272 MAX ID,PRODUCT

4.31 cardinality atleast

Origin Derived from global cardinality.

Constraint cardinality atleast(ATLEAST, VARIABLES, VALUES)

Argument(s) ATLEAST : dvar

VARIABLES : collection(var − dvar)
VALUES : collection(val − int)

Restriction(s) ATLEAST ≥ 0
ATLEAST ≤ |VARIABLES|
required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)

Purpose ATLEAST is the minimum number of time that a value of VALUES is taken by the variables of the
collection VARIABLES.

Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→ collection(variables, values)

Arc arity 2

Arc constraint(s) variables.var 6= values.val

Graph property(ies) MAX ID = |VARIABLES| − ATLEAST

Example cardinality atleast

„
1, {var − 3, var− 3, var− 8},
{val − 3, val − 8}

«

In this example, values 3 and 8 are respectively used 2, and 1 times. Therefore
ATLEAST is assigned to 3 − 2 = 1. Parts (A) and (B) of Figure 4.63 respectively show the
initial and final graph. Since we use the MAX ID graph property, the vertex with the
maximum number of predecessor is stressed with a double circle.

Graph model Using directly the graph property MIN ID = ATLEAST and replacing the disequality
of the arc constraint by an equality does not work since it ignores values which are not
assigned to any variable. This comes from the fact that isolated vertices are removed from
the final graph.

Automaton Figure 4.64 depicts the automaton associated to the cardinality atleast constraint. To
each variable VARi of the collection VARIABLES corresponds a 0-1 signature variable Si.
The following signature constraint links VARi and Si: VARi ∈ VALUES⇔ Si.

Usage An application of this constraint is to enforce a minimum use of values.

20030820 273

VARIABLES

VALUES

1

12

2 3

MAX_ID=2

1:3

2:8

2:3 3:8

1:3

(A) (B)

Figure 4.63: Initial and final graph of the cardinality atleast constraint

in(VAR ,VALUES),i
inot_in(VAR ,VALUES)

$

i i{C[VAR]=C[VAR]+1}

t:
minimum_except_0(M,C)

M>=ATLEAST

s

{C[_]=0}

Figure 4.64: Automaton of the cardinality atleast constraint

274 MAX ID,PRODUCT

Remark This is a restricted form of a variant of an among constraint and of the
global cardinality constraint. In the original global cardinality constraint, one
specifies for each value its minimum and maximum number of occurrences.

Algorithm See global cardinality [19].

See also global cardinality.

Key words value constraint, assignment, at least, automaton, automaton with array of counters,
acyclic, bipartite, no loop.

20030820 275

276 MAX ID,PRODUCT

4.32 cardinality atmost

Origin Derived from global cardinality.

Constraint cardinality atmost(ATMOST, VARIABLES, VALUES)

Argument(s) ATMOST : dvar

VARIABLES : collection(var − dvar)
VALUES : collection(val − int)

Restriction(s) ATMOST ≥ 0
ATMOST ≤ |VARIABLES|
required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)

Purpose ATMOST is the maximum number of occurrences of each value of VALUES within the variables
of the collection VARIABLES.

Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→ collection(variables, values)

Arc arity 2

Arc constraint(s) variables.var = values.val

Graph property(ies) MAX ID = ATMOST

Example cardinality atmost

0
BBBBBBBBBBBB@

2,

8
>>>><
>>>>:

var − 2,
var − 1,
var − 7,
var − 1,
var − 2

9
>>>>=
>>>>;
,

8
>><
>>:

val − 5,
val − 7,
val − 2,
val − 9

9
>>=
>>;

1
CCCCCCCCCCCCA

In this example, values 5, 7, 2 and 9 are respectively used 0, 1, 2 and 0 times.
Therefore ATMOST is assigned to the maximum number of occurrences 2. Parts (A) and (B)
of Figure 4.65 respectively show the initial and final graph. Since we use the MAX ID
graph property, the vertex which has the maximum number of predecessor is stressed with
a double circle.

Automaton Figure 4.66 depicts the automaton associated to the cardinality atmost constraint. To
each variable VARi of the collection VARIABLES corresponds a 0-1 signature variable Si.
The following signature constraint links VARi and Si: VARi ∈ VALUES⇔ Si.

20030820 277

VARIABLES

VALUES

1

1234

2345

MAX_ID=2

1:2

3:2

3:7

2:7

5:2

(A) (B)

Figure 4.65: Initial and final graph of the cardinality atmost constraint

in(VAR ,VALUES),i
inot_in(VAR ,VALUES)

$

i i{C[VAR]=C[VAR]+1}

t:
arith(C,<=,ATMOST)

{C[_]=0}

s

Figure 4.66: Automaton of the cardinality atmost constraint

278 MAX ID,PRODUCT

Usage One application of this constraint is to enforce a maximum use of values.

Remark This is a restricted form of a variant of the among constraint and of the
global cardinality constraint. In the original global cardinality constraint, one
specifies for each value its minimum and maximum number of occurrences.

Algorithm See global cardinality [19].

See also global cardinality.

Key words value constraint, assignment, at most, automaton, automaton with array of counters,
acyclic, bipartite, no loop.

20030820 279

280 MAX ID,PRODUCT

4.33 cardinality atmost partition

Origin Derived from global cardinality.

Constraint cardinality atmost partition(ATMOST, VARIABLES, PARTITIONS)

Type(s) VALUES : collection(val− int)

Argument(s) ATMOST : dvar

VARIABLES : collection(var− dvar)
PARTITIONS : collection(p− VALUES)

Restriction(s) required(VALUES, val)
distinct(VALUES, val)
ATMOST ≥ 0
ATMOST ≤ |VARIABLES|
required(VARIABLES, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose ATMOST is the maximum number of time that values of a same partition of PARTITIONS are
taken by the variables of the collection VARIABLES.

Arc input(s) VARIABLES PARTITIONS

Arc generator PRODUCT 7→ collection(variables, partitions)

Arc arity 2

Arc constraint(s) in(variables.var, partitions.p)

Graph property(ies) MAX ID = ATMOST

Example cardinality atmost partition

0
BBBBBBBBBBBB@

2,

8
>>>>>><
>>>>>>:

var − 2,
var − 3,
var − 7,
var − 1,
var − 6,
var − 0

9
>>>>>>=
>>>>>>;

,

8
<
:

p− {val − 1, val − 3},
p− {val − 4},
p− {val − 2, val − 6}

9
=
;

1
CCCCCCCCCCCCA

In this example, two variables are assigned to values of the first partition, no vari-
able is assigned to a value of the second partition, and finally two variables are assigned
to values of the last partition. Therefore ATMOST is assigned to the maximum number of
occurrences 2. Parts (A) and (B) of Figure 4.67 respectively show the initial and final
graph. Since we use the MAX ID graph property, a vertex with the maximum number
of predecessor is stressed with a double circle.

20030820 281

See also global cardinality, in.

Key words value constraint, partition, at most, acyclic, bipartite, no loop.

282 MAX ID,PRODUCT

VARIABLES

PARTITIONS

1

1 23

2 3456

MAX_ID=2

1:2

3:2
 6

2:3

1:1
 3

4:15:6

(A) (B)

Figure 4.67: Initial and final graph of the cardinality atmost partition con-
straint

20030820 283

284 NARC,PATH

4.34 change

Origin CHIP

Constraint change(NCHANGE, VARIABLES, CTR)

Synonym(s) nbchanges, similarity.

Argument(s) NCHANGE : dvar

VARIABLES : collection(var − dvar)
CTR : atom

Restriction(s) NCHANGE ≥ 0
NCHANGE < |VARIABLES|
required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose NCHANGE is the number of times that constraint CTR holds on consecutive variables of the
collection VARIABLES.

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var CTR variables2.var

Graph property(ies) NARC = NCHANGE

Example change

0
BBBB@

3,

8
>>>><
>>>>:

var − 4,
var − 4,
var − 3,
var − 4,
var − 1

9
>>>>=
>>>>;
, 6=

1
CCCCA

change

0
BBBB@

1,

8
>>>><
>>>>:

var − 1,
var − 2,
var − 4,
var − 3,
var − 7

9
>>>>=
>>>>;
, >

1
CCCCA

In the first example the changes are located between values 4 and 3, 3 and 4, 4 and
1. In the second example the unique change occurs between values 4 and 3. Parts (A) and
(B) of Figure 4.68 respectively show the initial and final graph of the first example. Since
we use the NARC graph property, the arcs of the final graph are stressed in bold.

Graph model Since we are only interested by the constraints linking two consecutive items of the collec-
tion VARIABLES we use PATH to generate the arcs of the initial graph.

20000128 285

Automaton Figure 4.69 depicts the automaton associated to the change constraint. To each pair
of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a 0-
1 signature variable Si. The following signature constraint links VARi, VARi+1 and Si:
VARi CTR VARi+1 ⇔ Si.

Usage This constraint can be used in the context of timetabling problems in order to put an upper
limit on the number of changes of job types during a given period.

Remark A similar constraint appears in [73, page 338] under the name of similarity constraint.
The difference consists of replacing the arithmetic constraint CTR by a binary constraint.
When CTR is equal to 6= this constraint is called nbchanges in [40].

Algorithm [65].

Used in pattern.

See also smooth, change partition, change pair, circular change, longest change.

Key words timetabling constraint, number of changes, automaton, automaton with counters,
sliding cyclic(1) constraint network(2), sliding cyclic(1) constraint network(3), acyclic,
no loop.

286 NARC,PATH

VARIABLES

1

2

3

4

5

NARC=3

2:4

3:3

4:4

5:1

(A) (B)

Figure 4.68: Initial and final graph of the change constraint

VAR not CTR VARi i+1
{C=C+1}

i i+1VAR CTR VAR ,

$

NCHANGE=C
t:

s

{C=0}

Figure 4.69: Automaton of the change constraint

Q =s0

C =00 C1

Q1

VAR
1

S1

VAR
2

S2

VAR
n

VAR
3

S3

Q2

C2

Sn−1

VAR
n−1

Q =tn−1

C =NCHANGEn−1

Figure 4.70: Hypergraph of the reformulation corresponding to the automaton of the
change constraint

20000128 287

288 MAX NCC,MIN NCC,NARC,NCC,PATH

4.35 change continuity

Origin N. Beldiceanu

Constraint change continuity

0
BBBBBBBBBBBBBB@

NB PERIOD CHANGE,
NB PERIOD CONTINUITY,
MIN SIZE CHANGE,
MAX SIZE CHANGE,
MIN SIZE CONTINUITY,
MAX SIZE CONTINUITY,
NB CHANGE,
NB CONTINUITY,
VARIABLES,
CTR

1
CCCCCCCCCCCCCCA

Argument(s) NB PERIOD CHANGE : dvar

NB PERIOD CONTINUITY : dvar

MIN SIZE CHANGE : dvar

MAX SIZE CHANGE : dvar

MIN SIZE CONTINUITY : dvar

MAX SIZE CONTINUITY : dvar

NB CHANGE : dvar

NB CONTINUITY : dvar

VARIABLES : collection(var − dvar)
CTR : atom

Restriction(s) NB PERIOD CHANGE ≥ 0
NB PERIOD CONTINUITY ≥ 0
MIN SIZE CHANGE ≥ 0
MAX SIZE CHANGE ≥ MIN SIZE CHANGE

MIN SIZE CONTINUITY ≥ 0
MAX SIZE CONTINUITY ≥ MIN SIZE CONTINUITY

NB CHANGE ≥ 0
NB CONTINUITY ≥ 0
required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

20000128 289

On the one hand a change is defined by the fact that constraint
VARIABLES[i].var CTR VARIABLES[i + 1].var holds.
On the other hand a continuity is defined by the fact that constraint
VARIABLES[i].var CTR VARIABLES[i + 1].var does not hold.
A period of change on variables

VARIABLES[i].var, VARIABLES[i + 1].var, . . . , VARIABLES[j].var (i < j)

is defined by the fact that all constraints VARIABLES[k].var CTR VARIABLES[k + 1].var hold
for k ∈ [i, j − 1].
A period of continuity on variables

VARIABLES[i].var, VARIABLES[i + 1].var, . . . , VARIABLES[j].var (i < j)

is defined by the fact that all constraints VARIABLES[k].var CTR VARIABLES[k+ 1].var do not
hold for k ∈ [i, j − 1].
The constraint change continuity holds if and only if:

Purpose • NB PERIOD CHANGE is equal to the number of periods of change,

• NB PERIOD CONTINUITY is equal to the number of periods of continuity,

• MIN SIZE CHANGE is equal to the number of variables of the smallest period of change,

• MAX SIZE CHANGE is equal to the number of variables of the largest period of change,

• MIN SIZE CONTINUITY is equal to the number of variables of the smallest period of
continuity,

• MAX SIZE CONTINUITY is equal to the number of variables of the largest period of con-
tinuity,

• NB CHANGE is equal to the total number of changes,

• NB CONTINUITY is equal to the total number of continuities.

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var CTR variables2.var

Graph property(ies) • NCC = NB PERIOD CHANGE

•MIN NCC = MIN SIZE CHANGE

•MAX NCC = MAX SIZE CHANGE

• NARC = NB CHANGE

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var¬ CTR variables2.var

290 MAX NCC,MIN NCC,NARC,NCC,PATH

Graph property(ies) • NCC = NB PERIOD CONTINUITY

•MIN NCC = MIN SIZE CONTINUITY

•MAX NCC = MAX SIZE CONTINUITY

• NARC = NB CONTINUITY

Example change continuity

0
BBBBBBBBBBBBBBBB@

3, 2, 2, 4, 2, 4, 6, 4,

8
>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

var − 1,
var − 3,
var − 1,
var − 8,
var − 8,
var − 4,
var − 7,
var − 7,
var − 7,
var − 7,
var − 2

9
>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

, 6=

1
CCCCCCCCCCCCCCCCA

Figure 4.71 makes clear the different parameters that are associated to the given ex-
ample. We place character | for representing a change and a blank for a continuity. On
top of the solution we represent the different periods of change, while below we show the
different periods of continuity. Parts (A) and (B) of Figure 4.72 respectively show the
initial and final graph associated to the first graph constraint.

1|3|1|8 8|4|7 7 7 7|2

<−−−−−> <−−−> <−>

 <−> <−−−−−>

Figure 4.71: Periods of changes and periods of continuities

Graph model We use two graph constraints to respectively catch the constraints on the period of changes
and of the period of continuities. In both case each period corresponds to a connected
component of the final graph.

Automaton Figures 4.73 , 4.74 , 4.77 , 4.78 , 4.81 , 4.82 and 4.85 depict the automata associ-
ated to the different graph characteristics of the change continuity constraint. For
the automata that respectively compute NB PERIOD CHANGE, NB PERIOD CONTINUITY

MIN SIZE CHANGE, MIN SIZE CONTINUITY MAX SIZE CHANGE, MAX SIZE CONTINUITY

NB CHANGE and NB CONTINUITY we have a 0-1 signature variable Si for each pair of con-
secutive variables (VARi, VARi+1) of the collection VARIABLES. The following signature
constraint links VARi, VARi+1 and Si: VARi CTR VARi+1 ⇔ Si.

Remark If the variables of the collection VARIABLES have to take distinct values between 1 and the
total number of variables, we have what is called a permutation. In this case, if we choose
the binary constraint <, then MAX SIZE CHANGE gives the size of the longest run of the
permutation; A run is a maximal increasing contiguous subsequence in a permutation.

See also group, group skip isolated item, stretch path.

Key words timetabling constraint, run of a permutation, permutation, connected component,
automaton, automaton with counters, sliding cyclic(1) constraint network(2),
sliding cyclic(1) constraint network(3), acyclic, no loop, apartition.

20000128 291

VARIABLES

1

2

3

4

5

6

7

8

9

10

11

NCC=3
MIN_NCC=2
MAX_NCC=4

NARC=5

MIN_NCC MAX_NCC

10:7

11:2

1:1

2:3

3:1

4:8

5:8

6:4

(A) (B)

Figure 4.72: Initial and final graph of the change continuity constraint

292 MAX NCC,MIN NCC,NARC,NCC,PATH

VAR not CTR VARi i+1

VAR not CTR VARi i+1

VAR CTR VAR ,i i+1

VAR CTR VARi i+1 $i

t:
NB_PERIOD_CHANGE=C

{C=C+1}

$

{C=0}

s

Figure 4.73: Automaton for the NB PERIOD CHANGE parameter of the
change continuity constraint

VAR CTR VARi i+1

VAR CTR VARi i+1

VAR not CTR VAR ,i i+1

VAR not CTR VARi i+1 $i

t:

{C=C+1}

$

NB_PERIOD_CONTINUITY=C

{C=0}

s

Figure 4.74: Automaton for the NB PERIOD CONTINUITY parameter of the
change continuity constraint

20000128 293

Q =s0

C =00 C1

Q1

VAR
1

S1

VAR
2

S2

VAR
n

VAR
3

S3

Q2

C2

Sn−1

VAR
n−1

Q =tn−1

C =NB_PERIOD_CHANGEn−1

Figure 4.75: Hypergraph of the reformulation corresponding to the automaton of the
NB PERIOD CHANGE parameter of the change continuity constraint

Q =s0

C =00 C1

Q1

VAR
1

S1

VAR
2

S2

VAR
n

VAR
3

S3

Q2

C2

Sn−1

VAR
n−1

Q =tn−1

C =NB_PERIOD_CONTINUITYn−1

Figure 4.76: Hypergraph of the reformulation corresponding to the automaton of the
NB PERIOD CONTINUITY parameter of the change continuity constraint

i i+1VAR not CTR VAR ,
$

i i+1VAR not CTR VAR

i i+1VAR not CTR VAR i i+1VAR CTR VAR ,
{D=2}

i i+1VAR CTR VAR ,i i+1VAR CTR VAR ,

i i+1VAR CTR VAR ,

i i+1VAR not CTR VAR

j

MIN_SIZE_CHANGE=C
t:

{C=D}

k

$

{C=0,D=1}

s

{C=min(C,D)}

{C=D}
$, {C=min(C,D)}

$,

{D=D+1}
i

{D=D+1}

{D=2}

Figure 4.77: Automaton for the MIN SIZE CHANGE parameter of the
change continuity constraint

294 MAX NCC,MIN NCC,NARC,NCC,PATH

$

i i+1VAR CTR VAR ,

i i+1VAR not CTR VAR

i i+1VAR CTR VAR

i i+1VAR not CTR VAR ,

i i+1VAR CTR VAR

i i+1VAR CTR VAR , i i+1VAR not CTR VAR ,i i+1VAR not CTR VAR ,
j

t:

k

$

{C=0,D=1}

s

$,
$,

i

{C=D}

{C=min(C,D)}

{D=2}

{D=D+1}

{D=2}

{C=D}

{C=min(C,D)}

MIN_SIZE_CONTINUITY=C

{D=D+1}

Figure 4.78: Automaton for the MIN SIZE CONTINUITY parameter of the
change continuity constraint

VAR
1

VAR
2

S2

VAR
n

VAR
3

S3

Q2

C2

Sn−1

VAR
n−1

Q =s0

C =00 C1

Q1

S1

D =10 D1
D2

Q =tn−1

Dn−1

C =MIN_SIZE_CHANGEn−1

Figure 4.79: Hypergraph of the reformulation corresponding to the automaton of the
MIN SIZE CHANGE parameter of the change continuity constraint

VAR
1

VAR
2

S2

VAR
n

VAR
3

S3

Q2

C2

Sn−1

VAR
n−1

Q =s0

C =00 C1

Q1

S1

D =10 D1
D2

Q =tn−1

Dn−1

C =MIN_SIZE_CONTINUITYn−1

Figure 4.80: Hypergraph of the reformulation corresponding to the automaton of the
MIN SIZE CONTINUITY parameter of the change continuity constraint

20000128 295

i i+1VAR not CTR VAR , i i+1VAR CTR VAR ,

i i+1VAR CTR VAR ,
i i+1VAR not CTR VAR

t:
MAX_SIZE_CHANGE=C

s

i

$,

$

{D=D+1}

{D=D+1}{C=max(C,D),D=1}

{C=max(C,D)}

{C=0,D=1}

Figure 4.81: Automaton for the MAX SIZE CHANGE parameter of the
change continuity constraint

i i+1VAR CTR VAR

i i+1VAR not CTR VAR ,

i i+1VAR not CTR VAR ,

i i+1VAR CTR VAR ,

t:

s

i

$,

$

{C=0,D=1}

{D=D+1}

{C=max(C,D)}

{D=D+1}

MAX_SIZE_CONTINUITY=C

{C=max(C,D),D=1}

Figure 4.82: Automaton for the MAX SIZE CONTINUITY parameter of the
change continuity constraint

VAR
1

VAR
2

S2

VAR
n

VAR
3

S3

Q2

C2

Sn−1

VAR
n−1

Q =s0

C =00 C1

Q1

S1

D1
D2

Q =tn−1

Dn−1
D =00

C =MAX_SIZE_CHANGEn−1

Figure 4.83: Hypergraph of the reformulation corresponding to the automaton of the
MAX SIZE CHANGE parameter of the change continuity constraint

296 MAX NCC,MIN NCC,NARC,NCC,PATH

VAR
1

VAR
2

S2

VAR
n

VAR
3

S3

Q2

C2

Sn−1

VAR
n−1

Q =s0

C =00 C1

Q1

S1

D1
D2

Q =tn−1

Dn−1
D =00

C =MAX_SIZE_CONTINUITYn−1

Figure 4.84: Hypergraph of the reformulation corresponding to the automaton of the
MAX SIZE CONTINUITY parameter of the change continuity constraint

VAR not CTR VAR
i i+1 VAR CTR VAR

i i+1VAR CTR VAR ,
i i+1

{C=C+1}

VAR not CTR VAR ,
i i+1

{C=C+1}

$

t:
NB_CHANGE=C

$

t:
NB_CONTINUITY=C

s s

{C=0} {C=0}

Figure 4.85: Automata for the NB CHANGE and NB CONTINUITY parameters of the
change continuity constraint

Q =s0

C =00 C1

Q1

VAR
1

S1

VAR
2

S2

VAR
n

VAR
3

S3

Q2

C2

Sn−1

VAR
n−1

Q =tn−1

C =NB_CHANGEn−1

Figure 4.86: Hypergraph of the reformulation corresponding to the automaton of the
NB CHANGE parameter of the change continuity constraint

20000128 297

Q =s0

C =00 C1

Q1

VAR
1

S1

VAR
2

S2

VAR
n

VAR
3

S3

Q2

C2

Sn−1

VAR
n−1

Q =tn−1

C =NB_CONTINUITYn−1

Figure 4.87: Hypergraph of the reformulation corresponding to the automaton of the
NB CONTINUITY parameter of the change continuity constraint

298 NARC,PATH

4.36 change pair

Origin Derived from change.

Constraint change pair(NCHANGE, PAIRS, CTRX, CTRY)

Argument(s) NCHANGE : dvar

PAIRS : collection(x− dvar, y− dvar)
CTRX : atom

CTRY : atom

Restriction(s) NCHANGE ≥ 0
NCHANGE < |PAIRS|
required(PAIRS, [x, y])
CTRX ∈ [=, 6=, <,≥, >,≤]
CTRY ∈ [=, 6=, <,≥, >,≤]

Purpose
NCHANGE is the number of times that the following disjunction holds: (X1 CTRX X2) ∨
(Y1 CTRY Y2), where (X1, Y1) and (X2, Y2) correspond to consecutive pairs of variables of
the collection PAIRS.

Arc input(s) PAIRS

Arc generator PATH 7→ collection(pairs1, pairs2)

Arc arity 2

Arc constraint(s) pairs1.x CTRX pairs2.x ∨ pairs1.y CTRY pairs2.y

Graph property(ies) NARC = NCHANGE

Example change pair

0
BBBBBBBBBBBBBB@

3,

8
>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

x− 3 y − 5,
x− 3 y − 7,
x− 3 y − 7,
x− 3 y − 8,
x− 3 y − 4,
x− 3 y − 7,
x− 1 y − 3,
x− 1 y − 6,
x− 1 y − 6,
x− 3 y − 7

9
>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

, 6=, >

1
CCCCCCCCCCCCCCA

In the previous example we have the following 3 changes:

• One change between pairs x− 3 y− 8 and x− 3 y− 4,

• One change between pairs x− 3 y− 7 and x− 1 y− 3,

• One change between pairs x− 1 y− 6 and x− 3 y− 7.

20030820 299

PAIRS

1

2

3

4

5

6

7

8

9

10

NARC=3

4:3,8

5:3,4

6:3,7

7:1,3

9:1,6

10:3,7

(A) (B)

Figure 4.88: Initial and final graph of the change pair constraint

300 NARC,PATH

Parts (A) and (B) of Figure 4.88 respectively show the initial and final graph. Since we use
the NARC graph property, the arcs of the final graph are stressed in bold.

Graph model Same as change, except that each item has two attributes x and y.

Automaton Figure 4.89 depicts the automaton associated to the change pair constraint. To each
pair of consecutive pairs ((Xi, Yi), (Xi+1, Yi+1)) of the collection PAIRS corresponds a 0-1
signature variable Si. The following signature constraint links Xi, Yi, Xi+1, Yi+1 and Si:
(Xi CTRX Xi+1) ∨ (Yi CTRY Yi+1)⇔ Si.

(X not CTRX X) and (Y not CTRY Y)i i+1 i i+1(X CTRX X) or (Y CTRY Y),i i+1 i i+1

$

NCHANGE=C
t:

{C=C+1}

{C=0}

s

Figure 4.89: Automaton of the change pair constraint

Q =s0

C =00 C1

Q1

S3

Q2

C2

 X
3

 X
n−1 X

n

 Y
1

 Y
2 Y

3
 Y

n−1 Y
n

S2

 X
2

 X
1

S1

C =NCHANGEn−1

Q =tn−1

Sn−1

Figure 4.90: Hypergraph of the reformulation corresponding to the automaton of the
change pair constraint

Usage Here is a typical example where this constraint is useful. Assume we have to produce a set
of cables. A given quality and a given cross-section that respectively correspond to the x

and y attributes of the previous pairs of variables characterize each cable. The problem is
to sequence the different cables in order to minimize the number of times two consecutive
wire cables C1 and C2 verify the following property: C1 and C2 do not have the same
quality or the cross section of C1 is greater than the cross section of C2.

See also change.

Key words timetabling constraint, number of changes, pair, automaton, automaton with counters,
sliding cyclic(2) constraint network(2), acyclic, no loop.

20030820 301

302 NARC,PATH

4.37 change partition

Origin Derived from change.

Constraint change partition(NCHANGE, VARIABLES, PARTITIONS)

Type(s) VALUES : collection(val− int)

Argument(s) NCHANGE : dvar

VARIABLES : collection(var− dvar)
PARTITIONS : collection(p− VALUES)

Restriction(s) required(VALUES, val)
distinct(VALUES, val)
NCHANGE ≥ 0
NCHANGE < |VARIABLES|
required(VARIABLES, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose
NCHANGE is the number of times that the following constraint holds: X and Y do not belong to
the same partition of the collection PARTITIONS. X and Y correspond to consecutive variables
of the collection VARIABLES.

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) in same partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) NARC = NCHANGE

Example change partition

0
BBBBBBBBBBBBBBBBBBBBBB@

2,

8
>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

var − 6,
var − 6,
var − 2,
var − 1,
var − 3,
var − 3,
var − 1,
var − 6,
var − 2,
var − 2,
var − 2

9
>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

,

8
<
:

p − {val − 1, val − 3},
p − {val − 4},
p − {val − 2, val − 6}

9
=
;

1
CCCCCCCCCCCCCCCCCCCCCCA

In the previous example we have the following two changes:

20000128 303

• One change between values 2 and 1 (since 2 and 1 respectively belong to the third
and the first partition),

• One change between values 1 and 6 (since 1 and 6 respectively belong to the first
and the third partition).

Parts (A) and (B) of Figure 4.91 respectively show the initial and final graph. Since we use
the NARC graph property, the arcs of the final graph are stressed in bold.

VARIABLES

1

2

3

4

5

6

7

8

9

10

11

NARC=2

3:2

4:1

7:1

8:6

(A) (B)

Figure 4.91: Initial and final graph of the change partition constraint

Usage This constraint is useful for the following problem: Assume you have to produce a set of
orders, each order belonging to a given family. In the previous example we have three
families that respectively correspond to values {1, 3}, to value {4} and to values {2, 6}.

304 NARC,PATH

We would like to sequence the orders in such a way that we minimize the number of times
two consecutive orders do not belong to the same family.

Algorithm [65].

See also change, in same partition.

Key words timetabling constraint, number of changes, partition, acyclic, no loop.

20000128 305

306 MAX ID,MIN NSCC,CLIQUE

4.38 circuit

Origin [2]

Constraint circuit(NODES)

Synonym(s) atour, cycle.

Argument(s) NODES : collection(index − int, succ − dvar)

Restriction(s) required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose Enforce to cover a digraph G described by the NODES collection with one circuit visiting once
all vertices of G.

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) •MIN NSCC = |NODES|
•MAX ID = 1

Example circuit

0
BB@

8
>><
>>:

index − 1 succ − 2,
index − 2 succ − 3,
index − 3 succ − 4,
index − 4 succ − 1

9
>>=
>>;

1
CCA

Parts (A) and (B) of Figure 4.92 respectively show the initial and final graph. The
circuit constraint holds since the final graph consists of one circuit mentioning once
every vertex of the initial graph.

Graph model The first graph property enforces to have one single strongly connected component con-
taining |NODES| vertices. The second graph property imposes to only have circuits. Since
each vertex of the final graph has only one successor we don’t need to use set variables for
representing the successors of a vertex.

Signature Since the initial graph contains |NODES| vertices the final graph contains at most |NODES|
vertices. Therefore we can rewrite the graph property MIN NSCC = |NODES| to
MIN NSCC ≥ |NODES|. This leads to simplify MIN NSCC to MIN NSCC.

20030820 307

Because of the graph property MIN NSCC = |NODES| the final graph contains at least
one vertex. Since a vertex v belongs to the final graph only if there is an arc that has v
as one of its extremities the final graph contains at least one arc. Therefore MAX ID
is greater than or equal to 1. So we can rewrite the graph property MAX ID = 1 to
MAX ID ≤ 1. This leads to simplify MAX ID to MAX ID.

Remark In the original circuit constraint of CHIP the index attribute was not explicitly present.
It was implicitly defined as the position of a variable in a list.

Within the framework of linear programming [74] this constraint was introduced under the
name atour. Within the KOALOG constraint system this constraint is called cycle.

Algorithm Since all succ variables of the NODES collection have to take distinct values one can reuse
the algorithms associated to the alldifferent constraint. A second necessary condition
is to have no more than one strongly connected component. Further necessary conditions
combining the fact that we have a perfect matching and one single strongly connected
component can be found in [75]. When the graph is planar one can also use as a necessary
condition discovered by Grinberg [76] for pruning.

See also cycle, tour.

Key words graph constraint, graph partitioning constraint, circuit, permutation, Hamiltonian,
linear programming, one succ.

308 MAX ID,MIN NSCC,CLIQUE

NODES

1

2

3

4

MIN_NSCC=4,MAX_ID=1

MIN_NSCC

1:1,2

2:2,3

3:3,4

4:4,1

(A) (B)

Figure 4.92: Initial and final graph of the circuit constraint

20030820 309

310 NSCC,NTREE,CLIQUE ,ALL VERTICES

4.39 circuit cluster

Origin Inspired by [77].

Constraint circuit cluster(NCIRCUIT, NODES)

Argument(s) NCIRCUIT : dvar

NODES : collection(index − int, cluster − int, succ − dvar)

Restriction(s) NCIRCUIT ≥ 1
NCIRCUIT ≤ |NODES|
required(NODES, [index, cluster, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose

Consider a digraph G, described by the NODES collection, such that its vertices are partitioned
among several clusters. NCIRCUIT is the number of circuits containing more than one vertex
used for covering G in such a way that each cluster is visited by exactly one circuit of length
greater than 1.

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) • nodes1.succ 6= nodes1.index
• nodes1.succ = nodes2.index

Graph property(ies) • NTREE = 0
• NSCC = NCIRCUIT

Sets
ALL VERTICES 7→»

variables − col

„
VARIABLES − collection(var − dvar),
[item(var − NODES.cluster)]

« –

Constraint(s) on sets • alldifferent(variables)
• nvalues(variables,=, size(NODES, cluster))

20000128 311

Example circuit cluster

0
BBBBBBBBBBBB@

1,

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

index − 1 cluster − 1 succ − 1,
index − 2 cluster − 1 succ − 4,
index − 3 cluster − 2 succ − 3,
index − 4 cluster − 2 succ − 5,
index − 5 cluster − 3 succ − 8,
index − 6 cluster − 3 succ − 6,
index − 7 cluster − 3 succ − 7,
index − 8 cluster − 4 succ − 2,
index − 9 cluster − 4 succ − 9

9
>>>>>>>>>>>>=
>>>>>>>>>>>>;

1
CCCCCCCCCCCCA

circuit cluster

0
BBBBBBBBBBBB@

2,

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

index − 1 cluster − 1 succ − 1,
index − 2 cluster − 1 succ − 4,
index − 3 cluster − 2 succ − 3,
index − 4 cluster − 2 succ − 2,
index − 5 cluster − 3 succ − 5,
index − 6 cluster − 3 succ − 9,
index − 7 cluster − 3 succ − 7,
index − 8 cluster − 4 succ − 8,
index − 9 cluster − 4 succ − 6

9
>>>>>>>>>>>>=
>>>>>>>>>>>>;

1
CCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.93 respectively show the initial and final graph asso-
ciated to the second example. Since we use the NSCC graph property, we show the two
strongly connected components of the final graph. They respectively correspond to the two
circuits 2 → 4 → 2 and 6 → 9 → 6. Since all the vertices belongs to a circuit we have
that NTREE = 0. The first example uses only one single circuit: 2→ 4→ 5→ 8→ 2.

NODES

1

2

3

4

5

6

7

8

9 NTREE=0,NSCC=2

SCC#1 SCC#2

2:2,1,4

4:4,2,2

6:6,3,9

9:9,4,6

(A) (B)

Figure 4.93: Initial and final graph of the circuit cluster constraint

Graph model In order to express the binary constraint linking two vertices one has to make explicit the
identifier of each vertex as well as the cluster to which belong each vertex. This is why the
circuit cluster constraint considers objects that have the following three attributes:

• The attribute index, which is the identifier of a vertex.

• The attribute cluster, which is the cluster to which belong a vertex.

312 NSCC,NTREE,CLIQUE ,ALL VERTICES

• The attribute succ, which is the unique successor of a vertex.

The partitioning of the clusters by different circuits is expressed in the following way:

• First observe the condition nodes1.succ 6= nodes1.index prevents the final graph
of containing any loop. Moreover the condition nodes1.succ = nodes2.index
imposes no more than one successor for each vertex of the final graph.

• The graph property NTREE = 0 enforces that all vertices of the final graph belong
to one circuit.

• The graph property NSCC = NCIRCUIT express the fact that the number of
strongly connected components of the final graph is equal to NCIRCUIT.

• The constraint alldifferent(variables) on the set ALL VERTICES (i.e. all the
vertices of the final graph) states that the cluster attributes of the vertices of the final
graph should be pairwise distinct. This concretely means that no cluster should be
visited more than once.

• The constraint nvalues(variables,=, size(NODES, cluster)) on the set
ALL VERTICES conveys the fact that the number of distinct values of the cluster
attribute of the vertices of the final graph should be equal to the total number of
clusters. This implies that each cluster is visited at least one time.

Usage A related abstraction in Operations Research was introduced in [77]. It was reported as
the Generalized Travelling Salesman Problem (GTSP). The circuit cluster constraint
differs from the GTSP because of the two following points:

• Each node of our graph belongs to one single cluster,

• We do not constrain the number of circuits to be equal to one: the number of circuits
should be equal to one of the values of the domain of the variable NCIRCUIT.

See also alldifferent, nvalues.

Key words graph constraint, connected component, cluster, one succ.

20000128 313

314 NARC,CIRCUIT

4.40 circular change

Origin Derived from change.

Constraint circular change(NCHANGE, VARIABLES, CTR)

Argument(s) NCHANGE : dvar

VARIABLES : collection(var − dvar)
CTR : atom

Restriction(s) NCHANGE ≥ 0
NCHANGE ≤ |VARIABLES|
required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose
NCHANGE is the number of times that CTR holds on consecutive variables of the collection
VARIABLES. The last and the first variables of the collection VARIABLES are also considered to
be consecutive.

Arc input(s) VARIABLES

Arc generator CIRCUIT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var CTR variables2.var

Graph property(ies) NARC = NCHANGE

Example circular change

0
BBBB@

4,

8
>>>><
>>>>:

var− 4,
var− 4,
var− 3,
var− 4,
var− 1

9
>>>>=
>>>>;
, 6=

1
CCCCA

In the previous example the changes are located between values 4 and 3, 3 and 4,
4 and 1, and 1 and 4. We count one change for each disequality constraint (between two
consecutives variables) which holds. Parts (A) and (B) of Figure 4.94 respectively show
the initial and final graph. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.

Graph model Since we are also interested in the constraint that links the last and the first variable we use
the arc generator CIRCUIT to produce the arcs of the initial graph.

Automaton Figure 4.95 depicts the automaton associated to the circular change constraint. To each
pair of consecutive variables (VARi, VAR(imod |VARIABLES|)+1) of the collection VARIABLES

corresponds a 0-1 signature variable Si. The following signature constraint links VARi,
VAR(imod |VARIABLES|)+1 and Si: VARi CTR VAR(i mod |VARIABLES|)+1 ⇔ Si.

20030820 315

VARIABLES

1

2

3

4

5

NARC=4

2:4

3:3

4:4

5:1

1:4

(A) (B)

Figure 4.94: Initial and final graph of the circular change constraint

VAR not CTR VARi i+1
{C=C+1}

iVAR CTR VAR i+1

$

NCHANGE=C
t:

{C=0}

s

Figure 4.95: Automaton of the circular change constraint

Q =s0

C =00 C1

Q1

VAR
1

S1

VAR
2

S2

VAR
n

Sn−1

VAR
n−1VAR

3

S3

Q2

C2

Qn−1

Cn−1

VAR
1

Sn

Q =tn

C =NCHANGEn

Figure 4.96: Hypergraph of the reformulation corresponding to the automaton of the
circular change constraint

316 NARC,CIRCUIT

See also change.

Key words timetabling constraint, number of changes, cyclic, automaton, automaton with counters,
circular sliding cyclic(1) constraint network(2).

20030820 317

318 NARC,NVERTEX,CLIQUE (6=)

4.41 clique

Origin [78]

Constraint clique(SIZE CLIQUE, NODES)

Argument(s) SIZE CLIQUE : dvar

NODES : collection(index − int, succ − svar)

Restriction(s) SIZE CLIQUE ≥ 0
SIZE CLIQUE ≤ |NODES|
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)

Purpose

Consider a digraphG described by the NODES collection: To the ith item of the NODES collection
corresponds the ith vertex of G; To each value j of the ith succ variable corresponds an arc
from the ith vertex to the jth vertex. Select a subset S of the vertices ofG which forms a clique
of size SIZE CLIQUE (i.e. there is an arc between each pair of distinct vertices of S).

Arc input(s) NODES

Arc generator CLIQUE(6=) 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) in set(nodes2.index, nodes1.succ)

Graph property(ies) • NARC = SIZE CLIQUE ∗ SIZE CLIQUE − SIZE CLIQUE

• NVERTEX = SIZE CLIQUE

Example clique

0
BBBB@

3,

8
>>>><
>>>>:

index − 1 succ − ∅,
index − 2 succ − {3, 5},
index − 3 succ − {2, 5},
index − 4 succ − ∅,
index − 5 succ − {2, 3}

9
>>>>=
>>>>;

1
CCCCA

Part (A) of Figure 4.97 shows the initial graph from which we start. It is derived
from the set associated to each vertex. Each set describes the potential values of the succ
attribute of a given vertex. Part (B) of Figure 4.97 gives the final graph associated to the
example. Since we both use the NARC and NVERTEX graph properties, the arcs and
the vertices of the final graph are stressed in bold. The final graph corresponds to a clique
containing three vertices.

Graph model Observe the use of set variables for modelling the fact that the vertices of the final graph
have more than one successor: The successor variable associated to each vertex contains
the successors of the corresponding vertex.

20030820 319

Algorithm [78], [79].

See also link set to booleans.

Key words graph constraint, maximum clique, constraint involving set variables.

320 NARC,NVERTEX,CLIQUE (6=)

NODES

1:1,{2,4}

2:2,{1,3,5}

4:4,{1,5}3:3,{2,5}

5:5,{2,3,4}

NARC=6,NVERTEX=3

2:2,{3,5}

3:3,{2,5}

5:5,{2,3}

(A) (B)

Figure 4.97: Initial and final graph of the clique set constraint

20030820 321

322 PREDEFINED

4.42 colored matrix

Origin KOALOG

Constraint colored matrix(C, L, K, MATRIX, CPROJ, LPROJ)

Synonym(s) cardinality matrix, card matrix.

Argument(s) C : int

L : int

K : int

MATRIX : collection(column − int, line− int, var − dvar)
CPROJ : collection(column − int, val− int, noccurrence − dvar)
LPROJ : collection(line− int, val − int, noccurrence − dvar)

Restriction(s) C ≥ 0
L ≥ 0
K ≥ 0
required(MATRIX, [column, line, var])
increasing seq(MATRIX, [column, line])
|MATRIX| = C ∗ L + C + L + 1
MATRIX.column ≥ 0
MATRIX.column ≤ C

MATRIX.line ≥ 0
MATRIX.line ≤ L

MATRIX.var ≥ 0
MATRIX.var ≤ K

required(CPROJ, [column, val, noccurrence])
increasing seq(CPROJ, [column, val])
|CPROJ| = C ∗ K + C + K + 1
CPROJ.column ≥ 0
CPROJ.column ≤ C

CPROJ.val ≥ 0
CPROJ.val ≤ K

required(LPROJ, [line, val, noccurrence])
increasing seq(LPROJ, [line, val])
|LPROJ| = L ∗ K + L + K + 1
LPROJ.line ≥ 0
LPROJ.line ≤ L

LPROJ.val ≥ 0
LPROJ.val ≤ K

Purpose Given a matrix of domain variables, imposes a global cardinality constraint involving car-
dinality variables on each column and each row of the matrix.

20031017 323

Example colored matrix

0
BBB@

1, 2, 4,

8
>>>>>><
>>>>>>:

column − 0 line − 0 var − 3,
column − 0 line − 1 var − 1,
column − 0 line − 2 var − 3,
column − 1 line − 0 var − 4,
column − 1 line − 1 var − 4,
column − 1 line − 2 var − 3

9
>>>>>>=
>>>>>>;

,

8
>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

column − 0 val − 0 nocc − 0,
column − 0 val − 1 nocc − 1,
column − 0 val − 2 nocc − 0,
column − 0 val − 3 nocc − 2,
column − 0 val − 4 nocc − 0,
column − 1 val − 0 nocc − 0,
column − 1 val − 1 nocc − 0,
column − 1 val − 2 nocc − 0,
column − 1 val − 3 nocc − 1,
column − 1 val − 4 nocc − 2

9
>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

,

8
>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

line − 0 val − 0 nocc − 0,
line − 0 val − 1 nocc − 0,
line − 0 val − 2 nocc − 0,
line − 0 val − 3 nocc − 1,
line − 0 val − 4 nocc − 1,
line − 1 val − 0 nocc − 0,
line − 1 val − 1 nocc − 1,
line − 1 val − 2 nocc − 0,
line − 1 val − 3 nocc − 0,
line − 1 val − 4 nocc − 1,
line − 2 val − 0 nocc − 0,
line − 2 val − 1 nocc − 0,
line − 2 val − 2 nocc − 0,
line − 2 val − 3 nocc − 2,
line − 2 val − 4 nocc − 0

9
>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

1
CCCA

Remark Within [80] the colored matrix constraint is called cardinality matrix.

Algorithm The filtering algorithm described in [80] is based on network flow and does not achieve
arc-consistency in general. However, when the number of values is restricted to two, the
algorithm [80] achieves arc-consistency on the variables of the matrix. This corresponds in
fact to a generalization of the problem called ”Matrices composed of 0’s and 1’s” presented
by Ford and Fulkerson [81].

See also global cardinality, same.

Key words predefined constraint, timetabling constraint, matrix, matrix model.

324 NARC, SELF ; PRODUCT , SUCC

4.43 coloured cumulative

Origin Derived from cumulative and nvalues.

Constraint coloured cumulative(TASKS, LIMIT)

Argument(s) TASKS : collection(origin − dvar, duration − dvar, end − dvar, colour − dvar)
LIMIT : int

Restriction(s) require at least(2, TASKS, [origin, duration, end])
required(TASKS, colour)
TASKS.duration ≥ 0
LIMIT ≥ 0

Purpose

Consider the set T of tasks described by the TASKS collection. The coloured cumulative

constraint enforces that, at each point in time, the number of distinct colours of the set of tasks
that overlap that point, does not exceed a given limit. For each task of T it also imposes the
constraint origin + duration = end.

Arc input(s) TASKS

Arc generator SELF 7→ collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin + tasks.duration = tasks.end

Graph property(ies) NARC = |TASKS|

Arc input(s) TASKS TASKS

Arc generator PRODUCT 7→ collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • tasks1.duration > 0
• tasks2.origin ≤ tasks1.origin
• tasks1.origin < tasks2.end

Sets

SUCC 7→2
4

source,

variables − col

„
VARIABLES − collection(var− dvar),
[item(var− TASKS.colour)]

«
3
5

Constraint(s) on sets nvalues(variables,≤, LIMIT)

20000128 325

Example coloured cumulative

0
BBBB@

8
>>>><
>>>>:

origin − 1 duration − 2 end − 3 colour − 1,
origin − 2 duration − 9 end − 11 colour − 2,
origin − 3 duration − 10 end − 13 colour − 3,
origin − 6 duration − 6 end − 12 colour − 2,
origin − 7 duration − 2 end − 9 colour − 3

9
>>>>=
>>>>;
, 2

1
CCCCA

Parts (A) and (B) of Figure 4.98 respectively show the initial and final graph asso-
ciated to the second graph constraint. On the one hand, each source vertex of the final
graph can be interpreted as a time point. On the other hand the successors of a source ver-
tex correspond to those tasks which overlap that time point. The coloured cumulative

constraint holds since for each successor set S of the final graph the number of distinct
colours of the tasks in S does not exceed the LIMIT 2. Figure 4.99 shows the solution
associated to the previous example.

TASKS

TASKS

1

12 345

2345

TASKS

TASKS

1:1,2,3,1

1:1,2,3,1

2:2,9,11,2

2:2,9,11,2

3:3,10,13,3

3:3,10,13,3

4:6,6,12,2

4:6,6,12,2

5:7,2,9,3

5:7,2,9,3

(A) (B)

Figure 4.98: Initial and final graph of the coloured cumulative constraint

6 7 8 9 10 11 12 time

< 3

1 2 3 4 5

4

5

3

2

1

Figure 4.99: A coloured cumulative solution with at most two distinct colours in par-
allel

Graph model Same as cumulative, except that we use an other constraint for computing the resource

326 NARC, SELF ; PRODUCT , SUCC

consumption at each time point.

Signature Since TASKS is the maximum number of vertices of the final graph of the first graph con-
straint we can rewrite NARC = |TASKS| to NARC ≥ |TASKS|. This leads to simplify
NARC to NARC.

Usage Useful for scheduling problems where a machine can only proceed in parallel a maxi-
mum number of tasks of distinct type. This condition cannot be modelled by the classical
cumulative constraint.

See also coloured cumulatives, cumulative, nvalues.

Key words scheduling constraint, resource constraint, temporal constraint, coloured,
number of distinct values.

20000128 327

328 NARC, SELF ; PRODUCT , ∀, SUCC

4.44 coloured cumulatives

Origin Derived from cumulatives and nvalues.

Constraint coloured cumulatives(TASKS, MACHINES)

Argument(s) TASKS : collection

0
BBBB@

machine − dvar,
origin − dvar,
duration − dvar,
end− dvar,
colour − dvar

1
CCCCA

MACHINES : collection(id− int, capacity − int)

Restriction(s) required(TASKS, [machine, colour])
require at least(2, TASKS, [origin, duration, end])
TASKS.duration ≥ 0
required(MACHINES, [id, capacity])
distinct(MACHINES, id)
MACHINES.capacity ≥ 0

Purpose

Consider a set T of tasks described by the TASKS collection. The coloured cumulatives

constraint enforces for each machine m of the MACHINES collection the following condition:
At each point in time p, the numbers of distinct colours of the set of tasks that both overlap
that point p and are assigned to machine m does not exceed the capacity of machine m. It also
imposes for each task of T the constraint origin + duration = end.

Arc input(s) TASKS

Arc generator SELF 7→ collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin + tasks.duration = tasks.end

Graph property(ies) NARC = |TASKS|

For all items of MACHINES:

Arc input(s) TASKS TASKS

Arc generator PRODUCT 7→ collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • tasks1.machine = MACHINES.id
• tasks1.machine = tasks2.machine
• tasks1.duration > 0
• tasks2.origin ≤ tasks1.origin
• tasks1.origin < tasks2.end

20000128 329

Sets

SUCC 7→2
4

source,

variables − col

„
VARIABLES − collection(var − dvar),
[item(var − TASKS.colour)]

«
3
5

Constraint(s) on sets nvalues(variables,≤, MACHINES.capacity)

Example coloured cumulatives

0
BBBBBBBBBB@

8
>>>>>><
>>>>>>:

machine − 1 origin − 6 duration − 6 end − 12 colour − 1,
machine − 1 origin − 2 duration − 9 end − 11 colour − 2,
machine − 2 origin − 7 duration − 3 end − 10 colour − 2,
machine − 1 origin − 1 duration − 2 end − 3 colour − 1,
machine − 2 origin − 4 duration − 5 end − 9 colour − 2,
machine − 1 origin − 3 duration − 10 end − 13 colour − 1

9
>>>>>>=
>>>>>>;

,

id − 1 capacity − 2,
id − 2 capacity − 1

ff

1
CCCCCCCCCCA

Parts (A) and (B) of Figure 4.100 respectively shows the initial and final graph as-
sociated to machines 1 and 2. On the one hand, each source vertex of the final graph can
be interpreted as a time point p on a specific machine m. On the other hand the successors
of a source vertex correspond to those tasks which both overlap that time point p and are
assigned to machine m. The coloured cumulatives constraint holds since for each
successor set S of the final graph the number of distinct colours in S does not exceed the
capacity of the machine corresponding to the time point associated to S . Figure 4.101
shows the solution associated to the previous example. For machine 1 we have at most two
distinct colours in parallel, while for machine 2 we have no more than one single colour in
parallel.

TASKS

TASKS

1

1234 56

2 3456

MACHINES:1 MACHINES:2

1:1,6,6,12,1

1:1,6,6,12,1 6:1,3,10,13,1

2:1,2,9,11,2

2:1,2,9,11,2 4:1,1,2,3,1

4:1,1,2,3,16:1,3,10,13,1 3:2,7,3,10,2

3:2,7,3,10,25:2,4,5,9,2

5:2,4,5,9,2

(A) (B)

Figure 4.100: Initial and final graph of the coloured cumulatives constraint

330 NARC, SELF ; PRODUCT , ∀, SUCC

Signature Since TASKS is the maximum number of vertices of the final graph of the first graph con-
straint we can rewrite NARC = |TASKS| to NARC ≥ |TASKS|. This leads to simplify
NARC to NARC.

Usage Useful for scheduling problems where several machines are available and where you have
to assign each task to a specific machine. In addition each machine can only proceed in
parallel a maximum number of tasks of distinct types.

See also coloured cumulative, cumulative, cumulatives, nvalues.

Key words scheduling constraint, resource constraint, temporal constraint, coloured,
number of distinct values.

6 7 8 9 10 11 12 time

m
ac

hi
ne

 1
m

ac
hi

ne
 2

< 2

< 3

1 2 3 4 5

1

3

5

6

2

4

Figure 4.101: Assignment of the tasks on the two machines

20000128 331

332 NSINK,NSOURCE,PRODUCT

4.45 common

Origin N. Beldiceanu

Constraint common(NCOMMON1, NCOMMON2, VARIABLES1, VARIABLES2)

Argument(s) NCOMMON1 : dvar

NCOMMON2 : dvar

VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)

Restriction(s) NCOMMON1 ≥ 0
NCOMMON1 ≤ |VARIABLES1|
NCOMMON2 ≥ 0
NCOMMON2 ≤ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose

NCOMMON1 is the number of variables of the collection of variables VARIABLES1 taking a value
in VARIABLES2.
NCOMMON2 is the number of variables of the collection of variables VARIABLES2 taking a value
in VARIABLES1.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) • NSOURCE = NCOMMON1

• NSINK = NCOMMON2

Example common

0
BBBBBBBB@

3, 4, {var − 1, var − 9, var − 1, var − 5},8
>>>>>><
>>>>>>:

var − 2,
var − 1,
var − 9,
var − 9,
var − 6,
var − 9

9
>>>>>>=
>>>>>>;

1
CCCCCCCCA

Parts (A) and (B) of Figure 4.102 respectively show the initial and final graph.
Since we use the NSOURCE and NSINK graph properties, the source and sink
vertices of the final graph are stressed with a double circle. Since the final graph has only
3 sources and 4 sinks the variables NCOMMON1 and NCOMMON2 are respectively equal to 3
and 4. Note that all the vertices corresponding to the variables that take values 5, 2 or 6
were removed from the final graph since there is no arc for which the associated equality
constraint holds.

20000128 333

See also alldifferent on intersection, nvalue on intersection, same intersection.

Key words constraint between two collections of variables, acyclic, bipartite, no loop.

334 NSINK,NSOURCE,PRODUCT

VARIABLES1

VARIABLES2

1

1234 56

234

NSOURCE=3,NSINK=4

1:1

2:1

2:9

3:9 4:9 6:9

3:1

(A) (B)

Figure 4.102: Initial and final graph of the common constraint

20000128 335

336 NSINK,NSOURCE,PRODUCT

4.46 common interval

Origin Derived from common.

Constraint common interval(NCOMMON1, NCOMMON2, VARIABLES1, VARIABLES2, SIZE INTERVAL)

Argument(s) NCOMMON1 : dvar

NCOMMON2 : dvar

VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
SIZE INTERVAL : int

Restriction(s) NCOMMON1 ≥ 0
NCOMMON1 ≤ |VARIABLES1|
NCOMMON2 ≥ 0
NCOMMON2 ≤ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
SIZE INTERVAL > 0

Purpose

NCOMMON1 is the number of variables of the collection of variables VARIABLES1 taking a value
in one of the intervals derived from the values assigned to the variables of the collection
VARIABLES2: To each value v assigned to a variable of the collection VARIABLES2 we associate
the interval [SIZE INTERVAL ·bv/SIZE INTERVALc, SIZE INTERVAL ·bv/SIZE INTERVALc+
SIZE INTERVAL − 1].
NCOMMON2 is the number of variables of the collection of variables VARIABLES2 taking a value
in one of the intervals derived from the values assigned to the variables of the collection
VARIABLES1: To each value v assigned to a variable of the collection VARIABLES1 we associate
the interval [SIZE INTERVAL ·bv/SIZE INTERVALc, SIZE INTERVAL ·bv/SIZE INTERVALc+
SIZE INTERVAL − 1].

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var/SIZE INTERVAL = variables2.var/SIZE INTERVAL

Graph property(ies) • NSOURCE = NCOMMON1

• NSINK = NCOMMON2

20030820 337

Example common interval

0
BBBBBBBBBBBBBB@

3, 2,

8
>><
>>:

var − 8,
var − 6,
var − 6,
var − 0

9
>>=
>>;
,

8
>>>>>><
>>>>>>:

var − 7,
var − 3,
var − 3,
var − 3,
var − 3,
var − 7

9
>>>>>>=
>>>>>>;

, 3

1
CCCCCCCCCCCCCCA

In the previous example, the last parameter SIZE INTERVAL defines the following
family of intervals [3 · k, 3 · k+ 2], where k is an integer. Parts (A) and (B) of Figure 4.103
respectively show the initial and final graph. Since we use the NSOURCE and
NSINK graph properties, the source and sink vertices of the final graph are stressed with
a double circle. Since the graph has only 3 sources and 2 sinks the variables NCOMMON1

and NCOMMON2 are respectively equal to 3 and 2. Note that the vertices corresponding to
the variables that take values 0 or 3 were removed from the final graph since there is no
arc for which the associated arc constraint holds.

VARIABLES1

VARIABLES2

1

1234 56

234

NSOURCE=3,NSINK=2

1:8

1:7 6:7

2:6 3:6

(A) (B)

Figure 4.103: Initial and final graph of the common interval constraint

See also common.

Key words constraint between two collections of variables, interval, acyclic, bipartite, no loop.

338 NSINK,NSOURCE,PRODUCT

4.47 common modulo

Origin Derived from common.

Constraint common modulo(NCOMMON1, NCOMMON2, VARIABLES1, VARIABLES2, M)

Argument(s) NCOMMON1 : dvar

NCOMMON2 : dvar

VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
M : int

Restriction(s) NCOMMON1 ≥ 0
NCOMMON1 ≤ |VARIABLES1|
NCOMMON2 ≥ 0
NCOMMON2 ≤ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
M > 0

Purpose

NCOMMON1 is the number of variables of the collection of variables VARIABLES1 taking a value
situated in an equivalence class (congruence modulo a fixed number M) derived from the values
assigned to the variables of VARIABLES2 and from M.
NCOMMON2 is the number of variables of the collection of variables VARIABLES2 taking a value
situated in an equivalence class (congruence modulo a fixed number M) derived from the values
assigned to the variables of VARIABLES1 and from M.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var mod M = variables2.var mod M

Graph property(ies) • NSOURCE = NCOMMON1

• NSINK = NCOMMON2

Example common modulo

0
BBBBBBBB@

3, 4, {var − 0, var − 4, var − 0, var− 8},8
>>>>>><
>>>>>>:

var− 7,
var− 5,
var− 4,
var− 9,
var− 2,
var− 4

9
>>>>>>=
>>>>>>;

, 5

1
CCCCCCCCA

Parts (A) and (B) of Figure 4.104 respectively show the initial and final graph.
Since we use the NSOURCE and NSINK graph properties, the source and sink
vertices of the final graph are stressed with a double circle. Since the graph has only 3

20030820 339

sources and 4 sinks the variables NCOMMON1 and NCOMMON2 are respectively equal to 3 and
4. Note that the vertices corresponding to the variables that take values 8, 7 or 2 were
removed from the final graph since there is no arc for which the associated arc constraint
holds.

VARIABLES1

VARIABLES2

1

1234 56

234

NSOURCE=3,NSINK=4

1:0

2:5

2:4

3:4 4:9 6:4

3:0

(A) (B)

Figure 4.104: Initial and final graph of the common modulo constraint

See also common.

Key words constraint between two collections of variables, modulo, acyclic, bipartite, no loop.

340 NSINK,NSOURCE,PRODUCT

4.48 common partition

Origin Derived from common.

Constraint common partition(NCOMMON1, NCOMMON2, VARIABLES1, VARIABLES2, PARTITIONS)

Type(s) VALUES : collection(val− int)

Argument(s) NCOMMON1 : dvar

NCOMMON2 : dvar

VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
PARTITIONS : collection(p− VALUES)

Restriction(s) required(VALUES, val)
distinct(VALUES, val)
NCOMMON1 ≥ 0
NCOMMON1 ≤ |VARIABLES1|
NCOMMON2 ≥ 0
NCOMMON2 ≤ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose

NCOMMON1 is the number of variables of the VARIABLES1 collection taking a value in a partition
derived from the values assigned to the variables of VARIABLES2 and from PARTITIONS.
NCOMMON2 is the number of variables of the VARIABLES2 collection taking a value in a partition
derived from the values assigned to the variables of VARIABLES1 and from PARTITIONS.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) in same partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) • NSOURCE = NCOMMON1

• NSINK = NCOMMON2

20030820 341

Example common partition

0
BBBBBBBBBBBBBBBBBBBB@

3, 4,

8
>><
>>:

var − 2,
var − 3,
var − 6,
var − 0

9
>>=
>>;
,

8
>>>>>><
>>>>>>:

var − 0,
var − 6,
var − 3,
var − 3,
var − 7,
var − 1

9
>>>>>>=
>>>>>>;

,

8
<
:

p− {val − 1, val− 3},
p− {val − 4},
p− {val − 2, val− 6}

9
=
;

1
CCCCCCCCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.105 respectively show the initial and final graph.
Since we use the NSOURCE and NSINK graph properties, the source and sink
vertices of the final graph are stressed with a double circle. Since the graph has only
3 sources and 4 sinks the variables NCOMMON1 and NCOMMON2 are respectively equal
to 3 and 4. Note that the vertices corresponding to the variables that take values 0 or
7 were removed from the final graph since there is no arc for which the associated
in same partition constraint holds.

VARIABLES1

VARIABLES2

1

1234 56

234

NSOURCE=3,NSINK=4

1:2

2:6

2:3

3:3 4:3 6:1

3:6

(A) (B)

Figure 4.105: Initial and final graph of the common partition constraint

See also common, in same partition.

Key words constraint between two collections of variables, partition, acyclic, bipartite, no loop.

342 NSCC,GRID([SIZE1, SIZE2, SIZE3])

4.49 connect points

Origin N. Beldiceanu

Constraint connect points(SIZE1, SIZE2, SIZE3, NGROUP, POINTS)

Argument(s) SIZE1 : int

SIZE2 : int

SIZE3 : int

NGROUP : dvar

POINTS : collection(p− dvar)

Restriction(s) SIZE1 > 0
SIZE2 > 0
SIZE3 > 0
NGROUP ≥ 0
NGROUP ≤ |POINTS|
SIZE1 ∗ SIZE2 ∗ SIZE3 = |POINTS|
required(POINTS, p)

Purpose On a 3-dimensional grid of variables, number of groups, where a group consists of a connected
set of variables which all have a same value distinct from 0.

Arc input(s) POINTS

Arc generator GRID([SIZE1, SIZE2, SIZE3]) 7→ collection(points1, points2)

Arc arity 2

Arc constraint(s) • points1.p 6= 0
• points1.p = points2.p

Graph property(ies) NSCC = NGROUP

20000128 343

Example connect points

0
BBB@

8, 4, 2, 2,

8
>>><
>>>:

p− 0, p − 0,
p− 1, p − 1,
p− 0, p − 2,
p− 0, p − 0,
p− 0, p − 0,
p− 0, p − 1,
p− 0, p − 2,
p− 0, p − 0,
p− 0, p − 0,
p− 0, p − 1,
p− 1, p − 1,
p− 1, p − 1,
p− 0, p − 2,
p− 0, p − 1,
p− 0, p − 2,
p− 0, p − 0,
p− 0, p − 0,
p− 0, p − 0,
p− 0, p − 0,
p− 0, p − 0,
p− 0, p − 0,
p− 0, p − 0,
p− 0, p − 2,
p− 0, p − 0,
p− 0, p − 2,
p− 2, p − 2,
p− 2, p − 2,
p− 0, p − 0,
p− 0, p − 2,
p− 0, p − 0,
p− 0, p − 2,
p− 0, p − 0

9
>>>=
>>>;

1
CCCA

Figure 4.106 gives the initial graph constructed by the GRID arc generator. Fig-
ure 4.107 corresponds to the solution where we describe separately each layer of the grid.
We have two groups: A first one for the variables assigned to value 1, and a second one for
the variables assigned to value 2.

Figure 4.106: Graph generated by GRID([8,4,2])

Usage Wiring problems [82], [83].

Key words geometrical constraint, channel routing, strongly connected component, joker value,

344 NSCC,GRID([SIZE1, SIZE2, SIZE3])

symmetric.

0

0

0

0 2 0

0

0

0 1 1 0 2

0

0 0

02

1

010

0 1

1 0

1

2 0

1 1

0

0 0 00 0

0

0

0

0

2

0 0

0

2

0 0

0

0

00

0

0

2

20

2

0

2

00

2

2

Figure 4.107: The two layers of the solution

20000128 345

346 NARC,PRODUCT

4.50 correspondence

Origin Derived from sort permutation by removing the sorting condition.

Constraint correspondence(FROM, PERMUTATION, TO)

Argument(s) FROM : collection(fvar − dvar)
PERMUTATION : collection(var− dvar)
TO : collection(tvar − dvar)

Restriction(s) |PERMUTATION| = |FROM|
|PERMUTATION| = |TO|
PERMUTATION.var ≥ 1
PERMUTATION.var ≤ |PERMUTATION|
alldifferent(PERMUTATION)
required(FROM, fvar)
required(PERMUTATION, var)
required(TO, tvar)

Purpose The variables of the TO collection correspond to the variables of the FROM collection according
to the permutation expressed by PERMUTATION.

Derived Collection(s) col

„
FROM PERMUTATION − collection(fvar − dvar, var − dvar),
[item(fvar− FROM.fvar, var − PERMUTATION.var)]

«

Arc input(s) FROM PERMUTATION TO

Arc generator PRODUCT 7→ collection(from permutation, to)

Arc arity 2

Arc constraint(s) • from permutation.fvar = to.tvar
• from permutation.var = to.key

Graph property(ies) NARC = |PERMUTATION|

20030820 347

Example correspondence

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

8
>>>>>><
>>>>>>:

fvar − 1,
fvar − 9,
fvar − 1,
fvar − 5,
fvar − 2,
fvar − 1

9
>>>>>>=
>>>>>>;

,

8
>>>>>><
>>>>>>:

var − 6,
var − 1,
var − 3,
var − 5,
var − 4,
var − 2

9
>>>>>>=
>>>>>>;

,

8
>>>>>><
>>>>>>:

tvar − 9,
tvar − 1,
tvar − 1,
tvar − 2,
tvar − 5,
tvar − 1

9
>>>>>>=
>>>>>>;

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.108 respectively show the initial and final graph. In
both graphs the source vertices correspond to the derived collection FROM PERMUTATION,
while the sink vertices correspond to the collection TO. Since the final graph contains
exactly |PERMUTATION| arcs the correspondence constraint holds. As we use the
NARC graph property, the arcs of the final graph are stressed in bold.

FROM_PERMUTATION

TO

1

1234 56

2 3456

NARC=6

1:1,6

6:1

2:9,1

1:9

3:1,3

3:1

4:5,5

5:5

5:2,4

4:2

6:1,2

2:1

(A) (B)

Figure 4.108: Initial and final graph of the correspondence constraint

Signature Because of the second condition from permutation.var = to.key of the arc constraint
and since both, the var attributes of the collection FROM PERMUTATION and the key at-
tributes of the collection TO are all distinct, the final graph contains at most |PERMUTATION|
arcs. Therefore we can rewrite the graph property NARC = |PERMUTATION| to
NARC ≥ |PERMUTATION|. This leads to simplify NARC to NARC.

Remark Similar to the same constraint except that we also provide the permutation which allows to

348 NARC,PRODUCT

go from the items of collection FROM to the items of collection TO.

See also same, sort permutation.

Key words constraint between three collections of variables, permutation, derived collection, acyclic,
bipartite, no loop.

20030820 349

350 NARC, SELF

4.51 count

Origin [46]

Constraint count(VALUE, VARIABLES, RELOP, NVAR)

Argument(s) VALUE : int

VARIABLES : collection(var − dvar)
RELOP : atom

NVAR : dvar

Restriction(s) required(VARIABLES, var)
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose Let N be the number of variables of the VARIABLES collection assigned to value VAL; Enforce
condition N RELOP NVAR to hold.

Arc input(s) VARIABLES

Arc generator SELF 7→ collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUE

Graph property(ies) NARC RELOP NVAR

Example count

0
BBBB@

5,

8
>>>><
>>>>:

var− 4,
var− 5,
var− 5,
var− 4,
var− 5

9
>>>>=
>>>>;
,≥, 2

1
CCCCA

The constraint holds since value 5 occurs 3 times, which is greater than or equal to
2. Parts (A) and (B) of Figure 4.109 respectively show the initial and final graph. Since we
use the NARC graph property, the unary arcs of the final graph are stressed in bold.

VARIABLES

12345

NARC=3

2:5 3:5 5:5

(A) (B)

Figure 4.109: Initial and final graph of the count constraint

Automaton Figure 4.110 depicts the automaton associated to the count constraint. To each variable
VARi of the collection VARIABLES corresponds a 0-1 signature variable Si. The following
signature constraint links VARi and Si: VARi = VALUE⇔ Si.

20000128 351

{C=C+1}
iVAR = VALUE

$

t:

iVAR <> VALUE

C RELOP NVAR

s

{C=0}

Figure 4.110: Automaton of the count constraint

C1

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0

C =00

Q =tn

C RELOP NVARn

Figure 4.111: Hypergraph of the reformulation corresponding to the automaton of the
count constraint

352 NARC, SELF

Remark Similar to the among constraint.

See also among, counts, nvalue, max nvalue, min nvalue.

Key words value constraint, counting constraint, automaton, automaton with counters,
alpha-acyclic constraint network(2).

20000128 353

354 NARC,PRODUCT

4.52 counts

Origin Derived from count.

Constraint counts(VALUES, VARIABLES, RELOP, LIMIT)

Argument(s) VALUES : collection(val − int)
VARIABLES : collection(var − dvar)
RELOP : atom

LIMIT : dvar

Restriction(s) required(VALUES, val)
distinct(VALUES, val)
required(VARIABLES, var)
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose LetN be the number of variables of the VARIABLES collection assigned to a value of the VALUES
collection. Enforce condition N RELOP LIMIT to hold.

Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→ collection(variables, values)

Arc arity 2

Arc constraint(s) variables.var = values.val

Graph property(ies) NARC RELOP LIMIT

Example counts

0
BBBBBBBB@

{val − 1, val − 3, val − 4, val − 9},8
>>>>>><
>>>>>>:

var − 4,
var − 5,
var − 5,
var − 4,
var − 1,
var − 5

9
>>>>>>=
>>>>>>;

,=, 3

1
CCCCCCCCA

The constraint holds since values 1, 3, 4 and 9 are used by three variables of the
VARIABLES collection. This number is equal to the last argument of the counts constraint.
Parts (A) and (B) of Figure 4.112 respectively show the initial and final graph. Since we
use the NARC graph property, the arcs of the final graph are stressed in bold.

Graph model Because of the arc constraint variables.var = values.val and since each domain vari-
able can take at most one value, NARC is the number of variables taking a value in the
VALUES collection.

Automaton Figure 4.113 depicts the automaton associated to the counts constraint. To each variable
VARi of the collection VARIABLES corresponds a 0-1 signature variable Si. The following
signature constraint links VARi and Si: VARi ∈ VALUES⇔ Si.

20030820 355

VARIABLES

VALUES

1

1234

2 3456

NARC=3

1:4

3:4

4:4 5:1

1:1

(A) (B)

Figure 4.112: Initial and final graph of the counts constraint

in(VAR ,VALUES),i
{C=C+1}

$

not_in(VAR ,VALUES)i

t:
C RELOP LIMIT

{C=0}

s

Figure 4.113: Automaton of the counts constraint

C1

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0

C =00

Q =tn

C RELOP LIMITn

Figure 4.114: Hypergraph of the reformulation corresponding to the automaton of the
counts constraint

356 NARC,PRODUCT

Usage Used in the Constraint(s) on sets slot for defining some constraints like
assign and counts.

Used in assign and counts.

See also count, among.

Key words value constraint, counting constraint, automaton, automaton with counters,
alpha-acyclic constraint network(2), acyclic, bipartite, no loop.

20030820 357

358 NARC,CLIQUE (<)

4.53 crossing

Origin Inspired by [84].

Constraint crossing(NCROSS, SEGMENTS)

Argument(s) NCROSS : dvar

SEGMENTS : collection(ox− dvar, oy − dvar, ex− dvar, ey − dvar)

Restriction(s) NCROSS ≥ 0
NCROSS ≤ (|SEGMENTS| ∗ |SEGMENTS| − |SEGMENTS|)/2
required(SEGMENTS, [ox, oy, ex, ey])

Purpose
NCROSS is the number of line-segments intersections between the line-segments defined by the
SEGMENTS collection. Each line-segment is defined by the coordinates (ox, oy) and (ex, ey) of
its two extremities.

Arc input(s) SEGMENTS

Arc generator CLIQUE(<) 7→ collection(s1, s2)

Arc arity 2

Arc constraint(s) • max(s1.ox, s1.ex) ≥ min(s2.ox, s2.ex)
• max(s2.ox, s2.ex) ≥ min(s1.ox, s1.ex)
• max(s1.oy, s1.ey) ≥ min(s2.oy, s2.ey)
• max(s2.oy, s2.ey) ≥ min(s1.oy, s1.ey)

• W
0
BB@

(s2.ox − s1.ex) ∗ (s1.ey − s1.oy)− (s1.ex− s1.ox) ∗ (s2.oy − s1.ey) = 0,
(s2.ex − s1.ex) ∗ (s2.oy − s1.oy)− (s2.ox− s1.ox) ∗ (s2.ey − s1.ey) = 0,
sign((s2.ox − s1.ex) ∗ (s1.ey − s1.oy)− (s1.ex − s1.ox) ∗ (s2.oy− s1.ey)) 6=
sign((s2.ex − s1.ex) ∗ (s2.oy − s1.oy)− (s2.ox − s1.ox) ∗ (s2.ey− s1.ey))

1
CCA

Graph property(ies) NARC = NCROSS

Example crossing

0
BB@ 3,

8
>><
>>:

ox − 1 oy − 4 ex− 9 ey− 2,
ox − 1 oy − 1 ex− 3 ey− 5,
ox − 3 oy − 2 ex− 7 ey− 4,
ox − 9 oy − 1 ex− 9 ey− 4

9
>>=
>>;

1
CCA

Parts (A) and (B) of Figure 4.115 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in bold.
An arc constraint expresses the fact the two line-segments intersect. It is taken from [84,
page 889]. Each arc of the final graph corresponds to a line-segments intersection.
Figure 4.116 gives a picture of the previous example, where one can observe three
line-segments intersections.

Graph model Each line-segment is described by the x and y coordinates of its two extremities. In the
arc generator we use the restriction < in order to generate one single arc for each pair
of segments. This is required, since otherwise we would count more than once a given
line-segments intersection.

20000128 359

SEGMENTS

1

2

3

4

NARC=3

1:1,4,9,2

2:1,1,3,5 3:3,2,7,4 4:9,1,9,4

(A) (B)

Figure 4.115: Initial and final graph of the crossing constraint

1

2

3

4

5

1 2 3 4 5 6 7 8 9

S3

S2
S4

S1

Figure 4.116: Intersection between line-segments

360 NARC,CLIQUE (<)

See also graph crossing, two layer edge crossing.

Key words geometrical constraint, line-segments intersection, no loop.

20000128 361

362 NARC, SELF ; PRODUCT , SUCC

4.54 cumulative

Origin [67]

Constraint cumulative(TASKS, LIMIT)

Argument(s) TASKS : collection(origin − dvar, duration − dvar, end − dvar, height − dvar)
LIMIT : int

Restriction(s) require at least(2, TASKS, [origin, duration, end])
required(TASKS, height)
TASKS.duration ≥ 0
TASKS.height ≥ 0
LIMIT ≥ 0

Purpose

Cumulative scheduling constraint or scheduling under resource constraints. Consider a set T
of tasks described by the TASKS collection. The cumulative constraint enforces that at each
point in time, the cumulated height of the set of tasks that overlap that point, does not exceed a
given limit. It also imposes for each task of T the constraint origin + duration = end.

Arc input(s) TASKS

Arc generator SELF 7→ collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin + tasks.duration = tasks.end

Graph property(ies) NARC = |TASKS|

Arc input(s) TASKS TASKS

Arc generator PRODUCT 7→ collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • tasks1.duration > 0
• tasks2.origin ≤ tasks1.origin
• tasks1.origin < tasks2.end

Sets

SUCC 7→2
4

source,

variables − col

„
VARIABLES − collection(var− dvar),
[item(var− TASKS.height)]

«
3
5

Constraint(s) on sets sum ctr(variables,≤, LIMIT)

20000128 363

Example cumulative

0
BBBB@

8
>>>><
>>>>:

origin − 1 duration − 3 end − 4 height − 1,
origin − 2 duration − 9 end − 11 height − 2,
origin − 3 duration − 10 end − 13 height − 1,
origin − 6 duration − 6 end − 12 height − 1,
origin − 7 duration − 2 end − 9 height − 3

9
>>>>=
>>>>;
, 8

1
CCCCA

Parts (A) and (B) of Figure 4.117 respectively show the initial and final graph asso-
ciated to the second graph constraint. On the one hand, each source vertex of the
final graph can be interpreted as a time point. On the other hand the successors of a
source vertex correspond to those tasks which overlap that time point. The cumulative

constraint holds since for each successor set S of the final graph the sum of the heights of
the tasks in S does not exceed the limit LIMIT = 8. Figure 4.118 shows the cumulated
profile associated to the previous example.

TASKS

TASKS

1

12 345

2345

TASKS

TASKS

1:1,3,4,1

1:1,3,4,1

2:2,9,11,2

2:2,9,11,2

3:3,10,13,1

3:3,10,13,1

4:6,6,12,1

4:6,6,12,1

5:7,2,9,3

5:7,2,9,3

(A) (B)

Figure 4.117: Initial and final graph of the cumulative constraint

Graph model The first graph constraint enforces for each task the link between its origin, its duration and
its end. The second graph constraint makes sure, for each time point t corresponding to
the start of a task, that the cumulated heights of the tasks that overlap t does not exceed the
limit of the resource.

Signature Since TASKS is the maximum number of vertices of the final graph of the first graph con-
straint we can rewrite NARC = |TASKS| to NARC ≥ |TASKS|. This leads to simplify
NARC to NARC.

Automaton Figure 4.119 depicts the automaton associated to the cumulative constraint. To each item
of the collection TASKS corresponds a signature variable Si, which is equal to 1.

364 NARC, SELF ; PRODUCT , SUCC

6 7 8 9 10 11 12

< 9

am
ou

nt
 o

f r
es

ou
rc

e

time1 2 3 4 5

4

4

3

5

3

2

1

1

1

Figure 4.118: Resource consumption profile

i i i{C[ORI]=C[ORI]+HEIGHT ,

i i i{C[END]=C[END]−HEIGHT }

$

1,

t:
arith_sliding(C,<=,LIMIT)

{C[_]=0}

s

Figure 4.119: Automaton of the cumulative constraint

20000128 365

Algorithm [85, 86, 87]. Within the context of linear programming, the reference [8] provides a relax-
ation of the cumulative constraint.

See also bin packing, cumulative product, coloured cumulative, cumulative two d,
coloured cumulatives, cumulatives, cumulative with level of priority.

Key words scheduling constraint, resource constraint, temporal constraint, linear programming,
producer-consumer, squared squares, automaton, automaton with array of counters.

366 NARC, SELF ; PRODUCT , SUCC

4.55 cumulative product

Origin Derived from cumulative.

Constraint cumulative product(TASKS, LIMIT)

Argument(s) TASKS : collection(origin − dvar, duration − dvar, end − dvar, height − dvar)
LIMIT : int

Restriction(s) require at least(2, TASKS, [origin, duration, end])
required(TASKS, height)
TASKS.duration ≥ 0
TASKS.height ≥ 1
LIMIT ≥ 0

Purpose

Consider a set T of tasks described by the TASKS collection. The cumulative product con-
straint enforces that at each point in time, the product of the height of the set of tasks that
overlap that point, does not exceed a given limit. It also imposes for each task of T the con-
straint origin + duration = end.

Arc input(s) TASKS

Arc generator SELF 7→ collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin + tasks.duration = tasks.end

Graph property(ies) NARC = |TASKS|

Arc input(s) TASKS TASKS

Arc generator PRODUCT 7→ collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • tasks1.duration > 0
• tasks2.origin ≤ tasks1.origin
• tasks1.origin < tasks2.end

Sets

SUCC 7→2
4

source,

variables − col

„
VARIABLES − collection(var− dvar),
[item(var− ITEMS.height)]

«
3
5

Constraint(s) on sets product ctr(variables,≤, LIMIT)

20030820 367

Example cumulative product

0
BBBB@

8
>>>><
>>>>:

origin − 1 duration − 3 end− 4 height − 1,
origin − 2 duration − 9 end− 11 height − 2,
origin − 3 duration − 10 end− 13 height − 1,
origin − 6 duration − 6 end− 12 height − 1,
origin − 7 duration − 2 end− 9 height − 3

9
>>>>=
>>>>;
, 6

1
CCCCA

Parts (A) and (B) of Figure 4.120 respectively show the initial and final graph asso-
ciated to the second graph constraint. On the one hand, each source vertex of the final
graph can be interpreted as a time point. On the other hand the successors of a source
vertex correspond to those tasks which overlap that time point. The cumulative product

constraint holds since for each successor set S of the final graph the product of the heights
of the tasks in S does not exceed the limit LIMIT = 6. Figure 4.121 shows the solution
associated to the previous example.

TASKS

TASKS

1

12 345

2345

TASKS

TASKS

1:1,3,4,1

1:1,3,4,1

2:2,9,11,2

2:2,9,11,2

3:3,10,13,1

3:3,10,13,1

4:6,6,12,1

4:6,6,12,1

5:7,2,9,3

5:7,2,9,3

(A) (B)

Figure 4.120: Initial and final graph of the cumulative product constraint

6 7 8 9 10 11 12 time1 2 3 4 5

4

4

3

5

3

2

1

1

1

Figure 4.121: Solution of the cumulative product constraint

368 NARC, SELF ; PRODUCT , SUCC

Signature Since TASKS is the maximum number of vertices of the final graph of the first graph con-
straint we can rewrite NARC = |TASKS| to NARC ≥ |TASKS|. This leads to simplify
NARC to NARC.

See also cumulative.

Key words scheduling constraint, resource constraint, temporal constraint, product.

20030820 369

370 NARC, SELF ; PRODUCT , SUCC

4.56 cumulative two d

Origin Inspired by cumulative and diffn.

Constraint cumulative two d(RECTANGLES, LIMIT)

Argument(s) RECTANGLES : collection

0
BBBBBBBB@

start1 − dvar,
size1 − dvar,
last1 − dvar,
start2 − dvar,
size2 − dvar,
last2 − dvar,
height − dvar

1
CCCCCCCCA

LIMIT : int

Restriction(s) require at least(2, RECTANGLES, [start1, size1, last1])
require at least(2, RECTANGLES, [start2, size2, last2])
required(RECTANGLES, height)
RECTANGLES.size1 ≥ 0
RECTANGLES.size2 ≥ 0
RECTANGLES.height ≥ 0
LIMIT ≥ 0

Purpose
Consider a set R of rectangles described by the RECTANGLES collection. Enforces that at each
point of the plane, the cumulated height of the set of rectangles that overlap that point, does not
exceed a given limit.

Derived Collection(s) col

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

CORNERS − collection(size1 − dvar, size2 − dvar, x− dvar, y− dvar),2
666666666666666666666666664

item

0
BB@

size1 − RECTANGLES.size1,
size2 − RECTANGLES.size2,
x− RECTANGLES.start1,
y− RECTANGLES.start2

1
CCA ,

item

0
BB@

size1 − RECTANGLES.size1,
size2 − RECTANGLES.size2,
x− RECTANGLES.start1,
y− RECTANGLES.last2

1
CCA ,

item

0
BB@

size1 − RECTANGLES.size1,
size2 − RECTANGLES.size2,
x− RECTANGLES.last1,
y− RECTANGLES.start2

1
CCA ,

item

0
BB@

size1 − RECTANGLES.size1,
size2 − RECTANGLES.size2,
x− RECTANGLES.last1,
y− RECTANGLES.last2

1
CCA

3
777777777777777777777777775

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Arc input(s) RECTANGLES

Arc generator SELF 7→ collection(rectangles)

20000128 371

Arc arity 1

Arc constraint(s) • rectangles.start1 + rectangles.size1 − 1 = rectangles.last1
• rectangles.start2 + rectangles.size2 − 1 = rectangles.last2

Graph property(ies) NARC = |RECTANGLES|

Arc input(s) CORNERS RECTANGLES

Arc generator PRODUCT 7→ collection(corners, rectangles)

Arc arity 2

Arc constraint(s) • corners.size1 > 0
• corners.size2 > 0
• rectangles.start1 ≤ corners.x
• corners.x ≤ rectangles.last1
• rectangles.start2 ≤ corners.y
• corners.y ≤ rectangles.last2

Sets

SUCC 7→2
4

source,

variables − col

„
VARIABLES − collection(var − dvar),
[item(var − RECTANGLES.height)]

«
3
5

Constraint(s) on sets sum ctr(variables,≤, LIMIT)

Example cumulative two d

0
BB@

8
>><
>>:

start1 − 1 size1 − 4 last1 − 4 start2 − 3 size2 − 3 last2 − 5 height − 4,
start1 − 3 size1 − 2 last1 − 4 start2 − 1 size2 − 2 last2 − 2 height − 2,
start1 − 1 size1 − 2 last1 − 2 start2 − 1 size2 − 2 last2 − 2 height − 3,
start1 − 4 size1 − 1 last1 − 4 start2 − 1 size2 − 1 last2 − 1 height − 1

9
>>=
>>;
, 4

1
CCA

Parts (A) and (B) of Figure 4.122 respectively show the initial and final graph asso-
ciated to the second graph constraint. On the one hand, each source vertex of the final
graph corresponds to the corner of a rectangle of the RECTANGLES collection. On the other
hand the successors of a source vertex are those rectangles which overlap that corner.

Part (A) of Figure 4.123 shows 4 rectangles of height 4, 2, 3 and 1. Part (B) gives the cor-
responding cumulated 2-dimensional profile, where each number is the cumulated height
of all the rectangles that contain the corresponding region.

Signature Since RECTANGLES is the maximum number of vertices of the final graph of the first graph
constraint we can rewrite NARC = |RECTANGLES| to NARC ≥ |RECTANGLES|. This
leads to simplify NARC to NARC.

Usage The cumulative two d constraint is a necessary condition for the diffn constraint in 3
dimensions (i.e. the placement of parallelepipeds in such a way that they do not pairwise
overlap and that each parallelepiped has his sides parallel to the sides of the placement
space).

Algorithm A first natural way to handle this constraint would be to accumulate the compulsory
parts [85] of the rectangles in a quadtree [88]. To each leave of the quadtree we asso-
ciate the cumulated height of the rectangles containing the corresponding region.

372 NARC, SELF ; PRODUCT , SUCC

CORNERS

RECTANGLES

1

1234

23456789101112 13141516

CORNERS

RECTANGLES

1:4,3,1,3

1:1,4,4,3,3,5,4

2:4,3,1,53:4,3,4,34:4,3,4,55:2,2,3,1

2:3,2,4,1,2,2,2

6:2,2,3,27:2,2,4,1

4:4,1,4,1,1,1,1

8:2,2,4,2 9:2,2,1,1

3:1,2,2,1,2,2,3

10:2,2,1,211:2,2,2,112:2,2,2,213:1,1,4,114:1,1,4,115:1,1,4,116:1,1,4,1

(A) (B)

Figure 4.122: Initial and final graph of the cumulative two d constraint

1 2 3 4

2

3

4

5

1

(B)(A)

2

3
3

4

1

2
3

4

<5

Figure 4.123: Two representations of a 2-dimensional cumulated profile

20000128 373

See also cumulative, diffn, bin packing.

Key words geometrical constraint, derived collection.

374 NARC, SELF ; PRODUCT , ∀, SUCC

4.57 cumulative with level of priority

Origin H. Simonis

Constraint cumulative with level of priority(TASKS, PRIORITIES)

Argument(s) TASKS : collection

0
BBBB@

priority − int,
origin − dvar,
duration − dvar,
end − dvar,
height − dvar

1
CCCCA

PRIORITIES : collection(id− int, capacity − int)

Restriction(s) required(TASKS, [priority, height])
require at least(2, TASKS, [origin, duration, end])
TASKS.priority ≥ 1
TASKS.priority ≤ |PRIORITIES|
TASKS.duration ≥ 0
TASKS.height ≥ 0
required(PRIORITIES, [id, capacity])
PRIORITIES.id ≥ 1
PRIORITIES.id ≤ |PRIORITIES|
increasing seq(PRIORITIES, id)
increasing seq(PRIORITIES, capacity)

Purpose

Consider a set T of tasks described by the TASKS collection where each task has a given priority
choosen in the range [1, PRIORITIES]. Let Ti denotes the subset of tasks of T which all have
a priority less than or equal to i. For each set Ti, the cumulative with level of priority

constraint enforces that at each point in time, the cumulated height of the set of tasks that
overlap that point, does not exceed a given limit. Finally, it also imposes for each task of T the
constraint origin + duration = end.

Derived Collection(s) col

0
@

TIME POINTS − collection(idp − int, duration − dvar, point − dvar),»
item(idp − TASKS.priority, duration − TASKS.duration, point − TASKS.origin),
item(idp − TASKS.priority, duration − TASKS.duration, point − TASKS.end)

–
1
A

Arc input(s) TASKS

Arc generator SELF 7→ collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin + tasks.duration = tasks.end

Graph property(ies) NARC = |TASKS|

For all items of PRIORITIES:

20040530 375

Arc input(s) TIME POINTS TASKS

Arc generator PRODUCT 7→ collection(time points, tasks)

Arc arity 2

Arc constraint(s) • time points.idp = PRIORITIES.id
• time points.idp ≥ tasks.priority
• time points.duration > 0
• tasks.origin ≤ time points.point
• time points.point < tasks.end

Sets

SUCC 7→2
4

source,

variables − col

„
VARIABLES − collection(var − dvar),
[item(var − TASKS.height)]

«
3
5

Constraint(s) on sets sum ctr(variables,≤, PRIORITIES.capacity)

Example cumulative with level of priority

0
BBBBBBBB@

8
>>>><
>>>>:

priority − 1 origin − 1 duration − 2 end− 3 height − 1,
priority − 1 origin − 2 duration − 3 end− 5 height − 1,
priority − 1 origin − 5 duration − 2 end− 7 height − 2,
priority − 2 origin − 3 duration − 2 end− 5 height − 2,
priority − 2 origin − 6 duration − 3 end− 9 height − 1

9
>>>>=
>>>>;
,

id − 1 capacity − 2,
id − 2 capacity − 3

ff

1
CCCCCCCCA

Within the context of the second graph constraint, part (A) of Figure 4.124 shows
the initial graphs associated to priorities 1 and 2. Part (B) of Figure 4.124 shows the corre-
sponding final graphs associated to priorities 1 and 2. On the one hand, each source vertex
of the final graph can be interpreted as a time point p. On the other hand the successors of
a source vertex correspond to those tasks which both overlap that time point p and have a
priority less than or equal to a given level. The cumulative with level of priority

constraint holds since for each successor set S of the final graph the sum of the height of
the tasks in S is less than or equal to the capacity associated to a given level of priority.
Figure 4.125 shows the cumulated profile associated to both levels of priority.

Signature Since TASKS is the maximum number of vertices of the final graph of the first graph con-
straint we can rewrite NARC = |TASKS| to NARC ≥ |TASKS|. This leads to simplify
NARC to NARC.

Usage The cumulative with level of priority constraint was suggested by problems from
the telecommunication area where one has to ensure different levels of quality of service.
For this purpose the capacity of a transmission link is splitted so that a given percentage
is reserved to each level. In addition we have that, if the capacities allocated to levels
1, 2, . . . , i is not completely used, then level i+1 can use the corresponding spare capacity.

Remark The cumulative with level of priority constraint can be modeled by a con-
junction of cumulative constraints. As shown by the next example, the consis-
tency for all variables of the cumulative constraints does not implies consistency for
the corresponding cumulative with level of priority constraint. The following
cumulative with level of priority constraint

376 NARC, SELF ; PRODUCT , ∀, SUCC

TIME_POINTS

TASKS

1

123456 7

234 5678

PRIORITIES:1 PRIORITIES:2

1:1,2,1

1:1,1,2,3,1

2:1,2,3

2:1,2,3,5,1

3:1,3,24:1,3,5

3:1,5,2,7,2

5:1,2,5 6:2,2,3

4:1,2,3,5,1 6:2,3,2,5,2

7:2,2,5

5:1,5,2,7,2

8:2,3,6

7:2,6,3,9,1

(A) (B)

Figure 4.124: Initial and final graph of the cumulative with level of priority

constraint

< 4 (priorities 1 and 2)

6 7 8 9 time

am
ou

nt
 o

f r
es

ou
rc

e

< 3 (priority 1)

1

2

2
3

4
5

5

1 2 3 4 5

Figure 4.125: Resource consumption profile according to both levels of priority

20040530 377

cumulative with level of priority

0
BBBB@

8
<
:

priority − 1 origin − o1 duration − 2 height − 2,
priority − 1 origin − o2 duration − 2 height − 1,
priority − 2 origin − o3 duration − 1 height − 3

9
=
; ,

id − 1 capacity − 2,
id − 2 capacity − 3

ff

1
CCCCA

where the domains of o1, o2 and o3 are respectively equal to {1, 2, 3}, {1, 2, 3} and
{1, 2, 3, 4} corresponds to the following conjunction of cumulative constraints

cumulative

„
origin − o1 duration − 2 height − 2,
origin − o2 duration − 2 height − 1

ff
, 2

«

cumulative

0
@
8
<
:

origin − o1 duration − 2 height − 2,
origin − o2 duration − 2 height − 1,
origin − o3 duration − 1 height − 3

9
=
; , 3

1
A

Even if the cumulative could achieve arc-consistency, the previous conjunction of
cumulative constraints would not detect the fact that there is no solution.

See also cumulative.

Key words scheduling constraint, resource constraint, temporal constraint, derived collection.

378 NARC, SELF ; PRODUCT , ∀, SUCC

4.58 cumulatives

Origin [89]

Constraint cumulatives(TASKS, MACHINES, CTR)

Argument(s) TASKS : collection

0
BBBB@

machine − dvar,
origin − dvar,
duration − dvar,
end− dvar,
height − dvar

1
CCCCA

MACHINES : collection(id− int, capacity − int)
CTR : atom

Restriction(s) required(TASKS, [machine, height])
require at least(2, TASKS, [origin, duration, end])
in attr(TASKS, machine, MACHINES, id)
TASKS.duration ≥ 0
required(MACHINES, [id, capacity])
distinct(MACHINES, id)
CTR ∈ [≤,≥]

Purpose

Consider a set T of tasks described by the TASKS collection. When CTR is equal to ≤ (repec-
tively ≥), the cumulatives constraint enforces the following condition for each machine m:
At each point in time, where at least one task assigned on machine m is present, the cumulated
height of the set of tasks that both overlap that point and are assigned to machine m should be
less than or equal to (repectively greater than or equal to) the capacity associated to machine m.
It also imposes for each task of T the constraint origin + duration = end.

Derived Collection(s) col

0
@

TIME POINTS − collection(idm − int, duration − dvar, point − dvar),»
item(idm − TASKS.machine, duration − TASKS.duration, point − TASKS.origin),
item(idm − TASKS.machine, duration − TASKS.duration, point − TASKS.end)

–
1
A

Arc input(s) TASKS

Arc generator SELF 7→ collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin + tasks.duration = tasks.end

Graph property(ies) NARC = |TASKS|

For all items of MACHINES:

Arc input(s) TIME POINTS TASKS

Arc generator PRODUCT 7→ collection(time points, tasks)

20000128 379

Arc arity 2

Arc constraint(s) • time points.idm = MACHINES.id
• time points.idm = tasks.machine
• time points.duration > 0
• tasks.origin ≤ time points.point
• time points.point < tasks.end

Sets

SUCC 7→2
4

source,

variables − col

„
VARIABLES − collection(var − dvar),
[item(var − TASKS.height)]

«
3
5

Constraint(s) on sets sum ctr(variables, CTR, MACHINES.capacity)

Example cumulatives

0
BBBBBBBBBB@

8
>>>>>>>><
>>>>>>>>:

machine − 1 origin − 2 duration − 2 end − 4 height −−2,
machine − 1 origin − 1 duration − 4 end − 5 height − 1,
machine − 1 origin − 4 duration − 2 end − 6 height −−1,
machine − 1 origin − 2 duration − 3 end − 5 height − 2,
machine − 1 origin − 5 duration − 2 end − 7 height − 2,
machine − 2 origin − 3 duration − 2 end − 5 height −−1,
machine − 2 origin − 1 duration − 4 end − 5 height − 1

9
>>>>>>>>=
>>>>>>>>;

,

{id − 1 capacity − 0, id − 2 capacity − 0},≥

1
CCCCCCCCCCA

Within the context of the second graph constraint, part (A) of Figure 4.126 shows
the initial graphs associated to machines 1 and 2. Part (B) of Figure 4.126 shows the
corresponding final graphs associated to machines 1 and 2. On the one hand, each source
vertex of the final graph can be interpreted as a time point p on a specific machine m.
On the other hand the successors of a source vertex correspond to those tasks which both
overlap that time point p and are assigned to machine m. Since they don’t have any
successors we have eliminated those vertices corresponding to the end of the last three
tasks of the TASKS collection. The cumulatives constraint holds since for each successor
set S of the final graph the sum of the height of the tasks in S is greather than or equal to
the capacity of the machine corresponding to the time point associated to S . Figure 4.127
shows with a thick line the cumulated profile on both machines.

Signature Since TASKS is the maximum number of vertices of the final graph of the first graph con-
straint we can rewrite NARC = |TASKS| to NARC ≥ |TASKS|. This leads to simplify
NARC to NARC.

Usage As shown in the previous example, the cumulatives constraint is useful for covering
problems where different demand profiles have to be covered by a set of tasks. This is
modelled in the following way:

• To each demand profile is associated a given machine m and a set of tasks for which
all attributes (machine, origin, duration, end, height) are fixed; moreover the
machine attribute is fixed tom and the height attribute is strictly negative. For each
machine m the cumulated profile of all the previous tasks constitutes the demand
profile to cover.

• To each task that can be used to cover the demand is associated a task for which the
height attribute is a positive integer; the height attribute describes the amount of

380 NARC, SELF ; PRODUCT , ∀, SUCC

TIME_POINTS

TASKS

1

123456 7

2345678910 11121314

MACHINES:1 MACHINES:2

1:1,2,2

1:1,2,2,4,-22:1,1,4,5,1 4:1,2,3,5,2

2:1,2,4

3:1,4,2,6,-1

3:1,4,14:1,4,5

5:1,5,2,7,2

5:1,2,46:1,2,6 7:1,3,28:1,3,59:1,2,5 11:2,2,3

6:2,3,2,5,-17:2,1,4,5,1

13:2,4,1

(A) (B)

Figure 4.126: Initial and final graph of the cumulatives constraint

0

1

2

−2

−1

m
ac

hi
ne

 1

−1

0

1

m
ac

hi
ne

 2

1 2 3 4 5 6
time

>=0

1
3

4

52

5

2

resource consumption

6

7

resource consumption

1 2 3 4 5 6
time

>=0

Figure 4.127: Resource consumption profile on the different machines

20000128 381

demand that can be covered by the task at each instant during its execution (between
its origin and its end) on the demand profile associated to the machine attribute.

• In order to express the fact that each demand profile should completely be covered,
we set the capacity attribute of each machine to 0. We can also relax the constraint
by setting the capacity attribute to a negative number that specifies the maximum
allowed uncovered demand at each instant.

The demand profiles might also not be completely fixed in advance.

When all the heights of the tasks are non-negative, one other possible use of the
cumulatives constraint is to enforce to reach a minimum level of resource consumption.
This is imposed on those time-points that are overlapped by at least one task.

By introducing a dummy task of height 0, of origin the minimum origin of all the tasks and
of end the maximum end of all the tasks, this can also be imposed between the first and the
last utilisation of the resource.

Finally the cumulatives constraint is also useful for scheduling problems where several
cumulative machines are available and where you have to assign each task on a specific
machine.

Algorithm Three filtering algorithms for this constraint are described in [89].

See also cumulative.

Key words scheduling constraint, resource constraint, temporal constraint, producer-consumer,
workload covering, demand profile, derived collection.

382 MAX NSCC,NVERTEX,CLIQUE

4.59 cutset

Origin [90]

Constraint cutset(SIZE CUTSET, NODES)

Argument(s) SIZE CUTSET : dvar

NODES : collection(index − int, succ − sint, bool − dvar)

Restriction(s) SIZE CUTSET ≥ 0
SIZE CUTSET ≤ |NODES|
required(NODES, [index, succ, bool])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.bool ≥ 0
NODES.bool ≤ 1

Purpose
Consider a digraph G with n vertices described by the NODES collection. Enforces that the
subset of kept vertices of cardinality n − SIZE CUTSET and their corresponding arcs form a
graph without circuit.

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) • in set(nodes2.index, nodes1.succ)
• nodes1.bool = 1
• nodes2.bool = 1

Graph property(ies) •MAX NSCC ≤ 1
• NVERTEX = |NODES| − SIZE CUTSET

Example cutset

0
BB@ 1,

8
>><
>>:

index − 1 succ − {2, 3, 4} bool − 1,
index − 2 succ − {3} bool − 1,
index − 3 succ − {4} bool − 1,
index − 4 succ − {1} bool − 0

9
>>=
>>;

1
CCA

Part (A) of Figure 4.128 shows the initial graph from which we have choose to
start. It is derived from the set associated to each vertex. Each set describes the potential
values of the succ attribute of a given vertex. Part (B) of Figure 4.128 gives the final graph
associated to the example. Since we use the NVERTEX graph property, the vertices of
the final graph are stressed in bold. The cutset constraint holds since the final graph does
not contain any circuit and since the number of removed vertices SIZE CUTSET is equal to
1.

20030820 383

Graph model We use a set of integers for representing the successors of each vertex. Because of the arc
constraint, all arcs such that the bool attribute of one extremity is equal to 0 are elimi-
nated; Therefore all vertices for which the bool attribute is equal to 0 are also eliminated
(since they will correspond to isolated vertices). The graph property MAX NSCC ≤ 1
enforces the size of the largest strongly connected component to not exceed 1; Therefore,
the final graph can’t contain any circuit.

Usage The paper [90] introducing the cutset constraint mentions applications from various areas
such that deadlock breaking or program verification.

Algorithm The filtering algorithm presented in [90] uses graph reduction techniques inspired from
Levy and Low [91] as well as from Lloyd, Soffa and Wang [92].

Key words graph constraint, circuit, directed acyclic graph.

384 MAX NSCC,NVERTEX,CLIQUE

NODES

1:1,{2,3,4}

2:2,{3}

3:3,{4}

4:4,{1}

MAX_NSCC=1,NVERTEX=3

1:1,{2,3,4},1

2:2,{3},1

3:3,{4},1

(A) (B)

Figure 4.128: Initial and final graph of the cutset set constraint

20030820 385

386 NCC,NTREE,CLIQUE

4.60 cycle

Origin [37]

Constraint cycle(NCYCLE, NODES)

Argument(s) NCYCLE : dvar

NODES : collection(index − int, succ − dvar)

Restriction(s) NCYCLE ≥ 1
NCYCLE ≤ |NODES|
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose

Consider a digraph G described by the NODES collection. NCYCLE is equal to the number of
circuits for coveringG in such a way that each vertex ofG belongs to one single circuit. NCYCLE
can also be interpreted as the number of cycles of the permutation associated to the successor
variables of the NODES collection.

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) • NTREE = 0
• NCC = NCYCLE

Example cycle

0
BBBB@

2,

8
>>>><
>>>>:

index − 1 succ − 2,
index − 2 succ − 1,
index − 3 succ − 5,
index − 4 succ − 3,
index − 5 succ − 4

9
>>>>=
>>>>;

1
CCCCA

In this previous example we have the following two cycles: 1 → 2 → 1 and
3→ 5→ 4→ 3. Parts (A) and (B) of Figure 4.129 respectively show the initial and final
graph. Since we use the NCC graph property, we show the two connected components
of the final graph. The constraint holds since all the vertices belong to a circuit (i.e.
NTREE = 0) and since NCYCLE = NCC = 2.

Graph model From the restrictions and from the arc constraint, we deduce that we have a bijection from
the successor variables to the values of interval [1, |NODES|]. With no explicit restrictions it
would have been impossible to derive this property.

20000128 387

In order to express the binary constraint that links two vertices one has to make explicit the
identifier of the vertices. This is why the cycle constraint considers objects that have two
attributes:

• One fixed attribute index, which is the identifier of the vertex,

• One variable attribute succ, which is the successor of the vertex.

The graph property NTREE = 0 is used in order to avoid having vertices which both do
not belong to a circuit and have at least one successor located on a circuit. This concretely
means that all vertices of the final graph should belong to a circuit.

Usage The PhD thesis of Eric Bourreau [93] mentions the following applications of the cycle

constraint:

• The balanced Euler knight problem where one tries to cover a rectangular chessboard
of sizeN ·M by C knights which all have to visit between 2 · bb(N ·M)/Cc/2c and
2 · dd(N ·M)/Ce/2e distinct locations. For some values ofN , M and C there does
not exist any solution to the previous problem. This is for instance the case when
N = M = C = 6.

• Some pick-up delivery problems where a fleet of vehicles has to transport a set of
orders. Each order is characterized by its initial location, its final destination and its
weight. In addition one has also to take into account the capacity of the different
vehicles.

Remark In the original cycle constraint of CHIP the index attribute was not explicitly present. It
was implicitly defined as the position of a variable in a list.

In an early version of the CHIP their was a constraint named circuit which, from a
declarative point of view, was equivalent to cycle(1, NODES). In ALICE [2] the circuit
constraint was also present.

Algorithm Since all succ variables have to take distinct values one can reuse the algorithms associ-
ated to the alldifferent constraint. A second necessary condition is to have no more
than max(NCYCLE) strongly connected components. Since all the vertices of a circuit be-
long to the same strongly connected component an arc going from one strongly connected
component to another strongly connected component has to be removed.

See also circuit, cycle card on path, cycle resource, derangement, inverse, map,
symmetric alldifferent, tree.

Key words graph constraint, circuit, cycle, permutation, graph partitioning constraint,
connected component, strongly connected component, Euler knight, pick-up delivery,
one succ.

388 NCC,NTREE,CLIQUE

NODES

1

2

3

4

5

NTREE=0,NCC=2

CC#1 CC#2

1:1,2

2:2,1

3:3,5

5:5,4

4:4,3

(A) (B)

Figure 4.129: Initial and final graph of the cycle constraint

20000128 389

390 NCC,NTREE,CLIQUE ,PATH LENGTH

4.61 cycle card on path

Origin CHIP

Constraint cycle card on path(NCYCLE, NODES, ATLEAST, ATMOST, PATH LEN, VALUES)

Argument(s) NCYCLE : dvar

NODES : collection(index − int, succ − dvar, colour − dvar)
ATLEAST : int

ATMOST : int

PATH LEN : int

VALUES : collection(val− int)

Restriction(s) NCYCLE ≥ 1
NCYCLE ≤ |NODES|
required(NODES, [index, succ, colour])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|
ATLEAST ≥ 0
ATLEAST ≤ PATH LEN

ATMOST ≥ ATLEAST

PATH LEN ≥ 0
required(VALUES, val)
distinct(VALUES, val)

Purpose

Consider a digraph G described by the NODES collection. NCYCLE is the number of circuits
for covering G in such a way that each vertex belongs to one single circuit. In addition the
following constraint must also hold: On each set of PATH LENGTH consecutive distinct vertices
of each final circuit, the number of vertices for which the attribute colour takes his value in the
collection of values VALUES should be located within the range [ATLEAST, ATMOST].

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) • NTREE = 0
• NCC = NCYCLE

Sets
PATH LENGTH(PATH LEN) 7→»

variables − col

„
VARIABLES − collection(var − dvar),
[item(var − NODES.colour)]

« –

20000128 391

Constraint(s) on sets among low up(ATLEAST, ATMOST, variables, VALUES)

Example cycle card on path

0
BBBBBBBBBBBBBB@

2,

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

index − 1 succ − 7 colour − 2,
index − 2 succ − 4 colour − 3,
index − 3 succ − 8 colour − 2,
index − 4 succ − 9 colour − 1,
index − 5 succ − 1 colour − 2,
index − 6 succ − 2 colour − 1,
index − 7 succ − 5 colour − 1,
index − 8 succ − 6 colour − 1,
index − 9 succ − 3 colour − 1

9
>>>>>>>>>>>>=
>>>>>>>>>>>>;

, 1, 2, 3,

{val − 1}

1
CCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.130 respectively show the initial and final graph.
Since we use the NCC graph property, we show the two connected components of the
final graph. The constraint cycle card on path holds since all the vertices belong to a
circuit (i.e. NTREE = 0) and since for each set of three consecutives vertices, colour 1
occurs at least once and at most twice (i.e. the among low up constraint holds).

NODES

1

2

3

4

5

6

7

8

9

NTREE=0,NCC=2

CC#1 CC#2

1:1,7,2

7:7,5,1

5:5,1,2

2:2,4,3

4:4,9,1

3:3,8,2

8:8,6,1

9:9,3,1

6:6,2,1

(A) (B)

Figure 4.130: Initial and final graph of the cycle card on path constraint

Usage Assume that the vertices of G are partitioned into the following two categories:

• Clients to visit.

• Depots where one can reload a vehicle.

Using the cycle card on path constraint we can express a constraint like: After visiting
three consecutives clients we should visit a depot. This is typically not possible with the
atmost constraint since we don’t know in advance the set of variables on which to post the
atmost constraint.

392 NCC,NTREE,CLIQUE ,PATH LENGTH

Remark This constraint is a special case of the sequence parameter of the cycle constraint of
CHIP [93, pages 121–128].

See also cycle, among low up.

Key words graph constraint, sliding sequence constraint, sequence, connected component, coloured,
one succ.

20000128 393

394 NCC,NTREE,CLIQUE ; NVERTEX,CLIQUE ,PRED

4.62 cycle or accessibility

Origin Inspired by [94].

Constraint cycle or accessibility(MAXDIST, NCYCLE, NODES)

Argument(s) MAXDIST : int

NCYCLE : dvar

NODES : collection(index − int, succ− dvar, x − int, y − int)

Restriction(s) MAXDIST ≥ 0
NCYCLE ≥ 1
NCYCLE ≤ |NODES|
required(NODES, [index, succ, x, y])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 0
NODES.succ ≤ |NODES|
NODES.x ≥ 0
NODES.y ≥ 0

Purpose

Consider a digraph G described by the NODES collection. Cover a subset of the vertices of
G by a set of vertex-disjoint circuits in such a way that the following property holds: For
each uncovered vertex v1 of G there exists at least one covered vertex v2 of G such that the
Manhattan distance between v1 and v2 is less than or equal to MAXDIST.

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) • NTREE = 0
• NCC = NCYCLE

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s)
W
0
BB@

nodes1.succ = nodes2.index,

V
0
@

nodes1.succ = 0,
nodes2.succ 6= 0,
abs(nodes1.x− nodes2.x) + abs(nodes1.y− nodes2.y) ≤ MAXDIST

1
A

1
CCA

20000128 395

Graph property(ies) NVERTEX = |NODES|

Sets
PRED 7→»

variables − col(VARIABLES − collection(var− dvar), [item(var − NODES.succ)]),
destination

–

Constraint(s) on sets nvalues except 0(variables,=, 1)

Example cycle or accessibility

0
BBBBBBBB@

3, 2,

8
>>>>>>>><
>>>>>>>>:

index − 1 succ − 6 x− 4 y − 5,
index − 2 succ − 0 x− 9 y − 1,
index − 3 succ − 0 x− 2 y − 4,
index − 4 succ − 1 x− 2 y − 6,
index − 5 succ − 5 x− 7 y − 2,
index − 6 succ − 4 x− 4 y − 7,
index − 7 succ − 0 x− 6 y − 4

9
>>>>>>>>=
>>>>>>>>;

1
CCCCCCCCA

Parts (A) and (B) of Figure 4.131 respectively show the initial and final graph asso-
ciated to the second graph constraint. Figure 4.132 represents the solution associated to
the previous example. The covered vertices are colored in gray while the links starting
from the uncovered vertices are dashed. In the solution we have 2 circuits and 3 uncovered
nodes. All the uncovered nodes are located at a distance that does not exceed 3 from at
least one covered node.

NODES

1

2

3

4

5

6

7

NVERTEX=7

1:1,6,4,5

6:6,4,4,7

4:4,1,2,6

2:2,0,9,1

5:5,5,7,2

3:3,0,2,4 7:7,0,6,4

(A) (B)

Figure 4.131: Initial and final graph of the cycle or accessibility constraint

Graph model For each vertex v we have introduced the following attributes:

• index: The label associated to v,

• succ: If v is not covered by a circuit then 0; If v is covered by a circuit then index of
the successor of v.

• x: The x-coordinate of v,

• y: The y-coordinate of v.

396 NCC,NTREE,CLIQUE ; NVERTEX,CLIQUE ,PRED

The first graph constraint enforces all vertices which have a non-zero successor to form a
set of NCYCLE vertex-disjoint circuits.

The final graph associated to the second graph constraint contains two types of arcs:

• The arcs belonging to one circuit (i.e. nodes1.succ = nodes2.index),

• The arcs between one vertex v1 that does not belong to any circuit (i.e.
nodes1.succ = 0) and one vertex v2 located on a circuit (i.e. nodes2.succ 6= 0)
such that the Manhattan distance between v1 and v2 is less than or equal to MAXDIST.

In order to specify the fact that each vertex is involved in at least one arc we
use the graph property NVERTEX = |NODES|. Finally the dynamic constraint
nvalues except 0(variables,=, 1) expresses the fact that for each vertex v, there is
exactly one predecessor of v which belong to a circuit.

Signature Since |NODES| is the maximum number of vertices of the final graph associated to the
second graph constraint we can rewrite NVERTEX = |NODES| to NVERTEX ≥
|NODES|. This leads to simplify NVERTEX to NVERTEX.

Remark This kind of facilities location problem is described in [94, pages 187–189] pages. In addi-
tion to our example they also mention the cost problem that is usually a trade-off between
the vertices that are directly covered by circuits and the others.

See also nvalues except 0.

Key words graph constraint, geometrical constraint, strongly connected component,
facilities location problem.

1 2 3 4 5 6 7 8 9

1

2

3

5

6

7

4 3

4

1

6

7

5

2

Figure 4.132: Final graph associated to the facilities location problem

20000128 397

398 NCC,NTREE,NVERTEX,CLIQUE ; NVERTEX,CLIQUE , ∀

4.63 cycle resource

Origin CHIP

Constraint cycle resource(RESOURCE, TASK)

Argument(s) RESOURCE : collection(id− int, first task − dvar, nb task − dvar)
TASK : collection(id− int, next task − dvar, resource − dvar)

Restriction(s) required(RESOURCE, [id, first task, nb task])
RESOURCE.id ≥ 1
RESOURCE.id ≤ |RESOURCE|
distinct(RESOURCE, id)
RESOURCE.first task ≥ 1
RESOURCE.first task ≤ |RESOURCE| + |TASK|
RESOURCE.nb task ≥ 0
RESOURCE.nb task ≤ |TASK|
required(TASK, [id, next task, resource])
TASK.id > |RESOURCE|
TASK.id ≤ |RESOURCE|+ |TASK|
distinct(TASK, id)
TASK.next task ≥ 1
TASK.next task ≤ |RESOURCE| + |TASK|
TASK.resource ≥ 1
TASK.resource ≤ |RESOURCE|

Consider a digraph G defined as follows:
Purpose • To each item of the RESOURCE and TASK collections corresponds one vertex of G. A

vertex that was generated from an item of the RESOURCE (respectively TASK) collection
is called a resource vertex (respectively task vertex).

• There is an arc from a resource vertex r to a task vertex t if t ∈
RESOURCE[r].first task.

• There is an arc from a task vertex t to a resource vertex r if r ∈ TASK[t].next task.

• There is an arc from a task vertex t1 to a task vertex t2 if t2 ∈ TASK[t1].next task.

• There is no arc between two resource vertices.
Enforce to cover G in such a way that each vertex belongs to one single circuit. Each circuit is
made up from one single resource vertex and zero, one or more task vertices. For each resource-
vertex a domain variable indicates how many task-vertices belong to the corresponding circuit.
For each task a domain variable gives the identifier of the resource which can effectively handle
that task.

Derived Collection(s) col

0
@

RESOURCE TASK − collection(index − int, succ − dvar, name − dvar),»
item(index − RESOURCE.id, succ − RESOURCE.first task, name − RESOURCE.id),
item(index − TASK.id, succ − TASK.next task, name − TASK.resource)

–
1
A

Arc input(s) RESOURCE TASK

20030820 399

Arc generator CLIQUE 7→ collection(resource task1, resource task2)

Arc arity 2

Arc constraint(s) • resource task1.succ = resource task2.index
• resource task1.name = resource task2.name

Graph property(ies) • NTREE = 0
• NCC = |RESOURCE|
• NVERTEX = |RESOURCE|+ |TASK|

For all items of RESOURCE:

Arc input(s) RESOURCE TASK

Arc generator CLIQUE 7→ collection(resource task1, resource task2)

Arc arity 2

Arc constraint(s) • resource task1.succ = resource task2.index
• resource task1.name = resource task2.name
• resource task1.name = RESOURCE.id

Graph property(ies) NVERTEX = RESOURCE.nb task + 1

Example cycle resource

0
BBBBBBBBBB@

8
<
:

id− 1 first task − 5 nb task − 3,
id− 2 first task − 2 nb task − 0,
id− 3 first task − 8 nb task − 2

9
=
; ,

8
>>>><
>>>>:

id− 4 next task − 7 resource − 1,
id− 5 next task − 4 resource − 1,
id− 6 next task − 3 resource − 3,
id− 7 next task − 1 resource − 1,
id− 8 next task − 6 resource − 3

9
>>>>=
>>>>;

1
CCCCCCCCCCA

Part (A) of Figure 4.133 shows the initial graphs (of the second graph constraint)
associated to resources 1, 2 and 3. Part (B) of Figure 4.133 shows the final graphs
(of the second graph constraint) associated to resources 1, 2 and 3. Since we use the
NVERTEX graph property, the vertices of the final graphs are stressed in bold. To each
resource corresponds a circuit of respectively 3, 0 and 2 task-vertices.

Graph model The graph model of the cycle resource constraint illustrates the following points:

• How to differentiate the constraint on the length of a circuit according to a resource
that is assigned to a circuit? This is achieved by introducing a collection of resources
and by asking a different graph property for each item of that collection.

• How to introduce the concept of name which corresponds to the resource that handle
a given task? This is done by adding to the arc constraint associated to the cycle

constraint the condition that the name variables of two consecutive vertices should
be equal.

400 NCC,NTREE,NVERTEX,CLIQUE ; NVERTEX,CLIQUE , ∀

Signature Since the initial graph of the first graph constraint contains |RESOURCE| + |TASK| ver-
tices, the corresponding final graph cannot have more than |RESOURCE| + |TASK| vertices.
Therefore we can rewrite the graph property NVERTEX = |RESOURCE| + |TASK| to
NVERTEX ≥ |RESOURCE| + |TASK| and simplify NVERTEX to NVERTEX.

Usage This constraint is useful for some vehicles routing problem where the number of locations
to visit depends of the vehicle type that is effectively used. The resource attribute allows
expressing various constraints such as:

• The compatibility or incompability between tasks and vehicles,

• The fact that certain tasks should be performed by the same vehicle,

• The preassignment of certain tasks to a given vehicle.

Remark This constraint could be expressed with the cycle constraint of CHIP by using the follow-
ing optional parameters:

• The resource node parameter [93, page 97],

• The circuit weight parameter [93, page 101],

• The name parameter [93, page 104].

See also cycle.

Key words graph constraint, resource constraint, graph partitioning constraint, connected component,
strongly connected component, derived collection.

20030820 401

RESOURCE_TASK

1

2

3

4

5

6

7

8

1:NVERTEX=4
2:NVERTEX=1
3:NVERTEX=3

RESOURCE:1 RESOURCE:2 RESOURCE:3

1:1,5,1

5:5,4,1

4:4,7,1

7:7,1,1

2:2,2,2 3:3,8,3

8:8,6,3

6:6,3,3

(A) (B)

Figure 4.133: Initial and final graph of the cycle resource constraint

402 NARC,PATH

4.64 cyclic change

Origin Derived from change.

Constraint cyclic change(NCHANGE, CYCLE LENGTH, VARIABLES, CTR)

Argument(s) NCHANGE : dvar

CYCLE LENGTH : int

VARIABLES : collection(var− dvar)
CTR : atom

Restriction(s) NCHANGE ≥ 0
NCHANGE < |VARIABLES|
CYCLE LENGTH > 0
required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose NCHANGE is the number of times that constraint ((X + 1) mod CYCLE LENGTH) CTR Y holds;
X and Y correspond to consecutive variables of the collection VARIABLES.

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) (variables1.var + 1) mod CYCLE LENGTH CTR variables2.var

Graph property(ies) NARC = NCHANGE

Example cyclic change

0
BBBB@

2, 4,

8
>>>><
>>>>:

var− 3,
var− 0,
var− 2,
var− 3,
var− 1

9
>>>>=
>>>>;
, 6=

1
CCCCA

In the previous example we have the two following changes:

• A first change between 0 and 2,

• A second change between 3 and 1.

However, the sequence 3 0 does not correspond to a change since (3 + 1) mod 4 is equal
to 0. Parts (A) and (B) of Figure 4.134 respectively show the initial and final graph. Since
we use the NARC graph property, the arcs of the final graph are stressed in bold.

Automaton Figure 4.135 depicts the automaton associated to the cyclic change constraint. To each
pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a
0-1 signature variable Si. The following signature constraint links VARi, VARi+1 and Si:
((VARi + 1) mod CYCLE LENGTH) CTR VARi+1 ⇔ Si.

20000128 403

VARIABLES

1

2

3

4

5

NARC=2

2:0

3:2

4:3

5:1

(A) (B)

Figure 4.134: Initial and final graph of the cyclic change constraint

(VAR +1)mod CYCLE_LENGTH CTR VAR ,i i+1 (VAR +1)mod CYCLE_LENGTH not CTR VARi i+1

$

NCHANGE=C
t:

{C=C+1}

{C=0}

s

Figure 4.135: Automaton of the cyclic change constraint

Q =s0

C =00 C1

Q1

VAR
1

S1

VAR
2

S2

VAR
n

VAR
3

S3

Q2

C2

Sn−1

VAR
n−1

Q =tn−1

C =NCHANGEn−1

Figure 4.136: Hypergraph of the reformulation corresponding to the automaton of the
cyclic change constraint

404 NARC,PATH

Usage This constraint may be used for personnel cyclic timetabling problems where each person
has to work according to cycles. In this context each variable of the VARIABLES collection
corresponds to the type of work a person performs on a specific day. Because of some
perturbation (e.g. illness, unavailability, variation of the workload) it is in practice not
reasonable to ask for perfect cyclic solutions. One alternative is to use the cyclic change

constraint and to ask for solutions where one tries to minimize the number of cycle breaks
(i.e. the variable NCHANGE).

See also change.

Key words timetabling constraint, number of changes, cyclic, automaton, automaton with counters,
sliding cyclic(1) constraint network(2), acyclic, no loop.

20000128 405

406 NARC,PATH

4.65 cyclic change joker

Origin Derived from cyclic change.

Constraint cyclic change joker(NCHANGE, CYCLE LENGTH, VARIABLES, CTR)

Argument(s) NCHANGE : dvar

CYCLE LENGTH : int

VARIABLES : collection(var− dvar)
CTR : atom

Restriction(s) NCHANGE ≥ 0
NCHANGE < |VARIABLES|
required(VARIABLES, var)
CYCLE LENGTH > 0
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose

NCHANGE is the number of times that the following constraint holds:

((X + 1) mod CYCLE LENGTH) CTR Y ∧X < CYCLE LENGTH ∧ Y < CYCLE LENGTH

X and Y correspond to consecutive variables of the collection VARIABLES.

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • (variables1.var + 1) mod CYCLE LENGTH CTR variables2.var
• variables1.var < CYCLE LENGTH

• variables2.var < CYCLE LENGTH

Graph property(ies) NARC = NCHANGE

Example cyclic change joker

0
BBBBBBBBBBBB@

2, 4,

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

var − 3,
var − 0,
var − 2,
var − 4,
var − 4,
var − 4,
var − 3,
var − 1,
var − 4

9
>>>>>>>>>>>>=
>>>>>>>>>>>>;

, 6=

1
CCCCCCCCCCCCA

In the previous example we have the two following changes:

• A first change between 0 and 2,

• A second change between 3 and 1.

20000128 407

But when the joker value 4 is involved, there is no change. This is why no change is
counted between values 2 and 4, between 4 and 4 and between 1 and 4. Parts (A) and (B)
of Figure 4.137 respectively show the initial and final graph. Since we use the NARC
graph property, the arcs of the final graph are stressed in bold.

VARIABLES

1

2

3

4

5

6

7

8

9

NARC=2

2:0

3:2

7:3

8:1

(A) (B)

Figure 4.137: Initial and final graph of the cyclic change joker constraint

Graph model The joker values are those values that are greater than or equal to CYCLE LENGTH. We do
not count any change for those arc constraints involving at least one variable taking a joker
value.

Automaton Figure 4.138 depicts the automaton associated to the cyclic change joker constraint.
To each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corre-
sponds a 0-1 signature variable Si. The following signature constraint links VARi, VARi+1

and Si:

(((VARi + 1) mod CYCLE LENGTH) CTR VARi+1 ∧
(VARi < CYCLE LENGTH) ∧ (VARi+1 < CYCLE LENGTH))⇔ Si.

Usage The cyclic change joker constraint can be used in the same context as the
cycle change constraint with the additional feature: In our example codes 0 to 3 cor-
respond to different type of activities (i.e. working the morning, the afternoon or the night)
and code 4 represents a holliday. We want to express the fact that we don’t count any
change for two consecutive days d1, d2 such that d1 or d2 is a holliday.

See also change.

Key words timetabling constraint, number of changes, cyclic, joker value, automaton,
automaton with counters, sliding cyclic(1) constraint network(2), acyclic, no loop.

408 NARC,PATH

(VAR +1)mod CYCLE_LENGTH not CTR VAR ori i+1
VAR >=CYCLE_LENGTH ori

i+1VAR >=CYCLE_LENGTH

(VAR +1)mod CYCLE_LENGTH CTR VAR andi i+1
VAR <CYCLE_LENGTH andi

i+1VAR <CYCLE_LENGTH,

$

NCHANGE=C
t:

{C=C+1}

{C=0}

s

Figure 4.138: Automaton of the cyclic change joker constraint

Q =s0

C =00 C1

Q1

VAR
1

S1

VAR
2

S2

VAR
n

VAR
3

S3

Q2

C2

Sn−1

VAR
n−1

Q =tn−1

C =NCHANGEn−1

Figure 4.139: Hypergraph of the reformulation corresponding to the automaton of the
cyclic change joker constraint

20000128 409

410 NARC,PATH

4.66 decreasing

Origin Inspired by increasing.

Constraint decreasing(VARIABLES)

Argument(s) VARIABLES : collection(var − dvar)

Restriction(s) |VARIABLES| > 0
required(VARIABLES, var)

Purpose The variables of the collection VARIABLES are decreasing.

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var ≥ variables2.var

Graph property(ies) NARC = |VARIABLES| − 1

Example decreasing({var − 8, var − 4, var − 1, var− 1})

Parts (A) and (B) of Figure 4.140 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

VARIABLES

1

2

3

4

NARC=3

1:8

2:4

3:1

4:1

(A) (B)

Figure 4.140: Initial and final graph of the decreasing constraint

20040814 411

Automaton Figure 4.141 depicts the automaton associated to the decreasing constraint. To each
pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a
0-1 signature variable Si. The following signature constraint links VARi, VARi+1 and Si:
VARi < VARi+1 ⇔ Si.

See also strictly decreasing, increasing, strictly increasing.

Key words decomposition, order constraint, automaton, automaton without counters,
sliding cyclic(1) constraint network(1).

$

t

s i i+1VAR >=VAR

Figure 4.141: Automaton of the decreasing constraint

412 NARC,PATH

VAR
1

VAR
2

S2

VAR
n

VAR
3

S3

Q2

Sn−1

VAR
n−1

Q =tn−1Q =s0 Q1

S1

Figure 4.142: Hypergraph of the reformulation corresponding to the automaton of the
decreasing constraint

20040814 413

414 AUTOMATON

4.67 deepest valley

Origin Derived from valley.

Constraint deepest valley(DEPTH, VARIABLES)

Argument(s) DEPTH : dvar

VARIABLES : collection(var − dvar)

Restriction(s) DEPTH ≥ 0
VARIABLES.var ≥ 0
required(VARIABLES, var)

Purpose

A variable Vk (1 < k < m) of the sequence of variables VARIABLES = V1, . . . , Vm is a valley
if and only if there exist an i (1 < i ≤ k) such that Vi−1 > Vi and Vi = Vi+1 = . . . = Vk
and Vk < Vk+1. DEPTH is the minimum value of the valley variables. If no such variable exists
DEPTH is equal to the default value MAXINT.

Example deepest valley

0
BBBBBBBBBB@

2,

8
>>>>>>>>>><
>>>>>>>>>>:

var − 5,
var − 3,
var − 4,
var − 8,
var − 8,
var − 2,
var − 7,
var − 1

9
>>>>>>>>>>=
>>>>>>>>>>;

1
CCCCCCCCCCA

The previous constraint holds since 2 is the deepest valley of the sequence 5 3 4 8 8 2 7 1.

1

1 5 6 7 8

2

3

4

5

6

43

7

8

Values

Variables 2

5

2

4

3

8 8

7

1

Figure 4.143: The sequence and its deepest valley

Automaton Figure 4.144 depicts the automaton associated to the deepest valley constraint. To each
pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a
signature variable Si. The following signature constraint links VARi, VARi+1 and Si:

VARi < VARi+1 ⇔ Si = 0 ∧ VARi = VARi+1 ⇔ Si = 1 ∧ VARi > VARi+1 ⇔ Si = 2.

20040530 415

VAR = VARi i+1

VAR = VARi i+1i+1iVAR < VAR

u

$

$

i i+1

i{C=min(C,VAR)}

i i+1

i i+1

VAR > VAR

VAR < VAR ,

VAR > VAR

DEPTH=C

t:

s

{C=maxint}

Figure 4.144: Automaton of the deepest valley constraint

C1

Q1

VAR
1

S1

VAR
2

S2

VAR
n

VAR
3

S3

Q2

C2

Sn−1

VAR
n−1

Q =s0

C =maxint0

Q =tn−1

n−1C =DEPTH

Figure 4.145: Hypergraph of the reformulation corresponding to the automaton of the
deepest valley constraint

416 AUTOMATON

See also valley, heighest peak.

Key words sequence, maxint, automaton, automaton with counters,
sliding cyclic(1) constraint network(2).

20040530 417

418 NTREE,CLIQUE

4.68 derangement

Origin Derived from cycle.

Constraint derangement(NODES)

Argument(s) NODES : collection(index − int, succ − dvar)

Restriction(s) required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose Enforce to have a permutation with no cycle of length one. The permutation is depicted by the
succ attribute of the NODES collection.

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) • nodes1.succ = nodes2.index
• nodes1.succ 6= nodes1.index

Graph property(ies) NTREE = 0

Example derangement

0
BBBB@

8
>>>><
>>>>:

index − 1 succ − 2,
index − 2 succ − 1,
index − 3 succ − 5,
index − 4 succ − 3,
index − 5 succ − 4

9
>>>>=
>>>>;

1
CCCCA

In the permutation of the previous example we have the following 2 cycles: 1 → 2 → 1
and 3 → 5 → 4 → 3. Parts (A) and (B) of Figure 4.146 respectively show the initial and
final graph. The constraint holds since the final graph does not contain any vertex which
do not belong to a circuit (i.e. NTREE = 0).

Graph model In order to express the binary constraint that links two vertices of the NODES collection
one has to make explicit the index value of the vertices. This is why the derangement

constraint considers objects that have two attributes:

• One fixed attribute index, which is the identifier of the vertex,

• One variable attribute succ, which is the successor of the vertex.

Forbiding cycles of length one is achieved by the second condition of the arc constraint.

20000128 419

Signature Since 0 is the smallest possible value of NTREE we can rewrite the graph property
NTREE = 0 to NTREE ≤ 0. This leads to simplify NTREE to NTREE.

Remark A special case of the cycle [37] constraint.

See also alldifferent, cycle.

Key words graph constraint, permutation.

420 NTREE,CLIQUE

NODES

1

2

3

4

5

NTREE=0

1:1,2

2:2,1

3:3,5

5:5,4

4:4,3

(A) (B)

Figure 4.146: Initial and final graph of the derangement constraint

20000128 421

422 NARC,PRODUCT (=)

4.69 differ from at least k pos

Origin Inspired by [56].

Constraint differ from at least k pos(K, VECTOR1, VECTOR2)

Type(s) VECTOR : collection(var− dvar)

Argument(s) K : int

VECTOR1 : VECTOR

VECTOR2 : VECTOR

Restriction(s) required(VECTOR, var)
K ≥ 0
K ≤ |VECTOR1|
|VECTOR1| = |VECTOR2|

Purpose Enforce two vectors VECTOR1 and VECTOR2 to differ from at least K positions.

Arc input(s) VECTOR1 VECTOR2

Arc generator PRODUCT (=) 7→ collection(vector1, vector2)

Arc arity 2

Arc constraint(s) vector1.var 6= vector2.var

Graph property(ies) NARC ≥ K

Example differ from at least k pos

0
BBBBBBBBBB@

2,

8
>><
>>:

var − 2,
var − 5,
var − 2,
var − 0

9
>>=
>>;
,

8
>><
>>:

var − 3,
var − 6,
var − 2,
var − 1

9
>>=
>>;

1
CCCCCCCCCCA

The previous constraint holds since the first and second vectors differ from 3 posi-
tions which is greater than or equal to K = 2. Parts (A) and (B) of Figure 4.147
respectively show the initial and final graph. Since we use the NARC graph property, the
arcs of the final graph are stressed in bold.

Automaton Figure 4.148 depicts the automaton associated to the differ from at least k pos con-
straint. Let VAR1i and VAR2i be the ith variables of the VECTOR1 and VECTOR2 collections.
To each pair of variables (VAR1i, VAR2i) corresponds a signature variable Si. The follow-
ing signature constraint links VAR1i, VAR2i and Si: VAR1i = VAR2i ⇔ Si.

Remark Used in the Arc constraint(s) slot of the all differ from at least k pos constraint.

20030820 423

VECTOR1

VECTOR2

1

1

2

2

3

3

4

4

NARC=3

1:2

1:3

2:5

2:6

4:0

4:1

(A) (B)

Figure 4.147: Initial and final graph of the differ from at least k pos constraint

{C=C+1}

VAR1<>VAR2,

$

t:
C>=K

VAR1=VAR2s

{C=0}

Figure 4.148: Automaton of the differ from at least k pos constraint

C1

S1

Q1

S2 Sn

Q =s0

C =00

Q =tn

VAR2
 1

VAR2
 2

VAR2
 n

VAR1
 1

VAR1
 2

VAR1
 n

C >=Kn

Figure 4.149: Hypergraph of the reformulation corresponding to the automaton of the
differ from at least k pos constraint

424 NARC,PRODUCT (=)

Used in all differ from at least k pos.

Key words value constraint, vector, automaton, automaton with counters,
alpha-acyclic constraint network(2).

20030820 425

426 NARC, SELF ; NARC,CLIQUE (6=)

4.70 diffn

Origin [37]

Constraint diffn(ORTHOTOPES)

Type(s) ORTHOTOPE : collection(ori − dvar, siz− dvar, end − dvar)

Argument(s) ORTHOTOPES : collection(orth− ORTHOTOPE)

Restriction(s) |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
required(ORTHOTOPES, orth)
same size(ORTHOTOPES, orth)

Purpose
Generalized multi-dimensional non-overlapping constraint: Holds if, for each pair of orthotopes
(O1, O2), O1 and O2 do not overlap. Two orthotopes do not overlap if there exists at least one
dimension where their projections do not overlap.

Arc input(s) ORTHOTOPES

Arc generator SELF 7→ collection(orthotopes)

Arc arity 1

Arc constraint(s) orth link ori siz end(orthotopes.orth)

Graph property(ies) NARC = |ORTHOTOPES|

Arc input(s) ORTHOTOPES

Arc generator CLIQUE(6=) 7→ collection(orthotopes1, orthotopes2)

Arc arity 2

Arc constraint(s) two orth do not overlap(orthotopes1.orth, orthotopes2.orth)

Graph property(ies) NARC = |ORTHOTOPES| ∗ |ORTHOTOPES| − |ORTHOTOPES|

Example diffn

0
BBBBBB@

8
>>>>>><
>>>>>>:

orth −

ori − 2 siz − 2 end − 4,
ori − 1 siz − 3 end − 4

ff
,

orth −

ori − 4 siz − 4 end − 8,
ori − 3 siz − 3 end − 3

ff
,

orth −

ori − 9 siz − 2 end − 11,
ori − 4 siz − 3 end − 7

ff

9
>>>>>>=
>>>>>>;

1
CCCCCCA

Parts (A) and (B) of Figure 4.150 respectively show the initial and final graph asso-
ciated to the second graph constraint. Since we use the NARC graph property, the arcs
of the final graph are stressed in bold. Figure 4.151 represents the respective position of
the three rectangles of the example. The coordinates of the leftmost lowest corner of each
rectangle are stressed in bold.

20000128 427

ORTHOTOPES

1

2

3

NARC=6

1:2,2,4
 1,3,4

2:4,4,8
 3,3,3

3:9,2,11
 4,3,7

(A) (B)

Figure 4.150: Initial and final graph of the diffn constraint

1

1 2 3 4 5 6 7 8 9 10

2

3

4

5

6

R1

R2

R3

Figure 4.151: The three rectangles of the example

428 NARC, SELF ; NARC,CLIQUE (6=)

Graph model The diffn constraint is expressed by using two graph constraints:

• The first graph constraint enforces for each dimension and for each orthotope the link
between the corresponding ori, siz and end attributes.

• The second graph constraint imposes each pair of distinct orthotopes to not overlap.

Signature Since |ORTHOTOPES| is the maximum number of vertices of the final graph of the first graph
constraint we can rewrite NARC = |ORTHOTOPES| to NARC ≥ |ORTHOTOPES|. This
leads to simplify NARC to NARC.

Since we use the CLIQUE(6=) arc generator on the ORTHOTOPES collection,
|ORTHOTOPES| · |ORTHOTOPES| − |ORTHOTOPES| is the maximum number of ver-
tices of the final graph of the second graph constraint. Therefore we can rewrite
NARC = |ORTHOTOPES| · |ORTHOTOPES|−|ORTHOTOPES| to NARC ≥ |ORTHOTOPES| ·
|ORTHOTOPES| − |ORTHOTOPES|. Again, this leads to simplify NARC to NARC.

Usage The diffn constraint occurs in placement and scheduling problems. It was for instance
used for scheduling problems where one has to both assign each non-premptive task to a
resource and fix its origin so that two tasks which are assigned to the same resource do
not overlap. A practical application from the area of the design of memory-dominated
embedded systems [95] can be found in [96].

Algorithm For the two-dimensional case of diffn a possible filtering algorithm based on sweep is
described in [97]. For the n-dimensional case of diffn a filtering algorithm handling the
fact that two objects do not overlap is given in [98]. Extensions of the non-overlapping
constraint to polygons and to more complex shapes are respectively described in [98] and
in [99]. Specialized propagation algorithms for the squared squares problem [100] (based
on the fact that no waste is permitted) are given in [101] and in [102].

Used in diffn column, diffn include, place in pyramid.

See also orth link ori siz end, two orth do not overlap.

Key words decomposition, geometrical constraint, orthotope, polygon, non-overlapping, sweep,
squared squares.

20000128 429

430 NARC,CLIQUE (<)

4.71 diffn column

Origin CHIP: option guillotine cut (column) of diffn.

Constraint diffn column(ORTHOTOPES, N)

Type(s) ORTHOTOPE : collection(ori − dvar, siz− dvar, end − dvar)

Argument(s) ORTHOTOPES : collection(orth− ORTHOTOPE)
N : int

Restriction(s) |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
required(ORTHOTOPES, orth)
same size(ORTHOTOPES, orth)
N > 0
N ≤ |ORTHOTOPE|
diffn(ORTHOTOPES)

Purpose

Arc input(s) ORTHOTOPES

Arc generator CLIQUE(<) 7→ collection(orthotopes1, orthotopes2)

Arc arity 2

Arc constraint(s) two orth column(orthotopes1.orth, orthotopes2.orth, N)

Graph property(ies) NARC = |ORTHOTOPES| ∗ (|ORTHOTOPES| − 1)/2

Example diffn column

0
BB@

8
>><
>>:

orth −

ori − 1 siz − 3 end − 4,
ori − 1 siz − 1 end − 2

ff
,

orth −

ori − 4 siz − 2 end − 6,
ori − 1 siz − 3 end − 4

ff

9
>>=
>>;
, 1

1
CCA

See also diffn, two orth column, diffn include.

Key words decomposition, geometrical constraint, positioning constraint, orthotope, guillotine cut.

20030820 431

ORTHOTOPES

1

2

NARC=1

1:1,3,4
 1,1,2

2:4,2,6
 1,3,4

(A) (B)

Figure 4.152: Initial and final graph of the diffn column constraint

432 NARC,CLIQUE (<)

4.72 diffn include

Origin CHIP: option guillotine cut (include) of diffn.

Constraint diffn include(ORTHOTOPES, N)

Type(s) ORTHOTOPE : collection(ori − dvar, siz− dvar, end − dvar)

Argument(s) ORTHOTOPES : collection(orth− ORTHOTOPE)
N : int

Restriction(s) |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
required(ORTHOTOPES, orth)
same size(ORTHOTOPES, orth)
N > 0
N ≤ |ORTHOTOPE|
diffn(ORTHOTOPES)

Purpose

Arc input(s) ORTHOTOPES

Arc generator CLIQUE(<) 7→ collection(orthotopes1, orthotopes2)

Arc arity 2

Arc constraint(s) two orth include(orthotopes1.orth, orthotopes2.orth, N)

Graph property(ies) NARC = |ORTHOTOPES| ∗ (|ORTHOTOPES| − 1)/2

Example diffn include

0
BB@

8
>><
>>:

orth −

ori− 1 siz − 3 end − 4,
ori− 1 siz − 1 end − 2

ff
,

orth −

ori− 1 siz − 2 end − 3,
ori− 2 siz − 3 end − 5

ff

9
>>=
>>;
, 1

1
CCA

See also diffn, two orth include, diffn column.

Key words decomposition, geometrical constraint, positioning constraint, orthotope.

20030820 433

ORTHOTOPES

1

2

NARC=1

1:1,3,4
 1,1,2

2:1,2,3
 2,3,5

(A) (B)

Figure 4.153: Initial and final graph of the diffn include constraint

434 NARC, SELF

4.73 discrepancy

Origin [103] and [104]

Constraint discrepancy(VARIABLES, K)

Argument(s) VARIABLES : collection(var − dvar, bad− sint)
K : int

Restriction(s) required(VARIABLES, var)
required(VARIABLES, bad)
K ≥ 0
K ≤ |VARIABLES|

Purpose K is the number of variables of the collection VARIABLES which take their value in their respec-
tive sets of bad values.

Arc input(s) VARIABLES

Arc generator SELF 7→ collection(variables)

Arc arity 1

Arc constraint(s) in set(variables.var, variables.bad)

Graph property(ies) NARC = K

Example discrepancy

0
BBBB@

8
>>>><
>>>>:

var− 4 bad − {1, 4, 6},
var− 5 bad − {0, 1},
var− 5 bad − {1, 6, 9},
var− 4 bad − {1, 4},
var− 1 bad − ∅

9
>>>>=
>>>>;
, 2

1
CCCCA

Parts (A) and (B) of Figure 4.154 respectively show the initial and final graph.
Since we use the NARC graph property, the unary arcs of the final graph are stressed in
bold.

VARIABLES

12345

NARC=2

1:4,{1,4,6} 4:4,{1,4}

(A) (B)

Figure 4.154: Initial and final graph of the discrepancy constraint

Graph model The arc constraint corresponds to the constraint
in set(variables.var, variables.bad) defined in this catalog. We employ the
SELF arc generator in order to produce an initial graph with a single loop on each vertex.

20050506 435

Remark Limited discrepancy search was first introduced by M. L. Ginsberg and W. D. Harvey as
a search technique in [105]. Later on, discrepancy based filtering was presented in the
PhD thesis of F. Focacci [103, pages 171–172]. Finally the discrepancy constraint was
explictely defined in the PhD thesis of W.-J. van Hoeve [104, page 104].

See also among.

Key words value constraint, counting constraint, heuristics, limited discrepancy search.

436 NARC,PRODUCT

4.74 disjoint

Origin Derived from alldifferent.

Constraint disjoint(VARIABLES1, VARIABLES2)

Argument(s) VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)

Restriction(s) required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose Each variable of the collection VARIABLES1 should take a value that is distinct from all the
values assigned to the variables of the collection VARIABLES2.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NARC = 0

Example disjoint

0
BBBBBBBB@

{var − 1, var− 9, var− 1, var− 5},8
>>>>>><
>>>>>>:

var − 2,
var − 7,
var − 7,
var − 0,
var − 6,
var − 8

9
>>>>>>=
>>>>>>;

1
CCCCCCCCA

In this example, values 1, 5, 9 are used by the variables of VARIABLES1 and values
0, 2, 6, 7, 8 by the variables of VARIABLES2. Since there is no intersection between the
two previous sets of values the disjoint constraint holds. Figure 4.155 shows the initial
graph. Since we use the NARC = 0 graph property the final graph is empty.

Graph model PRODUCT is used in order to generate the arcs of the graph between all variables
of VARIABLES1 and all variables of VARIABLES2. Since we use the graph property
NARC = 0 the final graph will be empty.

Signature Since 0 is the smallest number of arcs of the final graph we can rewrite NARC = 0 to
NARC ≤ 0. This leads to simplify NARC to NARC.

Automaton Figure 4.156 depicts the automaton associated to the disjoint constraint. To each variable
VAR1i of the collection VARIABLES1 corresponds a signature variable Si, which is equal to
0. To each variable VAR2i of the collection VARIABLES2 corresponds a signature variable
Si+|VARIABLES1|, which is equal to 1.

20000315 437

VARIABLES1

VARIABLES2

1

1234 56

234

Figure 4.155: Initial graph of the disjoint constraint (the final graph is empty)

i i

1,
{D[VAR2]=D[VAR2]+1}

i i

1,
{D[VAR2]=D[VAR2]+1}

0,
{C[VAR1]=C[VAR1]+1}i i

i

$

t:
arith_or(C,D,<,1)

s

{C[_]=0,D[_]=0}

Figure 4.156: Automaton of the disjoint constraint

438 NARC,PRODUCT

Remark Despite the fact that this is not an uncommon constraint, it can not be modelled in a compact
way neither with a disequality constraint (i.e. two given variables have to take distinct
values) nor with the alldifferent constraint. The disjoint constraint can bee seen as a
special case of the common(NCOMMON1, NCOMMON2, VARIABLES1, VARIABLES2) constraint
where NCOMMON1 and NCOMMON2 are both set to 0.

Algorithm Let us note:

• n1 the minimum number of distinct values taken by the variables of the collection
VARIABLES1.

• n2 the minimum number of distinct values taken by the variables of the collection
VARIABLES2.

• n12 the maximum number of distinct values taken by the union of the variables of
VARIABLES1 and VARIABLES2.

One invariant to maintain for the disjoint constraint is n1 +n2 ≤ n12. A lower bound of
n1 and n2 can be obtained by using the algorithms provided in [33, 106]. An exact upper
bound of n12 can be computed by using a bipartite matching algorithm.

See also disjoint tasks.

Key words value constraint, empty intersection, disequality, bipartite matching, automaton,
automaton with array of counters.

20000315 439

440 NARC, SELF ; NARC,PRODUCT

4.75 disjoint tasks

Origin Derived from disjoint.

Constraint disjoint tasks(TASKS1, TASKS2)

Argument(s) TASKS1 : collection(origin − dvar, duration − dvar, end − dvar)
TASKS2 : collection(origin − dvar, duration − dvar, end − dvar)

Restriction(s) require at least(2, TASKS1, [origin, duration, end])
TASKS1.duration ≥ 0
require at least(2, TASKS2, [origin, duration, end])
TASKS2.duration ≥ 0

Purpose Each task of the collection TASKS1 should not overlap any task of the collection TASKS2.

Arc input(s) TASKS1

Arc generator SELF 7→ collection(tasks1)

Arc arity 1

Arc constraint(s) tasks1.origin + tasks1.duration = tasks1.end

Graph property(ies) NARC = |TASKS1|

Arc input(s) TASKS2

Arc generator SELF 7→ collection(tasks2)

Arc arity 1

Arc constraint(s) tasks2.origin + tasks2.duration = tasks2.end

Graph property(ies) NARC = |TASKS2|

Arc input(s) TASKS1 TASKS2

Arc generator PRODUCT 7→ collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • tasks1.duration > 0
• tasks2.duration > 0
• tasks1.origin < tasks2.end
• tasks2.origin < tasks1.end

Graph property(ies) NARC = 0

20030820 441

Example disjoint tasks

0
BBBB@

origin − 6 duration − 5 end− 11,
origin − 8 duration − 2 end− 10

ff
,

8
<
:

origin − 2 duration − 2 end− 4,
origin − 3 duration − 3 end− 6,
origin − 12 duration − 1 end− 13

9
=
;

1
CCCCA

Figure 4.157 shows the initial graph of the third graph constraint. Because of the
graph property NARC = 0 the corresponding final graph is empty. Figure 4.158 displays
the two groups of tasks (i.e. the tasks of TASKS1 and the tasks of TASKS2). Since no task
of the first group overlaps any task of the second group, the disjoint tasks constraint
holds.

TASKS1

TASKS2

1

1 23

2

Figure 4.157: Initial graph of the disjoint tasks constraint (the final graph is empty)

1 3 4 5 9 112 6 7 8 10 12

1

5

2

3

4

TASKS1

TASKS2

Figure 4.158: Fixed tasks of the disjoint tasks constraint

Graph model PRODUCT is used in order to generate the arcs of the graph between all the tasks of the
collection TASKS1 and all tasks of the collection TASKS2.

The first two graph constraints respectively enforce for each task of TASKS1 and TASKS2

the fact that the end of a task is equal to the sum of its origin and its duration.

The arc constraint of the third graph constraint depicts the fact that two tasks overlap.
Therefore, since we use the graph property NARC = 0 the final graph associated to
the third graph constraint will be empty and no task of TASKS1 will overlap any task of
TASKS2.

Signature Since TASKS1 is the maximum number of arcs of the final graph associated to the first
graph constraint we can rewrite NARC = |TASKS1|. This leads to simplify NARC to
NARC.

442 NARC, SELF ; NARC,PRODUCT

We can apply a similar remark for the second graph constraint.

Finally, since 0 is the smallest number of arcs of the final graph we can rewrite NARC =
0 to NARC ≤ 0. This leads to simplify NARC to NARC.

Remark Despite the fact that this is not an uncommon constraint, it cannot be modelled in a com-
pact way with one single cumulative constraint. But it can be expressed by using the
coloured cumulative constraint: We assign a first colour to the tasks of TASKS1 as well
as a second distinct colour to the tasks of TASKS2. Finally we set up a limit of 1 for the
maximum number of distinct colours allowed at each time point.

See also disjoint, coloured cumulative.

Key words scheduling constraint, temporal constraint, non-overlapping.

20030820 443

444 NARC,CLIQUE (<)

4.76 disjunctive

Origin [107]

Constraint disjunctive(TASKS)

Synonym(s) one machine.

Argument(s) TASKS : collection(origin − dvar, duration − dvar)

Restriction(s) required(TASKS, [origin, duration])
TASKS.duration ≥ 0

Purpose All the tasks of the collection TASKS should not overlap.

Arc input(s) TASKS

Arc generator CLIQUE(<) 7→ collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s)
W
0
BB@

tasks1.duration = 0,
tasks2.duration = 0,
tasks1.origin + tasks1.duration ≤ tasks2.origin,
tasks2.origin + tasks2.duration ≤ tasks1.origin

1
CCA

Graph property(ies) NARC = |TASKS| ∗ (|TASKS| − 1)/2

Example disjunctive

0
BB@

8
>><
>>:

origin − 1 duration − 3,
origin − 2 duration − 0,
origin − 7 duration − 2,
origin − 4 duration − 1

9
>>=
>>;

1
CCA

Parts (A) and (B) of Figure 4.159 respectively show the initial and final graph. The
disjunctive constraint holds since all the arcs of the initial graph belong to the final
graph: all the non-overlapping constraints holds.

Graph model We generate a clique with a non-overlapping constraint between each pair of distinct tasks
and state that the number of arcs of the final graph should be equal to the number of arcs
of the initial graph.

Remark A soft version of this constraint, under the hypothesis that all durations are fixed, was
presented by P. Baptiste et al. in [108]. In this context the goal was to perform as many
tasks as possible within their respective due-dates.

Algorithm Efficient filtering algorithms for handling the disjunctive constraint are described
in [109] and [110].

See also cumulative, diffn.

Key words scheduling constraint, resource constraint, decomposition.

20050506 445

TASKS

1

2

3

4

NARC=6

1:1,3

2:2,0

3:7,2

4:4,1

(A) (B)

Figure 4.159: Initial and final graph of the disjunctive constraint

446 DISTANCE,CLIQUE (6=)

4.77 distance between

Origin N. Beldiceanu

Constraint distance between(DIST, VARIABLES1, VARIABLES2, CTR)

Argument(s) DIST : dvar

VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
CTR : atom

Restriction(s) DIST ≥ 0
DIST ≤ |VARIABLES1| ∗ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
|VARIABLES1| = |VARIABLES2|
CTR ∈ [=, 6=, <,≥, >,≤]

Let Ui and Vi be respectively the ith and jth variables (i 6= j) of the collection VARIABLES1.
In a similar way, letXi and Yi be respectively the ith and jth variables (i 6= j) of the collection
VARIABLES2. DIST is equal to the number of times one of the following mutually incompatible
conditions are true:

Purpose • Ui CTR Vi holds and Xi CTR Yi does not hold,

• Xi CTR Yi holds and Ui CTR Vi does not hold.

Arc input(s) VARIABLES1/ VARIABLES2

Arc generator CLIQUE(6=) 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var CTR variables2.var

Graph property(ies) DISTANCE = DIST

Example distance between

0
BBBBBBBBBBBBBB@

2,

8
>>>><
>>>>:

var − 3,
var − 4,
var − 6,
var − 2,
var − 4

9
>>>>=
>>>>;
,

8
>>>><
>>>>:

var − 2,
var − 6,
var − 9,
var − 3,
var − 6

9
>>>>=
>>>>;
, <

1
CCCCCCCCCCCCCCA

Between solution var-3,var-4,var-6,var-2,var-4 and solution var-2,var-6,var-
9,var-3,var-6 there are 2 changes, which respectively correspond to:

20000128 447

• Within the final graph associated to solution var-3,var-4,var-6,var-2,var-4 the arc
4→ 1 (i.e. values 2→ 3) does not occur in the final graph associated to var-2,var-
6,var-9,var-3,var-6,

• Within the final graph associated to solution var-2,var-6,var-9,var-3,var-6 the arc
1→ 4 (i.e. values 2→ 3) does not occur in the final graph associated to var-3,var-
4,var-6,var-2,var-4.

Part (A) of Figure 4.160 gives the final graph associated to the solution var-3,var-4,var-
6,var-2,var-4, while part (B) shows the final graph corresponding to var-2,var-6,var-
9,var-3,var-6. The two arc constraints that differ from one graph to the other are marked
by a dotted line.

4:2

1:3

2:4

3:6

5:4

1:2

4:3

2:6

3:9

5:6

(A) (B)

Figure 4.160: Final graphs of the distance between constraint

Graph model Within the arc input field, the character / indicates that we generate two distinct graphs.
The graph property DISTANCE measures the distance between two digraphs G1 and
G2. This distance is defined as the sum of the following quantities:

• The number of arcs of G1 which do not belong to G2,

• The number of arcs of G2 which do not belong to G1.

Usage Measure the distance between two solutions in term of the number of constraint changes.
This should be put in contrast to the number of value changes which is sometimes superfi-
cial.

See also distance change.

Key words proximity constraint.

448 DISTANCE,PATH

4.78 distance change

Origin Derived from change.

Constraint distance change(DIST, VARIABLES1, VARIABLES2, CTR)

Argument(s) DIST : dvar

VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
CTR : atom

Restriction(s) DIST ≥ 0
DIST < |VARIABLES1|
required(VARIABLES1, var)
required(VARIABLES2, var)
|VARIABLES1| = |VARIABLES2|
CTR ∈ [=, 6=, <,≥, >,≤]

DIST is equal to the number of times one of the following two conditions is true (1 ≤ i < n):
Purpose • VARIABLES1[i].var CTR VARIABLES1[i+ 1].var holds and

VARIABLES2[i].var CTR VARIABLES2[i+ 1].var does not hold,

• VARIABLES2[i].var CTR VARIABLES2[i+ 1].var holds and
VARIABLES1[i].var CTR VARIABLES1[i+ 1].var does not hold.

Arc input(s) VARIABLES1/ VARIABLES2

Arc generator PATH 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var CTR variables2.var

Graph property(ies) DISTANCE = DIST

Example distance change

0
BBBBBBBBBBBBBB@

1,

8
>>>><
>>>>:

var− 3,
var− 3,
var− 1,
var− 2,
var− 2

9
>>>>=
>>>>;
,

8
>>>><
>>>>:

var − 4,
var − 4,
var − 3,
var − 3,
var − 3

9
>>>>=
>>>>;
, 6=

1
CCCCCCCCCCCCCCA

Part (A) of Figure 4.161 gives the final graph associated to the solution var-3,var-
3,var-1,var-2,var-2, while part (B) shows the final graph corresponding to var-4,var-
4,var-3,var-3,var-3. Since arc 3→ 4 belongs to the first final graph but not to the second
one, the distance between the two final graphs is equal to 1.

20000128 449

Graph model Within the arc input field, the character / indicates that we generate two distinct graphs.
The graph property DISTANCE measures the distance between two digraphs G1 and G2.
This distance is defined as the sum of the following quantities:

• The number of arcs of G1 which do not belong to G2,

• The number of arcs of G2 which do not belong to G1.

Automaton Figure 4.162 depicts the automaton associated to the distance change constraint.
Let (VAR1i, VAR1i+1) and (VAR2i, VAR2i+1) respectively be the ith pairs of consec-
utive variables of the collections VARIABLES1 and VARIABLES2. To each quadruple
(VAR1i, VAR1i+1, VAR2i, VAR2i+1) corresponds a 0-1 signature variable Si. The follow-
ing signature constraint links these variables:

((VAR1i = VAR1i+1) ∧ (VAR2i 6= VAR2i+1)) ∨
((VAR1i 6= VAR1i+1) ∧ (VAR2i = VAR2i+1))⇔ Si.

Usage Measure the distance between two solutions according to the change constraint.

Remark We measure that distance according to a given constraint and not according to the fact that
the variables take distinct values.

See also change, distance between.

Key words proximity constraint, automaton, automaton with counters,
sliding cyclic(2) constraint network(2).

3:1

4:2

2:3
2:4

3:3

(A) (B)

Figure 4.161: Final graphs of the distance change constraint

450 DISTANCE,PATH

(VAR1 not CTR VAR1 or VAR2 CTR VAR2) and

$

t:
DIST=C

(VAR1 CTR VAR1 and VAR2 not CTR VAR2) ori i+1 i i+1

(VAR1 not CTR VAR1 and VAR2 CTR VAR2),

{C=C+1}

i i+1 i i+1

s

{C=0}

i i+1 i i+1

(VAR1 CTR VAR1 or VAR2 not CTR VAR2)i i+1 i i+1

Figure 4.162: Automaton of the distance change constraint

Q =s0

C =00 C1

Q1

S3

Q2

C2

 VAR1
 3

 VAR2
 3

S2S1

 VAR2
 1

 VAR1
 1

 VAR1
 2

 VAR2
 2

 VAR1
 n−1

 VAR2
 n−1

 VAR1
 n

 VAR2
 n

C =DISTn−1

Q =tn−1

Sn−1

Figure 4.163: Hypergraph of the reformulation corresponding to the automaton of the
distance change constraint

20000128 451

452 NARC,PRODUCT

4.79 domain constraint

Origin [111]

Constraint domain constraint(VAR, VALUES)

Argument(s) VAR : dvar

VALUES : collection(var01 − dvar, value − int)

Restriction(s) required(VALUES, [var01, value])
VALUES.var01 ≥ 0
VALUES.var01 ≤ 1
distinct(VALUES, value)

Purpose
Make the link between a domain variable VAR and those 0-1 variables that are associated to each
potential value of VAR: The 0-1 variable associated to the value which is taken by variable VAR
is equal to 1, while the remaining 0-1 variables are all equal to 0.

Derived Collection(s) col(VALUE − collection(var01 − int, value − dvar), [item(var01 − 1, value − VAR)])

Arc input(s) VALUE VALUES

Arc generator PRODUCT 7→ collection(value, values)

Arc arity 2

Arc constraint(s) value.value = values.value⇔ values.var01 = 1

Graph property(ies) NARC = |VALUES|

Example domain constraint

0
BB@ 5,

8
>><
>>:

var01 − 0 value − 9,
var01 − 1 value − 5,
var01 − 0 value − 2,
var01 − 0 value − 7

9
>>=
>>;

1
CCA

In the previous example, the 0-1 variable associated to value 5 is set to 1, while the
other 0-1 variables are all set to 0. Parts (A) and (B) of Figure 4.164 respectively show
the initial and final graph. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.

Graph model The domain constraint constraint is modelled with the following bipartite graph:

• The first class of vertices corresponds to one single vertex containing the domain
variable.

• The second class of vertices contains one vertex for each item of the collection
VALUES.

20030820 453

PRODUCT is used in order to generate the arcs of the graph. In our context it takes a
collection with one single item {var01 − 1 value − VAR} and the collection VALUES.

The arc constraint between the variable VAR and one potential value v expresses the fol-
lowing:

• If the 0-1 variable associated to v is equal to 1, VAR is equal to v.

• Otherwise, if the 0-1 variable associated to v is equal to 0, VAR is not equal to v.

Since all arc constraints should hold the final graph contains exactly |VALUES| arcs.

Signature Since the number of arcs of the initial graph is equal to VALUES the maximum number
of arcs of the final graph is also equal to VALUES. Therefore we can rewrite the graph
property NARC = |VALUES| to NARC ≥ |VALUES|. This leads to simplify NARC to
NARC.

Automaton Figure 4.165 depicts the automaton associated to the domain constraint constraint. Let
VAR01i and VALUEi respectively be the var01 and the value attributes of the ith item of
the VALUES collection. To each triple (VAR, VAR01i, VALUEi) corresponds a 0-1 signature
variable Si as well as the following signature constraint: ((VAR = VALUEi)⇔ VAR01i)⇔
Si.

Usage This constraint is used in order to make the link between a formulation using finite domain
constraints and a formulation exploiting 0-1 variables.

See also link set to booleans.

Key words decomposition, channeling constraint, domain channel, boolean channel,
linear programming, automaton, automaton without counters,
centered cyclic(1) constraint network(1), derived collection.

454 NARC,PRODUCT

VALUE

VALUES

1

1234

NARC=4

1:1,5

1:0,9 2:1,5 3:0,2 4:0,7

(A) (B)

Figure 4.164: Initial and final graph of the domain constraint constraint

$

iVAR=VALUE <=> VAR01 =1is

t

Figure 4.165: Automaton of the domain constraint constraint

Sn

Q =tn
Q1Q =s0

VAR01
 n

S2S1

VAR01
 1

VAR01
 2

VAR

Figure 4.166: Hypergraph of the reformulation corresponding to the automaton of the
domain constraint constraint

20030820 455

456 NARC,PRODUCT

4.80 elem

Origin Derived from element.

Constraint elem(ITEM, TABLE)

Usual name element

Argument(s) ITEM : collection(index − dvar, value − dvar)
TABLE : collection(index − int, value − dvar)

Restriction(s) required(ITEM, [index, value])
ITEM.index ≥ 1
ITEM.index ≤ |TABLE|
|ITEM| = 1
required(TABLE, [index, value])
TABLE.index ≥ 1
TABLE.index ≤ |TABLE|
distinct(TABLE, index)

Purpose ITEM is equal to one of the entries of the table TABLE.

Arc input(s) ITEM TABLE

Arc generator PRODUCT 7→ collection(item, table)

Arc arity 2

Arc constraint(s) • item.index = table.index
• item.value = table.value

Graph property(ies) NARC = 1

Example elem

0
BBBB@

{index − 3 value − 2},8
>><
>>:

index − 1 value − 6,
index − 2 value − 9,
index − 3 value − 2,
index − 4 value − 9

9
>>=
>>;

1
CCCCA

Parts (A) and (B) of Figure 4.167 respectively show the initial and final graph.
Since we use the NARC graph property, the unique arc of the final graph is stressed in
bold.

Graph model We regroup the INDEX and VALUE parameters of the original element constraint
element(INDEX, TABLE, VALUE) into the parameter ITEM. We also make explicit the dif-
ferent indices of the table TABLE.

Signature Since all the index attributes of TABLE are distinct and because of the first condition of
the arc constraint the final graph cannot have more than one arc. Therefore we can rewrite
NARC = 1 to NARC ≥ 1 and simplify NARC to NARC.

20030820 457

Automaton Figure 4.168 depicts the automaton associated to the elem constraint. Let INDEX and
VALUE respectively be the index and the value attributes of the unique item of the ITEM

collection. Let INDEXi and VALUEi respectively be the index and the value attributes of
the ith item of the TABLE collection. To each quadruple (INDEX, VALUE, INDEXi, VALUEi)
corresponds a 0-1 signature variable Si as well as the following signature constraint:
((INDEX = INDEXi) ∧ (VALUE = VALUEi))⇔ Si.

Usage Makes the link between the decision variable INDEX and the variable VALUE according to a
given table of values TABLE. We now give three typical uses of the elem constraint.

1. In some scheduling problems the duration of a task depends on the machine where
the task will be assigned in final schedule. In this case we generate for each task an
elem constraint of the following form:

elem

0
BBBBB@

˘
index − Machine value − Duration

¯
,8

>>><
>>>:

index − 1 value − Dur1,
index − 2 value − Dur2,

...
index −m value − Durm

9
>>>=
>>>;

1
CCCCCA

where:

• Machine is a domain variable which indicates the resource to which the task
will be assigned,

• Duration is a domain variable which corresponds to the duration of the task,

• Dur1, Dur2, . . . , Durm are the respective durations of the task according to the
hypothesis that it runs on machine 1, 2 or m.

2. In some vehicle routing problems we typically use the elem constraint to express the
distance between the ith location and the next location visited by a vehicle. For this
purpose we generate for each location i an elem constraint of the form:

elem

0
BBBBB@

˘
index − Nexti value − distancei

¯
,8

>>><
>>>:

index − 1 value − Disti1 ,
index − 2 value − Disti2 ,

...
index −m value − Distim

9
>>>=
>>>;

1
CCCCCA

where:

• Nexti is a domain variable which gives the index of the location the vehicle will
visit just after the ith location,

• distancei is a domain variable which corresponds to the distance between
location i and the location the vehicle will visit just after,

• Disti1 , Disti2 , . . . , Distim are the respective distances between location i
and locations 1, 2, . . . ,m.

3. In some optimization problems a classical use of the elem constraint consists ex-
pressing the link between a discrete choice and its corresponding cost. For each
discrete choice we create an elem constraint of the form:

458 NARC,PRODUCT

ITEM

TABLE

1

1234

NARC=1

1:3,2

3:3,2

(A) (B)

Figure 4.167: Initial and final graph of the elem constraint

s

t

ITEM_INDEX=TABLE_INDEX and ITEM_VALUE=TABLE_VALUE

ITEM_INDEX<>TABLE_INDEX or ITEM_VALUE<>TABLE_VALUEii

i i

Figure 4.168: Automaton of the elem constraint

Q1Q =s0

S1

TABLE_VALUE
 n

Q =tn

Sn

TABLE_VALUE
 1

TABLE_VALUE
 2

S2

ITEM_INDEX

ITEM_VALUE

Figure 4.169: Hypergraph of the reformulation corresponding to the automaton of the
elem constraint

20030820 459

elem

0
BBBBB@

˘
index − Choice value − Cost

¯
,8

>>><
>>>:

index − 1 value − Cost1,
index − 2 value − Cost2,

...
index −m value − Costm

9
>>>=
>>>;

1
CCCCCA

where:

• Choice is a domain variable which indicates which alternative will be finally
selected,

• Cost is a domain variable which corresponds to the cost of the decision associ-
ated to the value of the Choice variable,

• Cost1, Cost2, . . . , Costm are the respective costs associated to the alternatives
1, 2, . . . ,m.

Remark Originally, the parameters of the elem constraint had the form
element(INDEX, TABLE, VALUE), where INDEX and VALUE were two domain vari-
ables and TABLE a list of non-negative integers.

See also element, element greatereq, element lesseq, element sparse, element matrix,
elements, elements alldifferent, stage element.

Key words array constraint, data constraint, table, functional dependency,
variable indexing, variable subscript, automaton, automaton without counters,
centered cyclic(2) constraint network(1).

460 NARC,PRODUCT

4.81 element

Origin [32]

Constraint element(INDEX, TABLE, VALUE)

Argument(s) INDEX : dvar

TABLE : collection(value − dvar)
VALUE : dvar

Restriction(s) INDEX ≥ 1
INDEX ≤ |TABLE|
required(TABLE, value)

Purpose VALUE is equal to the INDEXth item of TABLE.

Derived Collection(s) col

„
ITEM − collection(index − dvar, value − dvar),
[item(index − INDEX, value − VALUE)]

«

Arc input(s) ITEM TABLE

Arc generator PRODUCT 7→ collection(item, table)

Arc arity 2

Arc constraint(s) • item.index = table.key
• item.value = table.value

Graph property(ies) NARC = 1

Example element

0
BB@ 3,

8
>><
>>:

value − 6,
value − 9,
value − 2,
value − 9

9
>>=
>>;
, 2

1
CCA

Parts (A) and (B) of Figure 4.170 respectively show the initial and final graph.
Since we use the NARC graph property, the unique arc of the final graph is stressed in
bold.

Graph model The original element constraint with three arguments. We use the derived collection ITEM

for putting together the INDEX and VALUE parameters of the element constraint. Within the
arc constraint we use the implicit attribute key which associates to each item of a collection
its position within the collection.

Signature Because of the first condition of the arc constraint the final graph cannot have more than
one arc. Therefore we can rewrite NARC = 1 to NARC ≥ 1 and simplify NARC to
NARC.

20000128 461

ITEM

TABLE

1

1234

NARC=1

1:3,2

3:2

(A) (B)

Figure 4.170: Initial and final graph of the element constraint

INDEX<>TABLE_KEY or VALUE<>TABLE_VALUEiis

t

INDEX=TABLE_KEY and VALUE=TABLE_VALUEi i

Figure 4.171: Automaton of the element constraint

Q1Q =s0

S1

TABLE_VALUE
 n

Q =tn

Sn

TABLE_VALUE
 1

TABLE_VALUE
 2

S2

INDEX

VALUE

Figure 4.172: Hypergraph of the reformulation corresponding to the automaton of the
element constraint

462 NARC,PRODUCT

Automaton Figure 4.171 depicts the automaton associated to the element constraint. Let VALUEi
be the value attribute of the ith item of the TABLE collection. To each triple
(INDEX, VALUE, VALUEi) corresponds a 0-1 signature variable Si as well as the following
signature constraint: (INDEX = i ∧ VALUE = VALUEi)⇔ Si.

Usage See elem.

Remark In the original element constraint of CHIP the index attribute was not explicitly present
in the table of values. It was implicitly defined as the position of a value in the previous
table.

The case constraint [46] is a generalization of the element constraint, where the table is
replaced by a directed acyclic graph describing the set of solutions.

See also elem, element greatereq, element lesseq, element sparse, element matrix,
elements, elements alldifferent, stage element.

Key words array constraint, data constraint, table, functional dependency,
variable indexing, variable subscript, automaton, automaton without counters,
centered cyclic(2) constraint network(1), derived collection.

20000128 463

464 NARC,PRODUCT

4.82 element greatereq

Origin [112]

Constraint element greatereq(ITEM, TABLE)

Argument(s) ITEM : collection(index − dvar, value − dvar)
TABLE : collection(index − int, value − int)

Restriction(s) required(ITEM, [index, value])
ITEM.index ≥ 1
ITEM.index ≤ |TABLE|
|ITEM| = 1
required(TABLE, [index, value])
TABLE.index ≥ 1
TABLE.index ≤ |TABLE|
distinct(TABLE, index)

Purpose ITEM.value is greater than or equal to one of the entries (i.e. the value attribute) of the table
TABLE.

Arc input(s) ITEM TABLE

Arc generator PRODUCT 7→ collection(item, table)

Arc arity 2

Arc constraint(s) • item.index = table.index
• item.value ≥ table.value

Graph property(ies) NARC = 1

Example element greatereq

0
BBBB@

{index − 1 value − 8},8
>><
>>:

index − 1 value − 6,
index − 2 value − 9,
index − 3 value − 2,
index − 4 value − 9

9
>>=
>>;

1
CCCCA

Parts (A) and (B) of Figure 4.173 respectively show the initial and final graph.
Since we use the NARC graph property, the unique arc of the final graph is stressed in
bold.

Graph model Similar to the element constraint except that the equality constraint of the second condi-
tion of the arc constraint is replaced by a greater than or equal to constraint.

Signature Since all the index attributes of TABLE are distinct and because of the first arc constraint
the final graph cannot have more than one arc. Therefore we can rewrite NARC = 1 to
NARC ≥ 1 and simplify NARC to NARC.

20030820 465

Automaton Figure 4.174 depicts the automaton associated to the element greatereq constraint.
Let INDEX and VALUE respectively be the index and the value attributes of the unique
item of the ITEM collection. Let INDEXi and VALUEi respectively be the index and
the value attributes of the ith item of the TABLE collection. To each quadruple
(INDEX, VALUE, INDEXi, VALUEi) corresponds a 0-1 signature variable Si as well as the
following signature constraint: ((INDEX = INDEXi) ∧ (VALUE ≥ VALUEi))⇔ Si.

Usage Used for modelling variable subscripts in linear constraints [112].

See also element, element lesseq.

Key words array constraint, data constraint, binary constraint, table, linear programming,
variable subscript, variable indexing, automaton, automaton without counters,
centered cyclic(2) constraint network(1).

466 NARC,PRODUCT

ITEM

TABLE

1

1234

NARC=1

1:1,8

1:1,6

(A) (B)

Figure 4.173: Initial and final graph of the element greatereq constraint

s

t

ITEM_INDEX<>TABLE_INDEX or ITEM_VALUE<TABLE_VALUE

ITEM_INDEX=TABLE_INDEX and ITEM_VALUE>=TABLE_VALUE

i

i

i

i

Figure 4.174: Automaton of the element greatereq constraint

Q1Q =s0

S1

TABLE_VALUE
 n

Q =tn

Sn

TABLE_VALUE
 1

TABLE_VALUE
 2

S2

ITEM_INDEX

ITEM_VALUE

Figure 4.175: Hypergraph of the reformulation corresponding to the automaton of the
element greatereq constraint

20030820 467

468 NARC,PRODUCT

4.83 element lesseq

Origin [112]

Constraint element lesseq(ITEM, TABLE)

Argument(s) ITEM : collection(index − dvar, value − dvar)
TABLE : collection(index − int, value − int)

Restriction(s) required(ITEM, [index, value])
ITEM.index ≥ 1
ITEM.index ≤ |TABLE|
|ITEM| = 1
required(TABLE, [index, value])
TABLE.index ≥ 1
TABLE.index ≤ |TABLE|
distinct(TABLE, index)

Purpose ITEM.value is less than or equal to one of the entries (i.e. the value attribute) of the table
TABLE.

Arc input(s) ITEM TABLE

Arc generator PRODUCT 7→ collection(item, table)

Arc arity 2

Arc constraint(s) • item.index = table.index
• item.value ≤ table.value

Graph property(ies) NARC = 1

Example element lesseq

0
BBBB@

{index − 3 value − 1},8
>><
>>:

index − 1 value − 6,
index − 2 value − 9,
index − 3 value − 2,
index − 4 value − 9

9
>>=
>>;

1
CCCCA

Parts (A) and (B) of Figure 4.176 respectively show the initial and final graph.
Since we use the NARC graph property, the unique arc of the final graph is stressed in
bold.

Graph model Similar to the element constraint except that the equality constraint of the second condi-
tion of the arc constraint is replaced by a less than or equal to constraint.

Signature Since all the index attributes of TABLE are distinct and because of the first arc constraint
the final graph cannot have more than one arc. Therefore we can rewrite NARC = 1 to
NARC ≥ 1 and simplify NARC to NARC.

20030820 469

Automaton Figure 4.177 depicts the automaton associated to the element lesseq constraint. Let
INDEX and VALUE respectively be the index and the value attributes of the unique
item of the ITEM collection. Let INDEXi and VALUEi respectively be the index and
the value attributes of the ith item of the TABLE collection. To each quadruple
(INDEX, VALUE, INDEXi, VALUEi) corresponds a 0-1 signature variable Si as well as the
following signature constraint: ((INDEX = INDEXi) ∧ (VALUE ≤ VALUEi))⇔ Si.

Usage Used for modelling variable subscripts in linear constraints [112].

See also element, element greatereq.

Key words array constraint, data constraint, binary constraint, table, linear programming,
variable subscript, variable indexing, automaton, automaton without counters,
centered cyclic(2) constraint network(1).

470 NARC,PRODUCT

ITEM

TABLE

1

1234

NARC=1

1:3,1

3:3,2

(A) (B)

Figure 4.176: Initial and final graph of the element lesseq constraint

s

t

i

i

i

i

ITEM_INDEX<>TABLE_INDEX or ITEM_VALUE>TABLE_VALUE

ITEM_INDEX=TABLE_INDEX and ITEM_VALUE<=TABLE_VALUE

Figure 4.177: Automaton of the element lesseq constraint

Q1Q =s0

S1

TABLE_VALUE
 n

Q =tn

Sn

TABLE_VALUE
 1

TABLE_VALUE
 2

S2

ITEM_INDEX

ITEM_VALUE

Figure 4.178: Hypergraph of the reformulation corresponding to the automaton of the
element lesseq constraint

20030820 471

472 NARC,PRODUCT

4.84 element matrix

Origin CHIP

Constraint element matrix(MAX I, MAX J, INDEX I, INDEX J, MATRIX, VALUE)

Argument(s) MAX I : int

MAX J : int

INDEX I : dvar

INDEX J : dvar

MATRIX : collection(i− int, j − int, v− int)
VALUE : dvar

Restriction(s) MAX I ≥ 1
MAX J ≥ 1
INDEX I ≥ 1
INDEX I ≤ MAX I

INDEX J ≥ 1
INDEX J ≤ MAX J

required(MATRIX, [i, j, v])
increasing seq(MATRIX, [i, j])
MATRIX.i ≥ 1
MATRIX.i ≤ MAX I

MATRIX.j ≥ 1
MATRIX.j ≤ MAX J

|MATRIX| = MAX I ∗ MAX J

Purpose The MATRIX collection corresponds to the two-dimensional matrix MATRIX[1..MAX I, 1..MAX J].
VALUE is equal to the entry MATRIX[INDEX I, INDEX J] of the previous matrix.

Derived Collection(s) col

„
ITEM − collection(index i − dvar, index j − dvar, value − dvar),
[item(index i − INDEX I, index j− INDEX J, value − VALUE)]

«

Arc input(s) ITEM MATRIX

Arc generator PRODUCT 7→ collection(item, matrix)

Arc arity 2

Arc constraint(s) • item.index i = matrix.i
• item.index j = matrix.j
• item.value = matrix.v

Graph property(ies) NARC = 1

20031101 473

Example element matrix

0
BBBBBBBBBBBBBBBBBB@

4, 3, 1, 3,

8
>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

i− 1 j− 1 v− 4,
i− 1 j− 2 v− 1,
i− 1 j− 3 v− 7,
i− 2 j− 1 v− 1,
i− 2 j− 2 v− 0,
i− 2 j− 3 v− 8,
i− 3 j− 1 v− 3,
i− 3 j− 2 v− 2,
i− 3 j− 3 v− 1,
i− 4 j− 1 v− 0,
i− 4 j− 2 v− 0,
i− 4 j− 3 v− 6

9
>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

, 7

1
CCCCCCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.179 respectively show the initial and final graph.
Since we use the NARC graph property, the unique arc of the final graph is stressed in
bold.

ITEM

MATRIX

1

123456789101112

NARC=1

1:1,3,7

3:1,3,7

(A) (B)

Figure 4.179: Initial and final graph of the element matrix constraint

Graph model Similar to the element constraint except that the arc constraint is updated according to the
fact that we have a two-dimensional matrix.

Signature Because of the first condition of the arc constraint the final graph cannot have more than
one arc. Therefore we can rewrite NARC = 1 to NARC ≥ 1 and simplify NARC to
NARC.

Automaton Figure 4.180 depicts the automaton associated to the element matrix constraint. Let Ik,
Jk and Vk respectively be the i, the j and the v kth attributes of the MATRIX collection. To
each sextuple (INDEX I, INDEX J, VALUE, Ik, Jk, Vk) corresponds a 0-1 signature variable
Sk as well as the following signature constraint: ((INDEX I = Ik) ∧ (INDEX J = Jk) ∧
(VALUE = Vk))⇔ Sk.

See also element.

474 NARC,PRODUCT

INDEX_I<>MATRIX_I or INDEX_J<>MATRIX_J or VALUE<>MATRIX_VALUE
i,j i,j i,j

INDEX_I=MATRIX_I and INDEX_J=MATRIX_J and VALUE=MATRIX_VALUE
i,j i,j i,j

s

t

Figure 4.180: Automaton of the element matrix constraint

S2

Q1Q =s0

S1

MATRIX_I
 1,1

MATRIX_J
 1,1

MATRIX_V
 1,1

MATRIX_I
 n,m

MATRIX_V
 n,m

MATRIX_J
 n,mMATRIX_J

 1,2

MATRIX_I
 1,2

MATRIX_V
 1,2

Sn.m

Q =tn.m

INDEX_I
INDEX_J
VALUE

Figure 4.181: Hypergraph of the reformulation corresponding to the automaton of the
element matrix constraint

20031101 475

Key words array constraint, data constraint, ternary constraint, matrix, automaton,
automaton without counters, centered cyclic(3) constraint network(1), derived collection.

476 NARC,PRODUCT

4.85 element sparse

Origin CHIP

Constraint element sparse(ITEM, TABLE, DEFAULT)

Usual name element

Argument(s) ITEM : collection(index − dvar, value − dvar)
TABLE : collection(index − int, value − int)
DEFAULT : int

Restriction(s) required(ITEM, [index, value])
ITEM.index ≥ 1
|ITEM| = 1
required(TABLE, [index, value])
TABLE.index ≥ 1
distinct(TABLE, index)

Purpose ITEM.value is equal to one of the entries of the table TABLE or to the default value DEFAULT if
the entry ITEM.index does not exist in TABLE.

Derived Collection(s) col(DEF − collection(index − int, value − int), [item(index − 0, value − DEFAULT)])

col

0
@

TABLE DEF − collection(index − dvar, value − dvar),»
item(index − TABLE.index, value − TABLE.value),
item(index − DEF.index, value − DEF.value)

–
1
A

Arc input(s) ITEM TABLE DEF

Arc generator PRODUCT 7→ collection(item, table def)

Arc arity 2

Arc constraint(s) • item.value = table def.value
• item.index = table def.index ∨ table def.index = 0

Graph property(ies) NARC ≥ 1

Example element sparse

0
BBBB@

{index − 2 value − 5},8
>><
>>:

index − 1 value − 6,
index − 2 value − 5,
index − 4 value − 2,
index − 8 value − 9

9
>>=
>>;
, 5

1
CCCCA

Parts (A) and (B) of Figure 4.182 respectively show the initial and final graph.
Since we use the NARC graph property the final graph is outline with thick lines.

Graph model The final graph has between one and two arc constraints: It has two arcs when the default
value DEFAULT occurs also in the table TABLE; Otherwise it has only one arc.

20030820 477

Automaton Figure 4.183 depicts the automaton associated to the element sparse constraint. Let
INDEX and VALUE respectively be the index and the value attributes of the unique
item of the ITEM collection. Let INDEXi and VALUEi respectively be the index and
the value attributes of the ith item of the TABLE collection. To each quintuple
(INDEX, VALUE, DEFAULT, INDEXi, VALUEi) corresponds a signature variable Si as well as
the following signature constraint:
8
<
:

(INDEX 6= INDEXi ∧ VALUE 6= DEFAULT) ⇔ Si = 0 ∧
(INDEX = INDEXi ∧ VALUE = VALUEi) ⇔ Si = 1 ∧
(INDEX 6= INDEXi ∧ VALUE = DEFAULT) ⇔ Si = 2

.

Usage A sometimes more compact form of the element constraint: We are not obliged to spec-
ify explicitely the table entries that correspond to the specified default value. This can
sometimes reduce drastically memory utilisation.

Remark The original constraint of CHIP had an additional parameter SIZE giving the maximum
value of ITEM.index.

See also element.

Key words array constraint, data constraint, binary constraint, table, sparse table,
sparse functional dependency, variable indexing, automaton, automaton without counters,
centered cyclic(2) constraint network(1), derived collection.

478 NARC,PRODUCT

ITEM

TABLE_DEF

1

12345

NARC=2

1:2,5

1:0,5 3:2,5

(A) (B)

Figure 4.182: Initial and final graph of the element sparse constraint

ITEM_INDEX=TABLE_INDEX and

ITEM_VALUE=TABLE_VALUE
i

i

ITEM_INDEX=TABLE_INDEX and

ITEM_VALUE=TABLE_VALUE
i

i

s

t

d$

ITEM_INDEX<>TABLE_INDEX and

ITEM_VALUE=DEFAULT

ITEM_INDEX<>TABLE_INDEX and

ITEM_VALUE=DEFAULT

i

i

ITEM_VALUE<>DEFAULT
iITEM_INDEX<>TABLE_INDEX and

Figure 4.183: Automaton of the element sparse constraint

Q1Q =s0

S1

TABLE_VALUE
 n

Q =tn

Sn

TABLE_VALUE
 1

TABLE_VALUE
 2

S2

ITEM_INDEX

ITEM_VALUE

Figure 4.184: Hypergraph of the reformulation corresponding to the automaton of the
element sparse constraint

20030820 479

480 NARC,PRODUCT

4.86 elements

Origin Derived from element.

Constraint elements(ITEMS, TABLE)

Argument(s) ITEMS : collection(index − dvar, value − dvar)
TABLE : collection(index − int, value − dvar)

Restriction(s) required(ITEMS, [index, value])
ITEMS.index ≥ 1
ITEMS.index ≤ |TABLE|
required(TABLE, [index, value])
TABLE.index ≥ 1
TABLE.index ≤ |TABLE|
distinct(TABLE, index)

Purpose All the items of ITEMS should be equal to one of the entries of the table TABLE.

Arc input(s) ITEMS TABLE

Arc generator PRODUCT 7→ collection(items, table)

Arc arity 2

Arc constraint(s) • items.index = table.index
• items.value = table.value

Graph property(ies) NARC = |ITEMS|

Example elements

0
BBBB@

{index − 4 value − 9, index − 1 value − 6},8
>><
>>:

index − 1 value − 6,
index − 2 value − 9,
index − 3 value − 2,
index − 4 value − 9

9
>>=
>>;

1
CCCCA

Parts (A) and (B) of Figure 4.185 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Signature Since all the index attributes of TABLE collection are distinct and because of the first
condition items.index = table.index of the arc constraint, a source vertex of the final
graph can have at most one successor. Therefore |ITEMS| is the maximum number of arcs
of the final graph and we can rewrite NARC = |ITEMS| to NARC ≥ |ITEMS|. So we
can simplify NARC to NARC.

Usage Used for replacing several element constraints sharing exactly the same table by one single
constraint.

See also element.

Key words data constraint, table, shared table, functional dependency.

20030820 481

ITEMS

TABLE

1

1234

2

NARC=2

1:4,9

4:4,9

2:1,6

1:1,6

(A) (B)

Figure 4.185: Initial and final graph of the elements constraint

482 NVERTEX,PRODUCT

4.87 elements alldifferent

Origin Derived from elements and alldifferent.

Constraint elements alldifferent(ITEMS, TABLE)

Synonym(s) elements alldiff, elements alldistinct.

Argument(s) ITEMS : collection(index − dvar, value − dvar)
TABLE : collection(index − int, value − dvar)

Restriction(s) required(ITEMS, [index, value])
ITEMS.index ≥ 1
ITEMS.index ≤ |TABLE|
|ITEMS| = |TABLE|
required(TABLE, [index, value])
TABLE.index ≥ 1
TABLE.index ≤ |TABLE|
distinct(TABLE, index)

Purpose All the items of the ITEMS collection should be equal to one of the entries of the table TABLE

and all the variables ITEMS.index should take distinct values.

Arc input(s) ITEMS TABLE

Arc generator PRODUCT 7→ collection(items, table)

Arc arity 2

Arc constraint(s) • items.index = table.index
• items.value = table.value

Graph property(ies) NVERTEX = |ITEMS|+ |TABLE|

Example elements alldifferent

0
BBBBBBBBBB@

8
>><
>>:

index − 2 value − 9,
index − 1 value − 6,
index − 4 value − 9,
index − 3 value − 2

9
>>=
>>;
,

8
>><
>>:

index − 1 value − 6,
index − 2 value − 9,
index − 3 value − 2,
index − 4 value − 9

9
>>=
>>;

1
CCCCCCCCCCA

Parts (A) and (B) of Figure 4.186 respectively show the initial and final graph.
Since we use the NVERTEX graph property, the vertices of the final graph are stressed
in bold.

Graph model The fact that all variables ITEMS.index are pairwise different is derived from the conjunc-
tions of the following facts:

20030820 483

• From the graph property NVERTEX = |ITEMS| + |TABLE| it follows that all
vertices of the initial graph belong also to the final graph,

• A vertex v belongs to the final graph if there is at least one constraint involving v that
holds,

• From the first condition items.index = table.index of the arc constraint, and
from the restriction distinct(TABLE.index) it follows: For all vertices v generated
from the collection ITEMS at most one constraint involving v holds.

Signature Since the final graph cannot have more than |ITEMS| + |TABLE| vertices one can simplify
NVERTEX to NVERTEX.

Usage Used for replacing by one single elements alldifferent constraint an alldifferent

and a set of element constraints having the following structure:

• The union of the index variables of the element constraints is equal to the set of
variables of the alldifferent constraint.

• All the element constraints share exactly the same table.

For instance, the constraint given in the previous example is equivalent to the conjunction
of the following set of constraints:

alldifferent({var − 2, var − 1, var − 4, var − 3})

element

0
BBBB@

˘
index − 2 value − 9

¯
,8

>><
>>:

index − 1 value − 6,
index − 2 value − 9,
index − 3 value − 2,
index − 4 value − 9

9
>>=
>>;

1
CCCCA

element

0
BBBB@

˘
index − 1 value − 6

¯
,8

>><
>>:

index − 1 value − 6,
index − 2 value − 9,
index − 3 value − 2,
index − 4 value − 9

9
>>=
>>;

1
CCCCA

element

0
BBBB@

˘
index − 3 value − 2

¯
,8

>><
>>:

index − 1 value − 6,
index − 2 value − 9,
index − 3 value − 2,
index − 4 value − 9

9
>>=
>>;

1
CCCCA

element

0
BBBB@

˘
index − 4 value − 9

¯
,8

>><
>>:

index − 1 value − 6,
index − 2 value − 9,
index − 3 value − 2,
index − 4 value − 9

9
>>=
>>;

1
CCCCA

As a practical example of utilization of the elements alldifferent constraint we show
how to model the link between a permutation consisting of one single cycle and its ex-
panded form. For instance, to the permutation 3, 6, 5, 2, 4, 1 corresponds the sequence

484 NVERTEX,PRODUCT

3 5 4 2 6 1. Let us note S1, S2, S3, S4, S5, S6 the permutation and V1V2V3V4V5V6 its
expanded form.

The constraint:

elements alldifferent

0
BBBBBBBBBBBBBBBBBB@

8
>>>>>><
>>>>>>:

index − V1 value − V2,
index − V2 value − V3,
index − V3 value − V4,
index − V4 value − V5,
index − V5 value − V6,
index − V6 value − V1

9
>>>>>>=
>>>>>>;

,

8
>>>>>><
>>>>>>:

index − 1 value − S1,
index − 2 value − S2,
index − 3 value − S3,
index − 4 value − S4,
index − 5 value − S5,
index − 6 value − S6

9
>>>>>>=
>>>>>>;

1
CCCCCCCCCCCCCCCCCCA

models the fact that S1, S2, S3, S4, S5, S6 corresponds to a permutation with one sin-
gle cycle. It also expresses the link between the variables S1, S2, S3, S4, S5, S6 and
V1, V2, V3, V4, V5, V6.

See also alldifferent, element.

Key words data constraint, table, functional dependency, permutation, disequality.

20030820 485

ITEMS

TABLE

1

1234

234

NVERTEX=8

1:2,9

2:2,9

2:1,6

1:1,6

3:4,9

4:4,9

4:3,2

3:3,2

(A) (B)

Figure 4.186: Initial and final graph of the elements alldifferent constraint

=31S 1

3 5

4

26

3=5 5=4

2=66=1

1=3 2=5 3=4 4=2 5=6 6=1
4=2

V V V V

S

V

53 4 2 6

S S

SS

V

1

Figure 4.187: Two representations of a permutation containing one single cycle

486 NSOURCE,PRODUCT

4.88 elements sparse

Origin Derived from element sparse.

Constraint elements sparse(ITEMS, TABLE, DEFAULT)

Argument(s) ITEMS : collection(index − dvar, value − dvar)
TABLE : collection(index − int, value − int)
DEFAULT : int

Restriction(s) required(ITEMS, [index, value])
ITEMS.index ≥ 1
required(TABLE, [index, value])
TABLE.index ≥ 1
distinct(TABLE, index)

Purpose
All the items of ITEMS should be equal to one of the entries of the table TABLE or to the default
value DEFAULT if the entry ITEMS.index does not occurs among the values of the index attribute
of the TABLE collection.

Derived Collection(s) col(DEF − collection(index − int, value − int), [item(index − 0, value − DEFAULT)])

col

0
@

TABLE DEF − collection(index − dvar, value − dvar),»
item(index − TABLE.index, value − TABLE.index),
item(index − DEF.index, value − DEF.value)

–
1
A

Arc input(s) ITEMS TABLE DEF

Arc generator PRODUCT 7→ collection(items, table def)

Arc arity 2

Arc constraint(s) • items.value = table def.value
• items.index = table def.index ∨ table def.index = 0

Graph property(ies) NSOURCE = |ITEMS|

Example elements sparse

0
BBBBBBBB@

8
<
:

index − 8 value − 9,
index − 3 value − 5,
index − 2 value − 5

9
=
; ,

8
>><
>>:

index − 1 value − 6,
index − 2 value − 5,
index − 4 value − 2,
index − 8 value − 9

9
>>=
>>;
, 5

1
CCCCCCCCA

Parts (A) and (B) of Figure 4.188 respectively show the initial and final graph.
Since we use the NSOURCE graph property, the vertices of the final graph are drawn
with a double circle.

20030820 487

Graph model An item of the ITEMS collection may have up to two successors (see for instance the third
item of the ITEMS collection of the previous example). Therefore we use the graph property
NSOURCE = |ITEMS| for enforcing the fact that each item of the ITEMS collection has
at least one successor.

Signature On the one hand note that ITEMS is equal to the number of sources of the initial graph.
On the other hand observe that, in the initial graph, all the vertices which are not sources
correspond to sinks. Since isolated vertices are eliminated from the final graph the sinks of
the initial graph cannot become sources of the final graph. Therefore the maximum number
of sources of the final graph is equal to ITEMS. We can rewrite NSOURCE = |ITEMS|
to NSOURCE ≥ |ITEMS| and simplify NSOURCE to NSOURCE.

Usage Used for replacing several element constraints sharing exactly the same sparse table by
one single constraint.

See also element, element sparse.

Key words data constraint, table, shared table, sparse table, sparse functional dependency,
derived collection.

488 NSOURCE,PRODUCT

ITEMS

TABLE_DEF

1

12 345

2 3

NSOURCE=3

1:8,9

4:8,9

2:3,5

5:0,5

3:2,5

2:2,5

(A) (B)

Figure 4.188: Initial and final graph of the elements sparse constraint

20030820 489

490 PREDEFINED

4.89 eq set

Origin Used for defining alldifferent between sets.

Constraint eq set(SET1, SET2)

Argument(s) SET1 : svar

SET2 : svar

Purpose Constraint the set SET1 to be equal to the set SET2.

Example eq set({3, 5}, {3, 5})

Used in alldifferent between sets.

Key words predefined constraint, binary constraint, equality, constraint involving set variables.

20030820 491

492 NARC, SELF

4.90 exactly

Origin Derived from atleast and atmost.

Constraint exactly(N, VARIABLES, VALUE)

Argument(s) N : int

VARIABLES : collection(var − dvar)
VALUE : int

Restriction(s) N ≥ 0
N ≤ |VARIABLES|
required(VARIABLES, var)

Purpose Exactly N variables of the VARIABLES collection are assigned to value VALUE.

Arc input(s) VARIABLES

Arc generator SELF 7→ collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUE

Graph property(ies) NARC = N

Example exactly(2, {var − 4, var − 2, var − 4, var − 5}, 4)

Parts (A) and (B) of Figure 4.189 respectively show the initial and final graph.
Since we use the NARC graph property, the unary arcs of the final graph are stressed in
bold. The exactly constraint holds since exactly 2 variables are assigned to value 4.

VARIABLES

1234

NARC=2

1:4 3:4

(A) (B)

Figure 4.189: Initial and final graph of the exactly constraint

Graph model Since we use a unary arc constraint (VALUE is fixed) we employ the SELF arc generator in
order to produce a graph with a single loop on each vertex.

Automaton Figure 4.190 depicts the automaton associated to the exactly constraint. To each variable
VARi of the collection VARIABLES corresponds a 0-1 signature variable Si. The following
signature constraint links VARi and Si: VARi = VALUE⇔ Si.

20040807 493

{C=C+1}
i

VAR =VALUE,
i

VAR <>VALUE

$

t:

N=C

{C=0}

s

Figure 4.190: Automaton of the exactly constraint

C1

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0

C =00

Q =tn

C =Nn

Figure 4.191: Hypergraph of the reformulation corresponding to the automaton of the
exactly constraint

494 NARC, SELF

See also atleast, atmost, among.

Key words value constraint, counting constraint, automaton, automaton with counters,
alpha-acyclic constraint network(2).

20040807 495

496 NVERTEX, SELF , ∀

4.91 global cardinality

Origin CHARME

Constraint global cardinality(VARIABLES, VALUES)

Synonym(s) distribute, distribution, gcc, card var gcc, egcc.

Argument(s) VARIABLES : collection(var − dvar)
VALUES : collection(val − int, noccurrence − dvar)

Restriction(s) required(VARIABLES, var)
required(VALUES, [val, noccurrence])
distinct(VALUES, val)
VALUES.noccurrence ≥ 0
VALUES.noccurrence ≤ |VARIABLES|

Purpose Each value VALUES[i].val (1 ≤ i ≤ |VALUES|) should be taken by exactly
VALUES[i].noccurrence variables of the VARIABLES collection.

For all items of VALUES:

Arc input(s) VARIABLES

Arc generator SELF 7→ collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUES.val

Graph property(ies) NVERTEX = VALUES.noccurrence

Example global cardinality

0
BBBBBBBB@

8
>><
>>:

var − 3,
var − 3,
var − 8,
var − 6

9
>>=
>>;
,

8
<
:

val − 3 noccurrence − 2,
val − 5 noccurrence − 0,
val − 6 noccurrence − 1

9
=
;

1
CCCCCCCCA

The constraint holds since values 3, 5 and 6 are respectively used 2, 0 and 1 times
and since no constraint was specified for value 8. Part (A) of Figure 4.192 shows the
initial graphs associated to each value 3, 5 and 6 of the VALUES collection. Part (B) of
Figure 4.192 shows the two final graphs respectively associated to values 3 and 6 which
are both assigned to the variables of the VARIABLES collection (since value 5 is not
assigned to any variable of the VARIABLES collection the final graph associated to value 5
is empty). Since we use the NVERTEX graph property, the vertices of the final graphs
are stressed in bold.

20030820 497

Graph model Since we want to express one unary constraint for each value we use the “For all items of
VALUES” iterator.

Automaton Figure 4.193 depicts the automaton associated to the global cardinality constraint. To
each item of the collection VARIABLES corresponds a signature variable Si, which is equal
to 0. To each item of the collection VALUES corresponds a signature variable Si+|VARIABLES|,
which is equal to 1.

Usage We show how to use the global cardinality constraint in order to model the magic
series problem [113, page 155] with one single global cardinality constraint. A non-
empty finite series S = (s0, s1, . . . , sn) is magic if and only if there are si occurrences of
i in S for each integer i ranging from 0 to n. This leads to the following constraint:

global cardinality

0
BBBBB@

˘
var− s0, var − s1, . . . , var − sn

¯
,8

>>><
>>>:

val − 0 noccurrence − s0,
val − 1 noccurrence − s1,

...
val − n noccurrence − sn

9
>>>=
>>>;

1
CCCCCA

Remark This is a generalized form of the original global cardinality constraint: In the origi-
nal global cardinality constraint [19], one specifies for each value its minimum and
maximum number of occurrences; Here we give for each value v a domain variable which
indicates how many time value v is effectively used. By setting the minimum and maxi-
mum values of this variable to the appropriate constants we can express the same thing as
in the original global cardinality constraint. However, as shown in the magic series
problem, we can also use this variable in other constraints.

A last difference with the original global cardinality constraint comes from the fact
that there is no constraint on the values which are not mentioned in the VALUES collection.
In the original global cardinality these values could not be assigned to the variables
of the VARIABLES collection.

Within [34] the global cardinality constraint is called distribution. Within [80]
the global cardinality constraint is called card var gcc. Within [114] the
global cardinality constraint is called egcc or rgcc. This later case corresponds to
the fact that some variables are duplicated within the VARIABLES collection.

W.-J. van Hoeve et al. present two soft versions of the global cardinality constraint
in [12].

Algorithm A flow algorithm that handles the original global cardinality constraint is described
in [19]. The two approaches that were used to design bound-consistency algorithms for

VARIABLES

1234

3:NVERTEX=2, 5:NVERTEX=0, 6:NVERTEX=1

VALUES:3 VALUES:6

1:32:3 4:6

(A) (B)

Figure 4.192: Initial and final graph of the global cardinality constraint

498 NVERTEX, SELF , ∀

alldifferent were generalized for the global cardinality constraint. The algorithm
in [115] identifies Hall intervals and the one in [24] exploits convexity to achieve a fast im-
plementation of the flow-based arc-consistency algorithm. The later algorithm can also
compute bound-consistency for the count variables [116]. An improved algorithm for
achieving arc-consistency is described in [27]. In the same paper, it is shown that it is
NP-hard to compute arc-consistency for the count variables.

See also among, count, nvalue, max nvalue, min nvalue, global cardinality with costs,
symmetric gcc, symmetric cardinality, colored matrix,
same and global cardinality.

Key words value constraint, assignment, magic series, Hall interval, bound-consistency, flow,
duplicated variables, automaton, automaton with array of counters.

20030820 499

0,
{c[VAR]=c[VAR]+1}i i

i

$

arith(C,=,0)
t:

1,

1,

{c[VAL]=c[VAL]−NOCCURRENCE }i i i

{c[VAL]=c[VAL]−NOCCURRENCE }i i i

{C[_]=0}

s

Figure 4.193: Automaton of the global cardinality constraint

500 NVERTEX, SELF , ∀

4.92 global cardinality low up

Origin Used for defining sliding distribution.

Constraint global cardinality low up(VARIABLES, VALUES)

Argument(s) VARIABLES : collection(var − dvar)
VALUES : collection(val − int, omin− int, omax − int)

Restriction(s) required(VARIABLES, var)
|VALUES| > 0
required(VALUES, [val, omin, omax])
distinct(VALUES, val)
VALUES.omin ≥ 0
VALUES.omax ≤ |VARIABLES|
VALUES.omin ≤ VALUES.omax

Purpose Each value VALUES[i].val (1 ≤ i ≤ |VALUES|) should be taken by at least VALUES[i].omin and
at most VALUES[i].omax variables of the VARIABLES collection.

For all items of VALUES:

Arc input(s) VARIABLES

Arc generator SELF 7→ collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUES.val

Graph property(ies) • NVERTEX ≥ VALUES.omin
• NVERTEX ≤ VALUES.omax

Example global cardinality low up

0
BBBBBBBB@

8
>><
>>:

var− 3,
var− 3,
var− 8,
var− 6

9
>>=
>>;
,

8
<
:

val− 3 omin − 2 omax − 3,
val− 5 omin − 0 omax − 1,
val− 6 omin − 1 omax − 2

9
=
;

1
CCCCCCCCA

The constraint holds since values 3, 5 and 6 are respectively used 2, 0 and 1 times
and since no constraint was specified for value 8. Part (A) of Figure 4.192 shows the
initial graphs associated to each value 3, 5 and 6 of the VALUES collection. Part (B) of
Figure 4.192 shows the two final graphs respectively associated to values 3 and 6 which
are both assigned to the variables of the VARIABLES collection (since value 5 is not
assigned to any variable of the VARIABLES collection the final graph associated to value 5
is empty). Since we use the NVERTEX graph property, the vertices of the final graphs
are stressed in bold.

20031008 501

Graph model Since we want to express one unary constraint for each value we use the “For all items of
VALUES” iterator.

Algorithm [19].

Used in sliding distribution.

See also global cardinality, sliding distribution.

Key words value constraint, assignment, flow.

VARIABLES

1234

3:NVERTEX=2, 5:NVERTEX=0, 6:NVERTEX=1

VALUES:3 VALUES:6

1:32:3 4:6

(A) (B)

Figure 4.194: Initial and final graph of the global cardinality low up constraint

502 NVERTEX, SELF , ∀; SUM WEIGHT ARC,PRODUCT

4.93 global cardinality with costs

Origin [117]

Constraint global cardinality with costs(VARIABLES, VALUES, MATRIX, COST)

Synonym(s) gccc, cost gcc.

Argument(s) VARIABLES : collection(var − dvar)
VALUES : collection(val − int, noccurrence − dvar)
MATRIX : collection(i− int, j− int, c− int)
COST : dvar

Restriction(s) required(VARIABLES, var)
required(VALUES, [val, noccurrence])
distinct(VALUES, val)
VALUES.noccurrence ≥ 0
VALUES.noccurrence ≤ |VARIABLES|
required(MATRIX, [i, j, c])
increasing seq(MATRIX, [i, j])
MATRIX.i ≥ 1
MATRIX.i ≤ |VARIABLES|
MATRIX.j ≥ 1
MATRIX.j ≤ |VALUES|
|MATRIX| = |VARIABLES| ∗ |VALUES|

Purpose

Each value VALUES[i].val should be taken by exactly VALUES[i].noccurrence variables of the
VARIABLES collection. In addition the COST of an assignment is equal to the sum of the ele-
mentary costs associated to the fact that we assign the ith variable of the VARIABLES collection
to the jth value of the VALUES collection. These elementary costs are given by the MATRIX

collection.

For all items of VALUES:

Arc input(s) VARIABLES

Arc generator SELF 7→ collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUES.val

Graph property(ies) NVERTEX = VALUES.noccurrence

Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→ collection(variables, values)

20030820 503

Arc arity 2

Arc constraint(s) variables.var = values.val

Graph property(ies) SUM WEIGHT ARC(MATRIX[(variables.key − 1) ∗ |VALUES|+ values.key].c) = COST

Example global cardinality with costs

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

8
>><
>>:

var − 3,
var − 3,
var − 3,
var − 6

9
>>=
>>;
,

8
<
:

val − 3 noccurrence − 3,
val − 5 noccurrence − 0,
val − 6 noccurrence − 1

9
=
; ,

8
>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

i − 1 j− 1 c − 4,
i − 1 j− 2 c − 1,
i − 1 j− 3 c − 7,
i − 2 j− 1 c − 1,
i − 2 j− 2 c − 0,
i − 2 j− 3 c − 8,
i − 3 j− 1 c − 3,
i − 3 j− 2 c − 2,
i − 3 j− 3 c − 1,
i − 4 j− 1 c − 0,
i − 4 j− 2 c − 0,
i − 4 j− 3 c − 6

9
>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

, 14

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.195 respectively show the initial and final graph asso-
ciated to the second graph constraint.

VARIABLES

VALUES

1

1 23

234

SUM_WEIGHT_ARC=4+1+3+6=14

1:3

1:3,3

4

2:3

1

3:3

3

4:6

3:6,1

6

(A) (B)

Figure 4.195: Initial and final graph of the global cardinality with costs con-
straint

Graph model The first graph constraint enforces each value of the VALUES collection to be taken by
a specific number of variables of the VARIABLES collection. It is identical to the graph

504 NVERTEX, SELF , ∀; SUM WEIGHT ARC,PRODUCT

constraint used in the global cardinality constraint. The second graph constraint ex-
presses the fact that the COST variable is equal to the sum of the elementary costs as-
sociated to each variable-value assignment. All these elementary costs are recorded in
the MATRIX collection. More precisely, the cost cij is recorded in the attribute c of the
((i − 1) · |VALUES)| + j)th entry of the MATRIX collection. This is ensured by the
increasing restriction which enforces the fact that the items of the MATRIX collection
are sorted in lexicographically increasing order according to attributes i and j.

Usage A classical utilisation of the global cardinality with costs constraint corresponds
to the following assignment problem. We have a set of persons P as well as a set of jobs
J to perform. Each job requires a number of persons restricted to a specified interval. In
addition each person p has to be assigned to one specific job taken from a subset Jp of J .
There is a cost Cpj associated to the fact that person p is assigned to job j. The previous
problem is modelled with one single global cardinality with costs constraint where
the persons and the jobs respectively correspond to the items of the VARIABLES and VALUES
collection.

The global cardinality with costs constraint can also be used for modelling a con-
junction alldifferent(X1, X2, . . . , Xn) and α1 · X1 + α2 · X2 + . . . + αn · Xn = COST.
For this purpose we set the domain of the noccurrence variables to {0, 1} and the cost
attribute c of a variable Xi and one of its potential value j to αi · j. In practice this can be
used for the magic squares and the magic hexagon problems where all the αi are set to 1.

Algorithm [20]

See also global cardinality, weighted partial alldiff.

Key words cost filtering constraint, assignment, cost matrix, weighted assignment, scalar product,
magic square, magic hexagon.

20030820 505

506 NCC,PATH ,LOOP

4.94 global contiguity

Origin [35]

Constraint global contiguity(VARIABLES)

Argument(s) VARIABLES : collection(var − dvar)

Restriction(s) required(VARIABLES, var)
VARIABLES.var ≥ 0
VARIABLES.var ≤ 1

Purpose Enforce all variables of the VARIABLES collection to be assigned to 0 or 1. In addition, all
variables assigned to value 1 appear contiguously.

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)
LOOP 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • variables1.var = variables2.var
• variables1.var = 1

Graph property(ies) NCC ≤ 1

Example global contiguity

0
BB@

8
>><
>>:

var− 0,
var− 1,
var− 1,
var− 0

9
>>=
>>;

1
CCA

Parts (A) and (B) of Figure 4.196 respectively show the initial and final graph. The
global contiguity constraint holds since the final graph does not contain more than
one connected component. This connected component corresponds to 2 contiguous
variables which are both assigned to 1.

Graph model Each connected component of the final graph corresponds to one set of contiguous variables
that all take value 1.

Automaton Figure 4.197 depicts the automaton associated to the global contiguity constraint. To
each variable VARi of the collection VARIABLES corresponds a signature variable, which is
equal to VARi. There is no signature constraint.

Usage The paper [35] introducing this constraint refers to hardware configuration problems.

Algorithm A filtering algorithm for this constraint is described in [35].

See also group, inflexion.

Key words connected component, convex, Berge-acyclic constraint network, automaton,
automaton without counters.

20030820 507

VARIABLES

1

2

3

4

NCC=1

CC#1

2:1

3:1

(A) (B)

Figure 4.196: Initial and final graph of the global contiguity constraint

VAR =0i

VAR =1i

VAR =1i

VAR =0i

VAR =0i

s

n

z

t

$

$

$

Figure 4.197: Automaton of the global contiguity constraint

Q =tn

VAR
1

VAR
2

VAR
n

Q1Q =s0

Figure 4.198: Hypergraph of the reformulation corresponding to the automaton of the
global contiguity constraint

508 MAX NSCC,CLIQUE

4.95 golomb

Origin Inspired by [118].

Constraint golomb(VARIABLES)

Argument(s) VARIABLES : collection(var − dvar)

Restriction(s) required(VARIABLES, var)
VARIABLES.var ≥ 0

Purpose Enforce all differences Xi − Xj between two variables Xi and Xj (i > j) of the collection
VARIABLES to be distinct.

Derived Collection(s) col

„
PAIRS − collection(x− dvar, y− dvar),
[> −item(x− VARIABLES.var, y − VARIABLES.var)]

«

Arc input(s) PAIRS

Arc generator CLIQUE 7→ collection(pairs1, pairs2)

Arc arity 2

Arc constraint(s) pairs1.y − pairs1.x = pairs2.y − pairs2.x

Graph property(ies) MAX NSCC ≤ 1

Example golomb({var − 0, var − 1, var− 4, var− 6})

Parts (A) and (B) of Figure 4.199 respectively show the initial and final graph.
Since we use the MAX NSCC graph property we show one of the largest strongly
connected component of the final graph. The constraint holds since all the strongly
connected components have at most one vertex: the differences 1, 2, 3, 4, 5, 6 that one can
construct from the values 0, 1, 4, 6 assigned to the variables of the VARIABLES collection
are all distinct. Figure 4.200 gives a graphical interpretation of the solution given in the
example in term of a graph: Each vertex corresponds to a variable, while each arc depicts
a difference between two variables. One can observe that these differences are all distinct.

Graph model When applied on the collection of items {VAR1, VAR2, VAR3, VAR4}, the gen-
erator of derived collection generates the following collection of items:
{VAR2 VAR1, VAR3 VAR1, VAR3 VAR2, VAR4 VAR1, VAR4 VAR2, VAR4 VAR3}. Note
that we use a binary arc constraint between two vertices and that this binary constraint
involves four variables.

Usage This constraint refers to the Golomb ruler problem. We quote the definition from [119]:
“A Golomb ruler is a set of integers (marks) a1 < · · · < ak such that all the differences
ai − aj (i > j) are distinct”.

Remark Different constraints models for the Golomb ruler problem were presented in [120].

20000128 509

PAIRS

1

2

3

4

5

6

MAX_NSCC=1

MAX_NSCC

1:1,0 2:4,0 3:4,1 4:6,0 5:6,1 6:6,4

(A) (B)

Figure 4.199: Initial and final graph of the golomb constraint

3

4 4

6 2

1

1

6

5

0

Figure 4.200: Graphical representation of the solution 0,1,4,6

510 MAX NSCC,CLIQUE

Algorithm At a first glance, one could think that, because it looks so similar to the alldifferent

constraint, we could have a perfect polynomial filtering algorithm. However this is not true
since one retrieves the same variable in different vertices of the graph. This leads to the fact
that one has incompatible arcs in the bipartite graph (the two classes of vertices correspond
to the pair of variables and to the fact that the difference between two pairs of variables
takes a specific value). However one can still reuse a similar filtering algorithm as for the
alldifferent constraint, but this will not lead to perfect pruning.

See also alldifferent.

Key words Golomb ruler, disequality, difference, derived collection.

20000128 511

512 NARC,CLIQUE (<)

4.96 graph crossing

Origin N. Beldiceanu

Constraint graph crossing(NCROSS, NODES)

Argument(s) NCROSS : dvar

NODES : collection(succ− dvar, x − int, y− int)

Restriction(s) NCROSS ≥ 0
required(NODES, [succ, x, y])
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose NCROSS is the number of proper intersections between line-segments, where each line-segment
is an arc of the directed graph defined by the arc linking a node and its unique successor.

Arc input(s) NODES

Arc generator CLIQUE(<) 7→ collection(n1, n2)

Arc arity 2

Arc constraint(s) • max(n1.x, NODES[n1.succ].x) ≥ min(n2.x, NODES[n2.succ].x)
• max(n2.x, NODES[n2.succ].x) ≥ min(n1.x, NODES[n1.succ].x)
• max(n1.y, NODES[n1.succ].y) ≥ min(n2.y, NODES[n2.succ].y)
• max(n2.y, NODES[n2.succ].y) ≥ min(n1.y, NODES[n1.succ].y)

• (n2.x − NODES[n1.succ].x) ∗ (NODES[n1.succ].y − n1.y)−
(NODES[n1.succ].x − n1.x) ∗ (n2.y− NODES[n1.succ].y)

6= 0

• (NODES[n2.succ].x − NODES[n1.succ].x) ∗ (n2.y− n1.y)−
(n2.x − n1.x) ∗ (NODES[n2.succ].y − NODES[n1.succ].y)

6= 0

•
sign

„
(n2.x− NODES[n1.succ].x) ∗ (NODES[n1.succ].y − n1.y)−
(NODES[n1.succ].x − n1.x) ∗ (n2.y− NODES[n1.succ].y)

«
6=

sign

„
(NODES[n2.succ].x − NODES[n1.succ].x) ∗ (n2.y− n1.y)−
(n2.x− n1.x) ∗ (NODES[n2.succ].y − NODES[n1.succ].y)

«

Graph property(ies) NARC = NCROSS

Example graph crossing

0
BBBBBBBBBBBBBB@

2,

8
>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

succ − 1 x− 4 y− 7,
succ − 1 x− 2 y− 5,
succ − 1 x− 7 y− 6,
succ − 2 x− 1 y− 2,
succ − 3 x− 2 y− 2,
succ − 2 x− 5 y− 3,
succ − 3 x− 8 y− 2,
succ − 9 x− 6 y− 2,
succ − 10 x− 10 y− 6,
succ − 8 x− 10 y− 1

9
>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

1
CCCCCCCCCCCCCCA

20000128 513

Parts (A) and (B) of Figure 4.201 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in bold.
Each arc of the final graph corresponds to a proper intersection between two line-segments.
Figure 4.202 shows the line-segments associated to the NODES collection. One can observe
the following line-segments intersection:

• Arcs 8→ 9 and 7→ 3 cross,

• Arcs 5→ 3 and 7→ 3 cross also.

NODES

1

2

3

4

5

6

7

8

9

10 NARC=2

5:3,2,2

6:2,5,3

7:3,8,2

8:9,6,2

(A) (B)

Figure 4.201: Initial and final graph of the graph crossing constraint

x

y

2 3 4 5 6 7 8 9 10 111

1

2

3

4

5

6

7

4 5

6

8

7

10

93

2

1

Figure 4.202: A graph covering with 2 line-segments intersections

Graph model Each node is described by its coordinates x and y, and by its successor succ in the final cov-
ering. Note that the coordinates are initially fixed. We use the arc generator CLIQUE(<)
in order to avoid counting twice the same line-segment crossing.

514 NARC,CLIQUE (<)

Usage This is a general crossing constraint that can be used in conjunction with one graph covering
constraint such as cycle, tree or map. In many practical problems ones want not only to
cover a graph with specific patterns but also to avoid too much crossing between the arcs
of the final graph.

Remark We did not give a specific crossing constraint for each graph covering constraint. We feel
that it is better to start first with a more general constraint before going in the specificity of
the pattern that is used for covering the graph.

See also crossing, two layer edge crossing, cycle, tree, map.

Key words geometrical constraint, line-segments intersection.

20000128 515

516MAX NCC,MIN NCC,NCC,NVERTEX,PATH ,LOOP ; MAX NCC,MIN NCC,PATH ,LOOP

4.97 group

Origin CHIP

Constraint group(NGROUP, MIN SIZE, MAX SIZE, MIN DIST, MAX DIST, NVAL, VARIABLES, VALUES)

Argument(s) NGROUP : dvar

MIN SIZE : dvar

MAX SIZE : dvar

MIN DIST : dvar

MAX DIST : dvar

NVAL : dvar

VARIABLES : collection(var − dvar)
VALUES : collection(val − int)

Restriction(s) NGROUP ≥ 0
MIN SIZE ≥ 0
MAX SIZE ≥ MIN SIZE

MIN DIST ≥ 0
MAX DIST ≥ MIN DIST

NVAL ≥ 0
required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)

Let n be the number of variables of the collection VARIABLES. Let Xi, Xi+1, . . . , Xj (1 ≤
i ≤ j ≤ n) be consecutive variables of the collection of variables VARIABLES such that all the
following conditions simultaneously apply:

Purpose • All variables Xi, . . . , Xj take their value in the set of values VALUES,

• i = 1 or Xi−1 does not take a value in VALUES,

• j = n or Xj+1 does not take a value in VALUES.
We call such a set of variables a group. The constraint group is true if all the following condi-
tions hold:

• There are exactly NGROUP groups of variables,

• MIN SIZE is the number of variables of the smallest group,

• MAX SIZE is the number of variables of the largest group,

• MIN DIST is the minimum number of variables between two consecutives groups or be-
tween one border and one group,

• MAX DIST is the maximum number of variables between two consecutives groups or
between one border and one group,

• NVAL is the number of variables that take their value in the set of values VALUES.

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)
LOOP 7→ collection(variables1, variables2)

20000128 517

Arc arity 2

Arc constraint(s) • in(variables1.var, VALUES)
• in(variables2.var, VALUES)

Graph property(ies) • NCC = NGROUP

•MIN NCC = MIN SIZE

•MAX NCC = MAX SIZE

• NVERTEX = NVAL

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)
LOOP 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • not in(variables1.var, VALUES)
• not in(variables2.var, VALUES)

Graph property(ies) •MIN NCC = MIN DIST

•MAX NCC = MAX DIST

Example group

0
BBBBBBBBBBBBBBBBBBBBBB@

2, 1, 2, 2, 4, 3,

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

var − 2,
var − 8,
var − 1,
var − 7,
var − 4,
var − 5,
var − 1,
var − 1,
var − 1

9
>>>>>>>>>>>>=
>>>>>>>>>>>>;

,

8
>>>><
>>>>:

val − 0,
val − 2,
val − 4,
val − 6,
val − 8

9
>>>>=
>>>>;

1
CCCCCCCCCCCCCCCCCCCCCCA

The previous constraint holds since:

• The final graph of the first graph constraint has two connected components. There-
fore the number of groups NGROUP is equal to two.

• The number of vertices of the smallest connected component of the final graph of the
first graph constraint is equal to one. Therefore MIN SIZE is equal to one.

• The number of vertices of the largest connected component of the final graph of the
first graph constraint is equal to two. Therefore MAX SIZE is equal to two.

• The number of vertices of the smallest connected component of the final graph of the
second graph constraint is equal to two. Therefore MIN DIST is equal to two.

• The number of vertices of the largest connected component of the final graph of the
second graph constraint is equal to four. Therefore MAX DIST is equal to four.

518MAX NCC,MIN NCC,NCC,NVERTEX,PATH ,LOOP ; MAX NCC,MIN NCC,PATH ,LOOP

• The number of vertices of the final graph of the first graph constraint is equal to three.
Therefore NVAL is equal to three.

Parts (A) and (B) of Figure 4.203 respectively show the initial and final graph associated
to the first graph constraint. Since we use the NVERTEX graph property, the vertices
of the final graph are stressed in bold. In addition, since we use the MIN NCC and the
MAX NCC graph properties, we also show the smallest and largest connected compo-
nents of the final graph.

VARIABLES

1

2

3

4

5

6

7

8

9

NCC=2
MIN_NCC=1
MAX_NCC=2
NVERTEX=3

MIN_NCC MAX_NCC

5:4 1:2

2:8

(A) (B)

Figure 4.203: Initial and final graph of the group constraint

Graph model We use two graph constraints for modelling the group constraint: A first one for specifying
the constraints on NGROUP, MIN SIZE, MAX SIZE and NVAL, and a second one for stating
the constraints on MIN DIST and MAX DIST. In order to generate the initial graph related to
the first graph constraint we use:

• The arc generators PATH and LOOP ,

• The binary constraint variables1.var ∈ VALUES ∧ variables2.var ∈ VALUES.

This produces an initial graph depicted in part (A) of Figure 4.203. We use PATH LOOP
and the binary constraint variables1.var ∈ VALUES ∧ variables2.var ∈ VALUES in
order to catch the two following situations:

• A binary constraint has to be used in order to get the notion of group: Consecutive
variables that take their value in VALUES.

20000128 519

• If we only use PATH then we would lose the groups that are composed from one
single variable since the predecessor and the successor arc would be destroyed; this
is why we use also the LOOP arc generator.

Automaton Figures 4.204, 4.206, 4.207, 4.209, 4.210 and 4.212 depict the different automata associated
to the group constraint. For the automata that respectively compute NGROUP, MIN SIZE,
MAX SIZE, MIN DIST, MAX DIST and NVAL we have a 0-1 signature variable Si for each
variable VARi of the collection VARIABLES. The following signature constraint links VARi
and Si: VARi ∈ VALUES⇔ Si.

not_in(VAR ,VALUES)i

in(VAR ,VALUES)i

not_in(VAR ,VALUES)i
in(VAR ,VALUES),i
{C=C+1}

i

$

$

NGROUP=C
t:

s

{C=0}

Figure 4.204: Automaton for the NGROUP parameter of the group constraint

C1

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0

C =00

Q =tn

C =NGROUPn

Figure 4.205: Hypergraph of the reformulation corresponding to the automaton of the
NGROUP parameter of the group constraint

Usage A typical use of the group constraint in the context of timetabling is as follow: The value
of the ith variable of the VARIABLES collection corresponds to the type of shift (i.e. night,
morning, afternoon, rest) performed by a specific person on day i. A complete period of

520MAX NCC,MIN NCC,NCC,NVERTEX,PATH ,LOOP ; MAX NCC,MIN NCC,PATH ,LOOP

inot_in(VAR ,VALUES)

inot_in(VAR ,VALUES),

iin(VAR ,VALUES),

iin(VAR ,VALUES),

inot_in(VAR ,VALUES) $
i j

MIN_SIZE=C
t:

k

{C=|VARIABLES|}

{C=min(C,D)}

{D=1} $
{C=min(C,D)}
$,

{D=D+1}

in(VAR ,VALUES),

{C=0,D=1}

s

Figure 4.206: Automaton for the MIN SIZE parameter of the group constraint

inot_in(VAR ,VALUES), iin(VAR ,VALUES),

MAX_SIZE=C
t:

{D=D+1}{C=max(C,D),D=0}

$,
{C=max(C,D)}

{C=0,D=0}

s

Figure 4.207: Automaton for the MAX SIZE parameter of the group constraint

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0 Q =tn

D1 Dn

C1C =00 C =MIN_SIZEn

D =10

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0 Q =tn

D1 Dn

C1C =00

D =00

C =MAX_SIZEn

Figure 4.208: Hypergraphs of the reformulations corresponding to the automata of the
MIN SIZE and MAX SIZE parameters of the group constraint

20000128 521

i

i

i

i

i

i $j

t:

k

$
{C=min(C,D)}
$,

MIN_DIST=C

in(VAR ,VALUES),

in(VAR ,VALUES)

in(VAR ,VALUES)

not_in(VAR ,VALUES),

{C=|VARIABLES|}

not_in(VAR ,VALUES),
{D=D+1}

not_in(VAR ,VALUES),

{D=1}

{C=min(C,D)}

{C=0,D=1}

s

Figure 4.209: Automaton for the MIN DIST parameter of the group constraint

i
{C=max(C,D),D=0}

in(VAR ,VALUES), i

t:

{D=D+1}

$,
{C=max(C,D)}

MAX_DIST=C

not_in(VAR ,VALUES),

{C=0,D=0}

s

Figure 4.210: Automaton for the MAX DIST parameter of the group constraint

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0 Q =tn

D1 Dn

C1C =00

D =10

C =MIN_DISTn

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0 Q =tn

D1 Dn

C1C =00

D =00

C =MAX_DISTn

Figure 4.211: Hypergraphs of the reformulations corresponding to the automata of the
MIN DIST and MAX DIST parameters of the group constraint

522MAX NCC,MIN NCC,NCC,NVERTEX,PATH ,LOOP ; MAX NCC,MIN NCC,PATH ,LOOP

in(VAR ,VALUES),i
{C=C+1}

$

t:

not_in(VAR ,VALUES)i

NVAL=C

{C=0}

s

Figure 4.212: Automaton for the NVAL parameter of the group constraint

C1

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0

C =00

Q =tn

C =NVALn

Figure 4.213: Hypergraph of the reformulation corresponding to the automaton of the
NVAL parameter of the group constraint

20000128 523

work is represented by the variables of the VARIABLES collection. In this context the group
constraint expresses for a person:

• The number of periods of consecutive night shift during a complete period of work.

• The total number of night shift during a complete period of work.

• The maximum number of allowed consecutive night shift.

• The minimum number of days (which do not correspond to night shift) between two
consecutive sequences of night shift.

Remark For this constraint we use the possibility to express directly more than one constraint on the
characteristics of the final graph we want to obtain. For more propagation, it is crucial to
keep this in one single constraint, since strong relations relate the different characteristics
of a graph. This constraint is very similar to the group constraint introduced in CHIP,
except that here, the MIN DIST and MAX DIST constraints apply also for the two borders:
we cannot start or end with a group of k consecutive variables that take their values outside
VALUES and such that k is less than MIN DIST or k is greater than MAX DIST.

See also group skip isolated item, change continuity, stretch path.

Key words timetabling constraint, connected component, automaton, automaton with counters,
alpha-acyclic constraint network(2), alpha-acyclic constraint network(3), vpartition,
consecutive loops are connected.

524 MAX NSCC,MIN NSCC,NSCC,NVERTEX,CHAIN

4.98 group skip isolated item

Origin Derived from group.

Constraint group skip isolated item(NGROUP, MIN SIZE, MAX SIZE, NVAL, VARIABLES, VALUES)

Argument(s) NGROUP : dvar

MIN SIZE : dvar

MAX SIZE : dvar

NVAL : dvar

VARIABLES : collection(var − dvar)
VALUES : collection(val − int)

Restriction(s) NGROUP ≥ 0
MIN SIZE ≥ 0
MAX SIZE ≥ MIN SIZE

NVAL ≥ 0
required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)

Let n be the number of variables of the collection VARIABLES. Let Xi, Xi+1, . . . , Xj (1 ≤
i < j ≤ n) be consecutive variables of the collection of variables VARIABLES such that the
following conditions apply:

Purpose • All variables Xi, . . . , Xj take their value in the set of values VALUES,

• i = 1 or Xi−1 does not take a value in VALUES,

• j = n or Xj+1 does not take a value in VALUES.
We call such a set of variables a group. The constraint group skip isolated item is true if
all the following conditions hold:

• There are exactly NGROUP groups of variables,

• The number of variables of the smallest group is MIN SIZE,

• The number of variables of the largest group is MAX SIZE,

• The number of variables that take their value in the set of values VALUES is equal to
NVAL.

Arc input(s) VARIABLES

Arc generator CHAIN 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • in(variables1.var, VALUES)
• in(variables2.var, VALUES)

20000128 525

Graph property(ies) • NSCC = NGROUP

•MIN NSCC = MIN SIZE

•MAX NSCC = MAX SIZE

• NVERTEX = NVAL

Example group skip isolated item

0
BBBBBBBBBBBBBBBBBBBBBB@

1, 2, 2, 3,

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

var − 2,
var − 8,
var − 1,
var − 7,
var − 4,
var − 5,
var − 1,
var − 1,
var − 1

9
>>>>>>>>>>>>=
>>>>>>>>>>>>;

,

8
>>>><
>>>>:

val − 0,
val − 2,
val − 4,
val − 6,
val − 8

9
>>>>=
>>>>;

1
CCCCCCCCCCCCCCCCCCCCCCA

The previous constraint holds since:

• The final graph contains one strongly connected component. Therefore the number
of groups is equal to one.

• The unique strongly connected component of the final graph contains two vertices.
Therefore MIN SIZE and MAX SIZE are both equal to two.

• The number of vertices of the final graph is equal to two. Therefore NVAL is equal to
two.

Parts (A) and (B) of Figure 4.214 respectively show the initial and final graph.

Graph model We use the CHAIN arc generator in order to produce the initial graph. This creates the
graph depicted in part (A) of Figure 4.214. We use CHAIN together with the arc constraint
variables1.var ∈ VALUES ∧ variables2.var ∈ VALUES in order to skip the isolated
variables that take a value in VALUES that we don’t want to count as a group. This is why,
on the example, value 4 is not counted as a group.

Automaton Figures 4.215, 4.217, 4.218 and 4.220 depict the different automata associated to the
group skip isolated item constraint. For the automata that respectively compute
NGROUP, MIN SIZE, MAX SIZE and NVAL we have a 0-1 signature variable Si for each vari-
able VARi of the collection VARIABLES. The following signature constraint links VARi and
Si: VARi ∈ VALUES⇔ Si.

Usage This constraint is useful in order to specify rules about how rest days should be allocated
to a person during a period of n consecutive days. In this case VALUES are the codes for the
rest days (perhaps one single value) and VARIABLES corresponds to the amount of work
done during n consecutive days. We can then express a rule like: In a month one should
have at least 4 periods of at least 2 rest days; Isolated rest days are not counted as rest
periods.

See also group, change continuity, stretch path.

526 MAX NSCC,MIN NSCC,NSCC,NVERTEX,CHAIN

VARIABLES

1

2

3

4

5

6

7

8

9

NSCC=1
MIN_NSCC=2
MAX_NSCC=2
NVERTEX=2

SCC#1

1:2

2:8

(A) (B)

Figure 4.214: Initial and final graph of the group skip isolated item constraint

i

j

not_in(VAR ,VALUES)

$

not_in(VAR ,VALUES)

$

not_in(VAR ,VALUES)

t:
NGROUP=C

i

i

i

in(VAR ,VALUES)i

{C=C+1}

in(VAR ,VALUES),i

in(VAR ,VALUES)i

$

{C=0}

s

Figure 4.215: Automaton for the NGROUP parameter of the
group skip isolated item constraint

20000128 527

C1

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0

C =00

Q =tn

C =NGROUPn

Figure 4.216: Hypergraph of the reformulation corresponding to the automaton of the
NGROUP parameter of the group skip isolated item constraint

m

inot_in(VAR ,VALUES)

inot_in(VAR ,VALUES)

iin(VAR ,VALUES),

iin(VAR ,VALUES),{D=2}

inot_in(VAR ,VALUES)

iin(VAR ,VALUES),{D=D+1}

iin(VAR ,VALUES)

inot_in(VAR ,VALUES)

inot_in(VAR ,VALUES),

iin(VAR ,VALUES),{C=|VARIABLES}

j

l

$

$

$

$

k

$,{C=min(C,D}

{C=min(C,D)}

MIN_SIZE=C
t:

s

{C=0,D=2}

Figure 4.217: Automaton for the MIN SIZE parameter of the
group skip isolated item constraint

528 MAX NSCC,MIN NSCC,NSCC,NVERTEX,CHAIN

MAX_SIZE=C
t:

inot_in(VAR ,VALUES),

inot_in(VAR ,VALUES)

iin(VAR ,VALUES),

iin(VAR ,VALUES),
i

{C=max(C,D)}

$

$,{C=max(C,D)}

{D=D+1}

{D=1}

s

{C=0,D=0}

Figure 4.218: Automaton for the MAX SIZE parameter of the
group skip isolated item constraint

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0 Q =tn

D1 Dn

C1C =00 C =MIN_SIZEn

D =20

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0 Q =tn

D1 Dn

C1C =00

D =00

C =MAX_SIZEn

Figure 4.219: Hypergraphs of the reformulations corresponding to the automata of the
MIN SIZE and MAX SIZE parameters of the group skip isolated item constraint

20000128 529

in(VAR ,VALUES),i
{C=C+1}

$

t:

not_in(VAR ,VALUES)i

NVAL=C

{C=0}

s

Figure 4.220: Automaton for the NVAL parameter of the group skip isolated item

constraint

C1

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0

C =00

Q =tn

C =NVALn

Figure 4.221: Hypergraph of the reformulation corresponding to the automaton of the
NVAL parameter of the group skip isolated item constraint

530 MAX NSCC,MIN NSCC,NSCC,NVERTEX,CHAIN

Key words timetabling constraint, strongly connected component, automaton,
automaton with counters, alpha-acyclic constraint network(2),
alpha-acyclic constraint network(3).

20000128 531

532 AUTOMATON

4.99 heighest peak

Origin Derived from peak.

Constraint heighest peak(HEIGHT, VARIABLES)

Argument(s) HEIGHT : dvar

VARIABLES : collection(var − dvar)

Restriction(s) HEIGHT ≥ 0
VARIABLES.var ≥ 0
required(VARIABLES, var)

Purpose

A variable Vk (1 < k < m) of the sequence of variables VARIABLES = V1, . . . , Vm is a peak
if and only if there exist an i (1 < i ≤ k) such that Vi−1 < Vi and Vi = Vi+1 = . . . = Vk
and Vk > Vk+1. HEIGHT is the maximum value of the peak variables. If no such variable exists
HEIGHT is equal to 0.

Example heighest peak

0
BBBBBBBBBB@

8,

8
>>>>>>>>>><
>>>>>>>>>>:

var − 1,
var − 1,
var − 4,
var − 8,
var − 6,
var − 2,
var − 7,
var − 1

9
>>>>>>>>>>=
>>>>>>>>>>;

1
CCCCCCCCCCA

The previous constraint holds since 8 is the maximum peak of the sequence 1 1 4 8 6 2 7 1.

1

1 5 6 7 8

2

3

4

5

6

43

7

8

1 1

Values

Variables 2

8

4

6

2

7

1

Figure 4.222: The sequence and its heighest peak

Automaton Figure 4.223 depicts the automaton associated to the heighest peak constraint. To each
pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a
signature variable Si. The following signature constraint links VARi, VARi+1 and Si:

VARi > VARi+1 ⇔ Si = 0 ∧ VARi = VARi+1 ⇔ Si = 1 ∧ VARi < VARi+1 ⇔ Si = 2.

20040530 533

VAR > VARi i+1 VAR = VARi i+1

VAR = VARi i+1i i+1VAR < VAR

VAR < VARi i+1

u

$

$

VAR > VAR ,i i+1
{C=max(C,VAR)}i

HEIGHT=C

t:

{C=0}

s

Figure 4.223: Automaton of the heighest peak constraint

VAR
1

S1

VAR
2 VAR

n
VAR

3

S3 Sn−1

VAR
n−1

Q =s0

C =00
C1

Q1

S2

Q2

C2

Q =tn−1

n−1C =HEIGHT

Figure 4.224: Hypergraph of the reformulation corresponding to the automaton of the
heighest peak constraint

534 AUTOMATON

See also peak, deepest valley.

Key words sequence, automaton, automaton with counters, sliding cyclic(1) constraint network(2).

20040530 535

536 NARC,PRODUCT

4.100 in

Origin Domain definition.

Constraint in(VAR, VALUES)

Argument(s) VAR : dvar

VALUES : collection(val− int)

Restriction(s) required(VALUES, val)
distinct(VALUES, val)

Purpose Enforce the domain variable VAR to take a value within the values described by the VALUES

collection.

Derived Collection(s) col(VARIABLES − collection(var − dvar), [item(var − VAR)])

Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→ collection(variables, values)

Arc arity 2

Arc constraint(s) variables.var = values.val

Graph property(ies) NARC = 1

Example in(3, {val − 1, val − 3})

Parts (A) and (B) of Figure 4.225 respectively show the initial and final graph.
Since we use the NARC graph property, the unique arc of the final graph is stressed in
bold.

VARIABLES

VALUES

1

12

NARC=1

1:3

2:3

(A) (B)

Figure 4.225: Initial and final graph of the in constraint

Signature Since all the val attributes of the VALUES collection are distinct and because of the arc con-
straint variables.var = values.val the final graph contains at most one arc. Therefore
we can rewrite NARC = 1 to NARC ≥ 1 and simplify NARC to NARC.

20030820 537

Automaton Figure 4.226 depicts the automaton associated to the in constraint. Let VALi be the val

attribute of the ith item of the VALUES collection. To each pair (VAR, VALi) corresponds a
0-1 signature variable Si as well as the following signature constraint: VAR = VALi ⇔ Si.

VAR<>VAL is

t

VAR=VALi

Figure 4.226: Automaton of the in constraint

Q =tn
Q1Q =s0

 S
1

 S
2

 S
n

VAR

Figure 4.227: Hypergraph of the reformulation corresponding to the automaton of the
in constraint

Remark Entailment occurs immediately after posting this constraint.

Used in among, cardinality atmost partition, group, group skip isolated item,
in same partition.

See also not in, in same partition.

Key words value constraint, unary constraint, included, domain definition, automaton,
automaton without counters, centered cyclic(1) constraint network(1), derived collection.

538 NARC,PRODUCT

4.101 in relation

Origin Constraint explicitely defined by tuples of values.

Constraint in relation(VARIABLES, TUPLES OF VALS)

Synonym(s) extension.

Type(s) TUPLE OF VARS : collection(var− dvar)
TUPLE OF VALS : collection(val− int)

Argument(s) VARIABLES : TUPLE OF VARS

TUPLES OF VALS : collection(tuple − TUPLE OF VALS)

Restriction(s) required(TUPLE OF VARS, var)
required(TUPLE OF VALS, val)
required(TUPLES OF VALS, tuple)
min size(TUPLES OF VALS, tuple) = |VARIABLES|
max size(TUPLES OF VALS, tuple) = |VARIABLES|

Purpose
Enforce the tuple of variables VARIABLES to take its value out of a set of tuples of values
TUPLES OF VALS. The value of a tuple of variables 〈V1, V2, . . . , Vn〉 is a tuple of values
〈U1, U2, . . . , Un〉 if and only if V1 = U1 ∧ V2 = U2 ∧ · · · ∧ Vn = Un.

Derived Collection(s) col(TUPLES OF VARS − collection(vec − TUPLE OF VARS), [item(vec − VARIABLES)])

Arc input(s) TUPLES OF VARS TUPLES OF VALS

Arc generator PRODUCT 7→ collection(tuples of vars, tuples of vals)

Arc arity 2

Arc constraint(s) vec eq tuple(tuples of vars.vec, tuples of vals.tuple)

Graph property(ies) NARC ≥ 1

Example in relation

0
BB@

{var − 5, var − 3, var − 3},8
<
:

tuple − {val − 5, val− 2, val− 3},
tuple − {val − 5, val− 2, val− 6},
tuple − {val − 5, val− 3, val− 3}

9
=
;

1
CCA

Parts (A) and (B) of Figure 4.228 respectively show the initial and final graph.
Since we use the NARC graph property, the unique arc of the final graph is stressed in
bold.

Usage Quite often some constraints cannot be easily expressed, neither by a formula, nor by a
regular pattern. In this case one has to define the constraint by specifying in extension the
combinations of allowed values.

20030820 539

Remark Within [34] this constraint is called extension.

See also element.

Key words data constraint, tuple, extension, relation, derived collection.

540 NARC,PRODUCT

TUPLES_OF_VARS

TUPLES_OF_VALS

1

123

NARC=1

1:5
 3
 3

3:5
 3
 3

(A) (B)

Figure 4.228: Initial and final graph of the in relation constraint

20030820 541

542 NSINK,NSOURCE,PRODUCT

4.102 in same partition

Origin Used for defining several entries of this catalog.

Constraint in same partition(VAR1, VAR2, PARTITIONS)

Type(s) VALUES : collection(val− int)

Argument(s) VAR1 : dvar

VAR2 : dvar

PARTITIONS : collection(p− VALUES)

Restriction(s) required(VALUES, val)
distinct(VALUES, val)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose Enforce VAR1 and VAR2 to be respectively assigned to values v1 and v2 that both belong to a
same partition of the collection PARTITIONS.

Derived Collection(s) col(VARIABLES − collection(var − dvar), [item(var − VAR1), item(var − VAR2)])

Arc input(s) VARIABLES PARTITIONS

Arc generator PRODUCT 7→ collection(variables, partitions)

Arc arity 2

Arc constraint(s) in(variables.var, partitions.p)

Graph property(ies) • NSOURCE = 2
• NSINK = 1

Example in same partition

0
@ 6, 2,

8
<
:

p − {val − 1, val − 3},
p − {val − 4},
p − {val − 2, val − 6}

9
=
;

1
A

Parts (A) and (B) of Figure 4.229 respectively show the initial and final graph.
Since we both use the NSOURCE and NSINK graph properties, the source and sink
vertices of the final graph are shown with a double circle.

Graph model VAR1 and VAR2 are put together in the derived collection VARIABLES. Since both VAR1 and
VAR2 should take their value in one of the partition depicted by the PARTITIONS collection,
the final graph should have two sources corresponding respectively to VAR1 and VAR2.
Since two, possibly distinct, values should be assigned to VAR1 and VAR2 and since these
values belong to the same partition p the final graph should only have one sink. This sink
corresponds in fact to partition p.

20030820 543

Signature Observe that the sinks of the initial graph cannot become sources of the final graph since
isolated vertices are eliminated from the final graph. Since the final graph contains two
sources it also includes one arc between a source and a sink. Therefore the minimum
number of sinks of the final graph is equal to one. So we can rewrite NSINK = 1 to
NSINK ≥ 1 and simplify NSINK to NSINK.

Automaton Figure 4.230 depicts the automaton associated to the in same partition constraint. Let
VALUESi be the p attribute of the ith item of the PARTITIONS collection. To each triple
(VAR1, VAR2, VALUESi) corresponds a 0-1 signature variable Si as well as the following
signature constraint: ((VAR1 ∈ VALUESi) ∧ (VAR2 ∈ VALUESi))⇔ Si.

Used in alldifferent partition, balance partition, change partition,
common partition, nclass, same partition, soft same partition var,
soft used by partition var, used by partition.

See also in.

Key words value constraint, partition, automaton, automaton without counters,
centered cyclic(2) constraint network(1), derived collection.

VARIABLES

PARTITIONS

1

1 23

2

NSOURCE=2,NSINK=1

1:6

3:2
 6

2:2

(A) (B)

Figure 4.229: Initial and final graph of the in same partition constraint

544 NSINK,NSOURCE,PRODUCT

s

t

i

i

not_in(VAR1,VALUES) or not_in(VAR2,VALUES)i

in(VAR1,VALUES) and in(VAR2,VALUES)i

Figure 4.230: Automaton of the in same partition constraint

Q =tn
Q1Q =s0

 S
1

 S
2

 S
n

VAR1

VAR2

Figure 4.231: Hypergraph of the reformulation corresponding to the automaton of the
in same partition constraint

20030820 545

546 PREDEFINED

4.103 in set

Origin Used for defining constraints with set variables.

Constraint in set(VAL, SET)

Argument(s) VAL : dvar

SET : svar

Purpose Constraint variable VAL to belong to set SET.

Example in set(3, {1, 3})

Used in clique, cutset, discrepancy, inverse set, k cut, link set to booleans,
path from to, strongly connected, sum, sum set, symmetric cardinality,
symmetric gcc, tour.

Key words predefined constraint, value constraint, included, constraint involving set variables.

20030820 547

548 NARC,PATH

4.104 increasing

Origin KOALOG

Constraint increasing(VARIABLES)

Argument(s) VARIABLES : collection(var − dvar)

Restriction(s) |VARIABLES| > 0
required(VARIABLES, var)

Purpose The variables of the collection VARIABLES are increasing.

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var ≤ variables2.var

Graph property(ies) NARC = |VARIABLES| − 1

Example increasing({var − 1, var − 1, var − 4, var− 8})

Parts (A) and (B) of Figure 4.232 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

VARIABLES

1

2

3

4

NARC=3

1:1

2:1

3:4

4:8

(A) (B)

Figure 4.232: Initial and final graph of the increasing constraint

20040814 549

Automaton Figure 4.233 depicts the automaton associated to the increasing constraint. To each
pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a
0-1 signature variable Si. The following signature constraint links VARi, VARi+1 and Si:
VARi > VARi+1 ⇔ Si.

See also strictly increasing, decreasing, strictly decreasing.

Key words decomposition, order constraint, automaton, automaton without counters,
sliding cyclic(1) constraint network(1).

$

t

s VAR <=VARi i+1

Figure 4.233: Automaton of the increasing constraint

550 NARC,PATH

VAR
1

VAR
2

S2

VAR
n

VAR
3

S3

Q2

Sn−1

VAR
n−1

Q =tn−1Q =s0 Q1

S1

Figure 4.234: Hypergraph of the reformulation corresponding to the automaton of the
increasing constraint

20040814 551

552 PRODUCT , ∀, SUCC

4.105 indexed sum

Origin N. Beldiceanu

Constraint indexed sum(ITEMS, TABLE)

Argument(s) ITEMS : collection(index − dvar, weight − dvar)
TABLE : collection(index − int, sum − dvar)

Restriction(s) |ITEMS| > 0
|TABLE| > 0
required(ITEMS, [index, weight])
ITEMS.index ≥ 0
ITEMS.index < |TABLE|
required(TABLE, [index, sum])
TABLE.index ≥ 0
TABLE.index < |TABLE|
increasing seq(TABLE, index)

Purpose

Given several items of the collection ITEMS (each of them having a specific fixed index as
well as a weight which may be negative or positive), and a table TABLE (each entry of TABLE
corresponding to a sum variable), assign each item to an entry of TABLE so that the sum of the
weights of the items assigned to that entry is equal to the corresponding sum variable.

For all items of TABLE:

Arc input(s) ITEMS TABLE

Arc generator PRODUCT 7→ collection(items, table)

Arc arity 2

Arc constraint(s) items.index = table.index

Sets

SUCC 7→2
4

source,

variables − col

„
VARIABLES − collection(var− dvar),
[item(var− ITEMS.weight)]

«
3
5

Constraint(s) on sets sum ctr(variables,=, TABLE.sum)

Example indexed sum

0
BBBBBB@

8
<
:

index − 2 weight −−4,
index − 0 weight − 6,
index − 2 weight − 1

9
=
; ,

8
<
:

index − 0 sum− 6,
index − 1 sum− 0,
index − 2 sum−−3

9
=
;

1
CCCCCCA

20040814 553

Part (A) of Figure 4.235 shows the initial graphs associated to entries 0, 1 and 2.
Part (B) of Figure 4.235 shows the corresponding final graphs associated to entries 0 and
2. Each source vertex of the final graph can be interpreted as an item assigned to a specific
entry of TABLE. The indexedsum constraint holds since the sum variables associated
to each entry of TABLE are equal to the sum of the weights of the items assigned to the
corresponding entry.

ITEMS

TABLE

1

1 23

2 3

TABLE:0 TABLE:2

2:0,6

1:0,6

1:2,-4

3:2,-3

3:2,1

(A) (B)

Figure 4.235: Initial and final graph of the indexed sum constraint

Graph model We enforce the sum ctr constraint on the weight of the items that are assigned to the same
entry.

See also bin packing.

Key words assignment, variable indexing, variable subscript.

554 AUTOMATON

4.106 inflexion

Origin N. Beldiceanu

Constraint inflexion(N, VARIABLES)

Argument(s) N : dvar

VARIABLES : collection(var − dvar)

Restriction(s) N ≥ 1
N ≤ |VARIABLES|
required(VARIABLES, var)

N is equal to the number of times that the following conjunctions of constraints hold:
Purpose • XiCTRXi+1 ∧Xi 6= Xi+1,

• Xi+1 = Xi+2 ∧ · · · ∧Xj−2 = Xj−1,

• Xj−1 6= Xj ∧Xj−1¬CTRXj .
where Xk is the kth item of the VARIABLES collection and 1 ≤ i, i + 2 ≤ j, j ≤ n and CTR is
< or >.

Example inflexion

0
BBBBBBBBBB@

3,

8
>>>>>>>>>><
>>>>>>>>>>:

var− 1,
var− 1,
var− 4,
var− 8,
var− 8,
var− 2,
var− 7,
var− 1

9
>>>>>>>>>>=
>>>>>>>>>>;

1
CCCCCCCCCCA

The previous constraint holds since the sequence 1 1 4 8 8 2 7 1 contains three
inflexions peaks which respectively correspond to values 8, 2 and 7.

1

1 5 6 7 8

2

3

4

5

6

43

7

8

1

4

8 8

1

Values

Variables

1

2

2

7

Figure 4.236: The sequence and its three inflexions

20000128 555

Automaton Figure 4.237 depicts the automaton associated to the inflexion constraint. To each pair of
consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a signature
variable Si. The following signature constraint links VARi, VARi+1 and Si: (VARi >
VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi < VARi+1 ⇔ Si = 2).

VAR >VAR ,i
{C=C+1}

i+1

VAR <VAR ,i
{C=C+1}

i+1
VAR =VARi i+1

VAR =VARi i+1

VAR <VARi i+1

VAR =VARi i+1

VAR <VARi i+1 VAR >VARi i+1

VAR >VARi i+1

i j

$ $t:

N=C

$

s

{C=0}

Figure 4.237: Automaton of the inflexion constraint

Q =s0

C =00 C1

Q1

VAR
1

S1

VAR
2

S2

VAR
n

VAR
3

Sn−1

VAR
n−1

S3

Q2

C2

Q =tn−1

C =Nn−1

Figure 4.238: Hypergraph of the reformulation corresponding to the automaton of the
inflexion constraint

Usage Useful for constraining the number of inflexions of a sequence of domain variables.

Remark Since the arity of the arc constraint is not fixed, the inflexion constraint cannot be cur-
rently described. However, this would not hold anymore if we were introducing a slot that
specifies how to merge adjacent vertices of the final graph.

See also peak, valley.

Key words sequence, automaton, automaton with counters, sliding cyclic(1) constraint network(2).

556 AUTOMATON

4.107 int value precede

Origin [121]

Constraint int value precede(S, T, VARIABLES)

Argument(s) S : int

T : int

VARIABLES : collection(var − dvar)

Restriction(s) S 6= T

required(VARIABLES, var)

Purpose If value T occurs in the collection of variables VARIABLES then its first occurrence should be
preceded by an occurrence of value S.

Example int value precede

0
BBBB@

0, 1,

8
>>>><
>>>>:

var − 4,
var − 0,
var − 6,
var − 1,
var − 0

9
>>>>=
>>>>;

1
CCCCA

The int value precede constraint holds since the first occurrence of value 0 pre-
cedes the first occurrence of value 1.

Automaton Figure 4.239 depicts the automaton associated to the int value precede constraint. Let
VARi be the ith variable of the VARIABLES collection. To each triple (S, T, VARi) corre-
sponds a signature variable Si as well as the following signature constraint: (VARi = S⇔
Si = 1) ∧ (VARi = T⇔ Si = 2) ∧ (VARi 6= S ∧ VARi 6= T⇔ Si = 3).

VAR <>S and VAR <>Ti i

t

VAR =Si

s

$

Figure 4.239: Automaton of the int value precede constraint

Algorithm A filtering algorithm for maintaining value precedence is presented in [121]. Its complexity
is linear to the number of variables of the collection VARIABLES.

See also int value precede chain, set value precede.

Key words order constraint, symmetry, indistinguishable values, value precedence,
Berge-acyclic constraint network, automaton, automaton without counters.

20041003 557

Q =tn

VAR
1

VAR
2

VAR
n

Q1Q =s0

Figure 4.240: Hypergraph of the reformulation corresponding to the automaton of the
int value precede constraint

558 AUTOMATON

4.108 int value precede chain

Origin [121]

Constraint int value precede chain(VALUES, VARIABLES)

Argument(s) VALUES : collection(val − int)
VARIABLES : collection(var − dvar)

Restriction(s) required(VALUES, val)
distinct(VALUES, val)
required(VARIABLES, var)

Purpose

Assuming n denotes the number of items of the VALUES collection, the following condition
holds for every i ∈ [1, n − 1]: When it exists, the first occurrence of the (i+ 1)th value of the
VALUES collection should be preceded by the first occurrence of the ith value of the VALUES

collection.

Example int value precede chain

0
BBBBBB@

{val − 4, val − 0, val − 1},8
>>>><
>>>>:

var − 4,
var − 0,
var − 6,
var − 1,
var − 0

9
>>>>=
>>>>;

1
CCCCCCA

The int value precede chain constraint holds since:

• The first occurrence of value 4 occurs before the first occurrence of value 0.

• The first occurrence of value 0 occurs before the first occurrence of value 1.

Automaton Figure 4.241 depicts the automaton associated to the int value precede chain con-
straint. Let VARi be the ith variable of the VARIABLES collection. Let VALj (1 <
j < |VALUES|) denotes the jth value of the VALUES collection. To each variable
VARi corresponds a signature variable Si as well as the following signature constraint:
(VARi /∈ VALUES ⇔ Si = 0) ∧ (VARi = VAL1 ⇔ Si = 1) ∧ (VARi = VAL2 ⇔ Si =
2) ∧ · · · ∧ (VARi = VAL|VALUES| ⇔ Si = |VALUES|).

Algorithm The reformulation associated to the previous automaton achieves to arc-consistency.

See also int value precede.

Key words order constraint, symmetry, indistinguishable values, value precedence,
Berge-acyclic constraint network, automaton, automaton without counters.

20041003 559

not_in(VAR ,VALUES) i

not_in(VAR ,VALUES) i

not_in(VAR ,VALUES) i

not_in(VAR ,VALUES) i

VAR =vali 1

VAR =vali 2

VAR =vali 3

VAR =vali n−1

VAR =val or ... or VAR = vali 1 i n−2

VAR =vali 1

VAR =val or VAR =vali 1 i 2

$

$

s

1

t

$

n−2

$

2

Figure 4.241: Automaton of the int value precede chain constraint

Q =tn

VAR
1

VAR
2

VAR
n

Q1Q =s0

Figure 4.242: Hypergraph of the reformulation corresponding to the automaton of the
int value precede chain constraint

560 PRODUCT , SUCC

4.109 interval and count

Origin [122]

Constraint interval and count(ATMOST, COLOURS, TASKS, SIZE INTERVAL)

Argument(s) ATMOST : int

COLOURS : collection(val− int)
TASKS : collection(origin − dvar, colour − dvar)
SIZE INTERVAL : int

Restriction(s) ATMOST ≥ 0
required(COLOURS, val)
distinct(COLOURS, val)
required(TASKS, [origin, colour])
SIZE INTERVAL > 0

Purpose

First consider the set of tasks of the TASKS collection, where each task has a specific colour
which may not be initially fixed. Then consider the intervals of the form [k ·SIZE INTERVAL, k ·
SIZE INTERVAL + SIZE INTERVAL − 1], where k is an integer. The interval and count

constraint enforces that, for each interval Ik previously defined, the total number of tasks which
both are assigned to Ik and take their colour in COLOURS does not exceed the limit ATMOST.

Arc input(s) TASKS TASKS

Arc generator PRODUCT 7→ collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) tasks1.origin/SIZE INTERVAL = tasks2.origin/SIZE INTERVAL

Sets

SUCC 7→2
4

source,

variables − col

„
VARIABLES − collection(var− dvar),
[item(var− TASKS.colour)]

«
3
5

Constraint(s) on sets among low up(0, ATMOST, variables, COLOURS)

Example interval and count

0
BBBB@

2, {val − 4},8
>><
>>:

origin − 1 colour − 4,
origin − 0 colour − 9,
origin − 10 colour − 4,
origin − 4 colour − 4

9
>>=
>>;
, 5

1
CCCCA

Figure 4.243 shows the solution associated to the previous example. The constraint
interval and count holds since, for each interval, the number of tasks taking colour 4
does not exceed the limit 2. Parts (A) and (B) of Figure 4.244 respectively show the initial
and final graph. Each connected component of the final graph corresponds to items which
are all assigned to the same interval.

20000128 561

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

<>4

=4
<3

1

4

2

3

Figure 4.243: Solution with the use of each interval

TASKS

TASKS

1

1234

234

TASKS

TASKS

1:1,4

1:1,4 2:0,94:4,4

2:0,93:10,4

3:10,4

4:4,4

(A) (B)

Figure 4.244: Initial and final graph of the interval and count constraint

562 PRODUCT , SUCC

Graph model We use a bipartite graph where each class of vertices corresponds to the different tasks of
the TASKS collection. There is an arc between two tasks if their origins belong to the same
interval. Finally we enforce an among low up constraint on each set S of successors of the
different vertices of the final graph. This put a restriction on the maximum number of tasks
of S for which the colour attribute takes its value in COLOURS.

Automaton Figure 4.245 depicts the automaton associated to the interval and count constraint.
Let COLOURi be the colour attribute of the ith item of the TASKS collection. To each pair
(COLOURS, COLOURi) corresponds a signature variable Si as well as the following signature
constraint: COLOURi ∈ COLOURS⇔ Si.

{C[ORIGIN /SIZE_INTERVAL]=C[ORIGIN /SIZE_INTERVAL]+1}i i

in(COLOUR ,COLOURS),inot_in(COLOUR ,COLOURS) i

$

arith(C,<=,ATMOST)
t:

{C[_]=0}

s

Figure 4.245: Automaton of the interval and count constraint

Usage This constraint was originally proposed for dealing with timetabling problems. In this
context the different intervals are interpreted as morning and afternoon periods of different
consecutives days. Each colour corresponds to a type of course (i.e. French, mathematics).
There is a restriction on the maximum number of courses of a given type each morning as
well as each afternoon.

Remark If we want to only consider intervals that correspond to the morning or to the afternoon we
could extend the interval and count constraint in the following way:

• We introduce two extra parameters REST and QUOTIENT that correspond to non-
negative integers such that REST is strictly less than QUOTIENT,

• We add the following condition to the arc constraint:
(tasks1.origin/SIZE INTERVAL) ≡ REST(mod QUOTIENT)

Now, if we want to express a constraint on the morning intervals, we set REST to 0 and
QUOTIENT to 2.

See also count, among low up.

Key words timetabling constraint, resource constraint, temporal constraint, assignment, interval,
coloured, automaton, automaton with array of counters.

20000128 563

564 PRODUCT , SUCC

4.110 interval and sum

Origin Derived from cumulative.

Constraint interval and sum(SIZE INTERVAL, TASKS, LIMIT)

Argument(s) SIZE INTERVAL : int

TASKS : collection(origin − dvar, height − dvar)
LIMIT : int

Restriction(s) SIZE INTERVAL > 0
required(TASKS, [origin, height])
TASKS.height ≥ 0
LIMIT ≥ 0

Purpose

A maximum resource capacity constraint: We have to fix the origins of a collection of tasks
in such a way that, for all the tasks that are allocated to the same interval, the sum of the
heights does not exceed a given capacity. All the intervals we consider have the following form:
[k · SIZE INTERVAL, k · SIZE INTERVAL + SIZE INTERVAL − 1], where k is an integer.

Arc input(s) TASKS TASKS

Arc generator PRODUCT 7→ collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) tasks1.origin/SIZE INTERVAL = tasks2.origin/SIZE INTERVAL

Sets

SUCC 7→2
4

source,

variables − col

„
VARIABLES − collection(var− dvar),
[item(var− TASKS.height)]

«
3
5

Constraint(s) on sets sum ctr(variables,≤, LIMIT)

Example interval and sum

0
BB@ 5,

8
>><
>>:

origin − 1 height − 2,
origin − 10 height − 2,
origin − 10 height − 3,
origin − 4 height − 1

9
>>=
>>;
, 5

1
CCA

Figure 4.246 shows the solution associated to the previous example. The constraint
interval and sum holds since the sum of the heights of the tasks that are located in
the same interval does not exceed the limit 5. Each task t is depicted by a rectangle
r associated to the interval to which the task t is assigned. The rectangle r is labelled
with the position of t within the items of the TASKS collection. The origin of task t is
represented by a small black square located within its corresponding rectangle r. Finally,
the height of a rectangle r is equal to the height of the task t to which it corresponds.

Parts (A) and (B) of Figure 4.247 respectively show the initial and final graph. Each con-
nected component of the final graph corresponds to items which are all assigned to the
same interval.

20000128 565

1
2
3
4
5

1 2 3 4 5 6 7 8 9 10 11 12 13 140

<6

1

2

3

4

Figure 4.246: Solution showing for each interval the corresponding tasks

TASKS

TASKS

1

1234

234

TASKS

TASKS

1:1,2

1:1,24:4,1

2:10,2

2:10,2 3:10,3

3:10,3 4:4,1

(A) (B)

Figure 4.247: Initial and final graph of the interval and sum constraint

566 PRODUCT , SUCC

Graph model We use a bipartite graph where each class of vertices corresponds to the different tasks
of the TASKS collection. There is an arc between two tasks if their origins belong to the
same interval. Finally we enforce a sum ctr constraint on each set S of successors of the
different vertices of the final graph. This put a restriction on the maximum value of the
sum of the height attributes of the tasks of S .

Automaton Figure 4.248 depicts the automaton associated to the interval and sum constraint. To
each item of the collection TASKS corresponds a signature variable Si, which is equal to 1.

{C[ORIGIN /SIZE_INTERVAL]=C[ORIGIN /SIZE_INTERVAL]+HEIGHT }i i i

1,

$

arith(C,<=,LIMIT)

t:

s

{C[_]=0}

Figure 4.248: Automaton of the interval and sum constraint

Usage This constraint can be use for timetabling problems. In this context the different intervals
are interpreted as morning and afternoon periods of different consecutive days. We have
a capacity constraint for all tasks that are assigned to the same morning or afternoon of a
given day.

Key words timetabling constraint, resource constraint, temporal constraint, assignment, interval,
automaton, automaton with array of counters.

20000128 567

568 NARC,CLIQUE

4.111 inverse

Origin CHIP

Constraint inverse(NODES)

Synonym(s) assignment.

Argument(s) NODES : collection(index − int, succ − dvar, pred − dvar)

Restriction(s) required(NODES, [index, succ, pred])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|
NODES.pred ≥ 1
NODES.pred ≤ |NODES|

Purpose
Enforce each vertex of a digraph to have exactly one predecessor and one successor. In addition
the following property also holds: If the successor of the ith node is the jth node then the
predecessor of the jth node is the ith node.

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) • nodes1.succ = nodes2.index
• nodes2.pred = nodes1.index

Graph property(ies) NARC = |NODES|

Example inverse

0
BBBB@

8
>>>><
>>>>:

index − 1 succ − 2 pred − 2,
index − 2 succ − 1 pred − 1,
index − 3 succ − 5 pred − 4,
index − 4 succ − 3 pred − 5,
index − 5 succ − 4 pred − 3

9
>>>>=
>>>>;

1
CCCCA

Parts (A) and (B) of Figure 4.249 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Graph model In order to express the binary constraint that links two vertices one has to make explicit the
identifier of the vertices. This is why the inverse constraint considers objects that have
three attributes:

• One fixed attribute index that is the identifier of the vertex,

• One variable attribute succ that is the successor of the vertex,

20000128 569

• One variable attribute pred that is the predecessor of the vertex.

Signature Since all the index attributes of the NODES collection are distinct and because of the first
condition nodes1.succ = nodes2.index of the arc constraint all the vertices of the final
graph have at most one predecessor.

Since all the index attributes of the NODES collection are distinct and because of the second
condition nodes2.pred = nodes1.index of the arc constraint all the vertices of the final
graph have at most one successor.

From the two previous remarks it follows that the final graph is made up from disjoint
paths and disjoint circuits. Therefore the maximum number of arcs of the final graph is
equal to its maximum number of vertices NODES. So we can rewrite the graph property
NARC = |NODES| to NARC ≥ |NODES| and simplify NARC to NARC.

Automaton Figure 4.250 depicts the automaton associated to the inverse constraint. To each item of
the collection NODES corresponds a signature variable Si, which is equal to 1.

Usage This constraint is used in order to make the link between the successor and the predeces-
sor variables. This is sometimes required by specific heuristics that use both predecessor
and successor variables. In some problems, the successor and predecessor variables are
respectively interpreted as column an row variables. This is for instance the case in the
n-queens problem (i.e. place n queens on a n by n chessboard in such a way that no two
queens are on the same row, the same column or the same diagonal) when we use the fol-
lowing model: To each column of the chessboard we associate a variable which gives the
row where the corresponding queen is located. Symmetrically, to each row of the chess-
board we create a variable which indicates the column where the associated queen is placed.
Having these two sets of variables, we can now write a heuristics which selects the column
or the row for which we have the fewest number of alternatives for placing a queen.

Remark In the original inverse constraint of CHIP the index attribute was not explicitly present.
It was implicitly defined as the position of a variable in a list.

See also cycle, inverse set.

Key words graph constraint, channeling constraint, permutation channel, permutation, dual model,
n-queen, automaton, automaton with array of counters.

570 NARC,CLIQUE

NODES

1

2

3

4

5

NARC=5

1:1,2,2

2:2,1,1

3:3,5,4

5:5,4,3

4:4,3,5

(A) (B)

Figure 4.249: Initial and final graph of the inverse constraint

 C[INDEX]=C[INDEX]−PRED } i i i

{C[SUCC]=C[SUCC]+INDEX ,i i i

1,

$

t:
arith(C,=,0)

s

{C[_]=0}

Figure 4.250: Automaton of the inverse constraint

20000128 571

572 NARC,PRODUCT

4.112 inverse set

Origin Derived from inverse.

Constraint inverse set(X, Y)

Argument(s) X : collection(index − int, set − svar)
Y : collection(index − int, set − svar)

Restriction(s) required(X, [index, set])
required(Y, [index, set])
increasing seq(X, index)
increasing seq(Y, index)
X.index ≥ 1
X.index ≤ |Y|
Y.index ≥ 1
Y.index ≤ |X|
X.set ≥ 1
X.set ≤ |Y|
Y.set ≥ 1
Y.set ≤ |X|

Purpose If value j belongs to the x set variable of the ith item of the X collection then value i belongs
also to the y set variable of the jth item of the Y collection.

Arc input(s) X Y

Arc generator PRODUCT 7→ collection(x, y)

Arc arity 2

Arc constraint(s) in set(y.index, x.set)⇔ in set(x.index, y.set)

Graph property(ies) NARC = |X| ∗ |Y|

Example inverse set

0
BBBBBBBBBBBB@

8
>><
>>:

index − 1 set− {2, 4},
index − 2 set− {4},
index − 3 set− {1},
index − 4 set− {4}

9
>>=
>>;
,

8
>>>><
>>>>:

index − 1 set− {3},
index − 2 set− {1},
index − 3 set− ∅,
index − 4 set− {1, 2, 4},
index − 5 set− ∅

9
>>>>=
>>>>;

1
CCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.251 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

20041211 573

Usage The inverse set constraint can for instance be used in order to model problems where
one has to place items on a rectangular board in such a way that a column or a line can
have more than one item. We have one set variable for each line of the board; Its values
are the column indexes corresponding to the positions where an item is placed. Similarly
we have also one set variable for each column of the board; Its values are the line indexes
corresponding to the positions where an item is placed. The inverse set constraint main-
tains the link between the lines and the columns variables. Figure 4.252 shows the board
associated to the example.

See also inverse.

Key words channeling constraint, set channel, dual model, constraint involving set variables.

574 NARC,PRODUCT

X

Y

1

12 345

234

NARC=20

1:1,{2,4}

1:1,{3}2:2,{1} 3:3,{} 4:4,{1,2,4} 5:5,{}

2:2,{4}3:3,{1} 4:4,{4}

(A) (B)

Figure 4.251: Initial and final graph of the inverse set constraint

{}

{}

{1}

{3}

{1,2,4}

{2,4} {4}{1}{4}

1

1

2 3 4

3

4

5

2

Figure 4.252: Board associated to the example

20041211 575

576 AUTOMATON

4.113 ith pos different from 0

Origin Used for defining the automaton of min n.

Constraint ith pos different from 0(ITH, POS, VARIABLES)

Argument(s) ITH : int

POS : dvar

VARIABLES : collection(var − dvar)

Restriction(s) ITH ≥ 1
ITH ≤ |VARIABLES|
POS ≥ ITH

POS ≤ |VARIABLES|
required(VARIABLES, var)

Purpose POS is the position of the ITHth non-zero item of the sequence of variables VARIABLES.

Example ith pos different from 0

0
BBBB@

2, 4,

8
>>>><
>>>>:

var − 3,
var − 0,
var − 0,
var − 8,
var − 6

9
>>>>=
>>>>;

1
CCCCA

The previous constraint holds since 4 corresponds to the position of the 2th non-
zero item of the sequence 3 0 0 8 6.

Automaton Figure 4.253 depicts the automaton associated to the ith pos different from 0 con-
straint. To each variable VARi of the collection VARIABLES corresponds a 0-1 signature
variable Si. The following signature constraint links VARi and Si: VARi = 0⇔ Si.

VAR <>0,i
{if C<ITH then C=C+1,D=D+1}

iVAR =0,

{if C<ITH then D=D+1}

$

t:
ITH=C,POS=D

s

{C=0,D=0}

Figure 4.253: Automaton of the ith pos different from 0 constraint

See also min n.

20040811 577

Key words data constraint, table, joker value, automaton, automaton with counters,
alpha-acyclic constraint network(3).

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0

C1C =00

D =00 D1

Q =tn

C =ITHn

D =POSn

Figure 4.254: Hypergraph of the reformulation corresponding to the automaton of the
ith pos different from 0 constraint

578 NCC,CLIQUE

4.114 k cut

Origin E. Althaus

Constraint k cut(K, NODES)

Argument(s) K : int

NODES : collection(index − int, succ − svar)

Restriction(s) K ≥ 1
K ≤ |NODES|
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)

Purpose Select some arcs of a digraph in order to have at least K connected components (an isolated
vertex is counted as one connected component).

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.index = nodes2.index ∨ in set(nodes2.index, nodes1.succ)

Graph property(ies) NCC ≥ K

Example k cut

0
BBBB@

3,

8
>>>><
>>>>:

index − 1 succ − ∅,
index − 2 succ − {3, 5},
index − 3 succ − {5},
index − 4 succ − ∅,
index − 5 succ − {2, 3}

9
>>>>=
>>>>;

1
CCCCA

Part (A) of Figure 4.255 shows the initial graph from which we have choose to
start. It is derived from the set associated to each vertex. Each set describes the potential
values of the succ attribute of a given vertex. Part (B) of Figure 4.255 gives the final
graph associated to the example. The k cut constraint holds since we have at least K = 3
connected components in the final graph.

Graph model nodes1.index = nodes2.index holds if nodes1 and nodes2 correspond to the same
vertex. It is used in order to enforce keeping all the vertices of the initial graph. This is
because an isolated vertex counts always as one connected component.

See also link set to booleans.

Key words graph constraint, linear programming, connected component,
constraint involving set variables.

20030820 579

NODES

1:1,{2,4}

2:2,{1,3,5}

4:4,{1,5}3:3,{2,5}

5:5,{2,3,4}

NCC=3

CC#1 CC#2 CC#3

1:1,{} 2:2,{3,5}

3:3,{5}

5:5,{2,3}

4:4,{}

(A) (B)

Figure 4.255: Initial and final graph of the k cut set constraint

580 PREDEFINED

4.115 lex2

Origin [123]

Constraint lex2(MATRIX)

Synonym(s) double lex, row and column lex.

Type(s) VECTOR : collection(var− dvar)

Argument(s) MATRIX : collection(vec− VECTOR)

Restriction(s) required(VECTOR, var)
required(MATRIX, vec)
same size(MATRIX, vec)

Purpose Given a matrix of domain variables, enforces that both adjacent rows, and adjacent columns are
lexicographically ordered (adjacent rows and adjacent columns can be equal).

Example lex2

„
vec− {var − 2, var− 2, var− 3},
vec− {var − 2, var− 3, var− 1}

ff «

Usage A symmetry-breaking constraint.

Remark The idea of this symmetry-breaking constraint can allready be found in the following arti-
cles of A.Lubiw [124, 125].

In block designs you sometimes want repeated blocks, so using the non-strict order would
be required in this case.

See also strict lex2, allperm, lex lesseq, lex chain lesseq.

Key words predefined constraint, order constraint, matrix, matrix model, symmetry, matrix symmetry,
lexicographic order.

20031008 581

582 NARC,CLIQUE (<)

4.116 lex alldifferent

Origin J. Pearson

Constraint lex alldifferent(VECTORS)

Synonym(s) lex alldiff, lex alldistinct.

Type(s) VECTOR : collection(var− dvar)

Argument(s) VECTORS : collection(vec− VECTOR)

Restriction(s) required(VECTOR, var)
required(VECTORS, vec)
same size(VECTORS, vec)

Purpose All the vectors of the collection VECTORS are distinct. Two vectors (u1, u2, . . . , un) and
(v1, v2, . . . , vn) are distinct if and only if there exist i ∈ [1, n] such that ui 6= vi.

Arc input(s) VECTORS

Arc generator CLIQUE(<) 7→ collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) lex different(vectors1.vec, vectors2.vec)

Graph property(ies) NARC = |VECTORS| ∗ (|VECTORS| − 1)/2

Example lex alldifferent

0
@
8
<
:

vec − {var − 5, var − 2, var − 3},
vec − {var − 5, var − 2, var − 6},
vec − {var − 5, var − 3, var − 3}

9
=
;

1
A

Parts (A) and (B) of Figure 4.256 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Signature Since we use the CLIQUE (<) arc generator on the VECTORS collection the number of arcs
of the initial graph is equal to |VECTORS|·(|VECTORS|−1)/2. For this reason we can rewrite
NARC = |VECTORS| · (|VECTORS|− 1)/2 to NARC ≥ |VECTORS| · (|VECTORS|− 1)/2
and simplify NARC to NARC.

See also alldifferent, lex different.

Key words decomposition, vector, bipartite matching.

20030820 583

VECTORS

1

2

3

NARC=3

1:5
 2
 3

2:5
 2
 6

3:5
 3
 3

(A) (B)

Figure 4.256: Initial and final graph of the lex alldifferent constraint

584 AUTOMATON

4.117 lex between

Origin [126]

Constraint lex between(LOWER BOUND, VECTOR, UPPER BOUND)

Argument(s) LOWER BOUND : collection(var − int)
VECTOR : collection(var − dvar)
UPPER BOUND : collection(var − int)

Restriction(s) required(LOWER BOUND, var)
required(VECTOR, var)
required(UPPER BOUND, var)
|LOWER BOUND| = |VECTOR|
|UPPER BOUND| = |VECTOR|
lex lesseq(LOWER BOUND, VECTOR)
lex lesseq(VECTOR, UPPER BOUND)

Purpose The vector VECTOR is lexicographically greater than or equal to the fixed vector LOWER BOUND

and lexicographically smaller than or equal to the fixed vector UPPER BOUND.

Example lex between

0
@
{var − 5, var − 2, var − 3, var − 9},
{var − 5, var − 2, var − 6, var − 2},
{var − 5, var − 2, var − 6, var − 3}

1
A

Automaton Figure 4.257 depicts the automaton associated to the lex between constraint. Let Li, Vi
and Ui respectively be the var attributes of the ith items of the LOWER BOUND, the VECTOR
and the UPPER BOUND collections. To each triple (Li, Vi, Ui) corresponds a signature vari-
able Si as well as the following signature constraint:

(Li < Vi) ∧ (Vi < Ui)⇔ Si = 0 ∧
(Li < Vi) ∧ (Vi = Ui)⇔ Si = 1 ∧
(Li < Vi) ∧ (Vi > Ui)⇔ Si = 2 ∧
(Li = Vi) ∧ (Vi < Ui)⇔ Si = 3 ∧
(Li = Vi) ∧ (Vi = Ui)⇔ Si = 4 ∧
(Li = Vi) ∧ (Vi > Ui)⇔ Si = 5 ∧
(Li > Vi) ∧ (Vi < Ui)⇔ Si = 6 ∧
(Li > Vi) ∧ (Vi = Ui)⇔ Si = 7 ∧
(Li > Vi) ∧ (Vi > Ui)⇔ Si = 8.

Usage This constraint does usually not occur explicitly in practice. However it shows up indirectly
in the context of the lex chain less and the lex chain lesseq constraints: In order to
have a complete filtering algorithm for the lex chain less and the lex chain lesseq

constraints one has to come up with a complete filtering algorithm for the lex between

20030820 585

L =V and V =Ui iii

L <V and V <Ui iii

L =V and V <Ui iii

L <V and V =Ui iii

L <V and V =Ui iii
L =V and V =Ui iii
L >V and V =Ui iii

L =V and V =Ui iii

L <V and V >Ui iii

L <V and V <Ui iii
L <V and V =Ui iii

L =V and V >Ui iii

s

a

t

$

$

b

$

L <V and V <U

L =V and V <Ui iii

L >V and V <U

L =V and V <U
i i i i

i i i i

i i i i

Figure 4.257: Automaton of the lex between constraint

Q =tn
Q1Q =s0

 S
1

 S
2 S

n

 V
1

 V
2 V

n

Figure 4.258: Hypergraph of the reformulation corresponding to the automaton of the
lex between constraint

586 AUTOMATON

constraint. The reason is that the lex chain less as well as the lex chain lesseq con-
straints both compute feasible lower and upper bounds for each vector they mention. There-
fore one ends up with a lex between constraint for each vector of the lex chain less

and lex chain lesseq constraints.

Algorithm [126].

See also lex less, lex lesseq, lex greater, lex greatereq, lex chain less,
lex chain lesseq.

Key words order constraint, vector, symmetry, lexicographic order, Berge-acyclic constraint network,
automaton, automaton without counters.

20030820 587

588 NARC,PATH

4.118 lex chain less

Origin [126]

Constraint lex chain less(VECTORS)

Usual name lex chain

Type(s) VECTOR : collection(var− dvar)

Argument(s) VECTORS : collection(vec− VECTOR)

Restriction(s) required(VECTOR, var)
required(VECTORS, vec)
same size(VECTORS, vec)

Purpose

For each pair of consecutive vectors VECTORi and VECTORi+1 of the VECTORS collection we
have that VECTORi is lexicographically strictly less than VECTORi+1. Given two vectors, ~X and
~Y of n components, 〈X0, . . . , Xn〉 and 〈Y0, . . . , Yn〉, ~X is lexicographically strictly less than
~Y if and only if X0 < Y0 or X0 = Y0 and 〈X1, . . . , Xn〉 is lexicographically strictly less than
〈Y1, . . . , Yn〉.

Arc input(s) VECTORS

Arc generator PATH 7→ collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) lex less(vectors1.vec, vectors2.vec)

Graph property(ies) NARC = |VECTORS| − 1

Example lex chain less

0
BBBBBBBBBBBBBBBBBB@

8
>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

vec−

8
>><
>>:

var − 5,
var − 2,
var − 3,
var − 9

9
>>=
>>;
,

vec−

8
>><
>>:

var − 5,
var − 2,
var − 6,
var − 2

9
>>=
>>;
,

vec−

8
>><
>>:

var − 5,
var − 2,
var − 6,
var − 3

9
>>=
>>;

9
>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

1
CCCCCCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.259 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in bold.
The lex chain less constraint holds since all the arc constraints of the initial graph are
satisfied.

20030820 589

Signature Since we use the PATH arc generator on the VECTORS collection the number of arcs of
the initial graph is equal to |VECTORS| − 1. For this reason we can rewrite NARC =
|VECTORS| − 1 to NARC ≥ |VECTORS| − 1 and simplify NARC to NARC.

Usage This constraint was motivated for breaking symmetry: More precisely when one wants
to lexicographically order the consecutive columns of a matrix of decision variables. A
further motivation is that using a set of lexicographic ordering constraints between two
vectors does usually not allows to come up with a complete pruning.

Algorithm A complete filtering algorithm for a chain of lexicographical constraints is presented
in [126].

See also lex between, lex chain lesseq, lex less, lex lesseq, lex greater,
lex greatereq.

Key words decomposition, order constraint, vector, symmetry, matrix symmetry, lexicographic order.

590 NARC,PATH

VECTORS

1

2

3

NARC=2

1:5
 2
 3
 9

2:5
 2
 6
 2

3:5
 2
 6
 3

(A) (B)

Figure 4.259: Initial and final graph of the lex chain less constraint

20030820 591

592 NARC,PATH

4.119 lex chain lesseq

Origin [126]

Constraint lex chain lesseq(VECTORS)

Usual name lex chain

Type(s) VECTOR : collection(var− dvar)

Argument(s) VECTORS : collection(vec− VECTOR)

Restriction(s) required(VECTOR, var)
required(VECTORS, vec)
same size(VECTORS, vec)

Purpose

For each pair of consecutive vectors VECTORi and VECTORi+1 of the VECTORS collection we
have that VECTORi is lexicographically less than or equal to VECTORi+1. Given two vectors, ~X
and ~Y of n components, 〈X0, . . . , Xn〉 and 〈Y0, . . . , Yn〉, ~X is lexicographically less than or
equal to ~Y if and only if n = 0 orX0 < Y0 orX0 = Y0 and 〈X1, . . . , Xn〉 is lexicographically
less than or equal to 〈Y1, . . . , Yn〉.

Arc input(s) VECTORS

Arc generator PATH 7→ collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) lex lesseq(vectors1.vec, vectors2.vec)

Graph property(ies) NARC = |VECTORS| − 1

Example lex chain lesseq

0
BBBBBBBBBBBBBBBBBB@

8
>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

vec −

8
>><
>>:

var − 5,
var − 2,
var − 3,
var − 9

9
>>=
>>;
,

vec −

8
>><
>>:

var − 5,
var − 2,
var − 6,
var − 2

9
>>=
>>;
,

vec −

8
>><
>>:

var − 5,
var − 2,
var − 6,
var − 2

9
>>=
>>;

9
>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

1
CCCCCCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.260 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in bold.
The lex chain lesseq constraint holds since all the arc constraints of the initial graph
are satisfied.

20030820 593

Signature Since we use the PATH arc generator on the VECTORS collection the number of arcs of
the initial graph is equal to |VECTORS| − 1. For this reason we can rewrite NARC =
|VECTORS| − 1 to NARC ≥ |VECTORS| − 1 and simplify NARC to NARC.

Usage This constraint was motivated for breaking symmetry: More precisely when one wants
to lexicographically order the consecutive columns of a matrix of decision variables. A
further motivation is that using a set of lexicographic ordering constraints between two
vectors does usually not allows to come up with a complete pruning.

Algorithm A complete filtering algorithm for a chain of lexicographical constraints is presented
in [126].

See also lex between, lex chain less, lex less, lex lesseq, lex greater,
lex greatereq.

Key words decomposition, order constraint, vector, symmetry, matrix symmetry, lexicographic order.

594 NARC,PATH

VECTORS

1

2

3

NARC=2

1:5
 2
 3
 9

2:5
 2
 6
 2

3:5
 2
 6
 2

(A) (B)

Figure 4.260: Initial and final graph of the lex chain lesseq constraint

20030820 595

596 NARC,PRODUCT (=)

4.120 lex different

Origin Used for defining lex alldifferent.

Constraint lex different(VECTOR1, VECTOR2)

Argument(s) VECTOR1 : collection(var− dvar)
VECTOR2 : collection(var− dvar)

Restriction(s) required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| = |VECTOR2|

Purpose Vectors VECTOR1 and VECTOR2 differ from at least one component.

Arc input(s) VECTOR1 VECTOR2

Arc generator PRODUCT (=) 7→ collection(vector1, vector2)

Arc arity 2

Arc constraint(s) vector1.var 6= vector2.var

Graph property(ies) NARC ≥ 1

Example lex different

„
{var − 5, var− 2, var − 7, var − 1},
{var − 5, var− 3, var − 7, var − 1}

«

Parts (A) and (B) of Figure 4.261 respectively show the initial and final graph.
Since we use the NARC graph property, the unique arc of the final graph is stressed in
bold. It corresponds to a component where the two vectors differ.

Automaton Figure 4.262 depicts the automaton associated to the lex different constraint. Let VAR1i
and VAR2i respectively be the var attributes of the ith items of the VECTOR1 and the
VECTOR2 collections. To each pair (VAR1i, VAR2i) corresponds a 0-1 signature variable
Si as well as the following signature constraint: VAR1i = VAR2i ⇔ Si.

Used in lex alldifferent.

See also lex greatereq, lex less, lex lesseq.

Key words vector, disequality, Berge-acyclic constraint network, automaton,
automaton without counters.

20030820 597

VECTOR1

VECTOR2

1

1

2

2

3

3

4

4

NARC=1

2:2

2:3

(A) (B)

Figure 4.261: Initial and final graph of the lex different constraint

s

t

VAR1 = VAR2

VAR1 <>VAR2i

i i

i

Figure 4.262: Automaton of the lex different constraint

Q =tn

VAR2
 1

VAR2
 2

VAR2
 n

VAR1
 1

VAR1
 2

VAR1
 n

Q1Q =s0

S1 S2 Sn

Figure 4.263: Hypergraph of the reformulation corresponding to the automaton of the
lex different constraint

598 PATH FROM TO,PRODUCT (PATH ,VOID)

4.121 lex greater

Origin CHIP

Constraint lex greater(VECTOR1, VECTOR2)

Argument(s) VECTOR1 : collection(var− dvar)
VECTOR2 : collection(var− dvar)

Restriction(s) required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| = |VECTOR2|

Purpose

VECTOR1 is lexicographically strictly greater than VECTOR2. Given two vectors, ~X and ~Y of n
components, 〈X0, . . . , Xn〉 and 〈Y0, . . . , Yn〉, ~X is lexicographically strictly greater than ~Y if
and only if X0 > Y0 or X0 = Y0 and 〈X1, . . . , Xn〉 is lexicographically strictly greater than
〈Y1, . . . , Yn〉.

Derived Collection(s) col

„
DESTINATION − collection(index − int, x− int, y − int),
[item(index − 0, x− 0, y− 0)]

«

col

„
COMPONENTS − collection(index − int, x − dvar, y − dvar),
[item(index − VECTOR1.key, x− VECTOR1.var, y− VECTOR2.var)]

«

Arc input(s) COMPONENTS DESTINATION

Arc generator PRODUCT (PATH ,VOID) 7→ collection(item1, item2)

Arc arity 2

Arc constraint(s) item2.index > 0 ∧ item1.x = item1.y ∨ item2.index = 0 ∧ item1.x > item1.y

Graph property(ies) PATH FROM TO(index, 1, 0) = 1

Example lex greater

„
{var − 5, var − 2, var − 7, var − 1},
{var − 5, var − 2, var − 6, var − 2}

«

Parts (A) and (B) of Figure 4.264 respectively show the initial and final graph. Since we
use the PATH FROM TO graph property we show the following information on the
final graph:

• The vertices which respectively correspond to the start and the end of the required
path are stressed in bold.

• The arcs on the required path are also stressed in bold.

Graph model The vertices of the initial graph are generated in the following way:

• We create a vertex ci for each pair of components which both have the same index i.

• We create an additional dummy vertex called d.

20030820 599

The arcs of the initial graph are generated in the following way:

• We create an arc between ci and d. We associate to this arc the arc constraint
item1.x > item2.y.

• We create an arc between ci and ci+1. We associate to this arc the arc constraint
item1.x = item2.y.

The lex greater constraint holds when there exist a path from c1 to d. This path can be
interpreted as a sequence of equality constraints on the prefix of both vectors, immediatly
followed by a greater than constraint.

Signature Since the maximum value returned by the graph property PATH FROM TO
is equal to 1 we can rewrite PATH FROM TO(index, 1, 0) = 1 to
PATH FROM TO(index, 1, 0) ≥ 1. Therefore we simplify PATH FROM TO
to PATH FROM TO.

Automaton Figure 4.265 depicts the automaton associated to the lex greater constraint. Let VAR1i
and VAR2i respectively be the var attributes of the ith items of the VECTOR1 and the
VECTOR2 collections. To each pair (VAR1i, VAR2i) corresponds a signature variable Si
as well as the following signature constraint: (VAR1i < VAR2i ⇔ Si = 1) ∧ (VAR1i =
VAR2i ⇔ Si = 2) ∧ (VAR1i > VAR2i ⇔ Si = 3).

Remark A multiset ordering constraint and its corresponding filtering algorithm are described
in [127].

Algorithm The first complete filtering algorithm for this constraint was presented in [36]. A second
complete filtering algorithm, detecting entailment in a more eager way, was given in [128].
This second algorithm was derived from a deterministic finite automata. A third complete
filtering algorithm extending the algorithm presented in [36] detecting entailment is given
in the PhD thesis of Z.Kızıltan [129, page 95]. The previous thesis [129, pages 105–109]
presents also a filtering algorithm handling the fact that a given variable has more than one
occurrence.

See also lex between, lex greatereq, lex less, lex lesseq, lex chain less,
lex chain lesseq.

Key words order constraint, vector, symmetry, matrix symmetry, lexicographic order,
multiset ordering, duplicated variables, Berge-acyclic constraint network, automaton,
automaton without counters, derived collection.

600 PATH FROM TO,PRODUCT (PATH ,VOID)

COMPONENTS

DESTINATION

1

2

1

3

4

PATH_FROM_TO(index,1,0)=1

COMPONENTS

DESTINATION

1:1,5,5

2:2,2,2

3:3,7,6

1:0,0,0

(A) (B)

Figure 4.264: Initial and final graph of the lex greater constraint

VAR1 > VAR2i i

s

t

VAR1 =VAR2i i

Figure 4.265: Automaton of the lex greater constraint

Q =tn

VAR2
 1

VAR2
 2

VAR2
 n

VAR1
 1

VAR1
 2

VAR1
 n

Q1Q =s0

S1 S2 Sn

Figure 4.266: Hypergraph of the reformulation corresponding to the automaton of the
lex greater constraint

20030820 601

602 PATH FROM TO,PRODUCT (PATH ,VOID)

4.122 lex greatereq

Origin CHIP

Constraint lex greatereq(VECTOR1, VECTOR2)

Argument(s) VECTOR1 : collection(var− dvar)
VECTOR2 : collection(var− dvar)

Restriction(s) required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| = |VECTOR2|

Purpose

VECTOR1 is lexicographically greater than or equal to VECTOR2. Given two vectors, ~X and ~Y of
n components, 〈X0, . . . , Xn〉 and 〈Y0, . . . , Yn〉, ~X is lexicographically greater than or equal
to ~Y if and only if n = 0 or X0 > Y0 or X0 = Y0 and 〈X1, . . . , Xn〉 is lexicographically
greater than or equal to 〈Y1, . . . , Yn〉.

Derived Collection(s) col

„
DESTINATION − collection(index − int, x− int, y − int),
[item(index − 0, x− 0, y− 0)]

«

col

„
COMPONENTS − collection(index − int, x − dvar, y − dvar),
[item(index − VECTOR1.key, x− VECTOR1.var, y− VECTOR2.var)]

«

Arc input(s) COMPONENTS DESTINATION

Arc generator PRODUCT (PATH ,VOID) 7→ collection(item1, item2)

Arc arity 2

Arc constraint(s)
W
0
@

item2.index > 0 ∧ item1.x = item1.y,
item1.index < |VECTOR1| ∧ item2.index = 0 ∧ item1.x > item1.y,
item1.index = |VECTOR1| ∧ item2.index = 0 ∧ item1.x ≥ item1.y

1
A

Graph property(ies) PATH FROM TO(index, 1, 0) = 1

Example lex greatereq

„
{var − 5, var− 2, var − 8, var − 9},
{var − 5, var− 2, var − 6, var − 2}

«

lex greatereq

„
{var − 5, var− 2, var − 3, var − 9},
{var − 5, var− 2, var − 3, var − 9}

«

Parts (A) and (B) of Figure 4.267 respectively show the initial and final graph asso-
ciated to the first example. Since we use the PATH FROM TO graph property we
show on the final graph the following information:

• The vertices which respectively correspond to the start and the end of the required
path are stressed in bold.

• The arcs on the required path are also stressed in bold.

20030820 603

Graph model The vertices of the initial graph are generated in the following way:

• We create a vertex ci for each pair of components which both have the same index i.

• We create an additional dummy vertex called d.

The arcs of the initial graph are generated in the following way:

• We create an arc between ci and d. When ci was generated from the last components
of both vectors We associate to this arc the arc constraint item1.x ≥ item2.y;
Otherwise we associate to this arc the arc constraint item1.x > item2.y;

• We create an arc between ci and ci+1. We associate to this arc the arc constraint
item1.x = item2.y.

The lex greatereq constraint holds when there exist a path from c1 to d. This path can
be interpreted as a maximum sequence of equality constraints on the prefix of both vectors,
eventually followed by a greater than constraint.

Signature Since the maximum value returned by the graph property PATH FROM TO
is equal to 1 we can rewrite PATH FROM TO(index, 1, 0) = 1 to
PATH FROM TO(index, 1, 0) ≥ 1. Therefore we simplify PATH FROM TO
to PATH FROM TO.

Automaton Figure 4.268 depicts the automaton associated to the lex greatereq constraint. Let
VAR1i and VAR2i respectively be the var attributes of the ith items of the VECTOR1 and
the VECTOR2 collections. To each pair (VAR1i, VAR2i) corresponds a signature variable Si
as well as the following signature constraint: (VAR1i < VAR2i ⇔ Si = 1) ∧ (VAR1i =
VAR2i ⇔ Si = 2) ∧ (VAR1i > VAR2i ⇔ Si = 3).

Remark A multiset ordering constraint and its corresponding filtering algorithm are described
in [127].

Algorithm The first complete filtering algorithm for this constraint was presented in [36]. A second
complete filtering algorithm, detecting entailment in a more eager way, was given in [128].
This second algorithm was derived from a deterministic finite automata. A third complete
filtering algorithm extending the algorithm presented in [36] detecting entailment is given
in the PhD thesis of Z.Kızıltan [129, page 95]. The previous thesis [129, pages 105–109]
presents also a filtering algorithm handling the fact that a given variable has more than one
occurrence.

See also lex between, lex greater, lex less, lex lesseq, lex chain less,
lex chain lesseq.

Key words order constraint, vector, symmetry, matrix symmetry, lexicographic order,
multiset ordering, duplicated variables, Berge-acyclic constraint network, automaton,
automaton without counters, derived collection.

604 PATH FROM TO,PRODUCT (PATH ,VOID)

COMPONENTS

DESTINATION

1

2

1

3

4

PATH_FROM_TO(index,1,0)=1

COMPONENTS

DESTINATION

1:1,5,5

2:2,2,2

3:3,8,6

1:0,0,0

4:4,9,2

(A) (B)

Figure 4.267: Initial and final graph of the lex greatereq constraint

s

t

VAR1 =VAR2

i i

i i

$VAR1 > VAR2

Figure 4.268: Automaton of the lex greatereq constraint

Q =tn

VAR2
 1

VAR2
 2

VAR2
 n

VAR1
 1

VAR1
 2

VAR1
 n

Q1Q =s0

S1 S2 Sn

Figure 4.269: Hypergraph of the reformulation corresponding to the automaton of the
lex greatereq constraint

20030820 605

606 PATH FROM TO,PRODUCT (PATH ,VOID)

4.123 lex less

Origin CHIP

Constraint lex less(VECTOR1, VECTOR2)

Argument(s) VECTOR1 : collection(var− dvar)
VECTOR2 : collection(var− dvar)

Restriction(s) required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| = |VECTOR2|

Purpose

VECTOR1 is lexicographically strictly less than VECTOR2. Given two vectors, ~X and ~Y of n
components, 〈X0, . . . , Xn〉 and 〈Y0, . . . , Yn〉, ~X is lexicographically strictly less than ~Y if
and only if X0 < Y0 or X0 = Y0 and 〈X1, . . . , Xn〉 is lexicographically strictly less than
〈Y1, . . . , Yn〉.

Derived Collection(s) col

„
DESTINATION − collection(index − int, x− int, y − int),
[item(index − 0, x− 0, y− 0)]

«

col

„
COMPONENTS − collection(index − int, x − dvar, y − dvar),
[item(index − VECTOR1.key, x− VECTOR1.var, y− VECTOR2.var)]

«

Arc input(s) COMPONENTS DESTINATION

Arc generator PRODUCT (PATH ,VOID) 7→ collection(item1, item2)

Arc arity 2

Arc constraint(s) item2.index > 0 ∧ item1.x = item1.y ∨ item2.index = 0 ∧ item1.x < item1.y

Graph property(ies) PATH FROM TO(index, 1, 0) = 1

Example lex less

„
{var − 5, var− 2, var− 3, var− 9},
{var − 5, var− 2, var− 6, var− 2}

«

Parts (A) and (B) of Figure 4.270 respectively show the initial and final graph.
Since we use the PATH FROM TO graph property we show on the final graph the
following information:

• The vertices which respectively correspond to the start and the end of the required
path are stressed in bold.

• The arcs on the required path are also stressed in bold.

Graph model The vertices of the initial graph are generated in the following way:

• We create a vertex ci for each pair of components which both have the same index i.

• We create an additional dummy vertex called d.

20030820 607

The arcs of the initial graph are generated in the following way:

• We create an arc between ci and d. We associate to this arc the arc constraint
item1.x < item2.y.

• We create an arc between ci and ci+1. We associate to this arc the arc constraint
item1.x = item2.y.

The lex less constraint holds when there exist a path from c1 to d. This path can be
interpreted as a sequence of equality constraints on the prefix of both vectors, immediately
followed by a less than constraint.

Signature Since the maximum value returned by the graph property PATH FROM TO
is equal to 1 we can rewrite PATH FROM TO(index, 1, 0) = 1 to
PATH FROM TO(index, 1, 0) ≥ 1. Therefore we simplify PATH FROM TO
to PATH FROM TO.

Automaton Figure 4.271 depicts the automaton associated to the lex less constraint. Let VAR1i and
VAR2i respectively be the var attributes of the ith items of the VECTOR1 and the VECTOR2
collections. To each pair (VAR1i, VAR2i) corresponds a signature variable Si as well as the
following signature constraint: (VAR1i < VAR2i ⇔ Si = 1) ∧ (VAR1i = VAR2i ⇔ Si =
2) ∧ (VAR1i > VAR2i ⇔ Si = 3).

Remark A multiset ordering constraint and its corresponding filtering algorithm are described
in [127].

Algorithm The first complete filtering algorithm for this constraint was presented in [36]. A second
complete filtering algorithm, detecting entailment in a more eager way, was given in [128].
This second algorithm was derived from a deterministic finite automata. A third complete
filtering algorithm extending the algorithm presented in [36] detecting entailment is given
in the PhD thesis of Z.Kızıltan [129, page 95]. The previous thesis [129, pages 105–109]
presents also a filtering algorithm handling the fact that a given variable has more than one
occurrence.

Used in lex chain less.

See also lex between, lex lesseq, lex greater, lex greatereq, lex chain lesseq.

Key words order constraint, vector, symmetry, matrix symmetry, lexicographic order,
multiset ordering, duplicated variables, Berge-acyclic constraint network, automaton,
automaton without counters, derived collection.

608 PATH FROM TO,PRODUCT (PATH ,VOID)

COMPONENTS

DESTINATION

1

2

1

3

4

PATH_FROM_TO(index,1,0)=1

COMPONENTS

DESTINATION

1:1,5,5

2:2,2,2

3:3,3,6

1:0,0,0

(A) (B)

Figure 4.270: Initial and final graph of the lex less constraint

VAR1 < VAR2i i

s

t

VAR1 =VAR2i i

Figure 4.271: Automaton of the lex less constraint

Q =tn

VAR2
 1

VAR2
 2

VAR2
 n

VAR1
 1

VAR1
 2

VAR1
 n

Q1Q =s0

S1 S2 Sn

Figure 4.272: Hypergraph of the reformulation corresponding to the automaton of the
lex less constraint

20030820 609

610 PATH FROM TO,PRODUCT (PATH ,VOID)

4.124 lex lesseq

Origin CHIP

Constraint lex lesseq(VECTOR1, VECTOR2)

Argument(s) VECTOR1 : collection(var− dvar)
VECTOR2 : collection(var− dvar)

Restriction(s) required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| = |VECTOR2|

Purpose

VECTOR1 is lexicographically less than or equal to VECTOR2. Given two vectors, ~X and ~Y of n
components, 〈X0, . . . , Xn〉 and 〈Y0, . . . , Yn〉, ~X is lexicographically less than or equal to ~Y
if and only if n = 0 or X0 < Y0 or X0 = Y0 and 〈X1, . . . , Xn〉 is lexicographically less than
or equal to 〈Y1, . . . , Yn〉.

Derived Collection(s) col

„
DESTINATION − collection(index − int, x− int, y − int),
[item(index − 0, x− 0, y− 0)]

«

col

„
COMPONENTS − collection(index − int, x − dvar, y − dvar),
[item(index − VECTOR1.key, x− VECTOR1.var, y− VECTOR2.var)]

«

Arc input(s) COMPONENTS DESTINATION

Arc generator PRODUCT (PATH ,VOID) 7→ collection(item1, item2)

Arc arity 2

Arc constraint(s)
W
0
@

item2.index > 0 ∧ item1.x = item1.y,
item1.index < |VECTOR1| ∧ item2.index = 0 ∧ item1.x < item1.y,
item1.index = |VECTOR1| ∧ item2.index = 0 ∧ item1.x ≤ item1.y

1
A

Graph property(ies) PATH FROM TO(index, 1, 0) = 1

Example lex lesseq

„
{var − 5, var − 2, var − 3, var − 1},
{var − 5, var − 2, var − 6, var − 2}

«

lex lesseq

„
{var − 5, var − 2, var − 3, var − 9},
{var − 5, var − 2, var − 3, var − 9}

«

Parts (A) and (B) of Figure 4.273 respectively show the initial and final graph asso-
ciated to the first example. Since we use the PATH FROM TO graph property we
show on the final graph the following information:

• The vertices which respectively correspond to the start and the end of the required
path are stressed in bold.

• The arcs on the required path are also stressed in bold.

20030820 611

Graph model The vertices of the initial graph are generated in the following way:

• We create a vertex ci for each pair of components which both have the same index i.

• We create an additional dummy vertex called d.

The arcs of the initial graph are generated in the following way:

• We create an arc between ci and d. When ci was generated from the last components
of both vectors We associate to this arc the arc constraint item1.x ≤ item2.y;
Otherwise we associate to this arc the arc constraint item1.x < item2.y;

• We create an arc between ci and ci+1. We associate to this arc the arc constraint
item1.x = item2.y.

The lex lesseq constraint holds when there exist a path from c1 to d. This path can be
interpreted as a maximum sequence of equality constraints on the prefix of both vectors,
eventually followed by a less than constraint.

Signature Since the maximum value returned by the graph property PATH FROM TO
is equal to 1 we can rewrite PATH FROM TO(index, 1, 0) = 1 to
PATH FROM TO(index, 1, 0) ≥ 1. Therefore we simplify PATH FROM TO
to PATH FROM TO.

Automaton Figure 4.274 depicts the automaton associated to the lex lesseq constraint. Let VAR1i
and VAR2i respectively be the var attributes of the ith items of the VECTOR1 and the
VECTOR2 collections. To each pair (VAR1i, VAR2i) corresponds a signature variable Si
as well as the following signature constraint: (VAR1i < VAR2i ⇔ Si = 1) ∧ (VAR1i =
VAR2i ⇔ Si = 2) ∧ (VAR1i > VAR2i ⇔ Si = 3).

Remark A multiset ordering constraint and its corresponding filtering algorithm are described
in [127].

Algorithm The first complete filtering algorithm for this constraint was presented in [36]. A second
complete filtering algorithm, detecting entailment in a more eager way, was given in [128].
This second algorithm was derived from a deterministic finite automata. A third complete
filtering algorithm extending the algorithm presented in [36] detecting entailment is given
in the PhD thesis of Z.Kızıltan [129, page 95]. The previous thesis [129, pages 105–109]
presents also a filtering algorithm handling the fact that a given variable has more than one
occurrence.

Used in lex between, lex chain lesseq.

See also lex less, lex greater, lex greatereq, lex chain less.

Key words order constraint, vector, symmetry, matrix symmetry, lexicographic order,
multiset ordering, duplicated variables, Berge-acyclic constraint network, automaton,
automaton without counters, derived collection.

612 PATH FROM TO,PRODUCT (PATH ,VOID)

COMPONENTS

DESTINATION

1

2

1

3

4

PATH_FROM_TO(index,1,0)=1

COMPONENTS

DESTINATION

1:1,5,5

2:2,2,2

3:3,3,6

1:0,0,0

4:4,1,2

(A) (B)

Figure 4.273: Initial and final graph of the lex lesseq constraint

s

t

VAR1 =VAR2

VAR1 < VAR2i i

i i

$

Figure 4.274: Automaton of the lex lesseq constraint

Q =tn

VAR2
 1

VAR2
 2

VAR2
 n

VAR1
 1

VAR1
 2

VAR1
 n

Q1Q =s0

S1 S2 Sn

Figure 4.275: Hypergraph of the reformulation corresponding to the automaton of the
lex lesseq constraint

20030820 613

614 NARC,PRODUCT

4.125 link set to booleans

Origin Inspired by domain constraint.

Constraint link set to booleans(SVAR, BOOLEANS)

Argument(s) SVAR : svar

BOOLEANS : collection(bool − dvar, val− int)

Restriction(s) required(BOOLEANS, [bool, val])
BOOLEANS.bool ≥ 0
BOOLEANS.bool ≤ 1
distinct(BOOLEANS, val)

Purpose
Make the link between a set variable SVAR and those 0-1 variables that are associated to each
potential value belonging to SVAR: The 0-1 variables, which are associated to a value belonging
to the set variable SVAR, are equal to 1, while the remaining 0-1 variables are all equal to 0.

Derived Collection(s) col(SET − collection(one − int, setvar − svar), [item(one− 1, setvar − SVAR)])

Arc input(s) SET BOOLEANS

Arc generator PRODUCT 7→ collection(set, booleans)

Arc arity 2

Arc constraint(s) booleans.bool = set.one⇔ in set(booleans.val, set.setvar)

Graph property(ies) NARC = |BOOLEANS|

Example link set to booleans

0
BBBBBBBB@

{1, 3, 4},8
>>>>>><
>>>>>>:

bool − 0 val − 0,
bool − 1 val − 1,
bool − 0 val − 2,
bool − 1 val − 3,
bool − 1 val − 4,
bool − 0 val − 5

9
>>>>>>=
>>>>>>;

1
CCCCCCCCA

In the previous example, the 0-1 variables associated to the values 1,3 and 4 are all
set to 1, while the other 0-1 variables are set to 0. The link set to booleans constraint
holds since the final graph contains exactly 6 arcs (one for each 0-1 variable). Parts (A)
and (B) of Figure 4.276 respectively show the initial and final graph. Since we use the
NARC graph property, the arcs of the final graph are stressed in bold.

Graph model The link set to booleans constraint is modelled with the following bipartite graph.
The first set of vertices corresponds to one single vertex containing the set variable. The
second class of vertices contains one vertex for each item of the collection BOOLEANS. The
arc constraint between the set variable SVAR and one potential value v of the set variable
expresses the following:

20030820 615

• If the 0-1 variable associated to v is equal to 1 then v should belong to SVAR.

• Otherwise if the 0-1 variable associated to v is equal to 0 then v should not belong
to SVAR.

Since all arc constraints should hold the final graph contains exactly |BOOLEANS| arcs.

Signature Since the initial graph contains |BOOLEANS| arcs the maximum number of arcs of the final
graph is equal to |BOOLEANS|. Therefore we can rewrite the graph property NARC =
|BOOLEANS| to NARC ≥ |BOOLEANS| and simplify NARC to NARC.

Usage This constraint is used in order to make the link between a formulation using set variables
and a formulation based on linear programming.

See also domain constraint, clique, symmetric gcc, tour, strongly connected,
path from to.

Key words decomposition, value constraint, channeling constraint, set channel, linear programming,
constraint involving set variables, derived collection.

616 NARC,PRODUCT

SET

BOOLEANS

1

123456

NARC=6

1:1,{1,3,4}

1:0,0 2:1,1 3:0,2 4:1,3 5:1,4 6:0,5

(A) (B)

Figure 4.276: Initial and final graph of the link set to booleans constraint

20030820 617

618 MAX NCC,PATH

4.126 longest change

Origin Derived from change.

Constraint longest change(SIZE, VARIABLES, CTR)

Argument(s) SIZE : dvar

VARIABLES : collection(var − dvar)
CTR : atom

Restriction(s) SIZE ≥ 0
SIZE < |VARIABLES|
required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose
SIZE is the maximum number of consecutive variables of the collection VARIABLES for which
constraint CTR holds in an uninterrupted way. We count a change when X CTR Y holds; X
and Y are two consecutive variables of the collection VARIABLES.

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var CTR variables2.var

Graph property(ies) MAX NCC = SIZE

Example longest change

0
BBBBBBBBBBBB@

4,

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

var − 8,
var − 8,
var − 3,
var − 4,
var − 1,
var − 1,
var − 5,
var − 5,
var − 2

9
>>>>>>>>>>>>=
>>>>>>>>>>>>;

, 6=

1
CCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.277 respectively show the initial and final graph.
Since we use the MAX NCC graph property we show the largest connected component
of the final graph. It corresponds to the longest period of uninterrupted changes: Sequence
8, 3, 4, 1, which involves 4 consecutives variables.

Graph model In order to specify the longest change constraint, we use MAX NCC, which is the
number of vertices of the largest connected component. Since the initial graph corresponds
to a path, this will be the length of the longest path in the final graph.

20000128 619

VARIABLES

1

2

3

4

5

6

7

8

9

MAX_NCC=4

MAX_NCC

2:8

3:3

4:4

5:1

6:1

7:5

8:5

9:2

(A) (B)

Figure 4.277: Initial and final graph of the longest change constraint

i
{C=max(C,D),D=1}

i+1VAR not CTR VAR ,

{D=D+1}

VAR CTR VAR ,i i+1

t:
SIZE=C

$,

{C=max(C,D)}

s

{C=0,D=1}

Figure 4.278: Automaton of the longest change constraint

620 MAX NCC,PATH

Automaton Figure 4.278 depicts the automaton associated to the longest change constraint. To each
pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a
0-1 signature variable Si. The following signature constraint links VARi, VARi+1 and Si:
VARi CTR VARi+1 ⇔ Si.

See also change.

Key words timetabling constraint, automaton, automaton with counters,
sliding cyclic(1) constraint network(3).

VAR
1

VAR
2

S2

VAR
n

VAR
3

S3

Q2

C2

Sn−1

VAR
n−1

Q =s0

C =00 C1

Q1

S1

D =10 D1
D2

Q =tn−1

C =SIZEn−1

Dn−1

Figure 4.279: Hypergraph of the reformulation corresponding to the automaton of the
longest change constraint

20000128 621

622 NCC,NTREE,CLIQUE

4.127 map

Origin Inspired by [130]

Constraint map(NBCYCLE, NBTREE, NODES)

Argument(s) NBCYCLE : dvar

NBTREE : dvar

NODES : collection(index − int, succ− dvar)

Restriction(s) NBCYCLE ≥ 0
NBTREE ≥ 0
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Number of trees and number of cycles of a map. We take the description of a map from [130,
page 459]:

Purpose Every map decomposes into a set of connected components, also called con-
nected maps. Each component consists of the set of all points that wind up on the
same cycle, with each point on the cycle attached to a tree of all points that enter
the cycle at that point.

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) • NCC = NBCYCLE

• NTREE = NBTREE

Example map

0
BBBBBBBBBBBB@

2, 3,

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

index − 1 succ − 5,
index − 2 succ − 9,
index − 3 succ − 8,
index − 4 succ − 2,
index − 5 succ − 9,
index − 6 succ − 2,
index − 7 succ − 9,
index − 8 succ − 8,
index − 9 succ − 1

9
>>>>>>>>>>>>=
>>>>>>>>>>>>;

1
CCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.280 respectively show the initial and final graph.
Since we use the NCC graph property, we display the two connected components of the

20000128 623

final graph. Each of them corresponds to a connected map. The first connected map is
made up from one circuit and two trees, while the second one consists of one circuit and
one tree. Since we also use the NTREE graph property, we display with a double circle
those vertices which do not belong to any circuit but for which at least one successor
belong to a circuit.

NODES

1

2

3

4

5

6

7

8

9

NCC=2,NTREE=3

CC#1

CC#2

1:1,5

5:5,92:2,9

9:9,1

4:4,26:6,2

7:7,9

3:3,8

8:8,8

(A) (B)

Figure 4.280: Initial and final graph of the map constraint

Graph model Observe that, for the argument NBTREE of the map constraint, we consider a definition
different from the one used for the argument NTREES of the tree constraint:

• In the map constraint the number of trees NBTREE is equal to the number of vertices
of the final graph, which both do not belong to any circuit and have a successor which
is located on a circuit. Therefore we count three trees in the previous example.

• In the tree constraint the number of trees NTREES is equal to the number of con-
nected components of the final graph.

See also cycle, tree, graph crossing.

Key words graph constraint, graph partitioning constraint, connected component.

624 ORDER,CLIQUE

4.128 max index

Origin N. Beldiceanu

Constraint max index(MAX INDEX, VARIABLES)

Argument(s) MAX INDEX : dvar

VARIABLES : collection(index − int, var − dvar)

Restriction(s) |VARIABLES| > 0
MAX INDEX ≥ 0
MAX INDEX ≤ |VARIABLES|
required(VARIABLES, [index, var])
VARIABLES.index ≥ 1
VARIABLES.index ≤ |VARIABLES|
distinct(VARIABLES, index)

Purpose MAX INDEX is the index of the variables corresponding to the maximum value of the collection
of variables VARIABLES.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.key = variables2.key ∨ variables1.var > variables2.var

Graph property(ies) ORDER(0, 0, index) = MAX INDEX

Example max index

0
BBBB@

3,

8
>>>><
>>>>:

index − 1 var− 3,
index − 2 var− 2,
index − 3 var− 7,
index − 4 var− 2,
index − 5 var− 6

9
>>>>=
>>>>;

1
CCCCA

Parts (A) and (B) of Figure 4.281 respectively show the initial and final graph.
Since we use the ORDER graph property, the vertex of rank 0 (without considering the
loops) of the final graph is shown in gray.

Automaton Figure 4.282 depicts the automaton associated to the max index constraint. To each item
of the collection VARIABLES corresponds a signature variable Si, which is equal to 0.

See also min index.

Key words order constraint, maximum, automaton, automaton with counters,
alpha-acyclic constraint network(4).

20030820 625

VARIABLES

1

2

3

4

5

ORDER(0,0,index)=3

1:1,3

2:2,2 4:4,2

3:3,7

5:5,6

(A) (B)

Figure 4.281: Initial and final graph of the max index constraint

{if VAR >M then M=VAR ;

 J=J+1}

0,

ii

$

t:
MAX_INDEX=I

s

{M=−1000000,I=0,J=0}

Figure 4.282: Automaton of the max index constraint

M1
I1
J1J =00

M =−10000000

Q =s0

S1 S2
VAR 1

VAR 2

Q1
Q =tn
Mn

I =00 I =MAX_INDEXn
Jn

Sn

VAR n

Figure 4.283: Hypergraph of the reformulation corresponding to the automaton of the
max index constraint

626 ORDER,CLIQUE

4.129 max n

Origin [33]

Constraint max n(MAX, RANK, VARIABLES)

Argument(s) MAX : dvar

RANK : int

VARIABLES : collection(var − dvar)

Restriction(s) |VARIABLES| > 0
RANK ≥ 0
RANK < |VARIABLES|
required(VARIABLES, var)

Purpose MAX is the maximum value of rank RANK (i.e. the RANKth largest distinct value) of the collection
of domain variables VARIABLES. Sources have a rank of 0.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.key = variables2.key ∨ variables1.var > variables2.var

Graph property(ies) ORDER(RANK, MININT, var) = MAX

Example max n

0
BBBB@

6, 1,

8
>>>><
>>>>:

var − 3,
var − 1,
var − 7,
var − 1,
var − 6

9
>>>>=
>>>>;

1
CCCCA

Parts (A) and (B) of Figure 4.284 respectively show the initial and final graph.
Since we use the ORDER graph property, the vertex of rank 1 (without considering the
loops) of the final graph is shown in gray.

Algorithm [33].

See also maximum, min n.

Key words order constraint, rank, maximum.

20000128 627

VARIABLES

1

2

3

4

5

ORDER(1,MININT,var)=6

1:3

2:1 4:1

3:7

5:6

(A) (B)

Figure 4.284: Initial and final graph of the max n constraint

628 MAX NSCC,CLIQUE

4.130 max nvalue

Origin Derived from nvalue.

Constraint max nvalue(MAX, VARIABLES)

Argument(s) MAX : dvar

VARIABLES : collection(var − dvar)

Restriction(s) MAX ≥ 1
MAX ≤ |VARIABLES|
required(VARIABLES, var)

Purpose MAX is the maximum number of times that the same value is taken by the variables of the
collection VARIABLES.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) MAX NSCC = MAX

Example max nvalue

0
BBBBBBBBBBBBBB@

3,

8
>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

var− 9,
var− 1,
var− 7,
var− 1,
var− 1,
var− 6,
var− 7,
var− 7,
var− 4,
var− 9

9
>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

1
CCCCCCCCCCCCCCA

In the previous example, values 1, 4, 6, 7, 9 are respectively used 3, 1, 1, 3, 2 times.
So the maximum number of time MAX that a same value occurs is 3. Parts (A) and
(B) of Figure 4.285 respectively show the initial and final graph. Since we use the
MAX NSCC graph property, we show the largest strongly connected component of the
final graph.

Graph model Because of the arc constraint, each strongly connected component of the final graph cor-
responds to a distinct value which is assigned to a subset of variables of the VARIABLES

collection. Therefore the number of vertices of the largest strongly connected component
is equal to the mostly used value.

Automaton Figure 4.286 depicts the automaton associated to the max nvalue constraint. To each item
of the collection VARIABLES corresponds a signature variable Si, which is equal to 0.

20000128 629

VARIABLES

1

2

3

4

5

6

7

8

9

10

MAX_NSCC=3

MAX_NSCC

3:7

7:7

8:7

1:9

10:9

2:1

4:1

5:1

6:6 9:4

(A) (B)

Figure 4.285: Initial and final graph of the max nvalue constraint

i i

0,
{C[VAR]=C[VAR]+1}

$

maximum(N,C)
t:

{C[_]=0}

s

Figure 4.286: Automaton of the max nvalue constraint

630 MAX NSCC,CLIQUE

Usage This constraint may be used in order to replace a set of count or among constraints were
one would have to generate explicitly one constraint for each potential value. Also useful
for constraining the number of occurrences of the mostly used value without knowing this
value in advance and without giving explicitly an upper limit on the number of occurrences
of each value as it is done in the global cardinality constraint.

See also nvalue, min nvalue.

Key words value constraint, assignment, maximum number of occurrences, maximum, automaton,
automaton with array of counters, equivalence.

20000128 631

632 MAX NSCC,CLIQUE

4.131 max size set of consecutive var

Origin N. Beldiceanu

Constraint max size set of consecutive var(MAX, VARIABLES)

Argument(s) MAX : dvar

VARIABLES : collection(var − dvar)

Restriction(s) MAX ≥ 1
MAX ≤ |VARIABLES|
required(VARIABLES, var)

Purpose MAX is the size of the largest set of variables of the collection VARIABLES which all take their
value in a set of consecutive values.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) abs(variables1.var − variables2.var) ≤ 1

Graph property(ies) MAX NSCC = MAX

Example max size set of consecutive var

0
BBBBBBBBBBBBBB@

6,

8
>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

var − 3,
var − 1,
var − 3,
var − 7,
var − 4,
var − 1,
var − 2,
var − 8,
var − 7,
var − 6

9
>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

1
CCCCCCCCCCCCCCA

In the previous example, the following sets of variables {var − 3, var − 1, var −
3, var − 4, var − 1, var − 2} and {var − 7, var − 8, var − 7, var − 6} take their
values in the two following sets of consecutive values {1, 2, 3, 4} and {6, 7, 8}. The
max size set of consecutive var constraint holds since the cardinality of the largest
set of variables is 6. Parts (A) and (B) of Figure 4.287 respectively show the initial and
final graph. Since we use the MAX NSCC graph property, we show the largest strongly
connected component of the final graph.

Graph model Since the arc constraint is symmetric each strongly connected component of the final graph
corresponds exactly to one connected component of the final graph.

See also nset of consecutive values.

Key words value constraint, consecutive values, maximum.

20030820 633

VARIABLES

1

2

3

4

5

6

7

8

9

10

MAX_NSCC=6

MAX_NSCC

1:3

3:3

5:47:2

2:1

6:1

4:7

8:8

9:7

10:6

(A) (B)

Figure 4.287: Initial and final graph of the max size set of consecutive var con-
straint

634 ORDER,CLIQUE

4.132 maximum

Origin CHIP

Constraint maximum(MAX, VARIABLES)

Argument(s) MAX : dvar

VARIABLES : collection(var − dvar)

Restriction(s) |VARIABLES| > 0
required(VARIABLES, var)

Purpose MAX is the maximum value of the collection of domain variables VARIABLES.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.key = variables2.key ∨ variables1.var > variables2.var

Graph property(ies) ORDER(0, MININT, var) = MAX

Example maximum

0
BBBB@

7,

8
>>>><
>>>>:

var − 3,
var − 2,
var − 7,
var − 2,
var − 6

9
>>>>=
>>>>;

1
CCCCA

Parts (A) and (B) of Figure 4.288 respectively show the initial and final graph.
Since we use the ORDER graph property, the vertex of rank 0 (without considering the
loops) of the final graph is shown in gray.

Graph model We use a similar definition that the one that was utilized for the minimum constraint. Within
the arc constraint, we replace the comparaison operator < by >.

Automaton Figure 4.289 depicts the automaton associated to the maximum constraint. Let VARi be
the ith variable of the VARIABLES collection. To each pair (MAX, VARi) corresponds a
signature variable Si as well as the following signature constraint: (MAX > VARi ⇔ Si =
0) ∧ (MAX = VARi ⇔ Si = 1) ∧ (MAX < VARi ⇔ Si = 2).

Usage In some project scheduling problems one has to introduce dummy activities which corre-
spond for instance to the completion time of a given set of activities. In this context one
can use the maximum constraint to get the maximum end of a set of tasks.

Remark Note that maximum is a constraint and not just a function that computes the maximum value
of a collection of variables: The values of MAX influence the variables and reciprocally the
values of the variables influence MAX.

20000128 635

VARIABLES

1

2

3

4

5

ORDER(0,MININT,var)=7

1:3

2:2 4:2

3:7

5:6

(A) (B)

Figure 4.288: Initial and final graph of the maximum constraint

MAX>VARi

MAX=VARi

MAX=VARi MAX>VARi

$

t

s

e

Figure 4.289: Automaton of the maximum constraint

636 ORDER,CLIQUE

Algorithm [33].

See also minimum.

Key words order constraint, maximum, automaton, automaton without counters,
centered cyclic(1) constraint network(1).

Sn

Q =tn
Q1Q =s0

S2S1

VAR
1

VAR
2

VAR
n

MAX

Figure 4.290: Hypergraph of the reformulation corresponding to the automaton of the
maximum constraint

20000128 637

638 ORDER,CLIQUE

4.133 maximum modulo

Origin Derived from maximum.

Constraint maximum modulo(MAX, VARIABLES, M)

Argument(s) MAX : dvar

VARIABLES : collection(var − dvar)
M : int

Restriction(s) |VARIABLES| > 0
M > 0
required(VARIABLES, var)

Purpose
MAX is a maximum value of the collection of domain variables VARIABLES according to the
following partial ordering: (X mod M) < (Y mod M).

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.key = variables2.key ∨ variables1.var mod M > variables2.var mod M

Graph property(ies) ORDER(0, MININT, var) = MAX

Example maximum modulo

0
BBBB@

5,

8
>>>><
>>>>:

var − 9,
var − 1,
var − 7,
var − 6,
var − 5

9
>>>>=
>>>>;
, 3

1
CCCCA

Parts (A) and (B) of Figure 4.291 respectively show the initial and final graph.
Since we use the ORDER graph property, the vertex of rank 0 (without considering the
loops) of the final graph is shown in gray.

See also maximum, minimum modulo.

Key words order constraint, modulo, maximum.

20000128 639

VARIABLES

1

2

3

4

5

ORDER(0,MININT,var)=5

1:9

2:1

4:6

3:7

5:5

(A) (B)

Figure 4.291: Initial and final graph of the maximum modulo constraint

640 ORDER,CLIQUE

4.134 min index

Origin N. Beldiceanu

Constraint min index(MIN INDEX, VARIABLES)

Argument(s) MIN INDEX : dvar

VARIABLES : collection(index − int, var − dvar)

Restriction(s) |VARIABLES| > 0
MIN INDEX ≥ 0
MIN INDEX ≤ |VARIABLES|
required(VARIABLES, [index, var])
VARIABLES.index ≥ 1
VARIABLES.index ≤ |VARIABLES|
distinct(VARIABLES, index)

Purpose MIN INDEX is the index of the variables corresponding to the minimum value of the collection
of variables VARIABLES.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.key = variables2.key ∨ variables1.var < variables2.var

Graph property(ies) ORDER(0, 0, index) = MIN INDEX

Example min index

0
BBBB@

2,

8
>>>><
>>>>:

index − 1 var− 3,
index − 2 var− 2,
index − 3 var− 7,
index − 4 var− 2,
index − 5 var− 6

9
>>>>=
>>>>;

1
CCCCA

min index

0
BBBB@

4,

8
>>>><
>>>>:

index − 1 var− 3,
index − 2 var− 2,
index − 3 var− 7,
index − 4 var− 2,
index − 5 var− 6

9
>>>>=
>>>>;

1
CCCCA

Parts (A) and (B) of Figure 4.292 respectively show the initial and final graph asso-
ciated to both examples. Since we use the ORDER graph property, the vertices of rank
0 (without considering the loops) of the final graph are shown in gray.

Graph model Within the context of scheduling, assume the variables of the VARIABLES collection corre-
spond to the starts of a set of tasks. Then MIN INDEX gives the indexes of those tasks which
can be scheduled first.

20030820 641

VARIABLES

1

2

3

4

5

ORDER(0,0,index)=2

1:1,3

3:3,7

5:5,6

2:2,2 4:4,2

(A) (B)

Figure 4.292: Initial and final graph of the min index constraint

 J=J+1}

0,

ii{if VAR <M then M=VAR ;

$

t:
MIN_INDEX=I

s

{M=1000000,I=0,J=0}

Figure 4.293: Automaton of the min index constraint

M1
I1
J1J =00

Q =s0

S1 S2
VAR 1

VAR 2

Q1
Q =tn
Mn

I =00
Jn

Sn

VAR n

M =10000000
I =MIN_INDEXn

Figure 4.294: Hypergraph of the reformulation corresponding to the automaton of the
min index constraint

642 ORDER,CLIQUE

Automaton Figure 4.293 depicts the automaton associated to the min index constraint. Figure 4.293
depicts the automaton associated to the min index constraint. To each item of the collec-
tion VARIABLES corresponds a signature variable Si, which is equal to 0.

See also max index.

Key words order constraint, minimum, automaton, automaton with counters,
alpha-acyclic constraint network(4).

20030820 643

644 ORDER,CLIQUE

4.135 min n

Origin [33]

Constraint min n(MIN, RANK, VARIABLES)

Argument(s) MIN : dvar

RANK : int

VARIABLES : collection(var − dvar)

Restriction(s) |VARIABLES| > 0
RANK ≥ 0
RANK < |VARIABLES|
required(VARIABLES, var)

Purpose MIN is the minimum value of rank RANK (i.e. the RANKth smallest distinct value) of the collection
of domain variables VARIABLES. Sources have a rank of 0.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.key = variables2.key ∨ variables1.var < variables2.var

Graph property(ies) ORDER(RANK, MAXINT, var) = MIN

Example min n

0
BBBB@

3, 1,

8
>>>><
>>>>:

var − 3,
var − 1,
var − 7,
var − 1,
var − 6

9
>>>>=
>>>>;

1
CCCCA

Note that identical values are only counted once. This is why the minimum of or-
der 1 is 3 instead of 1 in the previous example. Parts (A) and (B) of Figure 4.295
respectively show the initial and final graph. Since we use the ORDER graph property,
the vertex of rank 1 (without considering the loops) of the final graph is shown in gray.

Graph model A generalization of the minimum constraint.

Automaton Figure 4.296 depicts the automaton associated to the min n constraint. Figure 4.296 de-
picts the automaton associated to the min n constraint. To each item of the collection
VARIABLES corresponds a signature variable Si, which is equal to 1.

Algorithm [33].

See also minimum, max n, ith pos different from 0.

Key words order constraint, rank, minimum, maxint, automaton, automaton with array of counters.

20000128 645

VARIABLES

1

2

3

4

5

ORDER(1,MAXINT,var)=3

1:3

3:7

5:6

2:1 4:1

(A) (B)

Figure 4.295: Initial and final graph of the min n constraint

1,
{C[VAR]=C[VAR]+1,D=min(D,VAR)}i i i

$

t:
ith_pos_different_from_0(RANK+1,M,C)

MIN=M+D−1

{C[_]=0,D=maxint}

s

Figure 4.296: Automaton of the min n constraint

646 MIN NSCC,CLIQUE

4.136 min nvalue

Origin N. Beldiceanu

Constraint min nvalue(MIN, VARIABLES)

Argument(s) MIN : dvar

VARIABLES : collection(var − dvar)

Restriction(s) MIN ≥ 1
MIN ≤ |VARIABLES|
required(VARIABLES, var)

Purpose MIN is the minimum number of times that the same value is taken by the variables of the collec-
tion VARIABLES.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) MIN NSCC = MIN

Example min nvalue

0
BBBBBBBBBBBBBB@

2,

8
>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

var− 9,
var− 1,
var− 7,
var− 1,
var− 1,
var− 7,
var− 7,
var− 7,
var− 7,
var− 9

9
>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

1
CCCCCCCCCCCCCCA

In the previous example, values 1, 7, 9 are respectively used 3, 5, 2 times. So the
minimum number of time that a same value occurs is 2. Parts (A) and (B) of Figure 4.297
respectively show the initial and final graph. Since we use the MIN NSCC graph
property, we show the smallest strongly connected component of the final graph.

Automaton Figure 4.298 depicts the automaton associated to the min nvalue constraint. To each item
of the collection VARIABLES corresponds a signature variable Si, which is equal to 0.

Usage This constraint may be used in order to replace a set of count or among constraints were
one would have to generate explicitly one constraint for each potential value. Also useful
for constraining the number of occurrences of the less used value without knowing this
value in advance and without giving explicitly a lower limit on the number of occurrences
of each value as it is done in the global cardinality constraint.

20000128 647

VARIABLES

1

2

3

4

5

6

7

8

9

10

MIN_NSCC=2

MIN_NSCC

1:9

10:9

2:1

4:1

5:1

3:7

6:7

7:7

8:7

9:7

(A) (B)

Figure 4.297: Initial and final graph of the min nvalue constraint

i i

0,
{C[VAR]=C[VAR]+1}

$

t:
minimum_except_0(N,C)

s

{C[_]=0}

Figure 4.298: Automaton of the min nvalue constraint

648 MIN NSCC,CLIQUE

See also nvalue, max nvalue.

Key words value constraint, assignment, minimum number of occurrences, minimum, automaton,
automaton with array of counters, equivalence.

20000128 649

650 MIN NSCC,CLIQUE

4.137 min size set of consecutive var

Origin N. Beldiceanu

Constraint min size set of consecutive var(MIN, VARIABLES)

Argument(s) MIN : dvar

VARIABLES : collection(var − dvar)

Restriction(s) MIN ≥ 1
MIN ≤ |VARIABLES|
required(VARIABLES, var)

Purpose MIN is the size of the smallest set of variables of the collection VARIABLES which all take their
value in a set of consecutive values.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) abs(variables1.var − variables2.var) ≤ 1

Graph property(ies) MIN NSCC = MIN

Example min size set of consecutive var

0
BBBBBBBBBBBBBB@

4,

8
>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

var − 3,
var − 1,
var − 3,
var − 7,
var − 4,
var − 1,
var − 2,
var − 8,
var − 7,
var − 6

9
>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

1
CCCCCCCCCCCCCCA

In the previous example, the following sets of variables {var − 3, var − 1, var −
3, var − 4, var − 1, var − 2} and {var − 7, var − 8, var − 7, var − 6} take their
values in the two following sets of consecutive values {1, 2, 3, 4} and {6, 7, 8}. The
min size set of consecutive var constraint holds since the cardinality of the smallest
set of variables is 4. Parts (A) and (B) of Figure 4.299 respectively show the initial and
final graph. Since we use the MIN NSCC graph property, we show the smallest
strongly connected component of the final graph.

Graph model Since the arc constraint is symmetric each strongly connected component of the final graph
corresponds exactly to one connected component of the final graph.

See also nset of consecutive values.

Key words value constraint, assignment, consecutive values, minimum.

20030820 651

VARIABLES

1

2

3

4

5

6

7

8

9

10

MIN_NSCC=4

MIN_NSCC

4:7

8:8

9:7

10:6

1:3

3:3

5:4 7:2

2:1

6:1

(A) (B)

Figure 4.299: Initial and final graph of the min size set of consecutive var con-
straint

652 ORDER,CLIQUE

4.138 minimum

Origin CHIP

Constraint minimum(MIN, VARIABLES)

Argument(s) MIN : dvar

VARIABLES : collection(var − dvar)

Restriction(s) |VARIABLES| > 0
required(VARIABLES, var)

Purpose MIN is the minimum value of the collection of domain variables VARIABLES.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.key = variables2.key ∨ variables1.var < variables2.var

Graph property(ies) ORDER(0, MAXINT, var) = MIN

Example minimum

0
BBBB@

2,

8
>>>><
>>>>:

var − 3,
var − 2,
var − 7,
var − 2,
var − 6

9
>>>>=
>>>>;

1
CCCCA

Parts (A) and (B) of Figure 4.300 respectively show the initial and final graph.
Since we use the ORDER graph property, the vertices of rank 0 (without considering
the loops) of the final graph are shown in gray.

Graph model The condition variables1.key = variables2.key holds if and only if variables1 and
variables2 corresponds to the same vertex. It is used in order to enforce to keep all the
vertices of the initial graph. ORDER(0, MAXINT, var) refers to the source vertices of the
graph, i.e. those vertices that do not have any predecessor.

Automaton Figure 4.301 depicts the automaton associated to the minimum constraint. Let VARi be
the ith variable of the VARIABLES collection. To each pair (MIN, VARi) corresponds a
signature variable Si as well as the following signature constraint: (MIN < VARi ⇔ Si =
0) ∧ (MIN = VARi ⇔ Si = 1) ∧ (MIN > VARi ⇔ Si = 2).

Remark Note that minimum is a constraint and not just a function that computes the minimum value
of a collection of variables: The values of MIN influence the variables and reciprocally the
values of the variables influence MIN.

Algorithm [33].

20000128 653

VARIABLES

1

2

3

4

5

ORDER(0,MAXINT,var)=2

1:3

3:7

5:6

2:2 4:2

(A) (B)

Figure 4.300: Initial and final graph of the minimum constraint

MIN<VARi

MIN=VARi

MIN=VARi MIN<VARi

$

t

s

e

Figure 4.301: Automaton of the minimum constraint

654 ORDER,CLIQUE

Used in minimum greater than, next element, next greater element.

See also maximum.

Key words order constraint, minimum, maxint, automaton, automaton without counters,
centered cyclic(1) constraint network(1).

Sn

Q =tn
Q1Q =s0

S2S1

VAR
1

VAR
2

VAR
n

MIN

Figure 4.302: Hypergraph of the reformulation corresponding to the automaton of the
minimum constraint

20000128 655

656 ORDER,CLIQUE

4.139 minimum except 0

Origin Derived from minimum.

Constraint minimum except 0(MIN, VARIABLES)

Argument(s) MIN : dvar

VARIABLES : collection(var − dvar)

Restriction(s) |VARIABLES| > 0
required(VARIABLES, var)
VARIABLES.var ≥ 0

Purpose MIN is the minimum value of the collection of domain variables VARIABLES, ignoring all vari-
ables that take 0 as value.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • variables1.var 6= 0
• variables2.var 6= 0
• variables1.key = variables2.key ∨ variables1.var < variables2.var

Graph property(ies) ORDER(0, MAXINT, var) = MIN

Example minimum except 0

0
BBBBBB@

3,

8
>>>>>><
>>>>>>:

var− 3,
var− 7,
var− 6,
var− 7,
var− 4,
var− 7

9
>>>>>>=
>>>>>>;

1
CCCCCCA

minimum except 0

0
BBBBBB@

2,

8
>>>>>><
>>>>>>:

var− 3,
var− 2,
var− 0,
var− 7,
var− 2,
var− 6

9
>>>>>>=
>>>>>>;

1
CCCCCCA

minimum except 0

0
BBBBBB@

1000000,

8
>>>>>><
>>>>>>:

var − 0,
var − 0,
var − 0,
var − 0,
var − 0,
var − 0

9
>>>>>>=
>>>>>>;

1
CCCCCCA

Parts (A) and (B) of Figure 4.303 respectively show the initial and final graph of

20030820 657

the second example. Since we use the ORDER graph property, the vertices of rank 0
(without considering the loops) of the final graph are shown in gray.

Since the graph associated to the third example does not contain any vertex, ORDER
returns the default value MAXINT.

Graph model Because of the first two conditions of the arc constraint, all vertices that correspond to 0
will be removed from the final graph.

Automaton Figure 4.304 depicts the automaton associated to the minimum except 0 constraint. Let
VARi be the ith variable of the VARIABLES collection. To each pair (MIN, VARi) corresponds
a signature variable Si as well as the following signature constraint:

((VARi = 0) ∧ (MIN 6= MAXINT))⇔ Si = 0 ∧
((VARi = 0) ∧ (MIN = MAXINT))⇔ Si = 1 ∧
((VARi 6= 0) ∧ (MIN = VARi))⇔ Si = 2 ∧
((VARi 6= 0) ∧ (MIN < VARi))⇔ Si = 3.

Remark The joker value 0 makes sense only because we restrict the variables of the VARIABLES

collection to take non-negative values.

See also minimum, min nvalue.

Key words order constraint, joker value, minimum, maxint, automaton, automaton without counters,
centered cyclic(1) constraint network(1).

658 ORDER,CLIQUE

VARIABLES

1

2

3

4

5

6

ORDER(0,MAXINT,var)=2

1:3

4:7

6:6

2:2 5:2

(A) (B)

Figure 4.303: Initial and final graph of the minimum except 0 constraint

VAR <>0 and MIN=VARi i VAR <>0 and MIN<VARi i

VAR <>0 and MIN<VARi i

VAR =0 and MIN=maxinti

VAR <>0 and MIN=VARi i VAR =0 and MIN=maxinti

VAR =0 and MIN<>maxinti

VAR =0 and MIN<>maxinti VAR =0 and MIN=maxinti

s

j k

t

$ $

Figure 4.304: Automaton of the minimum except 0 constraint

Sn

Q =tn
Q1Q =s0

S2S1

VAR
1

VAR
2

VAR
n

MIN

Figure 4.305: Hypergraph of the reformulation corresponding to the automaton of the
minimum except 0 constraint

20030820 659

660 NARC,PRODUCT , SUCC

4.140 minimum greater than

Origin N. Beldiceanu

Constraint minimum greater than(VAR1, VAR2, VARIABLES)

Argument(s) VAR1 : dvar

VAR2 : dvar

VARIABLES : collection(var − dvar)

Restriction(s) |VARIABLES| > 0
required(VARIABLES, var)

Purpose
VAR1 is the smallest value strictly greater than VAR2 of the collection of variables VARIABLES:
This concretely means that there exist at least one variable of VARIABLES which take a value
strictly greater than VAR1.

Derived Collection(s) col(ITEM − collection(var − dvar), [item(var − VAR2)])

Arc input(s) ITEM VARIABLES

Arc generator PRODUCT 7→ collection(item, variables)

Arc arity 2

Arc constraint(s) item.var < variables.var

Graph property(ies) NARC > 0

Sets SUCC 7→ [source, variables]

Constraint(s) on sets minimum(VAR1, variables)

Example minimum greater than

0
BB@ 5, 3,

8
>><
>>:

var − 8,
var − 5,
var − 3,
var − 8

9
>>=
>>;

1
CCA

The minimum greater than constraint holds since value 5 is the smallest value
strictly greater than value 3 among values 8, 5, 3 and 8. Parts (A) and (B) of Figure 4.306
respectively show the initial and final graph. Since we use the NARC graph property,
the arcs of the final graph are stressed in bold. The source and the sinks of the final
graph respectively correspond to the variable VAR2 and to the variables of the VARIABLES
collection which are strictly greater than VAR2. VAR1 is set to the smallest value of the var
attribute of the sinks of the final graph.

Graph model Similar to the next greater element constraint, except that there is no order on the
variables of the collection VARIABLES.

20030820 661

Automaton Figure 4.307 depicts the automaton associated to the minimum greater than con-
straint. Let VARi be the ith variable of the VARIABLES collection. To each triple
(VAR1, VAR2, VARi) corresponds a signature variable Si as well as the following signature
constraint:

((VARi < VAR1) ∧ (VARi ≤ VAR2))⇔ Si = 0 ∧
((VARi = VAR1) ∧ (VARi ≤ VAR2))⇔ Si = 1 ∧
((VARi > VAR1) ∧ (VARi ≤ VAR2))⇔ Si = 2 ∧
((VARi < VAR1) ∧ (VARi > VAR2))⇔ Si = 3 ∧
((VARi = VAR1) ∧ (VARi > VAR2))⇔ Si = 4 ∧
((VARi > VAR1) ∧ (VARi > VAR2))⇔ Si = 5.

The automaton is constructed in order to fullfit the following conditions:

• We look for an item of the VARIABLES collection such that vari = VAR1 and vari >
VAR2,

• There should not exist any item of the VARIABLES collection such that vari < VAR1

and vari > VAR2.

See also next greater element.

Key words order constraint, minimum, automaton, automaton without counters,
centered cyclic(2) constraint network(1), derived collection.

662 NARC,PRODUCT , SUCC

ITEM

VARIABLES

1

1234

NARC=3

1:3

1:8 2:5 4:8

(A) (B)

Figure 4.306: Initial and final graph of the minimum greater than constraint

VAR <=VAR2i

VAR <=VAR2i

VAR >VAR1i

VAR >=VAR1i

VAR =VAR1 and VAR >VAR2i i

$

t

s

e

Figure 4.307: Automaton of the minimum greater than constraint

20030820 663

Sn

Q =tn
Q1Q =s0

S2S1

VAR
1

VAR
2

VAR
n

VAR2

VAR1

Figure 4.308: Hypergraph of the reformulation corresponding to the automaton of the
minimum greater than constraint

664 ORDER,CLIQUE

4.141 minimum modulo

Origin Derived from minimum.

Constraint minimum modulo(MIN, VARIABLES, M)

Argument(s) MIN : dvar

VARIABLES : collection(var − dvar)
M : int

Restriction(s) |VARIABLES| > 0
M > 0
required(VARIABLES, var)

Purpose MIN is a minimum value of the collection of domain variables VARIABLES according to the
following partial ordering: (X mod M) < (Y mod M).

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.key = variables2.key ∨ variables1.var mod M < variables2.var mod M

Graph property(ies) ORDER(0, MAXINT, var) = MIN

Example minimum modulo

0
BBBB@

6,

8
>>>><
>>>>:

var − 9,
var − 1,
var − 7,
var − 6,
var − 5

9
>>>>=
>>>>;
, 3

1
CCCCA

minimum modulo

0
BBBB@

9,

8
>>>><
>>>>:

var − 9,
var − 1,
var − 7,
var − 6,
var − 5

9
>>>>=
>>>>;
, 3

1
CCCCA

Parts (A) and (B) of Figure 4.309 respectively show the initial and final graph asso-
ciated to the second example. Since we use the ORDER graph property, the vertex of
rank 0 (without considering the loops) associated to value 9 is shown in gray.

Graph model We use a similar definition that the one that was utilized for the minimum constraint. Within
the arc constraint we replace the condition X < Y by the condition (X mod M) <
(Y mod M).

See also minimum, maximum modulo.

Key words order constraint, modulo, maxint, minimum.

20000128 665

VARIABLES

1

2

3

4

5

ORDER(0,MAXINT,var)=9

1:9

2:1 3:7

5:5

4:6

(A) (B)

Figure 4.309: Initial and final graph of the minimum modulo constraint

666 NTREE,SUM WEIGHT ARC,CLIQUE

4.142 minimum weight alldifferent

Origin [131]

Constraint minimum weight alldifferent(VARIABLES, MATRIX, COST)

Synonym(s) minimum weight alldiff, minimum weight alldistinct, min weight alldiff,
min weight alldifferent, min weight alldistinct.

Argument(s) VARIABLES : collection(var − dvar)
MATRIX : collection(i− int, j− int, c− int)
COST : dvar

Restriction(s) |VARIABLES| > 0
required(VARIABLES, var)
VARIABLES.var ≥ 1
VARIABLES.var ≤ |VARIABLES|
required(MATRIX, [i, j, c])
increasing seq(MATRIX, [i, j])
MATRIX.i ≥ 1
MATRIX.i ≤ |VARIABLES|
MATRIX.j ≥ 1
MATRIX.j ≤ |VARIABLES|
|MATRIX| = |VARIABLES| ∗ |VARIABLES|

Purpose
All variables of the VARIABLES collection should take a distinct value located within interval
[1, |VARIABLES|]. In addition COST is equal to the sum of the costs associated to the fact that
we assign value i to variable j. These costs are given by the matrix MATRIX.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.key

Graph property(ies) • NTREE = 0
• SUM WEIGHT ARC(MATRIX[(variables1.key − 1) ∗ |VARIABLES|+ variables1.var].c) = COST

20030820 667

Example minimum weight alldifferent

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

8
>><
>>:

var − 2,
var − 3,
var − 1,
var − 4

9
>>=
>>;
,

8
>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

i− 1 j− 1 c − 4,
i− 1 j− 2 c − 1,
i− 1 j− 3 c − 7,
i− 1 j− 4 c − 0,
i− 2 j− 1 c − 1,
i− 2 j− 2 c − 0,
i− 2 j− 3 c − 8,
i− 2 j− 4 c − 2,
i− 3 j− 1 c − 3,
i− 3 j− 2 c − 2,
i− 3 j− 3 c − 1,
i− 3 j− 4 c − 6,
i− 4 j− 1 c − 0,
i− 4 j− 2 c − 0,
i− 4 j− 3 c − 6,
i− 4 j− 4 c − 5

9
>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>;

, 17

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

The cost 17 corresponds to the sum MATRIX[(1 − 1) · 4 + 2].c + MATRIX[(2 −

VARIABLES

1

2

3

4 NARC=4
SUM_WEIGHT_ARC=1+8+3+5=17

1:2

2:3

1

3:1

8

3

4:4 5

(A) (B)

Figure 4.310: Initial and final graph of the minimum weight alldifferent con-
straint

1) · 4 + 3].c + MATRIX[(3 − 1) · 4 + 1].c + MATRIX[(4 − 1) · 4 + 4].c =
MATRIX[2].c + MATRIX[7].c + MATRIX[9].c + MATRIX[16].c = 1 + 8 + 3 + 5.
Parts (A) and (B) of Figure 4.310 respectively show the initial and final graph. Since we
use the SUM WEIGHT ARC graph property, the arcs of the final graph are stressed
in bold; We also indicate their corresponding weight.

Graph model Since each variable takes one value, and because of the arc constraint variables1 =
variables.key, each vertex of the initial graph belongs to the final graph and has exactly

668 NTREE,SUM WEIGHT ARC,CLIQUE

one successor. Therefore the sum of the out-degrees of the vertices of the final graph is
equal to the number of vertices of the final graph. Since the sum of the in-degrees is equal
to the sum of the out-degrees, it is also equal to the number of vertices of the final graph.
Since NTREE = 0, each vertex of the final graph belongs to a circuit. Therefore each
vertex of the final graph has at least one predecessor. Since we saw that the sum of the
in-degrees is equal to the number of vertices of the final graph, each vertex of the final
graph has exactly one predecessor. We conclude that the final graph consists of a set of
vertex-disjoint elementary circuits.

Finally the graph constraint expresses the fact that the COST variable is equal to the sum
of the elementary costs associated to each variable-value assignment. All these elementary
costs are recorded in the MATRIX collection. More precisely, the cost cij is recorded in the
attribute c of the ((i − 1) · |VARIABLES)| + j)th entry of the MATRIX collection. This is
ensured by the increasing restriction which enforces the fact that the items of the MATRIX
collection are sorted in lexicographically increasing order according to attributes i and j.

Algorithm A filtering algorithm is described in [132]. It can be used for handling both side of the
minimum weight alldifferent constraint:

• Evaluating a lower bound of the COST variable and pruning the variables of the
VARIABLES collection in order to not exceed the maximum value of COST.

• Evaluating an upper bound of the COST variable and pruning the variables of the
VARIABLES collection in order to not be under the minimum value of COST.

See also alldifferent, global cardinality with costs, weighted partial alldiff.

Key words cost filtering constraint, assignment, cost matrix, weighted assignment, one succ.

20030820 669

670 NSCC,CLIQUE

4.143 nclass

Origin Derived from nvalue.

Constraint nclass(NCLASS, VARIABLES, PARTITIONS)

Type(s) VALUES : collection(val− int)

Argument(s) NCLASS : dvar

VARIABLES : collection(var− dvar)
PARTITIONS : collection(p− VALUES)

Restriction(s) required(VALUES, val)
distinct(VALUES, val)
NCLASS ≥ 0
NCLASS ≤ min(|VARIABLES|, |PARTITIONS|)
required(VARIABLES, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose Number of partitions of the collection PARTITIONS such that at least one value is assigned to at
least one variable of the collection VARIABLES.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) in same partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) NSCC = NCLASS

Example nclass

0
BBBBBBBBBB@

2,

8
>>>><
>>>>:

var − 3,
var − 2,
var − 7,
var − 2,
var − 6

9
>>>>=
>>>>;
,

8
<
:

p − {val − 1, val − 3},
p − {val − 4},
p − {val − 2, val − 6}

9
=
;

1
CCCCCCCCCCA

Parts (A) and (B) of Figure 4.311 respectively show the initial and final graph.
Since we use the NSCC graph property we show the different strongly connected
components of the final graph. Each strongly connected component corresponds to one
class of values which were assigned to some variables of the VARIABLES collection. We
effectively use two classes of values that respectively correspond to values {3} and {2, 6}.
Note that we do not consider value 7 since it does not belong to the different classes of
values we gave: all corresponding arc constraints do not hold.

20000128 671

Algorithm [33, 106].

See also nvalue, nequivalence, ninterval, npair, in same partition.

Key words counting constraint, value partitioning constraint, number of distinct equivalence classes,
partition, strongly connected component, equivalence.

672 NSCC,CLIQUE

VARIABLES

1

2

3

4

5

NSCC=2

SCC#1 SCC#2

1:3 2:2

4:2

5:6

(A) (B)

Figure 4.311: Initial and final graph of the nclass constraint

20000128 673

674 NSCC,CLIQUE

4.144 nequivalence

Origin Derived from nvalue.

Constraint nequivalence(NEQUIV, M, VARIABLES)

Argument(s) NEQUIV : dvar

M : int

VARIABLES : collection(var − dvar)

Restriction(s) NEQUIV ≥ min(1, |VARIABLES|)
NEQUIV ≤ min(M, |VARIABLES|)
M > 0
required(VARIABLES, var)

Purpose NEQUIV is the number of distinct rests obtained by dividing the variables of the collection
VARIABLES by M.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var mod M = variables2.var mod M

Graph property(ies) NSCC = NEQUIV

Example nequivalence

0
BBBBBBBB@

2, 3,

8
>>>>>>>><
>>>>>>>>:

var − 3,
var − 2,
var − 5,
var − 6,
var − 15,
var − 3,
var − 3

9
>>>>>>>>=
>>>>>>>>;

1
CCCCCCCCA

Parts (A) and (B) of Figure 4.312 respectively show the initial and final graph.
Since we use the NSCC graph property we show the different strongly connected
components of the final graph. Each strongly connected component corresponds to one
equivalence class: We have two equivalence classes that respectively correspond to values
{3, 6, 15} and {2, 5}.

Algorithm Since constraints X = Y and X ≡ Y (mod M) are similar, one should also use a similar
algorithm as the one [33, 106] provided for constraint nvalue.

See also nvalue, nclass, ninterval, npair.

Key words counting constraint, value partitioning constraint, number of distinct equivalence classes,
strongly connected component, equivalence.

20000128 675

VARIABLES

1

2

3

4

5

6

7

NSCC=2

SCC#1 SCC#2

1:3

4:6

5:15

6:3

7:3

2:2

3:5

(A) (B)

Figure 4.312: Initial and final graph of the nequivalence constraint

676 NARC,PRODUCT , SUCC

4.145 next element

Origin N. Beldiceanu

Constraint next element(THRESHOLD, INDEX, TABLE, VAL)

Argument(s) THRESHOLD : dvar

INDEX : dvar

TABLE : collection(index − int, value − dvar)
VAL : dvar

Restriction(s) INDEX ≥ 1
INDEX ≤ |TABLE|
required(TABLE, [index, value])
TABLE.index ≥ 1
TABLE.index ≤ |TABLE|
distinct(TABLE, index)

Purpose INDEX is the smallest entry of TABLE strictly greater than THRESHOLD containing value VAL.

Derived Collection(s) col

„
ITEM − collection(index − dvar, value − dvar),
[item(index − THRESHOLD, value − VAL)]

«

Arc input(s) ITEM TABLE

Arc generator PRODUCT 7→ collection(item, table)

Arc arity 2

Arc constraint(s) • item.index < table.index
• item.value = table.value

Graph property(ies) NARC > 0

Sets
SUCC 7→»

source,
variables − col(VARIABLES − collection(var − dvar), [item(var − TABLE.index)])

–

Constraint(s) on sets minimum(INDEX, variables)

Example next element

0
BBBB@

2, 3,

8
>>>><
>>>>:

index − 1 value − 1,
index − 2 value − 8,
index − 3 value − 9,
index − 4 value − 5,
index − 5 value − 9

9
>>>>=
>>>>;
, 9

1
CCCCA

The next element constraint holds since 3 is the smallest entry located after entry
2 that contains value 9. Parts (A) and (B) of Figure 4.313 respectively show the initial and
final graph associated to the second graph constraint. Since we use the NARC graph
property, the arcs of the final graph are stressed in bold.

20030820 677

Automaton Figure 4.314 depicts the automaton associated to the next element constraint. Let Ik
and Vk respectively be the index and the value attributes of the kth item of the TABLE

collections. To each quintuple (THRESHOLD, INDEX, VAL, Ik, Vk) corresponds a signature
variable Sk as well as the following signature constraint:

((Ik ≤ THRESHOLD) ∧ (Ik < INDEX) ∧ (Vk = VAL))⇔ Sk = 0 ∧
((Ik ≤ THRESHOLD) ∧ (Ik < INDEX) ∧ (Vk 6= VAL))⇔ Sk = 1 ∧
((Ik ≤ THRESHOLD) ∧ (Ik = INDEX) ∧ (Vk = VAL))⇔ Sk = 2 ∧
((Ik ≤ THRESHOLD) ∧ (Ik = INDEX) ∧ (Vk 6= VAL))⇔ Sk = 3 ∧
((Ik ≤ THRESHOLD) ∧ (Ik > INDEX) ∧ (Vk = VAL))⇔ Sk = 4 ∧
((Ik ≤ THRESHOLD) ∧ (Ik > INDEX) ∧ (Vk 6= VAL))⇔ Sk = 5 ∧
((Ik > THRESHOLD) ∧ (Ik < INDEX) ∧ (Vk = VAL))⇔ Sk = 6 ∧
((Ik > THRESHOLD) ∧ (Ik < INDEX) ∧ (Vk 6= VAL))⇔ Sk = 7 ∧
((Ik > THRESHOLD) ∧ (Ik = INDEX) ∧ (Vk = VAL))⇔ Sk = 8 ∧
((Ik > THRESHOLD) ∧ (Ik = INDEX) ∧ (Vk 6= VAL))⇔ Sk = 9 ∧
((Ik > THRESHOLD) ∧ (Ik > INDEX) ∧ (Vk = VAL))⇔ Sk = 10 ∧
((Ik > THRESHOLD) ∧ (Ik > INDEX) ∧ (Vk 6= VAL))⇔ Sk = 11.

The automaton is constructed in order to fullfit the following conditions:

• We look for an item of the TABLE collection such that INDEXi > THRESHOLD and
INDEXi = INDEX and VALUEi = VAL,

• There should not exist any item of the TABLE collection such that INDEXi >
THRESHOLD and INDEXi < INDEX and VALUEi = VAL.

Usage Originally introduced for modelling the fact that a nucleotide has to be consumed as soon
as possible at cycle INDEX after a given cycle represented by variable THRESHOLD.

See also minimum greater than, next greater element.

Key words data constraint, minimum, table, automaton, automaton without counters,
centered cyclic(3) constraint network(1), derived collection.

678 NARC,PRODUCT , SUCC

ITEM

TABLE

1

12345

NARC=2

1:2,9

3:3,9 5:5,9

(A) (B)

Figure 4.313: Initial and final graph of the next element constraint

s

e

INDEX >INDEX i

INDEX >=INDEX i

INDEX >THRESHOLD and INDEX =INDEX and VALUE =VAL i i i

INDEX <=THRESHOLD i

VALUE <>VAL i

INDEX <=THRESHOLD i

VALUE <=VAL i

t

$

Figure 4.314: Automaton of the next element constraint

20030820 679

Sn

Q =tn
Q1Q =s0

S2S1

VALUE
 1

VALUE
 2

VALUE
 n

THRESHOLD

VAL

INDEX

Figure 4.315: Hypergraph of the reformulation corresponding to the automaton of the
next element constraint

680 NARC,PATH ; NARC,PRODUCT , SUCC

4.146 next greater element

Origin M. Carlsson

Constraint next greater element(VAR1, VAR2, VARIABLES)

Argument(s) VAR1 : dvar

VAR2 : dvar

VARIABLES : collection(var − dvar)

Restriction(s) |VARIABLES| > 0
required(VARIABLES, var)

Purpose
VAR2 is the value strictly greater than VAR1 located at the smallest possible entry of the table
TABLE. In addition, the variables of the collection VARIABLES are sorted in strictly increasing
order.

Derived Collection(s) col(V − collection(var− dvar), [item(var − VAR1)])

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var < variables2.var

Graph property(ies) NARC = |VARIABLES| − 1

Arc input(s) V VARIABLES

Arc generator PRODUCT 7→ collection(v, variables)

Arc arity 2

Arc constraint(s) v.var < variables.var

Graph property(ies) NARC > 0

Sets SUCC 7→ [source, variables]

Constraint(s) on sets minimum(VAR2, variables)

Example next greater element

0
BB@ 7, 8,

8
>><
>>:

var − 3,
var − 5,
var − 8,
var − 9

9
>>=
>>;

1
CCA

The next greater element constraint holds since:

20030820 681

• VAR2 is fixed to the first value 8 strictly greater than VAR1 = 7,

• The var attributes of the items of the collection VARIABLES are sorted in strictly
increasing order.

Parts (A) and (B) of Figure 4.316 respectively show the initial and final graph associated to
the second graph constraint. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.

V

VARIABLES

1

1234

NARC=2

1:7

3:8 4:9

(A) (B)

Figure 4.316: Initial and final graph of the next greater element constraint

Signature Since the first graph constraint uses the PATH arc generator on the VARIABLES collection,
the number of arcs of the corresponding initial graph is equal to |VARIABLES|−1. Therefore
the maximum number of arcs of the final graph is equal to |VARIABLES|−1. For this reason
we can rewrite NARC = |VARIABLES|−1 to NARC ≥ |VARIABLES|−1 and simplify
NARC to NARC.

Usage Originally introduced for modelling the fact that a nucleotide has to be consumed as soon
as possible at cycle VAR2 after a given cycle VAR1.

Remark Similar to the minimum greater than constraint, except for the fact that the var attributes
are sorted.

See also minimum greater than, next element.

Key words order constraint, minimum, data constraint, table, derived collection.

682 NSCC,CLIQUE

4.147 ninterval

Origin Derived from nvalue.

Constraint ninterval(NVAL, VARIABLES, SIZE INTERVAL)

Argument(s) NVAL : dvar

VARIABLES : collection(var− dvar)
SIZE INTERVAL : int

Restriction(s) NVAL ≥ min(1, |VARIABLES|)
NVAL ≤ |VARIABLES|
required(VARIABLES, var)
SIZE INTERVAL > 0

Purpose
Consider the intervals of the form [SIZE INTERVAL ·k, SIZE INTERVAL·k+SIZE INTERVAL−
1] where k is an integer. NVAL is the number of intervals for which at least one value is assigned
to at least one variable of the collection VARIABLES.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var/SIZE INTERVAL = variables2.var/SIZE INTERVAL

Graph property(ies) NSCC = NVAL

Example ninterval

0
BBBB@

2,

8
>>>><
>>>>:

var− 3,
var− 1,
var− 9,
var− 1,
var− 9

9
>>>>=
>>>>;
, 4

1
CCCCA

Parts (A) and (B) of Figure 4.317 respectively show the initial and final graph.
Since we use the NSCC graph property we show the different strongly connected
components of the final graph. Each strongly connected component corresponds to those
values of an interval which are assigned to some variables of the VARIABLES collection.
The values 1, 3 and the value 9 which respectively correspond to intervals [0, 3] and [7, 9]
are assigned to the variables of the VARIABLES collection.

Usage The ninterval constraint is useful for counting the number of effectively used periods,
no matter how many time each period is used. A period can for example stand for a hour
or for a day.

Algorithm [33, 106].

See also nvalue, nclass, nequivalence, npair.

Key words counting constraint, value partitioning constraint, number of distinct equivalence classes,
interval, strongly connected component, equivalence.

20030820 683

VARIABLES

1

2

3

4

5

NSCC=2

SCC#1 SCC#2

1:3

2:1

4:1

3:9

5:9

(A) (B)

Figure 4.317: Initial and final graph of the ninterval constraint

684 AUTOMATON

4.148 no peak

Origin Derived from peak.

Constraint no peak(VARIABLES)

Argument(s) VARIABLES : collection(var − dvar)

Restriction(s) |VARIABLES| > 0
required(VARIABLES, var)

Purpose
A variable Vk (1 < k < m) of the sequence of variables VARIABLES = V1, . . . , Vm is a peak
if and only if there exist an i (1 < i ≤ k) such that Vi−1 < Vi and Vi = Vi+1 = . . . = Vk and
Vk > Vk+1. The total number of peaks of the sequence of variables VARIABLES is equal to 0.

Example no peak

0
BBBB@

8
>>>><
>>>>:

var − 1,
var − 1,
var − 4,
var − 8,
var − 8

9
>>>>=
>>>>;

1
CCCCA

The previous constraint holds since the sequence 1 1 4 8 8 does not contain any
peak.

1

1 2 5

2

3

4

5

6

43

7

8

1 1

4

Values
8 8

Variables

Figure 4.318: A sequence without any peak

Automaton Figure 4.319 depicts the automaton associated to the no peak constraint. To each pair of
consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a signature
variable Si. The following signature constraint links VARi, VARi+1 and Si: (VARi <
VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi > VARi+1 ⇔ Si = 2).

See also peak, no valley, valley.

Key words sequence, automaton, automaton without counters, sliding cyclic(1) constraint network(1).

20031101 685

i i+1VAR =VAR

i i+1VAR =VAR

i i+1VAR >VAR

i i+1VAR >VAR

i i+1VAR <VAR

i

t

s

$

$

Figure 4.319: Automaton of the no peak constraint

VAR
1

VAR
2

S2

VAR
n

VAR
3

S3

Q2

Sn−1

VAR
n−1

Q =tn−1Q =s0 Q1

S1

Figure 4.320: Hypergraph of the reformulation corresponding to the automaton of the
no peak constraint

686 AUTOMATON

4.149 no valley

Origin Derived from valley.

Constraint no valley(VARIABLES)

Argument(s) VARIABLES : collection(var − dvar)

Restriction(s) |VARIABLES| > 0
required(VARIABLES, var)

Purpose
A variable Vk (1 < k < m) of the sequence of variables VARIABLES = V1, . . . , Vm is a valley
if and only if there exist an i (1 < i ≤ k) such that Vi−1 > Vi and Vi = Vi+1 = . . . = Vk and
Vk < Vk+1. The total number of valleys of the sequence of variables VARIABLES is equal to 0.

Example no valley

0
BBBBBB@

8
>>>>>><
>>>>>>:

var− 1,
var− 1,
var− 4,
var− 8,
var− 8,
var− 2

9
>>>>>>=
>>>>>>;

1
CCCCCCA

The previous constraint holds since the sequence 1 1 4 8 8 2 does not contain any
valley.

1

1 2 5 6

2

3

4

5

6

43

7

8

1 1

4

Values
8 8

2

Variables

Figure 4.321: A sequence without any valley

Automaton Figure 4.322 depicts the automaton associated to the no valley constraint. To each pair of
consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a signature
variable Si. The following signature constraint links VARi, VARi+1 and Si: (VARi <
VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi > VARi+1 ⇔ Si = 2).

See also valley, no peak, peak.

Key words sequence, automaton, automaton without counters, sliding cyclic(1) constraint network(1).

20031101 687

i i+1VAR =VAR

i i+1VAR =VAR

i i+1VAR <VAR

i i+1VAR <VAR

i i+1VAR >VAR

i

t

s

$

$

Figure 4.322: Automaton of the no valley constraint

VAR
1

VAR
2

S2

VAR
n

VAR
3

S3

Q2

Sn−1

VAR
n−1

Q =tn−1Q =s0 Q1

S1

Figure 4.323: Hypergraph of the reformulation corresponding to the automaton of the
no valley constraint

688 NSCC,CLIQUE

4.150 not all equal

Origin CHIP

Constraint not all equal(VARIABLES)

Argument(s) VARIABLES : collection(var − dvar)

Restriction(s) required(VARIABLES, var)
|VARIABLES| > 1

Purpose The variables of the collection VARIABLES should take more than one single value.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NSCC > 1

Example not all equal

0
BBBB@

8
>>>><
>>>>:

var − 3,
var − 1,
var − 3,
var − 3,
var − 3

9
>>>>=
>>>>;

1
CCCCA

Parts (A) and (B) of Figure 4.324 respectively show the initial and final graph.
Since we use the NSCC graph property we show the different strongly connected com-
ponents of the final graph. Each strongly connected component corresponds to one value
which is assigned to some variables of the VARIABLES collection. The not all equal

holds since the final graph contains more than one strongly connected component.

Automaton Figure 4.325 depicts the automaton associated to the not all equal constraint. To each
pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds
a signature variable Si. The following signature constraint links VARi, VARi+1 and Si:
VARi = VARi+1 ⇔ Si.

Algorithm If the intersection of the domains of the variables of the VARIABLES collection is empty
the not all equal constraint is entailed. Otherwise, when only one single variable V
remains not fixed, remove the unique value (unique since the constraint is not entailed)
taken by the other variables from the domain of V .

See also nvalue.

Key words value constraint, disequality, automaton, automaton without counters,
sliding cyclic(1) constraint network(1), equivalence.

20030820 689

VARIABLES

1

2

3

4

5

NSCC=2

SCC#1 SCC#2

1:3

3:3

4:3

5:3

2:1

(A) (B)

Figure 4.324: Initial and final graph of the not all equal constraint

s

t

VAR <>VAR

VAR =VARi i+1

i i+1

Figure 4.325: Automaton of the not all equal constraint

VAR
1

VAR
2

S2

VAR
n

VAR
3

S3

Q2

Sn−1

VAR
n−1

Q =tn−1Q =s0 Q1

S1

Figure 4.326: Hypergraph of the reformulation corresponding to the automaton of the
not all equal constraint

690 NARC,PRODUCT

4.151 not in

Origin Derived from in.

Constraint not in(VAR, VALUES)

Argument(s) VAR : dvar

VALUES : collection(val− int)

Restriction(s) required(VALUES, val)
distinct(VALUES, val)

Purpose Remove the values of the VALUES collection from domain variable VAR.

Derived Collection(s) col(VARIABLES − collection(var − dvar), [item(var − VAR)])

Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→ collection(variables, values)

Arc arity 2

Arc constraint(s) variables.var = values.val

Graph property(ies) NARC = 0

Example not in(2, {val − 1, val− 3})

Figure 4.327 shows the initial graph associated to the previous example. Since we
use the NARC = 0 graph property the final graph is empty.

VARIABLES

VALUES

1

12

Figure 4.327: Initial graph of the not in constraint (the final graph is empty)

Signature Since 0 is the smallest number of arcs of the final graph we can rewrite NARC = 0 to
NARC ≤ 0. This leads to simplify NARC to NARC.

20030820 691

Automaton Figure 4.328 depicts the automaton associated to the not in constraint. Let VALi be the
val attribute of the ith item of the VALUES collection. To each pair (VAR, VALi) corresponds
a 0-1 signature variable Si as well as the following signature constraint: VAR = VALi ⇔ Si.

Remark Entailment occurs immediately after posting this constraint.

Used in group.

See also in.

Key words value constraint, unary constraint, excluded, disequality, domain definition, automaton,
automaton without counters, centered cyclic(1) constraint network(1), derived collection.

VAR<>VAL is

t

$

Figure 4.328: Automaton of the not in constraint

692 NARC,PRODUCT

Q =tn
Q1Q =s0

 S
1

 S
2

 S
n

VAR

Figure 4.329: Hypergraph of the reformulation corresponding to the automaton of the
not in constraint

20030820 693

694 NSCC,CLIQUE

4.152 npair

Origin Derived from nvalue.

Constraint npair(NVAL, PAIRS)

Argument(s) NVAL : dvar

PAIRS : collection(x − dvar, y − dvar)

Restriction(s) NVAL ≥ min(1, |PAIRS|)
NVAL ≤ |PAIRS|
required(PAIRS, [x, y])

Purpose NVAL is the number of distinct pairs of values assigned to the pairs of variables of the collection
PAIRS.

Arc input(s) PAIRS

Arc generator CLIQUE 7→ collection(pairs1, pairs2)

Arc arity 2

Arc constraint(s) • pairs1.x = pairs2.x
• pairs1.y = pairs2.y

Graph property(ies) NSCC = NVAL

Example npair

0
BBBB@

2,

8
>>>><
>>>>:

x− 3 y− 1,
x− 1 y− 5,
x− 3 y− 1,
x− 3 y− 1,
x− 1 y− 5

9
>>>>=
>>>>;

1
CCCCA

Parts (A) and (B) of Figure 4.330 respectively show the initial and final graph.
Since we use the NSCC graph property we show the different strongly connected
components of the final graph. Each strongly connected component corresponds to one
pair of values which is assigned to some pairs of variables of the PAIRS collection. In our
example we have the following pairs of values: (3,1) and (1,5).

Remark This is an example of a number of distinct values constraint where there is more than one
attribute that is associated to each vertex of the final graph.

See also nvalue, nclass, nequivalence, ninterval.

Key words counting constraint, value partitioning constraint, number of distinct equivalence classes,
pair, strongly connected component, equivalence.

20030820 695

PAIRS

1

2

3

4

5

NSCC=2

SCC#1 SCC#2

1:3,1

3:3,1

4:3,1

2:1,5

5:1,5

(A) (B)

Figure 4.330: Initial and final graph of the npair constraint

696 NSCC,CLIQUE

4.153 nset of consecutive values

Origin N. Beldiceanu

Constraint nset of consecutive values(N, VARIABLES)

Argument(s) N : dvar

VARIABLES : collection(var − dvar)

Restriction(s) N ≥ 1
N ≤ |VARIABLES|
required(VARIABLES, var)

Purpose N is the number of set of consecutive values used by the variables of the collection VARIABLES.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) abs(variables1.var − variables2.var) ≤ 1

Graph property(ies) NSCC = N

Example nset of consecutive values

0
BBBBBBBB@

2,

8
>>>>>>>><
>>>>>>>>:

var − 3,
var − 1,
var − 7,
var − 1,
var − 1,
var − 2,
var − 8

9
>>>>>>>>=
>>>>>>>>;

1
CCCCCCCCA

In this example, the variables of the collection VARIABLES use the following two
sets of consecutive values: {1, 2, 3} and {7, 8}. Parts (A) and (B) of Figure 4.331
respectively show the initial and final graph. Since we use the NSCC graph property, we
show the two strongly connected components of the final graph.

Graph model Since the arc constraint is symmetric each strongly connected component of the final graph
corresponds exactly to one connected component of the final graph.

Usage Used for specifying the fact that the values have to be used in a compact way is achieved
by setting N to 1.

See also min size set of consecutive var.

Key words value constraint, consecutive values, strongly connected component.

20030820 697

VARIABLES

1

2

3

4

5

6

7

NSCC=2

SCC#1 SCC#2

1:3

6:2

2:1

4:1

5:1

3:7

7:8

(A) (B)

Figure 4.331: Initial and final graph of the nset of consecutive values constraint

698 NSCC,CLIQUE

4.154 nvalue

Origin [73]

Constraint nvalue(NVAL, VARIABLES)

Synonym(s) cardinality on attributes values.

Argument(s) NVAL : dvar

VARIABLES : collection(var − dvar)

Restriction(s) NVAL ≥ min(1, |VARIABLES|)
NVAL ≤ |VARIABLES|
required(VARIABLES, var)

Purpose NVAL is the number of distinct values taken by the variables of the collection VARIABLES.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NSCC = NVAL

Example nvalue

0
BBBB@

4,

8
>>>><
>>>>:

var − 3,
var − 1,
var − 7,
var − 1,
var − 6

9
>>>>=
>>>>;

1
CCCCA

Parts (A) and (B) of Figure 4.332 respectively show the initial and final graph.
Since we use the NSCC graph property we show the different strongly connected
components of the final graph. Each strongly connected component corresponds to one
value which is assigned to some variables of the VARIABLES collection. The 4 following
values 1, 3, 6 and 7 are used by the variables of the VARIABLES collection.

Automaton Figure 4.333 depicts the automaton associated to the nvalue constraint. To each item of
the collection VARIABLES corresponds a signature variable Si, which is equal to 0.

Usage This constraint occurs in many practical applications. In the context of timetabling one
wants to set up a limit on the maximum number of activity types it is possible to perform.
For frequency allocation problems, one optimisation criteria corresponds to the fact that
you want to minimize the number of distinct frequencies that you use all over the entire
network. The nvalue constraint generalizes several constraints like:

20000128 699

VARIABLES

1

2

3

4

5

NSCC=4

SCC#1 SCC#2 SCC#3 SCC#4

1:3 2:1

4:1

3:7 5:6

(A) (B)

Figure 4.332: Initial and final graph of the nvalue constraint

i i

0,
{C[VAR]=C[VAR]+1}

$

t:
among_diff_0(N,C)

{C[_]=0}

s

Figure 4.333: Automaton of the nvalue constraint

700 NSCC,CLIQUE

• alldifferent(VARIABLES): in order to get the alldifferent constraint, one has
to set NVAL to the total number of variables.

• not all equal(VARIABLES): in order to get the not all equal constraint, one
has to set the minimum value of NVAL to 2.

Remark This constraint appears in [73, page 339] under the name of Cardinality on Attributes Val-
ues. A constraint called k − diff enforcing that a set of variables takes at least k distinct
values appears in the PhD thesis of J.-C. Régin [133].

Algorithm [33, 106, 54].

Used in track.

See also alldifferent, not all equal, nvalues, nvalues except 0, npair,
nvalue on intersection, among diff 0.

Key words counting constraint, value partitioning constraint, number of distinct equivalence classes,
number of distinct values, strongly connected component, domination, automaton,
automaton with array of counters, equivalence.

20000128 701

702 NCC,PRODUCT

4.155 nvalue on intersection

Origin Derived from common and nvalue.

Constraint nvalue on intersection(NVAL, VARIABLES1, VARIABLES2)

Argument(s) NVAL : dvar

VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)

Restriction(s) NVAL ≥ 0
NVAL ≤ |VARIABLES1|
NVAL ≤ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose NVAL is the number of distinct values which both occur in the VARIABLES1 and VARIABLES2

collections.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NCC = NVAL

Example nvalue on intersection

0
BBBBBBBBBBBBBB@

2,

8
>><
>>:

var − 1,
var − 9,
var − 1,
var − 5

9
>>=
>>;
,

8
>>>>>><
>>>>>>:

var − 2,
var − 1,
var − 9,
var − 9,
var − 6,
var − 9

9
>>>>>>=
>>>>>>;

1
CCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.334 respectively show the initial and final graph.
Since we use the NCC graph property we show the connected components of the final
graph. The variable NVAL is equal to this number of connected components. Observe that
all the vertices corresponding to the variables that take values 5, 2 or 6 were removed from
the final graph since there is no arc for which the associated equality constraint holds.

See also nvalue, common, alldifferent on intersection, same intersection.

Key words counting constraint, number of distinct values, connected component,
constraint on the intersection.

20040530 703

VARIABLES1

VARIABLES2

1

1234 56

234

NCC=2

CC#1 CC#2

1:1

2:1

3:1 2:9

3:9 4:9 6:9

(A) (B)

Figure 4.334: Initial and final graph of the nvalue on intersection constraint

704 NSCC,CLIQUE

4.156 nvalues

Origin Inspired by nvalue and count.

Constraint nvalues(VARIABLES, RELOP, LIMIT)

Argument(s) VARIABLES : collection(var − dvar)
RELOP : atom

LIMIT : dvar

Restriction(s) required(VARIABLES, var)
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose Let N be the number of distinct values assigned to the variables of the VARIABLES collection.
Enforce condition N RELOP LIMIT to hold.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NSCC RELOP LIMIT

Example nvalues

0
BBBBBB@

8
>>>>>><
>>>>>>:

var− 4,
var− 5,
var− 5,
var− 4,
var− 1,
var− 5

9
>>>>>>=
>>>>>>;

,=, 3

1
CCCCCCA

Parts (A) and (B) of Figure 4.335 respectively show the initial and final graph.
Since we use the NSCC graph property we show the different strongly connected
components of the final graph. Each strongly connected component corresponds to one
value which is assigned to some variables of the VARIABLES collection. The 3 following
values 1, 4 and 5 are used by the variables of the VARIABLES collection.

Usage Used in the Constraint(s) on sets slot for defining some constraints like
assign and nvalues, circuit cluster or coloured cumulative.

Used in assign and nvalues, circuit cluster, coloured cumulative,
coloured cumulatives.

See also nvalues except 0, nvalue.

Key words counting constraint, value partitioning constraint, number of distinct equivalence classes,
number of distinct values, strongly connected component, equivalence.

20030820 705

VARIABLES

1

2

3

4

5

6

NSCC=3

SCC#1 SCC#2 SCC#3

1:4

4:4

2:5

3:5

6:5

5:1

(A) (B)

Figure 4.335: Initial and final graph of the nvalues constraint

706 NSCC,CLIQUE

4.157 nvalues except 0

Origin Derived from nvalues.

Constraint nvalues except 0(VARIABLES, RELOP, LIMIT)

Argument(s) VARIABLES : collection(var − dvar)
RELOP : atom

LIMIT : dvar

Restriction(s) required(VARIABLES, var)
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose Let N be the number of distinct values, different from 0, assigned to the variables of the
VARIABLES collection. Enforce condition N RELOP LIMIT to hold.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • variables1.var 6= 0
• variables1.var = variables2.var

Graph property(ies) NSCC RELOP LIMIT

Example nvalues except 0

0
BBBBBB@

8
>>>>>><
>>>>>>:

var − 4,
var − 5,
var − 5,
var − 4,
var − 0,
var − 1

9
>>>>>>=
>>>>>>;

,=, 3

1
CCCCCCA

Parts (A) and (B) of Figure 4.336 respectively show the initial and final graph.
Since we use the NSCC graph property we show the different strongly connected
components of the final graph. Each strongly connected component corresponds to one
value distinct from 0 which is assigned to some variables of the VARIABLES collection.
Beside value 0, the 3 following values 1, 4 and 5 are assigned to the variables of the
VARIABLES collection.

Used in cycle or accessibility.

See also nvalues, nvalue, assign and nvalues.

Key words counting constraint, value partitioning constraint, number of distinct values,
strongly connected component, joker value.

20030820 707

VARIABLES

1

2

3

4

5

6

NSCC=3

SCC#1 SCC#2 SCC#3

1:4

4:4

2:5

3:5

6:1

(A) (B)

Figure 4.336: Initial and final graph of the nvalues except 0 constraint

708 MAX NSCC,NCC,NVERTEX,CLIQUE

4.158 one tree

Origin Inspired by [134]

Constraint one tree(NODES)

Argument(s) NODES : collection

0
BBBBBB@

id− atom,
index − int,
type − int,
father − dvar,
depth1 − dvar,
depth2 − dvar

1
CCCCCCA

Restriction(s) required(NODES, [id, index, type, father, depth1, depth2])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
in list(NODES, type, [2, 3, 6])
NODES.father ≥ 1
NODES.father ≤ |NODES|
NODES.depth1 ≥ 0
NODES.depth1 ≤ |NODES|
NODES.depth2 ≥ 0
NODES.depth2 ≤ |NODES|

Purpose Merge two trees that have some leaves in common so that all the precedence constraints induced
by the father relation of both trees are preserved.

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s)
W

0
BBBBBBBB@

nodes1.index = nodes2.index ∧ nodes1.father = nodes1.index,

V

0
BBBBBB@

nodes1.index 6= nodes2.index,
nodes1.father = nodes2.index,
W„ nodes1.type mod 2 = 0 ∧ nodes1.depth1 > nodes2.depth1,

nodes1.type mod 2 > 0 ∧ nodes1.depth1 = nodes2.depth1

«
,

W„ nodes1.type mod 3 = 0 ∧ nodes1.depth2 > nodes2.depth2,
nodes1.type mod 3 > 0 ∧ nodes1.depth2 = nodes2.depth2

«

1
CCCCCCA

1
CCCCCCCCA

Graph property(ies) •MAX NSCC ≤ 1
• NCC = 1
• NVERTEX = |NODES|

20031001 709

Example one tree

0
BBBBBBBBBBBBBBBBBBBBBB@

8
>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

id − x index − 1 type − 2 father − 6 depth1 − 2 depth2 − 2,
id − x index − 2 type − 2 father − 2 depth1 − 1 depth2 − 0,
id − x index − 3 type − 3 father − 6 depth1 − 1 depth2 − 3,
id − x index − 4 type − 3 father − 5 depth1 − 2 depth2 − 4,
id − x index − 5 type − 3 father − 1 depth1 − 2 depth2 − 3,
id − x index − 6 type − 3 father − 7 depth1 − 1 depth2 − 2,
id − x index − 7 type − 3 father − 2 depth1 − 1 depth2 − 1,
id − g index − 8 type − 2 father − 1 depth1 − 3 depth2 − 2,
id − a index − 9 type − 6 father − 4 depth1 − 3 depth2 − 5,
id − f index − 10 type − 6 father − 7 depth1 − 2 depth2 − 2,
id − b index − 11 type − 3 father − 4 depth1 − 2 depth2 − 5,
id − c index − 12 type − 3 father − 5 depth1 − 2 depth2 − 4,
id − e index − 13 type − 3 father − 3 depth1 − 1 depth2 − 4,
id − d index − 14 type − 3 father − 3 depth1 − 1 depth2 − 4

9
>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;

1
CCCCCCCCCCCCCCCCCCCCCCA

Figure 4.337 shows the two trees we want to merge. Note that the leaves a and f occur in
both trees. In order to ease the link with the merged tree given in part (B) of Figure 4.338,
each vertex of the original trees contains the id, the index, the type, the father and the
corresponding depth.

g 8 2 1 3

x 1 2 2 2

x 2 2 2 1

a 9 6 1 3

f 10 6 2 2

b 11 3 4 5

x 4 3 5 4

x 5 3 6 3

a 9 6 4 5

c 12 3 5 4

x 6 3 7 2

e 13 3 3 4

x 3 3 6 3

d 14 3 3 4

f 10 6 7 2

x 7 3 7 1

Figure 4.337: The two trees to merge

Parts (A) and (B) of Figure 4.338 respectively show the initial and final graph. Since we
use the NVERTEX graph property, the vertices of the final graph are stressed in bold.

Graph model The information about the two trees to merge is modelled in the following way:

710 MAX NSCC,NCC,NVERTEX,CLIQUE

NODES

1

2

3

4

5

6

7

8

9

10

11

12

13

14

MAX_NSCC=1,NCC=1,NVERTEX=14

1:x,1,2,6,2,2

6:x,6,3,7,1,2

7:x,7,3,2,1,1

2:x,2,2,2,1,0

3:x,3,3,6,1,3

4:x,4,3,5,2,4

5:x,5,3,1,2,3 8:g,8,2,1,3,2

9:a,9,6,4,3,5

10:f,10,6,7,2,2

11:b,11,3,4,2,5

12:c,12,3,5,2,4

13:e,13,3,3,1,4 14:d,14,3,3,1,4

(A) (B)

Figure 4.338: Initial and final graph of the one tree constraint

20031001 711

• A vertex which only belongs to the first (respectively second) tree has its type

attribute set to 2 (respectively 3), while a vertex which belongs to both trees has
its type attribute set to 6. This encoding was selected so that the statement
type mod 2 = 0 (respectively type mod 3 = 0) allows determining whether a
vertex belongs or not to the first (respectively second) tree.

• For a vertex belonging to the first (respectively second) tree, the depth1 (respectively
depth2) attribute indicates the depth of that vertex in the corresponding tree.

The arc constraint is a disjunction of two conditions which respectively capture the follow-
ing ideas:

• The first condition describes the fact that we link a vertex to itself. This vertex
corresponds to the root of the merged tree we construct.

• The first part of the second condition describes the fact that we link a child vertex
nodes1 to its father nodes2. The last part of the second condition expresses the fact
that we want to preserve the father relation imposed by the first and second trees. This
is achieved by using the following idea: When the child vertex nodes1 belongs to
the first (respectively second) tree we enforce a strict inequality between the depth1
(respectively depth2) attributes of nodes1 and nodes2; Otherwise we enforce an
equality constraint.

Finally we use the following three graph properties in order to enforce to get a merged tree:

• The first graph property MAX NSCC ≤ 1 enforces the fact that the size of the
largest strongly connected component does not exceed one. This avoid having cir-
cuits containing more than one vertex. In fact the root of the merged tree is a strongly
connected component with one single vertex.

• The second graph property NCC = 1 imposes having only one single tree.

• Finally the third graph property NVERTEX = |NODES| imposes that the merged
tree contains effectively all the vertices of the first and second tree.

Remark A compact way to model the construction of a tree of life [134].

See also tree.

Key words graph constraint, tree, bioinformatics, phylogeny, obscure.

712 NARC,CLIQUE (<)

4.159 orchard

Origin [135]

Constraint orchard(NROW, TREES)

Argument(s) NROW : dvar

TREES : collection(index − int, x− dvar, y− dvar)

Restriction(s) NROW ≥ 0
TREES.index ≥ 1
TREES.index ≤ |TREES|
required(TREES, [index, x, y])
distinct(TREES, index)
TREES.x ≥ 0
TREES.y ≥ 0

Orchard problem [135]:
Purpose Your aid I want, Nine trees to plant, In rows just half a score, And let there be,

In each row, three—Solve this: I ask no more!

Arc input(s) TREES

Arc generator CLIQUE(<) 7→ collection(trees1, trees2, trees3)

Arc arity 3

Arc constraint(s)
P
0
@

trees1.x ∗ trees2.y − trees1.x ∗ trees3.y,
trees1.y ∗ trees3.x − trees1.y ∗ trees2.x,
trees2.x ∗ trees3.y − trees2.y ∗ trees3.x

1
A = 0

Graph property(ies) NARC = NROW

Example orchard

0
BBBBBBBBBBBB@

10,

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

index − 1 x− 0 y − 0,
index − 2 x− 4 y − 0,
index − 3 x− 8 y − 0,
index − 4 x− 2 y − 4,
index − 5 x− 4 y − 4,
index − 6 x− 6 y − 4,
index − 7 x− 0 y − 8,
index − 8 x− 4 y − 8,
index − 9 x− 8 y − 8

9
>>>>>>>>>>>>=
>>>>>>>>>>>>;

1
CCCCCCCCCCCCA

The 10 alignments of 3 trees correspond to the following triples of trees: (1, 2, 3),
(1, 4, 8), (1, 5, 9), (2, 4, 7), (2, 5, 8), (2, 6, 9), (3, 5, 7), (3, 6, 8), (4, 5, 6), (7, 8, 9).
Figure 4.339 shows the 9 trees and the 10 alignments corresponding to the example.

20000128 713

Graph model The arc generator CLIQUE(<) with an arity of three is used in order to generate all
the arcs of the directed hypergraph. Each arc is an ordered triple of trees. We use the
restriction< in order to generate one single arc for each set of three trees. This is required,
since otherwise we would count more than once a given alignment of three trees. The
formula used within the arc constraint expresses the fact that the three points of respective
coordinates (trees1.x, trees1.y), (trees2.x, trees2.y) and (trees3.x, trees3.y) are
aligned. It corresponds to the development of the expression:

˛̨
˛̨
˛̨
trees1.x trees2.y 1
trees2.x trees2.y 1
trees3.x trees3.y 1

˛̨
˛̨
˛̨ = 0

Key words geometrical constraint, alignment, hypergraph.

714 NARC,CLIQUE (<)

2
1 3

5

4 6

7
8

9

Figure 4.339: Nine trees with 10 alignments of 3 trees

20000128 715

716 NARC, SELF

4.160 orth link ori siz end

Origin Used by several constraints between orthotopes

Constraint orth link ori siz end(ORTHOTOPE)

Argument(s) ORTHOTOPE : collection(ori − dvar, siz− dvar, end − dvar)

Restriction(s) |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0

Purpose Enforce for each item of the ORTHOTOPE collection the constraint ori + siz = end.

Arc input(s) ORTHOTOPE

Arc generator SELF 7→ collection(orthotope)

Arc arity 1

Arc constraint(s) orthotope.ori + orthotope.siz = orthotope.end

Graph property(ies) NARC = |ORTHOTOPE|

Example orth link ori siz end

„
ori − 2 siz − 2 end − 4,
ori − 1 siz − 3 end − 4

ff «

Parts (A) and (B) of Figure 4.340 respectively show the initial and final graph.
Since we use the NARC graph property, the unary arcs of the final graph are stressed in
bold.

ORTHOTOPE

12

NARC=2

1:2,2,4 2:1,3,4

(A) (B)

Figure 4.340: Initial and final graph of the orth link ori siz end constraint

Signature Since we use the SELF arc generator on the ORTHOTOPE collection the number of arcs of
the initial graph is equal to |ORTHOTOPE|. Therefore the maximum number of arcs of the
final graph is also equal to |ORTHOTOPE|. For this reason we can rewrite the graph property
NARC = |ORTHOTOPE| to NARC ≥ |ORTHOTOPE| and simplify NARC to NARC.

Usage Used in the Arc constraint(s) slot for defining some constraints like diffn,
place in pyramid or orths are connected.

20030820 717

Used in diffn, orth on the ground, orth on top of orth, orths are connected,
two orth are in contact, two orth column, two orth do not overlap,
two orth include.

Key words decomposition, orthotope.

718 NARC, SELF

4.161 orth on the ground

Origin Used for defining place in pyramid.

Constraint orth on the ground(ORTHOTOPE, VERTICAL DIM)

Argument(s) ORTHOTOPE : collection(ori− dvar, siz − dvar, end− dvar)
VERTICAL DIM : int

Restriction(s) |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
VERTICAL DIM ≥ 1
VERTICAL DIM ≤ |ORTHOTOPE|
orth link ori siz end(ORTHOTOPE)

Purpose The ori attribute of the VERTICAL DIMth item of the ORTHOTOPES collection should be fixed
to one.

Arc input(s) ORTHOTOPE

Arc generator SELF 7→ collection(orthotope)

Arc arity 1

Arc constraint(s) • orthotope.key = VERTICAL DIM

• orthotope.ori = 1

Graph property(ies) NARC = 1

Example orth on the ground

„
ori − 1 siz − 2 end− 3,
ori − 2 siz − 3 end− 5

ff
, 1

«

Parts (A) and (B) of Figure 4.341 respectively show the initial and final graph.
Since we use the NARC graph property, the unary arc of the final graph is stressed in
bold.

ORTHOTOPE

12

NARC=1

1:1,2,3

(A) (B)

Figure 4.341: Initial and final graph of the orth on the ground constraint

20030820 719

Signature Since all the key attributes of the ORTHOTOPES collection are distinct, because of the first
condition of the arc constraint, and since we use the SELF arc generator the final graph
contains at most one arc. Therefore we can rewrite the graph property NARC = 1 to
NARC ≥ 1 and simplify NARC to NARC.

Used in place in pyramid.

See also place in pyramid.

Key words geometrical constraint, orthotope.

720 NARC,PRODUCT (=)

4.162 orth on top of orth

Origin Used for defining place in pyramid.

Constraint orth on top of orth(ORTHOTOPE1, ORTHOTOPE2, VERTICAL DIM)

Type(s) ORTHOTOPE : collection(ori − dvar, siz− dvar, end − dvar)

Argument(s) ORTHOTOPE1 : ORTHOTOPE

ORTHOTOPE2 : ORTHOTOPE

VERTICAL DIM : int

Restriction(s) |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
|ORTHOTOPE1| = |ORTHOTOPE2|
VERTICAL DIM ≥ 1
VERTICAL DIM ≤ |ORTHOTOPE1|
orth link ori siz end(ORTHOTOPE1)
orth link ori siz end(ORTHOTOPE2)

ORTHOTOPE1 is located on top of ORTHOTOPE2 which concretely means:
Purpose • In each dimension different from VERTICAL DIM the projection of ORTHOTOPE1 is in-

cluded in the projection of ORTHOTOPE2.

• In the dimension VERTICAL DIM the origin of ORTHOTOPE1 coincide with the end of
ORTHOTOPE2.

Arc input(s) ORTHOTOPE1 ORTHOTOPE2

Arc generator PRODUCT (=) 7→ collection(orthotope1, orthotope2)

Arc arity 2

Arc constraint(s) • orthotope1.key 6= VERTICAL DIM

• orthotope2.ori ≤ orthotope1.ori
• orthotope1.end ≤ orthotope2.end

Graph property(ies) NARC = |ORTHOTOPE1| − 1

Arc input(s) ORTHOTOPE1 ORTHOTOPE2

Arc generator PRODUCT (=) 7→ collection(orthotope1, orthotope2)

Arc arity 2

Arc constraint(s) • orthotope1.key = VERTICAL DIM

• orthotope1.ori = orthotope2.end

20030820 721

Graph property(ies) NARC = 1

Example orth on top of orth

0
BB@

ori − 5 siz − 2 end − 7,
ori − 3 siz − 3 end − 6

ff
,

ori − 3 siz − 5 end − 8,
ori − 1 siz − 2 end − 3

ff
, 2

1
CCA

Parts (A) and (B) of Figure 4.342 respectively show the initial and final graph asso-
ciated to the second graph constraint. Since we use the NARC graph property, the unique
arc of the final graph is stressed in bold.

ORTHOTOPE1

ORTHOTOPE2

1

1

2

2

NARC=1

2:3,3,6

2:1,2,3

(A) (B)

Figure 4.342: Initial and final graph of the orth on top of orth constraint

Graph model The first and second graph constraints respectively express the first and second conditions
stated in the Purpose slot defining the orth on top of orth constraint.

Signature Consider the second graph constraint. Since all the key attributes of the ORTHOTOPE1

collection are distinct, because of the arc constraint orthotope1.key = VERTICAL DIM,
and since we use the PRODUCT (=) arc generator the final graph contains at most one
arc. Therefore we can rewrite the graph property NARC = 1 to NARC ≥ 1 and
simplify NARC to NARC.

Used in place in pyramid.

See also place in pyramid.

Key words geometrical constraint, non-overlapping, orthotope.

722 NARC, SELF ; NCC,NVERTEX,CLIQUE (6=)

4.163 orths are connected

Origin N. Beldiceanu

Constraint orths are connected(ORTHOTOPES)

Type(s) ORTHOTOPE : collection(ori − dvar, siz− dvar, end − dvar)

Argument(s) ORTHOTOPES : collection(orth− ORTHOTOPE)

Restriction(s) |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz > 0
required(ORTHOTOPES, orth)
same size(ORTHOTOPES, orth)

Purpose
There should be one single group of connected orthotopes. Two orthotopes touch each other
(i.e. are connected) if they overlap in all dimensions except one, and if, for the dimension where
they do not overlap, the distance between the two orthotopes is equal to 0.

Arc input(s) ORTHOTOPES

Arc generator SELF 7→ collection(orthotopes)

Arc arity 1

Arc constraint(s) orth link ori siz end(orthotopes.orth)

Graph property(ies) NARC = |ORTHOTOPES|

Arc input(s) ORTHOTOPES

Arc generator CLIQUE(6=) 7→ collection(orthotopes1, orthotopes2)

Arc arity 2

Arc constraint(s) two orth are in contact(orthotopes1.orth, orthotopes2.orth)

Graph property(ies) • NVERTEX = |ORTHOTOPES|
• NCC = 1

Example orths are connected

0
BBBBBBBBBB@

8
>>>>>>>>>><
>>>>>>>>>>:

orth −

ori− 2 siz− 4 end − 6,
ori− 2 siz− 2 end − 4

ff
,

orth −

ori− 1 siz− 2 end − 3,
ori− 4 siz− 3 end − 7

ff
,

orth −

ori− 7 siz− 4 end − 11,
ori− 1 siz− 2 end − 3

ff
,

orth −

ori− 6 siz− 2 end − 8,
ori− 3 siz− 2 end − 5

ff

9
>>>>>>>>>>=
>>>>>>>>>>;

1
CCCCCCCCCCA

20000128 723

Parts (A) and (B) of Figure 4.343 respectively show the initial and final graph.
Since we use the NVERTEX graph property the vertices of the final graph are stressed
in bold. Since we also use the NCC graph property we show the unique connected
component of the final graph. An arc between two vertices indicates that two rectangles
are in contact. Figure 4.344 shows the rectangles associated to the example. One can
observe that:

• Rectangle 2 touch rectangle 1,

• Rectangle 1 touch rectangle 2 and rectangle 4,

• Rectangle 4 touch rectangle 1 and rectangle 3,

• Rectangle 3 touch rectangle 4.

ORTHOTOPES

1

2

3

4 NVERTEX=4
NCC=1

SCC#1

1:2,4,6
 2,2,4

2:1,2,3
 4,3,7

4:6,2,8
 3,2,5

3:7,4,11
 1,2,3

(A) (B)

Figure 4.343: Initial and final graph of the orths are connected constraint

1

1 2 3 4 5 6 7 8 9 10

2

3

4

5

6

R1

R3

R4

R2

Figure 4.344: Four connected rectangles

Signature Since the first graph constraint uses the SELF arc generator on the ORTHOTOPES col-
lection the corresponding initial graph contains |ORTHOTOPES| arcs. Therefore the final
graph of the first graph constraint contains at most |ORTHOTOPES| arcs and we can rewrite
NARC = |ORTHOTOPES| to NARC ≥ |ORTHOTOPES|. So we can simplify NARC to
NARC.

724 NARC, SELF ; NCC,NVERTEX,CLIQUE (6=)

Consider now the second graph constraint. Since its corresponding initial graph con-
tains |ORTHOTOPES| vertices, its final graph has a maximum number of vertices also
equal to |ORTHOTOPES|. Therefore we can rewrite NVERTEX = |ORTHOTOPES| to
NVERTEX ≥ |ORTHOTOPES| and simplify NVERTEX to NVERTEX. From the
graph property NVERTEX = |ORTHOTOPES| and from the restriction |ORTHOTOPES| >
0 the final graph is not empty. Therefore it contains at least one connected component. So
we can rewrite NCC = 1 to NCC ≤ 1 and simplify NCC to NCC.

Usage In floor planning problem there is a typical constraint, which states that one should be able
to access every room from any room.

See also two orth are in contact.

Key words geometrical constraint, touch, contact, non-overlapping, orthotope.

20000128 725

726 PATH FROM TO,CLIQUE

4.164 path from to

Origin [74]

Constraint path from to(FROM, TO, NODES)

Usual name path

Argument(s) FROM : int

TO : int

NODES : collection(index − int, succ − svar)

Restriction(s) FROM ≥ 1
FROM ≤ |NODES|
TO ≥ 1
TO ≤ |NODES|
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)

Purpose Select some arcs of a digraph G so that there is still a path between two given vertices of G.

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) in set(nodes2.index, nodes1.succ)

Graph property(ies) PATH FROM TO(index, FROM, TO) = 1

Example path from to

0
BBBB@

4, 3,

8
>>>><
>>>>:

index − 1 succ − ∅,
index − 2 succ − ∅,
index − 3 succ − {5},
index − 4 succ − {5},
index − 5 succ − {2, 3}

9
>>>>=
>>>>;

1
CCCCA

Part (A) of Figure 4.345 shows the initial graph from which we choose to start. It
is derived from the set associated to each vertex. Each set describes the potential values
of the succ attribute of a given vertex. Part (B) of Figure 4.345 gives the final graph
associated to the example. Since we use the PATH FROM TO graph property we
show on the final graph the following information:

• The vertices which respectively correspond to the start and the end of the required
path are stressed in bold.

• The arcs on the required path are also stressed in bold.

20030820 727

The path from to constraint holds since there is a path from vertex 4 to vertex 3 (4 and 3
refer to the index attribute of a vertex).

Signature Since the maximum value returned by the graph property PATH FROM TO
is equal to 1 we can rewrite PATH FROM TO(index, FROM, TO) = 1
to PATH FROM TO(index, FROM, TO) ≥ 1. Therefore we simplify
PATH FROM TO to PATH FROM TO.

See also temporal path, link set to booleans.

Key words graph constraint, path, linear programming, constraint involving set variables.

728 PATH FROM TO,CLIQUE

NODES

1:1,{2,4}

2:2,{1,3,5}

4:4,{1,5}3:3,{2,5}

5:5,{2,3,4}

PATH_FROM_TO(index,4,3)=1

4:4,{5}

5:5,{2,3}

3:3,{5} 2:2,{}

(A) (B)

Figure 4.345: Initial and final graph of the path from to set constraint

20030820 729

730 PREDEFINED

4.165 pattern

Origin [34]

Constraint pattern(VARIABLES, PATTERNS)

Type(s) PATTERN : collection(var− int)

Argument(s) VARIABLES : collection(var − dvar)
PATTERNS : collection(pat − PATTERN)

Restriction(s) required(PATTERN, var)
change(0, PATTERN,=)
required(VARIABLES, var)
required(PATTERNS, pat)
same size(PATTERNS, pat)

Purpose

We quote the definition from the original paper [34, page 157] introducing the pattern con-
straint.
We call a k-pattern any sequence of k elements such that no two successive elements have the
same value. Consider a set V = {v1, v2, . . . , vm} and a sequence s = 〈s1, s2, . . . , sn〉 of
elements of V . Consider now the sequence 〈vi1, vi2, . . . , vil〉 of the types of the successive
stretches that appear in s. Let P be a set of k-pattern. Vector s satisfies P if and only if every
subsequence of k elements in 〈vi1, vi2, . . . , vil〉 belongs to P .

Example pattern

0
BBBBBBBBBBBBBBBB@

8
>>>>>>>>>><
>>>>>>>>>>:

var− 1,
var− 1,
var− 2,
var− 2,
var− 2,
var− 1,
var− 3,
var− 3

9
>>>>>>>>>>=
>>>>>>>>>>;

,

8
<
:

pat− {var − 1, var− 2, var− 1},
pat− {var − 1, var− 2, var− 3},
pat− {var − 2, var− 1, var− 3}

9
=
;

1
CCCCCCCCCCCCCCCCA

Usage The pattern constraint was originally introduced within the context of staff scheduling.
In this context, the value of the ith variable of the VARIABLES collection corresponds to
the type of shift performed by a person on the ith day. A stretch is a maximum sequence
of consecutive variables which are all assigned to the same value. The pattern constraint
imposes that each sequence of k consecutive stretches belongs to a given list of patterns.

Remark A generalization of the pattern constraint to the regular constraint enforcing the fact
that a sequence of variables corresponds to a regular expression is presented in [5].

See also stretch path, sliding distribution, group.

20031008 731

Key words predefined constraint, timetabling constraint, sliding sequence constraint.

732 AUTOMATON

4.166 peak

Origin Derived from inflexion.

Constraint peak(N, VARIABLES)

Argument(s) N : dvar

VARIABLES : collection(var − dvar)

Restriction(s) N ≥ 0
2 ∗ N ≤ max(|VARIABLES| − 1, 0)
required(VARIABLES, var)

Purpose
A variable Vk (1 < k < m) of the sequence of variables VARIABLES = V1, . . . , Vm is a peak
if and only if there exist an i (1 < i ≤ k) such that Vi−1 < Vi and Vi = Vi+1 = . . . = Vk and
Vk > Vk+1. N is the total number of peaks of the sequence of variables VARIABLES.

Example peak

0
BBBBBBBBBB@

2,

8
>>>>>>>>>><
>>>>>>>>>>:

var − 1,
var − 1,
var − 4,
var − 8,
var − 6,
var − 2,
var − 7,
var − 1

9
>>>>>>>>>>=
>>>>>>>>>>;

1
CCCCCCCCCCA

The previous constraint holds since the sequence 1 1 4 8 6 2 7 1 contains two
peaks which correspond to the variables which are assigned to values 8 and 7.

1

1 5 6 7 8

2

3

4

5

6

43

7

8

1 1

4

Values

Variables

8

2

6

2

7

1

Figure 4.346: The sequence and its two peaks

Automaton Figure 4.347 depicts the automaton associated to the peak constraint. To each pair of
consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a signature
variable Si. The following signature constraint links VARi, VARi+1 and Si: (VARi >
VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi < VARi+1 ⇔ Si = 2).

20040530 733

VAR > VARi i+1 VAR = VARi i+1

VAR = VARi i+1i i+1VAR < VAR

VAR < VARi i+1

u

t:
N=C

$

$

VAR > VAR ,i i+1
{C=C+1}

{C=0}

s

Figure 4.347: Automaton of the peak constraint

Q =s0

C =00 C1

Q1

VAR
1

S1

VAR
2

S2

VAR
n

VAR
3

Sn−1

VAR
n−1

S3

Q2

C2

Q =tn−1

C =Nn−1

Figure 4.348: Hypergraph of the reformulation corresponding to the automaton of the
peak constraint

734 AUTOMATON

Usage Useful for constraining the number of peaks of a sequence of domain variables.

Remark Since the arity of the arc constraint is not fixed, the peak constraint cannot be currently de-
scribed. However, this would not hold anymore if we were introducing a slot that specifies
how to merge adjacent vertices of the final graph.

See also no peak, inflexion, valley.

Key words sequence, automaton, automaton with counters, sliding cyclic(1) constraint network(2).

20040530 735

736 PREDEFINED

4.167 period

Origin N. Beldiceanu

Constraint period(PERIOD, VARIABLES, CTR)

Argument(s) PERIOD : dvar

VARIABLES : collection(var − dvar)
CTR : atom

Restriction(s) PERIOD ≥ 1
PERIOD ≤ |VARIABLES|
required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose
Let us note V0, V1, . . . , Vm−1 the variables of the VARIABLES collection. PERIOD is the period
of the sequence V0 V1 . . . Vm−1 according to constraint CTR . This means that PERIOD is the
smallest natural number such that Vi CTR Vi+PERIOD holds for all i ∈ 0, 1, . . . ,m−PERIOD−1.

Example period

0
BBBBBBBBBB@

3,

8
>>>>>>>>>><
>>>>>>>>>>:

var − 1,
var − 1,
var − 4,
var − 1,
var − 1,
var − 4,
var − 1,
var − 1

9
>>>>>>>>>>=
>>>>>>>>>>;

,=

1
CCCCCCCCCCA

The smallest period of the previous sequence is equal to 3.

Algorithm When CTR corresponds to the equality constraint, a potentially incomplete filtering algo-
rithm based on 13 deductions rules is described in [136]. The generalization of these rules
to the case where CTR is not the equality constraint is discussed.

See also period except 0.

Key words predefined constraint, periodic, timetabling constraint, scheduling constraint, sequence,
border.

20000128 737

738 PREDEFINED

4.168 period except 0

Origin Derived from period.

Constraint period except 0(PERIOD, VARIABLES, CTR)

Argument(s) PERIOD : dvar

VARIABLES : collection(var − dvar)
CTR : atom

Restriction(s) PERIOD ≥ 1
PERIOD ≤ |VARIABLES|
required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose

Let us note V0, V1, . . . , Vm−1 the variables of the VARIABLES collection. PERIOD is the period
of the sequence V0 V1 . . . Vm−1 according to constraint CTR . This means that PERIOD is the
smallest natural number such that Vi CTR Vi+PERIOD ∨ Vi = 0 ∨ Vi+PERIOD = 0 holds for all
i ∈ 0, 1, . . . ,m− PERIOD − 1.

Example period except 0

0
BBBBBBBBBB@

3,

8
>>>>>>>>>><
>>>>>>>>>>:

var − 1,
var − 1,
var − 4,
var − 1,
var − 1,
var − 0,
var − 1,
var − 1

9
>>>>>>>>>>=
>>>>>>>>>>;

,=

1
CCCCCCCCCCA

Since value 0 is considered as a joker the fact that 4 is different from 0 does not
matter. Therefore, the smallest period of the previous sequence is equal to 3.

Usage Useful for timetabling problems where a person should repeat some work pattern over an
over except when he is unavailable for some reason. The value 0 represents the fact that he
is unavailable, while the other values are used in the work pattern.

Algorithm See [136].

See also period.

Key words predefined constraint, periodic, timetabling constraint, scheduling constraint, sequence,
joker value.

20030820 739

740 NARC,CLIQUE

4.169 place in pyramid

Origin N. Beldiceanu

Constraint place in pyramid(ORTHOTOPES, VERTICAL DIM)

Type(s) ORTHOTOPE : collection(ori − dvar, siz− dvar, end − dvar)

Argument(s) ORTHOTOPES : collection(orth− ORTHOTOPE)
VERTICAL DIM : int

Restriction(s) |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
same size(ORTHOTOPES, orth)
VERTICAL DIM ≥ 1
diffn(ORTHOTOPES)

Purpose

For each pair of orthotopes (O1, O2) of the collection ORTHOTOPES, O1 and O2 do not overlap
(two orthotopes do not overlap if there exists at least one dimension where their projections do
not overlap). In addition, each orthotope of the collection ORTHOTOPES should be supported
by one other orthotope or by the ground. The vertical dimension is given by the parameter
VERTICAL DIM.

Arc input(s) ORTHOTOPES

Arc generator CLIQUE 7→ collection(orthotopes1, orthotopes2)

Arc arity 2

Arc constraint(s)
W
0
BB@

V„ orthotopes1.key = orthotopes2.key,
orth on the ground(orthotopes1.orth, VERTICAL DIM)

«
,

V„ orthotopes1.key 6= orthotopes2.key,
orth on top of orth(orthotopes1.orth, orthotopes2.orth, VERTICAL DIM)

«

1
CCA

Graph property(ies) NARC = |ORTHOTOPES|

Example place in pyramid

0
BBBBBBBBBBBBBBBBBB@

8
>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

orth −

ori − 1 siz − 3 end − 4,
ori − 1 siz − 2 end − 3

ff
,

orth −

ori − 1 siz − 2 end − 3,
ori − 3 siz − 3 end − 6

ff
,

orth −

ori − 5 siz − 6 end − 11,
ori − 1 siz − 2 end − 3

ff
,

orth −

ori − 5 siz − 2 end − 7,
ori − 3 siz − 2 end − 5

ff
,

orth −

ori − 8 siz − 3 end − 11,
ori − 3 siz − 2 end − 5

ff
,

orth −

ori − 8 siz − 2 end − 10,
ori − 5 siz − 2 end − 7

ff

9
>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

, 2

1
CCCCCCCCCCCCCCCCCCA

20000128 741

Parts (A) and (B) of Figure 4.349 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in bold.
Figure 4.350 depicts the placement associated to the example.

ORTHOTOPES

1

2

3

4

5

6

NARC=6

1:1,3,4
 1,2,3

2:1,2,3
 3,3,6

3:5,6,11
 1,2,3

4:5,2,7
 3,2,5

5:8,3,11
 3,2,5

6:8,2,10
 5,2,7

(A) (B)

Figure 4.349: Initial and final graph of the place in pyramid constraint

101 2 3 4 5 6 7 8 9
1

2

3

4

5

6

R1

R2
R5

R6

R4

R3

dim=1

di
m

=2

Figure 4.350: Solution corresponding to the final graph

Graph model The arc constraint of the graph constraint enforces one of the following conditions:

• If the arc connects the same orthotope O then the ground directly supports O,

• Otherwise, if we have an arc from a orthotope O1 to a distinct orthotope O2,
the condition is: O1 is on top of O2 (i.e. in all dimensions, except dimension
VERTICAL DIM, the projection of O1 is included in the projection of O2, while in
dimension VERTICAL DIM the projection ofO1 is located after the projection ofO2).

Usage The diffn constraint is not enough if one wants to produce a placement where no orthotope
floats in the air. This constraint is usually handled with a heuristic during the enumeration
phase.

See also orth on top of orth, orth on the ground.

742 NARC,CLIQUE

Key words geometrical constraint, non-overlapping, orthotope.

20000128 743

744 NCC,NVERTEX,CLIQUE (6=)

4.170 polyomino

Origin Inspired by [137].

Constraint polyomino(CELLS)

Argument(s) CELLS : collection(index − int, right − dvar, left − dvar, up− dvar, down − dvar)

Restriction(s) CELLS.index ≥ 1
CELLS.index ≤ |CELLS|
|CELLS| ≥ 1
required(CELLS, [index, right, left, up, down])
distinct(CELLS, index)
CELLS.right ≥ 0
CELLS.right ≤ |CELLS|
CELLS.left ≥ 0
CELLS.left ≤ |CELLS|
CELLS.up ≥ 0
CELLS.up ≤ |CELLS|
CELLS.down ≥ 0
CELLS.down ≤ |CELLS|

Enforce all cells of the collection CELLS to be connected. Each cell is defined by the following
attributes:

Purpose 1. The index attribute of the cell, which is an integer between 1 and the total number of
cells, is unique for each cell.

2. The right attribute, which is the index of the cell located immediately to the right of
that cell (or 0 if no such cell exists).

3. The left attribute, which is the index of the cell located immediately to the left of that
cell (or 0 if no such cell exists).

4. The up attribute, which is the index of the cell located immediately on top of that cell (or
0 if no such cell exists).

5. The down attribute, which is the index of the cell located immediately above that cell (or
0 if no such cell exists).

This corresponds to a polyomino [118].

Arc input(s) CELLS

Arc generator CLIQUE(6=) 7→ collection(cells1, cells2)

Arc arity 2

Arc constraint(s)
W
0
BB@

cells1.right = cells2.index ∧ cells2.left = cells1.index,
cells1.left = cells2.index ∧ cells2.right = cells1.index,
cells1.up = cells2.index ∧ cells2.down = cells1.index,
cells1.down = cells2.index ∧ cells2.up = cells1.index

1
CCA

20000128 745

Graph property(ies) • NVERTEX = |CELLS|
• NCC = 1

Example polyomino

0
BBBB@

8
>>>><
>>>>:

index − 1 right − 0 left − 0 up− 2 down− 0,
index − 2 right − 3 left − 0 up− 0 down− 1,
index − 3 right − 0 left − 2 up− 4 down− 0,
index − 4 right − 5 left − 0 up− 0 down− 3,
index − 5 right − 0 left − 4 up− 0 down− 0

9
>>>>=
>>>>;

1
CCCCA

Parts (A) and (B) of Figure 4.351 respectively show the initial and final graph.
Since we use the NVERTEX graph property the vertices of the final graph are stressed
in bold. Since we also use the NCC graph property we show the unique connected
component of the final graph. An arc between two vertices indicates that two cells are
directly connected. Figure 4.352 shows the polyomino associated to the previous example.

CELLS

1

2

3

4

5 NVERTEX=5
NCC=1

CC#1

1:1,0,0,2,0

2:2,3,0,0,1

3:3,0,2,4,0

4:4,5,0,0,3

5:5,0,4,0,0

(A) (B)

Figure 4.351: Initial and final graph of the polyomino constraint

1
2 3

4 5

Figure 4.352: Polyomino corresponding to the final graph

Graph model The graph constraint models the fact that all the cells are connected. We use the
CLIQUE(6=) arc generator in order to only consider connections between two distinct
cells. The first graph property NVERTEX = |CELLS| avoid the case isolated cells,

746 NCC,NVERTEX,CLIQUE (6=)

while the second graph property NCC = 1 enforces to have one single group of con-
nected cells.

Signature From the graph property NVERTEX = |CELLS| and from the restriction |CELLS| ≥ 1
we have that the final graph is not empty. Therefore it contains at least one connected
component. So we can rewrite NCC = 1 to NCC ≤ 1 and simplify NCC to NCC.

Usage Enumeration of polyominoes.

Key words geometrical constraint, strongly connected component, pentomino.

20000128 747

748 PRODUCT , SELF

4.171 product ctr

Origin Arithmetic constraint.

Constraint product ctr(VARIABLES, CTR, VAR)

Argument(s) VARIABLES : collection(var − dvar)
CTR : atom

VAR : dvar

Restriction(s) required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose Constraint the product of a set of domain variables. More precisely let P denotes the product of
the variables of the VARIABLES collection. Enforce the following constraint to hold: P CTR VAR.

Arc input(s) VARIABLES

Arc generator SELF 7→ collection(variables)

Arc arity 1

Arc constraint(s) TRUE

Graph property(ies) PRODUCT (VARIABLES, var) CTR VAR

Example product ctr({var − 2, var − 1, var − 4},=, 8)

Parts (A) and (B) of Figure 4.353 respectively show the initial and final graph.
Since we use the TRUE arc constraint both graphs are identical.

VARIABLES

123

PRODUCT(VARIABLES,var)=2*1*4=8

1:2 2:1 3:4

(A) (B)

Figure 4.353: Initial and final graph of the product ctr constraint

Graph model Since we want to keep all the vertices of the initial graph we use the SELF arc generator
together with the TRUE arc constraint. This predefined arc constraint allways holds.

Used in cumulative product.

See also sum ctr, range ctr.

Key words arithmetic constraint, product.

20030820 749

750 RANGE, SELF

4.172 range ctr

Origin Arithmetic constraint.

Constraint range ctr(VARIABLES, CTR, VAR)

Argument(s) VARIABLES : collection(var − dvar)
CTR : atom

VAR : dvar

Restriction(s) required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose
Constraint the difference between the maximum value and the minimum value of a set of domain
variables. More precisely let R denotes the difference between the largest and the smallest
variables of the VARIABLES collection. Enforce the following constraint to hold: R CTR VAR.

Arc input(s) VARIABLES

Arc generator SELF 7→ collection(variables)

Arc arity 1

Arc constraint(s) TRUE

Graph property(ies) RANGE(VARIABLES, var) CTR VAR

Example range ctr({var − 1, var − 9, var − 4},=, 8)

Parts (A) and (B) of Figure 4.354 respectively show the initial and final graph.
Since we use the TRUE arc constraint both graphs are identical.

VARIABLES

123

RANGE(VARIABLES,var)=9-1=8

1:1 2:9 3:4

(A) (B)

Figure 4.354: Initial and final graph of the range ctr constraint

Graph model Since we want to keep all the vertices of the initial graph we use the SELF arc generator
together with the TRUE arc constraint. This predefined arc constraint allways holds.

Used in shift.

See also sum ctr, product ctr.

Key words arithmetic constraint, range.

20030820 751

752 NARC,PATH

4.173 relaxed sliding sum

Origin CHIP

Constraint relaxed sliding sum(ATLEAST, ATMOST, LOW, UP, SEQ, VARIABLES)

Argument(s) ATLEAST : int

ATMOST : int

LOW : int

UP : int

SEQ : int

VARIABLES : collection(var − dvar)

Restriction(s) ATLEAST ≥ 0
ATMOST ≥ ATLEAST

ATMOST ≤ |VARIABLES| − SEQ + 1
UP ≥ LOW

SEQ > 0
SEQ ≤ |VARIABLES|
required(VARIABLES, var)

Purpose Constrains that there exist between ATLEAST and ATMOST sequences of SEQ consecutive vari-
ables of the collection VARIABLES such that the sum of the variables is in interval [LOW, UP].

Arc input(s) VARIABLES

Arc generator PATH 7→ collection

Arc arity SEQ

Arc constraint(s) • sum ctr(collection,≥, LOW)
• sum ctr(collection,≤, UP)

Graph property(ies) • NARC ≥ ATLEAST

• NARC ≤ ATMOST

Example relaxed sliding sum

0
BBBBBBBB@

3, 4, 3, 7, 4,

8
>>>>>>>><
>>>>>>>>:

var − 2,
var − 4,
var − 2,
var − 0,
var − 0,
var − 3,
var − 4

9
>>>>>>>>=
>>>>>>>>;

1
CCCCCCCCA

The final directed hypergraph associated to the previous example is given by Fig-
ure 4.355. For each vertex of the graph we show its corresponding position within the
collection of variables. The constraint associated to each arc corresponds to a conjunction
of two sum ctr constraints involving 4 consecutive variables. We did not put vertex

20000128 753

1 since the single arc constraint that mentions vertex 1 does not hold (i.e. the sum
2 + 4 + 2 + 0 = 8 is not located in interval [3, 7]). However, the directed hypergraph
contains 3 arcs, so the relaxed sliding sum constraint is satisfied since it was requested
to have between 3 and 4 arcs.

2 3 4 5 6 7

Figure 4.355: Final directed hypergraph associated to the example

Algorithm [65].

See also sliding sum, sum ctr.

Key words sliding sequence constraint, soft constraint, relaxation, sequence, hypergraph.

754 NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT

4.174 same

Origin N. Beldiceanu

Constraint same(VARIABLES1, VARIABLES2)

Argument(s) VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)

Restriction(s) |VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose The variables of the VARIABLES2 collection correspond to the variables of the VARIABLES1

collection according to a permutation.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) • for all connected components: NSOURCE = NSINK
• NSOURCE = |VARIABLES1|
• NSINK = |VARIABLES2|

Example same

0
BBBBBBBBBBBBBBBBBB@

8
>>>>>><
>>>>>>:

var − 1,
var − 9,
var − 1,
var − 5,
var − 2,
var − 1

9
>>>>>>=
>>>>>>;

,

8
>>>>>><
>>>>>>:

var − 9,
var − 1,
var − 1,
var − 1,
var − 2,
var − 5

9
>>>>>>=
>>>>>>;

1
CCCCCCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.356 respectively show the initial and final graph.
Since we use the NSOURCE and NSINK graph properties, the source and sink
vertices of the final graph are stressed with a double circle. Since there is a constraint
on each connected component of the final graph we also show the different connected
components. Each of them corresponds to an equivalence class according to the arc
constraint. The same constraint holds since:

20000128 755

• Each connected component of the final graph has the same number of sources and of
sinks.

• The number of sources of the final graph is equal to |VARIABLES1|.
• The number of sinks of the final graph is equal to |VARIABLES2|.

VARIABLES1

VARIABLES2

1

1234 56

2 3456

CC#1:NSOURCE=3,NSINK=3
CC#2:NSOURCE=1,NSINK=1
CC#3:NSOURCE=1,NSINK=1
CC#4:NSOURCE=1,NSINK=1

CC#1 CC#2 CC#3 CC#4

1:1

2:1 3:14:1

3:16:1 2:9

1:9

4:5

6:5

5:2

5:2

(A) (B)

Figure 4.356: Initial and final graph of the same constraint

Signature Since the initial graph contains only sources and sinks, and since isolated vertices are elim-
inated from the final graph, we make the following observations:

• Sources of the initial graph cannot become sinks of the final graph,

• Sinks of the initial graph cannot become sources of the final graph.

From the previous observations and since we use the PRODUCT arc generator on the col-
lections VARIABLES1 and VARIABLES2, we have that the maximum number of sources and
sinks of the final graph is respectively equal to |VARIABLES1| and |VARIABLES2|. There-
fore we can rewrite NSOURCE = |VARIABLES1| to NSOURCE ≥ |VARIABLES1|
and simplify NSOURCE to NSOURCE. In a similar way, we can rewrite
NSINK = |VARIABLES2| to NSINK ≥ |VARIABLES2| and simplify NSINK to
NSINK.

Automaton To each item of the collection VARIABLES1 corresponds a signature variable Si, which is
equal to 0. To each item of the collection VARIABLES2 corresponds a signature variable
Si+|VARIABLES1|, which is equal to 1.

Usage The same constraint can be used in the following contexts:

• Pairing problems taken from [25]. The organization Doctors Without Borders has a
list of doctors and a list of nurses, each of whom volunteered to go on one mission
in the next year. Each volunteer specifies a list of possible dates and each mission
involves one doctor and one nurse. The task is to produce a list of pairs such that

756 NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT

each pair includes a doctor and a nurse who are available at the same date and each
volunteer appears in exactly one pair. The problem is modelled by a same(D =
d1, d2, . . . , dm, N = n1, n2, . . . , nm) constraint where each doctor is respresented
by a domain variable in D and each nurse by a domain variable in N . For a given
doctor or nurse the corresponding domain variable gives the dates when the person
is available. When the number of nurses is different from the number of doctors we
replace the same constraint by a used by constraint.

• Timetabling problems where we wish to produce fair schedules for different persons
is a second use of the same constraint. Assume we need to generate a plan over a
period of D consecutive days for P persons. For each day d and each person p we
need to decide whether person p works in the morning shift, in the afternoon shift,
in the night shift or does not work at all on day d. In a fair schedule, the number
of morning shifts should be the same for all the persons. The same condition holds
for the afternoon and the night shifts as well as for the days off. We create for each
person p the sequence of variables vp,1, vp,2, . . . , vp,D . vp,D is equal to one of 0, 1, 2
and 3, depending on whether person p does not work, works in the morning, in the
afternoon or during the night on day d. We can use P −1 same constraints to express
the fact that v1,1, v1,2, . . . , v1,D should be a permutation of vp,1, vp,2, . . . , vp,D for
each (1 < p ≤ P).

• The same constraint can also be used as a chanelling constraint for modelling the
following recurring pattern: Given the number of 1s in each line and each column
of a 0-1 matrix M with n lines and m columns, reconstruct the matrix. This pat-
tern usually occurs with additional constraints about compatible positions of the 1s,
or about the overall shape reconstructed from all the 1’s (e.g. convexity, connec-
tivity). If we restrict ourself to the basic pattern there is an O(mn) algorithm for
reconstructing a m · n matrix from its horizontal and vertical directions [138]. We
show how to model this pattern with the same constraint. Let li (1 ≤ i ≤ n) and
cj (1 ≤ j ≤ m) denote respectively, the required number of 1s in the ith line and
the jth column ofM. We number the entries of the matrix as shown in the left-hand
side of 4.358. For line i we create li domain variables vik where k ∈ [1, li]. Sim-
ilarly, for each column j we create cj domain variables ujk where k ∈ [1, ci]. The
domain of each variable contains the set of entries that belong to the row or column
that the variable corresponds to. Thus, each domain variable represents a 1 which
appears in the designated row or column. Let V be the set of variables corresponding
to rows and U be the set of variables corresponding to columns. To make sure that
each 1 is placed in a different entry, we impose the constraint alldifferent(U). In
addition, the constraint same(U ,V) enforces that the 1s exactly coincide on the lines
and the columns. A solution is shown on the right-hand side of 4.358. Note that the
same and global cardinality constraint allows to model the matrix reconstruc-
tion problem without the additional alldifferent constraint.

Remark The same constraint is a relaxed version of the sort constraint introduced in [139]. We
don’t enforce the second collection of variables to be sorted in increasing order.

If we interpret the collections VARIABLES1 and VARIABLES2 as two multisets vari-
ables [140], the same constraint can be considered as an equality constraint between two
multisets variables.

The same constraint can be modeled by two global cardinality constraints. For in-
stance, the same constraint

20000128 757

i i

1,
{c[VAR]=c[VAR]−1}

i i

1,
{c[VAR]=c[VAR]−1}

0,
{c[VAR]=c[VAR]+1}i i

i

$

arith(C,=,0)
t:

s

{C[_]=0}

Figure 4.357: Automaton of the same constraint

1 2 3 4

5 6 7 8

2311 21 22 11 21 4131

1

1

3

1 1 1

1 1 0 1

0 0 1 0

same([5,6,3,8],[3,5,6,8])

21
22
23

11

11 31

21 41

 in {5,6,7,8}
 in {5,6,7,8}
 in {5,6,7,8}

 in {1,2,3,4}

u
u
u

u

same([, , ,],[, , ,])u u u u v v v v

 in {1,5} in {3,7}

 in {2,6} in {4,8}

v v

v v

Figure 4.358: Modelling the 0-1 matrix reconstruction problem with the same con-
straint

758 NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT

same

„ ˘
var − x1, var − x2

¯
,˘

var − y1, var − y2

¯
,

«

where the union of the domains of the different variables is {1, 2, 3, 4} corresponds to the
conjunction of the following two global cardinality constraints:

global cardinality

0
BBBB@

˘
var − x1, var − x2

¯
,8

>><
>>:

val− 1 noccurrence − c1,
val− 2 noccurrence − c2,
val− 3 noccurrence − c3,
val− 4 noccurrence − c4

9
>>=
>>;

1
CCCCA

global cardinality

0
BBBB@

˘
var − y1, var − y2

¯
,8

>><
>>:

val− 1 noccurrence − c1,
val− 2 noccurrence − c2,
val− 3 noccurrence − c3,
val− 4 noccurrence − c4

9
>>=
>>;

1
CCCCA

As shown by the next example, the consistency for all variables of the two
global cardinality constraints does not implies consistency for the corresponding
same constraint. This is for instance the case when the domains of x1, x2, y1 and y2

is respectively equal to {1, 2}, {3, 4}, {1, 2, 3, 4} and {3, 4}. The conjunction of the two
global cardinality constraints does not remove values 3 and 4 from y1.

In his PhD thesis, W.-J. van Hoeve introduces a soft version of the same constraint where
the cost is the minimum number of variables to unassign in order to get back to a solu-
tion [104, page 78]. In the context of the same constraint this violation cost corresponds
to the difference between the number of variables in VARIABLES1 and the number of val-
ues which both occur in VARIABLES1 and in VARIABLES2 (provided that one value of
VARIABLES1 matches at most one value of VARIABLES2).

Algorithm In [141], [25] and [142] it is shown how to model this constraint by a flow network that
enables to compute arc-consistency and bound-consistency. Unlike the networks used for
alldifferent and global cardinality, the network now has three sets of nodes, so
the algorithms are more complex, in particular the efficient bound-consistency algorithm.

See also colored matrix, correspondence, same interval, same modulo, same partition,
same and global cardinality, same intersection.

Key words constraint between two collections of variables, channeling constraint, permutation,
multiset, equality between multisets, flow, bound-consistency, automaton,
automaton with array of counters.

20000128 759

760NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT ; NVERTEX, SELF , ∀

4.175 same and global cardinality

Origin Derived from same and global cardinality

Constraint same and global cardinality(VARIABLES1, VARIABLES2, VALUES)

Synonym(s) sgcc, same gcc, same and gcc, swc, same with cardinalities.

Argument(s) VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
VALUES : collection(val− int, noccurrence − dvar)

Restriction(s) |VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
required(VALUES, [val, noccurrence])
distinct(VALUES, val)
VALUES.noccurrence ≥ 0
VALUES.noccurrence ≤ |VARIABLES1|

Purpose
The variables of the VARIABLES2 collection correspond to the variables of the VARIABLES1 col-
lection according to a permutation. In addition, each value VALUES[i].val (1 ≤ i ≤ |VALUES|)
should be taken by exactly VALUES[i].noccurrence variables of the VARIABLES1 collection.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) • for all connected components: NSOURCE = NSINK
• NSOURCE = |VARIABLES1|
• NSINK = |VARIABLES2|

For all items of VALUES:

Arc input(s) VARIABLES1

Arc generator SELF 7→ collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUES.val

Graph property(ies) NVERTEX = VALUES.noccurrence

20040530 761

Example same and global cardinality

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

8
>>>>>><
>>>>>>:

var − 1,
var − 9,
var − 1,
var − 5,
var − 2,
var − 1

9
>>>>>>=
>>>>>>;

,

8
>>>>>><
>>>>>>:

var − 9,
var − 1,
var − 1,
var − 1,
var − 2,
var − 5

9
>>>>>>=
>>>>>>;

,

8
>>>><
>>>>:

val − 1 noccurrence − 3,
val − 2 noccurrence − 1,
val − 5 noccurrence − 1,
val − 7 noccurrence − 0,
val − 9 noccurrence − 1

9
>>>>=
>>>>;

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.359 respectively show the initial and final graph asso-
ciated to the first graph constraint. Since we use the NSOURCE and NSINK graph
properties, the source and sink vertices of the final graph are stressed with a double circle.
Since there is a constraint on each connected component of the final graph we also show
the different connected components. Each of them corresponds to an equivalence class
according to the arc constraint. The same and global cardinality constraint holds
since:

• The values 1, 9, 1, 5, 2, 1 assigned to |VARIABLES1| correspond to a permutation of
the values 9, 1, 1, 1, 2, 5 assigned to |VARIABLES2|.

• The values 1, 2, 5, 7 and 6 are respectively used 3, 1, 1, 0 and 1 times.

VARIABLES1

VARIABLES2

1

1234 56

2 3456

CC#1:NSOURCE=3,NSINK=3
CC#2:NSOURCE=1,NSINK=1
CC#3:NSOURCE=1,NSINK=1
CC#4:NSOURCE=1,NSINK=1

CC#1 CC#2 CC#3 CC#4

1:1

2:1 3:14:1

3:16:1 2:9

1:9

4:5

6:5

5:2

5:2

(A) (B)

Figure 4.359: Initial and final graph of the same and global cardinality con-
straint

762NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT ; NVERTEX, SELF , ∀

Usage The same and global cardinality constraint can be used for modeling the following
assignment problem with one single constraint. The organization Doctors Without Borders
has a list of doctors and a list of nurses, each of whom volunteered to go on one rescue
mission. Each volunteer specifies a list of possible dates and each mission should include
one doctor and one nurse. In addition we have for each date the minimum and maximum
number of missions that should be effectively done. The task is to produce a list of pairs
such that each pair includes a doctor and a nurse who are available on the same date and
each volunteer appears in exactly one pair so that for each day we build the required number
of missions.

Algorithm In [143], the flow network that was used to model the same constraint [141, 25] is extended
to support the cardinalities. Then, algorithms are developed to compute arc-consistency and
bound-consistency.

See also same, global cardinality.

Key words constraint between two collections of variables, value constraint, permutation, multiset,
equality between multisets, assignment, demand profile.

20040530 763

764 CC(NSINK,NSOURCE),PRODUCT

4.176 same intersection

Origin Derived from same and common.

Constraint same intersection(VARIABLES1, VARIABLES2)

Argument(s) VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)

Restriction(s) required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose Each value which occurs both in the VARIABLES1 and in the VARIABLES2 collections has the
same number of occurrences in VARIABLES1 as well as in VARIABLES2.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) for all connected components: NSOURCE = NSINK

Example same intersection

0
BBBBBBBBBBBBBBBBBBBB@

8
>>>>>><
>>>>>>:

var− 1,
var− 9,
var− 1,
var− 5,
var− 2,
var− 1

9
>>>>>>=
>>>>>>;

,

8
>>>>>>>><
>>>>>>>>:

var− 9,
var− 1,
var− 1,
var− 1,
var− 3,
var− 5,
var− 8

9
>>>>>>>>=
>>>>>>>>;

1
CCCCCCCCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.360 respectively show the initial and final graph. The
same intersection constraint holds since each connected component of the final graph
has the same number of sources and sinks. Note that all the vertices corresponding to the
variables that take values 2, 3 or 8 were removed from the final graph since there is no arc
for which the associated equality constraint holds.

See also same, common, alldifferent on intersection, nvalue on intersection.

Key words constraint between two collections of variables, constraint on the intersection.

20040530 765

VARIABLES1

VARIABLES2

1

123456 7

2 3456

CC#1:NSOURCE=3,NSINK=3
CC#2:NSOURCE=1,NSINK=1
CC#3:NSOURCE=1,NSINK=1

CC#1 CC#2 CC#3

1:1

2:1 3:1 4:1

3:16:1 2:9

1:9

4:5

6:5

(A) (B)

Figure 4.360: Initial and final graph of the same intersection constraint

766 NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT

4.177 same interval

Origin Derived from same.

Constraint same interval(VARIABLES1, VARIABLES2, SIZE INTERVAL)

Argument(s) VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
SIZE INTERVAL : int

Restriction(s) |VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
SIZE INTERVAL > 0

Purpose
LetNi (respectivelyMi) denote the number of variables of the collection VARIABLES1 (respec-
tively VARIABLES2) that take a value in the interval [SIZE INTERVAL · i, SIZE INTERVAL · i+
SIZE INTERVAL − 1. For all integer i we have Ni = Mi.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var/SIZE INTERVAL = variables2.var/SIZE INTERVAL

Graph property(ies) • for all connected components: NSOURCE = NSINK
• NSOURCE = |VARIABLES1|
• NSINK = |VARIABLES2|

Example same interval

0
BBBBBBBBBBBBBBBBBB@

8
>>>>>><
>>>>>>:

var− 1,
var− 7,
var− 6,
var− 0,
var− 1,
var− 7

9
>>>>>>=
>>>>>>;

,

8
>>>>>><
>>>>>>:

var− 8,
var− 8,
var− 8,
var− 0,
var− 1,
var− 2

9
>>>>>>=
>>>>>>;

, 3

1
CCCCCCCCCCCCCCCCCCA

In the previous example, the third parameter SIZE INTERVAL defines the following
family of intervals [3 · k, 3 · k+ 2], where k is an integer. Parts (A) and (B) of Figure 4.361
respectively show the initial and final graph. Since we use the NSOURCE and
NSINK graph properties, the source and sink vertices of the final graph are stressed
with a double circle. Since there is a constraint on each connected component of the final

20030820 767

graph we also show the different connected components. Each of them corresponds to an
equivalence class according to the arc constraint. The same interval constraint holds
since:

• Each connected component of the final graph has the same number of sources and of
sinks.

• The number of sources of the final graph is equal to |VARIABLES1|.
• The number of sinks of the final graph is equal to |VARIABLES2|.

VARIABLES1

VARIABLES2

1

1234 56

2 3456

CC#1:NSOURCE=3,NSINK=3
CC#2:NSOURCE=3,NSINK=3

CC#1 CC#2

1:1

4:0 5:16:2

4:05:1 2:7

1:8 2:83:8

3:66:7

(A) (B)

Figure 4.361: Initial and final graph of the same interval constraint

Signature Since the initial graph contains only sources and sinks, and since isolated vertices are elim-
inated from the final graph, we make the following observations:

• Sources of the initial graph cannot become sinks of the final graph,

• Sinks of the initial graph cannot become sources of the final graph.

From the previous observations and since we use the PRODUCT arc generator on the col-
lections VARIABLES1 and VARIABLES2, we have that the maximum number of sources and
sinks of the final graph is respectively equal to |VARIABLES1| and |VARIABLES2|. There-
fore we can rewrite NSOURCE = |VARIABLES1| to NSOURCE ≥ |VARIABLES1|
and simplify NSOURCE to NSOURCE. In a similar way, we can rewrite
NSINK = |VARIABLES2| to NSINK ≥ |VARIABLES2| and simplify NSINK to
NSINK.

Algorithm See algorithm of the same constraint.

See also same.

Key words constraint between two collections of variables, permutation, interval.

768 NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT

4.178 same modulo

Origin Derived from same.

Constraint same modulo(VARIABLES1, VARIABLES2, M)

Argument(s) VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
M : int

Restriction(s) |VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
M > 0

Purpose
For each integer R in [0, M− 1], let N1R (respectively N2R) denote the number of variables of
VARIABLES1 (respectively VARIABLES2) which have R as a rest when divided by M. For all R
in [0, M− 1] we have that N1R = N2R.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var mod M = variables2.var mod M

Graph property(ies) • for all connected components: NSOURCE = NSINK
• NSOURCE = |VARIABLES1|
• NSINK = |VARIABLES2|

Example same modulo

0
BBBBBBBBBBBBBBBBBB@

8
>>>>>><
>>>>>>:

var − 1,
var − 9,
var − 1,
var − 5,
var − 2,
var − 1

9
>>>>>>=
>>>>>>;

,

8
>>>>>><
>>>>>>:

var − 6,
var − 4,
var − 1,
var − 1,
var − 5,
var − 5

9
>>>>>>=
>>>>>>;

, 3

1
CCCCCCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.362 respectively show the initial and final graph.
Since we use the NSOURCE and NSINK graph properties, the source and sink
vertices of the final graph are stressed with a double circle. Since there is a constraint
on each connected component of the final graph we also show the different connected
components. Each of them corresponds to an equivalence class according to the arc
constraint. The same modulo constraint holds since:

20030820 769

• Each connected component of the final graph has the same number of sources and of
sinks.

• The number of sources of the final graph is equal to |VARIABLES1|.
• The number of sinks of the final graph is equal to |VARIABLES2|.

VARIABLES1

VARIABLES2

1

1234 56

2 3456

CC#1:NSOURCE=3,NSINK=3
CC#2:NSOURCE=1,NSINK=1
CC#3:NSOURCE=2,NSINK=2

CC#1 CC#2 CC#3

1:1

2:4 3:14:1

3:16:1 2:9

1:6

4:5

5:5 6:5

5:2

(A) (B)

Figure 4.362: Initial and final graph of the same modulo constraint

Signature Since the initial graph contains only sources and sinks, and since isolated vertices are elim-
inated from the final graph, we make the following observations:

• Sources of the initial graph cannot become sinks of the final graph,

• Sinks of the initial graph cannot become sources of the final graph.

From the previous observations and since we use the PRODUCT arc generator on the col-
lections VARIABLES1 and VARIABLES2, we have that the maximum number of sources and
sinks of the final graph is respectively equal to |VARIABLES1| and |VARIABLES2|. There-
fore we can rewrite NSOURCE = |VARIABLES1| to NSOURCE ≥ |VARIABLES1|
and simplify NSOURCE to NSOURCE. In a similar way, we can rewrite
NSINK = |VARIABLES2| to NSINK ≥ |VARIABLES2| and simplify NSINK to
NSINK.

See also same.

Key words constraint between two collections of variables, permutation, modulo.

770 NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT

4.179 same partition

Origin Derived from same.

Constraint same partition(VARIABLES1, VARIABLES2, PARTITIONS)

Type(s) VALUES : collection(val− int)

Argument(s) VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
PARTITIONS : collection(p− VALUES)

Restriction(s) required(VALUES, val)
distinct(VALUES, val)
|VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose
For each integer i in [1, |PARTITIONS|], let N1 i (respectively N2 i) denote the number of vari-
ables of VARIABLES1 (respectively VARIABLES2) which take their value in the ith partition of
the collection PARTITIONS. For all i in [1, |PARTITIONS|] we have N1 i = N2 i.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) in same partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) • for all connected components: NSOURCE = NSINK
• NSOURCE = |VARIABLES1|
• NSINK = |VARIABLES2|

Example same

0
BBBBBBBBBBBBBBBBBBBBBBBB@

8
>>>>>><
>>>>>>:

var − 1,
var − 2,
var − 6,
var − 3,
var − 1,
var − 2

9
>>>>>>=
>>>>>>;

,

8
>>>>>><
>>>>>>:

var − 6,
var − 6,
var − 2,
var − 3,
var − 1,
var − 3

9
>>>>>>=
>>>>>>;

,

8
<
:

p− {val − 1, val − 3},
p− {val − 4},
p− {val − 2, val − 6}

9
=
;

1
CCCCCCCCCCCCCCCCCCCCCCCCA

20030820 771

Parts (A) and (B) of Figure 4.363 respectively show the initial and final graph.
Since we use the NSOURCE and NSINK graph properties, the source and sink
vertices of the final graph are stressed with a double circle. Since there is a constraint
on each connected component of the final graph we also show the different connected
components. Each of them corresponds to an equivalence class according to the arc
constraint. The same partition constraint holds since:

• Each connected component of the final graph has the same number of sources and of
sinks.

• The number of sources of the final graph is equal to |VARIABLES1|.
• The number of sinks of the final graph is equal to |VARIABLES2|.

VARIABLES1

VARIABLES2

1

1234 56

2 3456

CC#1:NSOURCE=3,NSINK=3
CC#2:NSOURCE=3,NSINK=3

CC#1 CC#2

1:1

4:3 5:16:3

4:35:1 2:2

1:6 2:63:2

3:66:2

(A) (B)

Figure 4.363: Initial and final graph of the same partition constraint

Signature Since the initial graph contains only sources and sinks, and since isolated vertices are elim-
inated from the final graph, we make the following observations:

• Sources of the initial graph cannot become sinks of the final graph,

• Sinks of the initial graph cannot become sources of the final graph.

From the previous observations and since we use the PRODUCT arc generator on the col-
lections VARIABLES1 and VARIABLES2, we have that the maximum number of sources and
sinks of the final graph is respectively equal to |VARIABLES1| and |VARIABLES2|. There-
fore we can rewrite NSOURCE = |VARIABLES1| to NSOURCE ≥ |VARIABLES1|
and simplify NSOURCE to NSOURCE. In a similar way, we can rewrite
NSINK = |VARIABLES2| to NSINK ≥ |VARIABLES2| and simplify NSINK to
NSINK.

See also same, in same partition.

Key words constraint between two collections of variables, permutation, partition.

772 NARC, SELF ; NARC,CLIQUE (<)

4.180 sequence folding

Origin J. Pearson

Constraint sequence folding(LETTERS)

Argument(s) LETTERS : collection(index − int, next− dvar)

Restriction(s) |LETTERS| ≥ 1
required(LETTERS, [index, next])
LETTERS.index ≥ 1
LETTERS.index ≤ |LETTERS|
increasing seq(LETTERS, index)
LETTERS.next ≥ 1
LETTERS.next ≤ |LETTERS|

Purpose
Express the fact that a sequence is folded in a way that no crossing occurs. A sequence is
modelled by a collection of letters. For each letter l1 of a sequence, we indicate the next letter
l2 located after l1 which is directly in contact with l1 (l1 itself if such a letter does not exist).

Arc input(s) LETTERS

Arc generator SELF 7→ collection(letters)

Arc arity 1

Arc constraint(s) letters.next ≥ letters.index

Graph property(ies) NARC = |LETTERS|

Arc input(s) LETTERS

Arc generator CLIQUE(<) 7→ collection(letters1, letters2)

Arc arity 2

Arc constraint(s) letters2.index ≥ letters1.next ∨ letters2.next ≤ letters1.next

Graph property(ies) NARC = |LETTERS| ∗ (|LETTERS| − 1)/2

Example sequence folding

0
BBBBBBBBBBBB@

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

index − 1 next − 1,
index − 2 next − 8,
index − 3 next − 3,
index − 4 next − 5,
index − 5 next − 5,
index − 6 next − 7,
index − 7 next − 7,
index − 8 next − 8,
index − 9 next − 9

9
>>>>>>>>>>>>=
>>>>>>>>>>>>;

1
CCCCCCCCCCCCA

20030820 773

Parts (A) and (B) of Figure 4.364 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in bold.
Figure 4.365 gives the folded sequence associated to the previous example. Each number
represents the index of an item.

LETTERS

1

2

3

4

5

6

7

8

9

NARC=36

1:1,1

2:2,8

3:3,3

4:4,5

5:5,5

6:6,7

7:7,7

8:8,8

9:9,9

(A) (B)

Figure 4.364: Initial and final graph of the sequence folding constraint

765

2

9

1
3

4

8

Figure 4.365: Folded sequence associated to the example

Graph model In the list of restrictions note the increasing statement which imposes the items of the
LETTERS collection to be ordered in increasing order of their index attribute. This is used
so that the arc generator CLIQUE(<) only generates arcs between vertices for which
the indices are increasing. The arc constraint of the second graph constraint avoids the
following conditions to be both true:

774 NARC, SELF ; NARC,CLIQUE (<)

• The second letter is located before the letter associated to the first letter,

• The letter associated to the second letter is located after the letter associated to the
first letter.

Observe that, from the previous remark, we know that the first letter is located before the
second letter. The graph property enforces all arcs constraints to hold.

Signature Consider the first graph constraint. Since we use the SELF arc generator on the LETTERS
collection the maximum number of arcs of the final graph is equal to |LETTERS|. Therefore
we can rewrite the graph property NARC = |LETTERS| to NARC ≥ |LETTERS| and
simplify NARC to NARC.

Consider now the second graph constraint. Since we use the CLIQUE (<) arc generator
on the LETTERS collection the maximum number of arcs of the final graph is equal to
|LETTERS| · (|LETTERS| − 1)/2. Therefore we can rewrite the graph property NARC =
|LETTERS| · (|LETTERS|−1)/2 to NARC ≥ |LETTERS| · (|LETTERS|−1)/2 and simplify
NARC to NARC.

Automaton Figure 4.366 depicts the automaton associated to the sequence folding constraint. Con-
sider the ith and the jth (i < j) items of the collection LETTERS. Let INDEXi and
NEXTi respectively denote the index and the next attributes of the ith item of the
collection LETTERS. Similarly, let INDEXj and NEXTj respectively denote the index

and the next attributes of the jth item of the collection LETTERS. To each quadru-
ple (INDEXi, NEXTi, INDEXj , NEXTj) corresponds a signature variable Si,j , which takes its
value in {0, 1, 2}, as well as the following signature constraint:

(INDEXi ≤ NEXTi) ∧ (INDEXj ≤ NEXTj) ∧ (NEXTi ≤ NEXTj)⇔ Si,j = 0 ∧
(INDEXi ≤ NEXTi) ∧ (INDEXj ≤ NEXTj) ∧ (NEXTi > INDEXj) ∧ (NEXTj ≤ NEXTi) ⇔
Si,j = 1.

NEXT <=NEXT

i j

i i

j j

i j

j i

INDEX <INDEX and

INDEX <=NEXT and

INDEX <=NEXT and

NEXT >INDEX and

$

s

t

NEXT <=INDEX

i

i

i

i

j

j j

j

INDEX <INDEX and

INDEX <=NEXT and

INDEX <=NEXT and

Figure 4.366: Automaton of the sequence folding constraint

Usage Motivated by RNA folding [144].

Key words decomposition, geometrical constraint, sequence, bioinformatics, automaton,
automaton without counters.

20030820 775

776 PREDEFINED

4.181 set value precede

Origin [121]

Constraint set value precede(S, T, VARIABLES)

Argument(s) S : int

T : int

VARIABLES : collection(var − svar)

Restriction(s) S 6= T

required(VARIABLES, var)

Purpose If there exists a set variable v1 of VARIABLES such that S does not belong to v1 and T does, then
there also exists a set variable v2 preceding v1 such that S belongs to v2 and T does not.

Example set value precede

0
BB@ 2, 1,

8
>><
>>:

var − {0, 2},
var − {0, 1},
var − ∅,
var − {1}

9
>>=
>>;

1
CCA

The set value precede constraint holds since the first occurrence of value 2 pre-
cedes the first occurrence of value 1.

Algorithm A filtering algorithm for maintaining value precedence on a sequence of set variables is
presented in [121]. Its complexity is linear to the number of variables of the collection
VARIABLES.

See also int value precede.

Key words order constraint, symmetry, indistinguishable values, value precedence,
constraint involving set variables.

20041003 777

778 NARC, SELF ; CLIQUE ,CC

4.182 shift

Origin N. Beldiceanu

Constraint shift(MIN BREAK, MAX RANGE, TASKS)

Argument(s) MIN BREAK : int

MAX RANGE : int

TASKS : collection(id− int, origin − dvar, end − dvar)

Restriction(s) MIN BREAK > 0
MAX RANGE > 0
required(TASKS, [id, origin, end])
distinct(TASKS, id)

The difference between the end of the last task of a shift and the origin of the first task of a shift
should not exceed the quantity MAX RANGE. Two tasks t1 and t2 belong to the same shift if at
least one of the following conditions is true:

Purpose • Task t2 starts after the end of task t1 at a distance that is less than or equal to the quantity
MIN BREAK,

• Task t1 starts after the end of task t2 at a distance that is less than or equal to the quantity
MIN BREAK.

• Task t1 overlaps task t2.

Arc input(s) TASKS

Arc generator SELF 7→ collection(tasks)

Arc arity 1

Arc constraint(s) • tasks.end ≥ tasks.origin
• tasks.end − tasks.origin ≤ MAX RANGE

Graph property(ies) NARC = |TASKS|

Arc input(s) TASKS

Arc generator CLIQUE 7→ collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s)
W
0
@

tasks2.origin ≥ tasks1.end ∧ tasks2.origin − tasks1.end ≤ MIN BREAK,
tasks1.origin ≥ tasks2.end ∧ tasks1.origin − tasks2.end ≤ MIN BREAK,
tasks2.origin < tasks1.end ∧ tasks1.origin < tasks2.end

1
A

Sets
CC 7→»

variables − col

„
VARIABLES − collection(var − dvar),
[item(var − TASKS.origin), item(var − TASKS.end)]

« –

20030820 779

Constraint(s) on sets range ctr(variables,≤, MAX RANGE)

Example shift

0
BBBB@

6, 8,

8
>>>><
>>>>:

id− 1 origin − 17 end− 20,
id− 2 origin − 7 end− 10,
id− 3 origin − 2 end− 4,
id− 4 origin − 21 end− 22,
id− 5 origin − 5 end− 6

9
>>>>=
>>>>;

1
CCCCA

Parts (A) and (B) of Figure 4.367 respectively show the initial and final graph asso-
ciated to the second graph constraint. Since we use the set generator CC we show the
two connected components of the final graph. They respectively correspond to the two
shifts which are displayed in Figure 4.368. Each task is drawn as a rectangle with its
corresponding id in the middle. We indicate the distance between two consecutives tasks
of a same shift and check that it is less than or equal to the value of the MIN BREAK

parameter (6 in the example). Since each shift has a range that is less than or equal to the
MAX RANGE parameter, the shift constraint holds (the range of a shift is the difference
between the end of the last task of the shift and the origin of the first task of the shift).

TASKS

1

2

3

4

5

SET#1 SET#2

1:1,17,20

4:4,21,22

2:2,7,10

3:3,2,4

5:5,5,6

(A) (B)

Figure 4.367: Initial and final graph of the shift constraint

5 7 17 21

breakfirst shift second shift

2 time

3 5 2 1 4

1 1 1

range=8 =7 range=5

Figure 4.368: The two shifts of the example

Graph model The first graph constraint enforces the following two constraints between the attributes of
each task:

780 NARC, SELF ; CLIQUE ,CC

• The end of a task should not be situated before its start,

• The duration of a task should not be greater than the MAX RANGE parameter.

The second graph constraint decomposes the final graph in connected components where
each component corresponds to a given shift. Finally, the constraint(s) on sets field restricts
the stretch of each shift.

Signature Consider the first graph constraint. Since we use the SELF arc generator on the TASKS

collection the maximum number of arcs of the final graph is equal to |TASKS|. Therefore
we can rewrite the graph property NARC = |TASKS| to NARC ≥ |TASKS| and simplify
NARC to NARC.

Usage The shift constraint can be used in machine scheduling problems where one has to shut
down a machine for maintenance purpose after a given maximum utilisation of that ma-
chine. In this case the MAX RANGE parameter indicates the maximum possible utilisation of
the machine before maintenance, while the MIN BREAK parameter gives the minimum time
needed for maintenance.

The shift constraint can also be used for timetabling problems where the rest period of a
person can move in time. In this case MAX RANGE indicates the maximum possible working
time for a person, while MIN BREAK specifies the minimum length of the break that follows
a working time period.

See also sliding time window.

Key words scheduling constraint, timetabling constraint, temporal constraint.

20030820 781

782 NARC,PATH N

4.183 size maximal sequence alldifferent

Origin N. Beldiceanu

Constraint size maximal sequence alldifferent(SIZE, VARIABLES)

Synonym(s) size maximal sequence alldiff, size maximal sequence alldistinct.

Argument(s) SIZE : dvar

VARIABLES : collection(var − dvar)

Restriction(s) SIZE ≥ 0
SIZE ≤ |VARIABLES|
required(VARIABLES, var)

Purpose SIZE is the size of the maximal sequence (among all sequences of consecutives variables of the
collection VARIABLES) for which the alldifferent constraint holds.

Arc input(s) VARIABLES

Arc generator PATH N 7→ collection

Arc arity ∗

Arc constraint(s) alldifferent(collection)

Graph property(ies) NARC = SIZE

Example size maximal sequence alldifferent

0
BBBBBBBB@

4,

8
>>>>>>>><
>>>>>>>>:

var − 2,
var − 2,
var − 4,
var − 5,
var − 2,
var − 7,
var − 4

9
>>>>>>>>=
>>>>>>>>;

1
CCCCCCCCA

The previous constraint holds since the constraint
alldifferent(var− 4, var− 5, var− 2, var− 7) holds and since the following
three constraints do not hold:

• alldifferent(var − 2, var − 2, var − 4, var − 5, var − 2),

• alldifferent(var − 2, var − 4, var − 5, var − 2, var − 7),

• alldifferent(var − 4, var − 5, var − 2, var − 7, var − 4).

Graph model Observe that this is an example of global constraint where the arc constraints don’t have
the same arity. However they correspond to the same type of constraint.

See also alldifferent, size maximal starting sequence alldifferent.

Key words sliding sequence constraint, conditional constraint, sequence, hypergraph.

20030820 783

784 NARC,PATH 1

4.184 size maximal starting sequence alldifferent

Origin N. Beldiceanu

Constraint size maximal starting sequence alldifferent(SIZE, VARIABLES)

Synonym(s) size maximal starting sequence alldiff, size maximal starting sequence alldistinct.

Argument(s) SIZE : dvar

VARIABLES : collection(var − dvar)

Restriction(s) SIZE ≥ 0
SIZE ≤ |VARIABLES|
required(VARIABLES, var)

Purpose SIZE is the size of the maximal sequence (among all sequences of consecutives variables of the
collection VARIABLES starting at position one) for which the alldifferent constraint holds.

Arc input(s) VARIABLES

Arc generator PATH 1 7→ collection

Arc arity ∗

Arc constraint(s) alldifferent(collection)

Graph property(ies) NARC = SIZE

Example size maximal starting sequence alldifferent

0
BBBBBBBB@

4,

8
>>>>>>>><
>>>>>>>>:

var − 9,
var − 2,
var − 4,
var − 5,
var − 2,
var − 7,
var − 4

9
>>>>>>>>=
>>>>>>>>;

1
CCCCCCCCA

The previous constraint holds since the constraint
alldifferent(var− 9, var− 2, var− 4, var− 5) holds and since
alldifferent(var− 9, var− 2, var− 4, var− 5, var − 2) does not hold. Parts
(A) and (B) of Figure 4.369 respectively show the initial and final graph.

Graph model Observe that this is an example where the arc constraints don’t have the same arity. How-
ever they correspond to the same constraint.

Remark A conditional constraint [145] with the specific structure that one can relax the constraints
on the last variables of the collection VARIABLES.

See also alldifferent, size maximal sequence alldifferent.

Key words sliding sequence constraint, conditional constraint, sequence, hypergraph.

20030820 785

2 3 4 6 71 5

1:9 2:2 4:53:4

(A)

(B)

Figure 4.369: Initial and final graph of the
size maximal starting sequence alldifferent constraint

786 PATH ,LOOP ,CC

4.185 sliding card skip0

Origin N. Beldiceanu

Constraint sliding card skip0(ATLEAST, ATMOST, VARIABLES, VALUES)

Argument(s) ATLEAST : int

ATMOST : int

VARIABLES : collection(var − dvar)
VALUES : collection(val − int)

Restriction(s) ATLEAST ≥ 0
ATMOST ≥ ATLEAST

required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)
VALUES.val 6= 0

Let n be the total number of variables of the collection VARIABLES. A maximum non-zero set
of consecutive variables Xi..Xj (1 ≤ i ≤ j ≤ n) is defined in the following way:

Purpose • All variables Xi, . . . , Xj take a non-zero value,

• i = 1 or Xi−1 is equal to 0,

• j = n or Xj+1 is equal to 0.
Enforces that each maximum non-zero set of consecutive variables of the collection VARIABLES
contains at least ATLEAST and at most ATMOST values from the collection of values VALUES.

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)
LOOP 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • variables1.var 6= 0
• variables2.var 6= 0

Sets CC 7→ [variables]

Constraint(s) on sets among low up(ATLEAST, ATMOST, variables, VALUES)

Example sliding card skip0

0
BBBBBBBBBBBBBB@

2, 3,

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

var− 0,
var− 7,
var− 2,
var− 9,
var− 0,
var− 0,
var− 9,
var− 4,
var− 9

9
>>>>>>>>>>>>=
>>>>>>>>>>>>;

,

{val − 7, val − 9}

1
CCCCCCCCCCCCCCA

20000128 787

Parts (A) and (B) of Figure 4.370 respectively show the initial and final graph.
Since we use the set generator CC we show the two connected components of the final
graph. Since these two connected components both contains between 2 and 3 variables
which take there value in {7, 9} the sliding card skip0 constraint holds.

VARIABLES

1

2

3

4

5

6

7

8

9

SET#1 SET#2

2:7

3:2

4:9

7:9

8:4

9:9

(A) (B)

Figure 4.370: Initial and final graph of the sliding card skip0 constraint

Graph model Note that the arc constraint will produce the different sequences of consecutives variables
that do not contain any 0. The CC set generator produces all the connected components of
the final graph.

Automaton Figure 4.371 depicts the automaton associated to the sliding card skip0 constraint. To
each variable VARi of the collection VARIABLES corresponds a signature variable Si. The
following signature constraint links VARi and Si:

(VARi = 0)⇔ Si = 0 ∧
(VARi 6= 0 ∧ VARi /∈ VALUES)⇔ Si = 1 ∧
(VARi 6= 0 ∧ VARi ∈ VALUES)⇔ Si = 2.

Usage This constraint is useful in timetabling problems where the variables are interpreted as the
type of job that a person does on consecutive days. Value 0 represents a rest day and one
imposes a cardinality constraint on periods that are located between rest periods.

788 PATH ,LOOP ,CC

iVAR = 0

iVAR = 0 and

iVAR <>0 and in(VAR ,VALUES),i
{C=C+1}

iVAR <>0 and

not_in(VAR ,VALUES)i

iVAR <>0 and not_in(VAR ,VALUES),i

t

i

ATLEAST<=C and

$

$ and ATLEAST<=C and C<=ATMOST

iVAR <>0 and in(VAR ,VALUES),i
{C=1}

{C=0}

C<=ATMOST

{C=0}

s

Figure 4.371: Automaton of the sliding card skip0 constraint

C1

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0

C =00

Q =tn

Cn

Figure 4.372: Hypergraph of the reformulation corresponding to the automaton of the
sliding card skip0 constraint

20000128 789

Remark One cannot initially state a global cardinality constraint since the rest days are not
yet allocated. One can also not use an among seq constraint since it does not hold for the
sequences of consecutive variables that contains at least one rest day.

See also among, among low up, global cardinality.

Key words timetabling constraint, sliding sequence constraint, sequence, automaton,
automaton with counters, alpha-acyclic constraint network(2).

790 NARC,PATH

4.186 sliding distribution

Origin [146]

Constraint sliding distribution(SEQ, VARIABLES, VALUES)

Argument(s) SEQ : int

VARIABLES : collection(var − dvar)
VALUES : collection(val − int, omin− int, omax − int)

Restriction(s) SEQ > 0
SEQ ≤ |VARIABLES|
required(VARIABLES, var)
|VALUES| > 0
required(VALUES, [val, omin, omax])
distinct(VALUES, val)
VALUES.omin ≥ 0
VALUES.omax ≤ SEQ

VALUES.omin ≤ VALUES.omax

Purpose
For each sequence of SEQ consecutive variables of the VARIABLES collection, each value
VALUES[i].val (1 ≤ i ≤ |VALUES|) should be taken by at least VALUES[i].omin and at most
VALUES[i].omax variables.

Arc input(s) VARIABLES

Arc generator PATH 7→ collection

Arc arity SEQ

Arc constraint(s) global cardinality low up(collection, VALUES)

Graph property(ies) NARC = |VARIABLES| − SEQ + 1

Example sliding distribution

0
BBBBBBBBBBBBBBBBBB@

4,

8
>>>>>>>><
>>>>>>>>:

var − 0,
var − 5,
var − 6,
var − 6,
var − 5,
var − 0,
var − 0

9
>>>>>>>>=
>>>>>>>>;

,

8
>>>><
>>>>:

val − 0 omin − 1 omax − 2,
val − 1 omin − 0 omax − 4,
val − 4 omin − 0 omax − 4,
val − 5 omin − 1 omax − 2,
val − 6 omin − 0 omax − 2

9
>>>>=
>>>>;

1
CCCCCCCCCCCCCCCCCCA

The sliding distribution constraint holds since:

20031008 791

• On the first sequence of 4 consecutive variables 0566 values 0, 1, 4, 5 and 6 are
respectively used 1, 0, 0, 1 and 2 times.

• On the second sequence of 4 consecutive variables 5665 values 0, 1, 4, 5 and 6 are
respectively used 0, 0, 0, 2 and 2 times.

• On the third sequence of 4 consecutive variables 6650 values 0, 1, 4, 5 and 6 are
respectively used 1, 0, 0, 1 and 2 times.

• On the third sequence of 4 consecutive variables 6500 values 0, 1, 4, 5 and 6 are
respectively used 2, 0, 0, 1 and 1 times.

See also among seq, global cardinality low up, pattern.

Key words decomposition, sliding sequence constraint, sequence, hypergraph.

792 NARC,PATH

4.187 sliding sum

Origin CHIP

Constraint sliding sum(LOW, UP, SEQ, VARIABLES)

Argument(s) LOW : int

UP : int

SEQ : int

VARIABLES : collection(var − dvar)

Restriction(s) UP ≥ LOW

SEQ > 0
SEQ ≤ |VARIABLES|
required(VARIABLES, var)

Purpose
Constrains all sequences of SEQ consecutive variables of the collection VARIABLES so that the
sum of the variables belongs to interval [LOW, UP].

Arc input(s) VARIABLES

Arc generator PATH 7→ collection

Arc arity SEQ

Arc constraint(s) • sum ctr(collection,≥, LOW)
• sum ctr(collection,≤, UP)

Graph property(ies) NARC = |VARIABLES| − SEQ + 1

Example sliding sum

0
BBBBBBBB@

3, 7, 4,

8
>>>>>>>><
>>>>>>>>:

var − 1,
var − 4,
var − 2,
var − 0,
var − 0,
var − 3,
var − 4

9
>>>>>>>>=
>>>>>>>>;

1
CCCCCCCCA

The previous example considers all sliding sequences of 4 consecutive variables
and constraints the sum to be between 3 and 7. The constraint holds since the sum
associated to the different sequences are respectively 7, 6, 5 and 7.

Graph model We use sum ctr as an arc constraint. sum ctr takes a collection of domain variables as its
first argument.

Signature Since we use the PATH arc generator with an arity of SEQ on the items of the VARIABLES
collection, the expression |VARIABLES| − SEQ + 1 corresponds to the maximum num-
ber of arcs of the final graph. Therefore we can rewrite the graph property NARC =
|VARIABLES| − SEQ + 1 to NARC ≥ |VARIABLES| − SEQ + 1 and simplify NARC to
NARC.

20000128 793

Algorithm [65].

Key words decomposition, sliding sequence constraint, sequence, hypergraph, sum.

794 CLIQUE , SUCC

4.188 sliding time window

Origin N. Beldiceanu

Constraint sliding time window(WINDOW SIZE, LIMIT, TASKS)

Argument(s) WINDOW SIZE : int

LIMIT : int

TASKS : collection(id − int, origin − dvar, duration − dvar)

Restriction(s) WINDOW SIZE > 0
LIMIT ≥ 0
required(TASKS, [id, origin, duration])
distinct(TASKS, id)
TASKS.duration ≥ 0

Purpose For any time window of size WINDOW SIZE, the intersection of all the tasks of the collection
TASKS with this time window is less than or equal to a given limit LIMIT.

Arc input(s) TASKS

Arc generator CLIQUE 7→ collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • tasks1.origin ≤ tasks2.origin
• tasks2.origin − tasks1.origin < WINDOW SIZE

Sets SUCC 7→ [source, tasks]

Constraint(s) on sets sliding time window from start(WINDOW SIZE, LIMIT, tasks, source.origin)

Example sliding time window

0
BBBB@

9, 6,

8
>>>><
>>>>:

id− 1 origin − 10 duration − 3,
id− 2 origin − 5 duration − 1,
id− 3 origin − 6 duration − 2,
id− 4 origin − 14 duration − 2,
id− 5 origin − 2 duration − 2

9
>>>>=
>>>>;

1
CCCCA

Parts (A) and (B) of Figure 4.373 respectively show the initial and final graph. In
the final graph, the successors of a given task t correspond to the set of tasks that do not
start before task t and intersect the time window that starts at the origin of task t.

The lower part of Figure 4.374 indicates the different tasks on the time axis. Each task is
drawn as a rectangle with its corresponding identifier in the middle. Finally the upper part
of Figure 4.374 shows the different time windows and the respective contribution of the
tasks in these time windows. A line with two arrows depicts each time window. The two
arrows indicate the start and the end of the time window. At the right of each time window
we give its occupation. Since this occupation is always less than or equal to the limit 6, the
sliding time window constraint holds.

20030820 795

TASKS

1

2

3

4

5

1:1,10,3

4:4,14,2

2:2,5,1

3:3,6,2

5:5,2,2

(A) (B)

Figure 4.373: Initial and final graph of the sliding time window constraint

2 5 6 10 14

6 = 1+2+3 < 7

6 = 2+3+1 < 7

5 = 3+2 < 7

2 = 2 < 7

time

5 2 3 1 4

6 = 2+1+2+1 < 7

Figure 4.374: Time windows of the sliding time window constraint

796 CLIQUE , SUCC

Graph model We generate an arc from a task t1 to a task t2 if task t2 does not start before task t1 and
if task t2 intersects the time window that starts at the origin of task t1. Each set generated
by SUCC corresponds to all tasks that intersect in time the time window that starts at the
origin of a given task.

Usage The sliding time window constraint is useful for timetabling problems in order to put
an upper limit on the total work over sliding time windows.

See also shift, sliding time window from start, sliding time window sum.

Key words sliding sequence constraint, temporal constraint.

20030820 797

798 SUM WEIGHT ARC,PRODUCT

4.189 sliding time window from start

Origin Used for defining sliding time window.

Constraint sliding time window from start(WINDOW SIZE, LIMIT, TASKS, START)

Argument(s) WINDOW SIZE : int

LIMIT : int

TASKS : collection(id − int, origin − dvar, duration − dvar)
START : dvar

Restriction(s) WINDOW SIZE > 0
LIMIT ≥ 0
required(TASKS, [id, origin, duration])
distinct(TASKS, id)
TASKS.duration ≥ 0

Purpose The sum of the intersections of all the tasks of the TASKS collection with interval
[START, START + WINDOW SIZE − 1] is less than or equal to LIMIT.

Derived Collection(s) col(S − collection(var− dvar), [item(var − START)])

Arc input(s) S TASKS

Arc generator PRODUCT 7→ collection(s, tasks)

Arc arity 2

Arc constraint(s) TRUE

Graph property(ies) SUM WEIGHT ARC

„
max

„
0,

min(s.var + WINDOW SIZE, tasks.origin + tasks.duration)−
max(s.var, tasks.origin)

« «
≤ LIMIT

Example sliding time window

0
@ 9, 6,

8
<
:

id− 1 origin − 10 duration − 3,
id− 2 origin − 5 duration − 1,
id− 3 origin − 6 duration − 2

9
=
; , 5

1
A

Parts (A) and (B) of Figure 4.375 respectively show the initial and final graph. To each arc
of the final graph we associate the intersection of the corresponding sink task with interval
[START, START+WINDOW SIZE−1]. The constraint sliding time window from start

holds since the sum of the previous intersections does not exceed LIMIT.

Graph model Since we use the TRUE arc constraint the final and the initial graph are identical. The unique
source of the final graph corresponds to the interval [START, START + WINDOW SIZE − 1].
Each sink of the final graph represents a given task of the TASKS collection. We valu-
ate each arc by the intersection of the task associated to one of the extremities of the arc
with the time window [START, START + WINDOW SIZE − 1]. Finally, the graph property
SUM WEIGHT ARC sums up all the valuations of the arcs and check that it does
not exceed a given limit.

20030820 799

Used in sliding time window.

Key words sliding sequence constraint, temporal constraint, derived collection.

800 SUM WEIGHT ARC,PRODUCT

S

TASKS

1

123

SUM_WEIGHT_ARC=3+1+2=6

1:5

1:1,10,3

3

2:2,5,1

1

3:3,6,2

2

(A) (B)

Figure 4.375: Initial and final graph of the sliding time window from start con-
straint

20030820 801

802 NARC, SELF ; CLIQUE , SUCC

4.190 sliding time window sum

Origin Derived from sliding time window.

Constraint sliding time window sum(WINDOW SIZE, LIMIT, TASKS)

Argument(s) WINDOW SIZE : int

LIMIT : int

TASKS : collection(id − int, origin − dvar, end− dvar, npoint − dvar)

Restriction(s) WINDOW SIZE > 0
LIMIT ≥ 0
required(TASKS, [id, origin, end, npoint])
distinct(TASKS, id)
TASKS.npoint ≥ 0

Purpose For any time window of size WINDOW SIZE, the sum of the points of the tasks of the collection
TASKS that overlap that time window do not exceed a given limit LIMIT.

Arc input(s) TASKS

Arc generator SELF 7→ collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin ≤ tasks.end

Graph property(ies) NARC = |TASKS|

Arc input(s) TASKS

Arc generator CLIQUE 7→ collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • tasks1.end ≤ tasks2.end
• tasks2.origin − tasks1.end < WINDOW SIZE − 1

Sets

SUCC 7→2
4

source,

variables − col

„
VARIABLES − collection(var− dvar),
[item(var− TASKS.npoint)]

«
3
5

Constraint(s) on sets sum ctr(variables,≤, LIMIT)

20030820 803

Example sliding time window sum

0
BBBB@

9, 16,

8
>>>><
>>>>:

id − 1 origin − 10 end − 13 npoint − 2,
id − 2 origin − 5 end − 6 npoint − 3,
id − 3 origin − 6 end − 8 npoint − 4,
id − 4 origin − 14 end − 16 npoint − 5,
id − 5 origin − 2 end − 4 npoint − 6

9
>>>>=
>>>>;

1
CCCCA

Parts (A) and (B) of Figure 4.376 respectively show the initial and final graph. In
the final graph, the successors of a given task t correspond to the set of tasks that both do
not end before the end of task t, and intersect the time window that starts at the end − 1
of task t.

The lower part of Figure 4.377 indicates the different tasks on the time axis. Each task is
drawn as a rectangle with its corresponding identifier in the middle. Finally the upper part
of Figure 4.377 shows the different time windows and the respective contribution of the
tasks in these time windows. A line with two arrows depicts each time window. The two
arrows indicate the start and the end of the time window. At the right of each time window
we give its occupation. Since this occupation is always less than or equal to the limit 16,
the sliding time window sum constraint holds.

TASKS

1

2

3

4

5

1:1,10,13,2

4:4,14,16,5

2:2,5,6,3

3:3,6,8,4

5:5,2,4,6

(A) (B)

Figure 4.376: Initial and final graph of the sliding time window sum constraint

Graph model We generate an arc from a task t1 to a task t2 if task t2 does not end before the end of task
t1 and if task t2 intersects the time window that starts at the last instant of task t1. Each
set generated by SUCC corresponds to all tasks that intersect in time the time window that
starts at instant end− 1, where end is the end of a given task.

Signature Consider the first graph constraint. Since we use the SELF arc generator on the TASKS

collection the maximum number of arcs of the final graph is equal to |TASKS|. Therefore we
can rewrite NARC = |TASKS| to NARC ≥ |TASKS| and simplify NARC to NARC.

Usage This constraint may be used for timetabling problems in order to put an upper limit on the
cumulated number of points in a shift.

See also sliding time window.

804 NARC, SELF ; CLIQUE , SUCC

Key words sliding sequence constraint, temporal constraint, time window, sum.

2 5 6 10 14

15 = 6+3+4+2 < 17

9 = 3+4+2 < 17

11 = 4+2+5 < 17

7 = 2+5 < 17

5 = 5 < 17

time

5 2 3 1 4

Figure 4.377: Time windows of the sliding time window sum constraint

20030820 805

806 NARC,PATH

4.191 smooth

Origin Derived from change.

Constraint smooth(NCHANGE, TOLERANCE, VARIABLES)

Argument(s) NCHANGE : dvar

TOLERANCE : int

VARIABLES : collection(var − dvar)

Restriction(s) NCHANGE ≥ 0
NCHANGE < |VARIABLES|
TOLERANCE ≥ 0
required(VARIABLES, var)

Purpose NCHANGE is the number of times that |X − Y | > TOLERANCE holds; X and Y correspond to
consecutive variables of the collection VARIABLES.

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) abs(variables1.var − variables2.var) > TOLERANCE

Graph property(ies) NARC = NCHANGE

Example smooth

0
BBBB@

1, 2,

8
>>>><
>>>>:

var − 1,
var − 3,
var − 4,
var − 5,
var − 2

9
>>>>=
>>>>;

1
CCCCA

In the previous example we have one change between values 5 and 2 since the dif-
ference in absolute value is greater than the tolerance (i.e. |5 − 2| > 2). Parts (A) and (B)
of Figure 4.378 respectively show the initial and final graph. Since we use the NARC
graph property, the unique arc of the final graph is stressed in bold.

Automaton Figure 4.379 depicts the automaton associated to the smooth constraint. To each pair
of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a 0-
1 signature variable Si. The following signature constraint links VARi, VARi+1 and Si:
(|VARi − VARi+1|) > TOLERANCE⇔ Si = 1.

Usage This constraint is useful for the following problems:

• Assume that VARIABLES corresponds to the number of people that work on consec-
utive weeks. One may not normally increase or decrease too drastically the number
of people from one week to the next week. With the smooth constraint you can state
a limit on the number of drastic changes.

20000128 807

VARIABLES

1

2

3

4

5

NARC=1

4:5

5:2

(A) (B)

Figure 4.378: Initial and final graph of the smooth constraint

|VAR −VAR |>TOLERANCE,
i i+1

|VAR −VAR |<=TOLERANCE
i i+1

$

t:
NCHANGE=C

{C=C+1}

s

{C=0}

Figure 4.379: Automaton of the smooth constraint

Q =s0

C =00 C1

Q1

VAR
1

S1

VAR
2

S2

VAR
n

VAR
3

S3

Q2

C2

Sn−1

VAR
n−1

Q =tn−1

C =NCHANGEn−1

Figure 4.380: Hypergraph of the reformulation corresponding to the automaton of the
smooth constraint

808 NARC,PATH

• Assume you have to produce a set of orders, each order having a specific attribute.
You want to generate the orders in such a way that there is not a too big difference
between the values of the attributes of two consecutives orders. If you can’t achieve
this on two given specific orders, this would imply a set-up or a cost. Again, with the
smooth constraint, you can control this kind of drastic changes.

Algorithm [65].

See also change.

Key words timetabling constraint, number of changes, automaton, automaton with counters,
sliding cyclic(1) constraint network(2).

20000128 809

810 NARC,CLIQUE (<)

4.192 soft alldifferent ctr

Origin [10]

Constraint soft alldifferent ctr(C, VARIABLES)

Synonym(s) soft alldiff ctr, soft alldistinct ctr.

Argument(s) C : dvar

VARIABLES : collection(var − dvar)

Restriction(s) C ≥ 0
C ≤ (|VARIABLES| ∗ |VARIABLES| − |VARIABLES|)/2
required(VARIABLES, var)

Purpose
Consider the disequality constraints involving two distinct variables of the collection
VARIABLES. Among the previous set of constraints, C is the number of disequality constraints
which do not hold.

Arc input(s) VARIABLES

Arc generator CLIQUE(<) 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NARC = C

Example soft alldifferent ctr

0
BBBBBB@

4,

8
>>>>>><
>>>>>>:

var− 5,
var− 1,
var− 9,
var− 1,
var− 5,
var− 5

9
>>>>>>=
>>>>>>;

1
CCCCCCA

Parts (A) and (B) of Figure 4.381 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in bold.
Since four equality constraints remain in the final graph the cost variable C is equal to 4.

Graph model We generate an initial graph with binary equalities constraints between each vertex and
its successors. We use the arc generator CLIQUE(<) in order to avoid counting twice
the same equality constraint. The graph property states that C is equal to the number of
equalities that hold in the final graph.

Usage A soft alldifferent constraint.

20030820 811

Algorithm Since it focus on the soft aspect of the alldifferent constraint, the original paper [10]
which introduces this constraint describes how to evaluate the minimum value of C and how
to prune according to the maximum value of C. The corresponding filtering algorithm does
not achieve arc-consistency. W.-J. van Hoeve [26] presents a new filtering algorithm which
achieves arc-consistency. This algorithm is based on a reformulation into a minimum-cost
flow problem.

See also alldifferent, soft alldifferent var.

Key words soft constraint, value constraint, relaxation, decomposition-based violation measure,
all different, disequality, flow.

812 NARC,CLIQUE (<)

VARIABLES

1

2

3

4

5

6

NARC=4

1:5

5:5

6:5

2:1

4:1

(A) (B)

Figure 4.381: Initial and final graph of the soft alldifferent ctr constraint

20030820 813

814 NSCC,CLIQUE

4.193 soft alldifferent var

Origin [10]

Constraint soft alldifferent var(C, VARIABLES)

Synonym(s) soft alldiff var, soft alldistinct var.

Argument(s) C : dvar

VARIABLES : collection(var − dvar)

Restriction(s) C ≥ 0
C < |VARIABLES|
required(VARIABLES, var)

Purpose C is the minimum number of variables of the collection VARIABLES for which the value needs
to be changed in order that all variables of VARIABLES take a distinct value.

Arc input(s) VARIABLES

Arc generator CLIQUE 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NSCC = |VARIABLES| − C

Example soft alldifferent var

0
BBBBBB@

3,

8
>>>>>><
>>>>>>:

var− 5,
var− 1,
var− 9,
var− 1,
var− 5,
var− 5

9
>>>>>>=
>>>>>>;

1
CCCCCCA

Parts (A) and (B) of Figure 4.382 respectively show the initial and final graph.
Since we use the NSCC graph property we show the different strongly connected
components of the final graph. Each strongly connected component of the final graph
includes all variables which take the same value. Since we have 6 variables and 3 strongly
connected components the cost variable C is equal to 6− 3.

Graph model We generate a clique with binary equalities constraints between each pairs of vertices (this
include an arc between a vertex and itself) and we state that C is equal to the difference
between the total number of variables and the number of strongly connected components.

Usage A soft alldifferent constraint.

Remark Since it focus on the soft aspect of the alldifferent constraint, the original paper [10]
which introduce this constraint describes how to evaluate the minimum value of C and how
to prune according to the maximum value of C.

20030820 815

Algorithm The filtering algorithm presented in [10] achieves arc-consistency.

See also alldifferent, soft alldifferent ctr, weighted partial alldiff.

Key words soft constraint, value constraint, relaxation, variable-based violation measure, all different,
disequality, strongly connected component, equivalence.

816 NSCC,CLIQUE

VARIABLES

1

2

3

4

5

6

NSCC=3

SCC#1 SCC#2 SCC#3

1:5

5:5

6:5

2:1

4:1

3:9

(A) (B)

Figure 4.382: Initial and final graph of the soft alldifferent var constraint

20030820 817

818 NSINK NSOURCE,PRODUCT

4.194 soft same interval var

Origin Derived from same interval

Constraint soft same interval var(C, VARIABLES1, VARIABLES2, SIZE INTERVAL)

Synonym(s) soft same interval.

Argument(s) C : dvar

VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
SIZE INTERVAL : int

Restriction(s) C ≥ 0
C ≤ |VARIABLES1|
|VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
SIZE INTERVAL > 0

Purpose

LetNi (respectivelyMi) denote the number of variables of the collection VARIABLES1 (respec-
tively VARIABLES2) that take a value in the interval [SIZE INTERVAL · i, SIZE INTERVAL · i+
SIZE INTERVAL − 1. C is the minimum number of values to change in the VARIABLES1 and
VARIABLES2 collections so that for all integer i we have Ni = Mi.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var/SIZE INTERVAL = variables2.var/SIZE INTERVAL

Graph property(ies) NSINK NSOURCE = |VARIABLES1| − C

Example soft same interval var

0
BBBBBBBBBBBBBBBBBB@

4,

8
>>>>>><
>>>>>>:

var− 9,
var− 9,
var− 9,
var− 9,
var− 9,
var− 1

9
>>>>>>=
>>>>>>;

,

8
>>>>>><
>>>>>>:

var − 9,
var − 1,
var − 1,
var − 1,
var − 1,
var − 8

9
>>>>>>=
>>>>>>;

, 3

1
CCCCCCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.383 respectively show the initial and final graph.

20050507 819

Since we use the NSINK NSOURCE graph property, the source and sink vertices
of the final graph are stressed with a double circle. The soft same interval var

constraint holds since the cost 4 corresponds to the difference between the number of
variables of VARIABLES1 and the sum over the different connected components of the
minimum number of sources and sinks.

VARIABLES1

VARIABLES2

1

1234 56

2 3456

NSINK_NSOURCE=min(5,1)+min(1,4)=2

1:9

1:9

2:9 3:9 4:9 5:9 6:1

2:1 3:1 4:1 5:1

(A) (B)

Figure 4.383: Initial and final graph of the soft same interval var constraint

Usage A soft same interval constraint.

Algorithm See algorithm of the soft same var constraint.

See also same interval.

Key words soft constraint, constraint between two collections of variables, relaxation,
variable-based violation measure, interval.

820 NSINK NSOURCE,PRODUCT

4.195 soft same modulo var

Origin Derived from same modulo

Constraint soft same modulo var(C, VARIABLES1, VARIABLES2, M)

Synonym(s) soft same modulo.

Argument(s) C : dvar

VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
M : int

Restriction(s) C ≥ 0
C ≤ |VARIABLES1|
|VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
M > 0

Purpose

For each integer R in [0, M − 1], let N1R (respectively N2R) denote the number of variables
of VARIABLES1 (respectively VARIABLES2) which have R as a rest when divided by M. C is the
minimum number of values to change in the VARIABLES1 and VARIABLES2 collections so that
for all R in [0, M− 1] we have N1R = N2R.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var mod M = variables2.var mod M

Graph property(ies) NSINK NSOURCE = |VARIABLES1| − C

Example soft same modulo var

0
BBBBBBBBBBBBBBBBBB@

4,

8
>>>>>><
>>>>>>:

var − 9,
var − 9,
var − 9,
var − 9,
var − 9,
var − 1

9
>>>>>>=
>>>>>>;

,

8
>>>>>><
>>>>>>:

var− 9,
var− 1,
var− 1,
var− 1,
var− 1,
var− 8

9
>>>>>>=
>>>>>>;

, 3

1
CCCCCCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.384 respectively show the initial and final graph.

20050507 821

Since we use the NSINK NSOURCE graph property, the source and sink vertices of
the final graph are stressed with a double circle. The soft same modulo var constraint
holds since the cost 4 corresponds to the difference between the number of variables
of VARIABLES1 and the sum over the different connected components of the minimum
number of sources and sinks.

VARIABLES1

VARIABLES2

1

1234 56

2 3456

NSINK_NSOURCE=min(5,1)+min(1,4)=2

1:9

1:9

2:9 3:9 4:9 5:9 6:1

2:1 3:1 4:1 5:1

(A) (B)

Figure 4.384: Initial and final graph of the soft same modulo var constraint

Usage A soft same modulo constraint.

Algorithm See algorithm of the soft same var constraint.

See also same modulo.

Key words soft constraint, constraint between two collections of variables, relaxation,
variable-based violation measure, modulo.

822 NSINK NSOURCE,PRODUCT

4.196 soft same partition var

Origin Derived from same partition

Constraint soft same partition var(C, VARIABLES1, VARIABLES2, PARTITIONS)

Synonym(s) soft same partition.

Type(s) VALUES : collection(val− int)

Argument(s) C : dvar

VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
PARTITIONS : collection(p− VALUES)

Restriction(s) C ≥ 0
C ≤ |VARIABLES1|
|VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2
required(VALUES, val)
distinct(VALUES, val)

Purpose

For each integer i in [1, |PARTITIONS|], let N1 i (respectively N2 i) denote the number of vari-
ables of VARIABLES1 (respectively VARIABLES2) which take their value in the ith partition of
the collection PARTITIONS. C is the minimum number of values to change in the VARIABLES1
and VARIABLES2 collections so that for all i in [1, |PARTITIONS|] we have N1 i = N2 i.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) in same partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) NSINK NSOURCE = |VARIABLES1| − C

20050507 823

Example soft same partition var

0
BBBBBBBBBBBBBBBBBBBBBBBB@

4,

8
>>>>>><
>>>>>>:

var − 9,
var − 9,
var − 9,
var − 9,
var − 9,
var − 1

9
>>>>>>=
>>>>>>;

,

8
>>>>>><
>>>>>>:

var − 9,
var − 1,
var − 1,
var − 1,
var − 1,
var − 8

9
>>>>>>=
>>>>>>;

,

8
<
:

p− {val − 1, val− 2},
p− {val − 9},
p− {val − 7, val− 8}

9
=
;

1
CCCCCCCCCCCCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.385 respectively show the initial and final graph.
Since we use the NSINK NSOURCE graph property, the source and sink vertices
of the final graph are stressed with a double circle. The soft same partition var

constraint holds since the cost 4 corresponds to the difference between the number of
variables of VARIABLES1 and the sum over the different connected components of the
minimum number of sources and sinks.

VARIABLES1

VARIABLES2

1

1234 56

2 3456

NSINK_NSOURCE=min(5,1)+min(1,4)=2

1:9

1:9

2:9 3:9 4:9 5:9 6:1

2:1 3:1 4:1 5:1

(A) (B)

Figure 4.385: Initial and final graph of the soft same partition var constraint

Usage A soft same partition constraint.

Algorithm See algorithm of the soft same var constraint.

See also same partition.

Key words soft constraint, constraint between two collections of variables, relaxation,
variable-based violation measure, partition.

824 NSINK NSOURCE,PRODUCT

4.197 soft same var

Origin [104]

Constraint soft same var(C, VARIABLES1, VARIABLES2)

Synonym(s) soft same.

Argument(s) C : dvar

VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)

Restriction(s) C ≥ 0
C ≤ |VARIABLES1|
|VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose
C is the minimum number of values to change in the VARIABLES1 and VARIABLES2 collec-
tions so that the variables of the VARIABLES2 collection correspond to the variables of the
VARIABLES1 collection according to a permutation.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NSINK NSOURCE = |VARIABLES1| − C

Example soft same var

0
BBBBBBBBBBBBBBBBBB@

4,

8
>>>>>><
>>>>>>:

var − 9,
var − 9,
var − 9,
var − 9,
var − 9,
var − 1

9
>>>>>>=
>>>>>>;

,

8
>>>>>><
>>>>>>:

var − 9,
var − 1,
var − 1,
var − 1,
var − 1,
var − 8

9
>>>>>>=
>>>>>>;

1
CCCCCCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.386 respectively show the initial and final graph.
Since we use the NSINK NSOURCE graph property, the source and sink vertices
of the final graph are stressed with a double circle. The soft same var constraint
holds since the cost 4 corresponds to the difference between the number of variables
of VARIABLES1 and the sum over the different connected components of the minimum
number of sources and sinks.

20050507 825

Usage A soft same constraint.

Algorithm [104, page 80].

See also same.

Key words soft constraint, constraint between two collections of variables, relaxation,
variable-based violation measure.

826 NSINK NSOURCE,PRODUCT

VARIABLES1

VARIABLES2

1

1234 56

2 3456

NSINK_NSOURCE=min(5,1)+min(1,4)=2

1:9

1:9

2:9 3:9 4:9 5:9 6:1

2:1 3:1 4:1 5:1

(A) (B)

Figure 4.386: Initial and final graph of the soft same var constraint

20050507 827

828 NSINK NSOURCE,PRODUCT

4.198 soft used by interval var

Origin Derived from used by interval.

Constraint soft used by interval var(C, VARIABLES1, VARIABLES2, SIZE INTERVAL)

Synonym(s) soft used by interval.

Argument(s) C : dvar

VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
SIZE INTERVAL : int

Restriction(s) C ≥ 0
C ≤ |VARIABLES2|
|VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
SIZE INTERVAL > 0

Purpose

LetNi (respectivelyMi) denote the number of variables of the collection VARIABLES1 (respec-
tively VARIABLES2) that take a value in the interval [SIZE INTERVAL · i, SIZE INTERVAL · i+
SIZE INTERVAL − 1]. C is the minimum number of values to change in the VARIABLES1 and
VARIABLES2 collections so that for all integer i we have Mi > 0⇒ Ni > 0.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var/SIZE INTERVAL = variables2.var/SIZE INTERVAL

Graph property(ies) NSINK NSOURCE = |VARIABLES2| − C

Example soft used by interval var

0
BBBBBBBBBBBB@

2,

8
>>>><
>>>>:

var − 9,
var − 1,
var − 1,
var − 8,
var − 8

9
>>>>=
>>>>;
,

8
>><
>>:

var − 9,
var − 9,
var − 9,
var − 1

9
>>=
>>;
, 3

1
CCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.387 respectively show the initial and final graph.
Since we use the NSINK NSOURCE graph property, the source and sink vertices
of the final graph are stressed with a double circle. The soft used by interval var

constraint holds since the cost 2 corresponds to the difference between the number of
variables of VARIABLES2 and the sum over the different connected components of the
minimum number of sources and sinks.

20050507 829

Usage A soft used by interval constraint.

See also used by interval.

Key words soft constraint, constraint between two collections of variables, relaxation,
variable-based violation measure, interval.

830 NSINK NSOURCE,PRODUCT

VARIABLES1

VARIABLES2

1

1234

2345

NSINK_NSOURCE=min(1,3)+min(2,1)=2

1:9

1:9 2:9 3:9

2:1

4:1

3:1

(A) (B)

Figure 4.387: Initial and final graph of the soft used by interval var constraint

20050507 831

832 NSINK NSOURCE,PRODUCT

4.199 soft used by modulo var

Origin Derived from used by modulo

Constraint soft used by modulo var(C, VARIABLES1, VARIABLES2, M)

Synonym(s) soft used by modulo.

Argument(s) C : dvar

VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
M : int

Restriction(s) C ≥ 0
C ≤ |VARIABLES2|
|VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
M > 0

Purpose

For each integer R in [0, M − 1], let N1R (respectively N2R) denote the number of variables
of VARIABLES1 (respectively VARIABLES2) which have R as a rest when divided by M. C is the
minimum number of values to change in the VARIABLES1 and VARIABLES2 collections so that
for all R in [0, M− 1] we have N2R > 0⇒ N1R > 0.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var mod M = variables2.var mod M

Graph property(ies) NSINK NSOURCE = |VARIABLES2| − C

Example soft used by modulo var

0
BBBBBBBBBBBB@

2,

8
>>>><
>>>>:

var − 9,
var − 1,
var − 1,
var − 8,
var − 8

9
>>>>=
>>>>;
,

8
>><
>>:

var − 9,
var − 9,
var − 9,
var − 1

9
>>=
>>;
, 3

1
CCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.388 respectively show the initial and final graph.
Since we use the NSINK NSOURCE graph property, the source and sink vertices
of the final graph are stressed with a double circle. The soft used by modulo var

constraint holds since the cost 2 corresponds to the difference between the number of
variables of VARIABLES2 and the sum over the different connected components of the
minimum number of sources and sinks.

20050507 833

Usage A soft used by modulo constraint.

Key words soft constraint, constraint between two collections of variables, relaxation,
variable-based violation measure, modulo.

834 NSINK NSOURCE,PRODUCT

VARIABLES1

VARIABLES2

1

1234

2345

NSINK_NSOURCE=min(1,3)+min(2,1)=2

1:9

1:9 2:9 3:9

2:1

4:1

3:1

(A) (B)

Figure 4.388: Initial and final graph of the soft used by modulo var constraint

20050507 835

836 NSINK NSOURCE,PRODUCT

4.200 soft used by partition var

Origin Derived from used by partition.

Constraint soft used by partition var(C, VARIABLES1, VARIABLES2, PARTITIONS)

Synonym(s) soft used by partition.

Type(s) VALUES : collection(val− int)

Argument(s) C : dvar

VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
PARTITIONS : collection(p− VALUES)

Restriction(s) C ≥ 0
C ≤ |VARIABLES2|
|VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2
required(VALUES, val)
distinct(VALUES, val)

Purpose

For each integer i in [1, |PARTITIONS|], let N1 i (respectively N2 i) denote the number of vari-
ables of VARIABLES1 (respectively VARIABLES2) which take their value in the ith partition of
the collection PARTITIONS. C is the minimum number of values to change in the VARIABLES1
and VARIABLES2 collections so that for all i in [1, |PARTITIONS|] we have N1 i = N2 i.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) in same partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) NSINK NSOURCE = |VARIABLES2| − C

20050507 837

Example soft used by partition var

0
BBBBBBBBBBBBBBBBBB@

2,

8
>>>><
>>>>:

var − 9,
var − 1,
var − 1,
var − 8,
var − 8

9
>>>>=
>>>>;
,

8
>><
>>:

var − 9,
var − 9,
var − 9,
var − 1

9
>>=
>>;
,

8
<
:

p − {val − 1, val − 2},
p − {val − 9},
p − {val − 7, val − 8}

9
=
;

1
CCCCCCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.389 respectively show the initial and final graph.
Since we use the NSINK NSOURCE graph property, the source and sink vertices
of the final graph are stressed with a double circle. The soft used by partition var

constraint holds since the cost 2 corresponds to the difference between the number of
variables of VARIABLES2 and the sum over the different connected components of the
minimum number of sources and sinks.

VARIABLES1

VARIABLES2

1

1234

2345

NSINK_NSOURCE=min(1,3)+min(2,1)=2

1:9

1:9 2:9 3:9

2:1

4:1

3:1

(A) (B)

Figure 4.389: Initial and final graph of the soft used by partition var constraint

Usage A soft used by partition constraint.

See also used by partition.

Key words soft constraint, constraint between two collections of variables, relaxation,
variable-based violation measure, partition.

838 NSINK NSOURCE,PRODUCT

4.201 soft used by var

Origin Derived from used by

Constraint soft used by var(C, VARIABLES1, VARIABLES2)

Synonym(s) soft used by.

Argument(s) C : dvar

VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)

Restriction(s) C ≥ 0
C ≤ |VARIABLES2|
|VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose
C is the minimum number of values to change in the VARIABLES1 and VARIABLES2 collections
so that all the values of the variables of collection VARIABLES2 are used by the variables of
collection VARIABLES1.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NSINK NSOURCE = |VARIABLES2| − C

Example soft used by var

0
BBBBBBBBBBBB@

2,

8
>>>><
>>>>:

var − 9,
var − 1,
var − 1,
var − 8,
var − 8

9
>>>>=
>>>>;
,

8
>><
>>:

var− 9,
var− 9,
var− 9,
var− 1

9
>>=
>>;

1
CCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.390 respectively show the initial and final graph.
Since we use the NSINK NSOURCE graph property, the source and sink vertices
of the final graph are stressed with a double circle. The soft used by var constraint
holds since the cost 2 corresponds to the difference between the number of variables
of VARIABLES2 and the sum over the different connected components of the minimum
number of sources and sinks.

20050507 839

Usage A soft used by constraint.

Key words soft constraint, constraint between two collections of variables, relaxation,
variable-based violation measure.

840 NSINK NSOURCE,PRODUCT

VARIABLES1

VARIABLES2

1

1234

2345

NSINK_NSOURCE=min(1,3)+min(2,1)=2

1:9

1:9 2:9 3:9

2:1

4:1

3:1

(A) (B)

Figure 4.390: Initial and final graph of the soft used by var constraint

20050507 841

842 NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT ; NARC,PATH

4.202 sort

Origin [139]

Constraint sort(VARIABLES1, VARIABLES2)

Argument(s) VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)

Restriction(s) |VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose The variables of the collection VARIABLES2 correspond to the variables of VARIABLES1 ac-
cording to a permutation. The variables of VARIABLES2 are also sorted in increasing order.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) • for all connected components: NSOURCE = NSINK
• NSOURCE = |VARIABLES1|
• NSINK = |VARIABLES2|

Arc input(s) VARIABLES2

Arc generator PATH 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var ≤ variables2.var

Graph property(ies) NARC = |VARIABLES2| − 1

Example sort

0
BBBBBBBBBBBBBBBBBB@

8
>>>>>><
>>>>>>:

var − 1,
var − 9,
var − 1,
var − 5,
var − 2,
var − 1

9
>>>>>>=
>>>>>>;

,

8
>>>>>><
>>>>>>:

var − 1,
var − 1,
var − 1,
var − 2,
var − 5,
var − 9

9
>>>>>>=
>>>>>>;

1
CCCCCCCCCCCCCCCCCCA

20030820 843

Parts (A) and (B) of Figure 4.391 respectively show the initial and final graph asso-
ciated to the first graph constraint. Since it uses the NSOURCE and NSINK graph
properties, the source and sink vertices of this final graph are stressed with a double circle.
Since there is a constraint on each connected component of the final graph we also show
the different connected components. The sort constraint holds since:

• Each connected component of the final graph of the first graph constraint has the
same number of sources and of sinks.

• The number of sources of the final graph of the first graph constraint is equal to
|VARIABLES1|.

• The number of sinks of the final graph of the first graph constraint is equal to
|VARIABLES2|.

• Finally the second graph constraint holds also since its corresponding final graph
contains exactly |VARIABLES1 − 1| arcs: All the inequalities constraints between
consecutive variables of VARIABLES2 holds.

VARIABLES1

VARIABLES2

1

1234 56

2 3456

CC#1:NSOURCE=3,NSINK=3
CC#2:NSOURCE=1,NSINK=1
CC#3:NSOURCE=1,NSINK=1
CC#4:NSOURCE=1,NSINK=1

NSOURCE=6,NSINK=6

CC#1 CC#2 CC#3 CC#4

1:1

1:1 2:13:1

3:16:1 2:9

6:9

4:5

5:5

5:2

4:2

(A) (B)

Figure 4.391: Initial and final graph of the sort constraint

Signature Consider the first graph constraint. Since the initial graph contains only sources and sinks,
and since isolated vertices are eliminated from the final graph, we make the following
observations:

• Sources of the initial graph cannot become sinks of the final graph,

• Sinks of the initial graph cannot become sources of the final graph.

From the previous observations and since we use the PRODUCT arc generator on the col-
lections VARIABLES1 and VARIABLES2, we have that the maximum number of sources and
sinks of the final graph is respectively equal to |VARIABLES1| and |VARIABLES2|. There-
fore we can rewrite NSOURCE = |VARIABLES1| to NSOURCE ≥ |VARIABLES1|
and simplify NSOURCE to NSOURCE. In a similar way, we can rewrite

844 NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT ; NARC,PATH

NSINK = |VARIABLES2| to NSINK ≥ |VARIABLES2| and simplify NSINK to
NSINK.

Consider now the second graph constraint. Since we use the PATH arc generator with an
arity of 2 on the VARIABLES2 collection, the maximum number of arcs of the final graph
is equal to |VARIABLES2| − 1. Therefore we can rewrite the graph property NARC =
|VARIABLES2| − 1 to NARC ≥ |VARIABLES2| − 1 and simplify NARC to NARC.

Remark A variant of this constraint was introduced in [147]. In this variant an additional list of
domain variables represents the permutation which allows to go from VARIABLES1 to
VARIABLES2.

Algorithm [61, 23].

See also same, sort permutation.

Key words constraint between two collections of variables, sort, permutation.

20030820 845

846 NARC,PRODUCT ; NARC,PATH

4.203 sort permutation

Origin [147]

Constraint sort permutation(FROM, PERMUTATION, TO)

Usual name sort

Argument(s) FROM : collection(var− dvar)
PERMUTATION : collection(var− dvar)
TO : collection(var− dvar)

Restriction(s) |PERMUTATION| = |FROM|
|PERMUTATION| = |TO|
PERMUTATION.var ≥ 1
PERMUTATION.var ≤ |PERMUTATION|
alldifferent(PERMUTATION)
required(FROM, var)
required(PERMUTATION, var)
required(TO, var)

Purpose The variables of collection FROM correspond to the variables of collection TO according to the
permutation PERMUTATION. The variables of collection TO are also sorted in increasing order.

Derived Collection(s) col

„
FROM PERMUTATION − collection(var− dvar, ind − dvar),
[item(var− FROM.var, ind − PERMUTATION.var)]

«

Arc input(s) FROM PERMUTATION TO

Arc generator PRODUCT 7→ collection(from permutation, to)

Arc arity 2

Arc constraint(s) • from permutation.var = to.var
• from permutation.ind = to.key

Graph property(ies) NARC = |PERMUTATION|

Arc input(s) TO

Arc generator PATH 7→ collection(to1, to2)

Arc arity 2

Arc constraint(s) to1.var ≤ to2.var

Graph property(ies) NARC = |TO| − 1

20030820 847

Example sort permutation

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

8
>>>>>><
>>>>>>:

var − 1,
var − 9,
var − 1,
var − 5,
var − 2,
var − 1

9
>>>>>>=
>>>>>>;

,

8
>>>>>><
>>>>>>:

var − 1,
var − 6,
var − 3,
var − 5,
var − 4,
var − 2

9
>>>>>>=
>>>>>>;

,

8
>>>>>><
>>>>>>:

var − 1,
var − 1,
var − 1,
var − 2,
var − 5,
var − 9

9
>>>>>>=
>>>>>>;

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.392 respectively show the initial and final graph asso-
ciated to the first graph constraint. In both graphs the source vertices correspond to the
items of the derived collection FROM PERMUTATION, while the sink vertices correspond
to the items of the TO collection. Since the first graph constraint uses the NARC graph
property, the arcs of its final graph are stressed in bold. The sort permutation constraint
holds since:

• The first graph constraint holds since its final graph contains exactly PERMUTATION

arcs.

• Finally the second graph constraint holds also since its corresponding final graph
contains exactly |PERMUTATION − 1| arcs: All the inequalities constraints between
consecutive variables of TO holds.

FROM_PERMUTATION

TO

1

1234 56

2 3456

NARC=6

1:1,1

1:1

2:9,6

6:9

3:1,3

3:1

4:5,5

5:5

5:2,4

4:2

6:1,2

2:1

(A) (B)

Figure 4.392: Initial and final graph of the sort permutation constraint

848 NARC,PRODUCT ; NARC,PATH

Signature Consider the first graph constraint where we use the PRODUCT arc generator. Since all
the key attributes of the TO collection are distinct, and because of the second condition
from permutation.ind = to.key of the arc constraint, each vertex of the final graph has
at most one successor. Therefore the maximum number of arcs of the final graph is equal
to |PERMUTATION|. So we can rewrite the graph property NARC = |PERMUTATION| to
NARC ≥ |PERMUTATION| and simplify NARC to NARC.

Consider now the second graph constraint. Since we use the PATH arc generator with
an arity of 2 on the TO collection, the maximum number of arcs of the corresponding final
graph is equal to |TO| − 1. Therefore we can rewrite NARC = |TO| − 1 to NARC ≥
|TO| − 1 and simplify NARC to NARC.

Algorithm [147].

See also correspondence, sort.

Key words constraint between three collections of variables, sort, permutation, derived collection.

20030820 849

850 NARC,PATH ; NARC,PRODUCT

4.204 stage element

Origin CHOCO, derived from element.

Constraint stage element(ITEM, TABLE)

Usual name stage elt

Argument(s) ITEM : collection(index − dvar, value − dvar)
TABLE : collection(low − int, up− int, value − int)

Restriction(s) required(ITEM, [index, value])
|ITEM| = 1
required(TABLE, [low, up, value])

Purpose

Let lowi, upi and valuei respectively denote the values of the low, up and value attributes of
the ith item of the TABLE collection. First we have that: lowi ≤ upi and upi + 1 = lowi+1.
Second, the stageelement constraint enforces the following equivalence:
lowi ≤ ITEM.index ∧ ITEM.index ≤ upi ⇔ ITEM.value = valuei.

Arc input(s) TABLE

Arc generator PATH 7→ collection(table1, table2)

Arc arity 2

Arc constraint(s) • table1.low ≤ table1.up
• table1.up + 1 = table2.low
• table2.low ≤ table2.up

Graph property(ies) NARC = |TABLE| − 1

Arc input(s) ITEM TABLE

Arc generator PRODUCT 7→ collection(item, table)

Arc arity 2

Arc constraint(s) • item.index ≥ table.low
• item.index ≤ table.up
• item.value = table.value

Graph property(ies) NARC = 1

20040828 851

Example stage element

0
BBBB@

{index − 5 value − 6},8
>><
>>:

low − 3 up− 7 value − 6,
low − 8 up− 8 value − 9,
low − 9 up− 14 value − 2,
low − 15 up− 19 value − 9

9
>>=
>>;

1
CCCCA

Parts (A) and (B) of Figure 4.393 respectively show the initial and final graph asso-
ciated to the second graph constraint. Since we use the NARC graph property, the unique
arc of the final graph is stressed in bold.

Graph model The first graph constraint models the restrictions on the low and up attributes of the TABLE
collection, while the second graph constraint is similar to the one used for defining the
element constraint.

Automaton Figure 4.394 depicts the automaton associated to the stage element constraint. Let
INDEX and VALUE respectively be the index and the value attributes of the unique
item of the ITEM collection. Let LOWi, UPi and VALUEi respectively be the low, the
up and the value attributes of the ith item of the TABLE collection. To each quintu-
ple (INDEX, VALUE, LOWi, UPi, VALUEi) corresponds a 0-1 signature variable Si as well as
the following signature constraint: ((LOWi ≤ INDEX) ∧ (INDEX ≤ UPi) ∧ (VALUE =
VALUEi))⇔ Si.

See also element, elem.

Key words data constraint, binary constraint, table, functional dependency, automaton,
automaton without counters, centered cyclic(2) constraint network(1).

852 NARC,PATH ; NARC,PRODUCT

ITEM

TABLE

1

1234

NARC=1

1:5,6

1:3,7,6

(A) (B)

Figure 4.393: Initial and final graph of the stage element constraint

s

t

TABLE_LOW =<ITEM_INDEX and ITEM_INDEX=<TABLE_UP and ITEM_VALUE=TABLE_VALUE
i i i

TABLE_LOW >ITEM_INDEX or ITEM_INDEX>TABLE_UP or ITEM_VALUE<>TABLE_VALUE
i i i

Figure 4.394: Automaton of the stage element constraint

Q =tn

SnS2

Q1Q =s0

S1

ITEM_INDEX

ITEM_VALUE

Figure 4.395: Hypergraph of the reformulation corresponding to the automaton of the
stage element constraint

20040828 853

854 MAX NCC,CIRCUIT ,LOOP , ∀

4.205 stretch circuit

Origin [148]

Constraint stretch circuit(VARIABLES, VALUES)

Usual name stretch

Argument(s) VARIABLES : collection(var − dvar)
VALUES : collection(val − int, lmin− int, lmax − int)

Restriction(s) |VARIABLES| > 0
required(VARIABLES, var)
|VALUES| > 0
required(VALUES, [val, lmin, lmax])
distinct(VALUES, val)
VALUES.lmin ≤ VALUES.lmax

Let n be the number of variables of the collection VARIABLES. Let Xi, . . . , Xj (0 ≤ i <
n, 0 ≤ j < n) be consecutive variables of the collection of variables VARIABLES such that the
following conditions apply:

Purpose • All variables Xi, . . . , Xj take a same value from the set of values of the val attribute,

• X(i−1) mod n is different from Xi,

• X(j+1) mod n is different from Xj .
We call such a set of variables a stretch. The span of the stretch is equal to 1 + (j − i) mod n,
while the value of the stretch isXi. An item (val−v, lmin−s, lmax− t) gives the minimum
value s as well as the maximum value t for the span of a stretch of value v.

For all items of VALUES:

Arc input(s) VARIABLES

Arc generator CIRCUIT 7→ collection(variables1, variables2)
LOOP 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • variables1.var = VALUES.val
• variables2.var = VALUES.val

Graph property(ies) • not in(MIN NCC, 1, VALUES.lmin − 1)
•MAX NCC ≤ VALUES.lmax

20030820 855

Example stretch circuit

0
BBBBBBBBBBBBBBBBBB@

8
>>>>>>>>>><
>>>>>>>>>>:

var − 6,
var − 6,
var − 3,
var − 1,
var − 1,
var − 1,
var − 6,
var − 6

9
>>>>>>>>>>=
>>>>>>>>>>;

,

8
>><
>>:

val − 1 lmin − 2 lmax − 4,
val − 2 lmin − 2 lmax − 3,
val − 3 lmin − 1 lmax − 6,
val − 6 lmin − 2 lmax − 4

9
>>=
>>;

1
CCCCCCCCCCCCCCCCCCA

Part (A) of Figure 4.396 shows the initial graphs associated to values 1, 2, 3 and 6.
Part (B) of Figure 4.396 shows the final graphs associated to values 1, 3 and 6. Since value
2 is not assigned to any variable of the VARIABLES collection the final graph associated to
value 2 is empty. The stretch circuit constraint holds since:

• For value 1 we have one connected component for which the number of vertices is
greater than or equal to 2 and less than or equal to 4,

• For value 2 we don’t have any connected component,

• For value 3 we have one connected component for which the number of vertices is
greater than or equal to 1 and less than or equal to 6,

• For value 6 we have one connected component for which the number of vertices is
greater than or equal to 2 and less than or equal to 4.

VARIABLES

1

2

3

4

5

6

7

8

1:MIN_NCC=3,MAX_NCC=3
3:MIN_NCC=1,MAX_NCC=1
6:MIN_NCC=2,MAX_NCC=2

VALUES:1 VALUES:3 VALUES:6

4:1

5:1

6:1

3:3 1:6

2:6

7:6

8:6

(A) (B)

Figure 4.396: Initial and final graph of the stretch circuit constraint

Usage The paper [148] which originally introduced the stretch constraint quotes rostering prob-
lems as typical examples of use of this constraint.

856 MAX NCC,CIRCUIT ,LOOP , ∀

Remark We split the origin stretch constraint into the stretch circuit and the stretch path

constraints which respectively use the PATH LOOP and CIRCUIT LOOP arc gen-
erator. We also reorganize the parameters: the VALUES collection describes the attributes
of each value that can be assigned to the variables of the stretch circuit constraint.
Finally we skipped the pattern constraint which tells what values can follow a given value.

Algorithm A first filtering algorithm was described in the original paper of G. Pesant [148]. An al-
gorithm which also generates explanations is given in [7]. The first filtering algorithm
achieving arc-consistency is depicted in [149]. This algorithm is based on dynamic pro-
gramming and handles the fact that some values can be followed by only a given subset of
values.

See also stretch path, sliding distribution, group, pattern.

Key words timetabling constraint, sliding sequence constraint, cyclic.

20030820 857

858 MAX NCC,PATH ,LOOP , ∀

4.206 stretch path

Origin [148]

Constraint stretch path(VARIABLES, VALUES)

Usual name stretch

Argument(s) VARIABLES : collection(var − dvar)
VALUES : collection(val − int, lmin− int, lmax − int)

Restriction(s) |VARIABLES| > 0
required(VARIABLES, var)
|VALUES| > 0
required(VALUES, [val, lmin, lmax])
distinct(VALUES, val)
VALUES.lmin ≤ VALUES.lmax

Let n be the number of variables of the collection VARIABLES. Let Xi, . . . , Xj (1 ≤ i ≤ j ≤
n) be consecutive variables of the collection of variables VARIABLES such that the following
conditions apply:

Purpose • All variables Xi, . . . , Xj take a same value from the set of values of the val attribute,

• i = 1 or Xi−1 is different from Xi,

• j = n or Xj+1 is different from Xj .
We call such a set of variables a stretch. The span of the stretch is equal to j − i+ 1, while the
value of the stretch is Xi. An item (val− v, lmin− s, lmax− t) gives the minimum value s
as well as the maximum value t for the span of a stretch of value v.

For all items of VALUES:

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)
LOOP 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • variables1.var = VALUES.val
• variables2.var = VALUES.val

Graph property(ies) • not in(MIN NCC, 1, VALUES.lmin − 1)
•MAX NCC ≤ VALUES.lmax

20030820 859

Example stretch path

0
BBBBBBBBBBBBBBBBBB@

8
>>>>>>>>>><
>>>>>>>>>>:

var − 6,
var − 6,
var − 3,
var − 1,
var − 1,
var − 1,
var − 6,
var − 6

9
>>>>>>>>>>=
>>>>>>>>>>;

,

8
>><
>>:

val − 1 lmin − 2 lmax − 4,
val − 2 lmin − 2 lmax − 3,
val − 3 lmin − 1 lmax − 6,
val − 6 lmin − 2 lmax − 2

9
>>=
>>;

1
CCCCCCCCCCCCCCCCCCA

Part (A) of Figure 4.397 shows the initial graphs associated to values 1, 2, 3 and 6.
Part (B) of Figure 4.397 shows the final graphs associated to values 1, 3 and 6. Since value
2 is not assigned to any variable of the VARIABLES collection the final graph associated to
value 2 is empty. The stretch path constraint holds since:

• For value 1 we have one connected component for which the number of vertices 3 is
greater than or equal to 2 and less than or equal to 4,

• For value 2 we don’t have any connected component,

• For value 3 we have one connected component for which the number of vertices 1 is
greater than or equal to 1 and less than or equal to 6,

• For value 6 we have two connected components which both contain two vertices:
This is greater than or equal to 2 and less than or equal to 2.

VARIABLES

1

2

3

4

5

6

7

8

1:MIN_NCC=3,MAX_NCC=3
3:MIN_NCC=1,MAX_NCC=1
6:MIN_NCC=2,MAX_NCC=2

VALUES:1 VALUES:3 VALUES:6

4:1

5:1

6:1

3:3 1:6

2:6

7:6

8:6

(A) (B)

Figure 4.397: Initial and final graph of the stretch path constraint

Graph model During the presentation of this constraint at CP’2001 the following point was mentioned:
It could be useful to allow domain variables for the minimum and the maximum values

860 MAX NCC,PATH ,LOOP , ∀

of a stretch. This could be achieved in the following way: The lmin (respectively lmax)
attribute would now be a domain variable which gives the size of the shortest (respectively
longest) stretch. Finally within the graph property(ies) field we would replace ≥(and ≤)
by =.

Usage The paper [148] which originally introduced the stretch constraint quotes rostering prob-
lems as typical examples of use of this constraint.

Remark We split the original stretch constraint into the stretch path and the
stretch circuit constraints which respectively use the PATH LOOP and CIRCUIT
LOOP arc generator. We also reorganize the parameters: the VALUES collection describes
the attributes of each value that can be assigned to the variables of the stretch path

constraint. Finally we skipped the pattern constraint which tells what values can follow a
given value.

Algorithm A first filtering algorithm was described in the original paper of G. Pesant [148]. A second
filtering algorithm, based on dynamic programming, achieving arc-consistency is depicted
in [149]. It also handles the fact that some values can be followed by only a given subset
of values.

See also stretch circuit, sliding distribution, group, pattern.

Key words timetabling constraint, sliding sequence constraint.

20030820 861

862 PREDEFINED

4.207 strict lex2

Origin [123]

Constraint strict lex2(MATRIX)

Type(s) VECTOR : collection(var− dvar)

Argument(s) MATRIX : collection(vec− VECTOR)

Restriction(s) required(VECTOR, var)
required(MATRIX, vec)
same size(MATRIX, vec)

Purpose Given a matrix of domain variables, enforces that both adjacent rows, and adjacent columns are
lexicographically ordered (adjacent rows and adjacent columns cannot be equal).

Example strict lex2

„
vec − {var − 2, var − 2, var − 3},
vec − {var − 2, var − 3, var − 1}

ff «

Usage A symmetry-breaking constraint.

See also lex2, allperm, lex lesseq, lex chain lesseq.

Key words predefined constraint, order constraint, matrix, matrix model, symmetry,
lexicographic order.

20031016 863

864 NARC,PATH

4.208 strictly decreasing

Origin Derived from strictly increasing.

Constraint strictly decreasing(VARIABLES)

Argument(s) VARIABLES : collection(var − dvar)

Restriction(s) |VARIABLES| > 0
required(VARIABLES, var)

Purpose The variables of the collection VARIABLES are strictly decreasing.

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var > variables2.var

Graph property(ies) NARC = |VARIABLES| − 1

Example strictly decreasing

0
BB@

8
>><
>>:

var − 8,
var − 4,
var − 3,
var − 1

9
>>=
>>;

1
CCA

Parts (A) and (B) of Figure 4.398 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Automaton Figure 4.399 depicts the automaton associated to the strictly decreasing constraint.
To each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corre-
sponds a 0-1 signature variable Si. The following signature constraint links VARi, VARi+1

and Si: VARi ≤ VARi+1 ⇔ Si.

See also decreasing, increasing, strictly increasing.

Key words decomposition, order constraint, automaton, automaton without counters,
sliding cyclic(1) constraint network(1).

20040814 865

VARIABLES

1

2

3

4

NARC=3

1:8

2:4

3:3

4:1

(A) (B)

Figure 4.398: Initial and final graph of the strictly decreasing constraint

$

t

s i i+1VAR >VAR

Figure 4.399: Automaton of the strictly decreasing constraint

VAR
1

VAR
2

S2

VAR
n

VAR
3

S3

Q2

Sn−1

VAR
n−1

Q =tn−1Q =s0 Q1

S1

Figure 4.400: Hypergraph of the reformulation corresponding to the automaton of the
strictly decreasing constraint

866 NARC,PATH

4.209 strictly increasing

Origin KOALOG

Constraint strictly increasing(VARIABLES)

Argument(s) VARIABLES : collection(var − dvar)

Restriction(s) |VARIABLES| > 0
required(VARIABLES, var)

Purpose The variables of the collection VARIABLES are strictly increasing.

Arc input(s) VARIABLES

Arc generator PATH 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var < variables2.var

Graph property(ies) NARC = |VARIABLES| − 1

Example strictly increasing

0
BB@

8
>><
>>:

var − 1,
var − 3,
var − 4,
var − 8

9
>>=
>>;

1
CCA

Parts (A) and (B) of Figure 4.401 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Automaton Figure 4.402 depicts the automaton associated to the strictly increasing constraint.
To each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corre-
sponds a 0-1 signature variable Si. The following signature constraint links VARi, VARi+1

and Si: VARi ≥ VARi+1 ⇔ Si.

See also increasing, decreasing, strictly decreasing.

Key words decomposition, order constraint, automaton, automaton without counters,
sliding cyclic(1) constraint network(1).

20040814 867

VARIABLES

1

2

3

4

NARC=3

1:1

2:3

3:4

4:8

(A) (B)

Figure 4.401: Initial and final graph of the strictly increasing constraint

$

t

s VAR <VARi i+1

Figure 4.402: Automaton of the strictly increasing constraint

VAR
1

VAR
2

S2

VAR
n

VAR
3

S3

Q2

Sn−1

VAR
n−1

Q =tn−1Q =s0 Q1

S1

Figure 4.403: Hypergraph of the reformulation corresponding to the automaton of the
strictly increasing constraint

868 MIN NSCC,CLIQUE

4.210 strongly connected

Origin [74]

Constraint strongly connected(NODES)

Argument(s) NODES : collection(index − int, succ − svar)

Restriction(s) required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)

Purpose Consider a digraph G described by the NODES collection. Select a subset of arcs of G so that
we have one single strongly connected component involving all vertices of G.

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) in set(nodes2.index, nodes1.succ)

Graph property(ies) MIN NSCC = |NODES|

Example strongly connected

0
BBBB@

8
>>>><
>>>>:

index − 1 succ − {2},
index − 2 succ − {3},
index − 3 succ − {2, 5},
index − 4 succ − {1},
index − 5 succ − {4}

9
>>>>=
>>>>;

1
CCCCA

Part (A) of Figure 4.404 shows the initial graph from which we start. It is derived
from the set associated to each vertex. Each set describes the potential values of the succ
attribute of a given vertex. Part (B) of Figure 4.404 gives the final graph associated to the
example. The strongly connected constraint holds since the final graph contains one
single strongly connected component mentioning every vertex of the initial graph.

Signature Since the maximum number of vertices of the final graph is equal to |NODES|we can rewrite
the graph property MIN NSCC = |NODES| to MIN NSCC ≥ |NODES| and simplify
MIN NSCC to MIN NSCC.

See also circuit, link set to booleans.

Key words graph constraint, linear programming, strongly connected component,
constraint involving set variables.

20030820 869

NODES

1:1,{2,4}

2:2,{1,3,5}

4:4,{1,5}3:3,{2,5}

5:5,{2,3,4}

MIN_NSCC=5

MIN_NSCC

1:1,{2}

2:2,{3}

3:3,{2,5}

5:5,{4}

4:4,{1}

(A) (B)

Figure 4.404: Initial and final graph of the strongly connected set constraint

870 SUM,PRODUCT

4.211 sum

Origin [150].

Constraint sum(INDEX, SETS, CONSTANTS, S)

Argument(s) INDEX : dvar

SETS : collection(ind − int, set− sint)
CONSTANTS : collection(cst − int)
S : dvar

Restriction(s) |SETS| ≥ 1
required(SETS, [ind, set])
distinct(SETS, ind)
|CONSTANTS| ≥ 1
required(CONSTANTS, cst)

Purpose S is equal to the sum of the constants corresponding to the INDEXth set of the SETS collection.

Arc input(s) SETS CONSTANTS

Arc generator PRODUCT 7→ collection(sets, constants)

Arc arity 2

Arc constraint(s) • INDEX = sets.ind
• in set(constants.key, sets.set)

Graph property(ies) SUM(CONSTANTS, cst) = S

Example sum

0
BBBBBBBBBBBB@

8,

8
>><
>>:

ind − 8 set − {2, 3},
ind − 1 set − {3},
ind − 3 set − {1, 4, 5},
ind − 6 set − {2, 4}

9
>>=
>>;
,

8
>>>><
>>>>:

cst− 4,
cst− 9,
cst− 1,
cst− 3,
cst− 1

9
>>>>=
>>>>;
, 10

1
CCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.405 respectively show the initial and final graph.
Since we use the SUM graph property we show the vertices from which we compute S in
a box.

Graph model According to the value assigned to INDEX the arc constraint selects for the final graph:

• The INDEXth item of the SETS collection,

• The items of the CONSTANTS collection for which the key correspond to the indices
of the INDEXth set of the SETS collection.

20030820 871

Finally, since we use the SUM graph property on the cst attribute of the CONSTANTS

collection, the last argument S of the sum constraint is equal to the sum of the constants
associated to the vertices of the final graph.

Usage In his paper introducing the sum constraint, Tallys H. Yunes mentions the Sequence Depen-
dent Cumulative Cost Problem as the subproblem that originally motivate this constraint.

Algorithm The paper [150] gives the convex hull relaxation of the sum constraint.

See also element, sum ctr, sum set.

Key words data constraint, linear programming, convex hull relaxation, sum.

872 SUM,PRODUCT

SETS

CONSTANTS

1

12 345

234

SUM=9+1=10

1:8,{2,3}

2:9 3:1

(A) (B)

Figure 4.405: Initial and final graph of the sum constraint

20030820 873

874 SUM, SELF

4.212 sum ctr

Origin Arithmetic constraint.

Constraint sum ctr(VARIABLES, CTR, VAR)

Synonym(s) constant sum.

Argument(s) VARIABLES : collection(var − dvar)
CTR : atom

VAR : dvar

Restriction(s) required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose Constraint the sum of a set of domain variables. More precisely let S denotes the sum of the
variables of the VARIABLES collection. Enforce the following constraint to hold: S CTR VAR.

Arc input(s) VARIABLES

Arc generator SELF 7→ collection(variables)

Arc arity 1

Arc constraint(s) TRUE

Graph property(ies) SUM(VARIABLES, var) CTR VAR

Example sum ctr({var − 1, var − 1, var − 4},=, 6)

Parts (A) and (B) of Figure 4.406 respectively show the initial and final graph.
Since we use the TRUE arc constraint both graphs are identical.

VARIABLES

123

SUM(VARIABLES,var)=1+1+4=6

1:1 2:1 3:4

(A) (B)

Figure 4.406: Initial and final graph of the sum ctr constraint

Graph model Since we want to keep all the vertices of the initial graph we use the SELF arc generator
together with the TRUE arc constraint. This predefined arc constraint allways holds.

Remark When CTR corresponds to = this constraint is referenced under the name constant sum

in KOALOG.

20030820 875

Used in bin packing, cumulative, cumulative two d,
cumulative with level of priority, cumulatives, indexed sum,
interval and sum, relaxed sliding sum, sliding sum,
sliding time window sum.

See also sum, sum set, product ctr, range ctr.

Key words arithmetic constraint, sum.

876 NSOURCE,SUM,PRODUCT

4.213 sum of weights of distinct values

Origin [106]

Constraint sum of weights of distinct values(VARIABLES, VALUES, COST)

Synonym(s) swdv.

Argument(s) VARIABLES : collection(var − dvar)
VALUES : collection(val − int, weight − int)
COST : dvar

Restriction(s) required(VARIABLES, var)
required(VALUES, [val, weight])
VALUES.weight ≥ 0
distinct(VALUES, val)
COST ≥ 0

Purpose
All variables of the VARIABLES collection take a value in the VALUES collection. In addition
COST is the sum of the weight attributes associated to the distinct values taken by the variables
of VARIABLES.

Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→ collection(variables, values)

Arc arity 2

Arc constraint(s) variables.var = values.val

Graph property(ies) • NSOURCE = |VARIABLES|
• SUM(VALUES, weight) = COST

Example sum of weights of distinct values

0
BBBBBB@

8
<
:

var − 1,
var − 6,
var − 1

9
=
; ,

8
<
:

val − 1 weight − 5,
val − 2 weight − 3,
val − 6 weight − 7

9
=
; , 12

1
CCCCCCA

Parts (A) and (B) of Figure 4.407 respectively show the initial and final graph.
Since we use the NSOURCE graph property, the source vertices of the final graph
are shown in a double circle. Since we also use the SUM graph property we show the
vertices from which we compute the total cost in a box.

Signature Since we use the PRODUCT arc generator, the number of sources of the final graph
cannot exceed the number of sources of the initial graph. Since the initial graph contains
|VARIABLES| sources, this number is an upper bound of the number of sources of the final
graph. Therefore we can rewrite NSOURCE = |VARIABLES| to NSOURCE ≥
|VARIABLES| and simplify NSOURCE to NSOURCE.

20030820 877

See also minimum weight alldifferent, global cardinality with costs, nvalue,
weighted partial alldiff.

Key words cost filtering constraint, assignment, relaxation, domination, weighted assignment,
facilities location problem.

878 NSOURCE,SUM,PRODUCT

VARIABLES

VALUES

1

1 23

2 3

NSOURCE=3
SUM(VALUES,weight)=5+7=12

1:1

1:1,5

2:6

3:6,7

3:1

(A) (B)

Figure 4.407: Initial and final graph of the sum of weights of distinct values

constraint

20030820 879

880 SUM, SELF

4.214 sum set

Origin H. Cambazard

Constraint sum set(SV, VALUES, CTR, VAR)

Argument(s) SV : svar

VALUES : collection(val− int, coef − int)
CTR : atom

VAR : dvar

Restriction(s) required(VALUES, [val, coef])
distinct(VALUES, val)
VALUES.coef ≥ 0
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose Let SUM denotes the sum of the coef attributes of the VALUES collection for which the corre-
sponding values val occur in the set SV. Enforce the following constraint to hold: SUM CTR VAR.

Arc input(s) VALUES

Arc generator SELF 7→ collection(values)

Arc arity 1

Arc constraint(s) in set(values.val, SV)

Graph property(ies) SUM(VALUES, coef) CTR VAR

Example sum set

0
BBBB@

{2, 3, 6},8
>><
>>:

val − 2 coef − 7,
val − 9 coef − 1,
val − 5 coef − 7,
val − 6 coef − 2

9
>>=
>>;
,=, 9

1
CCCCA

Parts (A) and (B) of Figure 4.408 respectively show the initial and final graph.

VALUES

1234

SUM=7+2=9

1:2,7 4:6,2

(A) (B)

Figure 4.408: Initial and final graph of the sum set constraint

See also sum, sum ctr.

Key words arithmetic constraint, binary constraint, sum, constraint involving set variables.

20031001 881

882 NARC,CLIQUE (6=)

4.215 symmetric alldifferent

Origin [20]

Constraint symmetric alldifferent(NODES)

Synonym(s) symmetric alldiff, symmetric alldistinct, symm alldifferent,
symm alldiff, symm alldistinct, one factor.

Argument(s) NODES : collection(index − int, succ − dvar)

Restriction(s) required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose

All variables associated to the succ attribute of the NODES collection should be pairwise dis-
tinct. In addition enforce the following condition: If variable NODES[i].succ takes value j then
variable NODES[j].succ takes value i. This can be interpreted as a graph-covering problem
where one has to cover a digraph G with circuits of length two in such a way that each vertex
of G belongs to one single circuit.

Arc input(s) NODES

Arc generator CLIQUE(6=) 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) • nodes1.succ = nodes2.index
• nodes2.succ = nodes1.index

Graph property(ies) NARC = |NODES|

Example symmetric alldifferent

0
BB@

8
>><
>>:

index − 1 succ − 3,
index − 2 succ − 4,
index − 3 succ − 1,
index − 4 succ − 2

9
>>=
>>;

1
CCA

Parts (A) and (B) of Figure 4.409 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Graph model In order to express the binary constraint that links two vertices one has to make explicit the
identifier of the vertices.

Signature Since all the index attributes of the NODES collection are distinct, and because of the first
condition nodes1.succ = nodes2.index of the arc constraint, each vertex of the final
graph has at most one successor. Therefore the maximum number of arcs of the final graph
is equal to the maximum number of vertices |NODES| of the final graph. So we can rewrite
NARC = |NODES| to NARC ≥ |NODES| and simplify NARC to NARC.

20000128 883

Usage As it was reported in [20, page 420], this constraint is useful to express matches between
persons. The symmetric alldifferentconstraint also appears implicitly in the cycle
cover problem and corresponds to the four conditions given in section 1 Modeling the
Cycle Cover Problem of [151].

Remark This constraint is referenced under the name one factor in [152] as well as in [153]. From
a modelling point of view this constraint can be express with the cycle constraint [37]
where one imposes the additional condition that each cycle has only two nodes.

Algorithm [20].

See also cycle, alldifferent.

Key words graph constraint, circuit, cycle, timetabling constraint, sport timetabling, permutation,
all different, disequality, graph partitioning constraint, matching.

884 NARC,CLIQUE (6=)

NODES

1

2

3

4

NARC=4

1:1,3

3:3,1

2:2,4

4:4,2

(A) (B)

Figure 4.409: Initial and final graph of the symmetric alldifferent constraint

20000128 885

886 NARC,PRODUCT

4.216 symmetric cardinality

Origin Derived from global cardinality by W. Kocjan.

Constraint symmetric cardinality(VARS, VALS)

Argument(s) VARS : collection(idvar − int, var − svar, l − int, u − int)
VALS : collection(idval − int, val − svar, l − int, u − int)

Restriction(s) required(VARS, [idvar, var, l, u])
|VARS| ≥ 1
VARS.idvar ≥ 1
VARS.idvar ≤ |VARS|
distinct(VARS, idvar)
VARS.l ≥ 0
VARS.l ≤ VARS.u
VARS.u ≤ |VALS|
required(VALS, [idval, val, l, u])
|VALS| ≥ 1
VALS.idval ≥ 1
VALS.idval ≤ |VALS|
distinct(VALS, idval)
VALS.l ≥ 0
VALS.l ≤ VALS.u
VALS.u ≤ |VARS|

Purpose
Put in relation two sets: For each element of one set gives the corresponding elements of the
other set to which it is associated. In addition, it constraints the number of elements associated
to each element to be in a given interval.

Arc input(s) VARS VALS

Arc generator PRODUCT 7→ collection(vars, vals)

Arc arity 2

Arc constraint(s) • in set(vars.idvar, vals.val)⇔ in set(vals.idval, vars.var)
• vars.l ≤ card set(vars.var)
• vars.u ≥ card set(vars.var)
• vals.l ≤ card set(vals.val)
• vals.u ≥ card set(vals.val)

Graph property(ies) NARC = |VARS| ∗ |VALS|

20040530 887

Example symmetric cardinality

0
BBBBBBBBBB@

8
>><
>>:

idvar − 1 var− {3} l− 0 u − 1,
idvar − 2 var− {1} l− 1 u − 2,
idvar − 3 var− {1, 2} l− 1 u − 2,
idvar − 4 var− {1, 3} l− 2 u − 3

9
>>=
>>;
,

8
>><
>>:

idval − 1 val− {2, 3, 4} l − 3 u− 4,
idval − 2 val− {3} l − 1 u− 1,
idval − 3 val− {1, 4} l − 1 u− 2,
idval − 4 val− ∅ l − 0 u− 1

9
>>=
>>;

1
CCCCCCCCCCA

Parts (A) and (B) of Figure 4.410 respectively show the initial and final graph.
Since we use the NARC graph property, all the arcs of the final graph are stressed in
bold.

VARS

VALS

1

1234

234

NARC=16

1:1,{3},0,1

1:1,{2,3,4},3,4 2:2,{3},1,13:3,{1,4},1,2 4:4,{},0,1

2:2,{1},1,23:3,{1,2},1,2 4:4,{1,3},2,3

(A) (B)

Figure 4.410: Initial and final graph of the symmetric cardinality constraint

Graph model The graph model used for the symmetric cardinality is similar to the one used in the
domain constraint or in the link set to booleans constraints: We use an equiva-
lence in the arc constraint and ask all arc constraints to hold.

Signature Since we use the PRODUCT arc generator on the collections VARS and VALS, the number
of arcs of the initial graph is equal to |VARS| · |VALS|. Therefore the maximum number
of arcs of the final graph is also equal to |VARS| · |VALS| and we can rewrite NARC =
|VARS| · |VALS| to NARC ≥ |VARS| · |VALS|. So we can simplify NARC to NARC.

Usage The most simple example of applying symmetric gcc is a variant of personnel assignment
problem, where one person can be assigned to perform between n and m (n ≤ m) jobs,
and every job requires between p and q (p ≤ q) persons. In addition every job requires
different kind of skills. The previous problem can be modelled as follows:

• For each person we create an item of the VARS collection,

• For each job we create an item of the VALS collection,

• There is an arc between a person and the particular job if this person is qualified to
perform it.

888 NARC,PRODUCT

Remark The symmetric gcc constraint generalizes the global cardinality constraint by al-
lowing a variable to take more than one value.

Algorithm A flow-based arc-consistency algorithm for the symmetric cardinality constraint is
described in [154].

See also symmetric gcc, global cardinality, link set to booleans.

Key words decomposition, timetabling constraint, assignment, relation, flow,
constraint involving set variables.

20040530 889

890 NARC,PRODUCT

4.217 symmetric gcc

Origin Derived from global cardinality by W. Kocjan.

Constraint symmetric gcc(VARS, VALS)

Synonym(s) sgcc.

Argument(s) VARS : collection(idvar − int, var − svar, nocc − dvar)
VALS : collection(idval − int, val − svar, nocc − dvar)

Restriction(s) required(VARS, [idvar, var, nocc])
|VARS| ≥ 1
VARS.idvar ≥ 1
VARS.idvar ≤ |VARS|
distinct(VARS, idvar)
VARS.nocc ≥ 0
VARS.nocc ≤ |VALS|
required(VALS, [idval, val, nocc])
|VALS| ≥ 1
VALS.idval ≥ 1
VALS.idval ≤ |VALS|
distinct(VALS, idval)
VALS.nocc ≥ 0
VALS.nocc ≤ |VARS|

Purpose
Put in relation two sets: For each element of one set gives the corresponding elements of the
other set to which it is associated. In addition, enforce a cardinality constraint on the number of
occurrences of each value.

Arc input(s) VARS VALS

Arc generator PRODUCT 7→ collection(vars, vals)

Arc arity 2

Arc constraint(s) • in set(vars.idvar, vals.val)⇔ in set(vals.idval, vars.var)
• vars.nocc = card set(vars.var)
• vals.nocc = card set(vals.val)

Graph property(ies) NARC = |VARS| ∗ |VALS|

Example symmetric gcc

0
BBBBBBBBBB@

8
>><
>>:

idvar − 1 var − {3} nocc − 1,
idvar − 2 var − {1} nocc − 1,
idvar − 3 var − {1, 2} nocc − 2,
idvar − 4 var − {1, 3} nocc − 2

9
>>=
>>;
,

8
>><
>>:

idval − 1 val − {2, 3, 4} nocc − 3,
idval − 2 val − {3} nocc − 1,
idval − 3 val − {1, 4} nocc − 2,
idval − 4 val − ∅ nocc − 0

9
>>=
>>;

1
CCCCCCCCCCA

20030820 891

Parts (A) and (B) of Figure 4.411 respectively show the initial and final graph.
Since we use the NARC graph property, all the arcs of the final graph are stressed in
bold.

VARS

VALS

1

1234

234

NARC=16

1:1,{3},1

1:1,{2,3,4},3 2:2,{3},13:3,{1,4},2 4:4,{},0

2:2,{1},13:3,{1,2},2 4:4,{1,3},2

(A) (B)

Figure 4.411: Initial and final graph of the symmetric gcc constraint

Graph model The graph model used for the symmetric gcc is similar to the one used in the
domain constraint or in the link set to booleans constraints: We use an equiva-
lence in the arc constraint and ask all arc constraints to hold.

Signature Since we use the PRODUCT arc generator on the collections VARS and VALS, the number
of arcs of the initial graph is equal to |VARS| · |VALS|. Therefore the maximum number
of arcs of the final graph is also equal to |VARS| · |VALS| and we can rewrite NARC =
|VARS| · |VALS| to NARC ≥ |VARS| · |VALS|. So we can simplify NARC to NARC.

Usage The most simple example of applying symmetric gcc is a variant of personnel assignment
problem, where one person can be assigned to perform between n and m (n ≤ m) jobs,
and every job requires between p and q (p ≤ q) persons. In addition every job requires
different kind of skills. The previous problem can be modelled as follows:

• For each person we create an item of the VARS collection,
• For each job we create an item of the VALS collection,
• There is an arc between a person and the particular job if this person is qualified to

perform it.

Remark The symmetric gcc constraint generalizes the global cardinality constraint by al-
lowing a variable to take more than one value. It corresponds to a variant of the
symmetric cardinality constraint described in [154] where the occurrence variables
of the VARS and VALS collections are replaced by fixed intervals.

See also symmetric cardinality, global cardinality, link set to booleans.

Key words decomposition, timetabling constraint, assignment, relation, flow,
constraint involving set variables.

892 MAX ID,NCC,NVERTEX,CLIQUE

4.218 temporal path

Origin ILOG

Constraint temporal path(NPATH, NODES)

Argument(s) NPATH : dvar

NODES : collection(index − int, succ − dvar, start − dvar, end − dvar)

Restriction(s) NPATH ≥ 1
NPATH ≤ |NODES|
required(NODES, [index, succ, start, end])
|NODES| > 0
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose

Let G be the digraph described by the NODES collection. Partition G with a set of disjoint
paths such that each vertex of the graph belongs to a single path. In addition, for all pairs of
consecutive vertices of a path we have a precedence constraint that enforces the end associated
to the first vertex to be less than or equal to the start related to the second vertex.

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) • nodes1.succ = nodes2.index
• nodes1.succ = nodes1.index ∨ nodes1.end ≤ nodes2.start
• nodes1.start ≤ nodes1.end
• nodes2.start ≤ nodes2.end

Graph property(ies) •MAX ID = 1
• NCC = NPATH

• NVERTEX = |NODES|

Example temporal path

0
BBBBBBBB@

2,

8
>>>>>>>><
>>>>>>>>:

index − 1 succ − 2 start − 0 end − 1,
index − 2 succ − 6 start − 3 end − 5,
index − 3 succ − 4 start − 0 end − 3,
index − 4 succ − 5 start − 4 end − 6,
index − 5 succ − 7 start − 7 end − 8,
index − 6 succ − 6 start − 7 end − 9,
index − 7 succ − 7 start − 9 end − 10

9
>>>>>>>>=
>>>>>>>>;

1
CCCCCCCCA

Parts (A) and (B) of Figure 4.412 respectively show the initial and final graph.
Since we use the MAX ID, the NCC and the NVERTEX graph properties we
display the following information on the final graph:

20000128 893

• We show with a double circle a vertex which has the maximum number of predeces-
sors.

• We show the two connected components corresponding to the two paths.

• We put in bold the vertices.

NODES

1

2

3

4

5

6

7

MAX_ID=1,NCC=2,NVERTEX=7

CC#1 CC#2

1:1,2,0,1

2:2,6,3,5

6:6,6,7,9

3:3,4,0,3

4:4,5,4,6

5:5,7,7,8

7:7,7,9,10

(A) (B)

Figure 4.412: Initial and final graph of the temporal path constraint

Graph model The arc constraint is a conjunction of four conditions that respectively correspond to:

• A constraint that links the successor variable of a first vertex to the index attribute of
a second vertex,

• A precedence constraint that applies on one vertex and its distinct successor,

• One precedence constraint between the start and the end of the vertex that corre-
sponds to the departure of an arc,

• One precedence constraint between the start and the end of the vertex that corre-
sponds to the arrival of an arc.

We use the following three graph properties in order to enforce the partitioning of the graph
in distinct paths:

• The first property MAX ID = 1 enforces that each vertex has only one single
predecessor (except the last vertex of a path which has also itself as a predecessor),

• The second property NCC = NPATH ensures that we have the required number of
paths,

• The third property NVERTEX = |NODES| enforces that for each vertex, the start
is not located after the end.

894 MAX ID,NCC,NVERTEX,CLIQUE

Signature Since we use the graph property NVERTEX = |NODES| together with the restric-
tion |NODES| > 0 the final graph is not empty. Therefore the smallest possible value of
MAX ID is equal to 1. So we can rewrite MAX ID = 1 to MAX ID ≤ 1 and
simplify MAX ID to MAX ID.

Since the maximum number of vertices of the final graph is equal to |NODES|we can rewrite
the graph property NVERTEX = |NODES| to NVERTEX ≥ |NODES| and simplify
NVERTEX to NVERTEX.

Remark This constraint is related to the path constraint of Ilog Solver. It can also be directly
expressed with the cycle [37] constraint of CHIP by using the diff nodes and the origin
parameters. A generic model based on linear programming that handles paths, trees and
cycles is presented in [94].

See also path from to.

Key words graph constraint, graph partitioning constraint, path, connected component.

20000128 895

896NARC,CLIQUE(6=); MAX ID,MAX OD,MIN ID,MIN NSCC,MIN OD,CLIQUE(6=)

4.219 tour

Origin [74]

Constraint tour(NODES)

Synonym(s) atour, cycle.

Argument(s) NODES : collection(index − int, succ − svar)

Restriction(s) |NODES| ≥ 3
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)

Purpose Enforce to cover an undirected graph G described by the NODES collection with a Hamiltonian
cycle.

Arc input(s) NODES

Arc generator CLIQUE(6=) 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) in set(nodes2.index, nodes1.succ)⇔ in set(nodes1.index, nodes2.succ)

Graph property(ies) NARC = |NODES| ∗ |NODES| − |NODES|

Arc input(s) NODES

Arc generator CLIQUE(6=) 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) in set(nodes2.index, nodes1.succ)

Graph property(ies) •MIN NSCC = |NODES|
•MIN ID = 2
•MAX ID = 2
•MIN OD = 2
•MAX OD = 2

Example tour

0
BB@

8
>><
>>:

index − 1 succ − {2, 4},
index − 2 succ − {1, 3},
index − 3 succ − {2, 4},
index − 4 succ − {1, 3}

9
>>=
>>;

1
CCA

Part (A) of Figure 4.413 shows the initial graph from which we start. It is derived
from the set associated to each vertex. Each set describes the potential values of the succ
attribute of a given vertex. Part (B) of Figure 4.413 gives the final graph associated to the
example. The tour constraint holds since the final graph corresponds to a Hamiltonian
cycle.

20030820 897

Graph model The first graph property enforces the subsequent condition: If we have an arc from the ith

vertex to the jth vertex then we have also an arc from the jth vertex to the ith vertex. The
second graph property enforces the following constraints:

• We have one strongly connected component containing |NODES| vertices,

• Each vertex has exactly two predecessors and two successors.

Signature Since the maximum number of vertices of the final graph is equal to |NODES|, we can rewrite
the graph property MIN NSCC = |NODES| to MIN NSCC ≥ |NODES| and simplify
MIN NSCC to MIN NSCC.

See also circuit, cycle, link set to booleans.

Key words graph constraint, undirected graph, Hamiltonian, linear programming,
constraint involving set variables.

898NARC,CLIQUE(6=); MAX ID,MAX OD,MIN ID,MIN NSCC,MIN OD,CLIQUE(6=)

NODES

1:1,{2,3,4}

2:2,{1,3,4}

3:3,{1,2,4}

4:4,{1,2,3}

MIN_NSCC=4
MIN_ID=2

MAX_ID =2
MIN_OD=2
MAX_OD=2

MIN_NSCC

1:1,{2,4}

2:2,{1,3}

4:4,{1,3}

3:3,{2,4}

(A) (B)

Figure 4.413: Initial and final graph of the tour set constraint

20030820 899

900 NARC, SELF ; PRODUCT , SUCC

4.220 track

Origin [155]

Constraint track(NTRAIL, TASKS)

Argument(s) NTRAIL : int

TASKS : collection(trail − int, origin − dvar, end− dvar)

Restriction(s) NTRAIL > 0
required(TASKS, [trail, origin, end])
TASKS.trail > 0
TASKS.trail ≤ NTRAIL

Purpose
The track constraint enforces that, at each point in time overlapped by at least one task, the
number of distinct values of the trail attribute of the set of tasks that overlap that point, is
equal to NTRAIL.

Derived Collection(s) col

0
@

TIME POINTS − collection(origin − dvar, end − dvar, point − dvar),»
item(origin − TASKS.origin, end − TASKS.end, point − TASKS.origin),
item(origin − TASKS.origin, end − TASKS.end, point − TASKS.end − 1)

–
1
A

Arc input(s) TASKS

Arc generator SELF 7→ collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin ≤ tasks.end

Graph property(ies) NARC = |TASKS|

Arc input(s) TIME POINTS TASKS

Arc generator PRODUCT 7→ collection(time points, tasks)

Arc arity 2

Arc constraint(s) • time points.end > time points.origin
• tasks.origin ≤ time points.point
• time points.point < tasks.end

Sets
SUCC 7→»

source,
variables − col(VARIABLES − collection(var − dvar), [item(var − TASKS.trail)])

–

Constraint(s) on sets nvalue(NTRAIL, variables)

20030820 901

Example track

0
BBBB@

2,

8
>>>><
>>>>:

trail − 1 origin − 1 end − 2,
trail − 2 origin − 1 end − 2,
trail − 1 origin − 2 end − 4,
trail − 2 origin − 2 end − 3,
trail − 2 origin − 3 end − 4

9
>>>>=
>>>>;

1
CCCCA

The previous constraint holds since:

• The first and second tasks both overlap instant 1 and have a respective trail of 1 and
2, which makes two distinct values for the trail attribute at instant 1,

• The third and fourth tasks both overlap instant 2 and have a respective trail of 1 and
2, which makes two distinct values for the trail attribute at instant 2,

• The third and fifth tasks both overlap instant 3 and have a respective trail of 1 and 2,
which makes two distinct values for the trail attribute at instant 3.

Parts (A) and (B) of Figure 4.414 respectively show the initial and final graph of the second
graph constraint.

TIME_POINTS

TASKS

1

12 345

23456 78910

TIME_POINTS

TASKS

1:1,2,1

1:1,1,22:2,1,2

2:1,2,13:1,2,14:1,2,15:2,4,2

3:1,2,4 4:2,2,3

6:2,4,3

5:2,3,4

7:2,3,28:2,3,29:3,4,310:3,4,3

(A) (B)

Figure 4.414: Initial and final graph of the track constraint

Signature Consider the first graph constraint. Since we use the SELF arc generator on the TASKS

collection, the maximum number of arcs of the final graph is equal to |TASKS|. Therefore
we can rewrite NARC = |TASKS| to NARC ≥ |TASKS| and simplify NARC to
NARC.

See also nvalue.

Key words timetabling constraint, resource constraint, temporal constraint, derived collection.

902 MAX NSCC,NCC,CLIQUE

4.221 tree

Origin N. Beldiceanu

Constraint tree(NTREES, NODES)

Argument(s) NTREES : dvar

NODES : collection(index − int, succ − dvar)

Restriction(s) NTREES ≥ 0
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose Cover a digraph G by a set of trees in such a way that each vertex of G belongs to one distinct
tree. The edges of the trees are directed from their leaves to their respective roots.

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) •MAX NSCC ≤ 1
• NCC = NTREES

Example tree

0
BBBBBBBBBB@

2,

8
>>>>>>>>>><
>>>>>>>>>>:

index − 1 succ − 1,
index − 2 succ − 5,
index − 3 succ − 5,
index − 4 succ − 7,
index − 5 succ − 1,
index − 6 succ − 1,
index − 7 succ − 7,
index − 8 succ − 5

9
>>>>>>>>>>=
>>>>>>>>>>;

1
CCCCCCCCCCA

Parts (A) and (B) of Figure 4.415 respectively show the initial and final graph.
Since we use the NCC graph property, we display the two connected components of
the final graph. Each of them corresponds to a tree. The tree constraint holds since all
strongly connected components of the final graph have no more than one vertex and since
NTREES = NCC = 2.

Graph model We use the graph property MAX NSCC ≤ 1 in order to specify the fact that the size
of the largest strongly connected component should not exceed one. In fact each root of a
tree is a strongly connected component with one single vertex. The second graph property
NCC = NTREES enforces the number of trees to be equal to the number of connected
components.

20000128 903

Algorithm An arc-consistency filtering algorithm for the tree constraint is described in [156]. This
algorithm is based on a necessary and sufficient condition that we now depict.

To any tree constraint we associate the digraph G = (V,E), where:

• To each item NODES[i] of the NODES collection corresponds a vertex vi of G.

• For every pair of items (NODES[i], NODES[j]) of the NODES collection, where i and j
are not necessarily distinct, there is an arc from vi to vj in E if j is a potential value
of NODES[i].succ.

A strongly connected component C of G is called a sink component if all the successors
of all vertices of C belong to C. Let MINTREES and MAXTREES respectively denote the
number of sink components of G and the number of vertices of G with a loop.

The tree constraint has a solution if and only if:

• Each sink component of G contains at least one vertex with a loop,

• The domain of NTREES has at least one value within interval [MINTREES, MAXTREES].

See also binary tree, cycle, map, tree resource, graph crossing.

Key words graph constraint, graph partitioning constraint, connected component, tree, one succ.

904 MAX NSCC,NCC,CLIQUE

NODES

1

2

3

4

5

6

7

8

MAX_NSCC=1,NCC=2

CC#1 CC#2

1:1,1

2:2,5

5:5,1

3:3,5

6:6,1

8:8,5 4:4,7

7:7,7

(A) (B)

Figure 4.415: Initial and final graph of the tree constraint

20000128 905

906 MAX NSCC,NCC,RANGE DRG,CLIQUE

4.222 tree range

Origin Derived from tree.

Constraint tree range(NTREES, R, NODES)

Argument(s) NTREES : dvar

R : dvar

NODES : collection(index − int, succ − dvar)

Restriction(s) NTREES ≥ 0
R ≥ 0
R < |NODES|
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose
Cover the digraph G described by the NODES collection with NTREES trees in such a way that
each vertex of G belongs to one distinct tree. R is the difference between the longest and the
shortest paths of the final graph.

Arc input(s) NODES

Arc generator CLIQUE 7→ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) •MAX NSCC ≤ 1
• NCC = NTREES

• RANGE DRG = R

Example tree range

0
BBBBBBBBBB@

2, 1,

8
>>>>>>>>>><
>>>>>>>>>>:

index − 1 succ − 1,
index − 2 succ − 5,
index − 3 succ − 5,
index − 4 succ − 7,
index − 5 succ − 1,
index − 6 succ − 1,
index − 7 succ − 7,
index − 8 succ − 5

9
>>>>>>>>>>=
>>>>>>>>>>;

1
CCCCCCCCCCA

Parts (A) and (B) of Figure 4.416 respectively show the initial and final graph.
Since we use the RANGE DRG graph property, we respectively display the longest and
shortest paths of the final graph with a bold and a dash line.

20030820 907

See also tree, balance.

Key words graph constraint, graph partitioning constraint, connected component, tree, balanced tree.

908 MAX NSCC,NCC,RANGE DRG,CLIQUE

NODES

1

2

3

4

5

6

7

8 MAX_NSCC=1,NCC=2
RANGE_DRG=2-1=1

CC#1 CC#2

1:1,1

2:2,5

5:5,1

3:3,5

6:6,1

8:8,5 4:4,7

7:7,7

(A) (B)

Figure 4.416: Initial and final graph of the tree range constraint

20030820 909

910 MAX NSCC,NCC,NVERTEX,CLIQUE ; NVERTEX,CLIQUE , ∀

4.223 tree resource

Origin Derived from tree.

Constraint tree resource(RESOURCE, TASK)

Argument(s) RESOURCE : collection(id− int, nb task − dvar)
TASK : collection(id− int, father − dvar, resource − dvar)

Restriction(s) required(RESOURCE, [id, nb task])
RESOURCE.id ≥ 1
RESOURCE.id ≤ |RESOURCE|
distinct(RESOURCE, id)
RESOURCE.nb task ≥ 0
RESOURCE.nb task ≤ |TASK|
required(TASK, [id, father, resource])
TASK.id > |RESOURCE|
TASK.id ≤ |RESOURCE|+ |TASK|
distinct(TASK, id)
TASK.father ≥ 1
TASK.father ≤ |RESOURCE|+ |TASK|
TASK.resource ≥ 1
TASK.resource ≤ |RESOURCE|

Purpose

Cover a digraph G in such a way that each vertex belongs to one distinct tree. Each tree is made
up from one resource vertex and several task vertices. The resource vertices correspond to the
roots of the different trees. For each resource a domain variable nb task indicates how many
task-vertices belong to the corresponding tree. For each task a domain variable resource gives
the identifier of the resource which can handle that task.

Derived Collection(s) col

0
@

RESOURCE TASK − collection(index − int, succ − dvar, name − dvar),»
item(index − RESOURCE.id, succ − RESOURCE.id, name − RESOURCE.id),
item(index − TASK.id, succ − TASK.father, name − TASK.resource)

–
1
A

Arc input(s) RESOURCE TASK

Arc generator CLIQUE 7→ collection(resource task1, resource task2)

Arc arity 2

Arc constraint(s) • resource task1.succ = resource task2.index
• resource task1.name = resource task2.name

Graph property(ies) •MAX NSCC ≤ 1
• NCC = |RESOURCE|
• NVERTEX = |RESOURCE|+ |TASK|

For all items of RESOURCE:

20030820 911

Arc input(s) RESOURCE TASK

Arc generator CLIQUE 7→ collection(resource task1, resource task2)

Arc arity 2

Arc constraint(s) • resource task1.succ = resource task2.index
• resource task1.name = resource task2.name
• resource task1.name = RESOURCE.id

Graph property(ies) NVERTEX = RESOURCE.nb task + 1

Example tree resource

0
BBBBBBBBBB@

8
<
:

id − 1 nb task − 4,
id − 2 nb task − 0,
id − 3 nb task − 1

9
=
; ,

8
>>>><
>>>>:

id − 4 father − 8 resource − 1,
id − 5 father − 3 resource − 3,
id − 6 father − 8 resource − 1,
id − 7 father − 1 resource − 1,
id − 8 father − 1 resource − 1

9
>>>>=
>>>>;

1
CCCCCCCCCCA

For the second graph constraint, part (A) of Figure 4.417 shows the initial graphs
associated to resources 1, 2 and 3. For the second graph constraint, part (B) of Fig-
ure 4.417 shows the final graphs associated to resources 1, 2 and 3. Since we use the
NVERTEX graph property, the vertices of the final graphs are stressed in bold. To each
resource corresponds a tree of respectively 4, 0 and 1 task-vertices.

Signature Since the initial graph of the first graph constraint contains |RESOURCE| + |TASK| ver-
tices, the corresponding final graph cannot have more than |RESOURCE| + |TASK| vertices.
Therefore we can rewrite the graph property NVERTEX = |RESOURCE| + |TASK| to
NVERTEX ≥ |RESOURCE| + |TASK| and simplify NVERTEX to NVERTEX.

See also tree.

Key words graph constraint, tree, resource constraint, graph partitioning constraint,
connected component, derived collection.

912 MAX NSCC,NCC,NVERTEX,CLIQUE ; NVERTEX,CLIQUE , ∀

RESOURCE_TASK

1

2

3

4

5

6

7

8
1:NVERTEX=5
2:NVERTEX=1
3:NVERTEX=2

RESOURCE:1 RESOURCE:2 RESOURCE:3

1:1,1,1

4:4,8,1

8:8,1,1

6:6,8,1

7:7,1,1

2:2,2,2

3:3,3,3

5:5,3,3

(A) (B)

Figure 4.417: Initial and final graph of the tree resource constraint

20030820 913

914 NARC,CLIQUE (<)

4.224 two layer edge crossing

Origin Inspired by [157].

Constraint two layer edge crossing(NCROSS, VERTICES LAYER1, VERTICES LAYER2, EDGES)

Argument(s) NCROSS : dvar

VERTICES LAYER1 : collection(id − int, pos − dvar)
VERTICES LAYER2 : collection(id − int, pos − dvar)
EDGES : collection(id − int, vertex1 − int, vertex2 − int)

Restriction(s) NCROSS ≥ 0
required(VERTICES LAYER1, [id, pos])
VERTICES LAYER1.id ≥ 1
VERTICES LAYER1.id ≤ |VERTICES LAYER1|
distinct(VERTICES LAYER1, id)
required(VERTICES LAYER2, [id, pos])
VERTICES LAYER2.id ≥ 1
VERTICES LAYER2.id ≤ |VERTICES LAYER2|
distinct(VERTICES LAYER2, id)
required(EDGES, [id, vertex1, vertex2])
EDGES.id ≥ 1
EDGES.id ≤ |EDGES|
distinct(EDGES, id)
EDGES.vertex1 ≥ 1
EDGES.vertex1 ≤ |VERTICES LAYER1|
EDGES.vertex2 ≥ 1
EDGES.vertex2 ≤ |VERTICES LAYER2|

Purpose NCROSS is the number of line-segments intersections.

Derived Collection(s) col

0
@

EDGES EXTREMITIES − collection(layer1 − dvar, layer2 − dvar),»
item

„
layer1 − EDGES.vertex1(VERTICES LAYER1, pos, id),
layer2 − EDGES.vertex2(VERTICES LAYER2, pos, id)

« –
1
A

Arc input(s) EDGES EXTREMITIES

Arc generator CLIQUE(<) 7→ collection(edges extremities1, edges extremities2)

Arc arity 2

Arc constraint(s)
W
0
BB@

V„ edges extremities1.layer1 < edges extremities2.layer1,
edges extremities1.layer2 > edges extremities2.layer2

«
,

V„ edges extremities1.layer1 > edges extremities2.layer1,
edges extremities1.layer2 < edges extremities2.layer2

«

1
CCA

Graph property(ies) NARC = NCROSS

20030820 915

Example two layer edge crossing

0
BBBBBBBB@

2, {id − 1 pos − 1, id − 2 pos − 2},8
<
:

id− 1 pos− 3,
id− 2 pos− 1,
id− 3 pos− 2

9
=
; ,

8
<
:

id− 1 vertex1 − 2 vertex2 − 2,
id− 2 vertex1 − 2 vertex2 − 3,
id− 3 vertex1 − 1 vertex2 − 1

9
=
;

1
CCCCCCCCA

Parts (A) and (B) of Figure 4.418 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in
bold. Figure 4.419 gives a picture of the previous example, where one can observe the
two line-segments intersections. Each line-segment of Figure 4.419 is labelled with
its identifier and corresponds to one vertex of the initial and final graph depicted in
Figure 4.418.

EDGES_EXTREMITIES

1

2

3

NARC=2

3:1,3

1:2,1 2:2,2

(A) (B)

Figure 4.418: Initial and final graph of the two layer edge crossing constraint

layer 1
vertex id

vertex position

layer 2
vertex id

vertex position
3 1

1 2 3

1 2
1 2

2

1 2 3

Figure 4.419: Intersection between line-segments joining two layers

Graph model As usual for the two-layer edge crossing problem [157], [158], positions of the vertices
on each layer are represented as a permutation of the vertices. We generate a derived
collection which, for each edges, contains the position of its extremities on both layers. In
the arc generator we use the restriction< in order to generate one single arc for each pair of
segments. This is required, since otherwise we would count more than once a line-segments
intersection.

916 NARC,CLIQUE (<)

Remark The two-layer edge crossing minimization problem was proved to be NP-hard in [159].

See also crossing, graph crossing.

Key words geometrical constraint, line-segments intersection, derived collection.

20030820 917

918 NARC,PRODUCT (=)

4.225 two orth are in contact

Origin Used for defining orths are connected.

Constraint two orth are in contact(ORTHOTOPE1, ORTHOTOPE2)

Type(s) ORTHOTOPE : collection(ori − dvar, siz− dvar, end − dvar)

Argument(s) ORTHOTOPE1 : ORTHOTOPE

ORTHOTOPE2 : ORTHOTOPE

Restriction(s) |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz > 0
|ORTHOTOPE1| = |ORTHOTOPE2|
orth link ori siz end(ORTHOTOPE1)
orth link ori siz end(ORTHOTOPE2)

Enforce the following conditions on two orthotopes O1 and O2:
Purpose • For all dimensions i, except one dimension, the projections of O1 and O2 on i have a

non-empty intersection.

• For all dimensions i, the distance between the projections of O1 and O2 on i is equal to
0.

Arc input(s) ORTHOTOPE1 ORTHOTOPE2

Arc generator PRODUCT (=) 7→ collection(orthotope1, orthotope2)

Arc arity 2

Arc constraint(s) • orthotope1.end > orthotope2.ori
• orthotope2.end > orthotope1.ori

Graph property(ies) NARC = |ORTHOTOPE1| − 1

Arc input(s) ORTHOTOPE1 ORTHOTOPE2

Arc generator PRODUCT (=) 7→ collection(orthotope1, orthotope2)

Arc arity 2

Arc constraint(s) max
`

0, max(orthotope1.ori, orthotope2.ori)− min(orthotope1.end, orthotope2.end)
´

= 0

Graph property(ies) NARC = |ORTHOTOPE1|

20030820 919

Example two orth are in contact

0
BB@

ori − 1 siz − 3 end − 4,
ori − 5 siz − 2 end − 7

ff
,

ori − 3 siz − 2 end − 5,
ori − 2 siz − 3 end − 5

ff

1
CCA

Parts (A) and (B) of Figure 4.420 respectively show the initial and final graph asso-
ciated to the first graph constraint. Since we use the NARC graph property, the unique
arc of the final graph is stressed in bold. It corresponds to the fact that the projection in
dimension 1 of the two rectangles of the example overlap. Figure 4.421 shows the two
rectangles of the previous example.

ORTHOTOPE1

ORTHOTOPE2

1

1

2

2

NARC=1

1:1,3,4

1:3,2,5

(A) (B)

Figure 4.420: Initial and final graph of the two orth are in contact constraint

1

1 2 3 5

2

3

4

5

6

R2

R1

4

Figure 4.421: Two connected rectangles

Signature Consider the second graph constraint. Since we use the arc generator PRODUCT (=
) on the collections ORTHOTOPE1 and ORTHOTOPE2, and because of the restriction
|ORTHOTOPE1| = |ORTHOTOPE2|, the maximum number of arcs of the corresponding final
graph is equal to |ORTHOTOPE1|. Therefore we can rewrite the graph property NARC =
|ORTHOTOPE1| to NARC ≥ |ORTHOTOPE1| and simplify NARC to NARC.

Automaton Figure 4.422 depicts the automaton associated to the two orth are in contact con-
straint. Let ORI1i, SIZ1i and END1i respectively be the ori, the siz and the end attributes
of the ith item of the ORTHOTOPE1 collection. Let ORI2i, SIZ2i and END2i respectively be
the ori, the siz and the end attributes of the ith item of the ORTHOTOPE2 collection. To
each sextuple (ORI1i, SIZ1i, END1i, ORI2i, SIZ2i, END2i) corresponds a signature vari-
able Si, which takes its value in {0, 1, 2}, as well as the following signature constraint:

((SIZ1i > 0) ∧ (SIZ2i > 0) ∧ (END1i > ORI2i) ∧ (END2i > ORI1i))⇔ Si = 0

920 NARC,PRODUCT (=)

((SIZ1i > 0) ∧ (SIZ2i > 0) ∧ (END1i = ORI2i ∨ END2i = ORI1i))⇔ Si = 1.

$

t

s

z i iiiSIZ1 >0 and SIZ2 >0 and END1 >ORI2 and END2 >ORI1

iSIZ1 >0 and SIZ2 >0 and (END1 =ORI2 or

i i iiiSIZ1 >0 and SIZ2 >0 and END1 >ORI2 and END2 >ORI1i

i

i

i i END2 =ORI1)i i

i

Figure 4.422: Automaton of the two orth are in contact constraint

ORI1
 1

SIZ1
 1

END1
 1

ORI2
 1

SIZ2
 1

END2
 1

S1

Q =s0
Q1

SIZ1
 2

END1
 2

ORI2
 2

ORI1
 2

SIZ2
 2

END2
 2

ORI1
 n

SIZ1
 n

END1
 n

ORI2
 n

SIZ2
 n

END2
 n

Q =tn

S2 Sn

Figure 4.423: Hypergraph of the reformulation corresponding to the automaton of the
two orth are in contact constraint

Used in orths are connected.

Key words geometrical constraint, touch, contact, non-overlapping, orthotope,
Berge-acyclic constraint network, automaton, automaton without counters.

20030820 921

922 NARC,PRODUCT (=)

4.226 two orth column

Origin Used for defining diffn column.

Constraint two orth column(ORTHOTOPE1, ORTHOTOPE2, N)

Type(s) ORTHOTOPE : collection(ori − dvar, siz− dvar, end − dvar)

Argument(s) ORTHOTOPE1 : ORTHOTOPE

ORTHOTOPE2 : ORTHOTOPE

N : int

Restriction(s) |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
|ORTHOTOPE1| = |ORTHOTOPE2|
orth link ori siz end(ORTHOTOPE1)
orth link ori siz end(ORTHOTOPE2)
N > 0
N ≤ |ORTHOTOPE1|

Purpose

Arc input(s) ORTHOTOPE1 ORTHOTOPE2

Arc generator PRODUCT (=) 7→ collection(orthotope1, orthotope2)

Arc arity 2

Arc constraint(s)

V

0
BBBB@

orthotope1.key = N,
orthotope1.ori < orthotope2.end,
orthotope2.ori < orthotope1.end,
orthotope1.siz > 0,
orthotope2.siz > 0

1
CCCCA
⇒

V
0
@

min(orthotope1.end, orthotope2.end)− max(orthotope1.ori, orthotope2.ori) =
orthotope1.siz

,

orthotope1.siz = orthotope2.siz

1
A

Graph property(ies) NARC = 1

Example two orth column

0
BB@

ori − 1 siz − 3 end − 4,
ori − 1 siz − 1 end − 2

ff
,

ori − 4 siz − 2 end − 6,
ori − 1 siz − 3 end − 4

ff
, 1

1
CCA

Used in diffn column.

See also diffn.

Key words geometrical constraint, positioning constraint, orthotope, guillotine cut.

20030820 923

ORTHOTOPE1

ORTHOTOPE2

1

1

2

2

NARC=1

1:1,3,4

2:1,3,4

(A) (B)

Figure 4.424: Initial and final graph of the two orth column constraint

924 NARC, SYMMETRIC PRODUCT (=)

4.227 two orth do not overlap

Origin Used for defining diffn.

Constraint two orth do not overlap(ORTHOTOPE1, ORTHOTOPE2)

Type(s) ORTHOTOPE : collection(ori − dvar, siz− dvar, end − dvar)

Argument(s) ORTHOTOPE1 : ORTHOTOPE

ORTHOTOPE2 : ORTHOTOPE

Restriction(s) |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
|ORTHOTOPE1| = |ORTHOTOPE2|
orth link ori siz end(ORTHOTOPE1)
orth link ori siz end(ORTHOTOPE2)

Purpose For two orthotopes O1 and O2 enforce that there exist at least one dimension i such that the
projections on i of O1 and O2 do not overlap.

Arc input(s) ORTHOTOPE1 ORTHOTOPE2

Arc generator SYMMETRIC PRODUCT (=) 7→ collection(orthotope1, orthotope2)

Arc arity 2

Arc constraint(s) orthotope1.end ≤ orthotope2.ori ∨ orthotope1.siz = 0

Graph property(ies) NARC ≥ 1

Example two orth do not overlap

0
BB@

ori − 2 siz − 2 end − 4,
ori − 1 siz − 3 end − 4

ff
,

ori − 4 siz − 4 end − 8,
ori − 3 siz − 3 end − 6

ff

1
CCA

Parts (A) and (B) of Figure 4.425 respectively show the initial and final graph.
Since we use the NARC graph property, the unique arc of the final graph is stressed in
bold. It corresponds to the fact that the projection in dimension 1 of the first orthotope is
located before the projection in dimension 1 of the second orthotope. Therefore the two
orthotopes do not overlap.

Graph model We build an initial graph where each arc corresponds to the fact that, either the projection
of an orthotope on a given dimension is empty, either it is located before the projection in
the same dimension of the other orthotope. Finally we ask that at least one arc constraint
remains in the final graph.

20030820 925

Automaton Figure 4.426 depicts the automaton associated to the two orth do not overlap con-
straint. Let ORI1i, SIZ1i and END1i respectively be the ori, the siz and the end attributes
of the ith item of the ORTHOTOPE1 collection. Let ORI2i, SIZ2i and END2i respectively
be the ori, the siz and the end attributes of the ith item of the ORTHOTOPE2 collec-
tion. To each sextuple (ORI1i, SIZ1i, END1i, ORI2i, SIZ2i, END2i) corresponds a 0-1 sig-
nature variable Si as well as the following signature constraint: ((SIZ1i > 0) ∧ (SIZ2i >
0) ∧ (END1i > ORI2i) ∧ (END2i > ORI1i))⇔ Si.

Used in diffn.

Key words geometrical constraint, non-overlapping, orthotope, Berge-acyclic constraint network,
automaton, automaton without counters.

ORTHOTOPE1

ORTHOTOPE2

1

1

2

2

NARC=1

1:2,2,4

1:4,4,8

(A) (B)

Figure 4.425: Initial and final graph of the two orth do not overlap constraint

926 NARC, SYMMETRIC PRODUCT (=)

s

t

SIZ1 =0 or SIZ2 =0 or END1 <=ORI2 or END2 <=ORI1

SIZ1 >0 and SIZ2 >0 and END1 >ORI2 and END2 >ORI1i i i i i i

i i i i i i

Figure 4.426: Automaton of the two orth do not overlap constraint

ORI1
 1

SIZ1
 1

END1
 1

ORI2
 1

SIZ2
 1

END2
 1

S1

Q =s0
Q1

SIZ1
 2

END1
 2

ORI2
 2

ORI1
 2

SIZ2
 2

END2
 2

ORI1
 n

SIZ1
 n

END1
 n

ORI2
 n

SIZ2
 n

END2
 n

Q =tn

S2 Sn

Figure 4.427: Hypergraph of the reformulation corresponding to the automaton of the
two orth do not overlap constraint

20030820 927

928 NARC,PRODUCT (=)

4.228 two orth include

Origin Used for defining diffn include.

Constraint two orth include(ORTHOTOPE1, ORTHOTOPE2, N)

Type(s) ORTHOTOPE : collection(ori − dvar, siz− dvar, end − dvar)

Argument(s) ORTHOTOPE1 : ORTHOTOPE

ORTHOTOPE2 : ORTHOTOPE

N : int

Restriction(s) |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
|ORTHOTOPE1| = |ORTHOTOPE2|
orth link ori siz end(ORTHOTOPE1)
orth link ori siz end(ORTHOTOPE2)
N > 0
N ≤ |ORTHOTOPE1|

Purpose

Arc input(s) ORTHOTOPE1 ORTHOTOPE2

Arc generator PRODUCT (=) 7→ collection(orthotope1, orthotope2)

Arc arity 2

Arc constraint(s)

V

0
BBBB@

orthotope1.key = N,
orthotope1.ori < orthotope2.end,
orthotope2.ori < orthotope1.end,
orthotope1.siz > 0,
orthotope2.siz > 0

1
CCCCA
⇒

W
0
BB@

min(orthotope1.end, orthotope2.end)− max(orthotope1.ori, orthotope2.ori) =
orthotope1.siz

,

min(orthotope1.end, orthotope2.end)− max(orthotope1.ori, orthotope2.ori) =
orthotope2.siz

1
CCA

Graph property(ies) NARC = 1

Example two orth include

0
BB@

ori − 1 siz − 3 end − 4,
ori − 1 siz − 1 end − 2

ff
,

ori − 1 siz − 2 end − 3,
ori − 2 siz − 3 end − 5

ff
, 1

1
CCA

Used in diffn include.

20030820 929

See also diffn.

Key words geometrical constraint, positioning constraint, orthotope.

ORTHOTOPE1

ORTHOTOPE2

1

1

2

2

NARC=1

1:1,3,4

2:2,3,5

(A) (B)

Figure 4.428: Initial and final graph of the two orth include constraint

930 NSINK,CC(NSINK,NSOURCE),PRODUCT

4.229 used by

Origin N. Beldiceanu

Constraint used by(VARIABLES1, VARIABLES2)

Argument(s) VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)

Restriction(s) |VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose All the values of the variables of collection VARIABLES2 are used by the variables of collection
VARIABLES1.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) • for all connected components: NSOURCE ≥ NSINK
• NSINK = |VARIABLES2|

Example used by

0
BBBBBBBB@

8
>>>>>><
>>>>>>:

var − 1,
var − 9,
var − 1,
var − 5,
var − 2,
var − 1

9
>>>>>>=
>>>>>>;

,

{var − 1, var − 1, var − 2, var − 5}

1
CCCCCCCCA

Parts (A) and (B) of Figure 4.429 respectively show the initial and final graph.
Since we use the NSOURCE and NSINK graph properties, the source and sink
vertices of the final graph are stressed with a double circle. Since there is a constraint
on each connected component of the final graph we also show the different connected
components. Each of them corresponds to an equivalence class according to the arc
constraint. Note that the vertex corresponding to the variable assigned to value 9 was
removed from the final graph since there is no arc for which the associated equality
constraint holds. The used by constraint holds since:

• For each connected component of the final graph the number of sources is greater
than or equal to the number of sinks.

• The number of sinks of the final graph is equal to |VARIABLES2|.

20000128 931

Signature Since the initial graph contains only sources and sinks, and since sources of the initial graph
cannot become sinks of the final graph, we have that the maximum number of sinks of the
final graph is equal to |VARIABLES2|. Therefore we can rewrite NSINK = |VARIABLES2|
to NSINK ≥ |VARIABLES2| and simplify NSINK to NSINK.

Automaton Figure 4.430 depicts the automaton associated to the used by constraint. To each item of
the collection VARIABLES1 corresponds a signature variable Si, which is equal to 0. To
each item of the collection VARIABLES2 corresponds a signature variable Si+|VARIABLES1|,
which is equal to 1.

Algorithm As described in [141] we can pad VARIABLES2 with dummy variables such that its cardi-
nality will be equal to that cardinality of VARIABLES1. The domain of a dummy variable
contains all of the values. Then, we have a same constraint between the two sets. Direct
arc-consistency and bound-consistency algorithms are also proposed in [141] and in [142].

Key words constraint between two collections of variables, inclusion, flow, bound-consistency,
automaton, automaton with array of counters.

932 NSINK,CC(NSINK,NSOURCE),PRODUCT

VARIABLES1

VARIABLES2

1

1234

2 3456

CC#1:NSINK=2,CC#2:NSINK=1,CC#3:NSINK=1
NSINK=4

CC#1 CC#2 CC#3

1:1

1:1 2:1

3:16:1 4:5

4:5

5:2

3:2

(A) (B)

Figure 4.429: Initial and final graph of the used by constraint

i i

1,
{C[VAR]=C[VAR]+1}

i i

1,
{C[VAR]=C[VAR]+1}

0,

i i{C[VAR]=C[VAR]−1}

i

$

greatereq(C,0)

t:

{C[_]=0}

s

Figure 4.430: Automaton of the used by constraint

20000128 933

934 NSINK,CC(NSINK,NSOURCE),PRODUCT

4.230 used by interval

Origin Derived from used by.

Constraint used by interval(VARIABLES1, VARIABLES2, SIZE INTERVAL)

Argument(s) VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
SIZE INTERVAL : int

Restriction(s) |VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
SIZE INTERVAL > 0

Purpose
LetNi (respectivelyMi) denote the number of variables of the collection VARIABLES1 (respec-
tively VARIABLES2) that take a value in the interval [SIZE INTERVAL · i, SIZE INTERVAL · i+
SIZE INTERVAL − 1]. For all integer i we have Mi > 0⇒ Ni > 0.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var/SIZE INTERVAL = variables2.var/SIZE INTERVAL

Graph property(ies) • for all connected components: NSOURCE ≥ NSINK
• NSINK = |VARIABLES2|

Example used by interval

0
BBBBBBBBBBBBBB@

8
>>>>>><
>>>>>>:

var − 1,
var − 9,
var − 1,
var − 8,
var − 6,
var − 2

9
>>>>>>=
>>>>>>;

,

8
>><
>>:

var − 1,
var − 0,
var − 7,
var − 7

9
>>=
>>;
, 3

1
CCCCCCCCCCCCCCA

In the previous example, the third parameter SIZE INTERVAL defines the following
family of intervals [3 · k, 3 · k+ 2], where k is an integer. Parts (A) and (B) of Figure 4.431
respectively show the initial and final graph. Since we use the NSOURCE and
NSINK graph properties, the source and sink vertices of the final graph are stressed
with a double circle. Since there is a constraint on each connected component of the final
graph we also show the different connected components. Each of them corresponds to
an equivalence class according to the arc constraint. Note that the vertex corresponding
to the variable that takes value 9 was removed from the final graph since there is no arc
for which the associated equivalence constraint holds. The used by interval constraint
holds since:

20030820 935

• For each connected component of the final graph the number of sources is greater
than or equal to the number of sinks.

• The number of sinks of the final graph is equal to |VARIABLES2|.

VARIABLES1

VARIABLES2

1

1234

2 3456

CC#1:NSINK=2,CC#2:NSINK=1,CC#3:NSINK=1
NSINK=4

CC#1 CC#2 CC#3

1:1

1:1 2:0

3:16:2 4:8

4:7

5:6

3:7

(A) (B)

Figure 4.431: Initial and final graph of the used by interval constraint

Signature Since the initial graph contains only sources and sinks, and since sources of the initial graph
cannot become sinks of the final graph, we have that the maximum number of sinks of the
final graph is equal to |VARIABLES2|. Therefore we can rewrite NSINK = |VARIABLES2|
to NSINK ≥ |VARIABLES2| and simplify NSINK to NSINK.

See also used by.

Key words constraint between two collections of variables, inclusion, interval.

936 NSINK,CC(NSINK,NSOURCE),PRODUCT

4.231 used by modulo

Origin Derived from used by.

Constraint used by modulo(VARIABLES1, VARIABLES2, M)

Argument(s) VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
M : int

Restriction(s) |VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
M > 0

Purpose
For each integer R in [0, M− 1], let N1R (respectively N2R) denote the number of variables of
VARIABLES1 (respectively VARIABLES2) which have R as a rest when divided by M. For all R
in [0, M− 1] we have N2R > 0⇒ N1R > 0.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var mod M = variables2.var mod M

Graph property(ies) • for all connected components: NSOURCE ≥ NSINK
• NSINK = |VARIABLES2|

Example used by modulo

0
BBBBBBBBBBBBBB@

8
>>>>>><
>>>>>>:

var− 1,
var− 9,
var− 4,
var− 5,
var− 2,
var− 1

9
>>>>>>=
>>>>>>;

,

8
>><
>>:

var− 7,
var− 1,
var− 2,
var− 5

9
>>=
>>;
, 3

1
CCCCCCCCCCCCCCA

Parts (A) and (B) of Figure 4.432 respectively show the initial and final graph.
Since we use the NSOURCE and NSINK graph properties, the source and sink
vertices of the final graph are stressed with a double circle. Since there is a constraint
on each connected component of the final graph we also show the different connected
components. Each of them corresponds to an equivalence class according to the arc
constraint. Note that the vertex corresponding to the variable that takes value 9 was
removed from the final graph since there is no arc for which the associated equivalence
constraint holds. The used by modulo constraint holds since:

20030820 937

• For each connected component of the final graph the number of sources is greater
than or equal to the number of sinks.

• The number of sinks of the final graph is equal to |VARIABLES2|.

VARIABLES1

VARIABLES2

1

1234

2 3456

CC#1:NSINK=2,CC#2:NSINK=2
NSINK=4

CC#1 CC#2 CC#3

1:1

1:7 2:1

3:46:1 4:5

4:5 3:2

5:2

(A) (B)

Figure 4.432: Initial and final graph of the used by modulo constraint

Signature Since the initial graph contains only sources and sinks, and since sources of the initial graph
cannot become sinks of the final graph, we have that the maximum number of sinks of the
final graph is equal to |VARIABLES2|. Therefore we can rewrite NSINK = |VARIABLES2|
to NSINK ≥ |VARIABLES2| and simplify NSINK to NSINK.

See also used by.

Key words constraint between two collections of variables, inclusion, modulo.

938 NSINK,CC(NSINK,NSOURCE),PRODUCT

4.232 used by partition

Origin Derived from used by.

Constraint used by partition(VARIABLES1, VARIABLES2, PARTITIONS)

Type(s) VALUES : collection(val− int)

Argument(s) VARIABLES1 : collection(var− dvar)
VARIABLES2 : collection(var− dvar)
PARTITIONS : collection(p− VALUES)

Restriction(s) required(VALUES, val)
distinct(VALUES, val)
|VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose
For each integer i in [1, |PARTITIONS|], let N1 i (respectively N2 i) denote the number of vari-
ables of VARIABLES1 (respectively VARIABLES2) which take their value in the ith partition of
the collection PARTITIONS. For all i in [1, |PARTITIONS|] we have N2 i > 0⇒ N1 i > 0.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) in same partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) • for all connected components: NSOURCE ≥ NSINK
• NSINK = |VARIABLES2|

Example used by partition

0
BBBBBBBBBBBBBBBBBBBB@

8
>>>>>><
>>>>>>:

var − 1,
var − 9,
var − 1,
var − 6,
var − 2,
var − 3

9
>>>>>>=
>>>>>>;

,

8
>><
>>:

var − 1,
var − 3,
var − 6,
var − 6

9
>>=
>>;
,

8
<
:

p − {val − 1, val − 3},
p − {val − 4},
p − {val − 2, val − 6}

9
=
;

1
CCCCCCCCCCCCCCCCCCCCA

20030820 939

Parts (A) and (B) of Figure 4.433 respectively show the initial and final graph.
Since we use the NSOURCE and NSINK graph properties, the source and sink
vertices of the final graph are stressed with a double circle. Since there is a constraint
on each connected component of the final graph we also show the different connected
components. Each of them corresponds to an equivalence class according to the arc
constraint. Note that the vertex corresponding to the variable that takes value 9 was
removed from the final graph since there is no arc for which the associated equivalence
constraint holds. The used by partition constraint holds since:

• For each connected component of the final graph the number of sources is greater
than or equal to the number of sinks.

• The number of sinks of the final graph is equal to |VARIABLES2|.

VARIABLES1

VARIABLES2

1

1234

2 3456

CC#1:NSINK=2,CC#2:NSINK=2
NSINK=4

CC#1 CC#2 CC#3

1:1

1:1 2:3

3:16:3 4:6

4:6 3:6

5:2

(A) (B)

Figure 4.433: Initial and final graph of the used by partition constraint

Signature Since the initial graph contains only sources and sinks, and since sources of the initial graph
cannot become sinks of the final graph, we have that the maximum number of sinks of the
final graph is equal to |VARIABLES2|. Therefore we can rewrite NSINK = |VARIABLES2|
to NSINK ≥ |VARIABLES2| and simplify NSINK to NSINK.

See also used by, in same partition.

Key words constraint between two collections of variables, inclusion, partition.

940 AUTOMATON

4.233 valley

Origin Derived from inflexion.

Constraint valley(N, VARIABLES)

Argument(s) N : dvar

VARIABLES : collection(var − dvar)

Restriction(s) N ≥ 0
2 ∗ N ≤ max(|VARIABLES| − 1, 0)
required(VARIABLES, var)

Purpose
A variable Vk (1 < k < m) of the sequence of variables VARIABLES = V1, . . . , Vm is a valley
if and only if there exist an i (1 < i ≤ k) such that Vi−1 > Vi and Vi = Vi+1 = . . . = Vk and
Vk < Vk+1. N is the total number of valleys of the sequence of variables VARIABLES.

Example valley

0
BBBBBBBBBB@

1,

8
>>>>>>>>>><
>>>>>>>>>>:

var − 1,
var − 1,
var − 4,
var − 8,
var − 8,
var − 2,
var − 7,
var − 1

9
>>>>>>>>>>=
>>>>>>>>>>;

1
CCCCCCCCCCA

The previous constraint holds since the sequence 1 1 4 8 8 2 7 1 contains one
valley which corresponds to the variable which is assigned to value 2.

1

5 6 7 8

2

3

4

5

6

43

7

8

1 1

Values

Variables 1 2

4

8 8

2

7

1

Figure 4.434: The sequence and its unique valley

Automaton Figure 4.435 depicts the automaton associated to the valley constraint. To each pair of
consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a signature
variable Si. The following signature constraint links VARi, VARi+1 and Si: (VARi <
VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi > VARi+1 ⇔ Si = 2).

20040530 941

VAR = VARi i+1

VAR < VARi i+1

u

t:
N=C

$

$

i i+1
{C=C+1}

VAR > VARi i+1

VAR = VARi i+1

i i+1VAR > VAR

VAR < VAR ,

s

{C=0}

Figure 4.435: Automaton of the valley constraint

Q =s0

C =00 C1

Q1

VAR
1

S1

VAR
2

S2

VAR
n

VAR
3

Sn−1

VAR
n−1

S3

Q2

C2

Q =tn−1

C =Nn−1

Figure 4.436: Hypergraph of the reformulation corresponding to the automaton of the
valley constraint

942 AUTOMATON

Usage Useful for constraining the number of valleys of a sequence of domain variables.

Remark Since the arity of the arc constraint is not fixed, the valley constraint cannot be currently
described. However, this would not hold anymore if we were introducing a slot that speci-
fies how to merge adjacent vertices of the final graph.

See also no valley, inflexion, peak.

Key words sequence, automaton, automaton with counters, sliding cyclic(1) constraint network(2).

20040530 943

944 NARC,PRODUCT (=)

4.234 vec eq tuple

Origin Used for defining in relation.

Constraint vec eq tuple(VARIABLES, TUPLE)

Argument(s) VARIABLES : collection(var − dvar)
TUPLE : collection(val − int)

Restriction(s) required(VARIABLES, var)
required(TUPLE, val)
|VARIABLES| = |TUPLE|

Purpose Enforce a vector of domain variables to be equal to a tuple of values.

Arc input(s) VARIABLES TUPLE

Arc generator PRODUCT (=) 7→ collection(variables, tuple)

Arc arity 2

Arc constraint(s) variables.var = tuple.val

Graph property(ies) NARC = |VARIABLES|

Example vec eq tuple

„
{var − 5, var − 3, var − 3},
{val − 5, val − 3, val − 3}

«

Parts (A) and (B) of Figure 4.437 respectively show the initial and final graph.
Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

VARIABLES

TUPLE

1

1

2

2

3

3

NARC=3

1:5

1:5

2:3

2:3

3:3

3:3

(A) (B)

Figure 4.437: Initial and final graph of the vec eq tuple constraint

Signature Since we use the arc generator PRODUCT (=) on the collections VARIABLES and TUPLE,
and because of the restriction |VARIABLES| = |TUPLE|, the maximum number of arcs of
the final graph is equal to |VARIABLES|. Therefore we can rewrite the graph property
NARC = |VARIABLES| to NARC ≥ |VARIABLES| and simplify NARC to NARC.

20030820 945

Used in in relation.

Key words value constraint, tuple.

946 MAX ID,SUM,PRODUCT

4.235 weighted partial alldiff

Origin [160, page 71]

Constraint weighted partial alldiff(VARIABLES, UNDEFINED, VALUES, COST)

Synonym(s) weighted partial alldifferent, weighted partial alldistinct, wpa.

Argument(s) VARIABLES : collection(var − dvar)
UNDEFINED : int

VALUES : collection(val − int, weight − int)
COST : dvar

Restriction(s) required(VARIABLES, var)
required(VALUES, [val, weight])
in attr(VARIABLES, var, VALUES, val)
distinct(VALUES, val)

Purpose

All variables of the VARIABLES collection which are not assigned to value UNDEFINED must
have pairwise distinct values from the val attribute of the VALUES collection. In addition
COST is the sum of the weight attributes associated to the values assigned to the variables
of VARIABLES. Within the VALUES collection, value UNDEFINED must be explicitely defined
with a weight of 0.

Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→ collection(variables, values)

Arc arity 2

Arc constraint(s) • variables.var 6= UNDEFINED

• variables.var = values.val

Graph property(ies) •MAX ID ≤ 1
• SUM(VALUES, weight) = COST

Example weighted partial alldiff

0
BBBBBBBBBBBBBBBBBB@

8
>>>>>><
>>>>>>:

var − 4,
var − 0,
var − 1,
var − 2,
var − 0,
var − 0

9
>>>>>>=
>>>>>>;

, 0,

8
>>>>>><
>>>>>>:

val − 0 weight − 0,
val − 1 weight − 2,
val − 2 weight −−1,
val − 4 weight − 7,
val − 5 weight −−8,
val − 6 weight − 2

9
>>>>>>=
>>>>>>;

, 8

1
CCCCCCCCCCCCCCCCCCA

20040814 947

Parts (A) and (B) of Figure 4.438 respectively show the initial and final graph.
Since we also use the SUM graph property we show the vertices of the final graph from
which we compute the total cost in a box. The weighted partial alldiff constraint
holds since no value, except for value UNDEFINED = 0, is used more than once and
COST = 8 is equal to the sum of the weights 2, −1 and 7 of the values 1, 2 and 4 assigned
to the variables of VARIABLES.

VARIABLES

VALUES

1

1234 56

2 3456

SUM(VALUES,weight)=2-1+7=8

1:4

4:4,7

3:1

2:1,2

4:2

3:2,-1

(A) (B)

Figure 4.438: Initial and final graph of the weighted partial alldiff constraint

Graph model The restriction in attr(VARIABLES, var, VALUES, val) imposes all variables of the
VARIABLES collection to take a value from the val attribute of the VALUES collection.
We use the PRODUCT to generate an arc from every variables of the VARIABLES collec-
tion to every value of the VALUES collection. Because of the arc constraint, the final graph
contains only those arcs arriving at a value different from UNDEFINED. The graph property
MAX ID ≤ 1 enforces that no vertex of the final graph has more than one predecessor.
As a consequence, all variables of the VARIABLES collection which are not assigned to
value UNDEFINED must have pairwise distinct values.

Usage In his PhD thesis [160, pages 71–72], Sven Thiel describes the following three potential
scenarios of the weighted partial alldiff constraint:

• Given a set of tasks (i.e. the items of the VARIABLES collection), assign to each task
a resource (i.e. an item of the VALUES collection). Except for the resource associated
to value UNDEFINED, every resource can be used at most once. The cost of a resource
is independent from the task to which the resource is assigned. The cost of value
UNDEFINED is equal to 0. The total cost COST of an assignment corresponds to the
sum of the costs of the resources effectively assigned to the tasks. Finally we impose
an upper bound on the total cost.

• Given a set of persons (i.e. the items of the VARIABLES collection), select for each
person an offer (i.e. an item of the VALUES collection). Except for the offer asso-
ciated to value UNDEFINED, every offer should be selected at most once. The profit
associated to an offer is independant from the person which select that offer. The
profit of value UNDEFINED is equal to 0. The total benefit COST is equal to the sum

948 MAX ID,SUM,PRODUCT

of the profits of the offers effectively selected. In addition we impose a lower bound
on the total benefit.

• The last scenario deals with an application to an over-constraint problem involving
the alldifferent constraint. Allowing some variables to take an ”undefined” value
is done by setting all weights of all the values different from UNDEFINED to 1. As
a consequence all variables assigned to a value different from UNDEFINED will have
to take distinct values. The COST variable allows to control the number of such
variables.

Algorithm A filtering algorithm is given in [160, pages 73–104]. After showing that, deciding whether
the weighted partial alldiff has a solution is NP-complete, [160, pages 105–106]
gives the following results of his filtering algorithm with respect to consistency under the
three scenarios previously decribed:

• For scenario 1, if there is no restriction of the lower bound of the COST variable,
the filtering algorithm achieves arc-consistency for all variables of the VARIABLES

collection (but not for the COST variable itself).

• For scenario 2, if there is no restriction of the upper bound of the COST variable,
the filtering algorithm achieves arc-consistency for all variables of the VARIABLES

collection (but not for the COST variable itself).

• Finally, for scenario 3, the filtering algorithm achieves arc-consistency for all vari-
ables of the VARIABLES collection as well as for the COST variable.

See also alldifferent, alldifferent except 0, minimum weight alldifferent,
global cardinality with costs, soft alldifferent var,
sum of weights of distinct values.

Key words cost filtering constraint, soft constraint, all different, assignment, relaxation, joker value,
weighted assignment.

Appendix A

Legend for the description

This section provides the list of restrictions, of arc generators, of graph generators and
of set generators sorted in alphabetic order with the page where there are defined.

949

950 APPENDIX A. LEGEND FOR THE DESCRIPTION

Restrictions :

• Term1 Comparison Term2 p. 9

• distinct p. 7

• in attr p. 6

• in list p. 6

• increasing seq p. 7

• required p. 8

• require at least p. 8

• same size p. 9

Arc generators :

• CHAIN p. 27

• CIRCUIT p. 27

• CLIQUE p. 27

• CLIQUE(C) p. 28

• GRID p. 28

• LOOP p. 28

• PATH p. 28

• PATH 1 p. 28

• PATH N p. 29

• PRODUCT p. 29

• PRODUCT (C) p. 29

• SELF p. 29

• SYMMETRIC PRODUCT p. 29

• SYMMETRIC PRODUCT(C) p. 29

• VOID p. 29

Graph characteristics :

• DISTANCE p. 42

• MAX DRG p. 34

• MAX ID p. 34

• MAX NCC p. 34

• MAX NSCC p. 35

• MAX OD p. 35

• MIN DRG p. 35

• MIN ID p. 35

• MIN NCC p. 35

• MIN NSCC p. 36

• MIN OD p. 36

• NARC p. 36

• NARC NO LOOP p. 36

• NCC p. 37

• NSCC p. 37

• NSINK p. 37

• NSINK NSOURCE p. 37

• NSOURCE p. 38

• NTREE p. 38

• NVERTEX p. 38

• RANGE DRG p. 38

• RANGE NCC p. 39

• RANGE NSCC p. 39

• ORDER p. 39

• PATH FROM TO p. 39

• PRODUCT p. 40

• RANGE p. 40

• SUM p. 41

• SUM WEIGHT ARC p. 42

Set generators :

• ALL VERTICES p. 47
• CC p. 47
• PATH LENGTH p. 48

• PRED p. 48

• SUCC p. 48

Appendix B

Electronic constraint catalog

Contents
B.1 all differ from at least k pos 957
B.2 all min dist . 958
B.3 alldifferent . 959
B.4 alldifferent between sets . 960
B.5 alldifferent except 0 . 961
B.6 alldifferent interval . 962
B.7 alldifferent modulo . 963
B.8 alldifferent on intersection . 964
B.9 alldifferent partition . 965
B.10 alldifferent same value . 967
B.11 allperm . 968
B.12 among . 969
B.13 among diff 0 . 971
B.14 among interval . 973
B.15 among low up . 975
B.16 among modulo . 977
B.17 among seq . 979
B.18 arith . 981
B.19 arith or . 983
B.20 arith sliding . 985
B.21 assign and counts . 989
B.22 assign and nvalues . 991
B.23 atleast . 993
B.24 atmost . 995
B.25 balance . 996
B.26 balance interval . 997
B.27 balance modulo . 998

951

952 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.28 balance partition . 999
B.29 bin packing . 1000
B.30 binary tree . 1001
B.31 cardinality atleast . 1002
B.32 cardinality atmost . 1003
B.33 cardinality atmost partition . 1004
B.34 change . 1005
B.35 change continuity . 1007
B.36 change pair . 1012
B.37 change partition . 1018
B.38 circuit . 1020
B.39 circuit cluster . 1021
B.40 circular change . 1023
B.41 clique . 1025
B.42 colored matrix . 1026
B.43 coloured cumulative . 1028
B.44 coloured cumulatives . 1030
B.45 common . 1032
B.46 common interval . 1033
B.47 common modulo . 1034
B.48 common partition . 1035
B.49 connect points . 1037
B.50 correspondence . 1040
B.51 count . 1042
B.52 counts . 1044
B.53 crossing . 1046
B.54 cumulative . 1048
B.55 cumulative product . 1050
B.56 cumulative two d . 1052
B.57 cumulative with level of priority 1055
B.58 cumulatives . 1057
B.59 cutset . 1059
B.60 cycle . 1060
B.61 cycle card on path . 1061
B.62 cycle or accessibility . 1063
B.63 cycle resource . 1065
B.64 cyclic change . 1067
B.65 cyclic change joker . 1069
B.66 decreasing . 1072
B.67 deepest valley . 1073
B.68 derangement . 1075
B.69 differ from at least k pos . 1076
B.70 diffn . 1078

953

B.71 diffn column . 1080
B.72 diffn include . 1081
B.73 discrepancy . 1082
B.74 disjoint . 1083
B.75 disjoint tasks . 1084
B.76 disjunctive . 1086
B.77 distance between . 1087
B.78 distance change . 1088
B.79 domain constraint . 1091
B.80 elem . 1093
B.81 element . 1095
B.82 element greatereq . 1097
B.83 element lesseq . 1099
B.84 element matrix . 1101
B.85 element sparse . 1104
B.86 elements . 1106
B.87 elements alldifferent . 1107
B.88 elements sparse . 1109
B.89 eq set . 1111
B.90 exactly . 1112
B.91 global cardinality . 1114
B.92 global cardinality low up . 1115
B.93 global cardinality with costs 1116
B.94 global contiguity . 1118
B.95 golomb . 1120
B.96 graph crossing . 1121
B.97 group . 1123
B.98 group skip isolated item . 1128
B.99 heighest peak . 1132
B.100in . 1134
B.101in relation . 1136
B.102in same partition . 1138
B.103in set . 1140
B.104increasing . 1141
B.105indexed sum . 1142
B.106inflexion . 1143
B.107int value precede . 1145
B.108int value precede chain . 1146
B.109interval and count . 1147
B.110interval and sum . 1149
B.111inverse . 1150
B.112inverse set . 1151
B.113ith pos different from 0 . 1153

954 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.114k cut . 1155
B.115lex2 . 1156
B.116lex alldifferent . 1157
B.117lex between . 1158
B.118lex chain less . 1161
B.119lex chain lesseq . 1162
B.120lex different . 1163
B.121lex greater . 1165
B.122lex greatereq . 1167
B.123lex less . 1169
B.124lex lesseq . 1171
B.125link set to booleans . 1173
B.126longest change . 1174
B.127map . 1176
B.128max index . 1177
B.129max n . 1179
B.130max nvalue . 1180
B.131max size set of consecutive var 1181
B.132maximum . 1182
B.133maximum modulo . 1184
B.134min index . 1185
B.135min n . 1187
B.136min nvalue . 1188
B.137min size set of consecutive var 1189
B.138minimum . 1190
B.139minimum except 0 . 1192
B.140minimum greater than . 1194
B.141minimum modulo . 1196
B.142minimum weight alldifferent 1197
B.143nclass . 1199
B.144nequivalence . 1200
B.145next element . 1201
B.146next greater element . 1204
B.147ninterval . 1205
B.148no peak . 1206
B.149no valley . 1208
B.150not all equal . 1210
B.151not in . 1212
B.152npair . 1214
B.153nset of consecutive values . 1215
B.154nvalue . 1216
B.155nvalue on intersection . 1217
B.156nvalues . 1218

955

B.157nvalues except 0 . 1219
B.158one tree . 1220
B.159orchard . 1222
B.160orth link ori siz end . 1223
B.161orth on the ground . 1224
B.162orth on top of orth . 1225
B.163orths are connected . 1227
B.164path from to . 1229
B.165pattern . 1231
B.166peak . 1232
B.167period . 1234
B.168period except 0 . 1235
B.169place in pyramid . 1236
B.170polyomino . 1238
B.171product ctr . 1240
B.172range ctr . 1241
B.173relaxed sliding sum . 1242
B.174same . 1244
B.175same and global cardinality . 1245
B.176same intersection . 1247
B.177same interval . 1248
B.178same modulo . 1249
B.179same partition . 1250
B.180sequence folding . 1251
B.181set value precede . 1253
B.182shift . 1254
B.183size maximal sequence alldifferent 1256
B.184size maximal starting sequence alldifferent 1257
B.185sliding card skip0 . 1258
B.186sliding distribution . 1260
B.187sliding sum . 1262
B.188sliding time window . 1263
B.189sliding time window from start 1264
B.190sliding time window sum . 1266
B.191smooth . 1268
B.192soft alldifferent ctr . 1270
B.193soft alldifferent var . 1271
B.194soft same interval var . 1272
B.195soft same modulo var . 1273
B.196soft same partition var . 1274
B.197soft same var . 1276
B.198soft used by interval var . 1277
B.199soft used by modulo var . 1278

956 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.200soft used by partition var . 1279
B.201soft used by var . 1281
B.202sort . 1282
B.203sort permutation . 1283
B.204stage element . 1285
B.205stretch circuit . 1287
B.206stretch path . 1289
B.207strict lex2 . 1291
B.208strictly decreasing . 1292
B.209strictly increasing . 1294
B.210strongly connected . 1296
B.211sum . 1297
B.212sum ctr . 1298
B.213sum of weights of distinct values 1299
B.214sum set . 1300
B.215symmetric alldifferent . 1301
B.216symmetric cardinality . 1302
B.217symmetric gcc . 1304
B.218temporal path . 1306
B.219tour . 1308
B.220track . 1310
B.221tree . 1312
B.222tree range . 1313
B.223tree resource . 1314
B.224two layer edge crossing . 1316
B.225two orth are in contact . 1318
B.226two orth column . 1320
B.227two orth do not overlap . 1322
B.228two orth include . 1324
B.229used by . 1326
B.230used by interval . 1327
B.231used by modulo . 1328
B.232used by partition . 1329
B.233valley . 1330
B.234vec eq tuple . 1332
B.235weighted partial alldiff . 1333

957

B.1 all differ from at least k pos
ctr_date(

all_differ_from_at_least_k_pos,
[’20030820’,’20040530’]).

ctr_origin(
all_differ_from_at_least_k_pos,
’Inspired by \\cite{Frutos97}.’,
[]).

ctr_types(
all_differ_from_at_least_k_pos,
[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
all_differ_from_at_least_k_pos,
[’K’-int,’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
all_differ_from_at_least_k_pos,
[required(’VECTOR’,var),
’K’>=0,
required(’VECTORS’,vec),
same_size(’VECTORS’,vec)]).

ctr_graph(
all_differ_from_at_least_k_pos,
[’VECTORS’],
2,
[’CLIQUE’(=\=)>>collection(vectors1,vectors2)],
[differ_from_at_least_k_pos(

’K’,
vectors1ˆvec,
vectors2ˆvec)],

[’NARC’=size(’VECTORS’)*size(’VECTORS’)-size(’VECTORS’)]).

ctr_example(
all_differ_from_at_least_k_pos,
all_differ_from_at_least_k_pos(

2,
[[vec-[[var-2],[var-5],[var-2],[var-0]]],
[vec-[[var-3],[var-6],[var-2],[var-1]]],
[vec-[[var-3],[var-6],[var-1],[var-0]]]])).

958 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.2 all min dist
ctr_date(all_min_dist,[’20050508’]).

ctr_origin(all_min_dist,’\\cite{Regin97}’,[]).

ctr_synonyms(all_min_dist,[minimum_distance]).

ctr_arguments(
all_min_dist,
[’MINDIST’-int,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
all_min_dist,
[’MINDIST’>0,required(’VARIABLES’,var),’VARIABLES’ˆvar>=0]).

ctr_graph(
all_min_dist,
[’VARIABLES’],
2,
[’CLIQUE’(<)>>collection(variables1,variables2)],
[abs(variables1ˆvar-variables2ˆvar)>=’MINDIST’],
[’NARC’=size(’VARIABLES’)*(size(’VARIABLES’)-1)/2]).

ctr_example(
all_min_dist,
all_min_dist(2,[[var-5],[var-1],[var-9],[var-3]])).

959

B.3 alldifferent
ctr_date(alldifferent,[’20000128’,’20030820’,’20040530’]).

ctr_origin(alldifferent,’\\cite{Lauriere78}’,[]).

ctr_synonyms(alldifferent,[alldiff,alldistinct]).

ctr_arguments(alldifferent,[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(alldifferent,[required(’VARIABLES’,var)]).

ctr_graph(
alldifferent,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’MAX_NSCC’=<1]).

ctr_example(
alldifferent,
alldifferent([[var-5],[var-1],[var-9],[var-3]])).

960 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.4 alldifferent between sets
ctr_date(alldifferent_between_sets,[’20030820’]).

ctr_origin(alldifferent_between_sets,’ILOG’,[]).

ctr_synonyms(
alldifferent_between_sets,
[all_null_intersect,
alldiff_between_sets,
alldistinct_between_sets]).

ctr_arguments(
alldifferent_between_sets,
[’VARIABLES’-collection(var-svar)]).

ctr_restrictions(
alldifferent_between_sets,
[required(’VARIABLES’,var)]).

ctr_graph(
alldifferent_between_sets,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[eq_set(variables1ˆvar,variables2ˆvar)],
[’MAX_NSCC’=<1]).

ctr_example(
alldifferent_between_sets,
alldifferent_between_sets(

[[var-{3,5}],[var-{}],[var-{3}],[var-{3,5,7}]])).

961

B.5 alldifferent except 0
ctr_date(

alldifferent_except_0,
[’20000128’,’20030820’,’20040530’]).

ctr_origin(
alldifferent_except_0,
’Derived from %c.’,
[alldifferent]).

ctr_synonyms(
alldifferent_except_0,
[alldiff_except_0,alldistinct_except_0]).

ctr_arguments(
alldifferent_except_0,
[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
alldifferent_except_0,
[required(’VARIABLES’,var)]).

ctr_graph(
alldifferent_except_0,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=\=0,variables1ˆvar=variables2ˆvar],
[’MAX_NSCC’=<1]).

ctr_example(
alldifferent_except_0,
alldifferent_except_0(

[[var-5],[var-0],[var-1],[var-9],[var-0],[var-3]])).

962 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.6 alldifferent interval
ctr_date(alldifferent_interval,[’20030820’]).

ctr_origin(
alldifferent_interval,
’Derived from %c.’,
[alldifferent]).

ctr_synonyms(
alldifferent_interval,
[alldiff_interval,alldistinct_interval]).

ctr_arguments(
alldifferent_interval,
[’VARIABLES’-collection(var-dvar),’SIZE_INTERVAL’-int]).

ctr_restrictions(
alldifferent_interval,
[required(’VARIABLES’,var),’SIZE_INTERVAL’>0]).

ctr_graph(
alldifferent_interval,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[=(variables1ˆvar/’SIZE_INTERVAL’,

variables2ˆvar/’SIZE_INTERVAL’)],
[’MAX_NSCC’=<1]).

ctr_example(
alldifferent_interval,
alldifferent_interval([[var-2],[var-3],[var-10]],3)).

963

B.7 alldifferent modulo
ctr_date(alldifferent_modulo,[’20030820’]).

ctr_origin(
alldifferent_modulo,
’Derived from %c.’,
[alldifferent]).

ctr_synonyms(
alldifferent_modulo,
[alldiff_modulo,alldistinct_modulo]).

ctr_arguments(
alldifferent_modulo,
[’VARIABLES’-collection(var-dvar),’M’-int]).

ctr_restrictions(
alldifferent_modulo,
[required(’VARIABLES’,var),’M’=\=0,’M’>=size(’VARIABLES’)]).

ctr_graph(
alldifferent_modulo,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar mod ’M’=variables2ˆvar mod ’M’],
[’MAX_NSCC’=<1]).

ctr_example(
alldifferent_modulo,
alldifferent_modulo([[var-25],[var-1],[var-14],[var-3]],5)).

964 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.8 alldifferent on intersection
ctr_date(alldifferent_on_intersection,[’20040530’]).

ctr_origin(
alldifferent_on_intersection,
’Derived from %c and %c.’,
[common,alldifferent]).

ctr_synonyms(
alldifferent_on_intersection,
[alldiff_on_intersection,alldistinct_on_intersection]).

ctr_arguments(
alldifferent_on_intersection,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
alldifferent_on_intersection,
[required(’VARIABLES1’,var),required(’VARIABLES2’,var)]).

ctr_graph(
alldifferent_on_intersection,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’MAX_NCC’=<2]).

ctr_example(
alldifferent_on_intersection,
alldifferent_on_intersection(

[[var-5],[var-9],[var-1],[var-5]],
[[var-2],[var-1],[var-6],[var-9],[var-6],[var-2]])).

965

B.9 alldifferent partition

ctr_date(alldifferent_partition,[’20030820’]).

ctr_origin(
alldifferent_partition,
’Derived from %c.’,
[alldifferent]).

ctr_synonyms(
alldifferent_partition,
[alldiff_partition,alldistinct_partition]).

ctr_types(
alldifferent_partition,
[’VALUES’-collection(val-int)]).

ctr_arguments(
alldifferent_partition,
[’VARIABLES’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
alldifferent_partition,
[required(’VALUES’,val),
distinct(’VALUES’,val),
size(’VARIABLES’)=<size(’PARTITIONS’),
required(’VARIABLES’,var),
size(’PARTITIONS’)>=2,
required(’PARTITIONS’,p)]).

ctr_graph(
alldifferent_partition,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
’PARTITIONS’)],

[’MAX_NSCC’=<1]).

ctr_example(
alldifferent_partition,
alldifferent_partition(

[[var-6],[var-3],[var-4]],

966 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[[p-[[val-1],[val-3]]],
[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).

967

B.10 alldifferent same value
ctr_date(alldifferent_same_value,[’20000128’,’20030820’]).

ctr_origin(
alldifferent_same_value,
’Derived from %c.’,
[alldifferent]).

ctr_synonyms(
alldifferent_same_value,
[alldiff_same_value,alldistinct_same_value]).

ctr_arguments(
alldifferent_same_value,
[’NSAME’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
alldifferent_same_value,
[’NSAME’>=0,
’NSAME’=<size(’VARIABLES1’),
size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var)]).

ctr_graph(
alldifferent_same_value,
[’VARIABLES1’,’VARIABLES2’],
2,
[>>(’PRODUCT’(’CLIQUE’,’LOOP’,=),

collection(variables1,variables2))],
[variables1ˆvar=variables2ˆvar],
[’MAX_NSCC’=<1,’NARC_NO_LOOP’=’NSAME’]).

ctr_example(
alldifferent_same_value,
alldifferent_same_value(

2,
[[var-7],[var-3],[var-1],[var-5]],
[[var-1],[var-3],[var-1],[var-7]])).

968 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.11 allperm
ctr_predefined(allperm).

ctr_date(allperm,[’20031008’]).

ctr_origin(allperm,’\\cite{FrischJeffersonMiguel03}’,[]).

ctr_types(allperm,[’VECTOR’-collection(var-dvar)]).

ctr_arguments(allperm,[’MATRIX’-collection(vec-’VECTOR’)]).

ctr_restrictions(
allperm,
[required(’VECTOR’,var),
required(’MATRIX’,vec),
same_size(’MATRIX’,vec)]).

ctr_example(
allperm,
allperm(

[[vec-[[var-1],[var-2],[var-3]]],
[vec-[[var-3],[var-1],[var-2]]]])).

969

B.12 among

ctr_automaton(among,among).

ctr_date(among,[’20000128’,’20030820’,’20040807’]).

ctr_origin(among,’\\cite{BeldiceanuContejean94}’,[]).

ctr_arguments(
among,
[’NVAR’-dvar,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_restrictions(
among,
[’NVAR’>=0,
’NVAR’=<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_graph(
among,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[in(variablesˆvar,’VALUES’)],
[’NARC’=’NVAR’]).

ctr_example(
among,
among(

3,
[[var-4],[var-5],[var-5],[var-4],[var-1]],
[[val-1],[val-5],[val-8]])).

among(A,B,C) :-
col_to_list(C,D),
list_to_fdset(D,E),
among_signature(B,F,E),
automaton(

F,
G,
F,
0..1,

970 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[H+1]),arc(s,$,t)],
[H],
[0],
[A]).

among_signature([],[],A).

among_signature([[var-A]|B],[C|D],E) :-
in_set(A,E)#<=>C,
among_signature(B,D,E).

971

B.13 among diff 0

ctr_automaton(among_diff_0,among_diff_0).

ctr_date(among_diff_0,[’20040807’]).

ctr_origin(
among_diff_0,
’Used in the automaton of %c.’,
[nvalue]).

ctr_arguments(
among_diff_0,
[’NVAR’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
among_diff_0,
[’NVAR’>=0,
’NVAR’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_graph(
among_diff_0,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[variablesˆvar=\=0],
[’NARC’=’NVAR’]).

ctr_example(
among_diff_0,
among_diff_0(3,[[var-0],[var-5],[var-5],[var-0],[var-1]])).

among_diff_0(A,B) :-
among_diff_0_signature(B,C),
automaton(

C,
D,
C,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[E+1]),arc(s,$,t)],
[E],
[0],
[A]).

972 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

among_diff_0_signature([],[]).

among_diff_0_signature([[var-A]|B],[C|D]) :-
A#\=0#<=>C,
among_diff_0_signature(B,D).

973

B.14 among interval

ctr_automaton(among_interval,among_interval).

ctr_date(among_interval,[’20030820’,’20040530’]).

ctr_origin(among_interval,’Derived from %c.’,[among]).

ctr_arguments(
among_interval,
[’NVAR’-dvar,
’VARIABLES’-collection(var-dvar),
’LOW’-int,
’UP’-int]).

ctr_restrictions(
among_interval,
[’NVAR’>=0,
’NVAR’=<size(’VARIABLES’),
required(’VARIABLES’,var),
’LOW’=<’UP’]).

ctr_graph(
among_interval,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[’LOW’=<variablesˆvar,variablesˆvar=<’UP’],
[’NARC’=’NVAR’]).

ctr_example(
among_interval,
among_interval(

3,
[[var-4],[var-5],[var-8],[var-4],[var-1]],
3,
5)).

among_interval(A,B,C,D) :-
among_interval_signature(B,E,C,D),
automaton(

E,
F,
E,
0..1,
[source(s),sink(t)],

974 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[arc(s,0,s),arc(s,1,s,[G+1]),arc(s,$,t)],
[G],
[0],
[A]).

among_interval_signature([],[],A,B).

among_interval_signature([[var-A]|B],[C|D],E,F) :-
E#=<A#/\A#=<F#<=>C,
among_interval_signature(B,D,E,F).

975

B.15 among low up

ctr_automaton(among_low_up,among_low_up).

ctr_date(among_low_up,[’20030820’,’20040530’]).

ctr_origin(among_low_up,’\\cite{BeldiceanuContejean94}’,[]).

ctr_arguments(
among_low_up,
[’LOW’-int,
’UP’-int,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_restrictions(
among_low_up,
[’LOW’>=0,
’LOW’=<size(’VARIABLES’),
’UP’>=’LOW’,
required(’VARIABLES’,var),
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_graph(
among_low_up,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=valuesˆval],
[’NARC’>=’LOW’,’NARC’=<’UP’]).

ctr_example(
among_low_up,
among_low_up(

1,
2,
[[var-9],[var-2],[var-4],[var-5]],
[[val-0],[val-2],[val-4],[val-6],[val-8]])).

among_low_up(A,B,C,D) :-
col_to_list(D,E),
list_to_fdset(E,F),
among_low_up_signature(C,G,F),
in(H,A..B),
automaton(

976 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

G,
I,
G,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[J+1]),arc(s,$,t)],
[J],
[0],
[H]).

among_low_up_signature([],[],A).

among_low_up_signature([[var-A]|B],[C|D],E) :-
in_set(A,E)#<=>C,
among_low_up_signature(B,D,E).

977

B.16 among modulo

ctr_automaton(among_modulo,among_modulo).

ctr_date(among_modulo,[’20030820’,’20040530’]).

ctr_origin(among_modulo,’Derived from %c.’,[among]).

ctr_arguments(
among_modulo,
[’NVAR’-dvar,
’VARIABLES’-collection(var-dvar),
’REMAINDER’-int,
’QUOTIENT’-int]).

ctr_restrictions(
among_modulo,
[’NVAR’>=0,
’NVAR’=<size(’VARIABLES’),
required(’VARIABLES’,var),
’REMAINDER’>=0,
’REMAINDER’<’QUOTIENT’,
’QUOTIENT’>0]).

ctr_graph(
among_modulo,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[variablesˆvar mod ’QUOTIENT’=’REMAINDER’],
[’NARC’=’NVAR’]).

ctr_example(
among_modulo,
among_modulo(

3,
[[var-4],[var-5],[var-8],[var-4],[var-1]],
0,
2)).

among_modulo(A,B,C,D) :-
among_modulo_signature(B,E,C,D),
automaton(

E,
F,
E,

978 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[G+1]),arc(s,$,t)],
[G],
[0],
[A]).

among_modulo_signature([],[],A,B).

among_modulo_signature([[var-A]|B],[C|D],E,F) :-
A mod F#=E#<=>C,
among_modulo_signature(B,D,E,F).

979

B.17 among seq

ctr_date(among_seq,[’20000128’,’20030820’]).

ctr_origin(among_seq,’\\cite{BeldiceanuContejean94}’,[]).

ctr_arguments(
among_seq,
[’LOW’-int,
’UP’-int,
’SEQ’-int,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_restrictions(
among_seq,
[’LOW’>=0,
’LOW’=<size(’VARIABLES’),
’UP’>=’LOW’,
’SEQ’>0,
’SEQ’>=’LOW’,
’SEQ’=<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_graph(
among_seq,
[’VARIABLES’],
’SEQ’,
[’PATH’>>collection],
[among_low_up(’LOW’,’UP’,collection,’VALUES’)],
[’NARC’=size(’VARIABLES’)-’SEQ’+1]).

ctr_example(
among_seq,
among_seq(

1,
2,
4,
[[var-9],
[var-2],
[var-4],
[var-5],
[var-5],
[var-7],

980 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[var-2]],
[[val-0],[val-2],[val-4],[val-6],[val-8]])).

981

B.18 arith

ctr_automaton(arith,arith).

ctr_date(arith,[’20040814’]).

ctr_origin(
arith,
’Used in the definition of several automata’,
[]).

ctr_arguments(
arith,
[’VARIABLES’-collection(var-dvar),
’RELOP’-atom,
’VALUE’-int]).

ctr_restrictions(
arith,
[required(’VARIABLES’,var),
in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
arith,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[’RELOP’(variablesˆvar,’VALUE’)],
[’NARC’=size(’VARIABLES’)]).

ctr_example(
arith,
arith([[var-4],[var-5],[var-7],[var-4],[var-5]],<,9)).

arith(A,B,C) :-
arith_signature(A,D,B,C),
automaton(

D,
E,
D,
0..1,
[source(s),sink(t)],
[arc(s,1,s),arc(s,$,t)],
[],
[],
[]).

982 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

arith_signature([],[],A,B).

arith_signature([[var-A]|B],[C|D],=,E) :-
A#=E#<=>C,
arith_signature(B,D,=,E).

arith_signature([[var-A]|B],[C|D],=\=,E) :-
A#\=E#<=>C,
arith_signature(B,D,=\=,E).

arith_signature([[var-A]|B],[C|D],<,E) :-
A#<E#<=>C,
arith_signature(B,D,<,E).

arith_signature([[var-A]|B],[C|D],>=,E) :-
A#>=E#<=>C,
arith_signature(B,D,>=,E).

arith_signature([[var-A]|B],[C|D],>,E) :-
A#>E#<=>C,
arith_signature(B,D,>,E).

arith_signature([[var-A]|B],[C|D],=<,E) :-
A#=<E#<=>C,
arith_signature(B,D,=<,E).

983

B.19 arith or

ctr_automaton(arith_or,arith_or).

ctr_date(arith_or,[’20040814’]).

ctr_origin(
arith_or,
’Used in the definition of several automata’,
[]).

ctr_arguments(
arith_or,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’RELOP’-atom,
’VALUE’-int]).

ctr_restrictions(
arith_or,
[required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
size(’VARIABLES1’)=size(’VARIABLES2’),
in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
arith_or,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’(=)>>collection(variables1,variables2)],
[#\/(’RELOP’(variables1ˆvar,’VALUE’),

’RELOP’(variables2ˆvar,’VALUE’))],
[’NARC’=size(’VARIABLES1’)]).

ctr_example(
arith_or,
arith_or(

[[var-0],[var-1],[var-0],[var-0],[var-1]],
[[var-0],[var-0],[var-0],[var-1],[var-0]],
=,
0)).

arith_or(A,B,C,D) :-
arith_or_signature(A,B,E,C,D),
automaton(

E,

984 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

F,
E,
0..1,
[source(s),sink(t)],
[arc(s,1,s),arc(s,$,t)],
[],
[],
[]).

arith_or_signature([],[],[],A,B).

arith_or_signature([[var-A]|B],[[var-C]|D],[E|F],=,G) :-
A#=G#\/C#=G#<=>E,
arith_or_signature(B,D,F,=,G).

arith_or_signature([[var-A]|B],[[var-C]|D],[E|F],=\=,G) :-
A#\=G#\/C#\=G#<=>E,
arith_or_signature(B,D,F,=\=,G).

arith_or_signature([[var-A]|B],[[var-C]|D],[E|F],<,G) :-
A#<G#\/C#<G#<=>E,
arith_or_signature(B,D,F,<,G).

arith_or_signature([[var-A]|B],[[var-C]|D],[E|F],>=,G) :-
A#>=G#\/C#>=G#<=>E,
arith_or_signature(B,D,F,>=,G).

arith_or_signature([[var-A]|B],[[var-C]|D],[E|F],>,G) :-
A#>G#\/C#>G#<=>E,
arith_or_signature(B,D,F,>,G).

arith_or_signature([[var-A]|B],[[var-C]|D],[E|F],=<,G) :-
A#=<G#\/C#=<G#<=>E,
arith_or_signature(B,D,F,=<,G).

985

B.20 arith sliding

ctr_automaton(arith_sliding,arith_sliding).

ctr_date(arith_sliding,[’20040814’]).

ctr_origin(
arith_sliding,
’Used in the definition of some automaton’,
[]).

ctr_arguments(
arith_sliding,
[’VARIABLES’-collection(var-dvar),
’RELOP’-atom,
’VALUE’-int]).

ctr_restrictions(
arith_sliding,
[required(’VARIABLES’,var),
in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
arith_sliding,
[’VARIABLES’],
*,
[’PATH_1’>>collection],
[arith(collection,’RELOP’,’VALUE’)],
[’NARC’=size(’VARIABLES’)]).

ctr_example(
arith_sliding,
arith_sliding(

[[var-0],
[var-0],
[var-1],
[var-2],
[var-0],
[var-0],
[var- -3]],

<,
4)).

arith_sliding(A,=,B) :-
length(A,C),
length(D,C),

986 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

domain(D,0,0),
arith_sliding_signature(A,E,D),
automaton(

E,
F,
D,
0..0,
[source(s),node(i),sink(t)],
[arc(s,0,i,[G+F]),
arc(s,$,t,[G]),
arc(i,0,i,(G#=B->[G+F])),
arc(i,$,t,(G#=B->[G]))],
[G],
[0],
[H]).

arith_sliding(A,=\=,B) :-
length(A,C),
length(D,C),
domain(D,0,0),
arith_sliding_signature(A,E,D),
automaton(

E,
F,
D,
0..0,
[source(s),node(i),sink(t)],
[arc(s,0,i,[G+F]),
arc(s,$,t,[G]),
arc(i,0,i,(G#\=B->[G+F])),
arc(i,$,t,(G#\=B->[G]))],
[G],
[0],
[H]).

arith_sliding(A,<,B) :-
length(A,C),
length(D,C),
domain(D,0,0),
arith_sliding_signature(A,E,D),
automaton(

E,
F,
D,
0..0,
[source(s),node(i),sink(t)],

987

[arc(s,0,i,[G+F]),
arc(s,$,t,[G]),
arc(i,0,i,(G#<B->[G+F])),
arc(i,$,t,(G#<B->[G]))],

[G],
[0],
[H]).

arith_sliding(A,>=,B) :-
length(A,C),
length(D,C),
domain(D,0,0),
arith_sliding_signature(A,E,D),
automaton(

E,
F,
D,
0..0,
[source(s),node(i),sink(t)],
[arc(s,0,i,[G+F]),
arc(s,$,t,[G]),
arc(i,0,i,(G#>=B->[G+F])),
arc(i,$,t,(G#>=B->[G]))],

[G],
[0],
[H]).

arith_sliding(A,>,B) :-
length(A,C),
length(D,C),
domain(D,0,0),
arith_sliding_signature(A,E,D),
automaton(

E,
F,
D,
0..0,
[source(s),node(i),sink(t)],
[arc(s,0,i,[G+F]),
arc(s,$,t,[G]),
arc(i,0,i,(G#>B->[G+F])),
arc(i,$,t,(G#>B->[G]))],

[G],
[0],
[H]).

988 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

arith_sliding(A,=<,B) :-
length(A,C),
length(D,C),
domain(D,0,0),
arith_sliding_signature(A,E,D),
automaton(

E,
F,
D,
0..0,
[source(s),node(i),sink(t)],
[arc(s,0,i,[G+F]),
arc(s,$,t,[G]),
arc(i,0,i,(G#=<B->[G+F])),
arc(i,$,t,(G#=<B->[G]))],
[G],
[0],
[H]).

arith_sliding_signature([],[],[]).

arith_sliding_signature([[var-A]|B],[A|C],[0|D]) :-
arith_sliding_signature(B,C,D).

989

B.21 assign and counts

ctr_date(assign_and_counts,[’20000128’,’20030820’]).

ctr_origin(assign_and_counts,’N.˜Beldiceanu’,[]).

ctr_arguments(
assign_and_counts,
[’COLOURS’-collection(val-int),
’ITEMS’-collection(bin-dvar,colour-dvar),
’RELOP’-atom,
’LIMIT’-dvar]).

ctr_restrictions(
assign_and_counts,
[required(’COLOURS’,val),
distinct(’COLOURS’,val),
required(’ITEMS’,[bin,colour]),
in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_derived_collections(
assign_and_counts,
[col(’VALUES’-collection(val-int),

[item(val-’COLOURS’ˆval)])]).

ctr_graph(
assign_and_counts,
[’ITEMS’,’ITEMS’],
2,
[’PRODUCT’>>collection(items1,items2)],
[items1ˆbin=items2ˆbin],
[],
[>>(’SUCC’,

[source,
-(variables,

col(’VARIABLES’-collection(var-dvar),
[item(var-’ITEMS’ˆcolour)]))])],

[counts(’VALUES’,variables,’RELOP’,’LIMIT’)]).

ctr_example(
assign_and_counts,
assign_and_counts(

[[val-4]],
[[bin-1,colour-4],
[bin-3,colour-4],
[bin-1,colour-4],

990 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[bin-1,colour-5]],
=<,
2)).

991

B.22 assign and nvalues

ctr_date(
assign_and_nvalues,
[’20000128’,’20030820’,’20040530’,’20050321’]).

ctr_origin(
assign_and_nvalues,
’Derived from %c and %c.’,
[assign_and_counts,nvalues]).

ctr_arguments(
assign_and_nvalues,
[’ITEMS’-collection(bin-dvar,value-dvar),
’RELOP’-atom,
’LIMIT’-dvar]).

ctr_restrictions(
assign_and_nvalues,
[required(’ITEMS’,[bin,value]),
in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
assign_and_nvalues,
[’ITEMS’,’ITEMS’],
2,
[’PRODUCT’>>collection(items1,items2)],
[items1ˆbin=items2ˆbin],
[],
[>>(’SUCC’,

[source,
-(variables,

col(’VARIABLES’-collection(var-dvar),
[item(var-’ITEMS’ˆvalue)]))])],

[nvalues(variables,’RELOP’,’LIMIT’)]).

ctr_example(
assign_and_nvalues,
assign_and_nvalues(

[[bin-2,value-3],
[bin-1,value-5],
[bin-2,value-3],
[bin-2,value-3],
[bin-2,value-4]],

=<,
2)).

992 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

993

B.23 atleast

ctr_automaton(atleast,atleast).

ctr_date(atleast,[’20030820’,’20040807’]).

ctr_origin(atleast,’CHIP’,[]).

ctr_arguments(
atleast,
[’N’-int,’VARIABLES’-collection(var-dvar),’VALUE’-int]).

ctr_restrictions(
atleast,
[’N’>=0,’N’=<size(’VARIABLES’),required(’VARIABLES’,var)]).

ctr_graph(
atleast,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[variablesˆvar=’VALUE’],
[’NARC’>=’N’]).

ctr_example(
atleast,
atleast(2,[[var-4],[var-2],[var-4],[var-5]],4)).

atleast(A,B,C) :-
atleast_signature(B,D,C),
length(B,E),
in(F,A..E),
automaton(

D,
G,
D,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[H+1]),arc(s,$,t)],
[H],
[0],
[F]).

atleast_signature([],[],A).

atleast_signature([[var-A]|B],[C|D],E) :-

994 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

A#=E#<=>C,
atleast_signature(B,D,E).

995

B.24 atmost

ctr_automaton(atmost,atmost).

ctr_date(atmost,[’20030820’,’20040807’]).

ctr_origin(atmost,’CHIP’,[]).

ctr_arguments(
atmost,
[’N’-int,’VARIABLES’-collection(var-dvar),’VALUE’-int]).

ctr_restrictions(atmost,[’N’>=0,required(’VARIABLES’,var)]).

ctr_graph(
atmost,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[variablesˆvar=’VALUE’],
[’NARC’=<’N’]).

ctr_example(
atmost,
atmost(1,[[var-4],[var-2],[var-4],[var-5]],2)).

atmost(A,B,C) :-
atmost_signature(B,D,C),
in(E,0..A),
automaton(

D,
F,
D,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[G+1]),arc(s,$,t)],
[G],
[0],
[E]).

atmost_signature([],[],A).

atmost_signature([[var-A]|B],[C|D],E) :-
A#=E#<=>C,
atmost_signature(B,D,E).

996 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.25 balance
ctr_date(balance,[’20000128’,’20030820’]).

ctr_origin(balance,’N.˜Beldiceanu’,[]).

ctr_arguments(
balance,
[’BALANCE’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
balance,
[’BALANCE’>=0,
’BALANCE’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_graph(
balance,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’RANGE_NSCC’=’BALANCE’]).

ctr_example(
balance,
balance(2,[[var-3],[var-1],[var-7],[var-1],[var-1]])).

997

B.26 balance interval
ctr_date(balance_interval,[’20030820’]).

ctr_origin(balance_interval,’Derived from %c.’,[balance]).

ctr_arguments(
balance_interval,
[’BALANCE’-dvar,
’VARIABLES’-collection(var-dvar),
’SIZE_INTERVAL’-int]).

ctr_restrictions(
balance_interval,
[’BALANCE’>=0,
’BALANCE’=<size(’VARIABLES’),
required(’VARIABLES’,var),
’SIZE_INTERVAL’>0]).

ctr_graph(
balance_interval,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[=(variables1ˆvar/’SIZE_INTERVAL’,

variables2ˆvar/’SIZE_INTERVAL’)],
[’RANGE_NSCC’=’BALANCE’]).

ctr_example(
balance_interval,
balance_interval(

3,
[[var-6],[var-4],[var-3],[var-3],[var-4]],
3)).

998 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.27 balance modulo
ctr_date(balance_modulo,[’20030820’]).

ctr_origin(balance_modulo,’Derived from %c.’,[balance]).

ctr_arguments(
balance_modulo,
[’BALANCE’-dvar,’VARIABLES’-collection(var-dvar),’M’-int]).

ctr_restrictions(
balance_modulo,
[’BALANCE’>=0,
’BALANCE’=<size(’VARIABLES’),
required(’VARIABLES’,var),
’M’>0]).

ctr_graph(
balance_modulo,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar mod ’M’=variables2ˆvar mod ’M’],
[’RANGE_NSCC’=’BALANCE’]).

ctr_example(
balance_modulo,
balance_modulo(

2,
[[var-6],[var-1],[var-7],[var-1],[var-5]],
3)).

999

B.28 balance partition
ctr_date(balance_partition,[’20030820’]).

ctr_origin(balance_partition,’Derived from %c.’,[balance]).

ctr_types(balance_partition,[’VALUES’-collection(val-int)]).

ctr_arguments(
balance_partition,
[’BALANCE’-dvar,
’VARIABLES’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
balance_partition,
[required(’VALUES’,val),
distinct(’VALUES’,val),
’BALANCE’>=0,
’BALANCE’=<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_graph(
balance_partition,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
’PARTITIONS’)],

[’RANGE_NSCC’=’BALANCE’]).

ctr_example(
balance_partition,
balance_partition(

1,
[[var-6],[var-2],[var-6],[var-4],[var-4]],
[[p-[[val-1],[val-3]]],
[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).

1000 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.29 bin packing
ctr_date(bin_packing,[’20000128’,’20030820’,’20040530’]).

ctr_origin(bin_packing,’Derived from %c.’,[cumulative]).

ctr_arguments(
bin_packing,
[’CAPACITY’-int,’ITEMS’-collection(bin-dvar,weight-int)]).

ctr_restrictions(
bin_packing,
[’CAPACITY’>=0,
required(’ITEMS’,[bin,weight]),
’ITEMS’ˆweight>=0,
’ITEMS’ˆweight=<’CAPACITY’]).

ctr_graph(
bin_packing,
[’ITEMS’,’ITEMS’],
2,
[’PRODUCT’>>collection(items1,items2)],
[items1ˆbin=items2ˆbin],
[],
[>>(’SUCC’,

[source,
-(variables,

col(’VARIABLES’-collection(var-dvar),
[item(var-’ITEMS’ˆweight)]))])],

[sum_ctr(variables,=<,’CAPACITY’)]).

ctr_example(
bin_packing,
bin_packing(

5,
[[bin-3,weight-4],[bin-1,weight-3],[bin-3,weight-1]])).

1001

B.30 binary tree
ctr_date(binary_tree,[’20000128’,’20030820’]).

ctr_origin(binary_tree,’Derived from %c.’,[tree]).

ctr_arguments(
binary_tree,
[’NTREES’-dvar,’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
binary_tree,
[’NTREES’>=0,
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_graph(
binary_tree,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’MAX_NSCC’=<1,’NCC’=’NTREES’,’MAX_ID’=<2]).

ctr_example(
binary_tree,
binary_tree(

2,
[[index-1,succ-1],
[index-2,succ-3],
[index-3,succ-5],
[index-4,succ-7],
[index-5,succ-1],
[index-6,succ-1],
[index-7,succ-7],
[index-8,succ-5]])).

1002 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.31 cardinality atleast
ctr_date(cardinality_atleast,[’20030820’,’20040530’]).

ctr_origin(
cardinality_atleast,
’Derived from %c.’,
[global_cardinality]).

ctr_arguments(
cardinality_atleast,
[’ATLEAST’-dvar,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_restrictions(
cardinality_atleast,
[’ATLEAST’>=0,
’ATLEAST’=<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_graph(
cardinality_atleast,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=\=valuesˆval],
[’MAX_ID’=size(’VARIABLES’)-’ATLEAST’]).

ctr_example(
cardinality_atleast,
cardinality_atleast(

1,
[[var-3],[var-3],[var-8]],
[[val-3],[val-8]])).

1003

B.32 cardinality atmost
ctr_date(cardinality_atmost,[’20030820’,’20040530’]).

ctr_origin(
cardinality_atmost,
’Derived from %c.’,
[global_cardinality]).

ctr_arguments(
cardinality_atmost,
[’ATMOST’-dvar,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_restrictions(
cardinality_atmost,
[’ATMOST’>=0,
’ATMOST’=<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_graph(
cardinality_atmost,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=valuesˆval],
[’MAX_ID’=’ATMOST’]).

ctr_example(
cardinality_atmost,
cardinality_atmost(

2,
[[var-2],[var-1],[var-7],[var-1],[var-2]],
[[val-5],[val-7],[val-2],[val-9]])).

1004 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.33 cardinality atmost partition

ctr_date(cardinality_atmost_partition,[’20030820’]).

ctr_origin(
cardinality_atmost_partition,
’Derived from %c.’,
[global_cardinality]).

ctr_types(
cardinality_atmost_partition,
[’VALUES’-collection(val-int)]).

ctr_arguments(
cardinality_atmost_partition,
[’ATMOST’-dvar,
’VARIABLES’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
cardinality_atmost_partition,
[required(’VALUES’,val),
distinct(’VALUES’,val),
’ATMOST’>=0,
’ATMOST’=<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_graph(
cardinality_atmost_partition,
[’VARIABLES’,’PARTITIONS’],
2,
[’PRODUCT’>>collection(variables,partitions)],
[in(variablesˆvar,partitionsˆp)],
[’MAX_ID’=’ATMOST’]).

ctr_example(
cardinality_atmost_partition,
cardinality_atmost_partition(

2,
[[var-2],[var-3],[var-7],[var-1],[var-6],[var-0]],
[[p-[[val-1],[val-3]]],
[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).

1005

B.34 change

ctr_automaton(change,change).

ctr_date(change,[’20000128’,’20030820’,’20040530’]).

ctr_origin(change,’CHIP’,[]).

ctr_synonyms(change,[nbchanges,similarity]).

ctr_arguments(
change,
[’NCHANGE’-dvar,
’VARIABLES’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
change,
[’NCHANGE’>=0,
’NCHANGE’<size(’VARIABLES’),
required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
change,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[’CTR’(variables1ˆvar,variables2ˆvar)],
[’NARC’=’NCHANGE’]).

ctr_example(
change,
[change(3,[[var-4],[var-4],[var-3],[var-4],[var-1]],=\=),
change(1,[[var-1],[var-2],[var-4],[var-3],[var-7]],>)]).

change(A,B,C) :-
change_signature(B,D,C),
automaton(

D,
E,
D,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[F+1]),arc(s,$,t)],
[F],

1006 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[0],
[A]).

change_signature([],[],A).

change_signature([A],[],B) :-
!.

change_signature([[var-A],[var-B]|C],[D|E],=) :-
!,
A#=B#<=>D,
change_signature([[var-B]|C],E,=).

change_signature([[var-A],[var-B]|C],[D|E],=\=) :-
!,
A#\=B#<=>D,
change_signature([[var-B]|C],E,=\=).

change_signature([[var-A],[var-B]|C],[D|E],<) :-
!,
A#<B#<=>D,
change_signature([[var-B]|C],E,<).

change_signature([[var-A],[var-B]|C],[D|E],>=) :-
!,
A#>=B#<=>D,
change_signature([[var-B]|C],E,>=).

change_signature([[var-A],[var-B]|C],[D|E],>) :-
!,
A#>B#<=>D,
change_signature([[var-B]|C],E,>).

change_signature([[var-A],[var-B]|C],[D|E],=<) :-
!,
A#=<B#<=>D,
change_signature([[var-B]|C],E,=<).

1007

B.35 change continuity

ctr_automaton(change_continuity,change_continuity).

ctr_date(change_continuity,[’20000128’,’20030820’,’20040530’]).

ctr_origin(change_continuity,’N.˜Beldiceanu’,[]).

ctr_arguments(
change_continuity,
[’NB_PERIOD_CHANGE’-dvar,
’NB_PERIOD_CONTINUITY’-dvar,
’MIN_SIZE_CHANGE’-dvar,
’MAX_SIZE_CHANGE’-dvar,
’MIN_SIZE_CONTINUITY’-dvar,
’MAX_SIZE_CONTINUITY’-dvar,
’NB_CHANGE’-dvar,
’NB_CONTINUITY’-dvar,
’VARIABLES’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
change_continuity,
[’NB_PERIOD_CHANGE’>=0,
’NB_PERIOD_CONTINUITY’>=0,
’MIN_SIZE_CHANGE’>=0,
’MAX_SIZE_CHANGE’>=’MIN_SIZE_CHANGE’,
’MIN_SIZE_CONTINUITY’>=0,
’MAX_SIZE_CONTINUITY’>=’MIN_SIZE_CONTINUITY’,
’NB_CHANGE’>=0,
’NB_CONTINUITY’>=0,
required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
change_continuity,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[’CTR’(variables1ˆvar,variables2ˆvar)],
[’NCC’=’NB_PERIOD_CHANGE’,
’MIN_NCC’=’MIN_SIZE_CHANGE’,
’MAX_NCC’=’MAX_SIZE_CHANGE’,
’NARC’=’NB_CHANGE’]).

ctr_graph(

1008 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

change_continuity,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[#\’CTR’(variables1ˆvar,variables2ˆvar)],
[’NCC’=’NB_PERIOD_CONTINUITY’,
’MIN_NCC’=’MIN_SIZE_CONTINUITY’,
’MAX_NCC’=’MAX_SIZE_CONTINUITY’,
’NARC’=’NB_CONTINUITY’]).

ctr_example(
change_continuity,
change_continuity(

3,
2,
2,
4,
2,
4,
6,
4,
[[var-1],
[var-3],
[var-1],
[var-8],
[var-8],
[var-4],
[var-7],
[var-7],
[var-7],
[var-7],
[var-2]],

=\=)).

change_continuity(A,B,C,D,E,F,G,H,I,J) :-
length(I,K),
change_continuity_signature(I,L,1,J),
change_continuity_signature(I,M,0,J),
change_continuity_nb_period(A,L),
change_continuity_nb_period(B,M),
change_continuity_min_size(C,L),
change_continuity_min_size(E,M),
change_continuity_max_size(D,L),
change_continuity_max_size(F,M),
change_continuity_nb(G,L),
change_continuity_nb(H,M).

1009

change_continuity_nb_period(A,B) :-
automaton(

B,
C,
B,
0..1,
[source(s),node(i),sink(t)],
[arc(s,0,s),
arc(s,1,i,[D+1]),
arc(s,$,t),
arc(i,1,i),
arc(i,0,s),
arc(i,$,t)],

[D],
[0],
[A]).

change_continuity_min_size(A,B) :-
automaton(

B,
C,
B,
0..1,
[source(s),node(i),node(j),node(k),sink(t)],
[arc(s,0,s),
arc(s,1,i,[D,2]),
arc(s,$,t,[D,E]),
arc(i,0,j,[E,E]),
arc(i,1,i,[D,E+1]),
arc(i,$,t,[E,E]),
arc(j,0,j),
arc(j,1,k,[D,2]),
arc(j,$,t,[D,E]),
arc(k,0,j,[min(D,E),E]),
arc(k,1,k,[D,E+1]),
arc(k,$,t,[min(D,E),E])],

[D,E],
[0,1],
[A,F]).

change_continuity_max_size(A,B) :-
automaton(

B,
C,
B,

1010 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

0..1,
[source(s),node(i),sink(t)],
[arc(s,0,s,[D,E]),
arc(s,1,i,[D,E+1]),
arc(s,$,t,[D,E]),
arc(i,0,i,[max(D,E),1]),
arc(i,1,i,[D,E+1]),
arc(i,$,t,[max(D,E),E])],
[D,E],
[0,1],
[A,F]).

change_continuity_nb(A,B) :-
automaton(

B,
C,
B,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[D+1]),arc(s,$,t)],
[D],
[0],
[A]).

change_continuity_signature([],[],A,B).

change_continuity_signature([A],[],B,C) :-
!.

change_continuity_signature([[var-A],[var-B]|C],[D|E],1,=) :-
!,
A#=B#<=>D,
change_continuity_signature([[var-B]|C],E,1,=).

change_continuity_signature([[var-A],[var-B]|C],[D|E],1,=\=) :-
!,
A#\=B#<=>D,
change_continuity_signature([[var-B]|C],E,1,=\=).

change_continuity_signature([[var-A],[var-B]|C],[D|E],1,<) :-
!,
A#<B#<=>D,
change_continuity_signature([[var-B]|C],E,1,<).

change_continuity_signature([[var-A],[var-B]|C],[D|E],1,>=) :-
!,

1011

A#>=B#<=>D,
change_continuity_signature([[var-B]|C],E,1,>=).

change_continuity_signature([[var-A],[var-B]|C],[D|E],1,>) :-
!,
A#>B#<=>D,
change_continuity_signature([[var-B]|C],E,1,>).

change_continuity_signature([[var-A],[var-B]|C],[D|E],1,=<) :-
!,
A#=<B#<=>D,
change_continuity_signature([[var-B]|C],E,1,=<).

change_continuity_signature([[var-A],[var-B]|C],[D|E],0,=) :-
!,
A#\=B#<=>D,
change_continuity_signature([[var-B]|C],E,0,=).

change_continuity_signature([[var-A],[var-B]|C],[D|E],0,=\=) :-
!,
A#=B#<=>D,
change_continuity_signature([[var-B]|C],E,0,=\=).

change_continuity_signature([[var-A],[var-B]|C],[D|E],0,<) :-
!,
A#>=B#<=>D,
change_continuity_signature([[var-B]|C],E,0,<).

change_continuity_signature([[var-A],[var-B]|C],[D|E],0,>=) :-
!,
A#<B#<=>D,
change_continuity_signature([[var-B]|C],E,0,>=).

change_continuity_signature([[var-A],[var-B]|C],[D|E],0,>) :-
!,
A#=<B#<=>D,
change_continuity_signature([[var-B]|C],E,0,>).

change_continuity_signature([[var-A],[var-B]|C],[D|E],0,=<) :-
!,
A#>B#<=>D,
change_continuity_signature([[var-B]|C],E,0,=<).

1012 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.36 change pair

ctr_automaton(change_pair,change_pair).

ctr_date(change_pair,[’20030820’,’20040530’]).

ctr_origin(change_pair,’Derived from %c.’,[change]).

ctr_arguments(
change_pair,
[’NCHANGE’-dvar,
’PAIRS’-collection(x-dvar,y-dvar),
’CTRX’-atom,
’CTRY’-atom]).

ctr_restrictions(
change_pair,
[’NCHANGE’>=0,
’NCHANGE’<size(’PAIRS’),
required(’PAIRS’,[x,y]),
in_list(’CTRX’,[=,=\=,<,>=,>,=<]),
in_list(’CTRY’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
change_pair,
[’PAIRS’],
2,
[’PATH’>>collection(pairs1,pairs2)],
[’CTRX’(pairs1ˆx,pairs2ˆx)#\/’CTRY’(pairs1ˆy,pairs2ˆy)],
[’NARC’=’NCHANGE’]).

ctr_example(
change_pair,
change_pair(

3,
[[x-3,y-5],
[x-3,y-7],
[x-3,y-7],
[x-3,y-8],
[x-3,y-4],
[x-3,y-7],
[x-1,y-3],
[x-1,y-6],
[x-1,y-6],
[x-3,y-7]],

=\=,

1013

>)).

change_pair(A,B,C,D) :-
change_pair_signature(B,E,C,D),
automaton(

E,
F,
E,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[G+1]),arc(s,$,t)],
[G],
[0],
[A]).

change_pair_signature([],[],A,B).

change_pair_signature([A],[],B,C) :-
!.

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=,=) :-
!,
A#=C#\/B#=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=,=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=,=\=) :-
!,
A#=C#\/B#\=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=,=\=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=,<) :-
!,
A#=C#\/B#<D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=,<).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=,>=) :-
!,
A#=C#\/B#>=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=,>=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=,>) :-
!,
A#=C#\/B#>D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=,>).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=,=<) :-

1014 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

!,
A#=C#\/B#=<D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=,=<).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=\=,=) :-
!,
A#\=C#\/B#=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=\=,=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=\=,=\=) :-
!,
A#\=C#\/B#\=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=\=,=\=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=\=,<) :-
!,
A#\=C#\/B#<D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=\=,<).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=\=,>=) :-
!,
A#\=C#\/B#>=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=\=,>=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=\=,>) :-
!,
A#\=C#\/B#>D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=\=,>).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=\=,=<) :-
!,
A#\=C#\/B#=<D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=\=,=<).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],<,=) :-
!,
A#<C#\/B#=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,<,=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],<,=\=) :-
!,
A#<C#\/B#\=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,<,=\=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],<,<) :-
!,

1015

A#<C#\/B#<D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,<,<).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],<,>=) :-
!,
A#<C#\/B#>=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,<,>=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],<,>) :-
!,
A#<C#\/B#>D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,<,>).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],<,=<) :-
!,
A#<C#\/B#=<D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,<,=<).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>=,=) :-
!,
A#>=C#\/B#=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,>=,=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>=,=\=) :-
!,
A#>=C#\/B#\=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,>=,=\=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>=,<) :-
!,
A#>=C#\/B#<D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,>=,<).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>=,>=) :-
!,
A#>=C#\/B#>=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,>=,>=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>=,>) :-
!,
A#>=C#\/B#>D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,>=,>).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>=,=<) :-
!,
A#>=C#\/B#=<D#<=>F,

1016 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

change_pair_signature([[x-C,y-D]|E],G,>=,=<).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>,=) :-
!,
A#>C#\/B#=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,>,=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>,=\=) :-
!,
A#>C#\/B#\=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,>,=\=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>,<) :-
!,
A#>C#\/B#<D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,>,<).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>,>=) :-
!,
A#>C#\/B#>=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,>,>=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>,>) :-
!,
A#>C#\/B#>D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,>,>).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>,=<) :-
!,
A#>C#\/B#=<D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,>,=<).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=<,=) :-
!,
A#=<C#\/B#=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=<,=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=<,=\=) :-
!,
A#=<C#\/B#\=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=<,=\=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=<,<) :-
!,
A#=<C#\/B#<D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=<,<).

1017

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=<,>=) :-
!,
A#=<C#\/B#>=D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=<,>=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=<,>) :-
!,
A#=<C#\/B#>D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=<,>).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=<,=<) :-
!,
A#=<C#\/B#=<D#<=>F,
change_pair_signature([[x-C,y-D]|E],G,=<,=<).

1018 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.37 change partition

ctr_date(change_partition,[’20000128’,’20030820’,’20040530’]).

ctr_origin(change_partition,’Derived from %c.’,[change]).

ctr_types(change_partition,[’VALUES’-collection(val-int)]).

ctr_arguments(
change_partition,
[’NCHANGE’-dvar,
’VARIABLES’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
change_partition,
[required(’VALUES’,val),
distinct(’VALUES’,val),
’NCHANGE’>=0,
’NCHANGE’<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_graph(
change_partition,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
’PARTITIONS’)],

[’NARC’=’NCHANGE’]).

ctr_example(
change_partition,
change_partition(

2,
[[var-6],
[var-6],
[var-2],
[var-1],
[var-3],
[var-3],
[var-1],

1019

[var-6],
[var-2],
[var-2],
[var-2]],

[[p-[[val-1],[val-3]]],
[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).

1020 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.38 circuit
ctr_date(circuit,[’20030820’,’20040530’]).

ctr_origin(circuit,’\\cite{Lauriere78}’,[]).

ctr_synonyms(circuit,[atour,cycle]).

ctr_arguments(
circuit,
[’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
circuit,
[required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_graph(
circuit,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’MIN_NSCC’=size(’NODES’),’MAX_ID’=1]).

ctr_example(
circuit,
circuit(

[[index-1,succ-2],
[index-2,succ-3],
[index-3,succ-4],
[index-4,succ-1]])).

1021

B.39 circuit cluster

ctr_date(circuit_cluster,[’20000128’,’20030820’]).

ctr_origin(
circuit_cluster,
’Inspired by \\cite{LaporteAsefVaziriSriskandarajah96}.’,
[]).

ctr_arguments(
circuit_cluster,
[’NCIRCUIT’-dvar,
’NODES’-collection(index-int,cluster-int,succ-dvar)]).

ctr_restrictions(
circuit_cluster,
[’NCIRCUIT’>=1,
’NCIRCUIT’=<size(’NODES’),
required(’NODES’,[index,cluster,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_graph(
circuit_cluster,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=\=nodes1ˆindex,nodes1ˆsucc=nodes2ˆindex],
[’NTREE’=0,’NSCC’=’NCIRCUIT’],
[>>(’ALL_VERTICES’,

[-(variables,
col(’VARIABLES’-collection(var-dvar),

[item(var-’NODES’ˆcluster)]))])],
[alldifferent(variables),
nvalues(variables,=,size(’NODES’,cluster))]).

ctr_example(
circuit_cluster,
[circuit_cluster(

1,
[[index-1,cluster-1,succ-1],
[index-2,cluster-1,succ-4],
[index-3,cluster-2,succ-3],

1022 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[index-4,cluster-2,succ-5],
[index-5,cluster-3,succ-8],
[index-6,cluster-3,succ-6],
[index-7,cluster-3,succ-7],
[index-8,cluster-4,succ-2],
[index-9,cluster-4,succ-9]]),

circuit_cluster(
2,
[[index-1,cluster-1,succ-1],
[index-2,cluster-1,succ-4],
[index-3,cluster-2,succ-3],
[index-4,cluster-2,succ-2],
[index-5,cluster-3,succ-5],
[index-6,cluster-3,succ-9],
[index-7,cluster-3,succ-7],
[index-8,cluster-4,succ-8],
[index-9,cluster-4,succ-6]])]).

1023

B.40 circular change

ctr_automaton(circular_change,circular_change).

ctr_date(circular_change,[’20030820’,’20040530’]).

ctr_origin(circular_change,’Derived from %c.’,[change]).

ctr_arguments(
circular_change,
[’NCHANGE’-dvar,
’VARIABLES’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
circular_change,
[’NCHANGE’>=0,
’NCHANGE’=<size(’VARIABLES’),
required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
circular_change,
[’VARIABLES’],
2,
[’CIRCUIT’>>collection(variables1,variables2)],
[’CTR’(variables1ˆvar,variables2ˆvar)],
[’NARC’=’NCHANGE’]).

ctr_example(
circular_change,
circular_change(

4,
[[var-4],[var-4],[var-3],[var-4],[var-1]],
=\=)).

circular_change(A,B,C) :-
B=[D|E],
append(B,[D],F),
circular_change_signature(F,G,C),
automaton(

G,
H,
G,
0..1,
[source(s),sink(t)],

1024 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[arc(s,0,s),arc(s,1,s,[I+1]),arc(s,$,t)],
[I],
[0],
[A]).

circular_change_signature([],[],A).

circular_change_signature([A],[],B) :-
!.

circular_change_signature([[var-A],[var-B]|C],[D|E],=) :-
!,
A#=B#<=>D,
circular_change_signature([[var-B]|C],E,=).

circular_change_signature([[var-A],[var-B]|C],[D|E],=\=) :-
!,
A#\=B#<=>D,
circular_change_signature([[var-B]|C],E,=\=).

circular_change_signature([[var-A],[var-B]|C],[D|E],<) :-
!,
A#<B#<=>D,
circular_change_signature([[var-B]|C],E,<).

circular_change_signature([[var-A],[var-B]|C],[D|E],>=) :-
!,
A#>=B#<=>D,
circular_change_signature([[var-B]|C],E,>=).

circular_change_signature([[var-A],[var-B]|C],[D|E],>) :-
!,
A#>B#<=>D,
circular_change_signature([[var-B]|C],E,>).

circular_change_signature([[var-A],[var-B]|C],[D|E],=<) :-
!,
A#=<B#<=>D,
circular_change_signature([[var-B]|C],E,=<).

1025

B.41 clique
ctr_date(clique,[’20030820’,’20040530’]).

ctr_origin(clique,’\\cite{Fahle02}’,[]).

ctr_arguments(
clique,
[’SIZE_CLIQUE’-dvar,
’NODES’-collection(index-int,succ-svar)]).

ctr_restrictions(
clique,
[’SIZE_CLIQUE’>=0,
’SIZE_CLIQUE’=<size(’NODES’),
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index)]).

ctr_graph(
clique,
[’NODES’],
2,
[’CLIQUE’(=\=)>>collection(nodes1,nodes2)],
[in_set(nodes2ˆindex,nodes1ˆsucc)],
[’NARC’=’SIZE_CLIQUE’*’SIZE_CLIQUE’-’SIZE_CLIQUE’,
’NVERTEX’=’SIZE_CLIQUE’]).

ctr_example(
clique,
clique(

3,
[[index-1,succ-{}],
[index-2,succ-{3,5}],
[index-3,succ-{2,5}],
[index-4,succ-{}],
[index-5,succ-{2,3}]])).

1026 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.42 colored matrix

ctr_predefined(colored_matrix).

ctr_date(colored_matrix,[’20031017’,’20040530’]).

ctr_origin(colored_matrix,’KOALOG’,[]).

ctr_synonyms(colored_matrix,[cardinality_matrix,card_matrix]).

ctr_arguments(
colored_matrix,
[’C’-int,
’L’-int,
’K’-int,
’MATRIX’-collection(column-int,line-int,var-dvar),
’CPROJ’-collection(column-int,val-int,noccurrence-dvar),
’LPROJ’-collection(line-int,val-int,noccurrence-dvar)]).

ctr_restrictions(
colored_matrix,
[’C’>=0,
’L’>=0,
’K’>=0,
required(’MATRIX’,[column,line,var]),
increasing_seq(’MATRIX’,[column,line]),
size(’MATRIX’)=’C’*’L’+’C’+’L’+1,
’MATRIX’ˆcolumn>=0,
’MATRIX’ˆcolumn=<’C’,
’MATRIX’ˆline>=0,
’MATRIX’ˆline=<’L’,
’MATRIX’ˆvar>=0,
’MATRIX’ˆvar=<’K’,
required(’CPROJ’,[column,val,noccurrence]),
increasing_seq(’CPROJ’,[column,val]),
size(’CPROJ’)=’C’*’K’+’C’+’K’+1,
’CPROJ’ˆcolumn>=0,
’CPROJ’ˆcolumn=<’C’,
’CPROJ’ˆval>=0,
’CPROJ’ˆval=<’K’,
required(’LPROJ’,[line,val,noccurrence]),
increasing_seq(’LPROJ’,[line,val]),
size(’LPROJ’)=’L’*’K’+’L’+’K’+1,
’LPROJ’ˆline>=0,
’LPROJ’ˆline=<’L’,
’LPROJ’ˆval>=0,

1027

’LPROJ’ˆval=<’K’]).

ctr_example(
colored_matrix,
colored_matrix(

1,
2,
4,
[[column-0,line-0,var-3],
[column-0,line-1,var-1],
[column-0,line-2,var-3],
[column-1,line-0,var-4],
[column-1,line-1,var-4],
[column-1,line-2,var-3]],

[[column-0,val-0,nocc-0],
[column-0,val-1,nocc-1],
[column-0,val-2,nocc-0],
[column-0,val-3,nocc-2],
[column-0,val-4,nocc-0],
[column-1,val-0,nocc-0],
[column-1,val-1,nocc-0],
[column-1,val-2,nocc-0],
[column-1,val-3,nocc-1],
[column-1,val-4,nocc-2]],

[[line-0,val-0,nocc-0],
[line-0,val-1,nocc-0],
[line-0,val-2,nocc-0],
[line-0,val-3,nocc-1],
[line-0,val-4,nocc-1],
[line-1,val-0,nocc-0],
[line-1,val-1,nocc-1],
[line-1,val-2,nocc-0],
[line-1,val-3,nocc-0],
[line-1,val-4,nocc-1],
[line-2,val-0,nocc-0],
[line-2,val-1,nocc-0],
[line-2,val-2,nocc-0],
[line-2,val-3,nocc-2],
[line-2,val-4,nocc-0]])).

1028 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.43 coloured cumulative

ctr_date(coloured_cumulative,[’20000128’,’20030820’]).

ctr_origin(
coloured_cumulative,
’Derived from %c and %c.’,
[cumulative,nvalues]).

ctr_arguments(
coloured_cumulative,
[-(’TASKS’,

collection(
origin-dvar,
duration-dvar,
end-dvar,
colour-dvar)),

’LIMIT’-int]).

ctr_restrictions(
coloured_cumulative,
[require_at_least(2,’TASKS’,[origin,duration,end]),
required(’TASKS’,colour),
’TASKS’ˆduration>=0,
’LIMIT’>=0]).

ctr_graph(
coloured_cumulative,
[’TASKS’],
1,
[’SELF’>>collection(tasks)],
[tasksˆorigin+tasksˆduration=tasksˆend],
[’NARC’=size(’TASKS’)]).

ctr_graph(
coloured_cumulative,
[’TASKS’,’TASKS’],
2,
[’PRODUCT’>>collection(tasks1,tasks2)],
[tasks1ˆduration>0,
tasks2ˆorigin=<tasks1ˆorigin,
tasks1ˆorigin<tasks2ˆend],

[],
[>>(’SUCC’,

[source,
-(variables,

1029

col(’VARIABLES’-collection(var-dvar),
[item(var-’TASKS’ˆcolour)]))])],

[nvalues(variables,=<,’LIMIT’)]).

ctr_example(
coloured_cumulative,
coloured_cumulative(

[[origin-1,duration-2,end-3,colour-1],
[origin-2,duration-9,end-11,colour-2],
[origin-3,duration-10,end-13,colour-3],
[origin-6,duration-6,end-12,colour-2],
[origin-7,duration-2,end-9,colour-3]],

2)).

1030 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.44 coloured cumulatives

ctr_date(coloured_cumulatives,[’20000128’,’20030820’]).

ctr_origin(
coloured_cumulatives,
’Derived from %c and %c.’,
[cumulatives,nvalues]).

ctr_arguments(
coloured_cumulatives,
[-(’TASKS’,

collection(
machine-dvar,
origin-dvar,
duration-dvar,
end-dvar,
colour-dvar)),

’MACHINES’-collection(id-int,capacity-int)]).

ctr_restrictions(
coloured_cumulatives,
[required(’TASKS’,[machine,colour]),
require_at_least(2,’TASKS’,[origin,duration,end]),
’TASKS’ˆduration>=0,
required(’MACHINES’,[id,capacity]),
distinct(’MACHINES’,id),
’MACHINES’ˆcapacity>=0]).

ctr_graph(
coloured_cumulatives,
[’TASKS’],
1,
[’SELF’>>collection(tasks)],
[tasksˆorigin+tasksˆduration=tasksˆend],
[’NARC’=size(’TASKS’)]).

ctr_graph(
coloured_cumulatives,
[’TASKS’,’TASKS’],
2,
foreach(’MACHINES’,[’PRODUCT’>>collection(tasks1,tasks2)]),
[tasks1ˆmachine=’MACHINES’ˆid,
tasks1ˆmachine=tasks2ˆmachine,
tasks1ˆduration>0,
tasks2ˆorigin=<tasks1ˆorigin,

1031

tasks1ˆorigin<tasks2ˆend],
[],
[>>(’SUCC’,

[source,
-(variables,

col(’VARIABLES’-collection(var-dvar),
[item(var-’TASKS’ˆcolour)]))])],

[nvalues(variables,=<,’MACHINES’ˆcapacity)]).

ctr_example(
coloured_cumulatives,
coloured_cumulatives(

[[machine-1,origin-6,duration-6,end-12,colour-1],
[machine-1,origin-2,duration-9,end-11,colour-2],
[machine-2,origin-7,duration-3,end-10,colour-2],
[machine-1,origin-1,duration-2,end-3,colour-1],
[machine-2,origin-4,duration-5,end-9,colour-2],
[machine-1,origin-3,duration-10,end-13,colour-1]],

[[id-1,capacity-2],[id-2,capacity-1]])).

1032 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.45 common
ctr_date(common,[’20000128’,’20030820’]).

ctr_origin(common,’N.˜Beldiceanu’,[]).

ctr_arguments(
common,
[’NCOMMON1’-dvar,
’NCOMMON2’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
common,
[’NCOMMON1’>=0,
’NCOMMON1’=<size(’VARIABLES1’),
’NCOMMON2’>=0,
’NCOMMON2’=<size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var)]).

ctr_graph(
common,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NSOURCE’=’NCOMMON1’,’NSINK’=’NCOMMON2’]).

ctr_example(
common,
common(

3,
4,
[[var-1],[var-9],[var-1],[var-5]],
[[var-2],[var-1],[var-9],[var-9],[var-6],[var-9]])).

1033

B.46 common interval
ctr_date(common_interval,[’20030820’]).

ctr_origin(common_interval,’Derived from %c.’,[common]).

ctr_arguments(
common_interval,
[’NCOMMON1’-dvar,
’NCOMMON2’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’SIZE_INTERVAL’-int]).

ctr_restrictions(
common_interval,
[’NCOMMON1’>=0,
’NCOMMON1’=<size(’VARIABLES1’),
’NCOMMON2’>=0,
’NCOMMON2’=<size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’SIZE_INTERVAL’>0]).

ctr_graph(
common_interval,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[=(variables1ˆvar/’SIZE_INTERVAL’,

variables2ˆvar/’SIZE_INTERVAL’)],
[’NSOURCE’=’NCOMMON1’,’NSINK’=’NCOMMON2’]).

ctr_example(
common_interval,
common_interval(

3,
2,
[[var-8],[var-6],[var-6],[var-0]],
[[var-7],[var-3],[var-3],[var-3],[var-3],[var-7]],
3)).

1034 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.47 common modulo
ctr_date(common_modulo,[’20030820’]).

ctr_origin(common_modulo,’Derived from %c.’,[common]).

ctr_arguments(
common_modulo,
[’NCOMMON1’-dvar,
’NCOMMON2’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’M’-int]).

ctr_restrictions(
common_modulo,
[’NCOMMON1’>=0,
’NCOMMON1’=<size(’VARIABLES1’),
’NCOMMON2’>=0,
’NCOMMON2’=<size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’M’>0]).

ctr_graph(
common_modulo,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar mod ’M’=variables2ˆvar mod ’M’],
[’NSOURCE’=’NCOMMON1’,’NSINK’=’NCOMMON2’]).

ctr_example(
common_modulo,
common_modulo(

3,
4,
[[var-0],[var-4],[var-0],[var-8]],
[[var-7],[var-5],[var-4],[var-9],[var-2],[var-4]],
5)).

1035

B.48 common partition

ctr_date(common_partition,[’20030820’]).

ctr_origin(common_partition,’Derived from %c.’,[common]).

ctr_types(common_partition,[’VALUES’-collection(val-int)]).

ctr_arguments(
common_partition,
[’NCOMMON1’-dvar,
’NCOMMON2’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
common_partition,
[required(’VALUES’,val),
distinct(’VALUES’,val),
’NCOMMON1’>=0,
’NCOMMON1’=<size(’VARIABLES1’),
’NCOMMON2’>=0,
’NCOMMON2’=<size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_graph(
common_partition,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
’PARTITIONS’)],

[’NSOURCE’=’NCOMMON1’,’NSINK’=’NCOMMON2’]).

ctr_example(
common_partition,
common_partition(

3,
4,
[[var-2],[var-3],[var-6],[var-0]],

1036 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[[var-0],[var-6],[var-3],[var-3],[var-7],[var-1]],
[[p-[[val-1],[val-3]]],
[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).

1037

B.49 connect points

ctr_date(connect_points,[’20000128’,’20030820’,’20040530’]).

ctr_origin(connect_points,’N.˜Beldiceanu’,[]).

ctr_arguments(
connect_points,
[’SIZE1’-int,
’SIZE2’-int,
’SIZE3’-int,
’NGROUP’-dvar,
’POINTS’-collection(p-dvar)]).

ctr_restrictions(
connect_points,
[’SIZE1’>0,
’SIZE2’>0,
’SIZE3’>0,
’NGROUP’>=0,
’NGROUP’=<size(’POINTS’),
’SIZE1’*’SIZE2’*’SIZE3’=size(’POINTS’),
required(’POINTS’,p)]).

ctr_graph(
connect_points,
[’POINTS’],
2,
[>>(’GRID’([’SIZE1’,’SIZE2’,’SIZE3’]),

collection(points1,points2))],
[points1ˆp=\=0,points1ˆp=points2ˆp],
[’NSCC’=’NGROUP’]).

ctr_example(
connect_points,
connect_points(

8,
4,
2,
2,
[[p-0],
[p-0],
[p-1],
[p-1],
[p-0],
[p-2],

1038 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-1],
[p-0],
[p-2],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-1],
[p-1],
[p-1],
[p-1],
[p-1],
[p-0],
[p-2],
[p-0],
[p-1],
[p-0],
[p-2],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-2],
[p-0],
[p-0],
[p-0],
[p-2],
[p-2],
[p-2],

1039

[p-2],
[p-2],
[p-0],
[p-0],
[p-0],
[p-2],
[p-0],
[p-0],
[p-0],
[p-2],
[p-0],
[p-0]])).

1040 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.50 correspondence

ctr_date(correspondence,[’20030820’]).

ctr_origin(
correspondence,
’Derived from %c by removing the sorting condition.’,
[sort_permutation]).

ctr_arguments(
correspondence,
[’FROM’-collection(fvar-dvar),
’PERMUTATION’-collection(var-dvar),
’TO’-collection(tvar-dvar)]).

ctr_restrictions(
correspondence,
[size(’PERMUTATION’)=size(’FROM’),
size(’PERMUTATION’)=size(’TO’),
’PERMUTATION’ˆvar>=1,
’PERMUTATION’ˆvar=<size(’PERMUTATION’),
alldifferent(’PERMUTATION’),
required(’FROM’,fvar),
required(’PERMUTATION’,var),
required(’TO’,tvar)]).

ctr_derived_collections(
correspondence,
[col(’FROM_PERMUTATION’-collection(fvar-dvar,var-dvar),

[item(fvar-’FROM’ˆfvar,var-’PERMUTATION’ˆvar)])]).

ctr_graph(
correspondence,
[’FROM_PERMUTATION’,’TO’],
2,
[’PRODUCT’>>collection(from_permutation,to)],
[from_permutationˆfvar=toˆtvar,
from_permutationˆvar=toˆkey],

[’NARC’=size(’PERMUTATION’)]).

ctr_example(
correspondence,
correspondence(

[[fvar-1],
[fvar-9],
[fvar-1],

1041

[fvar-5],
[fvar-2],
[fvar-1]],

[[var-6],[var-1],[var-3],[var-5],[var-4],[var-2]],
[[tvar-9],
[tvar-1],
[tvar-1],
[tvar-2],
[tvar-5],
[tvar-1]])).

1042 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.51 count

ctr_automaton(count,count_).

ctr_date(count,[’20000128’,’20030820’,’20040530’]).

ctr_origin(count,’\\cite{Sicstus95}’,[]).

ctr_arguments(
count,
[’VALUE’-int,
’VARIABLES’-collection(var-dvar),
’RELOP’-atom,
’NVAR’-dvar]).

ctr_restrictions(
count,
[required(’VARIABLES’,var),
in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
count,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[variablesˆvar=’VALUE’],
[’RELOP’(’NARC’,’NVAR’)]).

ctr_example(
count,
count(5,[[var-4],[var-5],[var-5],[var-4],[var-5]],>=,2)).

count_(A,B,C,D) :-
length(B,E),
in(F,0..E),
count_signature(B,G,A),
automaton(

G,
H,
G,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[I+1]),arc(s,$,t)],
[I],
[0],
[F]),

1043

count_relop(C,F,D).

count_signature([],[],A).

count_signature([[var-A]|B],[C|D],E) :-
A#=E#<=>C,
count_signature(B,D,E).

count_relop(=,A,B) :-
A#=B.

count_relop(=\=,A,B) :-
A#\=B.

count_relop(<,A,B) :-
A#<B.

count_relop(>=,A,B) :-
A#>=B.

count_relop(>,A,B) :-
A#>B.

count_relop(=<,A,B) :-
A#=<B.

1044 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.52 counts

ctr_automaton(counts,counts).

ctr_date(counts,[’20030820’,’20040530’]).

ctr_origin(counts,’Derived from %c.’,[count]).

ctr_arguments(
counts,
[’VALUES’-collection(val-int),
’VARIABLES’-collection(var-dvar),
’RELOP’-atom,
’LIMIT’-dvar]).

ctr_restrictions(
counts,
[required(’VALUES’,val),
distinct(’VALUES’,val),
required(’VARIABLES’,var),
in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
counts,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=valuesˆval],
[’RELOP’(’NARC’,’LIMIT’)]).

ctr_example(
counts,
counts(

[[val-1],[val-3],[val-4],[val-9]],
[[var-4],[var-5],[var-5],[var-4],[var-1],[var-5]],
=,
3)).

counts(A,B,C,D) :-
length(B,E),
in(F,0..E),
col_to_list(A,G),
list_to_fdset(G,H),
counts_signature(B,I,H),
automaton(

I,

1045

J,
I,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[K+1]),arc(s,$,t)],
[K],
[0],
[F]),

count_relop(C,F,D).

counts_signature([],[],A).

counts_signature([[var-A]|B],[C|D],E) :-
in_set(A,E)#<=>C,
counts_signature(B,D,E).

1046 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.53 crossing

ctr_date(crossing,[’20000128’,’20030820’]).

ctr_origin(
crossing,
’Inspired by \\cite{CormenLeisersonRivest90}.’,
[]).

ctr_arguments(
crossing,
[’NCROSS’-dvar,
’SEGMENTS’-collection(ox-dvar,oy-dvar,ex-dvar,ey-dvar)]).

ctr_restrictions(
crossing,
[’NCROSS’>=0,
=<(’NCROSS’,

/(-(size(’SEGMENTS’)*size(’SEGMENTS’),
size(’SEGMENTS’)),

2)),
required(’SEGMENTS’,[ox,oy,ex,ey])]).

ctr_graph(
crossing,
[’SEGMENTS’],
2,
[’CLIQUE’(<)>>collection(s1,s2)],
[max(s1ˆox,s1ˆex)>=min(s2ˆox,s2ˆex),
max(s2ˆox,s2ˆex)>=min(s1ˆox,s1ˆex),
max(s1ˆoy,s1ˆey)>=min(s2ˆoy,s2ˆey),
max(s2ˆoy,s2ˆey)>=min(s1ˆoy,s1ˆey),
#\/(#\/(=(-((s2ˆox-s1ˆex)*(s1ˆey-s1ˆoy),

(s1ˆex-s1ˆox)*(s2ˆoy-s1ˆey)),
0),

=(-((s2ˆex-s1ˆex)*(s2ˆoy-s1ˆoy),
(s2ˆox-s1ˆox)*(s2ˆey-s1ˆey)),

0)),
=\=(sign(

-((s2ˆox-s1ˆex)*(s1ˆey-s1ˆoy),
(s1ˆex-s1ˆox)*(s2ˆoy-s1ˆey))),

sign(
-((s2ˆex-s1ˆex)*(s2ˆoy-s1ˆoy),
(s2ˆox-s1ˆox)*(s2ˆey-s1ˆey)))))],

[’NARC’=’NCROSS’]).

1047

ctr_example(
crossing,
crossing(

3,
[[ox-1,oy-4,ex-9,ey-2],
[ox-1,oy-1,ex-3,ey-5],
[ox-3,oy-2,ex-7,ey-4],
[ox-9,oy-1,ex-9,ey-4]])).

1048 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.54 cumulative

ctr_date(cumulative,[’20000128’,’20030820’,’20040530’]).

ctr_origin(cumulative,’\\cite{AggounBeldiceanu93}’,[]).

ctr_arguments(
cumulative,
[-(’TASKS’,

collection(
origin-dvar,
duration-dvar,
end-dvar,
height-dvar)),

’LIMIT’-int]).

ctr_restrictions(
cumulative,
[require_at_least(2,’TASKS’,[origin,duration,end]),
required(’TASKS’,height),
’TASKS’ˆduration>=0,
’TASKS’ˆheight>=0,
’LIMIT’>=0]).

ctr_graph(
cumulative,
[’TASKS’],
1,
[’SELF’>>collection(tasks)],
[tasksˆorigin+tasksˆduration=tasksˆend],
[’NARC’=size(’TASKS’)]).

ctr_graph(
cumulative,
[’TASKS’,’TASKS’],
2,
[’PRODUCT’>>collection(tasks1,tasks2)],
[tasks1ˆduration>0,
tasks2ˆorigin=<tasks1ˆorigin,
tasks1ˆorigin<tasks2ˆend],

[],
[>>(’SUCC’,

[source,
-(variables,

col(’VARIABLES’-collection(var-dvar),
[item(var-’TASKS’ˆheight)]))])],

1049

[sum_ctr(variables,=<,’LIMIT’)]).

ctr_example(
cumulative,
cumulative(

[[origin-1,duration-3,end-4,height-1],
[origin-2,duration-9,end-11,height-2],
[origin-3,duration-10,end-13,height-1],
[origin-6,duration-6,end-12,height-1],
[origin-7,duration-2,end-9,height-3]],

8)).

1050 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.55 cumulative product

ctr_date(cumulative_product,[’20030820’]).

ctr_origin(cumulative_product,’Derived from %c.’,[cumulative]).

ctr_arguments(
cumulative_product,
[-(’TASKS’,

collection(
origin-dvar,
duration-dvar,
end-dvar,
height-dvar)),

’LIMIT’-int]).

ctr_restrictions(
cumulative_product,
[require_at_least(2,’TASKS’,[origin,duration,end]),
required(’TASKS’,height),
’TASKS’ˆduration>=0,
’TASKS’ˆheight>=1,
’LIMIT’>=0]).

ctr_graph(
cumulative_product,
[’TASKS’],
1,
[’SELF’>>collection(tasks)],
[tasksˆorigin+tasksˆduration=tasksˆend],
[’NARC’=size(’TASKS’)]).

ctr_graph(
cumulative_product,
[’TASKS’,’TASKS’],
2,
[’PRODUCT’>>collection(tasks1,tasks2)],
[tasks1ˆduration>0,
tasks2ˆorigin=<tasks1ˆorigin,
tasks1ˆorigin<tasks2ˆend],

[],
[>>(’SUCC’,

[source,
-(variables,

col(’VARIABLES’-collection(var-dvar),
[item(var-’ITEMS’ˆheight)]))])],

1051

[product_ctr(variables,=<,’LIMIT’)]).

ctr_example(
cumulative_product,
cumulative_product(

[[origin-1,duration-3,end-4,height-1],
[origin-2,duration-9,end-11,height-2],
[origin-3,duration-10,end-13,height-1],
[origin-6,duration-6,end-12,height-1],
[origin-7,duration-2,end-9,height-3]],

6)).

1052 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.56 cumulative two d

ctr_date(cumulative_two_d,[’20000128’,’20030820’]).

ctr_origin(
cumulative_two_d,
’Inspired by %c and %c.’,
[cumulative,diffn]).

ctr_arguments(
cumulative_two_d,
[-(’RECTANGLES’,

collection(
start1-dvar,
size1-dvar,
last1-dvar,
start2-dvar,
size2-dvar,
last2-dvar,
height-dvar)),

’LIMIT’-int]).

ctr_restrictions(
cumulative_two_d,
[require_at_least(2,’RECTANGLES’,[start1,size1,last1]),
require_at_least(2,’RECTANGLES’,[start2,size2,last2]),
required(’RECTANGLES’,height),
’RECTANGLES’ˆsize1>=0,
’RECTANGLES’ˆsize2>=0,
’RECTANGLES’ˆheight>=0,
’LIMIT’>=0]).

ctr_derived_collections(
cumulative_two_d,
[col(-(’CORNERS’,

collection(size1-dvar,size2-dvar,x-dvar,y-dvar)),
[item(

size1-’RECTANGLES’ˆsize1,
size2-’RECTANGLES’ˆsize2,
x-’RECTANGLES’ˆstart1,
y-’RECTANGLES’ˆstart2),

item(
size1-’RECTANGLES’ˆsize1,
size2-’RECTANGLES’ˆsize2,
x-’RECTANGLES’ˆstart1,
y-’RECTANGLES’ˆlast2),

1053

item(
size1-’RECTANGLES’ˆsize1,
size2-’RECTANGLES’ˆsize2,
x-’RECTANGLES’ˆlast1,
y-’RECTANGLES’ˆstart2),

item(
size1-’RECTANGLES’ˆsize1,
size2-’RECTANGLES’ˆsize2,
x-’RECTANGLES’ˆlast1,
y-’RECTANGLES’ˆlast2)])]).

ctr_graph(
cumulative_two_d,
[’RECTANGLES’],
1,
[’SELF’>>collection(rectangles)],
[rectanglesˆstart1+rectanglesˆsize1-1=rectanglesˆlast1,
rectanglesˆstart2+rectanglesˆsize2-1=rectanglesˆlast2],

[’NARC’=size(’RECTANGLES’)]).

ctr_graph(
cumulative_two_d,
[’CORNERS’,’RECTANGLES’],
2,
[’PRODUCT’>>collection(corners,rectangles)],
[cornersˆsize1>0,
cornersˆsize2>0,
rectanglesˆstart1=<cornersˆx,
cornersˆx=<rectanglesˆlast1,
rectanglesˆstart2=<cornersˆy,
cornersˆy=<rectanglesˆlast2],

[],
[>>(’SUCC’,

[source,
-(variables,

col(’VARIABLES’-collection(var-dvar),
[item(var-’RECTANGLES’ˆheight)]))])],

[sum_ctr(variables,=<,’LIMIT’)]).

ctr_example(
cumulative_two_d,
cumulative_two_d(

[[start1-1,
size1-4,
last1-4,
start2-3,

1054 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

size2-3,
last2-5,
height-4],

[start1-3,
size1-2,
last1-4,
start2-1,
size2-2,
last2-2,
height-2],

[start1-1,
size1-2,
last1-2,
start2-1,
size2-2,
last2-2,
height-3],

[start1-4,
size1-1,
last1-4,
start2-1,
size2-1,
last2-1,
height-1]],

4)).

1055

B.57 cumulative with level of priority

ctr_date(cumulative_with_level_of_priority,[’20040530’]).

ctr_origin(cumulative_with_level_of_priority,’H.˜Simonis’,[]).

ctr_arguments(
cumulative_with_level_of_priority,
[-(’TASKS’,

collection(
priority-int,
origin-dvar,
duration-dvar,
end-dvar,
height-dvar)),

’PRIORITIES’-collection(id-int,capacity-int)]).

ctr_restrictions(
cumulative_with_level_of_priority,
[required(’TASKS’,[priority,height]),
require_at_least(2,’TASKS’,[origin,duration,end]),
’TASKS’ˆpriority>=1,
’TASKS’ˆpriority=<size(’PRIORITIES’),
’TASKS’ˆduration>=0,
’TASKS’ˆheight>=0,
required(’PRIORITIES’,[id,capacity]),
’PRIORITIES’ˆid>=1,
’PRIORITIES’ˆid=<size(’PRIORITIES’),
increasing_seq(’PRIORITIES’,id),
increasing_seq(’PRIORITIES’,capacity)]).

ctr_derived_collections(
cumulative_with_level_of_priority,
[col(-(’TIME_POINTS’,

collection(idp-int,duration-dvar,point-dvar)),
[item(

idp-’TASKS’ˆpriority,
duration-’TASKS’ˆduration,
point-’TASKS’ˆorigin),

item(
idp-’TASKS’ˆpriority,
duration-’TASKS’ˆduration,
point-’TASKS’ˆend)])]).

ctr_graph(
cumulative_with_level_of_priority,

1056 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[’TASKS’],
1,
[’SELF’>>collection(tasks)],
[tasksˆorigin+tasksˆduration=tasksˆend],
[’NARC’=size(’TASKS’)]).

ctr_graph(
cumulative_with_level_of_priority,
[’TIME_POINTS’,’TASKS’],
2,
foreach(

’PRIORITIES’,
[’PRODUCT’>>collection(time_points,tasks)]),

[time_pointsˆidp=’PRIORITIES’ˆid,
time_pointsˆidp>=tasksˆpriority,
time_pointsˆduration>0,
tasksˆorigin=<time_pointsˆpoint,
time_pointsˆpoint<tasksˆend],

[],
[>>(’SUCC’,

[source,
-(variables,

col(’VARIABLES’-collection(var-dvar),
[item(var-’TASKS’ˆheight)]))])],

[sum_ctr(variables,=<,’PRIORITIES’ˆcapacity)]).

ctr_example(
cumulative_with_level_of_priority,
cumulative_with_level_of_priority(

[[priority-1,origin-1,duration-2,end-3,height-1],
[priority-1,origin-2,duration-3,end-5,height-1],
[priority-1,origin-5,duration-2,end-7,height-2],
[priority-2,origin-3,duration-2,end-5,height-2],
[priority-2,origin-6,duration-3,end-9,height-1]],

[[id-1,capacity-2],[id-2,capacity-3]])).

1057

B.58 cumulatives

ctr_date(cumulatives,[’20000128’,’20030820’,’20040530’]).

ctr_origin(cumulatives,’\\cite{BeldiceanuCarlsson02a}’,[]).

ctr_arguments(
cumulatives,
[-(’TASKS’,

collection(
machine-dvar,
origin-dvar,
duration-dvar,
end-dvar,
height-dvar)),

’MACHINES’-collection(id-int,capacity-int),
’CTR’-atom]).

ctr_restrictions(
cumulatives,
[required(’TASKS’,[machine,height]),
require_at_least(2,’TASKS’,[origin,duration,end]),
in_attr(’TASKS’,machine,’MACHINES’,id),
’TASKS’ˆduration>=0,
required(’MACHINES’,[id,capacity]),
distinct(’MACHINES’,id),
in_list(’CTR’,[=<,>=])]).

ctr_derived_collections(
cumulatives,
[col(-(’TIME_POINTS’,

collection(idm-int,duration-dvar,point-dvar)),
[item(

idm-’TASKS’ˆmachine,
duration-’TASKS’ˆduration,
point-’TASKS’ˆorigin),

item(
idm-’TASKS’ˆmachine,
duration-’TASKS’ˆduration,
point-’TASKS’ˆend)])]).

ctr_graph(
cumulatives,
[’TASKS’],
1,
[’SELF’>>collection(tasks)],

1058 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[tasksˆorigin+tasksˆduration=tasksˆend],
[’NARC’=size(’TASKS’)]).

ctr_graph(
cumulatives,
[’TIME_POINTS’,’TASKS’],
2,
foreach(

’MACHINES’,
[’PRODUCT’>>collection(time_points,tasks)]),

[time_pointsˆidm=’MACHINES’ˆid,
time_pointsˆidm=tasksˆmachine,
time_pointsˆduration>0,
tasksˆorigin=<time_pointsˆpoint,
time_pointsˆpoint<tasksˆend],

[],
[>>(’SUCC’,

[source,
-(variables,

col(’VARIABLES’-collection(var-dvar),
[item(var-’TASKS’ˆheight)]))])],

[sum_ctr(variables,’CTR’,’MACHINES’ˆcapacity)]).

ctr_example(
cumulatives,
cumulatives(

[[machine-1,origin-2,duration-2,end-4,height- -2],
[machine-1,origin-1,duration-4,end-5,height-1],
[machine-1,origin-4,duration-2,end-6,height- -1],
[machine-1,origin-2,duration-3,end-5,height-2],
[machine-1,origin-5,duration-2,end-7,height-2],
[machine-2,origin-3,duration-2,end-5,height- -1],
[machine-2,origin-1,duration-4,end-5,height-1]],

[[id-1,capacity-0],[id-2,capacity-0]],
>=)).

1059

B.59 cutset
ctr_date(cutset,[’20030820’,’20040530’]).

ctr_origin(cutset,’\\cite{FagesLal03}’,[]).

ctr_arguments(
cutset,
[’SIZE_CUTSET’-dvar,
’NODES’-collection(index-int,succ-sint,bool-dvar)]).

ctr_restrictions(
cutset,
[’SIZE_CUTSET’>=0,
’SIZE_CUTSET’=<size(’NODES’),
required(’NODES’,[index,succ,bool]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆbool>=0,
’NODES’ˆbool=<1]).

ctr_graph(
cutset,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[in_set(nodes2ˆindex,nodes1ˆsucc),
nodes1ˆbool=1,
nodes2ˆbool=1],

[’MAX_NSCC’=<1,’NVERTEX’=size(’NODES’)-’SIZE_CUTSET’]).

ctr_example(
cutset,
cutset(

1,
[[index-1,succ-{2,3,4},bool-1],
[index-2,succ-{3},bool-1],
[index-3,succ-{4},bool-1],
[index-4,succ-{1},bool-0]])).

1060 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.60 cycle
ctr_date(cycle,[’20000128’,’20030820’]).

ctr_origin(cycle,’\\cite{BeldiceanuContejean94}’,[]).

ctr_arguments(
cycle,
[’NCYCLE’-dvar,’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
cycle,
[’NCYCLE’>=1,
’NCYCLE’=<size(’NODES’),
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_graph(
cycle,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’NTREE’=0,’NCC’=’NCYCLE’]).

ctr_example(
cycle,
cycle(

2,
[[index-1,succ-2],
[index-2,succ-1],
[index-3,succ-5],
[index-4,succ-3],
[index-5,succ-4]])).

1061

B.61 cycle card on path

ctr_date(cycle_card_on_path,[’20000128’,’20030820’,’20040530’]).

ctr_origin(cycle_card_on_path,’CHIP’,[]).

ctr_arguments(
cycle_card_on_path,
[’NCYCLE’-dvar,
’NODES’-collection(index-int,succ-dvar,colour-dvar),
’ATLEAST’-int,
’ATMOST’-int,
’PATH_LEN’-int,
’VALUES’-collection(val-int)]).

ctr_restrictions(
cycle_card_on_path,
[’NCYCLE’>=1,
’NCYCLE’=<size(’NODES’),
required(’NODES’,[index,succ,colour]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’),
’ATLEAST’>=0,
’ATLEAST’=<’PATH_LEN’,
’ATMOST’>=’ATLEAST’,
’PATH_LEN’>=0,
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_graph(
cycle_card_on_path,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’NTREE’=0,’NCC’=’NCYCLE’],
[>>(’PATH_LENGTH’(’PATH_LEN’),

[-(variables,
col(’VARIABLES’-collection(var-dvar),

[item(var-’NODES’ˆcolour)]))])],
[among_low_up(’ATLEAST’,’ATMOST’,variables,’VALUES’)]).

ctr_example(

1062 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

cycle_card_on_path,
cycle_card_on_path(

2,
[[index-1,succ-7,colour-2],
[index-2,succ-4,colour-3],
[index-3,succ-8,colour-2],
[index-4,succ-9,colour-1],
[index-5,succ-1,colour-2],
[index-6,succ-2,colour-1],
[index-7,succ-5,colour-1],
[index-8,succ-6,colour-1],
[index-9,succ-3,colour-1]],

1,
2,
3,
[[val-1]])).

1063

B.62 cycle or accessibility

ctr_date(cycle_or_accessibility,[’20000128’,’20030820’]).

ctr_origin(
cycle_or_accessibility,
’Inspired by \\cite{LabbeLaporteRodriguezMartin98}.’,
[]).

ctr_arguments(
cycle_or_accessibility,
[’MAXDIST’-int,
’NCYCLE’-dvar,
’NODES’-collection(index-int,succ-dvar,x-int,y-int)]).

ctr_restrictions(
cycle_or_accessibility,
[’MAXDIST’>=0,
’NCYCLE’>=1,
’NCYCLE’=<size(’NODES’),
required(’NODES’,[index,succ,x,y]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=0,
’NODES’ˆsucc=<size(’NODES’),
’NODES’ˆx>=0,
’NODES’ˆy>=0]).

ctr_graph(
cycle_or_accessibility,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’NTREE’=0,’NCC’=’NCYCLE’]).

ctr_graph(
cycle_or_accessibility,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[#\/(nodes1ˆsucc=nodes2ˆindex,

#/\(nodes1ˆsucc=0#/\nodes2ˆsucc=\=0,
=<(+(abs(nodes1ˆx-nodes2ˆx),

abs(nodes1ˆy-nodes2ˆy)),

1064 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

’MAXDIST’)))],
[’NVERTEX’=size(’NODES’)],
[>>(’PRED’,

[-(variables,
col(’VARIABLES’-collection(var-dvar),

[item(var-’NODES’ˆsucc)])),
destination])],

[nvalues_except_0(variables,=,1)]).

ctr_example(
cycle_or_accessibility,
cycle_or_accessibility(

3,
2,
[[index-1,succ-6,x-4,y-5],
[index-2,succ-0,x-9,y-1],
[index-3,succ-0,x-2,y-4],
[index-4,succ-1,x-2,y-6],
[index-5,succ-5,x-7,y-2],
[index-6,succ-4,x-4,y-7],
[index-7,succ-0,x-6,y-4]])).

1065

B.63 cycle resource

ctr_date(cycle_resource,[’20030820’,’20040530’]).

ctr_origin(cycle_resource,’CHIP’,[]).

ctr_arguments(
cycle_resource,
[-(’RESOURCE’,

collection(id-int,first_task-dvar,nb_task-dvar)),
’TASK’-collection(id-int,next_task-dvar,resource-dvar)]).

ctr_restrictions(
cycle_resource,
[required(’RESOURCE’,[id,first_task,nb_task]),
’RESOURCE’ˆid>=1,
’RESOURCE’ˆid=<size(’RESOURCE’),
distinct(’RESOURCE’,id),
’RESOURCE’ˆfirst_task>=1,
’RESOURCE’ˆfirst_task=<size(’RESOURCE’)+size(’TASK’),
’RESOURCE’ˆnb_task>=0,
’RESOURCE’ˆnb_task=<size(’TASK’),
required(’TASK’,[id,next_task,resource]),
’TASK’ˆid>size(’RESOURCE’),
’TASK’ˆid=<size(’RESOURCE’)+size(’TASK’),
distinct(’TASK’,id),
’TASK’ˆnext_task>=1,
’TASK’ˆnext_task=<size(’RESOURCE’)+size(’TASK’),
’TASK’ˆresource>=1,
’TASK’ˆresource=<size(’RESOURCE’)]).

ctr_derived_collections(
cycle_resource,
[col(-(’RESOURCE_TASK’,

collection(index-int,succ-dvar,name-dvar)),
[item(

index-’RESOURCE’ˆid,
succ-’RESOURCE’ˆfirst_task,
name-’RESOURCE’ˆid),

item(
index-’TASK’ˆid,
succ-’TASK’ˆnext_task,
name-’TASK’ˆresource)])]).

ctr_graph(
cycle_resource,

1066 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[’RESOURCE_TASK’],
2,
[’CLIQUE’>>collection(resource_task1,resource_task2)],
[resource_task1ˆsucc=resource_task2ˆindex,
resource_task1ˆname=resource_task2ˆname],

[’NTREE’=0,
’NCC’=size(’RESOURCE’),
’NVERTEX’=size(’RESOURCE’)+size(’TASK’)]).

ctr_graph(
cycle_resource,
[’RESOURCE_TASK’],
2,
foreach(

’RESOURCE’,
[’CLIQUE’>>collection(resource_task1,resource_task2)]),

[resource_task1ˆsucc=resource_task2ˆindex,
resource_task1ˆname=resource_task2ˆname,
resource_task1ˆname=’RESOURCE’ˆid],

[’NVERTEX’=’RESOURCE’ˆnb_task+1]).

ctr_example(
cycle_resource,
cycle_resource(

[[id-1,first_task-5,nb_task-3],
[id-2,first_task-2,nb_task-0],
[id-3,first_task-8,nb_task-2]],

[[id-4,next_task-7,resource-1],
[id-5,next_task-4,resource-1],
[id-6,next_task-3,resource-3],
[id-7,next_task-1,resource-1],
[id-8,next_task-6,resource-3]])).

1067

B.64 cyclic change

ctr_automaton(cyclic_change,cyclic_change).

ctr_date(cyclic_change,[’20000128’,’20030820’,’20040530’]).

ctr_origin(cyclic_change,’Derived from %c.’,[change]).

ctr_arguments(
cyclic_change,
[’NCHANGE’-dvar,
’CYCLE_LENGTH’-int,
’VARIABLES’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
cyclic_change,
[’NCHANGE’>=0,
’NCHANGE’<size(’VARIABLES’),
’CYCLE_LENGTH’>0,
required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
cyclic_change,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[’CTR’(

(variables1ˆvar+1)mod ’CYCLE_LENGTH’,
variables2ˆvar)],

[’NARC’=’NCHANGE’]).

ctr_example(
cyclic_change,
cyclic_change(

2,
4,
[[var-3],[var-0],[var-2],[var-3],[var-1]],
=\=)).

cyclic_change(A,B,C,D) :-
cyclic_change_signature(C,E,D),
automaton(

E,
F,

1068 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

E,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[G+1]),arc(s,$,t)],
[G],
[0],
[A]).

cyclic_change_signature([],[],A).

cyclic_change_signature([A],[],B) :-
!.

cyclic_change_signature([[var-A],[var-B]|C],[D|E],=) :-
!,
(A+1)mod F#=B#<=>D,
cyclic_change_signature([[var-B]|C],E,=).

cyclic_change_signature([[var-A],[var-B]|C],[D|E],=\=) :-
!,
(A+1)mod F#\=B#<=>D,
cyclic_change_signature([[var-B]|C],E,=\=).

cyclic_change_signature([[var-A],[var-B]|C],[D|E],<) :-
!,
(A+1)mod F#<B#<=>D,
cyclic_change_signature([[var-B]|C],E,<).

cyclic_change_signature([[var-A],[var-B]|C],[D|E],>=) :-
!,
(A+1)mod F#>=B#<=>D,
cyclic_change_signature([[var-B]|C],E,>=).

cyclic_change_signature([[var-A],[var-B]|C],[D|E],>) :-
!,
(A+1)mod F#>B#<=>D,
cyclic_change_signature([[var-B]|C],E,>).

cyclic_change_signature([[var-A],[var-B]|C],[D|E],=<) :-
!,
(A+1)mod F#=<B#<=>D,
cyclic_change_signature([[var-B]|C],E,=<).

1069

B.65 cyclic change joker

ctr_automaton(cyclic_change_joker,cyclic_change_joker).

ctr_date(
cyclic_change_joker,
[’20000128’,’20030820’,’20040530’]).

ctr_origin(
cyclic_change_joker,
’Derived from %c.’,
[cyclic_change]).

ctr_arguments(
cyclic_change_joker,
[’NCHANGE’-dvar,
’CYCLE_LENGTH’-int,
’VARIABLES’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
cyclic_change_joker,
[’NCHANGE’>=0,
’NCHANGE’<size(’VARIABLES’),
required(’VARIABLES’,var),
’CYCLE_LENGTH’>0,
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
cyclic_change_joker,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[’CTR’(

(variables1ˆvar+1)mod ’CYCLE_LENGTH’,
variables2ˆvar),

variables1ˆvar<’CYCLE_LENGTH’,
variables2ˆvar<’CYCLE_LENGTH’],

[’NARC’=’NCHANGE’]).

ctr_example(
cyclic_change_joker,
cyclic_change_joker(

2,
4,
[[var-3],

1070 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[var-0],
[var-2],
[var-4],
[var-4],
[var-4],
[var-3],
[var-1],
[var-4]],

=\=)).

cyclic_change_joker(A,B,C,D) :-
cyclic_change_joker_signature(C,E,B,D),
automaton(

E,
F,
E,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[G+1]),arc(s,$,t)],
[G],
[0],
[A]).

cyclic_change_joker_signature([],[],A,B).

cyclic_change_joker_signature([A],[],B,C) :-
!.

cyclic_change_joker_signature([[var-A],[var-B]|C],[D|E],F,=) :-
!,
(A+1)mod F#=B#/\A#<F#/\B#<F#<=>D,
cyclic_change_joker_signature([[var-B]|C],E,F,=).

cyclic_change_joker_signature([[var-A],[var-B]|C],[D|E],F,=\=) :-
!,
(A+1)mod F#\=B#/\A#<F#/\B#<F#<=>D,
cyclic_change_joker_signature([[var-B]|C],E,F,=\=).

cyclic_change_joker_signature([[var-A],[var-B]|C],[D|E],F,<) :-
!,
(A+1)mod F#<B#/\A#<F#/\B#<F#<=>D,
cyclic_change_joker_signature([[var-B]|C],E,F,<).

cyclic_change_joker_signature([[var-A],[var-B]|C],[D|E],F,>=) :-
!,
(A+1)mod F#>=B#/\A#<F#/\B#<F#<=>D,

1071

cyclic_change_joker_signature([[var-B]|C],E,F,>=).

cyclic_change_joker_signature([[var-A],[var-B]|C],[D|E],F,>) :-
!,
(A+1)mod F#>B#/\A#<F#/\B#<F#<=>D,
cyclic_change_joker_signature([[var-B]|C],E,F,>).

cyclic_change_joker_signature([[var-A],[var-B]|C],[D|E],F,=<) :-
!,
(A+1)mod F#=<B#/\A#<F#/\B#<F#<=>D,
cyclic_change_joker_signature([[var-B]|C],E,F,=<).

1072 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.66 decreasing

ctr_automaton(decreasing,decreasing).

ctr_date(decreasing,[’20040814’]).

ctr_origin(decreasing,’Inspired by %c.’,[increasing]).

ctr_arguments(decreasing,[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
decreasing,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_graph(
decreasing,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[variables1ˆvar>=variables2ˆvar],
[’NARC’=size(’VARIABLES’)-1]).

ctr_example(
decreasing,
decreasing([[var-8],[var-4],[var-1],[var-1]])).

decreasing(A) :-
decreasing_signature(A,B),
automaton(

B,
C,
B,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,$,t)],
[],
[],
[]).

decreasing_signature([A],[]).

decreasing_signature([[var-A],[var-B]|C],[D|E]) :-
in(D,0..1),
A#<B#<=>D,
decreasing_signature([[var-B]|C],E).

1073

B.67 deepest valley

ctr_automaton(deepest_valley,deepest_valley).

ctr_date(deepest_valley,[’20040530’]).

ctr_origin(deepest_valley,’Derived from %c.’,[valley]).

ctr_arguments(
deepest_valley,
[’DEPTH’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
deepest_valley,
[’DEPTH’>=0,’VARIABLES’ˆvar>=0,required(’VARIABLES’,var)]).

ctr_example(
deepest_valley,
deepest_valley(

2,
[[var-5],
[var-3],
[var-4],
[var-8],
[var-8],
[var-2],
[var-7],
[var-1]])).

deepest_valley(A,B) :-
C=1000000,
deepest_valley_signature(B,D,E),
automaton(

E,
F-G,
D,
0..2,
[source(s),node(u),sink(t)],
[arc(s,0,s),
arc(s,1,s),
arc(s,2,u),
arc(s,$,t),
arc(u,0,s,[min(H,F)]),
arc(u,1,u),
arc(u,2,u),
arc(u,$,t)],

1074 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[H],
[C],
[A]).

deepest_valley_signature([],[],[]).

deepest_valley_signature([A],[],[]).

deepest_valley_signature([[var-A],[var-B]|C],[D|E],[A-B|F]) :-
in(D,0..2),
A#<B#<=>D#=0,
A#=B#<=>D#=1,
A#>B#<=>D#=2,
deepest_valley_signature([[var-B]|C],E,F).

1075

B.68 derangement
ctr_date(derangement,[’20000128’,’20030820’,’20040530’]).

ctr_origin(derangement,’Derived from %c.’,[cycle]).

ctr_arguments(
derangement,
[’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
derangement,
[required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_graph(
derangement,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex,nodes1ˆsucc=\=nodes1ˆindex],
[’NTREE’=0]).

ctr_example(
derangement,
derangement(

[[index-1,succ-2],
[index-2,succ-1],
[index-3,succ-5],
[index-4,succ-3],
[index-5,succ-4]])).

1076 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.69 differ from at least k pos

ctr_automaton(
differ_from_at_least_k_pos,
differ_from_at_least_k_pos).

ctr_date(differ_from_at_least_k_pos,[’20030820’,’20040530’]).

ctr_origin(
differ_from_at_least_k_pos,
’Inspired by \\cite{Frutos97}.’,
[]).

ctr_types(
differ_from_at_least_k_pos,
[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
differ_from_at_least_k_pos,
[’K’-int,’VECTOR1’-’VECTOR’,’VECTOR2’-’VECTOR’]).

ctr_restrictions(
differ_from_at_least_k_pos,
[required(’VECTOR’,var),
’K’>=0,
’K’=<size(’VECTOR1’),
size(’VECTOR1’)=size(’VECTOR2’)]).

ctr_graph(
differ_from_at_least_k_pos,
[’VECTOR1’,’VECTOR2’],
2,
[’PRODUCT’(=)>>collection(vector1,vector2)],
[vector1ˆvar=\=vector2ˆvar],
[’NARC’>=’K’]).

ctr_example(
differ_from_at_least_k_pos,
differ_from_at_least_k_pos(

2,
[[var-2],[var-5],[var-2],[var-0]],
[[var-3],[var-6],[var-2],[var-1]])).

differ_from_at_least_k_pos(A,B,C) :-
differ_from_at_least_k_pos_signature(B,C,D),
E#>=A,

1077

automaton(
D,
F,
D,
0..1,
[source(s),sink(t)],
[arc(s,0,s,[G+1]),arc(s,1,s),arc(s,$,t)],
[G],
[0],
[E]).

differ_from_at_least_k_pos_signature([],[],[]).

differ_from_at_least_k_pos_signature(
[[var-A]|B],
[[var-C]|D],
[E|F]) :-

A#=C#<=>E,
differ_from_at_least_k_pos_signature(B,D,F).

1078 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.70 diffn

ctr_date(diffn,[’20000128’,’20030820’,’20040530’]).

ctr_origin(diffn,’\\cite{BeldiceanuContejean94}’,[]).

ctr_types(
diffn,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
diffn,
[’ORTHOTOPES’-collection(orth-’ORTHOTOPE’)]).

ctr_restrictions(
diffn,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
required(’ORTHOTOPES’,orth),
same_size(’ORTHOTOPES’,orth)]).

ctr_graph(
diffn,
[’ORTHOTOPES’],
1,
[’SELF’>>collection(orthotopes)],
[orth_link_ori_siz_end(orthotopesˆorth)],
[’NARC’=size(’ORTHOTOPES’)]).

ctr_graph(
diffn,
[’ORTHOTOPES’],
2,
[’CLIQUE’(=\=)>>collection(orthotopes1,orthotopes2)],
[two_orth_do_not_overlap(

orthotopes1ˆorth,
orthotopes2ˆorth)],

[=(’NARC’,
-(size(’ORTHOTOPES’)*size(’ORTHOTOPES’),
size(’ORTHOTOPES’)))]).

ctr_example(
diffn,
diffn(

[[orth-[[ori-2,siz-2,end-4],[ori-1,siz-3,end-4]]],

1079

[orth-[[ori-4,siz-4,end-8],[ori-3,siz-3,end-3]]],
[orth-[[ori-9,siz-2,end-11],[ori-4,siz-3,end-7]]]])).

1080 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.71 diffn column
ctr_date(diffn_column,[’20030820’]).

ctr_origin(
diffn_column,
’CHIP: option guillotine cut (column) of %c.’,
[diffn]).

ctr_types(
diffn_column,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
diffn_column,
[’ORTHOTOPES’-collection(orth-’ORTHOTOPE’),’N’-int]).

ctr_restrictions(
diffn_column,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
required(’ORTHOTOPES’,orth),
same_size(’ORTHOTOPES’,orth),
’N’>0,
’N’=<size(’ORTHOTOPE’),
diffn(’ORTHOTOPES’)]).

ctr_graph(
diffn_column,
[’ORTHOTOPES’],
2,
[’CLIQUE’(<)>>collection(orthotopes1,orthotopes2)],
[two_orth_column(orthotopes1ˆorth,orthotopes2ˆorth,’N’)],
[’NARC’=size(’ORTHOTOPES’)*(size(’ORTHOTOPES’)-1)/2]).

ctr_example(
diffn_column,
diffn_column(

[[orth-[[ori-1,siz-3,end-4],[ori-1,siz-1,end-2]]],
[orth-[[ori-4,siz-2,end-6],[ori-1,siz-3,end-4]]]],

1)).

1081

B.72 diffn include
ctr_date(diffn_include,[’20030820’]).

ctr_origin(
diffn_include,
’CHIP: option guillotine cut (include) of %c.’,
[diffn]).

ctr_types(
diffn_include,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
diffn_include,
[’ORTHOTOPES’-collection(orth-’ORTHOTOPE’),’N’-int]).

ctr_restrictions(
diffn_include,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
required(’ORTHOTOPES’,orth),
same_size(’ORTHOTOPES’,orth),
’N’>0,
’N’=<size(’ORTHOTOPE’),
diffn(’ORTHOTOPES’)]).

ctr_graph(
diffn_include,
[’ORTHOTOPES’],
2,
[’CLIQUE’(<)>>collection(orthotopes1,orthotopes2)],
[two_orth_include(orthotopes1ˆorth,orthotopes2ˆorth,’N’)],
[’NARC’=size(’ORTHOTOPES’)*(size(’ORTHOTOPES’)-1)/2]).

ctr_example(
diffn_include,
diffn_include(

[[orth-[[ori-1,siz-3,end-4],[ori-1,siz-1,end-2]]],
[orth-[[ori-1,siz-2,end-3],[ori-2,siz-3,end-5]]]],

1)).

1082 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.73 discrepancy
ctr_date(discrepancy,[’20050506’]).

ctr_origin(
discrepancy,
’\\cite{Focacci01} and \\cite{vanHoeve05}’,
[]).

ctr_arguments(
discrepancy,
[’VARIABLES’-collection(var-dvar,bad-sint),’K’-int]).

ctr_restrictions(
discrepancy,
[required(’VARIABLES’,var),
required(’VARIABLES’,bad),
’K’>=0,
’K’=<size(’VARIABLES’)]).

ctr_graph(
discrepancy,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[in_set(variablesˆvar,variablesˆbad)],
[’NARC’=’K’]).

ctr_example(
discrepancy,
discrepancy(

[[var-4,bad-{1,4,6}],
[var-5,bad-{0,1}],
[var-5,bad-{1,6,9}],
[var-4,bad-{1,4}],
[var-1,bad-{}]],

2)).

1083

B.74 disjoint
ctr_date(disjoint,[’20000315’,’20031017’,’20040530’]).

ctr_origin(disjoint,’Derived from %c.’,[alldifferent]).

ctr_arguments(
disjoint,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
disjoint,
[required(’VARIABLES1’,var),required(’VARIABLES2’,var)]).

ctr_graph(
disjoint,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NARC’=0]).

ctr_example(
disjoint,
disjoint(

[[var-1],[var-9],[var-1],[var-5]],
[[var-2],[var-7],[var-7],[var-0],[var-6],[var-8]])).

1084 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.75 disjoint tasks

ctr_date(disjoint_tasks,[’20030820’]).

ctr_origin(disjoint_tasks,’Derived from %c.’,[disjoint]).

ctr_arguments(
disjoint_tasks,
[’TASKS1’-collection(origin-dvar,duration-dvar,end-dvar),
’TASKS2’-collection(origin-dvar,duration-dvar,end-dvar)]).

ctr_restrictions(
disjoint_tasks,
[require_at_least(2,’TASKS1’,[origin,duration,end]),
’TASKS1’ˆduration>=0,
require_at_least(2,’TASKS2’,[origin,duration,end]),
’TASKS2’ˆduration>=0]).

ctr_graph(
disjoint_tasks,
[’TASKS1’],
1,
[’SELF’>>collection(tasks1)],
[tasks1ˆorigin+tasks1ˆduration=tasks1ˆend],
[’NARC’=size(’TASKS1’)]).

ctr_graph(
disjoint_tasks,
[’TASKS2’],
1,
[’SELF’>>collection(tasks2)],
[tasks2ˆorigin+tasks2ˆduration=tasks2ˆend],
[’NARC’=size(’TASKS2’)]).

ctr_graph(
disjoint_tasks,
[’TASKS1’,’TASKS2’],
2,
[’PRODUCT’>>collection(tasks1,tasks2)],
[tasks1ˆduration>0,
tasks2ˆduration>0,
tasks1ˆorigin<tasks2ˆend,
tasks2ˆorigin<tasks1ˆend],

[’NARC’=0]).

ctr_example(

1085

disjoint_tasks,
disjoint_tasks(

[[origin-6,duration-5,end-11],
[origin-8,duration-2,end-10]],

[[origin-2,duration-2,end-4],
[origin-3,duration-3,end-6],
[origin-12,duration-1,end-13]])).

1086 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.76 disjunctive
ctr_date(disjunctive,[’20050506’]).

ctr_origin(disjunctive,’\\cite{Carlier82}’,[]).

ctr_synonyms(disjunctive,[one_machine]).

ctr_arguments(
disjunctive,
[’TASKS’-collection(origin-dvar,duration-dvar)]).

ctr_restrictions(
disjunctive,
[required(’TASKS’,[origin,duration]),’TASKS’ˆduration>=0]).

ctr_graph(
disjunctive,
[’TASKS’],
2,
[’CLIQUE’(<)>>collection(tasks1,tasks2)],
[#\/(#\/(tasks1ˆduration=0#\/tasks2ˆduration=0,

tasks1ˆorigin+tasks1ˆduration=<tasks2ˆorigin),
tasks2ˆorigin+tasks2ˆduration=<tasks1ˆorigin)],

[’NARC’=size(’TASKS’)*(size(’TASKS’)-1)/2]).

ctr_example(
disjunctive,
disjunctive(

[[origin-1,duration-3],
[origin-2,duration-0],
[origin-7,duration-2],
[origin-4,duration-1]])).

1087

B.77 distance between
ctr_date(distance_between,[’20000128’,’20030820’]).

ctr_origin(distance_between,’N.˜Beldiceanu’,[]).

ctr_arguments(
distance_between,
[’DIST’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
distance_between,
[’DIST’>=0,
’DIST’=<size(’VARIABLES1’)*size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
size(’VARIABLES1’)=size(’VARIABLES2’),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
distance_between,
[[’VARIABLES1’],[’VARIABLES2’]],
2,
[’CLIQUE’(=\=)>>collection(variables1,variables2)],
[’CTR’(variables1ˆvar,variables2ˆvar)],
[’DISTANCE’=’DIST’]).

ctr_example(
distance_between,
distance_between(

2,
[[var-3],[var-4],[var-6],[var-2],[var-4]],
[[var-2],[var-6],[var-9],[var-3],[var-6]],
<)).

1088 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.78 distance change

ctr_automaton(distance_change,distance_change).

ctr_date(distance_change,[’20000128’,’20030820’,’20040530’]).

ctr_origin(distance_change,’Derived from %c.’,[change]).

ctr_arguments(
distance_change,
[’DIST’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
distance_change,
[’DIST’>=0,
’DIST’<size(’VARIABLES1’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
size(’VARIABLES1’)=size(’VARIABLES2’),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
distance_change,
[[’VARIABLES1’],[’VARIABLES2’]],
2,
[’PATH’>>collection(variables1,variables2)],
[’CTR’(variables1ˆvar,variables2ˆvar)],
[’DISTANCE’=’DIST’]).

ctr_example(
distance_change,
distance_change(

1,
[[var-3],[var-3],[var-1],[var-2],[var-2]],
[[var-4],[var-4],[var-3],[var-3],[var-3]],
=\=)).

distance_change(A,B,C,D) :-
distance_change_signature(B,C,E,D),
automaton(

E,
F,
E,

1089

0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[G+1]),arc(s,$,t)],
[G],
[0],
[A]).

distance_change_signature([],[],[],A).

distance_change_signature([A],[B],[],C) :-
!.

distance_change_signature(
[[var-A],[var-B]|C],
[[var-D],[var-E]|F],
[G|H],
=) :-

!,
A#=B#/\D#\=E#\/A#\=B#/\D#=E#<=>G,
distance_change_signature([[var-B]|C],[[var-E]|F],H,=).

distance_change_signature(
[[var-A],[var-B]|C],
[[var-D],[var-E]|F],
[G|H],
=\=) :-

!,
A#\=B#/\D#=E#\/A#=B#/\D#\=E#<=>G,
distance_change_signature(

[[var-B]|C],
[[var-E]|F],
H,
=\=).

distance_change_signature(
[[var-A],[var-B]|C],
[[var-D],[var-E]|F],
[G|H],
<) :-

!,
A#<B#/\D#>=E#\/A#>=B#/\D#<E#<=>G,
distance_change_signature([[var-B]|C],[[var-E]|F],H,<).

distance_change_signature(
[[var-A],[var-B]|C],
[[var-D],[var-E]|F],

1090 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[G|H],
>=) :-

!,
A#>=B#/\D#<E#\/A#<B#/\D#>=E#<=>G,
distance_change_signature([[var-B]|C],[[var-E]|F],H,>=).

distance_change_signature(
[[var-A],[var-B]|C],
[[var-D],[var-E]|F],
[G|H],
>) :-

!,
A#>B#/\D#=<E#\/A#=<B#/\D#>E#<=>G,
distance_change_signature([[var-B]|C],[[var-E]|F],H,>).

distance_change_signature(
[[var-A],[var-B]|C],
[[var-D],[var-E]|F],
[G|H],
=<) :-

!,
A#=<B#/\D#>E#\/A#>B#/\D#=<E#<=>G,
distance_change_signature([[var-B]|C],[[var-E]|F],H,=<).

1091

B.79 domain constraint

ctr_automaton(domain_constraint,domain_constraint).

ctr_date(domain_constraint,[’20030820’,’20040530’]).

ctr_origin(domain_constraint,’\\cite{Refalo00}’,[]).

ctr_arguments(
domain_constraint,
[’VAR’-dvar,’VALUES’-collection(var01-dvar,value-int)]).

ctr_restrictions(
domain_constraint,
[required(’VALUES’,[var01,value]),
’VALUES’ˆvar01>=0,
’VALUES’ˆvar01=<1,
distinct(’VALUES’,value)]).

ctr_derived_collections(
domain_constraint,
[col(’VALUE’-collection(var01-int,value-dvar),

[item(var01-1,value-’VAR’)])]).

ctr_graph(
domain_constraint,
[’VALUE’,’VALUES’],
2,
[’PRODUCT’>>collection(value,values)],
[valueˆvalue=valuesˆvalue#<=>valuesˆvar01=1],
[’NARC’=size(’VALUES’)]).

ctr_example(
domain_constraint,
domain_constraint(

5,
[[var01-0,value-9],
[var01-1,value-5],
[var01-0,value-2],
[var01-0,value-7]])).

domain_constraint(A,B) :-
domain_constraint_signature(B,C,A),
automaton(

C,
D,

1092 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

C,
0..1,
[source(s),sink(t)],
[arc(s,1,s),arc(s,$,t)],
[],
[],
[]).

domain_constraint_signature([],[],A).

domain_constraint_signature([[var01-A,value-B]|C],[D|E],F) :-
F#=B#<=>A#<=>D,
domain_constraint_signature(C,E,F).

1093

B.80 elem

ctr_automaton(elem,elem).

ctr_date(elem,[’20030820’,’20040530’]).

ctr_origin(elem,’Derived from %c.’,[element]).

ctr_usual_name(elem,element).

ctr_arguments(
elem,
[’ITEM’-collection(index-dvar,value-dvar),
’TABLE’-collection(index-int,value-dvar)]).

ctr_restrictions(
elem,
[required(’ITEM’,[index,value]),
’ITEM’ˆindex>=1,
’ITEM’ˆindex=<size(’TABLE’),
size(’ITEM’)=1,
required(’TABLE’,[index,value]),
’TABLE’ˆindex>=1,
’TABLE’ˆindex=<size(’TABLE’),
distinct(’TABLE’,index)]).

ctr_graph(
elem,
[’ITEM’,’TABLE’],
2,
[’PRODUCT’>>collection(item,table)],
[itemˆindex=tableˆindex,itemˆvalue=tableˆvalue],
[’NARC’=1]).

ctr_example(
elem,
elem(

[[index-3,value-2]],
[[index-1,value-6],
[index-2,value-9],
[index-3,value-2],
[index-4,value-9]])).

elem(A,B) :-
A=[[index-C,value-D]],
elem_signature(B,E,C,D),

1094 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

automaton(
E,
F,
E,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t)],
[],
[],
[]).

elem_signature([],[],A,B).

elem_signature([[index-A,value-B]|C],[D|E],F,G) :-
F#=A#/\G#=B#<=>D,
elem_signature(C,E,F,G).

1095

B.81 element

ctr_automaton(element,element_).

ctr_date(element,[’20000128’,’20030820’,’20040530’]).

ctr_origin(element,’\\cite{VanHentenryckCarillon88}’,[]).

ctr_arguments(
element,
[’INDEX’-dvar,’TABLE’-collection(value-dvar),’VALUE’-dvar]).

ctr_restrictions(
element,
[’INDEX’>=1,
’INDEX’=<size(’TABLE’),
required(’TABLE’,value)]).

ctr_derived_collections(
element,
[col(’ITEM’-collection(index-dvar,value-dvar),

[item(index-’INDEX’,value-’VALUE’)])]).

ctr_graph(
element,
[’ITEM’,’TABLE’],
2,
[’PRODUCT’>>collection(item,table)],
[itemˆindex=tableˆkey,itemˆvalue=tableˆvalue],
[’NARC’=1]).

ctr_example(
element,
element(3,[[value-6],[value-9],[value-2],[value-9]],2)).

element_(A,B,C) :-
length(B,D),
in(A,1..D),
element_signature(B,A,C,1,E),
automaton(

E,
F,
E,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t)],

1096 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[],
[],
[]).

element_signature([],A,B,C,[]).

element_signature([[value-A]|B],C,D,E,[F|G]) :-
C#=E#/\D#=A#<=>F,
H is E+1,
element_signature(B,C,D,H,G).

1097

B.82 element greatereq

ctr_automaton(element_greatereq,element_greatereq).

ctr_date(element_greatereq,[’20030820’,’20040530’]).

ctr_origin(
element_greatereq,
’\\cite{OttossonThorsteinssonHooker99}’,
[]).

ctr_arguments(
element_greatereq,
[’ITEM’-collection(index-dvar,value-dvar),
’TABLE’-collection(index-int,value-int)]).

ctr_restrictions(
element_greatereq,
[required(’ITEM’,[index,value]),
’ITEM’ˆindex>=1,
’ITEM’ˆindex=<size(’TABLE’),
size(’ITEM’)=1,
required(’TABLE’,[index,value]),
’TABLE’ˆindex>=1,
’TABLE’ˆindex=<size(’TABLE’),
distinct(’TABLE’,index)]).

ctr_graph(
element_greatereq,
[’ITEM’,’TABLE’],
2,
[’PRODUCT’>>collection(item,table)],
[itemˆindex=tableˆindex,itemˆvalue>=tableˆvalue],
[’NARC’=1]).

ctr_example(
element_greatereq,
element_greatereq(

[[index-1,value-8]],
[[index-1,value-6],
[index-2,value-9],
[index-3,value-2],
[index-4,value-9]])).

element_greatereq(A,B) :-
A=[[index-C,value-D]],

1098 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

element_greatereq_signature(B,E,C,D),
automaton(

E,
F,
E,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t)],
[],
[],
[]).

element_greatereq_signature([],[],A,B).

element_greatereq_signature([[index-A,value-B]|C],[D|E],F,G) :-
F#=A#/\G#>=B#<=>D,
element_greatereq_signature(C,E,F,G).

1099

B.83 element lesseq

ctr_automaton(element_lesseq,element_lesseq).

ctr_date(element_lesseq,[’20030820’,’20040530’]).

ctr_origin(
element_lesseq,
’\\cite{OttossonThorsteinssonHooker99}’,
[]).

ctr_arguments(
element_lesseq,
[’ITEM’-collection(index-dvar,value-dvar),
’TABLE’-collection(index-int,value-int)]).

ctr_restrictions(
element_lesseq,
[required(’ITEM’,[index,value]),
’ITEM’ˆindex>=1,
’ITEM’ˆindex=<size(’TABLE’),
size(’ITEM’)=1,
required(’TABLE’,[index,value]),
’TABLE’ˆindex>=1,
’TABLE’ˆindex=<size(’TABLE’),
distinct(’TABLE’,index)]).

ctr_graph(
element_lesseq,
[’ITEM’,’TABLE’],
2,
[’PRODUCT’>>collection(item,table)],
[itemˆindex=tableˆindex,itemˆvalue=<tableˆvalue],
[’NARC’=1]).

ctr_example(
element_lesseq,
element_lesseq(

[[index-3,value-1]],
[[index-1,value-6],
[index-2,value-9],
[index-3,value-2],
[index-4,value-9]])).

element_lesseq(A,B) :-
A=[[index-C,value-D]],

1100 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

element_lesseq_signature(B,E,C,D),
automaton(

E,
F,
E,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t)],
[],
[],
[]).

element_lesseq_signature([],[],A,B).

element_lesseq_signature([[index-A,value-B]|C],[D|E],F,G) :-
F#=A#/\G#=<B#<=>D,
element_lesseq_signature(C,E,F,G).

1101

B.84 element matrix

ctr_automaton(element_matrix,element_matrix).

ctr_date(element_matrix,[’20031101’]).

ctr_origin(element_matrix,’CHIP’,[]).

ctr_arguments(
element_matrix,
[’MAX_I’-int,
’MAX_J’-int,
’INDEX_I’-dvar,
’INDEX_J’-dvar,
’MATRIX’-collection(i-int,j-int,v-int),
’VALUE’-dvar]).

ctr_restrictions(
element_matrix,
[’MAX_I’>=1,
’MAX_J’>=1,
’INDEX_I’>=1,
’INDEX_I’=<’MAX_I’,
’INDEX_J’>=1,
’INDEX_J’=<’MAX_J’,
required(’MATRIX’,[i,j,v]),
increasing_seq(’MATRIX’,[i,j]),
’MATRIX’ˆi>=1,
’MATRIX’ˆi=<’MAX_I’,
’MATRIX’ˆj>=1,
’MATRIX’ˆj=<’MAX_J’,
size(’MATRIX’)=’MAX_I’*’MAX_J’]).

ctr_derived_collections(
element_matrix,
[col(-(’ITEM’,

collection(index_i-dvar,index_j-dvar,value-dvar)),
[item(

index_i-’INDEX_I’,
index_j-’INDEX_J’,
value-’VALUE’)])]).

ctr_graph(
element_matrix,
[’ITEM’,’MATRIX’],
2,

1102 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[’PRODUCT’>>collection(item,matrix)],
[itemˆindex_i=matrixˆi,
itemˆindex_j=matrixˆj,
itemˆvalue=matrixˆv],

[’NARC’=1]).

ctr_example(
element_matrix,
element_matrix(

4,
3,
1,
3,
[[i-1,j-1,v-4],
[i-1,j-2,v-1],
[i-1,j-3,v-7],
[i-2,j-1,v-1],
[i-2,j-2,v-0],
[i-2,j-3,v-8],
[i-3,j-1,v-3],
[i-3,j-2,v-2],
[i-3,j-3,v-1],
[i-4,j-1,v-0],
[i-4,j-2,v-0],
[i-4,j-3,v-6]],

7)).

element_matrix(A,B,C,D,E,F) :-
in(C,1..A),
in(D,1..B),
element_matrix_signature(E,C,D,F,G),
automaton(

G,
H,
G,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t)],
[],
[],
[]).

element_matrix_signature([],A,B,C,[]).

element_matrix_signature([[i-A,j-B,v-C]|D],E,F,G,[H|I]) :-
E#=A#/\F#=B#/\G#=C#<=>H,

1103

element_matrix_signature(D,E,F,G,I).

1104 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.85 element sparse

ctr_automaton(element_sparse,element_sparse).

ctr_date(element_sparse,[’20030820’,’20040530’]).

ctr_origin(element_sparse,’CHIP’,[]).

ctr_usual_name(element_sparse,element).

ctr_arguments(
element_sparse,
[’ITEM’-collection(index-dvar,value-dvar),
’TABLE’-collection(index-int,value-int),
’DEFAULT’-int]).

ctr_restrictions(
element_sparse,
[required(’ITEM’,[index,value]),
’ITEM’ˆindex>=1,
size(’ITEM’)=1,
required(’TABLE’,[index,value]),
’TABLE’ˆindex>=1,
distinct(’TABLE’,index)]).

ctr_derived_collections(
element_sparse,
[col(’DEF’-collection(index-int,value-int),

[item(index-0,value-’DEFAULT’)]),
col(’TABLE_DEF’-collection(index-dvar,value-dvar),

[item(index-’TABLE’ˆindex,value-’TABLE’ˆvalue),
item(index-’DEF’ˆindex,value-’DEF’ˆvalue)])]).

ctr_graph(
element_sparse,
[’ITEM’,’TABLE_DEF’],
2,
[’PRODUCT’>>collection(item,table_def)],
[itemˆvalue=table_defˆvalue,
itemˆindex=table_defˆindex#\/table_defˆindex=0],

[’NARC’>=1]).

ctr_example(
element_sparse,
element_sparse(

[[index-2,value-5]],

1105

[[index-1,value-6],
[index-2,value-5],
[index-4,value-2],
[index-8,value-9]],

5)).

element_sparse(A,B,C) :-
A=[[index-D,value-E]],
element_sparse_signature(B,F,D,E,C),
automaton(

F,
G,
F,
0..2,
[source(s),node(d),sink(t)],
[arc(s,0,s),
arc(s,1,t),
arc(s,2,d),
arc(d,1,t),
arc(d,2,d),
arc(d,$,t)],

[],
[],
[]).

element_sparse_signature([],[],A,B,C).

element_sparse_signature([[index-A,value-B]|C],[D|E],F,G,H) :-
in(D,0..2),
F#\=A#/\G#\=H#<=>D#=0,
F#=A#/\G#=B#<=>D#=1,
F#\=A#/\G#=H#<=>D#=2,
element_sparse_signature(C,E,F,G,H).

1106 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.86 elements
ctr_date(elements,[’20030820’]).

ctr_origin(elements,’Derived from %c.’,[element]).

ctr_arguments(
elements,
[’ITEMS’-collection(index-dvar,value-dvar),
’TABLE’-collection(index-int,value-dvar)]).

ctr_restrictions(
elements,
[required(’ITEMS’,[index,value]),
’ITEMS’ˆindex>=1,
’ITEMS’ˆindex=<size(’TABLE’),
required(’TABLE’,[index,value]),
’TABLE’ˆindex>=1,
’TABLE’ˆindex=<size(’TABLE’),
distinct(’TABLE’,index)]).

ctr_graph(
elements,
[’ITEMS’,’TABLE’],
2,
[’PRODUCT’>>collection(items,table)],
[itemsˆindex=tableˆindex,itemsˆvalue=tableˆvalue],
[’NARC’=size(’ITEMS’)]).

ctr_example(
elements,
elements(

[[index-4,value-9],[index-1,value-6]],
[[index-1,value-6],
[index-2,value-9],
[index-3,value-2],
[index-4,value-9]])).

1107

B.87 elements alldifferent

ctr_date(elements_alldifferent,[’20030820’]).

ctr_origin(
elements_alldifferent,
’Derived from %c and %c.’,
[elements,alldifferent]).

ctr_synonyms(
elements_alldifferent,
[elements_alldiff,elements_alldistinct]).

ctr_arguments(
elements_alldifferent,
[’ITEMS’-collection(index-dvar,value-dvar),
’TABLE’-collection(index-int,value-dvar)]).

ctr_restrictions(
elements_alldifferent,
[required(’ITEMS’,[index,value]),
’ITEMS’ˆindex>=1,
’ITEMS’ˆindex=<size(’TABLE’),
size(’ITEMS’)=size(’TABLE’),
required(’TABLE’,[index,value]),
’TABLE’ˆindex>=1,
’TABLE’ˆindex=<size(’TABLE’),
distinct(’TABLE’,index)]).

ctr_graph(
elements_alldifferent,
[’ITEMS’,’TABLE’],
2,
[’PRODUCT’>>collection(items,table)],
[itemsˆindex=tableˆindex,itemsˆvalue=tableˆvalue],
[’NVERTEX’=size(’ITEMS’)+size(’TABLE’)]).

ctr_example(
elements_alldifferent,
elements_alldifferent(

[[index-2,value-9],
[index-1,value-6],
[index-4,value-9],
[index-3,value-2]],

[[index-1,value-6],
[index-2,value-9],

1108 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[index-3,value-2],
[index-4,value-9]])).

1109

B.88 elements sparse

ctr_date(elements_sparse,[’20030820’]).

ctr_origin(elements_sparse,’Derived from %c.’,[element_sparse]).

ctr_arguments(
elements_sparse,
[’ITEMS’-collection(index-dvar,value-dvar),
’TABLE’-collection(index-int,value-int),
’DEFAULT’-int]).

ctr_restrictions(
elements_sparse,
[required(’ITEMS’,[index,value]),
’ITEMS’ˆindex>=1,
required(’TABLE’,[index,value]),
’TABLE’ˆindex>=1,
distinct(’TABLE’,index)]).

ctr_derived_collections(
elements_sparse,
[col(’DEF’-collection(index-int,value-int),

[item(index-0,value-’DEFAULT’)]),
col(’TABLE_DEF’-collection(index-dvar,value-dvar),

[item(index-’TABLE’ˆindex,value-’TABLE’ˆindex),
item(index-’DEF’ˆindex,value-’DEF’ˆvalue)])]).

ctr_graph(
elements_sparse,
[’ITEMS’,’TABLE_DEF’],
2,
[’PRODUCT’>>collection(items,table_def)],
[itemsˆvalue=table_defˆvalue,
itemsˆindex=table_defˆindex#\/table_defˆindex=0],

[’NSOURCE’=size(’ITEMS’)]).

ctr_example(
elements_sparse,
elements_sparse(

[[index-8,value-9],
[index-3,value-5],
[index-2,value-5]],

[[index-1,value-6],
[index-2,value-5],
[index-4,value-2],

1110 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[index-8,value-9]],
5)).

1111

B.89 eq set
ctr_predefined(eq_set).

ctr_date(eq_set,[’20030820’]).

ctr_origin(
eq_set,
’Used for defining %c.’,
[alldifferent_between_sets]).

ctr_arguments(eq_set,[’SET1’-svar,’SET2’-svar]).

ctr_example(eq_set,eq_set({3,5},{3,5})).

1112 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.90 exactly

ctr_automaton(exactly,exactly).

ctr_date(exactly,[’20040807’]).

ctr_origin(exactly,’Derived from %c and %c.’,[atleast,atmost]).

ctr_arguments(
exactly,
[’N’-int,’VARIABLES’-collection(var-dvar),’VALUE’-int]).

ctr_restrictions(
exactly,
[’N’>=0,’N’=<size(’VARIABLES’),required(’VARIABLES’,var)]).

ctr_graph(
exactly,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[variablesˆvar=’VALUE’],
[’NARC’=’N’]).

ctr_example(
exactly,
exactly(2,[[var-4],[var-2],[var-4],[var-5]],4)).

exactly(A,B,C) :-
exactly_signature(B,D,C),
automaton(

D,
E,
D,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[F+1]),arc(s,$,t)],
[F],
[0],
[A]).

exactly_signature([],[],A).

exactly_signature([[var-A]|B],[C|D],E) :-
A#=E#<=>C,
exactly_signature(B,D,E).

1113

1114 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.91 global cardinality
ctr_date(global_cardinality,[’20030820’,’20040530’]).

ctr_origin(global_cardinality,’CHARME’,[]).

ctr_synonyms(
global_cardinality,
[distribute,distribution,gcc,card_var_gcc,egcc]).

ctr_arguments(
global_cardinality,
[’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int,noccurrence-dvar)]).

ctr_restrictions(
global_cardinality,
[required(’VARIABLES’,var),
required(’VALUES’,[val,noccurrence]),
distinct(’VALUES’,val),
’VALUES’ˆnoccurrence>=0,
’VALUES’ˆnoccurrence=<size(’VARIABLES’)]).

ctr_graph(
global_cardinality,
[’VARIABLES’],
1,
foreach(’VALUES’,[’SELF’>>collection(variables)]),
[variablesˆvar=’VALUES’ˆval],
[’NVERTEX’=’VALUES’ˆnoccurrence]).

ctr_example(
global_cardinality,
global_cardinality(

[[var-3],[var-3],[var-8],[var-6]],
[[val-3,noccurrence-2],
[val-5,noccurrence-0],
[val-6,noccurrence-1]])).

1115

B.92 global cardinality low up
ctr_date(global_cardinality_low_up,[’20031008’,’20040530’]).

ctr_origin(
global_cardinality_low_up,
’Used for defining %c.’,
[sliding_distribution]).

ctr_arguments(
global_cardinality_low_up,
[’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int,omin-int,omax-int)]).

ctr_restrictions(
global_cardinality_low_up,
[required(’VARIABLES’,var),
size(’VALUES’)>0,
required(’VALUES’,[val,omin,omax]),
distinct(’VALUES’,val),
’VALUES’ˆomin>=0,
’VALUES’ˆomax=<size(’VARIABLES’),
’VALUES’ˆomin=<’VALUES’ˆomax]).

ctr_graph(
global_cardinality_low_up,
[’VARIABLES’],
1,
foreach(’VALUES’,[’SELF’>>collection(variables)]),
[variablesˆvar=’VALUES’ˆval],
[’NVERTEX’>=’VALUES’ˆomin,’NVERTEX’=<’VALUES’ˆomax]).

ctr_example(
global_cardinality_low_up,
global_cardinality_low_up(

[[var-3],[var-3],[var-8],[var-6]],
[[val-3,omin-2,omax-3],
[val-5,omin-0,omax-1],
[val-6,omin-1,omax-2]])).

1116 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.93 global cardinality with costs

ctr_date(global_cardinality_with_costs,[’20030820’,’20040530’]).

ctr_origin(global_cardinality_with_costs,’\\cite{Regin99a}’,[]).

ctr_synonyms(global_cardinality_with_costs,[gccc,cost_gcc]).

ctr_arguments(
global_cardinality_with_costs,
[’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int,noccurrence-dvar),
’MATRIX’-collection(i-int,j-int,c-int),
’COST’-dvar]).

ctr_restrictions(
global_cardinality_with_costs,
[required(’VARIABLES’,var),
required(’VALUES’,[val,noccurrence]),
distinct(’VALUES’,val),
’VALUES’ˆnoccurrence>=0,
’VALUES’ˆnoccurrence=<size(’VARIABLES’),
required(’MATRIX’,[i,j,c]),
increasing_seq(’MATRIX’,[i,j]),
’MATRIX’ˆi>=1,
’MATRIX’ˆi=<size(’VARIABLES’),
’MATRIX’ˆj>=1,
’MATRIX’ˆj=<size(’VALUES’),
size(’MATRIX’)=size(’VARIABLES’)*size(’VALUES’)]).

ctr_graph(
global_cardinality_with_costs,
[’VARIABLES’],
1,
foreach(’VALUES’,[’SELF’>>collection(variables)]),
[variablesˆvar=’VALUES’ˆval],
[’NVERTEX’=’VALUES’ˆnoccurrence]).

ctr_graph(
global_cardinality_with_costs,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=valuesˆval],
[=(’SUM_WEIGHT_ARC’(

ˆ(@(’MATRIX’,

1117

+((variablesˆkey-1)*size(’VALUES’),
valuesˆkey)),

c)),
’COST’)]).

ctr_example(
global_cardinality_with_costs,
global_cardinality_with_costs(

[[var-3],[var-3],[var-3],[var-6]],
[[val-3,noccurrence-3],
[val-5,noccurrence-0],
[val-6,noccurrence-1]],

[[i-1,j-1,c-4],
[i-1,j-2,c-1],
[i-1,j-3,c-7],
[i-2,j-1,c-1],
[i-2,j-2,c-0],
[i-2,j-3,c-8],
[i-3,j-1,c-3],
[i-3,j-2,c-2],
[i-3,j-3,c-1],
[i-4,j-1,c-0],
[i-4,j-2,c-0],
[i-4,j-3,c-6]],

14)).

1118 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.94 global contiguity

ctr_automaton(global_contiguity,global_contiguity).

ctr_date(global_contiguity,[’20030820’,’20040530’]).

ctr_origin(global_contiguity,’\\cite{Maher02}’,[]).

ctr_arguments(
global_contiguity,
[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
global_contiguity,
[required(’VARIABLES’,var),
’VARIABLES’ˆvar>=0,
’VARIABLES’ˆvar=<1]).

ctr_graph(
global_contiguity,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2),
’LOOP’>>collection(variables1,variables2)],

[variables1ˆvar=variables2ˆvar,variables1ˆvar=1],
[’NCC’=<1]).

ctr_example(
global_contiguity,
global_contiguity([[var-0],[var-1],[var-1],[var-0]])).

global_contiguity(A) :-
col_to_list(A,B),
automaton(

B,
C,
B,
0..1,
[source(s),node(n),node(z),sink(t)],
[arc(s,0,s),
arc(s,1,n),
arc(s,$,t),
arc(n,0,z),
arc(n,1,n),
arc(n,$,t),
arc(z,0,z),

1119

arc(z,$,t)],
[],
[],
[]).

1120 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.95 golomb
ctr_date(golomb,[’20000128’,’20030820’,’20040530’]).

ctr_origin(golomb,’Inspired by \\cite{Golomb72}.’,[]).

ctr_arguments(golomb,[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
golomb,
[required(’VARIABLES’,var),’VARIABLES’ˆvar>=0]).

ctr_derived_collections(
golomb,
[col(’PAIRS’-collection(x-dvar,y-dvar),

[> -item(x-’VARIABLES’ˆvar,y-’VARIABLES’ˆvar)])]).

ctr_graph(
golomb,
[’PAIRS’],
2,
[’CLIQUE’>>collection(pairs1,pairs2)],
[pairs1ˆy-pairs1ˆx=pairs2ˆy-pairs2ˆx],
[’MAX_NSCC’=<1]).

ctr_example(golomb,golomb([[var-0],[var-1],[var-4],[var-6]])).

1121

B.96 graph crossing

ctr_date(graph_crossing,[’20000128’,’20030820’,’20040530’]).

ctr_origin(graph_crossing,’N.˜Beldiceanu’,[]).

ctr_arguments(
graph_crossing,
[’NCROSS’-dvar,’NODES’-collection(succ-dvar,x-int,y-int)]).

ctr_restrictions(
graph_crossing,
[’NCROSS’>=0,
required(’NODES’,[succ,x,y]),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_graph(
graph_crossing,
[’NODES’],
2,
[’CLIQUE’(<)>>collection(n1,n2)],
[>=(max(n1ˆx,’NODES’@(n1ˆsucc)ˆx),

min(n2ˆx,’NODES’@(n2ˆsucc)ˆx)),
>=(max(n2ˆx,’NODES’@(n2ˆsucc)ˆx),

min(n1ˆx,’NODES’@(n1ˆsucc)ˆx)),
>=(max(n1ˆy,’NODES’@(n1ˆsucc)ˆy),

min(n2ˆy,’NODES’@(n2ˆsucc)ˆy)),
>=(max(n2ˆy,’NODES’@(n2ˆsucc)ˆy),

min(n1ˆy,’NODES’@(n1ˆsucc)ˆy)),
=\=(-(*(n2ˆx-’NODES’@(n1ˆsucc)ˆx,

’NODES’@(n1ˆsucc)ˆy-n1ˆy),
*(’NODES’@(n1ˆsucc)ˆx-n1ˆx,
n2ˆy-’NODES’@(n1ˆsucc)ˆy)),

0),
=\=(-(*(’NODES’@(n2ˆsucc)ˆx-’NODES’@(n1ˆsucc)ˆx,

n2ˆy-n1ˆy),
*(n2ˆx-n1ˆx,
’NODES’@(n2ˆsucc)ˆy-’NODES’@(n1ˆsucc)ˆy)),

0),
=\=(sign(

-(*(n2ˆx-’NODES’@(n1ˆsucc)ˆx,
’NODES’@(n1ˆsucc)ˆy-n1ˆy),

*(’NODES’@(n1ˆsucc)ˆx-n1ˆx,
n2ˆy-’NODES’@(n1ˆsucc)ˆy))),

sign(

1122 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

-(*(’NODES’@(n2ˆsucc)ˆx-’NODES’@(n1ˆsucc)ˆx,
n2ˆy-n1ˆy),

*(n2ˆx-n1ˆx,
’NODES’@(n2ˆsucc)ˆy-’NODES’@(n1ˆsucc)ˆy))))],

[’NARC’=’NCROSS’]).

ctr_example(
graph_crossing,
graph_crossing(

2,
[[succ-1,x-4,y-7],
[succ-1,x-2,y-5],
[succ-1,x-7,y-6],
[succ-2,x-1,y-2],
[succ-3,x-2,y-2],
[succ-2,x-5,y-3],
[succ-3,x-8,y-2],
[succ-9,x-6,y-2],
[succ-10,x-10,y-6],
[succ-8,x-10,y-1]])).

1123

B.97 group

ctr_automaton(group,group).

ctr_date(group,[’20000128’,’20030820’,’20040530’]).

ctr_origin(group,’CHIP’,[]).

ctr_arguments(
group,
[’NGROUP’-dvar,
’MIN_SIZE’-dvar,
’MAX_SIZE’-dvar,
’MIN_DIST’-dvar,
’MAX_DIST’-dvar,
’NVAL’-dvar,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_restrictions(
group,
[’NGROUP’>=0,
’MIN_SIZE’>=0,
’MAX_SIZE’>=’MIN_SIZE’,
’MIN_DIST’>=0,
’MAX_DIST’>=’MIN_DIST’,
’NVAL’>=0,
required(’VARIABLES’,var),
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_graph(
group,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2),
’LOOP’>>collection(variables1,variables2)],

[in(variables1ˆvar,’VALUES’),in(variables2ˆvar,’VALUES’)],
[’NCC’=’NGROUP’,
’MIN_NCC’=’MIN_SIZE’,
’MAX_NCC’=’MAX_SIZE’,
’NVERTEX’=’NVAL’]).

ctr_graph(
group,
[’VARIABLES’],

1124 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

2,
[’PATH’>>collection(variables1,variables2),
’LOOP’>>collection(variables1,variables2)],

[not_in(variables1ˆvar,’VALUES’),
not_in(variables2ˆvar,’VALUES’)],

[’MIN_NCC’=’MIN_DIST’,’MAX_NCC’=’MAX_DIST’]).

ctr_example(
group,
group(

2,
1,
2,
2,
4,
3,
[[var-2],
[var-8],
[var-1],
[var-7],
[var-4],
[var-5],
[var-1],
[var-1],
[var-1]],

[[val-0],[val-2],[val-4],[val-6],[val-8]])).

group(A,B,C,D,E,F,G,H) :-
group_ngroup(A,G,H),
group_min_size(B,G,H),
group_max_size(C,G,H),
group_min_dist(D,G,H),
group_max_dist(E,G,H),
group_nval(F,G,H).

group_ngroup(A,B,C) :-
col_to_list(C,D),
list_to_fdset(D,E),
group_signature_in(B,F,E),
automaton(

F,
G,
F,
0..1,
[source(s),node(i),sink(t)],
[arc(s,0,s),

1125

arc(s,1,i,[H+1]),
arc(s,$,t),
arc(i,1,i),
arc(i,0,s),
arc(i,$,t)],

[H],
[0],
[A]).

group_min_size(A,B,C) :-
length(B,D),
col_to_list(C,E),
list_to_fdset(E,F),
group_signature_in(B,G,F),
automaton(

G,
H,
G,
0..1,
[source(s),node(j),node(k),sink(t)],
[arc(s,0,s),
arc(s,1,j,[D,I]),
arc(s,$,t),
arc(j,1,j,[J,I+1]),
arc(j,0,k,[min(J,I),I]),
arc(j,$,t,[min(J,I),I]),
arc(k,0,k),
arc(k,1,j,[J,1]),
arc(k,$,t)],

[J,I],
[0,1],
[A,K]).

group_max_size(A,B,C) :-
col_to_list(C,D),
list_to_fdset(D,E),
group_signature_in(B,F,E),
automaton(

F,
G,
F,
0..1,
[source(s),sink(t)],
[arc(s,1,s,[H,I+1]),
arc(s,0,s,[max(H,I),0]),
arc(s,$,t,[max(H,I),I])],

1126 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[H,I],
[0,0],
[A,J]).

group_min_dist(A,B,C) :-
length(B,D),
col_to_list(C,E),
list_to_fdset(E,F),
group_signature_not_in(B,G,F),
automaton(

G,
H,
G,
0..1,
[source(s),node(j),node(k),sink(t)],
[arc(s,0,s),
arc(s,1,j,[D,I]),
arc(s,$,t),
arc(j,1,j,[J,I+1]),
arc(j,0,k,[min(J,I),I]),
arc(j,$,t,[min(J,I),I]),
arc(k,0,k),
arc(k,1,j,[J,1]),
arc(k,$,t)],
[J,I],
[0,1],
[A,K]).

group_max_dist(A,B,C) :-
col_to_list(C,D),
list_to_fdset(D,E),
group_signature_not_in(B,F,E),
automaton(

F,
G,
F,
0..1,
[source(s),sink(t)],
[arc(s,1,s,[H,I+1]),
arc(s,0,s,[max(H,I),0]),
arc(s,$,t,[max(H,I),I])],
[H,I],
[0,0],
[A,J]).

group_nval(A,B,C) :-

1127

col_to_list(C,D),
list_to_fdset(D,E),
group_signature_in(B,F,E),
automaton(

F,
G,
F,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[H+1]),arc(s,$,t)],
[H],
[0],
[A]).

group_signature_in([],[],A).

group_signature_in([[var-A]|B],[C|D],E) :-
in_set(A,E)#<=>C,
group_signature_in(B,D,E).

group_signature_not_in([],[],A).

group_signature_not_in([[var-A]|B],[C|D],E) :-
in_set(A,E)#<=> #\C,
group_signature_not_in(B,D,E).

1128 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.98 group skip isolated item

ctr_automaton(
group_skip_isolated_item,
group_skip_isolated_item).

ctr_date(
group_skip_isolated_item,
[’20000128’,’20030820’,’20040530’]).

ctr_origin(group_skip_isolated_item,’Derived from %c.’,[group]).

ctr_arguments(
group_skip_isolated_item,
[’NGROUP’-dvar,
’MIN_SIZE’-dvar,
’MAX_SIZE’-dvar,
’NVAL’-dvar,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_restrictions(
group_skip_isolated_item,
[’NGROUP’>=0,
’MIN_SIZE’>=0,
’MAX_SIZE’>=’MIN_SIZE’,
’NVAL’>=0,
required(’VARIABLES’,var),
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_graph(
group_skip_isolated_item,
[’VARIABLES’],
2,
[’CHAIN’>>collection(variables1,variables2)],
[in(variables1ˆvar,’VALUES’),in(variables2ˆvar,’VALUES’)],
[’NSCC’=’NGROUP’,
’MIN_NSCC’=’MIN_SIZE’,
’MAX_NSCC’=’MAX_SIZE’,
’NVERTEX’=’NVAL’]).

ctr_example(
group_skip_isolated_item,
group_skip_isolated_item(

1,

1129

2,
2,
3,
[[var-2],
[var-8],
[var-1],
[var-7],
[var-4],
[var-5],
[var-1],
[var-1],
[var-1]],

[[val-0],[val-2],[val-4],[val-6],[val-8]])).

group_skip_isolated_item(A,B,C,D,E,F) :-
group_skip_isolated_item_ngroup(A,E,F),
group_skip_isolated_item_min_size(B,E,F),
group_skip_isolated_item_max_size(C,E,F),
group_skip_isolated_item_nval(D,E,F).

group_skip_isolated_item_ngroup(A,B,C) :-
col_to_list(C,D),
list_to_fdset(D,E),
group_skip_isolated_item_signature(B,F,E),
automaton(

F,
G,
F,
0..1,
[source(s),node(i),node(j),sink(t)],
[arc(s,0,s),
arc(s,1,i),
arc(s,$,t),
arc(i,0,s),
arc(i,1,j,[H+1]),
arc(i,$,t),
arc(j,1,j),
arc(j,0,s),
arc(j,$,t)],

[H],
[0],
[A]).

group_skip_isolated_item_min_size(A,B,C) :-
length(B,D),
col_to_list(C,E),

1130 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

list_to_fdset(E,F),
group_skip_isolated_item_signature(B,G,F),
automaton(

G,
H,
G,
0..1,
[source(s),
node(j),
node(k),
node(l),
node(m),
sink(t)],
[arc(s,0,s),
arc(s,1,j),
arc(s,$,t),
arc(j,0,s),
arc(j,1,k,[D,I]),
arc(j,$,t),
arc(k,1,k,[J,I+1]),
arc(k,0,l,[min(J,I),I]),
arc(k,$,t,[min(J,I),I]),
arc(l,0,l),
arc(l,1,m),
arc(l,$,t),
arc(m,0,l),
arc(m,1,k,[J,2]),
arc(m,$,t)],
[J,I],
[0,2],
[A,K]).

group_skip_isolated_item_max_size(A,B,C) :-
col_to_list(C,D),
list_to_fdset(D,E),
group_skip_isolated_item_signature(B,F,E),
automaton(

F,
G,
F,
0..1,
[source(s),node(i),sink(t)],
[arc(s,0,s),
arc(s,1,i,[H,1]),
arc(s,$,t),
arc(i,0,s,[max(H,I),I]),

1131

arc(i,1,i,[H,I+1]),
arc(i,$,t,[max(H,I),I])],

[H,I],
[0,0],
[A,J]).

group_skip_isolated_item_nval(A,B,C) :-
col_to_list(C,D),
list_to_fdset(D,E),
group_skip_isolated_item_signature(B,F,E),
automaton(

F,
G,
F,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[H+1]),arc(s,$,t)],
[H],
[0],
[A]).

group_skip_isolated_item_signature([],[],A).

group_skip_isolated_item_signature([[var-A]|B],[C|D],E) :-
in_set(A,E)#<=>C,
group_skip_isolated_item_signature(B,D,E).

1132 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.99 heighest peak

ctr_automaton(heighest_peak,heighest_peak).

ctr_date(heighest_peak,[’20040530’]).

ctr_origin(heighest_peak,’Derived from %c.’,[peak]).

ctr_arguments(
heighest_peak,
[’HEIGHT’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
heighest_peak,
[’HEIGHT’>=0,’VARIABLES’ˆvar>=0,required(’VARIABLES’,var)]).

ctr_example(
heighest_peak,
heighest_peak(

8,
[[var-1],
[var-1],
[var-4],
[var-8],
[var-6],
[var-2],
[var-7],
[var-1]])).

heighest_peak(A,B) :-
heighest_peak_signature(B,C,D),
automaton(

D,
E-F,
C,
0..2,
[source(s),node(u),sink(t)],
[arc(s,0,s),
arc(s,1,s),
arc(s,2,u),
arc(s,$,t),
arc(u,0,s,[max(G,E)]),
arc(u,1,u),
arc(u,2,u),
arc(u,$,t)],
[G],

1133

[0],
[A]).

heighest_peak_signature([],[],[]).

heighest_peak_signature([A],[],[]).

heighest_peak_signature([[var-A],[var-B]|C],[D|E],[A-B|F]) :-
in(D,0..2),
A#>B#<=>D#=0,
A#=B#<=>D#=1,
A#<B#<=>D#=2,
heighest_peak_signature([[var-B]|C],E,F).

1134 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.100 in

ctr_automaton(in,in_).

ctr_date(in,[’20030820’,’20040530’]).

ctr_origin(in,’Domain definition.’,[]).

ctr_arguments(in,[’VAR’-dvar,’VALUES’-collection(val-int)]).

ctr_restrictions(
in,
[required(’VALUES’,val),distinct(’VALUES’,val)]).

ctr_derived_collections(
in,
[col(’VARIABLES’-collection(var-dvar),[item(var-’VAR’)])]).

ctr_graph(
in,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=valuesˆval],
[’NARC’=1]).

ctr_example(in,in(3,[[val-1],[val-3]])).

in_(A,B) :-
in_signature(B,C,A),
automaton(

C,
D,
C,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t)],
[],
[],
[]).

in_signature([],[],A).

in_signature([[val-A]|B],[C|D],E) :-
E#=A#<=>C,
in_signature(B,D,E).

1135

1136 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.101 in relation

ctr_date(in_relation,[’20030820’,’20040530’]).

ctr_origin(
in_relation,
’Constraint explicitely defined by tuples of values.’,
[]).

ctr_synonyms(in_relation,[extension]).

ctr_types(
in_relation,
[’TUPLE_OF_VARS’-collection(var-dvar),
’TUPLE_OF_VALS’-collection(val-int)]).

ctr_arguments(
in_relation,
[’VARIABLES’-’TUPLE_OF_VARS’,
’TUPLES_OF_VALS’-collection(tuple-’TUPLE_OF_VALS’)]).

ctr_restrictions(
in_relation,
[required(’TUPLE_OF_VARS’,var),
required(’TUPLE_OF_VALS’,val),
required(’TUPLES_OF_VALS’,tuple),
min_size(’TUPLES_OF_VALS’,tuple)=size(’VARIABLES’),
max_size(’TUPLES_OF_VALS’,tuple)=size(’VARIABLES’)]).

ctr_derived_collections(
in_relation,
[col(’TUPLES_OF_VARS’-collection(vec-’TUPLE_OF_VARS’),

[item(vec-’VARIABLES’)])]).

ctr_graph(
in_relation,
[’TUPLES_OF_VARS’,’TUPLES_OF_VALS’],
2,
[’PRODUCT’>>collection(tuples_of_vars,tuples_of_vals)],
[vec_eq_tuple(tuples_of_varsˆvec,tuples_of_valsˆtuple)],
[’NARC’>=1]).

ctr_example(
in_relation,
in_relation(

[[var-5],[var-3],[var-3]],

1137

[[tuple-[[val-5],[val-2],[val-3]]],
[tuple-[[val-5],[val-2],[val-6]]],
[tuple-[[val-5],[val-3],[val-3]]]])).

1138 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.102 in same partition

ctr_automaton(in_same_partition,in_same_partition).

ctr_date(in_same_partition,[’20030820’,’20040530’]).

ctr_origin(
in_same_partition,
’Used for defining several entries of this catalog.’,
[]).

ctr_types(in_same_partition,[’VALUES’-collection(val-int)]).

ctr_arguments(
in_same_partition,
[’VAR1’-dvar,
’VAR2’-dvar,
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
in_same_partition,
[required(’VALUES’,val),
distinct(’VALUES’,val),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_derived_collections(
in_same_partition,
[col(’VARIABLES’-collection(var-dvar),

[item(var-’VAR1’),item(var-’VAR2’)])]).

ctr_graph(
in_same_partition,
[’VARIABLES’,’PARTITIONS’],
2,
[’PRODUCT’>>collection(variables,partitions)],
[in(variablesˆvar,partitionsˆp)],
[’NSOURCE’=2,’NSINK’=1]).

ctr_example(
in_same_partition,
in_same_partition(

6,
2,
[[p-[[val-1],[val-3]]],
[p-[[val-4]]],

1139

[p-[[val-2],[val-6]]]])).

in_same_partition(A,B,C) :-
in_same_partition_signature(C,D,A,B),
automaton(

D,
E,
D,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t)],
[],
[],
[]).

in_same_partition_signature([],[],A,B).

in_same_partition_signature([[p-A]|B],[C|D],E,F) :-
col_to_list(A,G),
list_to_fdset(G,H),
in_set(E,H)#/\in_set(F,H)#<=>C,
in_same_partition_signature(B,D,E,F).

1140 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.103 in set
ctr_predefined(in_set).

ctr_date(in_set,[’20030820’]).

ctr_origin(
in_set,
’Used for defining constraints with set variables.’,
[]).

ctr_arguments(in_set,[’VAL’-dvar,’SET’-svar]).

ctr_example(in_set,in_set(3,{1,3})).

1141

B.104 increasing

ctr_automaton(increasing,increasing).

ctr_date(increasing,[’20040814’]).

ctr_origin(increasing,’KOALOG’,[]).

ctr_arguments(increasing,[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
increasing,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_graph(
increasing,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[variables1ˆvar=<variables2ˆvar],
[’NARC’=size(’VARIABLES’)-1]).

ctr_example(
increasing,
increasing([[var-1],[var-1],[var-4],[var-8]])).

increasing(A) :-
increasing_signature(A,B),
automaton(

B,
C,
B,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,$,t)],
[],
[],
[]).

increasing_signature([A],[]).

increasing_signature([[var-A],[var-B]|C],[D|E]) :-
in(D,0..1),
A#>B#<=>D,
increasing_signature([[var-B]|C],E).

1142 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.105 indexed sum
ctr_date(indexed_sum,[’20040814’]).

ctr_origin(indexed_sum,’N.˜Beldiceanu’,[]).

ctr_arguments(
indexed_sum,
[’ITEMS’-collection(index-dvar,weight-dvar),
’TABLE’-collection(index-int,sum-dvar)]).

ctr_restrictions(
indexed_sum,
[size(’ITEMS’)>0,
size(’TABLE’)>0,
required(’ITEMS’,[index,weight]),
’ITEMS’ˆindex>=0,
’ITEMS’ˆindex<size(’TABLE’),
required(’TABLE’,[index,sum]),
’TABLE’ˆindex>=0,
’TABLE’ˆindex<size(’TABLE’),
increasing_seq(’TABLE’,index)]).

ctr_graph(
indexed_sum,
[’ITEMS’,’TABLE’],
2,
foreach(’TABLE’,[’PRODUCT’>>collection(items,table)]),
[itemsˆindex=tableˆindex],
[],
[>>(’SUCC’,

[source,
-(variables,

col(’VARIABLES’-collection(var-dvar),
[item(var-’ITEMS’ˆweight)]))])],

[sum_ctr(variables,=,’TABLE’ˆsum)]).

ctr_example(
indexed_sum,
indexed_sum(

[[index-2,weight- -4],
[index-0,weight-6],
[index-2,weight-1]],

[[index-0,sum-6],[index-1,sum-0],[index-2,sum- -3]])).

1143

B.106 inflexion

ctr_automaton(inflexion,inflexion).

ctr_date(inflexion,[’20000128’,’20030820’,’20040530’]).

ctr_origin(inflexion,’N.˜Beldiceanu’,[]).

ctr_arguments(
inflexion,
[’N’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
inflexion,
[’N’>=1,’N’=<size(’VARIABLES’),required(’VARIABLES’,var)]).

ctr_example(
inflexion,
inflexion(

3,
[[var-1],
[var-1],
[var-4],
[var-8],
[var-8],
[var-2],
[var-7],
[var-1]])).

inflexion(A,B) :-
inflexion_signature(B,C),
automaton(

C,
D,
C,
0..2,
[source(s),node(i),node(j),sink(t)],
[arc(s,1,s),
arc(s,2,i),
arc(s,0,j),
arc(s,$,t),
arc(i,1,i),
arc(i,2,i),
arc(i,0,j,[E+1]),
arc(i,$,t),
arc(j,1,j),

1144 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

arc(j,0,j),
arc(j,2,i,[E+1]),
arc(j,$,t)],
[E],
[0],
[A]).

inflexion_signature([],[]).

inflexion_signature([A],[]).

inflexion_signature([[var-A],[var-B]|C],[D|E]) :-
in(D,0..2),
A#>B#<=>D#=0,
A#=B#<=>D#=1,
A#<B#<=>D#=2,
inflexion_signature([[var-B]|C],E).

1145

B.107 int value precede
ctr_automaton(int_value_precede,int_value_precede).

ctr_date(int_value_precede,[’20041003’]).

ctr_origin(int_value_precede,’\\cite{YatChiuLawJimmyLee04}’,[]).

ctr_arguments(
int_value_precede,
[’S’-int,’T’-int,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
int_value_precede,
[’S’=\=’T’,required(’VARIABLES’,var)]).

ctr_example(
int_value_precede,
int_value_precede(

0,
1,
[[var-4],[var-0],[var-6],[var-1],[var-0]])).

int_value_precede(A,B,C) :-
int_value_precede_signature(C,D,A,B),
automaton(

D,
E,
D,
1..3,
[source(s),sink(t)],
[arc(s,3,s),arc(s,1,t),arc(s,$,t)],
[],
[],
[]).

int_value_precede_signature([],[],A,B).

int_value_precede_signature([[var-A]|B],[C|D],E,F) :-
in(C,1..3),
A#=E#<=>C#=1,
A#=F#<=>C#=2,
A#\=E#/\A#\=F#<=>C#=3,
int_value_precede_signature(B,D,E,F).

1146 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.108 int value precede chain
ctr_automaton(int_value_precede_chain,int_value_precede_chain).

ctr_date(int_value_precede_chain,[’20041003’]).

ctr_origin(
int_value_precede_chain,
’\\cite{YatChiuLawJimmyLee04}’,
[]).

ctr_arguments(
int_value_precede_chain,
[’VALUES’-collection(val-int),
’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
int_value_precede_chain,
[required(’VALUES’,val),
distinct(’VALUES’,val),
required(’VARIABLES’,var)]).

ctr_example(
int_value_precede_chain,
int_value_precede_chain(

[[val-4],[val-0],[val-1]],
[[var-4],[var-0],[var-6],[var-1],[var-0]])).

int_value_precede_chain(A,B).

1147

B.109 interval and count

ctr_date(interval_and_count,[’20000128’,’20030820’,’20040530’]).

ctr_origin(interval_and_count,’\\cite{Cousin93}’,[]).

ctr_arguments(
interval_and_count,
[’ATMOST’-int,
’COLOURS’-collection(val-int),
’TASKS’-collection(origin-dvar,colour-dvar),
’SIZE_INTERVAL’-int]).

ctr_restrictions(
interval_and_count,
[’ATMOST’>=0,
required(’COLOURS’,val),
distinct(’COLOURS’,val),
required(’TASKS’,[origin,colour]),
’SIZE_INTERVAL’>0]).

ctr_graph(
interval_and_count,
[’TASKS’,’TASKS’],
2,
[’PRODUCT’>>collection(tasks1,tasks2)],
[=(tasks1ˆorigin/’SIZE_INTERVAL’,

tasks2ˆorigin/’SIZE_INTERVAL’)],
[],
[>>(’SUCC’,

[source,
-(variables,

col(’VARIABLES’-collection(var-dvar),
[item(var-’TASKS’ˆcolour)]))])],

[among_low_up(0,’ATMOST’,variables,’COLOURS’)]).

ctr_example(
interval_and_count,
interval_and_count(

2,
[[val-4]],
[[origin-1,colour-4],
[origin-0,colour-9],
[origin-10,colour-4],
[origin-4,colour-4]],

5)).

1148 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

1149

B.110 interval and sum
ctr_date(interval_and_sum,[’20000128’,’20030820’]).

ctr_origin(interval_and_sum,’Derived from %c.’,[cumulative]).

ctr_arguments(
interval_and_sum,
[’SIZE_INTERVAL’-int,
’TASKS’-collection(origin-dvar,height-dvar),
’LIMIT’-int]).

ctr_restrictions(
interval_and_sum,
[’SIZE_INTERVAL’>0,
required(’TASKS’,[origin,height]),
’TASKS’ˆheight>=0,
’LIMIT’>=0]).

ctr_graph(
interval_and_sum,
[’TASKS’,’TASKS’],
2,
[’PRODUCT’>>collection(tasks1,tasks2)],
[=(tasks1ˆorigin/’SIZE_INTERVAL’,

tasks2ˆorigin/’SIZE_INTERVAL’)],
[],
[>>(’SUCC’,

[source,
-(variables,

col(’VARIABLES’-collection(var-dvar),
[item(var-’TASKS’ˆheight)]))])],

[sum_ctr(variables,=<,’LIMIT’)]).

ctr_example(
interval_and_sum,
interval_and_sum(

5,
[[origin-1,height-2],
[origin-10,height-2],
[origin-10,height-3],
[origin-4,height-1]],

5)).

1150 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.111 inverse
ctr_date(inverse,[’20000128’,’20030820’,’20040530’]).

ctr_origin(inverse,’CHIP’,[]).

ctr_synonyms(inverse,[assignment]).

ctr_arguments(
inverse,
[’NODES’-collection(index-int,succ-dvar,pred-dvar)]).

ctr_restrictions(
inverse,
[required(’NODES’,[index,succ,pred]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’),
’NODES’ˆpred>=1,
’NODES’ˆpred=<size(’NODES’)]).

ctr_graph(
inverse,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex,nodes2ˆpred=nodes1ˆindex],
[’NARC’=size(’NODES’)]).

ctr_example(
inverse,
inverse(

[[index-1,succ-2,pred-2],
[index-2,succ-1,pred-1],
[index-3,succ-5,pred-4],
[index-4,succ-3,pred-5],
[index-5,succ-4,pred-3]])).

1151

B.112 inverse set

ctr_date(inverse_set,[’20041211’]).

ctr_origin(inverse_set,’Derived from %c.’,[inverse]).

ctr_arguments(
inverse_set,
[’X’-collection(index-int,set-svar),
’Y’-collection(index-int,set-svar)]).

ctr_restrictions(
inverse_set,
[required(’X’,[index,set]),
required(’Y’,[index,set]),
increasing_seq(’X’,index),
increasing_seq(’Y’,index),
’X’ˆindex>=1,
’X’ˆindex=<size(’Y’),
’Y’ˆindex>=1,
’Y’ˆindex=<size(’X’),
’X’ˆset>=1,
’X’ˆset=<size(’Y’),
’Y’ˆset>=1,
’Y’ˆset=<size(’X’)]).

ctr_graph(
inverse_set,
[’X’,’Y’],
2,
[’PRODUCT’>>collection(x,y)],
[in_set(yˆindex,xˆset)#<=>in_set(xˆindex,yˆset)],
[’NARC’=size(’X’)*size(’Y’)]).

ctr_example(
inverse_set,
inverse_set(

[[index-1,set-{2,4}],
[index-2,set-{4}],
[index-3,set-{1}],
[index-4,set-{4}]],

[[index-1,set-{3}],
[index-2,set-{1}],
[index-3,set-{}],
[index-4,set-{1,2,4}],
[index-5,set-{}]])).

1152 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

1153

B.113 ith pos different from 0

ctr_automaton(
ith_pos_different_from_0,
ith_pos_different_from_0).

ctr_date(ith_pos_different_from_0,[’20040811’]).

ctr_origin(
ith_pos_different_from_0,
’Used for defining the automaton of %c.’,
[min_n]).

ctr_arguments(
ith_pos_different_from_0,
[’ITH’-int,’POS’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
ith_pos_different_from_0,
[’ITH’>=1,
’ITH’=<size(’VARIABLES’),
’POS’>=’ITH’,
’POS’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_example(
ith_pos_different_from_0,
ith_pos_different_from_0(

2,
4,
[[var-3],[var-0],[var-0],[var-8],[var-6]])).

ith_pos_different_from_0(A,B,C) :-
ith_pos_different_from_0_signature(C,D),
automaton(

D,
E,
D,
0..1,
[source(s),sink(t)],
[arc(s,0,s,(F#<A->[F+1,G+1])),
arc(s,1,s,(F#<A->[F,G+1])),
arc(s,$,t)],

[F,G],
[0,0],
[A,B]).

1154 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

ith_pos_different_from_0_signature([],[]).

ith_pos_different_from_0_signature([[var-A]|B],[C|D]) :-
A#=0#<=>C,
ith_pos_different_from_0_signature(B,D).

1155

B.114 k cut
ctr_date(k_cut,[’20030820’,’20041230’]).

ctr_origin(k_cut,’E.˜Althaus’,[]).

ctr_arguments(
k_cut,
[’K’-int,’NODES’-collection(index-int,succ-svar)]).

ctr_restrictions(
k_cut,
[’K’>=1,
’K’=<size(’NODES’),
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index)]).

ctr_graph(
k_cut,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[#\/(nodes1ˆindex=nodes2ˆindex,

in_set(nodes2ˆindex,nodes1ˆsucc))],
[’NCC’>=’K’]).

ctr_example(
k_cut,
k_cut(

3,
[[index-1,succ-{}],
[index-2,succ-{3,5}],
[index-3,succ-{5}],
[index-4,succ-{}],
[index-5,succ-{2,3}]])).

1156 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.115 lex2
ctr_predefined(lex2).

ctr_date(lex2,[’20031008’,’20040530’]).

ctr_origin(
lex2,
’\\cite{FlenerFrischHnichKiziltanMiguelPearsonWalsh02}’,
[]).

ctr_synonyms(lex2,[double_lex,row_and_column_lex]).

ctr_types(lex2,[’VECTOR’-collection(var-dvar)]).

ctr_arguments(lex2,[’MATRIX’-collection(vec-’VECTOR’)]).

ctr_restrictions(
lex2,
[required(’VECTOR’,var),
required(’MATRIX’,vec),
same_size(’MATRIX’,vec)]).

ctr_example(
lex2,
lex2(

[[vec-[[var-2],[var-2],[var-3]]],
[vec-[[var-2],[var-3],[var-1]]]])).

1157

B.116 lex alldifferent
ctr_date(lex_alldifferent,[’20030820’,’20040530’]).

ctr_origin(lex_alldifferent,’J.˜Pearson’,[]).

ctr_synonyms(lex_alldifferent,[lex_alldiff,lex_alldistinct]).

ctr_types(lex_alldifferent,[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
lex_alldifferent,
[’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
lex_alldifferent,
[required(’VECTOR’,var),
required(’VECTORS’,vec),
same_size(’VECTORS’,vec)]).

ctr_graph(
lex_alldifferent,
[’VECTORS’],
2,
[’CLIQUE’(<)>>collection(vectors1,vectors2)],
[lex_different(vectors1ˆvec,vectors2ˆvec)],
[’NARC’=size(’VECTORS’)*(size(’VECTORS’)-1)/2]).

ctr_example(
lex_alldifferent,
lex_alldifferent(

[[vec-[[var-5],[var-2],[var-3]]],
[vec-[[var-5],[var-2],[var-6]]],
[vec-[[var-5],[var-3],[var-3]]]])).

1158 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.117 lex between

ctr_automaton(lex_between,lex_between).

ctr_date(lex_between,[’20030820’,’20040530’]).

ctr_origin(lex_between,’\\cite{BeldiceanuCarlsson02c}’,[]).

ctr_arguments(
lex_between,
[’LOWER_BOUND’-collection(var-int),
’VECTOR’-collection(var-dvar),
’UPPER_BOUND’-collection(var-int)]).

ctr_restrictions(
lex_between,
[required(’LOWER_BOUND’,var),
required(’VECTOR’,var),
required(’UPPER_BOUND’,var),
size(’LOWER_BOUND’)=size(’VECTOR’),
size(’UPPER_BOUND’)=size(’VECTOR’),
lex_lesseq(’LOWER_BOUND’,’VECTOR’),
lex_lesseq(’VECTOR’,’UPPER_BOUND’)]).

ctr_example(
lex_between,
lex_between(

[[var-5],[var-2],[var-3],[var-9]],
[[var-5],[var-2],[var-6],[var-2]],
[[var-5],[var-2],[var-6],[var-3]])).

lex_between(A,B,C) :-
lex_between_signature(A,B,C,D),
automaton(

D,
E,
D,
0..8,
[source(s),node(a),node(b),sink(t)],
[arc(s,4,s),
arc(s,0,t),
arc(s,$,t),
arc(s,3,a),
arc(s,1,b),
arc(a,3,a),
arc(a,4,a),

1159

arc(a,5,a),
arc(a,0,t),
arc(a,1,t),
arc(a,2,t),
arc(a,$,t),
arc(b,1,b),
arc(b,4,b),
arc(b,7,b),
arc(b,0,t),
arc(b,3,t),
arc(b,6,t),
arc(b,$,t)],

[],
[],
[]).

lex_between_signature([],[],[],[]).

lex_between_signature(
[[var-A]|B],
[[var-C]|D],
[[var-E]|F],
[G|H]) :-

I is A-1,
J is A+1,
K is E-1,
L is E+1,
(A<E ->

case(
M-N,
[C-G],
[node(

-1,
M,
[(inf..I)-6,
(A..A)-3,
(J..K)-0,
(E..E)-1,
(L..sup)-2]),

node(0,N,[0..0]),
node(1,N,[1..1]),
node(2,N,[2..2]),
node(3,N,[3..3]),
node(6,N,[6..6])])

; A=:=E ->
case(

1160 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

M-N,
[C-G],
[node(-1,M,[(inf..I)-6,(A..A)-4,(J..sup)-2]),
node(2,N,[2..2]),
node(4,N,[4..4]),
node(6,N,[6..6])])

; A>E ->
case(

M-N,
[C-G],
[node(

-1,
M,
[(inf..K)-6,
(E..E)-7,
(L..I)-8,
(A..A)-5,
(J..sup)-2]),

node(2,N,[2..2]),
node(5,N,[5..5]),
node(6,N,[6..6]),
node(7,N,[7..7]),
node(8,N,[8..8])])

),
lex_between_signature(B,D,F,H).

1161

B.118 lex chain less
ctr_date(lex_chain_less,[’20030820’,’20040530’]).

ctr_origin(lex_chain_less,’\\cite{BeldiceanuCarlsson02c}’,[]).

ctr_usual_name(lex_chain_less,lex_chain).

ctr_types(lex_chain_less,[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
lex_chain_less,
[’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
lex_chain_less,
[required(’VECTOR’,var),
required(’VECTORS’,vec),
same_size(’VECTORS’,vec)]).

ctr_graph(
lex_chain_less,
[’VECTORS’],
2,
[’PATH’>>collection(vectors1,vectors2)],
[lex_less(vectors1ˆvec,vectors2ˆvec)],
[’NARC’=size(’VECTORS’)-1]).

ctr_example(
lex_chain_less,
lex_chain_less(

[[vec-[[var-5],[var-2],[var-3],[var-9]]],
[vec-[[var-5],[var-2],[var-6],[var-2]]],
[vec-[[var-5],[var-2],[var-6],[var-3]]]])).

1162 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.119 lex chain lesseq
ctr_date(lex_chain_lesseq,[’20030820’,’20040530’]).

ctr_origin(lex_chain_lesseq,’\\cite{BeldiceanuCarlsson02c}’,[]).

ctr_usual_name(lex_chain_lesseq,lex_chain).

ctr_types(lex_chain_lesseq,[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
lex_chain_lesseq,
[’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
lex_chain_lesseq,
[required(’VECTOR’,var),
required(’VECTORS’,vec),
same_size(’VECTORS’,vec)]).

ctr_graph(
lex_chain_lesseq,
[’VECTORS’],
2,
[’PATH’>>collection(vectors1,vectors2)],
[lex_lesseq(vectors1ˆvec,vectors2ˆvec)],
[’NARC’=size(’VECTORS’)-1]).

ctr_example(
lex_chain_lesseq,
lex_chain_lesseq(

[[vec-[[var-5],[var-2],[var-3],[var-9]]],
[vec-[[var-5],[var-2],[var-6],[var-2]]],
[vec-[[var-5],[var-2],[var-6],[var-2]]]])).

1163

B.120 lex different

ctr_automaton(lex_different,lex_different).

ctr_date(lex_different,[’20030820’,’20040530’]).

ctr_origin(
lex_different,
’Used for defining %c.’,
[lex_alldifferent]).

ctr_arguments(
lex_different,
[’VECTOR1’-collection(var-dvar),
’VECTOR2’-collection(var-dvar)]).

ctr_restrictions(
lex_different,
[required(’VECTOR1’,var),
required(’VECTOR2’,var),
size(’VECTOR1’)=size(’VECTOR2’)]).

ctr_graph(
lex_different,
[’VECTOR1’,’VECTOR2’],
2,
[’PRODUCT’(=)>>collection(vector1,vector2)],
[vector1ˆvar=\=vector2ˆvar],
[’NARC’>=1]).

ctr_example(
lex_different,
lex_different(

[[var-5],[var-2],[var-7],[var-1]],
[[var-5],[var-3],[var-7],[var-1]])).

lex_different(A,B) :-
lex_different_signature(A,B,C),
automaton(

C,
D,
C,
0..1,
[source(s),sink(t)],
[arc(s,1,s),arc(s,0,t)],
[],

1164 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[],
[]).

lex_different_signature([],[],[]).

lex_different_signature([[var-A]|B],[[var-C]|D],[E|F]) :-
A#=C#<=>E,
lex_different_signature(B,D,F).

1165

B.121 lex greater

ctr_automaton(lex_greater,lex_greater).

ctr_date(lex_greater,[’20030820’,’20040530’]).

ctr_origin(lex_greater,’CHIP’,[]).

ctr_arguments(
lex_greater,
[’VECTOR1’-collection(var-dvar),
’VECTOR2’-collection(var-dvar)]).

ctr_restrictions(
lex_greater,
[required(’VECTOR1’,var),
required(’VECTOR2’,var),
size(’VECTOR1’)=size(’VECTOR2’)]).

ctr_derived_collections(
lex_greater,
[col(’DESTINATION’-collection(index-int,x-int,y-int),

[item(index-0,x-0,y-0)]),
col(’COMPONENTS’-collection(index-int,x-dvar,y-dvar),

[item(
index-’VECTOR1’ˆkey,
x-’VECTOR1’ˆvar,
y-’VECTOR2’ˆvar)])]).

ctr_graph(
lex_greater,
[’COMPONENTS’,’DESTINATION’],
2,
[’PRODUCT’(’PATH’,’VOID’)>>collection(item1,item2)],
[#\/(item2ˆindex>0#/\item1ˆx=item1ˆy,

item2ˆindex=0#/\item1ˆx>item1ˆy)],
[’PATH_FROM_TO’(index,1,0)=1]).

ctr_example(
lex_greater,
lex_greater(

[[var-5],[var-2],[var-7],[var-1]],
[[var-5],[var-2],[var-6],[var-2]])).

lex_greater(A,B) :-
lex_greater_signature(A,B,C),

1166 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

automaton(
C,
D,
C,
1..3,
[source(s),sink(t)],
[arc(s,2,s),arc(s,3,t)],
[],
[],
[]).

lex_greater_signature([],[],[]).

lex_greater_signature([[var-A]|B],[[var-C]|D],[E|F]) :-
in(E,1..3),
A#<C#<=>E#=1,
A#=C#<=>E#=2,
A#>C#<=>E#=3,
lex_greater_signature(B,D,F).

1167

B.122 lex greatereq

ctr_automaton(lex_greatereq,lex_greatereq).

ctr_date(lex_greatereq,[’20030820’,’20040530’]).

ctr_origin(lex_greatereq,’CHIP’,[]).

ctr_arguments(
lex_greatereq,
[’VECTOR1’-collection(var-dvar),
’VECTOR2’-collection(var-dvar)]).

ctr_restrictions(
lex_greatereq,
[required(’VECTOR1’,var),
required(’VECTOR2’,var),
size(’VECTOR1’)=size(’VECTOR2’)]).

ctr_derived_collections(
lex_greatereq,
[col(’DESTINATION’-collection(index-int,x-int,y-int),

[item(index-0,x-0,y-0)]),
col(’COMPONENTS’-collection(index-int,x-dvar,y-dvar),

[item(
index-’VECTOR1’ˆkey,
x-’VECTOR1’ˆvar,
y-’VECTOR2’ˆvar)])]).

ctr_graph(
lex_greatereq,
[’COMPONENTS’,’DESTINATION’],
2,
[’PRODUCT’(’PATH’,’VOID’)>>collection(item1,item2)],
[#\/(#\/(item2ˆindex>0#/\item1ˆx=item1ˆy,

#/\(#/\(item1ˆindex<size(’VECTOR1’),
item2ˆindex=0),

item1ˆx>item1ˆy)),
#/\(item1ˆindex=size(’VECTOR1’)#/\item2ˆindex=0,

item1ˆx>=item1ˆy))],
[’PATH_FROM_TO’(index,1,0)=1]).

ctr_example(
lex_greatereq,
[lex_greatereq(

[[var-5],[var-2],[var-8],[var-9]],

1168 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[[var-5],[var-2],[var-6],[var-2]]),
lex_greatereq(

[[var-5],[var-2],[var-3],[var-9]],
[[var-5],[var-2],[var-3],[var-9]])]).

lex_greatereq(A,B) :-
lex_greatereq_signature(A,B,C),
automaton(

C,
D,
C,
1..3,
[source(s),sink(t)],
[arc(s,2,s),arc(s,3,t),arc(s,$,t)],
[],
[],
[]).

lex_greatereq_signature([],[],[]).

lex_greatereq_signature([[var-A]|B],[[var-C]|D],[E|F]) :-
in(E,1..3),
A#<C#<=>E#=1,
A#=C#<=>E#=2,
A#>C#<=>E#=3,
lex_greatereq_signature(B,D,F).

1169

B.123 lex less

ctr_automaton(lex_less,lex_less).

ctr_date(lex_less,[’20030820’,’20040530’]).

ctr_origin(lex_less,’CHIP’,[]).

ctr_arguments(
lex_less,
[’VECTOR1’-collection(var-dvar),
’VECTOR2’-collection(var-dvar)]).

ctr_restrictions(
lex_less,
[required(’VECTOR1’,var),
required(’VECTOR2’,var),
size(’VECTOR1’)=size(’VECTOR2’)]).

ctr_derived_collections(
lex_less,
[col(’DESTINATION’-collection(index-int,x-int,y-int),

[item(index-0,x-0,y-0)]),
col(’COMPONENTS’-collection(index-int,x-dvar,y-dvar),

[item(
index-’VECTOR1’ˆkey,
x-’VECTOR1’ˆvar,
y-’VECTOR2’ˆvar)])]).

ctr_graph(
lex_less,
[’COMPONENTS’,’DESTINATION’],
2,
[’PRODUCT’(’PATH’,’VOID’)>>collection(item1,item2)],
[#\/(item2ˆindex>0#/\item1ˆx=item1ˆy,

item2ˆindex=0#/\item1ˆx<item1ˆy)],
[’PATH_FROM_TO’(index,1,0)=1]).

ctr_example(
lex_less,
lex_less(

[[var-5],[var-2],[var-3],[var-9]],
[[var-5],[var-2],[var-6],[var-2]])).

lex_less(A,B) :-
lex_less_signature(A,B,C),

1170 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

automaton(
C,
D,
C,
1..3,
[source(s),sink(t)],
[arc(s,2,s),arc(s,1,t)],
[],
[],
[]).

lex_less_signature([],[],[]).

lex_less_signature([[var-A]|B],[[var-C]|D],[E|F]) :-
in(E,1..3),
A#<C#<=>E#=1,
A#=C#<=>E#=2,
A#>C#<=>E#=3,
lex_less_signature(B,D,F).

1171

B.124 lex lesseq

ctr_automaton(lex_lesseq,lex_lesseq).

ctr_date(lex_lesseq,[’20030820’,’20040530’]).

ctr_origin(lex_lesseq,’CHIP’,[]).

ctr_arguments(
lex_lesseq,
[’VECTOR1’-collection(var-dvar),
’VECTOR2’-collection(var-dvar)]).

ctr_restrictions(
lex_lesseq,
[required(’VECTOR1’,var),
required(’VECTOR2’,var),
size(’VECTOR1’)=size(’VECTOR2’)]).

ctr_derived_collections(
lex_lesseq,
[col(’DESTINATION’-collection(index-int,x-int,y-int),

[item(index-0,x-0,y-0)]),
col(’COMPONENTS’-collection(index-int,x-dvar,y-dvar),

[item(
index-’VECTOR1’ˆkey,
x-’VECTOR1’ˆvar,
y-’VECTOR2’ˆvar)])]).

ctr_graph(
lex_lesseq,
[’COMPONENTS’,’DESTINATION’],
2,
[’PRODUCT’(’PATH’,’VOID’)>>collection(item1,item2)],
[#\/(#\/(item2ˆindex>0#/\item1ˆx=item1ˆy,

#/\(#/\(item1ˆindex<size(’VECTOR1’),
item2ˆindex=0),

item1ˆx<item1ˆy)),
#/\(item1ˆindex=size(’VECTOR1’)#/\item2ˆindex=0,

item1ˆx=<item1ˆy))],
[’PATH_FROM_TO’(index,1,0)=1]).

ctr_example(
lex_lesseq,
[lex_lesseq(

[[var-5],[var-2],[var-3],[var-1]],

1172 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[[var-5],[var-2],[var-6],[var-2]]),
lex_lesseq(

[[var-5],[var-2],[var-3],[var-9]],
[[var-5],[var-2],[var-3],[var-9]])]).

lex_lesseq(A,B) :-
lex_lesseq_signature(A,B,C),
automaton(

C,
D,
C,
1..3,
[source(s),sink(t)],
[arc(s,2,s),arc(s,1,t),arc(s,$,t)],
[],
[],
[]).

lex_lesseq_signature([],[],[]).

lex_lesseq_signature([[var-A]|B],[[var-C]|D],[E|F]) :-
in(E,1..3),
A#<C#<=>E#=1,
A#=C#<=>E#=2,
A#>C#<=>E#=3,
lex_lesseq_signature(B,D,F).

1173

B.125 link set to booleans
ctr_date(link_set_to_booleans,[’20030820’]).

ctr_origin(
link_set_to_booleans,
’Inspired by %c.’,
[domain_constraint]).

ctr_arguments(
link_set_to_booleans,
[’SVAR’-svar,’BOOLEANS’-collection(bool-dvar,val-int)]).

ctr_restrictions(
link_set_to_booleans,
[required(’BOOLEANS’,[bool,val]),
’BOOLEANS’ˆbool>=0,
’BOOLEANS’ˆbool=<1,
distinct(’BOOLEANS’,val)]).

ctr_derived_collections(
link_set_to_booleans,
[col(’SET’-collection(one-int,setvar-svar),

[item(one-1,setvar-’SVAR’)])]).

ctr_graph(
link_set_to_booleans,
[’SET’,’BOOLEANS’],
2,
[’PRODUCT’>>collection(set,booleans)],
[booleansˆbool=setˆone#<=>in_set(booleansˆval,setˆsetvar)],
[’NARC’=size(’BOOLEANS’)]).

ctr_example(
link_set_to_booleans,
link_set_to_booleans(

{1,3,4},
[[bool-0,val-0],
[bool-1,val-1],
[bool-0,val-2],
[bool-1,val-3],
[bool-1,val-4],
[bool-0,val-5]])).

1174 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.126 longest change

ctr_automaton(longest_change,longest_change).

ctr_date(longest_change,[’20000128’,’20030820’,’20040530’]).

ctr_origin(longest_change,’Derived from %c.’,[change]).

ctr_arguments(
longest_change,
[’SIZE’-dvar,’VARIABLES’-collection(var-dvar),’CTR’-atom]).

ctr_restrictions(
longest_change,
[’SIZE’>=0,
’SIZE’<size(’VARIABLES’),
required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
longest_change,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[’CTR’(variables1ˆvar,variables2ˆvar)],
[’MAX_NCC’=’SIZE’]).

ctr_example(
longest_change,
longest_change(

4,
[[var-8],
[var-8],
[var-3],
[var-4],
[var-1],
[var-1],
[var-5],
[var-5],
[var-2]],

=\=)).

longest_change(A,B,C) :-
longest_change_signature(B,D,C),
automaton(

D,

1175

E,
D,
0..1,
[source(s),sink(t)],
[arc(s,1,s,[F,G+1]),
arc(s,0,s,[max(F,G),1]),
arc(s,$,t,[max(F,G),G])],

[F,G],
[0,1],
[A,H]).

longest_change_signature([],[],A).

longest_change_signature([A],[],B) :-
!.

longest_change_signature([[var-A],[var-B]|C],[D|E],=) :-
!,
A#=B#<=>D,
longest_change_signature([[var-B]|C],E,=).

longest_change_signature([[var-A],[var-B]|C],[D|E],=\=) :-
!,
A#\=B#<=>D,
longest_change_signature([[var-B]|C],E,=\=).

longest_change_signature([[var-A],[var-B]|C],[D|E],<) :-
!,
A#<B#<=>D,
longest_change_signature([[var-B]|C],E,<).

longest_change_signature([[var-A],[var-B]|C],[D|E],>=) :-
!,
A#>=B#<=>D,
longest_change_signature([[var-B]|C],E,>=).

longest_change_signature([[var-A],[var-B]|C],[D|E],>) :-
!,
A#>B#<=>D,
longest_change_signature([[var-B]|C],E,>).

longest_change_signature([[var-A],[var-B]|C],[D|E],=<) :-
!,
A#=<B#<=>D,
longest_change_signature([[var-B]|C],E,=<).

1176 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.127 map
ctr_date(map,[’20000128’,’20030820’]).

ctr_origin(map,’Inspired by \\cite{SedgewickFlajolet96}’,[]).

ctr_arguments(
map,
[’NBCYCLE’-dvar,
’NBTREE’-dvar,
’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
map,
[’NBCYCLE’>=0,
’NBTREE’>=0,
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_graph(
map,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’NCC’=’NBCYCLE’,’NTREE’=’NBTREE’]).

ctr_example(
map,
map(2,

3,
[[index-1,succ-5],
[index-2,succ-9],
[index-3,succ-8],
[index-4,succ-2],
[index-5,succ-9],
[index-6,succ-2],
[index-7,succ-9],
[index-8,succ-8],
[index-9,succ-1]])).

1177

B.128 max index

ctr_automaton(max_index,max_index).

ctr_date(max_index,[’20030820’,’20040530’,’20041230’]).

ctr_origin(max_index,’N.˜Beldiceanu’,[]).

ctr_arguments(
max_index,
[’MAX_INDEX’-dvar,
’VARIABLES’-collection(index-int,var-dvar)]).

ctr_restrictions(
max_index,
[size(’VARIABLES’)>0,
’MAX_INDEX’>=0,
’MAX_INDEX’=<size(’VARIABLES’),
required(’VARIABLES’,[index,var]),
’VARIABLES’ˆindex>=1,
’VARIABLES’ˆindex=<size(’VARIABLES’),
distinct(’VARIABLES’,index)]).

ctr_graph(
max_index,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[#\/(variables1ˆkey=variables2ˆkey,

variables1ˆvar>variables2ˆvar)],
[’ORDER’(0,0,index)=’MAX_INDEX’]).

ctr_example(
max_index,
max_index(

3,
[[index-1,var-3],
[index-2,var-2],
[index-3,var-7],
[index-4,var-2],
[index-5,var-6]])).

max_index(A,B) :-
length(B,C),
length(D,C),
domain(D,0,0),

1178 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

max_index_signature(B,E,D),
automaton(

E,
F,
D,
0..0,
[source(s),sink(t)],
[arc(s,0,s,(F#=<G->[G,H,I+1];F#>G->[F,I+1,I+1])),
arc(s,$,t)],
[G,H,I],
[-1000000,0,0],
[J,A,K]).

max_index_signature([],[],[]).

max_index_signature([[index-A,var-B]|C],[B|D],[0|E]) :-
max_index_signature(C,D,E).

1179

B.129 max n
ctr_date(max_n,[’20000128’,’20030820’,’20041230’]).

ctr_origin(max_n,’\\cite{Beldiceanu01}’,[]).

ctr_arguments(
max_n,
[’MAX’-dvar,’RANK’-int,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
max_n,
[size(’VARIABLES’)>0,
’RANK’>=0,
’RANK’<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_graph(
max_n,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[#\/(variables1ˆkey=variables2ˆkey,

variables1ˆvar>variables2ˆvar)],
[’ORDER’(’RANK’,’MININT’,var)=’MAX’]).

ctr_example(
max_n,
max_n(6,1,[[var-3],[var-1],[var-7],[var-1],[var-6]])).

1180 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.130 max nvalue
ctr_date(max_nvalue,[’20000128’,’20030820’]).

ctr_origin(max_nvalue,’Derived from %c.’,[nvalue]).

ctr_arguments(
max_nvalue,
[’MAX’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
max_nvalue,
[’MAX’>=1,
’MAX’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_graph(
max_nvalue,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’MAX_NSCC’=’MAX’]).

ctr_example(
max_nvalue,
max_nvalue(

3,
[[var-9],
[var-1],
[var-7],
[var-1],
[var-1],
[var-6],
[var-7],
[var-7],
[var-4],
[var-9]])).

1181

B.131 max size set of consecutive var
ctr_date(

max_size_set_of_consecutive_var,
[’20030820’,’20040530’]).

ctr_origin(max_size_set_of_consecutive_var,’N.˜Beldiceanu’,[]).

ctr_arguments(
max_size_set_of_consecutive_var,
[’MAX’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
max_size_set_of_consecutive_var,
[’MAX’>=1,
’MAX’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_graph(
max_size_set_of_consecutive_var,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[abs(variables1ˆvar-variables2ˆvar)=<1],
[’MAX_NSCC’=’MAX’]).

ctr_example(
max_size_set_of_consecutive_var,
max_size_set_of_consecutive_var(

6,
[[var-3],
[var-1],
[var-3],
[var-7],
[var-4],
[var-1],
[var-2],
[var-8],
[var-7],
[var-6]])).

1182 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.132 maximum

ctr_automaton(maximum,maximum).

ctr_date(maximum,[’20000128’,’20030820’,’20040530’,’20041230’]).

ctr_origin(maximum,’CHIP’,[]).

ctr_arguments(
maximum,
[’MAX’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
maximum,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_graph(
maximum,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[#\/(variables1ˆkey=variables2ˆkey,

variables1ˆvar>variables2ˆvar)],
[’ORDER’(0,’MININT’,var)=’MAX’]).

ctr_example(
maximum,
maximum(7,[[var-3],[var-2],[var-7],[var-2],[var-6]])).

maximum(A,B) :-
maximum_signature(B,C,A),
automaton(

C,
D,
C,
0..2,
[source(s),node(e),sink(t)],
[arc(s,0,s),
arc(s,1,e),
arc(e,1,e),
arc(e,0,e),
arc(e,$,t)],
[],
[],
[]).

1183

maximum_signature([],[],A).

maximum_signature([[var-A]|B],[C|D],E) :-
in(C,0..2),
E#>A#<=>C#=0,
E#=A#<=>C#=1,
E#<A#<=>C#=2,
maximum_signature(B,D,E).

1184 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.133 maximum modulo
ctr_date(maximum_modulo,[’20000128’,’20030820’,’20041230’]).

ctr_origin(maximum_modulo,’Derived from %c.’,[maximum]).

ctr_arguments(
maximum_modulo,
[’MAX’-dvar,’VARIABLES’-collection(var-dvar),’M’-int]).

ctr_restrictions(
maximum_modulo,
[size(’VARIABLES’)>0,’M’>0,required(’VARIABLES’,var)]).

ctr_graph(
maximum_modulo,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[#\/(variables1ˆkey=variables2ˆkey,

variables1ˆvar mod ’M’>variables2ˆvar mod ’M’)],
[’ORDER’(0,’MININT’,var)=’MAX’]).

ctr_example(
maximum_modulo,
maximum_modulo(

5,
[[var-9],[var-1],[var-7],[var-6],[var-5]],
3)).

1185

B.134 min index

ctr_automaton(min_index,min_index).

ctr_date(min_index,[’20030820’,’20040530’,’20041230’]).

ctr_origin(min_index,’N.˜Beldiceanu’,[]).

ctr_arguments(
min_index,
[’MIN_INDEX’-dvar,
’VARIABLES’-collection(index-int,var-dvar)]).

ctr_restrictions(
min_index,
[size(’VARIABLES’)>0,
’MIN_INDEX’>=0,
’MIN_INDEX’=<size(’VARIABLES’),
required(’VARIABLES’,[index,var]),
’VARIABLES’ˆindex>=1,
’VARIABLES’ˆindex=<size(’VARIABLES’),
distinct(’VARIABLES’,index)]).

ctr_graph(
min_index,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[#\/(variables1ˆkey=variables2ˆkey,

variables1ˆvar<variables2ˆvar)],
[’ORDER’(0,0,index)=’MIN_INDEX’]).

ctr_example(
min_index,
[min_index(

2,
[[index-1,var-3],
[index-2,var-2],
[index-3,var-7],
[index-4,var-2],
[index-5,var-6]]),

min_index(
4,
[[index-1,var-3],
[index-2,var-2],
[index-3,var-7],

1186 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[index-4,var-2],
[index-5,var-6]])]).

min_index(A,B) :-
length(B,C),
length(D,C),
domain(D,0,0),
min_index_signature(B,E,D),
automaton(

E,
F,
D,
0..0,
[source(s),sink(t)],
[arc(s,0,s,(F#>=G->[G,H,I+1];F#<G->[F,I+1,I+1])),
arc(s,$,t)],
[G,H,I],
[1000000,0,0],
[J,A,K]).

min_index_signature([],[],[]).

min_index_signature([[index-A,var-B]|C],[B|D],[0|E]) :-
min_index_signature(C,D,E).

1187

B.135 min n
ctr_date(min_n,[’20000128’,’20030820’,’20040530’,’20041230’]).

ctr_origin(min_n,’\\cite{Beldiceanu01}’,[]).

ctr_arguments(
min_n,
[’MIN’-dvar,’RANK’-int,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
min_n,
[size(’VARIABLES’)>0,
’RANK’>=0,
’RANK’<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_graph(
min_n,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[#\/(variables1ˆkey=variables2ˆkey,

variables1ˆvar<variables2ˆvar)],
[’ORDER’(’RANK’,’MAXINT’,var)=’MIN’]).

ctr_example(
min_n,
min_n(3,1,[[var-3],[var-1],[var-7],[var-1],[var-6]])).

1188 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.136 min nvalue
ctr_date(min_nvalue,[’20000128’,’20030820’]).

ctr_origin(min_nvalue,’N.˜Beldiceanu’,[]).

ctr_arguments(
min_nvalue,
[’MIN’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
min_nvalue,
[’MIN’>=1,
’MIN’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_graph(
min_nvalue,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’MIN_NSCC’=’MIN’]).

ctr_example(
min_nvalue,
min_nvalue(

2,
[[var-9],
[var-1],
[var-7],
[var-1],
[var-1],
[var-7],
[var-7],
[var-7],
[var-7],
[var-9]])).

1189

B.137 min size set of consecutive var
ctr_date(

min_size_set_of_consecutive_var,
[’20030820’,’20040530’]).

ctr_origin(min_size_set_of_consecutive_var,’N.˜Beldiceanu’,[]).

ctr_arguments(
min_size_set_of_consecutive_var,
[’MIN’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
min_size_set_of_consecutive_var,
[’MIN’>=1,
’MIN’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_graph(
min_size_set_of_consecutive_var,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[abs(variables1ˆvar-variables2ˆvar)=<1],
[’MIN_NSCC’=’MIN’]).

ctr_example(
min_size_set_of_consecutive_var,
min_size_set_of_consecutive_var(

4,
[[var-3],
[var-1],
[var-3],
[var-7],
[var-4],
[var-1],
[var-2],
[var-8],
[var-7],
[var-6]])).

1190 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.138 minimum

ctr_automaton(minimum,minimum).

ctr_date(minimum,[’20000128’,’20030820’,’20040530’,’20041230’]).

ctr_origin(minimum,’CHIP’,[]).

ctr_arguments(
minimum,
[’MIN’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
minimum,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_graph(
minimum,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[#\/(variables1ˆkey=variables2ˆkey,

variables1ˆvar<variables2ˆvar)],
[’ORDER’(0,’MAXINT’,var)=’MIN’]).

ctr_example(
minimum,
minimum(2,[[var-3],[var-2],[var-7],[var-2],[var-6]])).

minimum(A,B) :-
minimum_signature(B,C,A),
automaton(

C,
D,
C,
0..2,
[source(s),node(e),sink(t)],
[arc(s,0,s),
arc(s,1,e),
arc(e,1,e),
arc(e,0,e),
arc(e,$,t)],
[],
[],
[]).

1191

minimum_signature([],[],A).

minimum_signature([[var-A]|B],[C|D],E) :-
in(C,0..2),
E#<A#<=>C#=0,
E#=A#<=>C#=1,
E#>A#<=>C#=2,
minimum_signature(B,D,E).

1192 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.139 minimum except 0

ctr_automaton(minimum_except_0,minimum_except_0).

ctr_date(minimum_except_0,[’20030820’,’20040530’,’20041230’]).

ctr_origin(minimum_except_0,’Derived from %c.’,[minimum]).

ctr_arguments(
minimum_except_0,
[’MIN’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
minimum_except_0,
[size(’VARIABLES’)>0,
required(’VARIABLES’,var),
’VARIABLES’ˆvar>=0]).

ctr_graph(
minimum_except_0,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=\=0,
variables2ˆvar=\=0,
#\/(variables1ˆkey=variables2ˆkey,

variables1ˆvar<variables2ˆvar)],
[’ORDER’(0,’MAXINT’,var)=’MIN’]).

ctr_example(
minimum_except_0,
[minimum_except_0(

3,
[[var-3],[var-7],[var-6],[var-7],[var-4],[var-7]]),

minimum_except_0(
2,
[[var-3],[var-2],[var-0],[var-7],[var-2],[var-6]]),

minimum_except_0(
1000000,
[[var-0],[var-0],[var-0],[var-0],[var-0],[var-0]])]).

minimum_except_0(A,B) :-
minimum_except_0_signature(B,C,A),
automaton(

C,
D,

1193

C,
0..4,
[source(s),node(j),node(k),sink(t)],
[arc(s,0,s),
arc(s,3,s),
arc(s,2,j),
arc(s,1,k),
arc(j,0,j),
arc(j,1,j),
arc(j,2,j),
arc(j,3,j),
arc(j,$,t),
arc(k,1,k),
arc(k,$,t)],

[],
[],
[]).

minimum_except_0_signature([],[],A).

minimum_except_0_signature([[var-A]|B],[C|D],E) :-
in(C,0..4),
F=1000000,
A#=0#/\E#\=F#<=>C#=0,
A#=0#/\E#=F#<=>C#=1,
A#\=0#/\E#=A#<=>C#=2,
A#\=0#/\E#<A#<=>C#=3,
A#\=0#/\E#>A#<=>C#=4,
minimum_except_0_signature(B,D,E).

1194 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.140 minimum greater than

ctr_automaton(minimum_greater_than,minimum_greater_than).

ctr_date(minimum_greater_than,[’20030820’]).

ctr_origin(minimum_greater_than,’N.˜Beldiceanu’,[]).

ctr_arguments(
minimum_greater_than,
[’VAR1’-dvar,’VAR2’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
minimum_greater_than,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_derived_collections(
minimum_greater_than,
[col(’ITEM’-collection(var-dvar),[item(var-’VAR2’)])]).

ctr_graph(
minimum_greater_than,
[’ITEM’,’VARIABLES’],
2,
[’PRODUCT’>>collection(item,variables)],
[itemˆvar<variablesˆvar],
[’NARC’>0],
[’SUCC’>>[source,variables]],
[minimum(’VAR1’,variables)]).

ctr_example(
minimum_greater_than,
minimum_greater_than(

5,
3,
[[var-8],[var-5],[var-3],[var-8]])).

minimum_greater_than(A,B,C) :-
minimum_greater_than_signature(C,D,A,B),
automaton(

D,
E,
D,
0..5,
[source(s),node(e),sink(t)],
[arc(s,0,s),

1195

arc(s,1,s),
arc(s,2,s),
arc(s,5,s),
arc(s,4,e),
arc(e,0,e),
arc(e,1,e),
arc(e,2,e),
arc(e,4,e),
arc(e,5,e),
arc(e,$,t)],

[],
[],
[]).

minimum_greater_than_signature([],[],A,B).

minimum_greater_than_signature([[var-A]|B],[C|D],E,F) :-
in(C,0..5),
A#<E#/\A#=<F#<=>C#=0,
A#=E#/\A#=<F#<=>C#=1,
A#>E#/\A#=<F#<=>C#=2,
A#<E#/\A#>F#<=>C#=3,
A#=E#/\A#>F#<=>C#=4,
A#>E#/\A#>F#<=>C#=5,
minimum_greater_than_signature(B,D,E,F).

1196 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.141 minimum modulo
ctr_date(minimum_modulo,[’20000128’,’20030820’,’20041230’]).

ctr_origin(minimum_modulo,’Derived from %c.’,[minimum]).

ctr_arguments(
minimum_modulo,
[’MIN’-dvar,’VARIABLES’-collection(var-dvar),’M’-int]).

ctr_restrictions(
minimum_modulo,
[size(’VARIABLES’)>0,’M’>0,required(’VARIABLES’,var)]).

ctr_graph(
minimum_modulo,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[#\/(variables1ˆkey=variables2ˆkey,

variables1ˆvar mod ’M’<variables2ˆvar mod ’M’)],
[’ORDER’(0,’MAXINT’,var)=’MIN’]).

ctr_example(
minimum_modulo,
[minimum_modulo(

6,
[[var-9],[var-1],[var-7],[var-6],[var-5]],
3),

minimum_modulo(
9,
[[var-9],[var-1],[var-7],[var-6],[var-5]],
3)]).

1197

B.142 minimum weight alldifferent

ctr_date(minimum_weight_alldifferent,[’20030820’,’20040530’]).

ctr_origin(
minimum_weight_alldifferent,
’\\cite{FocacciLodiMilano99}’,
[]).

ctr_synonyms(
minimum_weight_alldifferent,
[minimum_weight_alldiff,
minimum_weight_alldistinct,
min_weight_alldiff,
min_weight_alldifferent,
min_weight_alldistinct]).

ctr_arguments(
minimum_weight_alldifferent,
[’VARIABLES’-collection(var-dvar),
’MATRIX’-collection(i-int,j-int,c-int),
’COST’-dvar]).

ctr_restrictions(
minimum_weight_alldifferent,
[size(’VARIABLES’)>0,
required(’VARIABLES’,var),
’VARIABLES’ˆvar>=1,
’VARIABLES’ˆvar=<size(’VARIABLES’),
required(’MATRIX’,[i,j,c]),
increasing_seq(’MATRIX’,[i,j]),
’MATRIX’ˆi>=1,
’MATRIX’ˆi=<size(’VARIABLES’),
’MATRIX’ˆj>=1,
’MATRIX’ˆj=<size(’VARIABLES’),
size(’MATRIX’)=size(’VARIABLES’)*size(’VARIABLES’)]).

ctr_graph(
minimum_weight_alldifferent,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆkey],
[’NTREE’=0,
=(’SUM_WEIGHT_ARC’(

ˆ(@(’MATRIX’,

1198 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

+((variables1ˆkey-1)*size(’VARIABLES’),
variables1ˆvar)),

c)),
’COST’)]).

ctr_example(
minimum_weight_alldifferent,
minimum_weight_alldifferent(

[[var-2],[var-3],[var-1],[var-4]],
[[i-1,j-1,c-4],
[i-1,j-2,c-1],
[i-1,j-3,c-7],
[i-1,j-4,c-0],
[i-2,j-1,c-1],
[i-2,j-2,c-0],
[i-2,j-3,c-8],
[i-2,j-4,c-2],
[i-3,j-1,c-3],
[i-3,j-2,c-2],
[i-3,j-3,c-1],
[i-3,j-4,c-6],
[i-4,j-1,c-0],
[i-4,j-2,c-0],
[i-4,j-3,c-6],
[i-4,j-4,c-5]],

17)).

1199

B.143 nclass
ctr_date(nclass,[’20000128’,’20030820’]).

ctr_origin(nclass,’Derived from %c.’,[nvalue]).

ctr_types(nclass,[’VALUES’-collection(val-int)]).

ctr_arguments(
nclass,
[’NCLASS’-dvar,
’VARIABLES’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
nclass,
[required(’VALUES’,val),
distinct(’VALUES’,val),
’NCLASS’>=0,
’NCLASS’=<min(size(’VARIABLES’),size(’PARTITIONS’)),
required(’VARIABLES’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_graph(
nclass,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
’PARTITIONS’)],

[’NSCC’=’NCLASS’]).

ctr_example(
nclass,
nclass(

2,
[[var-3],[var-2],[var-7],[var-2],[var-6]],
[[p-[[val-1],[val-3]]],
[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).

1200 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.144 nequivalence
ctr_date(nequivalence,[’20000128’,’20030820’]).

ctr_origin(nequivalence,’Derived from %c.’,[nvalue]).

ctr_arguments(
nequivalence,
[’NEQUIV’-dvar,’M’-int,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
nequivalence,
[’NEQUIV’>=min(1,size(’VARIABLES’)),
’NEQUIV’=<min(’M’,size(’VARIABLES’)),
’M’>0,
required(’VARIABLES’,var)]).

ctr_graph(
nequivalence,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar mod ’M’=variables2ˆvar mod ’M’],
[’NSCC’=’NEQUIV’]).

ctr_example(
nequivalence,
nequivalence(

2,
3,
[[var-3],
[var-2],
[var-5],
[var-6],
[var-15],
[var-3],
[var-3]])).

1201

B.145 next element

ctr_automaton(next_element,next_element).

ctr_date(next_element,[’20030820’,’20040530’]).

ctr_origin(next_element,’N.˜Beldiceanu’,[]).

ctr_arguments(
next_element,
[’THRESHOLD’-dvar,
’INDEX’-dvar,
’TABLE’-collection(index-int,value-dvar),
’VAL’-dvar]).

ctr_restrictions(
next_element,
[’INDEX’>=1,
’INDEX’=<size(’TABLE’),
required(’TABLE’,[index,value]),
’TABLE’ˆindex>=1,
’TABLE’ˆindex=<size(’TABLE’),
distinct(’TABLE’,index)]).

ctr_derived_collections(
next_element,
[col(’ITEM’-collection(index-dvar,value-dvar),

[item(index-’THRESHOLD’,value-’VAL’)])]).

ctr_graph(
next_element,
[’ITEM’,’TABLE’],
2,
[’PRODUCT’>>collection(item,table)],
[itemˆindex<tableˆindex,itemˆvalue=tableˆvalue],
[’NARC’>0],
[>>(’SUCC’,

[source,
-(variables,

col(’VARIABLES’-collection(var-dvar),
[item(var-’TABLE’ˆindex)]))])],

[minimum(’INDEX’,variables)]).

ctr_example(
next_element,
next_element(

1202 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

2,
3,
[[index-1,value-1],
[index-2,value-8],
[index-3,value-9],
[index-4,value-5],
[index-5,value-9]],

9)).

next_element(A,B,C,D) :-
next_element_signature(C,E,A,B,D),
automaton(

E,
F,
E,
0..11,
[source(s),node(e),sink(t)],
[arc(s,0,s),
arc(s,1,s),
arc(s,2,s),
arc(s,3,s),
arc(s,4,s),
arc(s,5,s),
arc(s,7,s),
arc(s,9,s),
arc(s,10,s),
arc(s,11,s),
arc(s,8,e),
arc(e,0,e),
arc(e,1,e),
arc(e,2,e),
arc(e,3,e),
arc(e,4,e),
arc(e,5,e),
arc(e,7,e),
arc(e,8,e),
arc(e,9,e),
arc(e,10,e),
arc(e,11,e),
arc(e,$,t)],
[],
[],
[]).

next_element_signature([],[],A,B,C).

1203

next_element_signature([[index-A,value-B]|C],[D|E],F,G,H) :-
in(D,0..11),
A#=<F#/\A#<G#/\B#=H#<=>D#=0,
A#=<F#/\A#<G#/\B#\=H#<=>D#=1,
A#=<F#/\A#=G#/\B#=H#<=>D#=2,
A#=<F#/\A#=G#/\B#\=H#<=>D#=3,
A#=<F#/\A#>G#/\B#=H#<=>D#=4,
A#=<F#/\A#>G#/\B#\=H#<=>D#=5,
A#>F#/\A#<G#/\B#=H#<=>D#=6,
A#>F#/\A#<G#/\B#\=H#<=>D#=7,
A#>F#/\A#=G#/\B#=H#<=>D#=8,
A#>F#/\A#=G#/\B#\=H#<=>D#=9,
A#>F#/\A#>G#/\B#=H#<=>D#=10,
A#>F#/\A#>G#/\B#\=H#<=>D#=11,
next_element_signature(C,E,F,G,H).

1204 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.146 next greater element
ctr_date(next_greater_element,[’20030820’,’20040530’]).

ctr_origin(next_greater_element,’M.˜Carlsson’,[]).

ctr_arguments(
next_greater_element,
[’VAR1’-dvar,’VAR2’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
next_greater_element,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_derived_collections(
next_greater_element,
[col(’V’-collection(var-dvar),[item(var-’VAR1’)])]).

ctr_graph(
next_greater_element,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[variables1ˆvar<variables2ˆvar],
[’NARC’=size(’VARIABLES’)-1]).

ctr_graph(
next_greater_element,
[’V’,’VARIABLES’],
2,
[’PRODUCT’>>collection(v,variables)],
[vˆvar<variablesˆvar],
[’NARC’>0],
[’SUCC’>>[source,variables]],
[minimum(’VAR2’,variables)]).

ctr_example(
next_greater_element,
next_greater_element(

7,
8,
[[var-3],[var-5],[var-8],[var-9]])).

1205

B.147 ninterval
ctr_date(ninterval,[’20030820’,’20040530’]).

ctr_origin(ninterval,’Derived from %c.’,[nvalue]).

ctr_arguments(
ninterval,
[’NVAL’-dvar,
’VARIABLES’-collection(var-dvar),
’SIZE_INTERVAL’-int]).

ctr_restrictions(
ninterval,
[’NVAL’>=min(1,size(’VARIABLES’)),
’NVAL’=<size(’VARIABLES’),
required(’VARIABLES’,var),
’SIZE_INTERVAL’>0]).

ctr_graph(
ninterval,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[=(variables1ˆvar/’SIZE_INTERVAL’,

variables2ˆvar/’SIZE_INTERVAL’)],
[’NSCC’=’NVAL’]).

ctr_example(
ninterval,
ninterval(2,[[var-3],[var-1],[var-9],[var-1],[var-9]],4)).

1206 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.148 no peak

ctr_automaton(no_peak,no_peak).

ctr_date(no_peak,[’20031101’,’20040530’]).

ctr_origin(no_peak,’Derived from %c.’,[peak]).

ctr_arguments(no_peak,[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
no_peak,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_example(
no_peak,
no_peak([[var-1],[var-1],[var-4],[var-8],[var-8]])).

no_peak(A) :-
no_peak_signature(A,B),
automaton(

B,
C,
B,
0..2,
[source(s),node(i),sink(t)],
[arc(s,0,s),
arc(s,1,s),
arc(s,2,i),
arc(s,$,t),
arc(i,1,i),
arc(i,2,i),
arc(i,$,t)],
[],
[],
[]).

no_peak_signature([],[]).

no_peak_signature([A],[]).

no_peak_signature([[var-A],[var-B]|C],[D|E]) :-
in(D,0..2),
A#<B#<=>D#=0,
A#=B#<=>D#=1,
A#>B#<=>D#=2,

1207

no_peak_signature([[var-B]|C],E).

1208 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.149 no valley

ctr_automaton(no_valley,no_valley).

ctr_date(no_valley,[’20031101’,’20040530’]).

ctr_origin(no_valley,’Derived from %c.’,[valley]).

ctr_arguments(no_valley,[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
no_valley,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_example(
no_valley,
no_valley(

[[var-1],[var-1],[var-4],[var-8],[var-8],[var-2]])).

no_valley(A) :-
no_valley_signature(A,B),
automaton(

B,
C,
B,
0..2,
[source(s),node(i),sink(t)],
[arc(s,0,s),
arc(s,1,s),
arc(s,2,i),
arc(s,$,t),
arc(i,1,i),
arc(i,2,i),
arc(i,$,t)],
[],
[],
[]).

no_valley_signature([],[]).

no_valley_signature([A],[]).

no_valley_signature([[var-A],[var-B]|C],[D|E]) :-
in(D,0..2),
A#<B#<=>D#=0,
A#=B#<=>D#=1,

1209

A#>B#<=>D#=2,
no_valley_signature([[var-B]|C],E).

1210 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.150 not all equal

ctr_automaton(not_all_equal,not_all_equal).

ctr_date(not_all_equal,[’20030820’,’20040530’,’20040726’]).

ctr_origin(not_all_equal,’CHIP’,[]).

ctr_arguments(not_all_equal,[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
not_all_equal,
[required(’VARIABLES’,var),size(’VARIABLES’)>1]).

ctr_graph(
not_all_equal,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NSCC’>1]).

ctr_example(
not_all_equal,
not_all_equal([[var-3],[var-1],[var-3],[var-3],[var-3]])).

not_all_equal(A) :-
length(A,B),
B>1,
not_all_equal_signature(A,C),
automaton(

C,
D,
C,
0..1,
[source(s),sink(t)],
[arc(s,1,s),arc(s,0,t)],
[],
[],
[]).

not_all_equal_signature([],[]).

not_all_equal_signature([A],[]).

not_all_equal_signature([[var-A],[var-B]|C],[D|E]) :-

1211

A#=B#<=>D,
not_all_equal_signature([[var-B]|C],E).

1212 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.151 not in

ctr_automaton(not_in,not_in).

ctr_date(not_in,[’20030820’,’20040530’]).

ctr_origin(not_in,’Derived from %c.’,[in]).

ctr_arguments(not_in,[’VAR’-dvar,’VALUES’-collection(val-int)]).

ctr_restrictions(
not_in,
[required(’VALUES’,val),distinct(’VALUES’,val)]).

ctr_derived_collections(
not_in,
[col(’VARIABLES’-collection(var-dvar),[item(var-’VAR’)])]).

ctr_graph(
not_in,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=valuesˆval],
[’NARC’=0]).

ctr_example(not_in,not_in(2,[[val-1],[val-3]])).

not_in(A,B) :-
not_in_signature(B,C,A),
automaton(

C,
D,
C,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,$,t)],
[],
[],
[]).

not_in_signature([],[],A).

not_in_signature([[val-A]|B],[C|D],E) :-
E#=A#<=>C,
not_in_signature(B,D,E).

1213

1214 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.152 npair
ctr_date(npair,[’20030820’]).

ctr_origin(npair,’Derived from %c.’,[nvalue]).

ctr_arguments(
npair,
[’NVAL’-dvar,’PAIRS’-collection(x-dvar,y-dvar)]).

ctr_restrictions(
npair,
[’NVAL’>=min(1,size(’PAIRS’)),
’NVAL’=<size(’PAIRS’),
required(’PAIRS’,[x,y])]).

ctr_graph(
npair,
[’PAIRS’],
2,
[’CLIQUE’>>collection(pairs1,pairs2)],
[pairs1ˆx=pairs2ˆx,pairs1ˆy=pairs2ˆy],
[’NSCC’=’NVAL’]).

ctr_example(
npair,
npair(

2,
[[x-3,y-1],[x-1,y-5],[x-3,y-1],[x-3,y-1],[x-1,y-5]])).

1215

B.153 nset of consecutive values
ctr_date(nset_of_consecutive_values,[’20030820’,’20040530’]).

ctr_origin(nset_of_consecutive_values,’N.˜Beldiceanu’,[]).

ctr_arguments(
nset_of_consecutive_values,
[’N’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
nset_of_consecutive_values,
[’N’>=1,’N’=<size(’VARIABLES’),required(’VARIABLES’,var)]).

ctr_graph(
nset_of_consecutive_values,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[abs(variables1ˆvar-variables2ˆvar)=<1],
[’NSCC’=’N’]).

ctr_example(
nset_of_consecutive_values,
nset_of_consecutive_values(

2,
[[var-3],
[var-1],
[var-7],
[var-1],
[var-1],
[var-2],
[var-8]])).

1216 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.154 nvalue
ctr_date(nvalue,[’20000128’,’20030820’,’20040530’]).

ctr_origin(nvalue,’\\cite{PachetRoy99}’,[]).

ctr_synonyms(nvalue,[cardinality_on_attributes_values]).

ctr_arguments(
nvalue,
[’NVAL’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
nvalue,
[’NVAL’>=min(1,size(’VARIABLES’)),
’NVAL’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_graph(
nvalue,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NSCC’=’NVAL’]).

ctr_example(
nvalue,
nvalue(4,[[var-3],[var-1],[var-7],[var-1],[var-6]])).

1217

B.155 nvalue on intersection
ctr_date(nvalue_on_intersection,[’20040530’]).

ctr_origin(
nvalue_on_intersection,
’Derived from %c and %c.’,
[common,nvalue]).

ctr_arguments(
nvalue_on_intersection,
[’NVAL’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
nvalue_on_intersection,
[’NVAL’>=0,
’NVAL’=<size(’VARIABLES1’),
’NVAL’=<size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var)]).

ctr_graph(
nvalue_on_intersection,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NCC’=’NVAL’]).

ctr_example(
nvalue_on_intersection,
nvalue_on_intersection(

2,
[[var-1],[var-9],[var-1],[var-5]],
[[var-2],[var-1],[var-9],[var-9],[var-6],[var-9]])).

1218 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.156 nvalues
ctr_date(nvalues,[’20030820’]).

ctr_origin(nvalues,’Inspired by %c and %c.’,[nvalue,count]).

ctr_arguments(
nvalues,
[’VARIABLES’-collection(var-dvar),
’RELOP’-atom,
’LIMIT’-dvar]).

ctr_restrictions(
nvalues,
[required(’VARIABLES’,var),
in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
nvalues,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’RELOP’(’NSCC’,’LIMIT’)]).

ctr_example(
nvalues,
nvalues(

[[var-4],[var-5],[var-5],[var-4],[var-1],[var-5]],
=,
3)).

1219

B.157 nvalues except 0
ctr_date(nvalues_except_0,[’20030820’]).

ctr_origin(nvalues_except_0,’Derived from %c.’,[nvalues]).

ctr_arguments(
nvalues_except_0,
[’VARIABLES’-collection(var-dvar),
’RELOP’-atom,
’LIMIT’-dvar]).

ctr_restrictions(
nvalues_except_0,
[required(’VARIABLES’,var),
in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
nvalues_except_0,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=\=0,variables1ˆvar=variables2ˆvar],
[’RELOP’(’NSCC’,’LIMIT’)]).

ctr_example(
nvalues_except_0,
nvalues_except_0(

[[var-4],[var-5],[var-5],[var-4],[var-0],[var-1]],
=,
3)).

1220 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.158 one tree

ctr_date(one_tree,[’20031001’,’20040530’]).

ctr_origin(
one_tree,
’Inspired by \\cite{GentProsserSmithWei03}’,
[]).

ctr_arguments(
one_tree,
[-(’NODES’,

collection(
id-atom,
index-int,
type-int,
father-dvar,
depth1-dvar,
depth2-dvar))]).

ctr_restrictions(
one_tree,
[required(’NODES’,[id,index,type,father,depth1,depth2]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
in_list(’NODES’,type,[2,3,6]),
’NODES’ˆfather>=1,
’NODES’ˆfather=<size(’NODES’),
’NODES’ˆdepth1>=0,
’NODES’ˆdepth1=<size(’NODES’),
’NODES’ˆdepth2>=0,
’NODES’ˆdepth2=<size(’NODES’)]).

ctr_graph(
one_tree,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[#\/(#/\(nodes1ˆindex=nodes2ˆindex,

nodes1ˆfather=nodes1ˆindex),
#/\(#/\(#/\(nodes1ˆindex=\=nodes2ˆindex,

nodes1ˆfather=nodes2ˆindex),
#\/(#/\(nodes1ˆtype mod 2=0,

nodes1ˆdepth1>nodes2ˆdepth1),
#/\(nodes1ˆtype mod 2>0,

1221

nodes1ˆdepth1=nodes2ˆdepth1))),
#\/(#/\(nodes1ˆtype mod 3=0,

nodes1ˆdepth2>nodes2ˆdepth2),
#/\(nodes1ˆtype mod 3>0,

nodes1ˆdepth2=nodes2ˆdepth2))))],
[’MAX_NSCC’=<1,’NCC’=1,’NVERTEX’=size(’NODES’)]).

ctr_example(
one_tree,
one_tree(

[[id-x,index-1,type-2,father-6,depth1-2,depth2-2],
[id-x,index-2,type-2,father-2,depth1-1,depth2-0],
[id-x,index-3,type-3,father-6,depth1-1,depth2-3],
[id-x,index-4,type-3,father-5,depth1-2,depth2-4],
[id-x,index-5,type-3,father-1,depth1-2,depth2-3],
[id-x,index-6,type-3,father-7,depth1-1,depth2-2],
[id-x,index-7,type-3,father-2,depth1-1,depth2-1],
[id-g,index-8,type-2,father-1,depth1-3,depth2-2],
[id-a,index-9,type-6,father-4,depth1-3,depth2-5],
[id-f,index-10,type-6,father-7,depth1-2,depth2-2],
[id-b,index-11,type-3,father-4,depth1-2,depth2-5],
[id-c,index-12,type-3,father-5,depth1-2,depth2-4],
[id-e,index-13,type-3,father-3,depth1-1,depth2-4],
[id-d,index-14,type-3,father-3,depth1-1,depth2-4]])).

1222 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.159 orchard
ctr_date(orchard,[’20000128’,’20030820’]).

ctr_origin(orchard,’\\cite{Jackson1821}’,[]).

ctr_arguments(
orchard,
[’NROW’-dvar,’TREES’-collection(index-int,x-dvar,y-dvar)]).

ctr_restrictions(
orchard,
[’NROW’>=0,
’TREES’ˆindex>=1,
’TREES’ˆindex=<size(’TREES’),
required(’TREES’,[index,x,y]),
distinct(’TREES’,index),
’TREES’ˆx>=0,
’TREES’ˆy>=0]).

ctr_graph(
orchard,
[’TREES’],
3,
[’CLIQUE’(<)>>collection(trees1,trees2,trees3)],
[=(+(+(trees1ˆx*trees2ˆy-trees1ˆx*trees3ˆy,

trees1ˆy*trees3ˆx-trees1ˆy*trees2ˆx),
trees2ˆx*trees3ˆy-trees2ˆy*trees3ˆx),

0)],
[’NARC’=’NROW’]).

ctr_example(
orchard,
orchard(

10,
[[index-1,x-0,y-0],
[index-2,x-4,y-0],
[index-3,x-8,y-0],
[index-4,x-2,y-4],
[index-5,x-4,y-4],
[index-6,x-6,y-4],
[index-7,x-0,y-8],
[index-8,x-4,y-8],
[index-9,x-8,y-8]])).

1223

B.160 orth link ori siz end
ctr_date(orth_link_ori_siz_end,[’20030820’]).

ctr_origin(
orth_link_ori_siz_end,
’Used by several constraints between orthotopes’,
[]).

ctr_arguments(
orth_link_ori_siz_end,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_restrictions(
orth_link_ori_siz_end,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0]).

ctr_graph(
orth_link_ori_siz_end,
[’ORTHOTOPE’],
1,
[’SELF’>>collection(orthotope)],
[orthotopeˆori+orthotopeˆsiz=orthotopeˆend],
[’NARC’=size(’ORTHOTOPE’)]).

ctr_example(
orth_link_ori_siz_end,
orth_link_ori_siz_end(

[[ori-2,siz-2,end-4],[ori-1,siz-3,end-4]])).

1224 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.161 orth on the ground
ctr_date(orth_on_the_ground,[’20030820’,’20040726’]).

ctr_origin(
orth_on_the_ground,
’Used for defining %c.’,
[place_in_pyramid]).

ctr_arguments(
orth_on_the_ground,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar),
’VERTICAL_DIM’-int]).

ctr_restrictions(
orth_on_the_ground,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
’VERTICAL_DIM’>=1,
’VERTICAL_DIM’=<size(’ORTHOTOPE’),
orth_link_ori_siz_end(’ORTHOTOPE’)]).

ctr_graph(
orth_on_the_ground,
[’ORTHOTOPE’],
1,
[’SELF’>>collection(orthotope)],
[orthotopeˆkey=’VERTICAL_DIM’,orthotopeˆori=1],
[’NARC’=1]).

ctr_example(
orth_on_the_ground,
orth_on_the_ground(

[[ori-1,siz-2,end-3],[ori-2,siz-3,end-5]],
1)).

1225

B.162 orth on top of orth

ctr_date(orth_on_top_of_orth,[’20030820’,’20040726’]).

ctr_origin(
orth_on_top_of_orth,
’Used for defining %c.’,
[place_in_pyramid]).

ctr_types(
orth_on_top_of_orth,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
orth_on_top_of_orth,
[’ORTHOTOPE1’-’ORTHOTOPE’,
’ORTHOTOPE2’-’ORTHOTOPE’,
’VERTICAL_DIM’-int]).

ctr_restrictions(
orth_on_top_of_orth,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
size(’ORTHOTOPE1’)=size(’ORTHOTOPE2’),
’VERTICAL_DIM’>=1,
’VERTICAL_DIM’=<size(’ORTHOTOPE1’),
orth_link_ori_siz_end(’ORTHOTOPE1’),
orth_link_ori_siz_end(’ORTHOTOPE2’)]).

ctr_graph(
orth_on_top_of_orth,
[’ORTHOTOPE1’,’ORTHOTOPE2’],
2,
[’PRODUCT’(=)>>collection(orthotope1,orthotope2)],
[orthotope1ˆkey=\=’VERTICAL_DIM’,
orthotope2ˆori=<orthotope1ˆori,
orthotope1ˆend=<orthotope2ˆend],

[’NARC’=size(’ORTHOTOPE1’)-1]).

ctr_graph(
orth_on_top_of_orth,
[’ORTHOTOPE1’,’ORTHOTOPE2’],
2,
[’PRODUCT’(=)>>collection(orthotope1,orthotope2)],
[orthotope1ˆkey=’VERTICAL_DIM’,

1226 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

orthotope1ˆori=orthotope2ˆend],
[’NARC’=1]).

ctr_example(
orth_on_top_of_orth,
orth_on_top_of_orth(

[[ori-5,siz-2,end-7],[ori-3,siz-3,end-6]],
[[ori-3,siz-5,end-8],[ori-1,siz-2,end-3]],
2)).

1227

B.163 orths are connected

ctr_date(orths_are_connected,[’20000128’,’20030820’]).

ctr_origin(orths_are_connected,’N.˜Beldiceanu’,[]).

ctr_types(
orths_are_connected,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
orths_are_connected,
[’ORTHOTOPES’-collection(orth-’ORTHOTOPE’)]).

ctr_restrictions(
orths_are_connected,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>0,
required(’ORTHOTOPES’,orth),
same_size(’ORTHOTOPES’,orth)]).

ctr_graph(
orths_are_connected,
[’ORTHOTOPES’],
1,
[’SELF’>>collection(orthotopes)],
[orth_link_ori_siz_end(orthotopesˆorth)],
[’NARC’=size(’ORTHOTOPES’)]).

ctr_graph(
orths_are_connected,
[’ORTHOTOPES’],
2,
[’CLIQUE’(=\=)>>collection(orthotopes1,orthotopes2)],
[two_orth_are_in_contact(

orthotopes1ˆorth,
orthotopes2ˆorth)],

[’NVERTEX’=size(’ORTHOTOPES’),’NCC’=1]).

ctr_example(
orths_are_connected,
orths_are_connected(

[[orth-[[ori-2,siz-4,end-6],[ori-2,siz-2,end-4]]],
[orth-[[ori-1,siz-2,end-3],[ori-4,siz-3,end-7]]],
[orth-[[ori-7,siz-4,end-11],[ori-1,siz-2,end-3]]],

1228 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[orth-[[ori-6,siz-2,end-8],[ori-3,siz-2,end-5]]]])).

1229

B.164 path from to

ctr_date(path_from_to,[’20030820’,’20040530’]).

ctr_origin(
path_from_to,
’\\cite{AlthausBockmayrElfKasperJungerMehlhorn02}’,
[]).

ctr_usual_name(path_from_to,path).

ctr_arguments(
path_from_to,
[’FROM’-int,
’TO’-int,
’NODES’-collection(index-int,succ-svar)]).

ctr_restrictions(
path_from_to,
[’FROM’>=1,
’FROM’=<size(’NODES’),
’TO’>=1,
’TO’=<size(’NODES’),
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index)]).

ctr_graph(
path_from_to,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[in_set(nodes2ˆindex,nodes1ˆsucc)],
[’PATH_FROM_TO’(index,’FROM’,’TO’)=1]).

ctr_example(
path_from_to,
path_from_to(

4,
3,
[[index-1,succ-{}],
[index-2,succ-{}],
[index-3,succ-{5}],
[index-4,succ-{5}],
[index-5,succ-{2,3}]])).

1230 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

1231

B.165 pattern
ctr_predefined(pattern).

ctr_date(pattern,[’20031008’]).

ctr_origin(pattern,’\\cite{BourdaisGalinierPesant03}’,[]).

ctr_types(pattern,[’PATTERN’-collection(var-int)]).

ctr_arguments(
pattern,
[’VARIABLES’-collection(var-dvar),
’PATTERNS’-collection(pat-’PATTERN’)]).

ctr_restrictions(
pattern,
[required(’PATTERN’,var),
change(0,’PATTERN’,=),
required(’VARIABLES’,var),
required(’PATTERNS’,pat),
same_size(’PATTERNS’,pat)]).

ctr_example(
pattern,
pattern(

[[var-1],
[var-1],
[var-2],
[var-2],
[var-2],
[var-1],
[var-3],
[var-3]],

[[pat-[[var-1],[var-2],[var-1]]],
[pat-[[var-1],[var-2],[var-3]]],
[pat-[[var-2],[var-1],[var-3]]]])).

1232 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.166 peak

ctr_automaton(peak,peak).

ctr_date(peak,[’20040530’]).

ctr_origin(peak,’Derived from %c.’,[inflexion]).

ctr_arguments(peak,[’N’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
peak,
[’N’>=0,
2*’N’=<max(size(’VARIABLES’)-1,0),
required(’VARIABLES’,var)]).

ctr_example(
peak,
peak(

2,
[[var-1],
[var-1],
[var-4],
[var-8],
[var-6],
[var-2],
[var-7],
[var-1]])).

peak(A,B) :-
peak_signature(B,C),
automaton(

C,
D,
C,
0..2,
[source(s),node(u),sink(t)],
[arc(s,0,s),
arc(s,1,s),
arc(s,2,u),
arc(s,$,t),
arc(u,0,s,[E+1]),
arc(u,1,u),
arc(u,2,u),
arc(u,$,t)],
[E],

1233

[0],
[A]).

peak_signature([],[]).

peak_signature([A],[]).

peak_signature([[var-A],[var-B]|C],[D|E]) :-
in(D,0..2),
A#>B#<=>D#=0,
A#=B#<=>D#=1,
A#<B#<=>D#=2,
peak_signature([[var-B]|C],E).

1234 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.167 period
ctr_predefined(period).

ctr_date(period,[’20000128’,’20030820’,’20040530’]).

ctr_origin(period,’N.˜Beldiceanu’,[]).

ctr_arguments(
period,
[’PERIOD’-dvar,
’VARIABLES’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
period,
[’PERIOD’>=1,
’PERIOD’=<size(’VARIABLES’),
required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
period,
period(

3,
[[var-1],
[var-1],
[var-4],
[var-1],
[var-1],
[var-4],
[var-1],
[var-1]],

=)).

1235

B.168 period except 0
ctr_predefined(period_except_0).

ctr_date(period_except_0,[’20030820’,’20040530’]).

ctr_origin(period_except_0,’Derived from %c.’,[period]).

ctr_arguments(
period_except_0,
[’PERIOD’-dvar,
’VARIABLES’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
period_except_0,
[’PERIOD’>=1,
’PERIOD’=<size(’VARIABLES’),
required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
period_except_0,
period_except_0(

3,
[[var-1],
[var-1],
[var-4],
[var-1],
[var-1],
[var-0],
[var-1],
[var-1]],

=)).

1236 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.169 place in pyramid

ctr_date(place_in_pyramid,[’20000128’,’20030820’,’20041230’]).

ctr_origin(place_in_pyramid,’N.˜Beldiceanu’,[]).

ctr_types(
place_in_pyramid,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
place_in_pyramid,
[’ORTHOTOPES’-collection(orth-’ORTHOTOPE’),
’VERTICAL_DIM’-int]).

ctr_restrictions(
place_in_pyramid,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
same_size(’ORTHOTOPES’,orth),
’VERTICAL_DIM’>=1,
diffn(’ORTHOTOPES’)]).

ctr_graph(
place_in_pyramid,
[’ORTHOTOPES’],
2,
[’CLIQUE’>>collection(orthotopes1,orthotopes2)],
[#\/(#/\(orthotopes1ˆkey=orthotopes2ˆkey,

orth_on_the_ground(
orthotopes1ˆorth,
’VERTICAL_DIM’)),

#/\(orthotopes1ˆkey=\=orthotopes2ˆkey,
orth_on_top_of_orth(

orthotopes1ˆorth,
orthotopes2ˆorth,
’VERTICAL_DIM’)))],

[’NARC’=size(’ORTHOTOPES’)]).

ctr_example(
place_in_pyramid,
place_in_pyramid(

[[orth-[[ori-1,siz-3,end-4],[ori-1,siz-2,end-3]]],
[orth-[[ori-1,siz-2,end-3],[ori-3,siz-3,end-6]]],
[orth-[[ori-5,siz-6,end-11],[ori-1,siz-2,end-3]]],

1237

[orth-[[ori-5,siz-2,end-7],[ori-3,siz-2,end-5]]],
[orth-[[ori-8,siz-3,end-11],[ori-3,siz-2,end-5]]],
[orth-[[ori-8,siz-2,end-10],[ori-5,siz-2,end-7]]]],

2)).

1238 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.170 polyomino

ctr_date(polyomino,[’20000128’,’20030820’]).

ctr_origin(polyomino,’Inspired by \\cite{Golomb65}.’,[]).

ctr_arguments(
polyomino,
[-(’CELLS’,

collection(
index-int,
right-dvar,
left-dvar,
up-dvar,
down-dvar))]).

ctr_restrictions(
polyomino,
[’CELLS’ˆindex>=1,
’CELLS’ˆindex=<size(’CELLS’),
size(’CELLS’)>=1,
required(’CELLS’,[index,right,left,up,down]),
distinct(’CELLS’,index),
’CELLS’ˆright>=0,
’CELLS’ˆright=<size(’CELLS’),
’CELLS’ˆleft>=0,
’CELLS’ˆleft=<size(’CELLS’),
’CELLS’ˆup>=0,
’CELLS’ˆup=<size(’CELLS’),
’CELLS’ˆdown>=0,
’CELLS’ˆdown=<size(’CELLS’)]).

ctr_graph(
polyomino,
[’CELLS’],
2,
[’CLIQUE’(=\=)>>collection(cells1,cells2)],
[#\/(#\/(#\/(#/\(cells1ˆright=cells2ˆindex,

cells2ˆleft=cells1ˆindex),
#/\(cells1ˆleft=cells2ˆindex,

cells2ˆright=cells1ˆindex)),
#/\(cells1ˆup=cells2ˆindex,

cells2ˆdown=cells1ˆindex)),
cells1ˆdown=cells2ˆindex#/\cells2ˆup=cells1ˆindex)],

[’NVERTEX’=size(’CELLS’),’NCC’=1]).

1239

ctr_example(
polyomino,
polyomino(

[[index-1,right-0,left-0,up-2,down-0],
[index-2,right-3,left-0,up-0,down-1],
[index-3,right-0,left-2,up-4,down-0],
[index-4,right-5,left-0,up-0,down-3],
[index-5,right-0,left-4,up-0,down-0]])).

1240 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.171 product ctr
ctr_date(product_ctr,[’20030820’]).

ctr_origin(product_ctr,’Arithmetic constraint.’,[]).

ctr_arguments(
product_ctr,
[’VARIABLES’-collection(var-dvar),’CTR’-atom,’VAR’-dvar]).

ctr_restrictions(
product_ctr,
[required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
product_ctr,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[’TRUE’],
[’CTR’(’PRODUCT’(’VARIABLES’,var),’VAR’)]).

ctr_example(
product_ctr,
product_ctr([[var-2],[var-1],[var-4]],=,8)).

1241

B.172 range ctr
ctr_date(range_ctr,[’20030820’]).

ctr_origin(range_ctr,’Arithmetic constraint.’,[]).

ctr_arguments(
range_ctr,
[’VARIABLES’-collection(var-dvar),’CTR’-atom,’VAR’-dvar]).

ctr_restrictions(
range_ctr,
[required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
range_ctr,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[’TRUE’],
[’CTR’(’RANGE’(’VARIABLES’,var),’VAR’)]).

ctr_example(range_ctr,range_ctr([[var-1],[var-9],[var-4]],=,8)).

1242 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.173 relaxed sliding sum

ctr_date(relaxed_sliding_sum,[’20000128’,’20030820’]).

ctr_origin(relaxed_sliding_sum,’CHIP’,[]).

ctr_arguments(
relaxed_sliding_sum,
[’ATLEAST’-int,
’ATMOST’-int,
’LOW’-int,
’UP’-int,
’SEQ’-int,
’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
relaxed_sliding_sum,
[’ATLEAST’>=0,
’ATMOST’>=’ATLEAST’,
’ATMOST’=<size(’VARIABLES’)-’SEQ’+1,
’UP’>=’LOW’,
’SEQ’>0,
’SEQ’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_graph(
relaxed_sliding_sum,
[’VARIABLES’],
’SEQ’,
[’PATH’>>collection],
[sum_ctr(collection,>=,’LOW’),sum_ctr(collection,=<,’UP’)],
[’NARC’>=’ATLEAST’,’NARC’=<’ATMOST’]).

ctr_example(
relaxed_sliding_sum,
relaxed_sliding_sum(

3,
4,
3,
7,
4,
[[var-2],
[var-4],
[var-2],
[var-0],
[var-0],

1243

[var-3],
[var-4]])).

1244 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.174 same
ctr_date(same,[’20000128’,’20030820’,’20040530’]).

ctr_origin(same,’N.˜Beldiceanu’,[]).

ctr_arguments(
same,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
same,
[size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var)]).

ctr_graph(
same,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[for_all(’CC’,’NSOURCE’=’NSINK’),
’NSOURCE’=size(’VARIABLES1’),
’NSINK’=size(’VARIABLES2’)]).

ctr_example(
same,
same(

[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]],
[[var-9],[var-1],[var-1],[var-1],[var-2],[var-5]])).

1245

B.175 same and global cardinality

ctr_date(same_and_global_cardinality,[’20040530’]).

ctr_origin(
same_and_global_cardinality,
’Derived from %c and %c’,
[same,global_cardinality]).

ctr_synonyms(
same_and_global_cardinality,
[sgcc,same_gcc,same_and_gcc,swc,same_with_cardinalities]).

ctr_arguments(
same_and_global_cardinality,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’VALUES’-collection(val-int,noccurrence-dvar)]).

ctr_restrictions(
same_and_global_cardinality,
[size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
required(’VALUES’,[val,noccurrence]),
distinct(’VALUES’,val),
’VALUES’ˆnoccurrence>=0,
’VALUES’ˆnoccurrence=<size(’VARIABLES1’)]).

ctr_graph(
same_and_global_cardinality,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[for_all(’CC’,’NSOURCE’=’NSINK’),
’NSOURCE’=size(’VARIABLES1’),
’NSINK’=size(’VARIABLES2’)]).

ctr_graph(
same_and_global_cardinality,
[’VARIABLES1’],
1,
foreach(’VALUES’,[’SELF’>>collection(variables)]),
[variablesˆvar=’VALUES’ˆval],
[’NVERTEX’=’VALUES’ˆnoccurrence]).

1246 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

ctr_example(
same_and_global_cardinality,
same_and_global_cardinality(

[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]],
[[var-9],[var-1],[var-1],[var-1],[var-2],[var-5]],
[[val-1,noccurrence-3],
[val-2,noccurrence-1],
[val-5,noccurrence-1],
[val-7,noccurrence-0],
[val-9,noccurrence-1]])).

1247

B.176 same intersection
ctr_date(same_intersection,[’20040530’]).

ctr_origin(
same_intersection,
’Derived from %c and %c.’,
[same,common]).

ctr_arguments(
same_intersection,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
same_intersection,
[required(’VARIABLES1’,var),required(’VARIABLES2’,var)]).

ctr_graph(
same_intersection,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[for_all(’CC’,’NSOURCE’=’NSINK’)]).

ctr_example(
same_intersection,
same_intersection(

[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]],
[[var-9],
[var-1],
[var-1],
[var-1],
[var-3],
[var-5],
[var-8]])).

1248 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.177 same interval
ctr_date(same_interval,[’20030820’]).

ctr_origin(same_interval,’Derived from %c.’,[same]).

ctr_arguments(
same_interval,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’SIZE_INTERVAL’-int]).

ctr_restrictions(
same_interval,
[size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’SIZE_INTERVAL’>0]).

ctr_graph(
same_interval,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[=(variables1ˆvar/’SIZE_INTERVAL’,

variables2ˆvar/’SIZE_INTERVAL’)],
[for_all(’CC’,’NSOURCE’=’NSINK’),
’NSOURCE’=size(’VARIABLES1’),
’NSINK’=size(’VARIABLES2’)]).

ctr_example(
same_interval,
same_interval(

[[var-1],[var-7],[var-6],[var-0],[var-1],[var-7]],
[[var-8],[var-8],[var-8],[var-0],[var-1],[var-2]],
3)).

1249

B.178 same modulo
ctr_date(same_modulo,[’20030820’]).

ctr_origin(same_modulo,’Derived from %c.’,[same]).

ctr_arguments(
same_modulo,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’M’-int]).

ctr_restrictions(
same_modulo,
[size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’M’>0]).

ctr_graph(
same_modulo,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar mod ’M’=variables2ˆvar mod ’M’],
[for_all(’CC’,’NSOURCE’=’NSINK’),
’NSOURCE’=size(’VARIABLES1’),
’NSINK’=size(’VARIABLES2’)]).

ctr_example(
same_modulo,
same_modulo(

[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]],
[[var-6],[var-4],[var-1],[var-1],[var-5],[var-5]],
3)).

1250 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.179 same partition

ctr_date(same_partition,[’20030820’]).

ctr_origin(same_partition,’Derived from %c.’,[same]).

ctr_types(same_partition,[’VALUES’-collection(val-int)]).

ctr_arguments(
same_partition,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
same_partition,
[required(’VALUES’,val),
distinct(’VALUES’,val),
size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_graph(
same_partition,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
’PARTITIONS’)],

[for_all(’CC’,’NSOURCE’=’NSINK’),
’NSOURCE’=size(’VARIABLES1’),
’NSINK’=size(’VARIABLES2’)]).

ctr_example(
same_partition,
same(

[[var-1],[var-2],[var-6],[var-3],[var-1],[var-2]],
[[var-6],[var-6],[var-2],[var-3],[var-1],[var-3]],
[[p-[[val-1],[val-3]]],
[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).

1251

B.180 sequence folding

ctr_automaton(sequence_folding,sequence_folding).

ctr_date(sequence_folding,[’20030820’,’20040530’]).

ctr_origin(sequence_folding,’J.˜Pearson’,[]).

ctr_arguments(
sequence_folding,
[’LETTERS’-collection(index-int,next-dvar)]).

ctr_restrictions(
sequence_folding,
[size(’LETTERS’)>=1,
required(’LETTERS’,[index,next]),
’LETTERS’ˆindex>=1,
’LETTERS’ˆindex=<size(’LETTERS’),
increasing_seq(’LETTERS’,index),
’LETTERS’ˆnext>=1,
’LETTERS’ˆnext=<size(’LETTERS’)]).

ctr_graph(
sequence_folding,
[’LETTERS’],
1,
[’SELF’>>collection(letters)],
[lettersˆnext>=lettersˆindex],
[’NARC’=size(’LETTERS’)]).

ctr_graph(
sequence_folding,
[’LETTERS’],
2,
[’CLIQUE’(<)>>collection(letters1,letters2)],
[#\/(letters2ˆindex>=letters1ˆnext,

letters2ˆnext=<letters1ˆnext)],
[’NARC’=size(’LETTERS’)*(size(’LETTERS’)-1)/2]).

ctr_example(
sequence_folding,
sequence_folding(

[[index-1,next-1],
[index-2,next-8],
[index-3,next-3],
[index-4,next-5],

1252 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[index-5,next-5],
[index-6,next-7],
[index-7,next-7],
[index-8,next-8],
[index-9,next-9]])).

sequence_folding(A) :-
sequence_folding_signature(A,B),
automaton(

B,
C,
B,
0..2,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s),arc(s,$,t)],
[],
[],
[]).

sequence_folding_signature([],[]).

sequence_folding_signature([A],[]).

sequence_folding_signature([A,B|C],D) :-
sequence_folding_signature([B|C],A,E),
sequence_folding_signature([B|C],F),
append(E,F,D).

sequence_folding_signature([],A,[]).

sequence_folding_signature([A|B],C,[D|E]) :-
C=[index-F,next-G],
A=[index-H,next-I],
F#=<G#/\H#=<I#/\G#=<H#<=>D#=0,
F#=<G#/\H#=<I#/\G#>H#/\I#=<G#<=>D#=1,
sequence_folding_signature(B,C,E).

1253

B.181 set value precede
ctr_predefined(set_value_precede).

ctr_date(set_value_precede,[’20041003’]).

ctr_origin(set_value_precede,’\\cite{YatChiuLawJimmyLee04}’,[]).

ctr_arguments(
set_value_precede,
[’S’-int,’T’-int,’VARIABLES’-collection(var-svar)]).

ctr_restrictions(
set_value_precede,
[’S’=\=’T’,required(’VARIABLES’,var)]).

ctr_example(
set_value_precede,
set_value_precede(

2,
1,
[[var-{0,2}],[var-{0,1}],[var-{}],[var-{1}]])).

1254 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.182 shift

ctr_date(shift,[’20030820’]).

ctr_origin(shift,’N.˜Beldiceanu’,[]).

ctr_arguments(
shift,
[’MIN_BREAK’-int,
’MAX_RANGE’-int,
’TASKS’-collection(id-int,origin-dvar,end-dvar)]).

ctr_restrictions(
shift,
[’MIN_BREAK’>0,
’MAX_RANGE’>0,
required(’TASKS’,[id,origin,end]),
distinct(’TASKS’,id)]).

ctr_graph(
shift,
[’TASKS’],
1,
[’SELF’>>collection(tasks)],
[tasksˆend>=tasksˆorigin,
tasksˆend-tasksˆorigin=<’MAX_RANGE’],

[’NARC’=size(’TASKS’)]).

ctr_graph(
shift,
[’TASKS’],
2,
[’CLIQUE’>>collection(tasks1,tasks2)],
[#\/(#\/(#/\(tasks2ˆorigin>=tasks1ˆend,

tasks2ˆorigin-tasks1ˆend=<’MIN_BREAK’),
#/\(tasks1ˆorigin>=tasks2ˆend,

tasks1ˆorigin-tasks2ˆend=<’MIN_BREAK’)),
tasks2ˆorigin<tasks1ˆend#/\tasks1ˆorigin<tasks2ˆend)],

[],
[>>(’CC’,

[-(variables,
col(’VARIABLES’-collection(var-dvar),

[item(var-’TASKS’ˆorigin),
item(var-’TASKS’ˆend)]))])],

[range_ctr(variables,=<,’MAX_RANGE’)]).

1255

ctr_example(
shift,
shift(

6,
8,
[[id-1,origin-17,end-20],
[id-2,origin-7,end-10],
[id-3,origin-2,end-4],
[id-4,origin-21,end-22],
[id-5,origin-5,end-6]])).

1256 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.183 size maximal sequence alldifferent
ctr_date(size_maximal_sequence_alldifferent,[’20030820’]).

ctr_origin(
size_maximal_sequence_alldifferent,
’N.˜Beldiceanu’,
[]).

ctr_synonyms(
size_maximal_sequence_alldifferent,
[size_maximal_sequence_alldiff,
size_maximal_sequence_alldistinct]).

ctr_arguments(
size_maximal_sequence_alldifferent,
[’SIZE’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
size_maximal_sequence_alldifferent,
[’SIZE’>=0,
’SIZE’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_graph(
size_maximal_sequence_alldifferent,
[’VARIABLES’],
*,
[’PATH_N’>>collection],
[alldifferent(collection)],
[’NARC’=’SIZE’]).

ctr_example(
size_maximal_sequence_alldifferent,
size_maximal_sequence_alldifferent(

4,
[[var-2],
[var-2],
[var-4],
[var-5],
[var-2],
[var-7],
[var-4]])).

1257

B.184 size maximal starting sequence alldifferent

ctr_date(
size_maximal_starting_sequence_alldifferent,
[’20030820’]).

ctr_origin(
size_maximal_starting_sequence_alldifferent,
’N.˜Beldiceanu’,
[]).

ctr_synonyms(
size_maximal_starting_sequence_alldifferent,
[size_maximal_starting_sequence_alldiff,
size_maximal_starting_sequence_alldistinct]).

ctr_arguments(
size_maximal_starting_sequence_alldifferent,
[’SIZE’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
size_maximal_starting_sequence_alldifferent,
[’SIZE’>=0,
’SIZE’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_graph(
size_maximal_starting_sequence_alldifferent,
[’VARIABLES’],
*,
[’PATH_1’>>collection],
[alldifferent(collection)],
[’NARC’=’SIZE’]).

ctr_example(
size_maximal_starting_sequence_alldifferent,
size_maximal_starting_sequence_alldifferent(

4,
[[var-9],
[var-2],
[var-4],
[var-5],
[var-2],
[var-7],
[var-4]])).

1258 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.185 sliding card skip0

ctr_automaton(sliding_card_skip0,sliding_card_skip0).

ctr_date(sliding_card_skip0,[’20000128’,’20030820’,’20040530’]).

ctr_origin(sliding_card_skip0,’N.˜Beldiceanu’,[]).

ctr_arguments(
sliding_card_skip0,
[’ATLEAST’-int,
’ATMOST’-int,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_restrictions(
sliding_card_skip0,
[’ATLEAST’>=0,
’ATMOST’>=’ATLEAST’,
required(’VARIABLES’,var),
required(’VALUES’,val),
distinct(’VALUES’,val),
’VALUES’ˆval=\=0]).

ctr_graph(
sliding_card_skip0,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2),
’LOOP’>>collection(variables1,variables2)],

[variables1ˆvar=\=0,variables2ˆvar=\=0],
[],
[’CC’>>[variables]],
[among_low_up(’ATLEAST’,’ATMOST’,variables,’VALUES’)]).

ctr_example(
sliding_card_skip0,
sliding_card_skip0(

2,
3,
[[var-0],
[var-7],
[var-2],
[var-9],
[var-0],
[var-0],

1259

[var-9],
[var-4],
[var-9]],

[[val-7],[val-9]])).

sliding_card_skip0(A,B,C,D) :-
col_to_list(D,E),
list_to_fdset(E,F),
sliding_card_skip0_signature(C,G,F),
automaton(

G,
H,
G,
0..2,
[source(s),node(i),sink(t)],
[arc(s,0,s),
arc(s,1,i,[0]),
arc(s,2,i,[1]),
arc(s,$,t),
arc(i,0,s,(in(I,A..B)->[I])),
arc(i,1,i),
arc(i,2,i,[I+1]),
arc(i,$,t,(in(I,A..B)->[I]))],

[I],
[0],
[J]).

sliding_card_skip0_signature([],[],A).

sliding_card_skip0_signature([[var-A]|B],[C|D],E) :-
A#\=0#<=>F,
in_set(A,E)#<=>G,
in(C,0..2),
C#=max(2*F+G-1,0),
sliding_card_skip0_signature(B,D,E).

1260 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.186 sliding distribution

ctr_date(sliding_distribution,[’20031008’]).

ctr_origin(sliding_distribution,’\\cite{ReginPuget97}’,[]).

ctr_arguments(
sliding_distribution,
[’SEQ’-int,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int,omin-int,omax-int)]).

ctr_restrictions(
sliding_distribution,
[’SEQ’>0,
’SEQ’=<size(’VARIABLES’),
required(’VARIABLES’,var),
size(’VALUES’)>0,
required(’VALUES’,[val,omin,omax]),
distinct(’VALUES’,val),
’VALUES’ˆomin>=0,
’VALUES’ˆomax=<’SEQ’,
’VALUES’ˆomin=<’VALUES’ˆomax]).

ctr_graph(
sliding_distribution,
[’VARIABLES’],
’SEQ’,
[’PATH’>>collection],
[global_cardinality_low_up(collection,’VALUES’)],
[’NARC’=size(’VARIABLES’)-’SEQ’+1]).

ctr_example(
sliding_distribution,
sliding_distribution(

4,
[[var-0],
[var-5],
[var-6],
[var-6],
[var-5],
[var-0],
[var-0]],

[[val-0,omin-1,omax-2],
[val-1,omin-0,omax-4],
[val-4,omin-0,omax-4],

1261

[val-5,omin-1,omax-2],
[val-6,omin-0,omax-2]])).

1262 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.187 sliding sum
ctr_date(sliding_sum,[’20000128’,’20030820’]).

ctr_origin(sliding_sum,’CHIP’,[]).

ctr_arguments(
sliding_sum,
[’LOW’-int,
’UP’-int,
’SEQ’-int,
’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
sliding_sum,
[’UP’>=’LOW’,
’SEQ’>0,
’SEQ’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_graph(
sliding_sum,
[’VARIABLES’],
’SEQ’,
[’PATH’>>collection],
[sum_ctr(collection,>=,’LOW’),sum_ctr(collection,=<,’UP’)],
[’NARC’=size(’VARIABLES’)-’SEQ’+1]).

ctr_example(
sliding_sum,
sliding_sum(

3,
7,
4,
[[var-1],
[var-4],
[var-2],
[var-0],
[var-0],
[var-3],
[var-4]])).

1263

B.188 sliding time window

ctr_date(sliding_time_window,[’20030820’]).

ctr_origin(sliding_time_window,’N.˜Beldiceanu’,[]).

ctr_arguments(
sliding_time_window,
[’WINDOW_SIZE’-int,
’LIMIT’-int,
’TASKS’-collection(id-int,origin-dvar,duration-dvar)]).

ctr_restrictions(
sliding_time_window,
[’WINDOW_SIZE’>0,
’LIMIT’>=0,
required(’TASKS’,[id,origin,duration]),
distinct(’TASKS’,id),
’TASKS’ˆduration>=0]).

ctr_graph(
sliding_time_window,
[’TASKS’],
2,
[’CLIQUE’>>collection(tasks1,tasks2)],
[tasks1ˆorigin=<tasks2ˆorigin,
tasks2ˆorigin-tasks1ˆorigin<’WINDOW_SIZE’],

[],
[’SUCC’>>[source,tasks]],
[sliding_time_window_from_start(

’WINDOW_SIZE’,
’LIMIT’,
tasks,
sourceˆorigin)]).

ctr_example(
sliding_time_window,
sliding_time_window(

9,
6,
[[id-1,origin-10,duration-3],
[id-2,origin-5,duration-1],
[id-3,origin-6,duration-2],
[id-4,origin-14,duration-2],
[id-5,origin-2,duration-2]])).

1264 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.189 sliding time window from start

ctr_date(sliding_time_window_from_start,[’20030820’]).

ctr_origin(
sliding_time_window_from_start,
’Used for defining %c.’,
[sliding_time_window]).

ctr_arguments(
sliding_time_window_from_start,
[’WINDOW_SIZE’-int,
’LIMIT’-int,
’TASKS’-collection(id-int,origin-dvar,duration-dvar),
’START’-dvar]).

ctr_restrictions(
sliding_time_window_from_start,
[’WINDOW_SIZE’>0,
’LIMIT’>=0,
required(’TASKS’,[id,origin,duration]),
distinct(’TASKS’,id),
’TASKS’ˆduration>=0]).

ctr_derived_collections(
sliding_time_window_from_start,
[col(’S’-collection(var-dvar),[item(var-’START’)])]).

ctr_graph(
sliding_time_window_from_start,
[’S’,’TASKS’],
2,
[’PRODUCT’>>collection(s,tasks)],
[’TRUE’],
[=<(’SUM_WEIGHT_ARC’(

max(0,
-(min(sˆvar+’WINDOW_SIZE’,

tasksˆorigin+tasksˆduration),
max(sˆvar,tasksˆorigin)))),

’LIMIT’)]).

ctr_example(
sliding_time_window_from_start,
sliding_time_window(

9,
6,

1265

[[id-1,origin-10,duration-3],
[id-2,origin-5,duration-1],
[id-3,origin-6,duration-2]],

5)).

1266 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.190 sliding time window sum

ctr_date(sliding_time_window_sum,[’20030820’]).

ctr_origin(
sliding_time_window_sum,
’Derived from %c.’,
[sliding_time_window]).

ctr_arguments(
sliding_time_window_sum,
[’WINDOW_SIZE’-int,
’LIMIT’-int,
-(’TASKS’,

collection(id-int,origin-dvar,end-dvar,npoint-dvar))]).

ctr_restrictions(
sliding_time_window_sum,
[’WINDOW_SIZE’>0,
’LIMIT’>=0,
required(’TASKS’,[id,origin,end,npoint]),
distinct(’TASKS’,id),
’TASKS’ˆnpoint>=0]).

ctr_graph(
sliding_time_window_sum,
[’TASKS’],
1,
[’SELF’>>collection(tasks)],
[tasksˆorigin=<tasksˆend],
[’NARC’=size(’TASKS’)]).

ctr_graph(
sliding_time_window_sum,
[’TASKS’],
2,
[’CLIQUE’>>collection(tasks1,tasks2)],
[tasks1ˆend=<tasks2ˆend,
tasks2ˆorigin-tasks1ˆend<’WINDOW_SIZE’-1],

[],
[>>(’SUCC’,

[source,
-(variables,

col(’VARIABLES’-collection(var-dvar),
[item(var-’TASKS’ˆnpoint)]))])],

[sum_ctr(variables,=<,’LIMIT’)]).

1267

ctr_example(
sliding_time_window_sum,
sliding_time_window_sum(

9,
16,
[[id-1,origin-10,end-13,npoint-2],
[id-2,origin-5,end-6,npoint-3],
[id-3,origin-6,end-8,npoint-4],
[id-4,origin-14,end-16,npoint-5],
[id-5,origin-2,end-4,npoint-6]])).

1268 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.191 smooth

ctr_automaton(smooth,smooth).

ctr_date(smooth,[’20000128’,’20030820’,’20040530’]).

ctr_origin(smooth,’Derived from %c.’,[change]).

ctr_arguments(
smooth,
[’NCHANGE’-dvar,
’TOLERANCE’-int,
’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
smooth,
[’NCHANGE’>=0,
’NCHANGE’<size(’VARIABLES’),
’TOLERANCE’>=0,
required(’VARIABLES’,var)]).

ctr_graph(
smooth,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[abs(variables1ˆvar-variables2ˆvar)>’TOLERANCE’],
[’NARC’=’NCHANGE’]).

ctr_example(
smooth,
smooth(1,2,[[var-1],[var-3],[var-4],[var-5],[var-2]])).

smooth(A,B,C) :-
smooth_signature(C,D,B),
automaton(

D,
E,
D,
0..1,
[source(s),sink(t)],
[arc(s,1,s,[F+1]),arc(s,0,s),arc(s,$,t)],
[F],
[0],
[A]).

1269

smooth_signature([],[],A).

smooth_signature([A],[],B).

smooth_signature([[var-A],[var-B]|C],[D|E],F) :-
abs(A-B)#>F#<=>D#=1,
smooth_signature([[var-B]|C],E,F).

1270 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.192 soft alldifferent ctr
ctr_date(soft_alldifferent_ctr,[’20030820’]).

ctr_origin(
soft_alldifferent_ctr,
’\\cite{PetitReginBessiere01}’,
[]).

ctr_synonyms(
soft_alldifferent_ctr,
[soft_alldiff_ctr,soft_alldistinct_ctr]).

ctr_arguments(
soft_alldifferent_ctr,
[’C’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
soft_alldifferent_ctr,
[’C’>=0,
=<(’C’,

/(-(size(’VARIABLES’)*size(’VARIABLES’),
size(’VARIABLES’)),

2)),
required(’VARIABLES’,var)]).

ctr_graph(
soft_alldifferent_ctr,
[’VARIABLES’],
2,
[’CLIQUE’(<)>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NARC’=’C’]).

ctr_example(
soft_alldifferent_ctr,
soft_alldifferent_ctr(

4,
[[var-5],[var-1],[var-9],[var-1],[var-5],[var-5]])).

1271

B.193 soft alldifferent var
ctr_date(soft_alldifferent_var,[’20030820’]).

ctr_origin(
soft_alldifferent_var,
’\\cite{PetitReginBessiere01}’,
[]).

ctr_synonyms(
soft_alldifferent_var,
[soft_alldiff_var,soft_alldistinct_var]).

ctr_arguments(
soft_alldifferent_var,
[’C’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
soft_alldifferent_var,
[’C’>=0,’C’<size(’VARIABLES’),required(’VARIABLES’,var)]).

ctr_graph(
soft_alldifferent_var,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NSCC’=size(’VARIABLES’)-’C’]).

ctr_example(
soft_alldifferent_var,
soft_alldifferent_var(

3,
[[var-5],[var-1],[var-9],[var-1],[var-5],[var-5]])).

1272 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.194 soft same interval var
ctr_date(soft_same_interval_var,[’20050507’]).

ctr_origin(
soft_same_interval_var,
’Derived from %c’,
[same_interval]).

ctr_synonyms(soft_same_interval_var,[soft_same_interval]).

ctr_arguments(
soft_same_interval_var,
[’C’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’SIZE_INTERVAL’-int]).

ctr_restrictions(
soft_same_interval_var,
[’C’>=0,
’C’=<size(’VARIABLES1’),
size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’SIZE_INTERVAL’>0]).

ctr_graph(
soft_same_interval_var,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[=(variables1ˆvar/’SIZE_INTERVAL’,

variables2ˆvar/’SIZE_INTERVAL’)],
[’NSINK_NSOURCE’=size(’VARIABLES1’)-’C’]).

ctr_example(
soft_same_interval_var,
soft_same_interval_var(

4,
[[var-9],[var-9],[var-9],[var-9],[var-9],[var-1]],
[[var-9],[var-1],[var-1],[var-1],[var-1],[var-8]],
3)).

1273

B.195 soft same modulo var
ctr_date(soft_same_modulo_var,[’20050507’]).

ctr_origin(
soft_same_modulo_var,
’Derived from %c’,
[same_modulo]).

ctr_synonyms(soft_same_modulo_var,[soft_same_modulo]).

ctr_arguments(
soft_same_modulo_var,
[’C’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’M’-int]).

ctr_restrictions(
soft_same_modulo_var,
[’C’>=0,
’C’=<size(’VARIABLES1’),
size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’M’>0]).

ctr_graph(
soft_same_modulo_var,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar mod ’M’=variables2ˆvar mod ’M’],
[’NSINK_NSOURCE’=size(’VARIABLES1’)-’C’]).

ctr_example(
soft_same_modulo_var,
soft_same_modulo_var(

4,
[[var-9],[var-9],[var-9],[var-9],[var-9],[var-1]],
[[var-9],[var-1],[var-1],[var-1],[var-1],[var-8]],
3)).

1274 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.196 soft same partition var

ctr_date(soft_same_partition_var,[’20050507’]).

ctr_origin(
soft_same_partition_var,
’Derived from %c’,
[same_partition]).

ctr_synonyms(soft_same_partition_var,[soft_same_partition]).

ctr_types(
soft_same_partition_var,
[’VALUES’-collection(val-int)]).

ctr_arguments(
soft_same_partition_var,
[’C’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
soft_same_partition_var,
[’C’>=0,
’C’=<size(’VARIABLES1’),
size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2,
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_graph(
soft_same_partition_var,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
’PARTITIONS’)],

[’NSINK_NSOURCE’=size(’VARIABLES1’)-’C’]).

ctr_example(

1275

soft_same_partition_var,
soft_same_partition_var(

4,
[[var-9],[var-9],[var-9],[var-9],[var-9],[var-1]],
[[var-9],[var-1],[var-1],[var-1],[var-1],[var-8]],
[[p-[[val-1],[val-2]]],
[p-[[val-9]]],
[p-[[val-7],[val-8]]]])).

1276 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.197 soft same var
ctr_date(soft_same_var,[’20050507’]).

ctr_origin(soft_same_var,’\\cite{vanHoeve05}’,[]).

ctr_synonyms(soft_same_var,[soft_same]).

ctr_arguments(
soft_same_var,
[’C’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
soft_same_var,
[’C’>=0,
’C’=<size(’VARIABLES1’),
size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var)]).

ctr_graph(
soft_same_var,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NSINK_NSOURCE’=size(’VARIABLES1’)-’C’]).

ctr_example(
soft_same_var,
soft_same_var(

4,
[[var-9],[var-9],[var-9],[var-9],[var-9],[var-1]],
[[var-9],[var-1],[var-1],[var-1],[var-1],[var-8]])).

1277

B.198 soft used by interval var
ctr_date(soft_used_by_interval_var,[’20050507’]).

ctr_origin(
soft_used_by_interval_var,
’Derived from %c.’,
[used_by_interval]).

ctr_synonyms(soft_used_by_interval_var,[soft_used_by_interval]).

ctr_arguments(
soft_used_by_interval_var,
[’C’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’SIZE_INTERVAL’-int]).

ctr_restrictions(
soft_used_by_interval_var,
[’C’>=0,
’C’=<size(’VARIABLES2’),
size(’VARIABLES1’)>=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’SIZE_INTERVAL’>0]).

ctr_graph(
soft_used_by_interval_var,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[=(variables1ˆvar/’SIZE_INTERVAL’,

variables2ˆvar/’SIZE_INTERVAL’)],
[’NSINK_NSOURCE’=size(’VARIABLES2’)-’C’]).

ctr_example(
soft_used_by_interval_var,
soft_used_by_interval_var(

2,
[[var-9],[var-1],[var-1],[var-8],[var-8]],
[[var-9],[var-9],[var-9],[var-1]],
3)).

1278 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.199 soft used by modulo var
ctr_date(soft_used_by_modulo_var,[’20050507’]).

ctr_origin(
soft_used_by_modulo_var,
’Derived from %c’,
[used_by_modulo]).

ctr_synonyms(soft_used_by_modulo_var,[soft_used_by_modulo]).

ctr_arguments(
soft_used_by_modulo_var,
[’C’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’M’-int]).

ctr_restrictions(
soft_used_by_modulo_var,
[’C’>=0,
’C’=<size(’VARIABLES2’),
size(’VARIABLES1’)>=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’M’>0]).

ctr_graph(
soft_used_by_modulo_var,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar mod ’M’=variables2ˆvar mod ’M’],
[’NSINK_NSOURCE’=size(’VARIABLES2’)-’C’]).

ctr_example(
soft_used_by_modulo_var,
soft_used_by_modulo_var(

2,
[[var-9],[var-1],[var-1],[var-8],[var-8]],
[[var-9],[var-9],[var-9],[var-1]],
3)).

1279

B.200 soft used by partition var

ctr_date(soft_used_by_partition_var,[’20050507’]).

ctr_origin(
soft_used_by_partition_var,
’Derived from %c.’,
[used_by_partition]).

ctr_synonyms(
soft_used_by_partition_var,
[soft_used_by_partition]).

ctr_types(
soft_used_by_partition_var,
[’VALUES’-collection(val-int)]).

ctr_arguments(
soft_used_by_partition_var,
[’C’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
soft_used_by_partition_var,
[’C’>=0,
’C’=<size(’VARIABLES2’),
size(’VARIABLES1’)>=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2,
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_graph(
soft_used_by_partition_var,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
’PARTITIONS’)],

[’NSINK_NSOURCE’=size(’VARIABLES2’)-’C’]).

1280 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

ctr_example(
soft_used_by_partition_var,
soft_used_by_partition_var(

2,
[[var-9],[var-1],[var-1],[var-8],[var-8]],
[[var-9],[var-9],[var-9],[var-1]],
[[p-[[val-1],[val-2]]],
[p-[[val-9]]],
[p-[[val-7],[val-8]]]])).

1281

B.201 soft used by var
ctr_date(soft_used_by_var,[’20050507’]).

ctr_origin(soft_used_by_var,’Derived from %c’,[used_by]).

ctr_synonyms(soft_used_by_var,[soft_used_by]).

ctr_arguments(
soft_used_by_var,
[’C’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
soft_used_by_var,
[’C’>=0,
’C’=<size(’VARIABLES2’),
size(’VARIABLES1’)>=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var)]).

ctr_graph(
soft_used_by_var,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NSINK_NSOURCE’=size(’VARIABLES2’)-’C’]).

ctr_example(
soft_used_by_var,
soft_used_by_var(

2,
[[var-9],[var-1],[var-1],[var-8],[var-8]],
[[var-9],[var-9],[var-9],[var-1]])).

1282 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.202 sort
ctr_date(sort,[’20030820’]).

ctr_origin(sort,’\\cite{OlderSwinkelsEmden95}’,[]).

ctr_arguments(
sort,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
sort,
[size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var)]).

ctr_graph(
sort,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[for_all(’CC’,’NSOURCE’=’NSINK’),
’NSOURCE’=size(’VARIABLES1’),
’NSINK’=size(’VARIABLES2’)]).

ctr_graph(
sort,
[’VARIABLES2’],
2,
[’PATH’>>collection(variables1,variables2)],
[variables1ˆvar=<variables2ˆvar],
[’NARC’=size(’VARIABLES2’)-1]).

ctr_example(
sort,
sort(

[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]],
[[var-1],[var-1],[var-1],[var-2],[var-5],[var-9]])).

1283

B.203 sort permutation

ctr_date(sort_permutation,[’20030820’]).

ctr_origin(sort_permutation,’\\cite{Zhou97}’,[]).

ctr_usual_name(sort_permutation,sort).

ctr_arguments(
sort_permutation,
[’FROM’-collection(var-dvar),
’PERMUTATION’-collection(var-dvar),
’TO’-collection(var-dvar)]).

ctr_restrictions(
sort_permutation,
[size(’PERMUTATION’)=size(’FROM’),
size(’PERMUTATION’)=size(’TO’),
’PERMUTATION’ˆvar>=1,
’PERMUTATION’ˆvar=<size(’PERMUTATION’),
alldifferent(’PERMUTATION’),
required(’FROM’,var),
required(’PERMUTATION’,var),
required(’TO’,var)]).

ctr_derived_collections(
sort_permutation,
[col(’FROM_PERMUTATION’-collection(var-dvar,ind-dvar),

[item(var-’FROM’ˆvar,ind-’PERMUTATION’ˆvar)])]).

ctr_graph(
sort_permutation,
[’FROM_PERMUTATION’,’TO’],
2,
[’PRODUCT’>>collection(from_permutation,to)],
[from_permutationˆvar=toˆvar,from_permutationˆind=toˆkey],
[’NARC’=size(’PERMUTATION’)]).

ctr_graph(
sort_permutation,
[’TO’],
2,
[’PATH’>>collection(to1,to2)],
[to1ˆvar=<to2ˆvar],
[’NARC’=size(’TO’)-1]).

1284 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

ctr_example(
sort_permutation,
sort_permutation(

[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]],
[[var-1],[var-6],[var-3],[var-5],[var-4],[var-2]],
[[var-1],[var-1],[var-1],[var-2],[var-5],[var-9]])).

1285

B.204 stage element

ctr_automaton(stage_element,stage_element).

ctr_date(stage_element,[’20040828’]).

ctr_origin(stage_element,’CHOCO, derived from %c.’,[element]).

ctr_usual_name(stage_element,stage_elt).

ctr_arguments(
stage_element,
[’ITEM’-collection(index-dvar,value-dvar),
’TABLE’-collection(low-int,up-int,value-int)]).

ctr_restrictions(
stage_element,
[required(’ITEM’,[index,value]),
size(’ITEM’)=1,
required(’TABLE’,[low,up,value])]).

ctr_graph(
stage_element,
[’TABLE’],
2,
[’PATH’>>collection(table1,table2)],
[table1ˆlow=<table1ˆup,
table1ˆup+1=table2ˆlow,
table2ˆlow=<table2ˆup],

[’NARC’=size(’TABLE’)-1]).

ctr_graph(
stage_element,
[’ITEM’,’TABLE’],
2,
[’PRODUCT’>>collection(item,table)],
[itemˆindex>=tableˆlow,
itemˆindex=<tableˆup,
itemˆvalue=tableˆvalue],

[’NARC’=1]).

ctr_example(
stage_element,
stage_element(

[[index-5,value-6]],
[[low-3,up-7,value-6],

1286 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[low-8,up-8,value-9],
[low-9,up-14,value-2],
[low-15,up-19,value-9]])).

stage_element(A,B) :-
A=[[index-C,value-D]],
stage_element_signature(B,E,C,D),
automaton(

E,
F,
E,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t)],
[],
[],
[]).

stage_element_signature([],[],A,B).

stage_element_signature([[low-A,up-B,value-C]|D],[E|F],G,H) :-
A#=<G#/\G#=<B#/\H#=C#<=>E,
stage_element_signature(D,F,G,H).

1287

B.205 stretch circuit

ctr_date(stretch_circuit,[’20030820’]).

ctr_origin(stretch_circuit,’\\cite{Pesant01}’,[]).

ctr_usual_name(stretch_circuit,stretch).

ctr_arguments(
stretch_circuit,
[’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int,lmin-int,lmax-int)]).

ctr_restrictions(
stretch_circuit,
[size(’VARIABLES’)>0,
required(’VARIABLES’,var),
size(’VALUES’)>0,
required(’VALUES’,[val,lmin,lmax]),
distinct(’VALUES’,val),
’VALUES’ˆlmin=<’VALUES’ˆlmax]).

ctr_graph(
stretch_circuit,
[’VARIABLES’],
2,
foreach(

’VALUES’,
[’CIRCUIT’>>collection(variables1,variables2),
’LOOP’>>collection(variables1,variables2)]),

[variables1ˆvar=’VALUES’ˆval,variables2ˆvar=’VALUES’ˆval],
[not_in(’MIN_NCC’,1,’VALUES’ˆlmin-1),
’MAX_NCC’=<’VALUES’ˆlmax]).

ctr_example(
stretch_circuit,
stretch_circuit(

[[var-6],
[var-6],
[var-3],
[var-1],
[var-1],
[var-1],
[var-6],
[var-6]],

[[val-1,lmin-2,lmax-4],

1288 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[val-2,lmin-2,lmax-3],
[val-3,lmin-1,lmax-6],
[val-6,lmin-2,lmax-4]])).

1289

B.206 stretch path

ctr_date(stretch_path,[’20030820’]).

ctr_origin(stretch_path,’\\cite{Pesant01}’,[]).

ctr_usual_name(stretch_path,stretch).

ctr_arguments(
stretch_path,
[’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int,lmin-int,lmax-int)]).

ctr_restrictions(
stretch_path,
[size(’VARIABLES’)>0,
required(’VARIABLES’,var),
size(’VALUES’)>0,
required(’VALUES’,[val,lmin,lmax]),
distinct(’VALUES’,val),
’VALUES’ˆlmin=<’VALUES’ˆlmax]).

ctr_graph(
stretch_path,
[’VARIABLES’],
2,
foreach(

’VALUES’,
[’PATH’>>collection(variables1,variables2),
’LOOP’>>collection(variables1,variables2)]),

[variables1ˆvar=’VALUES’ˆval,variables2ˆvar=’VALUES’ˆval],
[not_in(’MIN_NCC’,1,’VALUES’ˆlmin-1),
’MAX_NCC’=<’VALUES’ˆlmax]).

ctr_example(
stretch_path,
stretch_path(

[[var-6],
[var-6],
[var-3],
[var-1],
[var-1],
[var-1],
[var-6],
[var-6]],

[[val-1,lmin-2,lmax-4],

1290 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[val-2,lmin-2,lmax-3],
[val-3,lmin-1,lmax-6],
[val-6,lmin-2,lmax-2]])).

1291

B.207 strict lex2
ctr_predefined(strict_lex2).

ctr_date(strict_lex2,[’20031016’]).

ctr_origin(
strict_lex2,
’\\cite{FlenerFrischHnichKiziltanMiguelPearsonWalsh02}’,
[]).

ctr_types(strict_lex2,[’VECTOR’-collection(var-dvar)]).

ctr_arguments(strict_lex2,[’MATRIX’-collection(vec-’VECTOR’)]).

ctr_restrictions(
strict_lex2,
[required(’VECTOR’,var),
required(’MATRIX’,vec),
same_size(’MATRIX’,vec)]).

ctr_example(
strict_lex2,
strict_lex2(

[[vec-[[var-2],[var-2],[var-3]]],
[vec-[[var-2],[var-3],[var-1]]]])).

1292 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.208 strictly decreasing

ctr_automaton(strictly_decreasing,strictly_decreasing).

ctr_date(strictly_decreasing,[’20040814’]).

ctr_origin(
strictly_decreasing,
’Derived from %c.’,
[strictly_increasing]).

ctr_arguments(
strictly_decreasing,
[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
strictly_decreasing,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_graph(
strictly_decreasing,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[variables1ˆvar>variables2ˆvar],
[’NARC’=size(’VARIABLES’)-1]).

ctr_example(
strictly_decreasing,
strictly_decreasing([[var-8],[var-4],[var-3],[var-1]])).

strictly_decreasing(A) :-
strictly_decreasing_signature(A,B),
automaton(

B,
C,
B,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,$,t)],
[],
[],
[]).

strictly_decreasing_signature([A],[]).

1293

strictly_decreasing_signature([[var-A],[var-B]|C],[D|E]) :-
in(D,0..1),
A#=<B#<=>D,
strictly_decreasing_signature([[var-B]|C],E).

1294 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.209 strictly increasing

ctr_automaton(strictly_increasing,strictly_increasing).

ctr_date(strictly_increasing,[’20040814’]).

ctr_origin(strictly_increasing,’KOALOG’,[]).

ctr_arguments(
strictly_increasing,
[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
strictly_increasing,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_graph(
strictly_increasing,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[variables1ˆvar<variables2ˆvar],
[’NARC’=size(’VARIABLES’)-1]).

ctr_example(
strictly_increasing,
strictly_increasing([[var-1],[var-3],[var-4],[var-8]])).

strictly_increasing(A) :-
strictly_increasing_signature(A,B),
automaton(

B,
C,
B,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,$,t)],
[],
[],
[]).

strictly_increasing_signature([A],[]).

strictly_increasing_signature([[var-A],[var-B]|C],[D|E]) :-
in(D,0..1),
A#>=B#<=>D,

1295

strictly_increasing_signature([[var-B]|C],E).

1296 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.210 strongly connected
ctr_date(strongly_connected,[’20030820’,’20040726’]).

ctr_origin(
strongly_connected,
’\\cite{AlthausBockmayrElfKasperJungerMehlhorn02}’,
[]).

ctr_arguments(
strongly_connected,
[’NODES’-collection(index-int,succ-svar)]).

ctr_restrictions(
strongly_connected,
[required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index)]).

ctr_graph(
strongly_connected,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[in_set(nodes2ˆindex,nodes1ˆsucc)],
[’MIN_NSCC’=size(’NODES’)]).

ctr_example(
strongly_connected,
strongly_connected(

[[index-1,succ-{2}],
[index-2,succ-{3}],
[index-3,succ-{2,5}],
[index-4,succ-{1}],
[index-5,succ-{4}]])).

1297

B.211 sum
ctr_date(sum,[’20030820’,’20040726’]).

ctr_origin(sum,’\\cite{Yunes02}.’,[]).

ctr_arguments(
sum,
[’INDEX’-dvar,
’SETS’-collection(ind-int,set-sint),
’CONSTANTS’-collection(cst-int),
’S’-dvar]).

ctr_restrictions(
sum,
[size(’SETS’)>=1,
required(’SETS’,[ind,set]),
distinct(’SETS’,ind),
size(’CONSTANTS’)>=1,
required(’CONSTANTS’,cst)]).

ctr_graph(
sum,
[’SETS’,’CONSTANTS’],
2,
[’PRODUCT’>>collection(sets,constants)],
[’INDEX’=setsˆind,in_set(constantsˆkey,setsˆset)],
[’SUM’(’CONSTANTS’,cst)=’S’]).

ctr_example(
sum,
sum(8,

[[ind-8,set-{2,3}],
[ind-1,set-{3}],
[ind-3,set-{1,4,5}],
[ind-6,set-{2,4}]],

[[cst-4],[cst-9],[cst-1],[cst-3],[cst-1]],
10)).

1298 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.212 sum ctr
ctr_date(sum_ctr,[’20030820’,’20040807’]).

ctr_origin(sum_ctr,’Arithmetic constraint.’,[]).

ctr_synonyms(sum_ctr,[constant_sum]).

ctr_arguments(
sum_ctr,
[’VARIABLES’-collection(var-dvar),’CTR’-atom,’VAR’-dvar]).

ctr_restrictions(
sum_ctr,
[required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
sum_ctr,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[’TRUE’],
[’CTR’(’SUM’(’VARIABLES’,var),’VAR’)]).

ctr_example(sum_ctr,sum_ctr([[var-1],[var-1],[var-4]],=,6)).

1299

B.213 sum of weights of distinct values
ctr_date(

sum_of_weights_of_distinct_values,
[’20030820’,’20040726’]).

ctr_origin(
sum_of_weights_of_distinct_values,
’\\cite{BeldiceanuCarlssonThiel02}’,
[]).

ctr_synonyms(sum_of_weights_of_distinct_values,[swdv]).

ctr_arguments(
sum_of_weights_of_distinct_values,
[’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int,weight-int),
’COST’-dvar]).

ctr_restrictions(
sum_of_weights_of_distinct_values,
[required(’VARIABLES’,var),
required(’VALUES’,[val,weight]),
’VALUES’ˆweight>=0,
distinct(’VALUES’,val),
’COST’>=0]).

ctr_graph(
sum_of_weights_of_distinct_values,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=valuesˆval],
[’NSOURCE’=size(’VARIABLES’),
’SUM’(’VALUES’,weight)=’COST’]).

ctr_example(
sum_of_weights_of_distinct_values,
sum_of_weights_of_distinct_values(

[[var-1],[var-6],[var-1]],
[[val-1,weight-5],[val-2,weight-3],[val-6,weight-7]],
12)).

1300 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.214 sum set
ctr_date(sum_set,[’20031001’]).

ctr_origin(sum_set,’H.˜Cambazard’,[]).

ctr_arguments(
sum_set,
[’SV’-svar,
’VALUES’-collection(val-int,coef-int),
’CTR’-atom,
’VAR’-dvar]).

ctr_restrictions(
sum_set,
[required(’VALUES’,[val,coef]),
distinct(’VALUES’,val),
’VALUES’ˆcoef>=0,
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_graph(
sum_set,
[’VALUES’],
1,
[’SELF’>>collection(values)],
[in_set(valuesˆval,’SV’)],
[’CTR’(’SUM’(’VALUES’,coef),’VAR’)]).

ctr_example(
sum_set,
sum_set(

{2,3,6},
[[val-2,coef-7],
[val-9,coef-1],
[val-5,coef-7],
[val-6,coef-2]],

=,
9)).

1301

B.215 symmetric alldifferent
ctr_date(symmetric_alldifferent,[’20000128’,’20030820’]).

ctr_origin(symmetric_alldifferent,’\\cite{Regin99}’,[]).

ctr_synonyms(
symmetric_alldifferent,
[symmetric_alldiff,
symmetric_alldistinct,
symm_alldifferent,
symm_alldiff,
symm_alldistinct,
one_factor]).

ctr_arguments(
symmetric_alldifferent,
[’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
symmetric_alldifferent,
[required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_graph(
symmetric_alldifferent,
[’NODES’],
2,
[’CLIQUE’(=\=)>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex,nodes2ˆsucc=nodes1ˆindex],
[’NARC’=size(’NODES’)]).

ctr_example(
symmetric_alldifferent,
symmetric_alldifferent(

[[index-1,succ-3],
[index-2,succ-4],
[index-3,succ-1],
[index-4,succ-2]])).

1302 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.216 symmetric cardinality

ctr_date(symmetric_cardinality,[’20040530’]).

ctr_origin(
symmetric_cardinality,
’Derived from %c by W.˜Kocjan.’,
[global_cardinality]).

ctr_arguments(
symmetric_cardinality,
[’VARS’-collection(idvar-int,var-svar,l-int,u-int),
’VALS’-collection(idval-int,val-svar,l-int,u-int)]).

ctr_restrictions(
symmetric_cardinality,
[required(’VARS’,[idvar,var,l,u]),
size(’VARS’)>=1,
’VARS’ˆidvar>=1,
’VARS’ˆidvar=<size(’VARS’),
distinct(’VARS’,idvar),
’VARS’ˆl>=0,
’VARS’ˆl=<’VARS’ˆu,
’VARS’ˆu=<size(’VALS’),
required(’VALS’,[idval,val,l,u]),
size(’VALS’)>=1,
’VALS’ˆidval>=1,
’VALS’ˆidval=<size(’VALS’),
distinct(’VALS’,idval),
’VALS’ˆl>=0,
’VALS’ˆl=<’VALS’ˆu,
’VALS’ˆu=<size(’VARS’)]).

ctr_graph(
symmetric_cardinality,
[’VARS’,’VALS’],
2,
[’PRODUCT’>>collection(vars,vals)],
[#<=>(

in_set(varsˆidvar,valsˆval),
in_set(valsˆidval,varsˆvar)),

varsˆl=<card_set(varsˆvar),
varsˆu>=card_set(varsˆvar),
valsˆl=<card_set(valsˆval),
valsˆu>=card_set(valsˆval)],

[’NARC’=size(’VARS’)*size(’VALS’)]).

1303

ctr_example(
symmetric_cardinality,
symmetric_cardinality(

[[idvar-1,var-{3},l-0,u-1],
[idvar-2,var-{1},l-1,u-2],
[idvar-3,var-{1,2},l-1,u-2],
[idvar-4,var-{1,3},l-2,u-3]],

[[idval-1,val-{2,3,4},l-3,u-4],
[idval-2,val-{3},l-1,u-1],
[idval-3,val-{1,4},l-1,u-2],
[idval-4,val-{},l-0,u-1]])).

1304 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.217 symmetric gcc

ctr_date(symmetric_gcc,[’20030820’,’20040530’]).

ctr_origin(
symmetric_gcc,
’Derived from %c by W.˜Kocjan.’,
[global_cardinality]).

ctr_synonyms(symmetric_gcc,[sgcc]).

ctr_arguments(
symmetric_gcc,
[’VARS’-collection(idvar-int,var-svar,nocc-dvar),
’VALS’-collection(idval-int,val-svar,nocc-dvar)]).

ctr_restrictions(
symmetric_gcc,
[required(’VARS’,[idvar,var,nocc]),
size(’VARS’)>=1,
’VARS’ˆidvar>=1,
’VARS’ˆidvar=<size(’VARS’),
distinct(’VARS’,idvar),
’VARS’ˆnocc>=0,
’VARS’ˆnocc=<size(’VALS’),
required(’VALS’,[idval,val,nocc]),
size(’VALS’)>=1,
’VALS’ˆidval>=1,
’VALS’ˆidval=<size(’VALS’),
distinct(’VALS’,idval),
’VALS’ˆnocc>=0,
’VALS’ˆnocc=<size(’VARS’)]).

ctr_graph(
symmetric_gcc,
[’VARS’,’VALS’],
2,
[’PRODUCT’>>collection(vars,vals)],
[#<=>(

in_set(varsˆidvar,valsˆval),
in_set(valsˆidval,varsˆvar)),

varsˆnocc=card_set(varsˆvar),
valsˆnocc=card_set(valsˆval)],

[’NARC’=size(’VARS’)*size(’VALS’)]).

ctr_example(

1305

symmetric_gcc,
symmetric_gcc(

[[idvar-1,var-{3},nocc-1],
[idvar-2,var-{1},nocc-1],
[idvar-3,var-{1,2},nocc-2],
[idvar-4,var-{1,3},nocc-2]],

[[idval-1,val-{2,3,4},nocc-3],
[idval-2,val-{3},nocc-1],
[idval-3,val-{1,4},nocc-2],
[idval-4,val-{},nocc-0]])).

1306 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.218 temporal path

ctr_date(temporal_path,[’20000128’,’20030820’]).

ctr_origin(temporal_path,’ILOG’,[]).

ctr_arguments(
temporal_path,
[’NPATH’-dvar,
-(’NODES’,

collection(index-int,succ-dvar,start-dvar,end-dvar))]).

ctr_restrictions(
temporal_path,
[’NPATH’>=1,
’NPATH’=<size(’NODES’),
required(’NODES’,[index,succ,start,end]),
size(’NODES’)>0,
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_graph(
temporal_path,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex,
nodes1ˆsucc=nodes1ˆindex#\/nodes1ˆend=<nodes2ˆstart,
nodes1ˆstart=<nodes1ˆend,
nodes2ˆstart=<nodes2ˆend],

[’MAX_ID’=1,’NCC’=’NPATH’,’NVERTEX’=size(’NODES’)]).

ctr_example(
temporal_path,
temporal_path(

2,
[[index-1,succ-2,start-0,end-1],
[index-2,succ-6,start-3,end-5],
[index-3,succ-4,start-0,end-3],
[index-4,succ-5,start-4,end-6],
[index-5,succ-7,start-7,end-8],
[index-6,succ-6,start-7,end-9],
[index-7,succ-7,start-9,end-10]])).

1307

1308 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.219 tour

ctr_date(tour,[’20030820’]).

ctr_origin(
tour,
’\\cite{AlthausBockmayrElfKasperJungerMehlhorn02}’,
[]).

ctr_synonyms(tour,[atour,cycle]).

ctr_arguments(tour,[’NODES’-collection(index-int,succ-svar)]).

ctr_restrictions(
tour,
[size(’NODES’)>=3,
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index)]).

ctr_graph(
tour,
[’NODES’],
2,
[’CLIQUE’(=\=)>>collection(nodes1,nodes2)],
[#<=>(

in_set(nodes2ˆindex,nodes1ˆsucc),
in_set(nodes1ˆindex,nodes2ˆsucc))],

[’NARC’=size(’NODES’)*size(’NODES’)-size(’NODES’)]).

ctr_graph(
tour,
[’NODES’],
2,
[’CLIQUE’(=\=)>>collection(nodes1,nodes2)],
[in_set(nodes2ˆindex,nodes1ˆsucc)],
[’MIN_NSCC’=size(’NODES’),
’MIN_ID’=2,
’MAX_ID’=2,
’MIN_OD’=2,
’MAX_OD’=2]).

ctr_example(
tour,
tour(

1309

[[index-1,succ-{2,4}],
[index-2,succ-{1,3}],
[index-3,succ-{2,4}],
[index-4,succ-{1,3}]])).

1310 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.220 track

ctr_date(track,[’20030820’]).

ctr_origin(track,’\\cite{Marte01}’,[]).

ctr_arguments(
track,
[’NTRAIL’-int,
’TASKS’-collection(trail-int,origin-dvar,end-dvar)]).

ctr_restrictions(
track,
[’NTRAIL’>0,
required(’TASKS’,[trail,origin,end]),
’TASKS’ˆtrail>0,
’TASKS’ˆtrail=<’NTRAIL’]).

ctr_derived_collections(
track,
[col(-(’TIME_POINTS’,

collection(origin-dvar,end-dvar,point-dvar)),
[item(

origin-’TASKS’ˆorigin,
end-’TASKS’ˆend,
point-’TASKS’ˆorigin),

item(
origin-’TASKS’ˆorigin,
end-’TASKS’ˆend,
point-’TASKS’ˆend-1)])]).

ctr_graph(
track,
[’TASKS’],
1,
[’SELF’>>collection(tasks)],
[tasksˆorigin=<tasksˆend],
[’NARC’=size(’TASKS’)]).

ctr_graph(
track,
[’TIME_POINTS’,’TASKS’],
2,
[’PRODUCT’>>collection(time_points,tasks)],
[time_pointsˆend>time_pointsˆorigin,
tasksˆorigin=<time_pointsˆpoint,

1311

time_pointsˆpoint<tasksˆend],
[],
[>>(’SUCC’,

[source,
-(variables,

col(’VARIABLES’-collection(var-dvar),
[item(var-’TASKS’ˆtrail)]))])],

[nvalue(’NTRAIL’,variables)]).

ctr_example(
track,
track(

2,
[[trail-1,origin-1,end-2],
[trail-2,origin-1,end-2],
[trail-1,origin-2,end-4],
[trail-2,origin-2,end-3],
[trail-2,origin-3,end-4]])).

1312 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.221 tree
ctr_date(tree,[’20000128’,’20030820’]).

ctr_origin(tree,’N.˜Beldiceanu’,[]).

ctr_arguments(
tree,
[’NTREES’-dvar,’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
tree,
[’NTREES’>=0,
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_graph(
tree,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’MAX_NSCC’=<1,’NCC’=’NTREES’]).

ctr_example(
tree,
tree(

2,
[[index-1,succ-1],
[index-2,succ-5],
[index-3,succ-5],
[index-4,succ-7],
[index-5,succ-1],
[index-6,succ-1],
[index-7,succ-7],
[index-8,succ-5]])).

1313

B.222 tree range

ctr_date(tree_range,[’20030820’,’20040727’]).

ctr_origin(tree_range,’Derived from %c.’,[tree]).

ctr_arguments(
tree_range,
[’NTREES’-dvar,
’R’-dvar,
’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
tree_range,
[’NTREES’>=0,
’R’>=0,
’R’<size(’NODES’),
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_graph(
tree_range,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’MAX_NSCC’=<1,’NCC’=’NTREES’,’RANGE_DRG’=’R’]).

ctr_example(
tree_range,
tree_range(

2,
1,
[[index-1,succ-1],
[index-2,succ-5],
[index-3,succ-5],
[index-4,succ-7],
[index-5,succ-1],
[index-6,succ-1],
[index-7,succ-7],
[index-8,succ-5]])).

1314 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.223 tree resource

ctr_date(tree_resource,[’20030820’]).

ctr_origin(tree_resource,’Derived from %c.’,[tree]).

ctr_arguments(
tree_resource,
[’RESOURCE’-collection(id-int,nb_task-dvar),
’TASK’-collection(id-int,father-dvar,resource-dvar)]).

ctr_restrictions(
tree_resource,
[required(’RESOURCE’,[id,nb_task]),
’RESOURCE’ˆid>=1,
’RESOURCE’ˆid=<size(’RESOURCE’),
distinct(’RESOURCE’,id),
’RESOURCE’ˆnb_task>=0,
’RESOURCE’ˆnb_task=<size(’TASK’),
required(’TASK’,[id,father,resource]),
’TASK’ˆid>size(’RESOURCE’),
’TASK’ˆid=<size(’RESOURCE’)+size(’TASK’),
distinct(’TASK’,id),
’TASK’ˆfather>=1,
’TASK’ˆfather=<size(’RESOURCE’)+size(’TASK’),
’TASK’ˆresource>=1,
’TASK’ˆresource=<size(’RESOURCE’)]).

ctr_derived_collections(
tree_resource,
[col(-(’RESOURCE_TASK’,

collection(index-int,succ-dvar,name-dvar)),
[item(

index-’RESOURCE’ˆid,
succ-’RESOURCE’ˆid,
name-’RESOURCE’ˆid),

item(
index-’TASK’ˆid,
succ-’TASK’ˆfather,
name-’TASK’ˆresource)])]).

ctr_graph(
tree_resource,
[’RESOURCE_TASK’],
2,
[’CLIQUE’>>collection(resource_task1,resource_task2)],

1315

[resource_task1ˆsucc=resource_task2ˆindex,
resource_task1ˆname=resource_task2ˆname],

[’MAX_NSCC’=<1,
’NCC’=size(’RESOURCE’),
’NVERTEX’=size(’RESOURCE’)+size(’TASK’)]).

ctr_graph(
tree_resource,
[’RESOURCE_TASK’],
2,
foreach(

’RESOURCE’,
[’CLIQUE’>>collection(resource_task1,resource_task2)]),

[resource_task1ˆsucc=resource_task2ˆindex,
resource_task1ˆname=resource_task2ˆname,
resource_task1ˆname=’RESOURCE’ˆid],

[’NVERTEX’=’RESOURCE’ˆnb_task+1]).

ctr_example(
tree_resource,
tree_resource(

[[id-1,nb_task-4],[id-2,nb_task-0],[id-3,nb_task-1]],
[[id-4,father-8,resource-1],
[id-5,father-3,resource-3],
[id-6,father-8,resource-1],
[id-7,father-1,resource-1],
[id-8,father-1,resource-1]])).

1316 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.224 two layer edge crossing

ctr_date(two_layer_edge_crossing,[’20030820’]).

ctr_origin(
two_layer_edge_crossing,
’Inspired by \\cite{HararySchwenk72}.’,
[]).

ctr_arguments(
two_layer_edge_crossing,
[’NCROSS’-dvar,
’VERTICES_LAYER1’-collection(id-int,pos-dvar),
’VERTICES_LAYER2’-collection(id-int,pos-dvar),
’EDGES’-collection(id-int,vertex1-int,vertex2-int)]).

ctr_restrictions(
two_layer_edge_crossing,
[’NCROSS’>=0,
required(’VERTICES_LAYER1’,[id,pos]),
’VERTICES_LAYER1’ˆid>=1,
’VERTICES_LAYER1’ˆid=<size(’VERTICES_LAYER1’),
distinct(’VERTICES_LAYER1’,id),
required(’VERTICES_LAYER2’,[id,pos]),
’VERTICES_LAYER2’ˆid>=1,
’VERTICES_LAYER2’ˆid=<size(’VERTICES_LAYER2’),
distinct(’VERTICES_LAYER2’,id),
required(’EDGES’,[id,vertex1,vertex2]),
’EDGES’ˆid>=1,
’EDGES’ˆid=<size(’EDGES’),
distinct(’EDGES’,id),
’EDGES’ˆvertex1>=1,
’EDGES’ˆvertex1=<size(’VERTICES_LAYER1’),
’EDGES’ˆvertex2>=1,
’EDGES’ˆvertex2=<size(’VERTICES_LAYER2’)]).

ctr_derived_collections(
two_layer_edge_crossing,
[col(-(’EDGES_EXTREMITIES’,

collection(layer1-dvar,layer2-dvar)),
[item(

-(layer1,
’EDGES’ˆvertex1(’VERTICES_LAYER1’,pos,id)),

-(layer2,
’EDGES’ˆvertex2(’VERTICES_LAYER2’,pos,id)))])]).

1317

ctr_graph(
two_layer_edge_crossing,
[’EDGES_EXTREMITIES’],
2,
[>>(’CLIQUE’(<),

collection(edges_extremities1,edges_extremities2))],
[#\/(#/\(<(edges_extremities1ˆlayer1,

edges_extremities2ˆlayer1),
>(edges_extremities1ˆlayer2,

edges_extremities2ˆlayer2)),
#/\(>(edges_extremities1ˆlayer1,

edges_extremities2ˆlayer1),
<(edges_extremities1ˆlayer2,

edges_extremities2ˆlayer2)))],
[’NARC’=’NCROSS’]).

ctr_example(
two_layer_edge_crossing,
two_layer_edge_crossing(

2,
[[id-1,pos-1],[id-2,pos-2]],
[[id-1,pos-3],[id-2,pos-1],[id-3,pos-2]],
[[id-1,vertex1-2,vertex2-2],
[id-2,vertex1-2,vertex2-3],
[id-3,vertex1-1,vertex2-1]])).

1318 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.225 two orth are in contact

ctr_automaton(two_orth_are_in_contact,two_orth_are_in_contact).

ctr_date(two_orth_are_in_contact,[’20030820’,’20040530’]).

ctr_origin(
two_orth_are_in_contact,
’Used for defining %c.’,
[orths_are_connected]).

ctr_types(
two_orth_are_in_contact,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
two_orth_are_in_contact,
[’ORTHOTOPE1’-’ORTHOTOPE’,’ORTHOTOPE2’-’ORTHOTOPE’]).

ctr_restrictions(
two_orth_are_in_contact,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>0,
size(’ORTHOTOPE1’)=size(’ORTHOTOPE2’),
orth_link_ori_siz_end(’ORTHOTOPE1’),
orth_link_ori_siz_end(’ORTHOTOPE2’)]).

ctr_graph(
two_orth_are_in_contact,
[’ORTHOTOPE1’,’ORTHOTOPE2’],
2,
[’PRODUCT’(=)>>collection(orthotope1,orthotope2)],
[orthotope1ˆend>orthotope2ˆori,
orthotope2ˆend>orthotope1ˆori],

[’NARC’=size(’ORTHOTOPE1’)-1]).

ctr_graph(
two_orth_are_in_contact,
[’ORTHOTOPE1’,’ORTHOTOPE2’],
2,
[’PRODUCT’(=)>>collection(orthotope1,orthotope2)],
[=(max(0,

-(max(orthotope1ˆori,orthotope2ˆori),
min(orthotope1ˆend,orthotope2ˆend))),

0)],

1319

[’NARC’=size(’ORTHOTOPE1’)]).

ctr_example(
two_orth_are_in_contact,
two_orth_are_in_contact(

[[ori-1,siz-3,end-4],[ori-5,siz-2,end-7]],
[[ori-3,siz-2,end-5],[ori-2,siz-3,end-5]])).

two_orth_are_in_contact(A,B) :-
two_orth_are_in_contact_signature(A,B,C),
automaton(

C,
D,
C,
0..2,
[source(s),node(z),sink(t)],
[arc(s,0,s),arc(s,1,z),arc(z,0,z),arc(z,$,t)],
[],
[],
[]).

two_orth_are_in_contact_signature([],[],[]).

two_orth_are_in_contact_signature(
[[ori-A,siz-B,end-C]|D],
[[ori-E,siz-F,end-G]|H],
[I|J]) :-

in(I,0..2),
B#>0#/\F#>0#/\C#>E#/\G#>A#<=>I#=0,
B#>0#/\F#>0#/\(C#=E#\/G#=A)#<=>I#=1,
two_orth_are_in_contact_signature(D,H,J).

1320 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.226 two orth column

ctr_date(two_orth_column,[’20030820’]).

ctr_origin(
two_orth_column,
’Used for defining %c.’,
[diffn_column]).

ctr_types(
two_orth_column,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
two_orth_column,
[’ORTHOTOPE1’-’ORTHOTOPE’,
’ORTHOTOPE2’-’ORTHOTOPE’,
’N’-int]).

ctr_restrictions(
two_orth_column,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
size(’ORTHOTOPE1’)=size(’ORTHOTOPE2’),
orth_link_ori_siz_end(’ORTHOTOPE1’),
orth_link_ori_siz_end(’ORTHOTOPE2’),
’N’>0,
’N’=<size(’ORTHOTOPE1’)]).

ctr_graph(
two_orth_column,
[’ORTHOTOPE1’,’ORTHOTOPE2’],
2,
[’PRODUCT’(=)>>collection(orthotope1,orthotope2)],
[#=>(#/\(#/\(#/\(#/\(orthotope1ˆkey=’N’,

orthotope1ˆori<orthotope2ˆend),
orthotope2ˆori<orthotope1ˆend),

orthotope1ˆsiz>0),
orthotope2ˆsiz>0),

#/\(=(-(min(orthotope1ˆend,orthotope2ˆend),
max(orthotope1ˆori,orthotope2ˆori)),

orthotope1ˆsiz),
orthotope1ˆsiz=orthotope2ˆsiz))],

[’NARC’=1]).

1321

ctr_example(
two_orth_column,
two_orth_column(

[[ori-1,siz-3,end-4],[ori-1,siz-1,end-2]],
[[ori-4,siz-2,end-6],[ori-1,siz-3,end-4]],
1)).

1322 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.227 two orth do not overlap

ctr_automaton(two_orth_do_not_overlap,two_orth_do_not_overlap).

ctr_date(two_orth_do_not_overlap,[’20030820’,’20040530’]).

ctr_origin(
two_orth_do_not_overlap,
’Used for defining %c.’,
[diffn]).

ctr_types(
two_orth_do_not_overlap,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
two_orth_do_not_overlap,
[’ORTHOTOPE1’-’ORTHOTOPE’,’ORTHOTOPE2’-’ORTHOTOPE’]).

ctr_restrictions(
two_orth_do_not_overlap,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
size(’ORTHOTOPE1’)=size(’ORTHOTOPE2’),
orth_link_ori_siz_end(’ORTHOTOPE1’),
orth_link_ori_siz_end(’ORTHOTOPE2’)]).

ctr_graph(
two_orth_do_not_overlap,
[’ORTHOTOPE1’,’ORTHOTOPE2’],
2,
[>>(’SYMMETRIC_PRODUCT’(=),

collection(orthotope1,orthotope2))],
[orthotope1ˆend=<orthotope2ˆori#\/orthotope1ˆsiz=0],
[’NARC’>=1]).

ctr_example(
two_orth_do_not_overlap,
two_orth_do_not_overlap(

[[ori-2,siz-2,end-4],[ori-1,siz-3,end-4]],
[[ori-4,siz-4,end-8],[ori-3,siz-3,end-6]])).

two_orth_do_not_overlap(A,B) :-
two_orth_do_not_overlap_signature(A,B,C),
automaton(

1323

C,
D,
C,
0..1,
[source(s),sink(t)],
[arc(s,1,s),arc(s,0,t)],
[],
[],
[]).

two_orth_do_not_overlap_signature([],[],[]).

two_orth_do_not_overlap_signature(
[[ori-A,siz-B,end-C]|D],
[[ori-E,siz-F,end-G]|H],
[I|J]) :-

B#>0#/\F#>0#/\C#>E#/\G#>A#<=>I,
two_orth_do_not_overlap_signature(D,H,J).

1324 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.228 two orth include

ctr_date(two_orth_include,[’20030820’]).

ctr_origin(
two_orth_include,
’Used for defining %c.’,
[diffn_include]).

ctr_types(
two_orth_include,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
two_orth_include,
[’ORTHOTOPE1’-’ORTHOTOPE’,
’ORTHOTOPE2’-’ORTHOTOPE’,
’N’-int]).

ctr_restrictions(
two_orth_include,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
size(’ORTHOTOPE1’)=size(’ORTHOTOPE2’),
orth_link_ori_siz_end(’ORTHOTOPE1’),
orth_link_ori_siz_end(’ORTHOTOPE2’),
’N’>0,
’N’=<size(’ORTHOTOPE1’)]).

ctr_graph(
two_orth_include,
[’ORTHOTOPE1’,’ORTHOTOPE2’],
2,
[’PRODUCT’(=)>>collection(orthotope1,orthotope2)],
[#=>(#/\(#/\(#/\(#/\(orthotope1ˆkey=’N’,

orthotope1ˆori<orthotope2ˆend),
orthotope2ˆori<orthotope1ˆend),

orthotope1ˆsiz>0),
orthotope2ˆsiz>0),

#\/(=(-(min(orthotope1ˆend,orthotope2ˆend),
max(orthotope1ˆori,orthotope2ˆori)),

orthotope1ˆsiz),
=(-(min(orthotope1ˆend,orthotope2ˆend),

max(orthotope1ˆori,orthotope2ˆori)),
orthotope2ˆsiz)))],

1325

[’NARC’=1]).

ctr_example(
two_orth_include,
two_orth_include(

[[ori-1,siz-3,end-4],[ori-1,siz-1,end-2]],
[[ori-1,siz-2,end-3],[ori-2,siz-3,end-5]],
1)).

1326 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.229 used by
ctr_date(used_by,[’20000128’,’20030820’,’20040530’]).

ctr_origin(used_by,’N.˜Beldiceanu’,[]).

ctr_arguments(
used_by,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
used_by,
[size(’VARIABLES1’)>=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var)]).

ctr_graph(
used_by,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[for_all(’CC’,’NSOURCE’>=’NSINK’),
’NSINK’=size(’VARIABLES2’)]).

ctr_example(
used_by,
used_by(

[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]],
[[var-1],[var-1],[var-2],[var-5]])).

1327

B.230 used by interval
ctr_date(used_by_interval,[’20030820’]).

ctr_origin(used_by_interval,’Derived from %c.’,[used_by]).

ctr_arguments(
used_by_interval,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’SIZE_INTERVAL’-int]).

ctr_restrictions(
used_by_interval,
[size(’VARIABLES1’)>=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’SIZE_INTERVAL’>0]).

ctr_graph(
used_by_interval,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[=(variables1ˆvar/’SIZE_INTERVAL’,

variables2ˆvar/’SIZE_INTERVAL’)],
[for_all(’CC’,’NSOURCE’>=’NSINK’),
’NSINK’=size(’VARIABLES2’)]).

ctr_example(
used_by_interval,
used_by_interval(

[[var-1],[var-9],[var-1],[var-8],[var-6],[var-2]],
[[var-1],[var-0],[var-7],[var-7]],
3)).

1328 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.231 used by modulo
ctr_date(used_by_modulo,[’20030820’]).

ctr_origin(used_by_modulo,’Derived from %c.’,[used_by]).

ctr_arguments(
used_by_modulo,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’M’-int]).

ctr_restrictions(
used_by_modulo,
[size(’VARIABLES1’)>=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’M’>0]).

ctr_graph(
used_by_modulo,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar mod ’M’=variables2ˆvar mod ’M’],
[for_all(’CC’,’NSOURCE’>=’NSINK’),
’NSINK’=size(’VARIABLES2’)]).

ctr_example(
used_by_modulo,
used_by_modulo(

[[var-1],[var-9],[var-4],[var-5],[var-2],[var-1]],
[[var-7],[var-1],[var-2],[var-5]],
3)).

1329

B.232 used by partition
ctr_date(used_by_partition,[’20030820’]).

ctr_origin(used_by_partition,’Derived from %c.’,[used_by]).

ctr_types(used_by_partition,[’VALUES’-collection(val-int)]).

ctr_arguments(
used_by_partition,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
used_by_partition,
[required(’VALUES’,val),
distinct(’VALUES’,val),
size(’VARIABLES1’)>=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_graph(
used_by_partition,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
’PARTITIONS’)],

[for_all(’CC’,’NSOURCE’>=’NSINK’),
’NSINK’=size(’VARIABLES2’)]).

ctr_example(
used_by_partition,
used_by_partition(

[[var-1],[var-9],[var-1],[var-6],[var-2],[var-3]],
[[var-1],[var-3],[var-6],[var-6]],
[[p-[[val-1],[val-3]]],
[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).

1330 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.233 valley

ctr_automaton(valley,valley).

ctr_date(valley,[’20040530’]).

ctr_origin(valley,’Derived from %c.’,[inflexion]).

ctr_arguments(
valley,
[’N’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
valley,
[’N’>=0,
2*’N’=<max(size(’VARIABLES’)-1,0),
required(’VARIABLES’,var)]).

ctr_example(
valley,
valley(

1,
[[var-1],
[var-1],
[var-4],
[var-8],
[var-8],
[var-2],
[var-7],
[var-1]])).

valley(A,B) :-
valley_signature(B,C),
automaton(

C,
D,
C,
0..2,
[source(s),node(u),sink(t)],
[arc(s,0,s),
arc(s,1,s),
arc(s,2,u),
arc(s,$,t),
arc(u,0,s,[E+1]),
arc(u,1,u),
arc(u,2,u),

1331

arc(u,$,t)],
[E],
[0],
[A]).

valley_signature([],[]).

valley_signature([A],[]).

valley_signature([[var-A],[var-B]|C],[D|E]) :-
in(D,0..2),
A#<B#<=>D#=0,
A#=B#<=>D#=1,
A#>B#<=>D#=2,
valley_signature([[var-B]|C],E).

1332 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.234 vec eq tuple
ctr_date(vec_eq_tuple,[’20030820’]).

ctr_origin(vec_eq_tuple,’Used for defining %c.’,[in_relation]).

ctr_arguments(
vec_eq_tuple,
[’VARIABLES’-collection(var-dvar),
’TUPLE’-collection(val-int)]).

ctr_restrictions(
vec_eq_tuple,
[required(’VARIABLES’,var),
required(’TUPLE’,val),
size(’VARIABLES’)=size(’TUPLE’)]).

ctr_graph(
vec_eq_tuple,
[’VARIABLES’,’TUPLE’],
2,
[’PRODUCT’(=)>>collection(variables,tuple)],
[variablesˆvar=tupleˆval],
[’NARC’=size(’VARIABLES’)]).

ctr_example(
vec_eq_tuple,
vec_eq_tuple(

[[var-5],[var-3],[var-3]],
[[val-5],[val-3],[val-3]])).

1333

B.235 weighted partial alldiff

ctr_date(weighted_partial_alldiff,[’20040814’]).

ctr_origin(
weighted_partial_alldiff,
’\\cite[page 71]{Thiel04}’,
[]).

ctr_synonyms(
weighted_partial_alldiff,
[weighted_partial_alldifferent,
weighted_partial_alldistinct,
wpa]).

ctr_arguments(
weighted_partial_alldiff,
[’VARIABLES’-collection(var-dvar),
’UNDEFINED’-int,
’VALUES’-collection(val-int,weight-int),
’COST’-dvar]).

ctr_restrictions(
weighted_partial_alldiff,
[required(’VARIABLES’,var),
required(’VALUES’,[val,weight]),
in_attr(’VARIABLES’,var,’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_graph(
weighted_partial_alldiff,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=\=’UNDEFINED’,variablesˆvar=valuesˆval],
[’MAX_ID’=<1,’SUM’(’VALUES’,weight)=’COST’]).

ctr_example(
weighted_partial_alldiff,
weighted_partial_alldiff(

[[var-4],[var-0],[var-1],[var-2],[var-0],[var-0]],
0,
[[val-0,weight-0],
[val-1,weight-2],
[val-2,weight- -1],
[val-4,weight-7],

1334 APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[val-5,weight- -8],
[val-6,weight-2]],

8)).

Bibliography

[1] N. Beldiceanu. Global constraints as graph properties on structured network of
elementary constraints of the same type. Technical Report T2000-01, Swedish
Institute of Computer Science, 2000.

[2] J.-L. Laurière. A language and a program for stating and solving combinatorial
problems. Artificial Intelligence, 10:29–127, 1978.

[3] N. Beldiceanu. Global constraints as graph properties on a structured network
of elementary constraints of the same type. In R. Dechter, editor, Principles and
Practice of Constraint Programming (CP’2000), volume 1894 of LNCS, pages
52–66. Springer-Verlag, 2000. Preprint available as SICS Tech Report T2000-
01.

[4] N. Beldiceanu, M. Carlsson, and T. Petit. Deriving filtering algorithms from con-
straint checkers. In M. Wallace, editor, Principles and Practice of Constraint
Programming (CP’2004), volume 3258 of LNCS, pages 107–122. Springer-
Verlag, 2004.

[5] G. Pesant. A regular language membership constraint for finite sequences of
variables. In M. Wallace, editor, Principles and Practice of Constraint Pro-
gramming (CP’2004), volume 3258 of LNCS, pages 482–495. Springer-Verlag,
2004.

[6] H. Simonis, A. Aggoun, N. Beldiceanu, and E. Bourreau. Complex constraint
abstraction: Global constraint visualization. lecture. In P. Deransart, M.V.
Hermenegildo, and J. Małuszyński, editors, Analysis and Vizualisation Tools
for Constraint Programming, volume 1870 of LNCS, pages 299–317. Springer-
Verlag, 2000.

[7] G. Rochart and N. Jussien. Explanations for global constraints: instrumenting
the stretch constraint. Tech. report 03-01-INFO, École des Mines de Nantes,
2003.

[8] J.N. Hooker and H. Yan. A relaxation for the cumulative constraint. In Pascal
Van Hentenryck, editor, Principles and Practice of Constraint Programming
(CP’2002), volume 2470 of LNCS, pages 686–690. Springer-Verlag, 2002. long
version at http://ba.gsia.cmu.edu/jnh/papers.html.

1335

1336 BIBLIOGRAPHY

[9] M. Bohlin. Desing and implementation of a graph-based constraint model for
local search. Licentiate Thesis 27, Mälardalen University, 2004.

[10] T. Petit, J.-C. Régin, and C. Bessière. Specific filtering algorithms for over-
constrained problems. In T. Walsh, editor, Principles and Practice of Constraint
Programming (CP’2001), volume 2239 of LNCS, pages 451–463. Springer-
Verlag, 2001.

[11] N. Beldiceanu and T. Petit. Cost evaluation of soft global constraints. In Jean-
Charles Régin and Michel Rueher, editors, Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems, volume
3011 of LNCS, pages 80–95. Springer-Verlag, 2004.

[12] W.-J. van Hoeve, G. Pesant, and L.-M. Rousseau. On global warming (soft-
ening global constraints). In Workshop on Soft Constraints, Toronto, Canada,
September 2004.

[13] L. Euler. Solution d’une question curieuse qui ne parait soumise à aucune anal-
yse. Mém.Acad.Sci.Berlin, 15:310–337, 1759.

[14] H.E. Dudeney. The Canterbury Puzzles. Thomas Nelson & Sons, New York,
1919.

[15] E. Lucas. Récréations mathématiques, volume 1-2. Gauthier-Villars, 1882.

[16] T.P. Kirkman. On a problem in combinatorics. Cambridge and Dublin Math. J.,
2:191–204, 1847.

[17] C. Berge. Graphes. Dunod, 1970. In French.

[18] J.-C. Régin. A filtering algorithm for constraints of difference in CSP. In 12th
National Conference on Artificial Intelligence (AAAI-94), pages 362–367, 1994.

[19] J.-C. Régin. Generalized arc consistency for global cardinality constraint. In
14th National Conference on Artificial Intelligence (AAAI-96), 1996.

[20] J.-C. Régin. The symmetric alldiff constraint. In 16th Int. Joint Conf. on Artifi-
cial Intelligence (IJCAI-99), 1999.

[21] J.-C. Régin and M. Rueher. A global constraint combining a sum constraint and
binary inequalities. In IJCAI-99 Workshop on Non Binary Constraints, 1999.

[22] K. Mehlhorn. Constraint programming and graph algorithms. In U. Monta-
nari, J.D.P. Rolim, and E. Welzl, editors, 27th International Colloquium on Au-
tomata, Languages and Programming (ICALP’2000), volume 1853 of LNCS,
pages 571–575. Springer-Verlag, 2000.

[23] K. Mehlhorn and S. Thiel. Faster algorithms for bound-consistency of the sort-
edness and the alldifferent constraint. In Principles and Practice of Constraint
Programming (CP’2000), volume 1894 of LNCS, pages 306–319. Springer-
Verlag, 2000.

BIBLIOGRAPHY 1337

[24] I. Katriel and S. Thiel. Fast bound consistency for the global cardinality con-
straint. In F. Rossi, editor, Principles and Practice of Constraint Programming
(CP’2003), volume 2833 of LNCS, pages 437–451. Springer-Verlag, 2003.

[25] N. Beldiceanu, I. Katriel, and S. Thiel. Filtering algorithms for the same con-
straint. In J.-C. Régin and M. Rueher, editors, Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Optimisation Problems
(CP-AI-OR 2004), volume 3011 of LNCS, pages 65–79. Springer-Verlag, 2004.

[26] W.-J. van Hoeve. A hyper-arc consistency algorithm for the soft alldifferent
constraint. In M. Wallace, editor, Principles and Practice of Constraint Pro-
gramming (CP’2004), volume 3258 of LNCS, pages 679–689. Springer-Verlag,
2004.

[27] C.-G. Quimper, A. López-Ortiz, P. van Beek, and A. Golynski. Improved al-
gorithms for the global cardinality constraint. In M. Wallace, editor, Principles
and Practice of Constraint Programming (CP’2004), volume 3258 of LNCS,
pages 542–556. Springer-Verlag, 2004.

[28] R. Dechter and J. Pearl. Network-based heuristics for constraint-satisfaction
problems. Artificial Intelligence, 34:1–38, 1987.

[29] C. Berge. Hypergraphes, Combinatoire des ensembles finis. Dunod, 1987. In
French.

[30] S. Skiena. Implementing Discrete Mathematics. Combinatoric and Graph The-
ory with Mathematica. Addison-Wesley, 1990.

[31] M. Gondran and M. Minoux. Graphs and Algorithms. Wiley, New York, 2nd
revised edition edition, 1984.

[32] P. Van Hentenryck and J.-P. Carillon. Generality vs. specificity: an experience
with AI and OR techniques. In National Conference on Artificial Intelligence
(AAAI-88), 1988.

[33] N. Beldiceanu. Pruning for the minimum constraint family and for the number
of distinct values constraint family. In T. Walsh, editor, Principles and Practice
of Constraint Programming (CP’2001), volume 2239 of LNCS, pages 211–224.
Springer-Verlag, 2001. Preprint available as SICS Tech Report T2000-10.

[34] S. Bourdais, P. Galinier, and G. Pesant. HIBISCUS: A constraint programming
application to staff scheduling in health care. In F. Rossi, editor, Principles and
Practice of Constraint Programming (CP’2003), volume 2833 of LNCS, pages
153–167. Springer-Verlag, 2003.

[35] M. Maher. Analysis of a global contiguity constraint. In Workshop on Rule-
Based Constraint Reasoning and Programming, 2002. held along CP-2002.

1338 BIBLIOGRAPHY

[36] A. Frisch, B. Hnich, Z. Kızıltan, I. Miguel, and T. Walsh. Global Constraints
for lexicographic orderings. In Pascal Van Hentenryck, editor, Principles and
Practice of Constraint Programming (CP’2002), volume 2470 of LNCS, pages
93–108. Springer-Verlag, 2002.

[37] N. Beldiceanu and E. Contejean. Introducing global constraints in CHIP. Mathl.
Comput. Modelling, 20(12):97–123, 1994.

[38] M. Dincbas, P. Van Hentenryck, H. Simonis, T. Graf A. Aggoun, and F. Berthier.
The Constraint Logic Programming Language CHIP. In Int. Conf. on Fifth Gen-
eration Computer Systems (FGCS’88), pages 693–702, Tokyo, Japan, 1988.

[39] F. Laburthe. Choco: implementing a cp kernel. In CP’00 Workshop on Tech-
niques for Implementing Constraint programming Systems (TRICS), 2000.

[40] PLATON team. Eclair. Thales R & T, Orsay, France, v8.0 edition, 2003. tech-
nical report 61 364.

[41] A.M. Cheadle, W. Harvey, A.J. Sadler, J. Schimpf, K. Shen, and M.G. Wallace.
Eclipse: An introduction. Technical Report 03-1, IC-Parc, Imperial College
London, 2003.

[42] J.-F. Puget. A c++ implementation of clp. In Second Singapore International
Conference on Intelligent Systems (SPICIS), pages 256–261, Singapore, Novem-
ber 1994.

[43] G. Smolka. Constraints in Oz. ACM Computing Surveys, 28(4), 1996.

[44] M. Carlsson, G. Ottosson, and B. Carlson. An open-ended finite domain con-
straint solver. In H. Glaser, P. Hartel, and H. Kuchen, editors, Programming
Languages: Implementations, Logics, and Programming (PLILP’97), volume
1292 of LNCS, pages 191–206, Southampton, 1997. Springer-Verlag.

[45] COSYTEC. CHIP Reference Manual, release 5.1 edition, 1997.

[46] Mats Carlsson et al. SICStus Prolog User’s Manual. Swedish
Institute of Computer Science, 3.10 edition, January 2003.
http://www.sics.se/sicstus/.

[47] E. Poder, N. Beldiceanu, and E. Sanlaville. Computing a lower approximation
of the compulsory part of a task with varying duration and varying resource
consumption. European Journal of Operational Research, 153:239–254, 2004.

[48] N. Beldiceanu and E. Poder. Cumulated profiles of minimum and maximum
resource utilisation. In Ninth Int. Conf. on Project Management and Scheduling,
2004.

[49] J.-C. Régin and M. Rueher. inequality-sum: A global constraint capturing the
objective function. RAIRO Operations Research, 2005. To appear.

BIBLIOGRAPHY 1339

[50] Y.Caseau and F.Laburthe. Solving small TSPs with constraints. In Lee Naish,
editor, Fourteenth International Conference on Logic Programming (ICLP’97),
pages 316–330. MIT Press, 1997.

[51] C. Bessière, E. Hebrard, B. Hnich, Z. Kızıltan, and T. Walsh. The range and
roots constraints: Specifying counting and occurrence problems. In 19th Int.
Joint Conf. on Artificial Intelligence (IJCAI-05), 2005.

[52] R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial Intel-
ligence, 38:353–366, 1989.

[53] R. Fagin. Degrees of acyclicity for hypergraphs and relational database schemes.
JACM, 30:514–550, July 1983.

[54] C. Bessière, E. Hebrard, B. Hnich, Z. Kızıltan, and T. Walsh. Filtering algo-
rithms for the nvalue constraint. In Romand Barták and Michela Milano, editors,
International Conference on Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems (CP-AI-OR’05), Lec-
ture Notes in Computer Science, Prague, Czech Republic, may 2005. Springer
Verlag.

[55] P. Turán. On an extremal problem in graph theory. Mat. Fiz. Lapok, 48:436–452,
1941. In Hungarian.

[56] A.G. Frutos, Q. Liu, A.J. Thiel, A.M.W. Sanner, A.E. Condon, L.M. Smith, and
R.M. Corn. Demonstration of a word design strategy for DNA computing on
surfaces. Nucleic Acids Research, 25:4748–4757, 1997.

[57] J.-C. Régin. The global minimum distance constraint. Technical report, ILOG,
1997.

[58] J.-L. Laurière. Un langage et un programme pour énoncer et résoudre des
problèmes combinatoires. Thèse de doctorat d’état, Université Paris 6, May
1976. In French.

[59] M.-C. Costa. Persistency in maximum cardinality bipartite matchings. Opera-
tion Research Letters, 15:143–149, 1994.

[60] M. Leconte. A bounds-based reduction scheme for constraints of difference. In
CP’96, Second International Workshop on Constraint-based Reasoning, pages
19–28, Key West, FL, USA, 1996.

[61] N. Bleuzen-Guernalec and A. Colmerauer. Narrowing a block of sortings in
quadratic time. In G. Smolka, editor, Principles and Practice of Constraint
Programming (CP’97), volume 1330 of LNCS, pages 2–16. Springer-Verlag,
1997.

[62] J.-F. Puget. A fast algorithm for the bound consistency of alldiff constraints. In
15th National Conference on Artificial Intelligence (AAAI-98), pages 359–366.
AAAI Press, 1990.

1340 BIBLIOGRAPHY

[63] A. Lopez-Ortiz, C.-G. Quimper, J. Tromp, and P. van Beek. A fast and simple
algorithm for bounds consistency of the alldifferent constraint. In Proceedings of
the 18th International Joint Conference on Artificial Intelligence (IJCAI’2003),
pages 245–250, 2003.

[64] A. Frisch, C. Jefferson, and I. Miguel. Constraints for breaking more row and
column symmetries. In F. Rossi, editor, Principles and Practice of Constraint
Programming (CP’2003), volume 2833 of LNCS, pages 318–332. Springer-
Verlag, 2003.

[65] N. Beldiceanu and M. Carlsson. Revisiting the cardinality operator and in-
troducing the cardinality-path constraint family. In P. Codognet, editor, Int.
Conf. on Logic Programming (ICLP’2001), volume 2237 of LNCS, pages 59–
73. Springer-Verlag, 2001. Preprint available as SICS Tech Report T2000-11A.

[66] S. Martello and P. Toth. Knapsack problems. Algorithms and Computer Im-
plementations. Interscience Series in Discrete Mathematics and Optimization.
Wiley, 1990.

[67] A. Aggoun and N. Beldiceanu. Extending CHIP in order to solve complex
scheduling and placement problems. Mathl. Comput. Modelling, 17(7):57–73,
1993.

[68] P. Shaw. A constraint for bin packing. In M. Wallace, editor, Principles and
Practice of Constraint Programming (CP’2004), volume 3258 of LNCS, pages
648–662. Springer-Verlag, 2004.

[69] M. Müller-Hannemann, W. Stille, and K. Weihe. Patterns of usage for global
constraints: A case study based on the bin-packing constraint. Research report,
TU Darmstadt, 2003.

[70] M. Müller-Hannemann, W. Stille, and K. Weihe. Evaluating the bin-packing
constraint, part i: Overview of the algorithmic approach. Research report, TU
Darmstadt, 2003.

[71] M. Müller-Hannemann, W. Stille, and K. Weihe. Evaluating the bin-packing
constraint, part ii: An adaptive rounding problem. Research report, TU Darm-
stadt, 2003.

[72] M. Müller-Hannemann, W. Stille, and K. Weihe. Evaluating the bin-packing
constraint, part iii: Joint evaluation with concave constraints. Research report,
TU Darmstadt, 2003.

[73] F. Pachet and P. Roy. Automatic generation of music programs. In Principles
and Practice of Constraint Programming (CP’99), volume 1713 of LNCS, pages
331–345. Springer-Verlag, 1999.

[74] E. Althaus, A. Bockmayr, M. Elf, T. Kasper, M. Jünger, and K. Mehlhorn.
SCIL—symbolic constraints in integer linear programming. In 10th Euro-
pean Symposium on Algorithms (ESA’02), volume 2461 of LNCS, pages 75–87.
Springer-Verlag, September 2002.

BIBLIOGRAPHY 1341

[75] J.A. Shufet and H.J. Berliner. Generating hamiltonian circuits without back-
tracking from errors. Theoretical Computer Science, 1994.

[76] E.Ya. Grinberg. Plane homogeneous graphs of degree three without hamiltonian
circuits. Latv. Mat. Ezhegodnik, 1968.

[77] G. Laporte, A. Asef-Vaziri, and C. Sriskandarajah. Some applications of the
generalized travelling salesman problem. J. of the Operational Research Society,
47:1461–1467, 1996.

[78] T. Fahle. Cost based filtering vs. upper bounds for maximum clique. In 4th Int.
Workshop on Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems (CPAIOR’03), Le Croisic, France,
2002.

[79] J.-C. Régin. Using constraint programming to solve the maximum clique prob-
lem. In F. Rossi, editor, Principles and Practice of Constraint Programming
(CP’2003), volume 2833 of LNCS, pages 634–648. Springer-Verlag, 2003.

[80] J.-C. Régin and C. Gomes. The cardinality matrix constraint. In M. Wallace,
editor, Principles and Practice of Constraint Programming (CP’2004), volume
3258 of LNCS, pages 572–587. Springer-Verlag, 2004.

[81] L.R. Ford Jr. and D.R. Fulkerson. Flows in Networks. Princeton University
Press, 1962.

[82] H. Simonis. Channel routing seen as a constraint problem. Tech. Report TR-
LP-51, ECRC, 1990.

[83] N.-F. Zhou. Channel routing with constraint logic programming and delay. In
9th Int. Conf. on Industrial Applications of AI, pages 217–231. Gordon and
Breach Science Publishers, 1996.

[84] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to algorithms. MIT
Press, fifteenth edition, 1990.

[85] A. Lahrichi. Scheduling: the notions of hump, compulsory parts and their use
in cumulative problems. C. R. Acad. Sci., Paris, 294:209–211, Feb 1982.

[86] J. Erschler and P. Lopez. Energy-based approach for task scheduling under time
and resources constraints. In 2nd International Workshop on Project Manage-
ment and Scheduling, pages 115–121, Compiégne, France, June 1990.

[87] Y. Caseau and F. Laburthe. Cumulative scheduling with task intervals. In Joint
International Conference and Symposium on Logic Programming (JICSLP’96).
MIT Press, 1996.

[88] H. Samet. The design and analysis of spatial data structures. Addison-Wesley,
1989.

1342 BIBLIOGRAPHY

[89] N. Beldiceanu and M. Carlsson. A new multi-resource cumulatives constraint
with negative heights. In P. Van Hentenryck, editor, Principles and Practice
of Constraint Programming (CP’2002), volume 2470 of LNCS, pages 63–79.
Springer-Verlag, 2002. Preprint available as SICS Tech Report T2001-11.

[90] F. Fages and A. Lal. A global constraint for cutset problems. In 5th Int. Work-
shop on Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems (CPAIOR’03), Montréal, 2003.

[91] H. Levy and D.W. Low. A contraction algorithm for finding small cycle cutsets.
J. of Algorithms, 9:470–493, 1988.

[92] E.L. Lloyd, M.L. Soffa, and C.C. Wang. On locating minimum feedback vertex
sets. J. of Computer and System Science, 37:292–311, 1988.

[93] E. Bourreau. Traitement de contraintes sur les graphes en programmation par
contraintes. PhD thesis, University Paris 13, March 1999. In French.

[94] M. Labbé, G. Laporte, and I. Rodrı́guez-Martı́n. Path, tree and cycle location. In
Fleet Management and Logistics, pages 187–204. Kluwer Academic Publishers,
1998.

[95] R. Szymanek. Constraint-Driven Design Space Exploration for Memory-
Dominated Embedded Systems. PhD thesis, Lund University, June 2004.

[96] R. Szymanek and K. Kuchcinski. A constructive algorithm for memory-aware
task assignment and scheduling. In Proceedings of the Ninth International Sym-
posium on Hardware/Software Codesign, Copenhagen, 2001.

[97] N. Beldiceanu and M. Carlsson. Sweep as a generic pruning technique applied
to the non-overlapping rectangles constraints. In T. Walsh, editor, Principles and
Practice of Constraint Programming (CP’2001), volume 2239 of LNCS, pages
377–391. Springer-Verlag, 2001.

[98] N. Beldiceanu, Q. Guo, and S. Thiel. Non-overlapping constraints between con-
vex polytopes. In T. Walsh, editor, Principles and Practice of Constraint Pro-
gramming (CP’2001), volume 2239 of LNCS, pages 392–407. Springer-Verlag,
2001. Preprint available as SICS Tech Report T2001-12.

[99] C. Ribeiro and M.A. Carravilla. A global constraint for nesting problems. In
J.-C. Régin and M. Rueher, editors, Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimisation Problems (CP-AI-OR
2004), volume 3011 of LNCS, pages 256–270. Springer-Verlag, 2004.

[100] C.J. Bouwkamp and Duijvestijn. Catalogue of simple perfect squared squares
of orders 21 through 25. Research report 92-WSK-03, Eindhoven University of
Technology, November 1992.

[101] I. Gambini. Quant aux carrés carrelés. PhD thesis, University Aix-Marseille II,
December 1999. In French.

BIBLIOGRAPHY 1343

[102] I. Gambini. A method for cutting squares into distinct squares. Discrete Applied
Mathematics, 98(1-2):65–80, 1999.

[103] F. Focacci. Solving Combinatorial Optimization Problems in Constraint Pro-
gramming. PhD thesis, University of Ferrara, 2001.

[104] W.-J. van Hoeve. Operations Research Techniques in Constraint Programming.
PhD thesis, University of Amsterdam, CWI, 2005.

[105] M.L. Ginsberg and W.D. Harvey. Limited discrepancy search. In C.S. Mel-
lish, editor, 14th Int. Joint Conf. on Artificial Intelligence (IJCAI-95), volume 1,
pages 607–615. Morgan Kaufmann, 1995.

[106] N. Beldiceanu, M. Carlsson, and S. Thiel. Cost-filtering algorithms for the two
sides of the sum of weights of distinct values constraint. Technical Report T2002-
14, Swedish Institute of Computer Science, 2002.

[107] J. Carlier. One machine problem. European Journal of Operational Research,
11:42–47, 1982.

[108] P. Baptiste, C. Le Pape, and L. Peridy. Global constraints for partial csps: A
case-study of resource and due date constraints. In M. Maher and J.-F. Puget,
editors, Principles and Practice of Constraint Programming (CP’98), volume
1520 of LNCS, pages 87–101. Springer-Verlag, 1998.

[109] P. Vilı́m. O(n logn) filtering algorithms for unary resource constraint. In
J.-C. Régin and M. Rueher, editors, Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimisation Problems (CP-AI-OR
2004), volume 3011 of LNCS, pages 335–347. Springer-Verlag, 2004.

[110] L. Péridy and D. Rivreau. An O(n log n) stable algorithm for immediate selec-
tions adjustments. Kluwer, 2005. To appear.

[111] P. Refalo. Linear formulation of constraint programming models and hybrid
solvers. In Principles and Practice of Constraint Programming (CP’2000), vol-
ume 1894 of LNCS. Springer-Verlag, 2000.

[112] G. Ottosson, E. Thorsteinsson, and J.N. Hooker. Mixed global constraints and
inference in hybrid IP-CLP solvers. In CP’99 Post-Conference Workshop on
Large-Scale Combinatorial Optimization and Constraints, pages 57–78, 1999.

[113] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press,
1989.

[114] C. Bessière, E. Hebrard, B. Hnich, and T. Walsh. The tractability of global
constraints. In M. Wallace, editor, Principles and Practice of Constraint Pro-
gramming (CP’2004), volume 3258 of LNCS, pages 716–720. Springer-Verlag,
2004.

1344 BIBLIOGRAPHY

[115] C.-G. Quimper, P. van Beek, A. López-Ortiz, A. Golynski, and S.B. Sadjad. An
efficient bounds consistency algorithm for the global cardinality constraint. In
F. Rossi, editor, Principles and Practice of Constraint Programming (CP’2003),
volume 2833 of LNCS, pages 600–614. Springer-Verlag, 2003.

[116] I.Katriel and S.Thiel. Complete bound consistency for the global cardinality
constraint. Constraints, 10(3), 2005.

[117] J.-C. Régin. Arc consistency for global cardinality constraints with costs. In
J. Jaffar, editor, Principles and Practice of Constraint Programming (CP’99),
volume 1713 of LNCS, pages 390–404. Springer-Verlag, 1999.

[118] S.W. Golomb. How to number a graph. In R.C. Read, editor, Graph Theory and
Computing, pages 23–37. Academic Press, New York, 1972.

[119] J.B. Shearer. Golomb rulers. http://www.research.ibm.com/people/s/shearer/grule.html.

[120] B.M. Smith, K. Stergiou, and T. Walsh. Modelling the golomb ruler problem.
In IJCAI-99 Workshop on Non Binary Constraints, 1999.

[121] Y.C. Law and J.H.M. Lee. Global constraints for integer and set value prece-
dence. In M. Wallace, editor, Principles and Practice of Constraint Program-
ming (CP’2004), volume 3258 of LNCS, pages 362–376. Springer-Verlag, 2004.

[122] X. Cousin. Application of Constraint Logic Programming on Timetable Prob-
lem. PhD thesis, INRIA, June 1993. In French.

[123] P. Flener, A. Frisch, B. Hnich, Z. Kızıltan, I. Miguel, J. Pearson, and T. Walsh.
Breaking row and column symmetries in matrix models. In F. Rossi, editor,
Principles and Practice of Constraint Programming (CP’2003), volume 2833
of LNCS, pages 462–476. Springer-Verlag, 2003.

[124] A. Lubiw. Doubly lexical orderings of matrices. In Proceedings of the 17th An-
nual Association for Computing Machinery Symposium on Theory of Computing
(STOC-85), pages 396–404. ACM Press, 1985.

[125] A. Lubiw. Doubly lexical orderings of matrices. SIAM Journal on Computing,
16(5):854–879, October 1987.

[126] M. Carlsson and N. Beldiceanu. Arc-consistency for a chain of lexicographic or-
dering constraints. Technical Report T2002-18, Swedish Institute of Computer
Science, 2002.

[127] A. Frisch, B. Hnich, Z. Kızıltan, I. Miguel, and T. Walsh. Multiset ordering
constraints. In 18th Int. Joint Conf. on Artificial Intelligence (IJCAI-2003), 1999.

[128] M. Carlsson and N. Beldiceanu. Revisiting the lexicographic ordering con-
straint. Technical Report T2002-17, Swedish Institute of Computer Science,
2002.

BIBLIOGRAPHY 1345

[129] Z. Kızıltan. Symmetry Breaking Ordering Constraints. PhD thesis, Uppsala
University, March 2004.

[130] R. Sedgewick and O. Flajolet. An introduction to the analysis of algorithms.
Addison-Wesley, 1996.

[131] F. Focacci, A. Lodi, and M. Milano. Cost-based domain filtering. In Principles
and Practice of Constraint Programming (CP’99), volume 1713 of LNCS, pages
189–203. Springer-Verlag, 1999.

[132] M. Sellman. An arc consistency algorithm for the minimum weight all different
constraint. In P. Van Hentenryck, editor, Principles and Practice of Constraint
Programming (CP’2002), volume 2470 of LNCS, pages 744–749. Springer-
Verlag, 2002.

[133] J.-C. Régin. Développement d’outils algorithmiques pour l’Intelligence Artifi-
cielle. PhD thesis, University of Montpellier II, 1995. In French.

[134] I. Gent, P. Prosser, B. Smith, and W. Wei. Supertree construction with constraint
programming. In F. Rossi, editor, Principles and Practice of Constraint Pro-
gramming (CP’2003), volume 2833 of LNCS, pages 837–841. Springer-Verlag,
2003.

[135] J. Jackson. Rational amusements for winter evenings. Longman, London, 1821.

[136] N. Beldiceanu and E. Poder. The period constraint. In B. Demoen, editor, Int.
Conf. on Logic Programming (ICLP’2004), LNCS. Springer-Verlag, 2004.

[137] S.W. Golomb. Polyominoes. Scribners, New York, 1965.

[138] D. Gale. A theorem on flows in networks. Pacific J. Math., 7:1073–1082, 1957.

[139] W.J. Older, G.M. Swinkels, and M.H. Van Emden. Getting to the real problem:
Experience with BNR Prolog in OR. In 3rd Int. Conf. on the Practical Applica-
tion of Prolog (PAP’95), pages 465–478. Alinmead Software Ltd., 1995.

[140] Z. Kızıltan and T. Walsh. Constraint programming with multisets. In Workshop
on Symmetry on Constraint Satisfaction Problems (SymCon-02), 2002. held
along CP-2002.

[141] N. Beldiceanu, I. Katriel, and S. Thiel. Filtering algorithms for the same and
usedby constraints. Research Report 2004/1/001, MPI, 2004.

[142] N.Beldiceanu, I.Katriel, and S.Thiel. Filtering algorithms for the same and
usedby constraints. Archives of Control Sciences, Special Issue on constraint
programming for decision and control. To appear.

[143] N. Beldiceanu, I. Katriel, and S. Thiel. Gcc-like restrictions on the same con-
straint. In Recent Advances in Constraints (CSCLP 2004), volume 3419 of LNAI.
Springer-Verlag, 2004.

1346 BIBLIOGRAPHY

[144] C. Flamm, I.L. Hofacker, and P.F. Stadler. RNA in silico: The computational
biology of RNA secondary structures. Adv. Complex Syst., 2:5–90, 1999.

[145] S. Mittal and B. Falkenhainer. Dynamic constraint satisfaction problems. In 8th
National Conference on Artificial Intelligence (AAAI-90), pages 25–32. AAAI
Press, 1990.

[146] J.-C. Régin and J.-F. Puget. A filtering algorithm for global sequencing con-
straints. In G. Smolka, editor, Principles and Practice of Constraint Program-
ming (CP’97), volume 1330 of LNCS, pages 32–46. Springer-Verlag, 1997.

[147] J. Zhou. A permutation-based approach for solving the job-shop problem. Con-
straints, 2(2):185–213, 1997.

[148] G. Pesant. A filtering algorithm for the stretch constraint. In T. Walsh, editor,
Principles and Practice of Constraint Programming (CP’2001), volume 2239 of
LNCS, pages 183–195. Springer-Verlag, 2001.

[149] L. Hellsten, G. Pesant, and P. van Beek. A domain consistency algorithm
for the stretch constraint. In M. Wallace, editor, Principles and Practice of
Constraint Programming (CP’2004), volume 3258 of LNCS, pages 290–304.
Springer-Verlag, 2004.

[150] Tallys H. Yunes. On the sum constraint: Relaxation and applications. In
P. Van Hentenryck, editor, Principles and Practice of Constraint Programming
(CP’2002), volume 2470 of LNCS, pages 80–92. Springer-Verlag, 2002.

[151] G. Pesant and P. Soriano. An optimal strategy for the constrained cycle cover
problem. CRT Pub. 98-45, CRT, Montréal, December 1998.

[152] M. Henz, T. Müller, and S. Thiel. Global constraints for round robin tourna-
ment scheduling. European Journal of Operations Research, 153(1):92–101,
Feb 2004.

[153] M. Trick. Integer and constraint programming approaches for round robin tour-
nament scheduling. In E.K. Burke and P. De Causmaecker, editors, Practice
and Theory of Automated Timetabling IV, 4th International Conference, PATAT
2002, Gent, Belgium, August 21-23, 2002, Selected Revised Papers, volume
2740 of LNCS, pages 63–77. Springer-Verlag, 2003.

[154] W. Kocjan and P. Kreuger. Filtering methods for symmetric cardinality con-
straint. In J.-C. Régin and M. Rueher, editors, Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Optimisation Problems
(CP-AI-OR 2004), volume 3011 of LNCS, pages 200–208. Springer-Verlag,
2004.

[155] M. Marte. A global constraint for parallelizing the execution of task sets in
non-preemptive scheduling. In CP’2001 Doctoral Programme, 2001.

BIBLIOGRAPHY 1347

[156] N. Beldiceanu, P. Flener, and X. Lorca. The tree constraint. In Romand Barták
and Michela Milano, editors, International Conference on Integration of AI
and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems (CP-AI-OR’05), Lecture Notes in Computer Science, Prague, Czech
Republic, may 2005. Springer Verlag.

[157] F. Harary and A.J. Schwenk. A new crossing number for bipartite graphs. Util-
itas Math., 1:203–209, 1972.

[158] G. Di Battista, P. Eades, R. Tamassia, and I.G. Tollis. Graph Drawing: Algo-
rithms for the Visualization of Graphs. Prentice-Hall, Englewood Cliffs, NJ,
1999.

[159] M.R. Garey and D.S. Johnson. Crossing number is np-complete. SIAM J. Alge-
braic Discrete Methods, 4:312–316, 1983.

[160] S. Thiel. Efficient Algorithms for Constraint Propagation and for Processing
Tree Descriptions. PhD thesis, Saarlandes University, 2004.

1348 BIBLIOGRAPHY

INDEX 1349

Index
acyclic, 62, 195, 215, 230, 274, 278, 281, 285, 290, 300, 304, 333, 337, 339, 341, 348, 356, 404,
407

Aggoun A., 264, 362

alignment, 63, 713

all different, 62, 179, 180, 184, 188, 192, 195, 198, 811, 815, 883, 948

all differ from at least k pos, 13, 70, 80, 81, 93, 109, 172, 422, 424

all min dist, 80, 85, 108, 174

all null intersect, 180

ALL VERTICES, 47, 310

alldiff, 176

alldiff between sets, 180

alldiff except 0, 182

alldiff interval, 186

alldiff modulo, 190

alldiff on intersection, 194

alldiff partition, 198

alldiff same value, 200

alldifferent, 5, 13, 27, 43, 51–54, 62, 65, 67, 71, 72, 81, 82, 87, 93, 95, 97, 108, 112, 161,
174, 176, 180, 182, 184, 186, 188, 190, 192, 194, 195, 198, 200, 307, 312, 387, 419, 436, 438,
482–484, 498, 504, 510, 582, 668, 700, 756, 758, 782, 784, 810, 811, 814, 815, 883, 948

alldifferent between sets, 62, 71, 76, 81, 95, 112, 180, 490

alldifferent except 0, 62, 65, 67, 88, 95, 99, 108, 178, 179, 182, 948

alldifferent interval, 62, 65, 67, 88, 95, 108, 186

alldifferent modulo, 62, 65, 67, 92, 95, 108, 190

alldifferent on intersection, 62, 65, 67, 70, 75, 77, 93, 108, 179, 194, 333, 702, 764

alldifferent partition, 62, 95, 96, 108, 198, 543

alldifferent same value, 30, 36, 65, 67, 98, 200

alldistinct, 176

alldistinct between sets, 180

alldistinct except 0, 182

1350 INDEX

alldistinct interval, 186

alldistinct modulo, 190

alldistinct on intersection, 194

alldistinct partition, 198

alldistinct same value, 200

allperm, 89, 91, 95, 98, 105, 204, 580, 862

alpha-acyclic constraint network(2), 63, 207, 210, 213, 215, 220, 244, 248, 352, 356, 424, 494,
523, 530, 789

alpha-acyclic constraint network(3), 63, 523, 530, 577

alpha-acyclic constraint network(4), 64, 624, 642

Althaus E., 306, 578, 726, 868, 896

among, 11, 29, 51–53, 63, 65, 68, 79, 108, 206, 210, 212, 213, 215, 218, 220, 223, 225, 236,
244, 248, 274, 278, 352, 356, 435, 494, 498, 537, 630, 646, 789

among diff 0, 63, 65, 68, 79, 88, 108, 207, 208, 700

among interval, 63, 65, 68, 79, 88, 108, 212

among low up, 62, 63, 65, 68, 70, 79, 93, 108, 214, 223, 391, 392, 562, 789

among modulo, 63, 65, 68, 79, 92, 108, 218

among seq, 80, 87, 100, 103, 215, 222, 789, 791

apartition, 64, 290

arith, 65, 68, 80, 82, 108, 224, 230, 232

arith or, 62, 65, 68, 70, 80, 93, 108, 228

arith sliding, 44, 65, 68, 80, 87, 100, 103, 224, 232

arithmetic constraint, 64, 748, 750, 875, 880

array constraint, 64, 459, 462, 465, 469, 475, 477

Asef-Vaziri A., 310

assign and counts, 64, 65, 67, 75, 81, 112, 234, 238, 356

assign and nvalues, 64, 94, 112, 238, 704, 706

assignment, 64, 236, 240, 250, 254, 258, 261, 266, 274, 278, 498, 501, 504, 553, 562, 566, 630,
648, 650, 668, 762, 877, 888, 891, 948

assignment, 568

at least, 65, 244, 274

INDEX 1351

at most, 65, 248, 278, 281

atleast, 10, 11, 63, 65, 68, 108, 236, 242, 248, 492, 494

atmost, 63, 65, 68, 108, 236, 244, 246, 391, 492, 494

atour, 306, 307, 896

automaton, 65, 179, 184, 188, 192, 195, 201, 207, 210, 213, 215, 220, 225, 230, 232, 236, 244,
248, 250, 254, 258, 266, 274, 278, 285, 290, 300, 316, 352, 356, 365, 404, 407, 411, 416, 424,
438, 449, 453, 459, 462, 465, 469, 475, 477, 494, 498, 506, 523, 530, 534, 537, 543, 549, 555,
556, 558, 562, 566, 569, 577, 586, 596, 599, 603, 607, 611, 620, 624, 630, 636, 642, 644, 648,
654, 657, 661, 677, 684, 686, 688, 691, 700, 734, 758, 774, 789, 808, 851, 864, 866, 920, 925,
931, 942

automaton with array of counters, 67, 179, 184, 188, 192, 195, 201, 236, 250, 254, 258, 266,
274, 278, 365, 438, 498, 562, 566, 569, 630, 644, 648, 700, 758, 931

automaton with counters, 68, 207, 210, 213, 215, 220, 232, 244, 248, 285, 290, 300, 316, 352,
356, 404, 407, 416, 424, 449, 494, 523, 530, 534, 555, 577, 620, 624, 642, 734, 789, 808, 942

automaton without counters, 68, 225, 230, 411, 453, 459, 462, 465, 469, 475, 477, 506, 537,
543, 549, 556, 558, 586, 596, 599, 603, 607, 611, 636, 654, 657, 661, 677, 684, 686, 688, 691,
774, 851, 864, 866, 920, 925

balance, 39, 64, 65, 67, 69, 83, 108, 250, 252, 254, 256, 258, 260, 261, 907

balance interval, 64, 65, 67, 69, 83, 88, 108, 250, 252

balance modulo, 64, 65, 67, 69, 83, 92, 108, 250, 256

balance partition, 64, 69, 83, 96, 108, 250, 260, 543

balanced assignment, 69, 250, 254, 258, 261

balanced tree, 69, 907

Baptiste P., 444

Beldiceanu N., 206, 214, 222, 234, 238, 250, 264, 284, 302, 332, 342, 362, 378, 386, 418, 426,
436, 446, 512, 552, 554, 576, 584, 588, 592, 598, 606, 610, 624, 626, 632, 634, 640, 644, 646,
650, 652, 660, 670, 674, 676, 682, 696, 698, 722, 736, 738, 740, 752, 754, 760, 778, 782, 784,
786, 792, 794, 806, 876, 882, 892, 902, 930

Berge C., 176

Berge-acyclic constraint network, 69, 506, 556, 558, 586, 596, 599, 603, 607, 611, 920, 925

Berliner H.J., 306

Bessière C., 698, 810, 814

bin packing, 64, 65, 67, 99, 112, 264, 365, 373, 553, 875

binary constraint, 70, 465, 469, 477, 490, 851, 880

1352 INDEX

binary tree, 75, 86, 95, 107, 268, 903

bioinformatics, 70, 173, 711, 774

bipartite, 70, 195, 215, 230, 274, 278, 281, 333, 337, 339, 341, 348, 356

bipartite matching, 71, 179, 180, 438, 582

Bleuzen-Guernalec N., 176, 842

Bockmayr A., 306, 726, 868, 896

boolean channel, 71, 453

border, 71, 736

bound-consistency, 72, 179, 498, 758, 931

Bourdais S., 496, 538, 730

Bourreau E., 386, 390, 398

Cambazard H., 880

card matrix, 322

card set, 24

card var gcc, 496, 497

cardinality atleast, 62, 64, 65, 67, 70, 93, 108, 272

cardinality atmost, 62, 64, 65, 67, 70, 93, 108, 276

cardinality atmost partition, 62, 65, 70, 93, 96, 108, 280, 537

cardinality matrix, 322, 323

cardinality on attributes values, 698

Carillon J.-P., 460

Carlier J., 444

Carlsson M., 222, 284, 302, 378, 426, 436, 584, 588, 592, 598, 606, 610, 670, 674, 680, 682,
698, 752, 792, 806, 876

Carravilla M.A., 426

case, 58, 462

Caseau Y., 362

CC, 47, 778, 786

centered cyclic(1) constraint network(1), 72, 453, 537, 636, 654, 657, 691

centered cyclic(2) constraint network(1), 73, 459, 462, 465, 469, 477, 543, 661, 851

INDEX 1353

centered cyclic(3) constraint network(1), 73, 475, 677

CHAIN , 27, 524

change, 6, 25, 62, 66, 68, 93, 94, 101, 102, 106, 113, 284, 298, 300, 302, 304, 314, 316, 402,
404, 407, 448, 449, 618, 620, 806, 808

change continuity, 25, 60, 62, 64, 66, 68, 75, 93, 97, 100–102, 106, 112, 114, 288, 523, 525

change pair, 62, 66, 68, 93, 94, 96, 102, 106, 113, 285, 298

change partition, 62, 93, 94, 96, 106, 285, 302, 543

channel routing, 74, 343

channeling constraint, 74, 453, 569, 573, 615, 758

choquet, 58, 112

CIRCUIT , 27, 314, 854

circuit, 74, 307, 383, 387, 883

circuit, 34, 36, 74, 86, 87, 89, 95, 97, 306, 387, 868, 897

circuit cluster, 75, 86, 95, 178, 310, 704

circular sliding cyclic(1) constraint network(2), 74, 316

circular change, 27, 66, 68, 74, 79, 94, 106, 285, 314

CLIQUE , 27, 176, 180, 182, 186, 190, 198, 250, 252, 256, 260, 268, 306, 310, 382, 386, 390,
394, 399, 418, 508, 568, 578, 622, 624, 626, 628, 632, 634, 638, 640, 644, 646, 650, 652, 656,
664, 666, 670, 674, 682, 688, 694, 696, 698, 704, 706, 708, 726, 740, 778, 794, 802, 814, 868,
892, 902, 906, 910, 911

CLIQUE(<), 174, 358, 430, 432, 444, 512, 582, 712, 772, 810, 914

CLIQUE(6=), 172, 318, 426, 446, 722, 744, 882, 896

clique, 76, 86, 92, 112, 318, 546, 615

CLIQUE(Comparison), 28

cluster, 75, 312

Colmerauer A., 176, 842

colored matrix, 91, 98, 106, 322, 498, 758

coloured, 75, 236, 326, 330, 392, 562

coloured cumulative, 75, 94, 99, 100, 106, 112, 324, 330, 365, 442, 704

coloured cumulatives, 75, 94, 99, 100, 106, 112, 326, 328, 365, 704

common, 62, 70, 76, 93, 194, 195, 207, 332, 336–341, 438, 702, 764

1354 INDEX

common interval, 62, 70, 76, 88, 93, 336

common modulo, 62, 70, 76, 92, 93, 338

common partition, 62, 70, 76, 93, 96, 340, 543

conditional constraint, 75, 782, 784

Condon A.E., 172, 422

connect points, 28, 74, 85, 88, 104, 105, 342

connected component, 75, 195, 270, 290, 312, 387, 392, 400, 506, 523, 578, 623, 702, 894, 903,
907, 911

consecutive loops are connected, 76, 523

consecutive values, 76, 632, 650, 696

constant sum, 874, 874

constraint between three collections of variables, 76, 348, 848

constraint between two collections of variables, 76, 333, 337, 339, 341, 758, 762, 764, 767, 769,
771, 819, 821, 823, 825, 829, 833, 837, 839, 844, 931, 935, 937, 939

constraint involving set variables, 76, 180, 319, 490, 546, 573, 578, 615, 727, 776, 868, 880,
888, 891, 897

constraint on the intersection, 77, 195, 702, 764

contact, 77, 724, 920

Contejean E., 206, 214, 222, 386, 418, 426, 882, 892

convex, 77, 506

convex hull relaxation, 78, 871

Cormen T.H., 358

Corn R.M., 172, 422

correspondence, 62, 70, 76, 81, 93, 97, 178, 346, 758, 848

cost filtering constraint, 78, 504, 668, 877, 948

cost matrix, 78, 504, 668

cost gcc, 502

Costa M.-C., 176

count, 63, 66, 68, 79, 108, 207, 225, 236, 350, 354, 356, 498, 562, 630, 646, 704

counting constraint, 79, 207, 210, 213, 215, 220, 352, 356, 435, 494, 671, 674, 682, 694, 700,
702, 704, 706

INDEX 1355

counts, 62, 63, 66, 68, 70, 79, 93, 108, 235, 236, 352, 354

Cousin X., 560

crossing, 24, 85, 89, 93, 358, 514, 916

cumulative, 5, 8, 9, 11, 25, 47–50, 64, 66, 67, 89, 98–100, 104, 106, 112, 232, 248, 264, 266,
324–326, 330, 362, 366, 368, 370, 373, 375, 377, 381, 442, 444, 564, 875

cumulative product, 98–100, 106, 365, 366, 748

cumulative trapeze, 58

cumulative two d, 81, 85, 112, 365, 370, 875

cumulative with level of priority, 81, 99, 100, 106, 365, 374, 875

cumulatives, 7, 21, 80, 81, 98–100, 106, 110, 112, 328, 330, 365, 378, 875

cutset, 38, 74, 81, 86, 112, 382, 546

cycle, 79, 387, 883

cycle, 7, 38, 58, 74, 75, 79, 84, 86, 95, 97, 104, 179, 306, 307, 386, 392, 399, 400, 418, 419,
514, 569, 623, 883, 894, 896, 897, 903

cycle card on path, 75, 86, 95, 100, 103, 215, 387, 390

cycle change, 407

cycle or accessibility, 84–86, 104, 394, 706

cycle resource, 75, 81, 86, 99, 104, 113, 387, 398

cyclic, 79, 316, 404, 407, 856

cyclic change, 62, 66, 68, 79, 93, 94, 101, 106, 402, 406

cyclic change joker, 62, 66, 68, 79, 88, 93, 94, 101, 106, 406

data constraint, 79, 459, 462, 465, 469, 475, 477, 480, 484, 487, 539, 577, 677, 681, 851, 871

decomposition, 80, 173, 174, 223, 225, 230, 232, 411, 428, 430, 432, 444, 453, 549, 582, 589,
593, 615, 717, 774, 791, 793, 864, 866, 888, 891

decomposition-based violation measure, 80, 811

decreasing, 66, 68, 80, 95, 101, 410, 549, 864, 866

deepest valley, 66, 68, 92, 100, 101, 414, 534

demand profile, 80, 381, 762

derangement, 86, 97, 387, 418

derived collection, 81, 236, 348, 373, 377, 381, 400, 453, 462, 475, 477, 487, 510, 537, 539,
543, 599, 603, 607, 611, 615, 661, 677, 681, 691, 799, 848, 901, 911, 916

1356 INDEX

Di Battista G., 914

differ from at least k pos, 29, 63, 66, 68, 108, 109, 173, 422

difference, 81, 510

diffn, 5, 9, 26, 80, 85, 94, 96, 98, 104, 105, 161, 174, 370, 371, 373, 426, 430, 432, 444, 716,
717, 741, 922, 924, 925, 929

diffn column, 80, 85, 86, 96, 98, 428, 430, 432, 922

diffn include, 80, 85, 96, 98, 428, 430, 432, 928

directed acyclic graph, 81, 383

discrepancy, 79, 87, 89, 108, 434, 546

disequality, 81, 173, 179, 180, 438, 484, 510, 596, 688, 691, 811, 815, 883

disjoint, 36, 66, 67, 71, 81, 83, 108, 436, 440, 442

disjoint tasks, 94, 100, 106, 113, 438, 440

disjunctive, 80, 99, 100, 444

DISTANCE, 42, 446, 448

distance between, 98, 446, 449

distance change, 66, 68, 98, 102, 447, 448

distinct, 7

distribute, 496

distribution, 496, 497

domain channel, 82, 453

domain definition, 82, 225, 537, 691

domain constraint, 20, 66, 68, 71, 72, 74, 80–82, 89, 452, 614, 615, 887, 891

domination, 82, 700, 877

double lex, 580

dual model, 83, 569, 573

duplicated variables, 83, 498, 599, 603, 607, 611

INDEX 1357

dynamic graph constraint

assign and counts, 234

assign and nvalues, 238

bin packing, 264

circuit cluster, 310

coloured cumulative, 324

coloured cumulatives, 328

cumulative, 362

cumulative product, 366

cumulative two d, 371

cumulative with level of priority, 374

cumulatives, 378

cycle card on path, 390

cycle or accessibility, 394

indexed sum, 552

interval and count, 560

interval and sum, 564

minimum greater than, 660

next element, 676

next greater element, 680

shift, 778

sliding card skip0, 786

sliding time window, 794

sliding time window sum, 802

track, 900

Eades P., 914

egcc, 496, 497

elem, 64, 66, 68, 73, 79, 85, 106, 109, 456, 462, 851

element, 17–19, 51, 64, 66, 68, 73, 79, 81, 85, 101, 104, 106, 109, 113, 162, 456, 456, 459,
460, 464, 465, 468, 469, 473, 476, 477, 480, 483, 484, 487, 539, 850, 851, 871

element greatereq, 64, 66, 68, 70, 73, 79, 89, 106, 109, 459, 462, 464, 469

element lesseq, 64, 66, 68, 70, 73, 79, 89, 106, 109, 459, 462, 465, 468

element matrix, 8, 64, 66, 68, 73, 79, 81, 91, 106, 459, 462, 472

element sparse, 64, 66, 68, 70, 73, 79, 81, 104, 106, 109, 459, 462, 476, 486, 487

1358 INDEX

elements, 79, 85, 101, 106, 459, 462, 480, 482

elements alldiff, 482

elements alldifferent, 79, 81, 85, 97, 106, 459, 462, 482

elements alldistinct, 482

elements sparse, 79, 81, 101, 104, 106, 486

Elf M., 306, 726, 868, 896

empty intersection, 83, 438

eq set, 70, 76, 83, 98, 490

equality, 83, 490

equality between multisets, 83, 758, 762

equivalence, 83, 250, 254, 258, 261, 630, 648, 671, 674, 682, 688, 694, 700, 704, 815

Erschler J., 362

Euler knight, 84, 387

exactly, 63, 66–68, 79, 108, 207, 244, 248, 492

excluded, 84, 691

extension, 84, 539

extension, 538

facilities location problem, 84, 396, 877

Fages F., 382

Fahle T., 318

Falkenhainer B., 784

Flajolet O., 622

Flamm C., 772

Flener P., 580, 862, 902

flow, 84, 498, 501, 758, 811, 888, 891, 931

Focacci F., 434, 666

frequency allocation problem, 85, 174

Frisch A., 204, 580, 598, 606, 610, 862

Frutos A.G., 172, 422

INDEX 1359

functional dependency, 85, 459, 462, 480, 484, 851

Galinier P., 496, 538, 730

Gambini I., 426

Garey M.R., 914

gcc, 496

gccc, 502

Gent I., 708

geometrical constraint, 85, 343, 360, 373, 396, 428, 430, 432, 514, 713, 719, 721, 724, 742, 746,
774, 916, 920, 922, 925, 929

Ginsberg L., 434

global cardinality, 46, 64–67, 72, 83, 84, 87, 90, 108, 113, 207, 236, 272, 274, 276, 278,
280, 281, 322, 323, 496, 501, 504, 630, 646, 756, 758, 760, 762, 789, 886, 888, 890, 891

global cardinality low up, 64, 65, 84, 108, 500, 791

global cardinality with costs, 23, 42, 64, 78, 90, 100, 110, 498, 502, 668, 877, 948

global contiguity, 28, 44, 46, 51–53, 66–69, 75, 77, 506

golomb, 22, 81, 85, 508

Golomb ruler, 85, 510

Golomb S.W., 508, 744

Golynski A., 496

Gomes C., 322

graph constraint, 86, 270, 307, 312, 319, 383, 387, 392, 396, 400, 419, 569, 578, 623, 711, 727,
868, 883, 894, 897, 903, 907, 911

Graph invariants:

MAX NCC, 121

MAX NSCC, 121

MIN NCC, 121

MIN NSCC, 121

NARC, 121

NCC, 122

NSCC, 122

NSINK, 122

NSOURCE, 122

1360 INDEX

NVERTEX, 122

MAX NCC, MAX NSCC, 123

MAX NCC, MIN NCC, 123

MAX NCC, NARC, 123

MAX NCC1, NCC2, 150

MAX NCC2, NCC1, 150

MAX NCC, NSINK, 124

MAX NCC, NSOURCE, 124

MAX NCC, NVERTEX, 124

MAX NSCC, MIN NSCC, 125

MAX NSCC, NARC, 125

MAX NSCC, NVERTEX, 125

MIN NCC, MIN NSCC, 125

MIN NCC, NARC, 126

MIN NCC, NCC, 126

MIN NCC1, NCC2, 150

MIN NCC2, NCC1, 151

MIN NCC, NVERTEX, 126

MIN NSCC, NARC, 127

MIN NSCC, NVERTEX, 127

NARC1, NARC2, 151

NARC, NCC, 127

NARC, NSCC, 127

NARC, NVERTEX, 128

NCC1, NCC2, 151

NCC, NSCC, 129

NCC, NVERTEX, 129

NSCC, NVERTEX, 130

NSINK, NVERTEX, 130

NSOURCE, NVERTEX, 130

NVERTEX1, NVERTEX2, 151

MAX NCC1, MIN NCC1, MIN NCC2, 152

MAX NCC2, MIN NCC2, MIN NCC1, 152

MAX NCC, MIN NCC, NARC, 131

MAX NCC, MIN NCC, NCC, 131

MAX NCC, MIN NCC, NVERTEX, 131

MAX NCC, NARC, NCC, 132

INDEX 1361

MAX NCC, NARC, NVERTEX, 133

MAX NCC, NCC, NVERTEX, 134

MAX NSCC, MIN NSCC, NARC, 134

MAX NSCC, MIN NSCC, NSCC, 135

MAX NSCC, MIN NSCC, NVERTEX, 135

MAX NSCC, NSCC, NVERTEX, 136

MIN NCC1, NARC2, NCC1, 153

MIN NCC, NARC, NVERTEX, 136

MIN NCC, NCC, NVERTEX, 137

MIN NSCC, NARC, NVERTEX, 138

MIN NSCC, NSCC, NVERTEX, 138

NARC, NCC, NVERTEX, 138

NARC, NSCC, NVERTEX, 140

NARC, NSINK, NVERTEX, 142

NARC, NSOURCE, NVERTEX, 143

NSINK, NSOURCE, NVERTEX, 143

MAX NCC1, MIN NCC1, MIN NCC2, NCC1, 153

MAX NCC2, MIN NCC2, MIN NCC1, NCC2, 154

MAX NCC, MIN NCC, NARC, NCC, 144

MAX NCC, MIN NCC, NCC, NVERTEX, 145

MAX NSCC, MIN NSCC, NARC, NSCC, 145

MAX NSCC, MIN NSCC, NSCC, NVERTEX, 145

MIN NCC, NARC, NCC, NVERTEX, 146

NARC, NCC, NSCC, NVERTEX, 147

NARC, NSINK, NSOURCE, NVERTEX, 149

MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC1, 154

MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC2, 157

MAX NCC, MIN NCC, NARC, NCC, NVERTEX, 149

MIN NCC, NARC, NCC, NSCC, NVERTEX, 149

MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC1, NCC2, 159

graph partitioning constraint, 86, 270, 307, 387, 400, 623, 883, 894, 903, 907, 911

graph crossing, 85, 89, 360, 512, 623, 903, 916

GRID , 28

GRID([SIZE1, SIZE2, SIZE3]), 342

Grinberg E.Ya., 306

1362 INDEX

group, 35, 63, 66, 68, 75, 76, 106, 110, 114, 118, 290, 506, 516, 524, 525, 537, 691, 730, 856,
860

group skip isolated item, 27, 63, 66, 68, 104, 106, 290, 523, 524, 537

guillotine cut, 86, 430, 922

Guo Q., 426

Hall interval, 87, 179, 498

Hamiltonian, 87, 307, 897

Harary F., 914

Harvey W.D., 434

Hebrard E., 698

heighest peak, 66, 68, 100, 101, 416, 532

Hellsten L., 854, 858

Henz M., 882

heuristics, 87, 435

Hnich B., 580, 598, 606, 610, 698, 862

Hofacker I.L., 772

Hooker J.N., 362, 464, 468

hypergraph, 87, 223, 232, 713, 753, 782, 784, 791, 793

in, 29, 66, 68, 72, 81, 82, 87, 107, 108, 162, 281, 536, 543, 690, 691

in attr, 6

in list, 6

in relation, 10, 19, 79, 81, 84, 99, 107, 538, 944, 945

in same partition, 66, 68, 73, 81, 96, 108, 198, 304, 341, 537, 542, 671, 771, 939

in set, 76, 87, 98, 108, 546

included, 87, 537, 546

inclusion, 88, 931, 935, 937, 939

increasing, 66, 68, 80, 95, 101, 410, 411, 548, 864, 866

increasing seq, 7

indexed sum, 64, 109, 552, 875

INDEX 1363

indistinguishable values, 88, 556, 558, 776

inequality sum, 58

inflexion, 51, 53, 66, 68, 100, 101, 506, 554, 732, 734, 940, 942

int value precede, 66, 68, 69, 88, 95, 105, 109, 556, 558, 776

int value precede chain, 66, 68, 69, 88, 95, 105, 109, 556, 558

interval, 88, 188, 213, 254, 337, 562, 566, 682, 767, 819, 829, 935

interval and count, 64–67, 75, 88, 99, 106, 112, 215, 560

interval and sum, 64–67, 88, 99, 106, 112, 564, 875

inverse, 59, 66, 67, 74, 83, 86, 93, 97, 387, 568, 572, 573

inverse set, 12, 74, 76, 83, 100, 546, 569, 572

ith pos different from 0, 63, 66, 68, 79, 88, 106, 576, 644

Jünger M., 306, 726, 868, 896

Jackson, 712

Jefferson C., 204

Johnson D.S., 914

joker value, 88, 184, 210, 343, 407, 577, 657, 706, 738, 948

Jussien N., 854

k− diff, 700

k cut, 75, 76, 86, 89, 546, 578

Kasper T., 306, 726, 868, 896

Katriel I., 496, 754, 760, 930

Kocjan W., 886, 890

Kreuger P., 886, 890

Kuchcinski K., 426

Kızıltan Z., 580, 598, 606, 610, 698, 754, 862

López-Ortiz A., 176, 496

Labbé M., 394, 892

Laburthe F., 362

Lahrichi A., 362, 370

1364 INDEX

Lal A., 382

Laporte G., 310, 394, 892

Laurière J.-L., 176, 306, 386

Law Y.C., 556, 558, 776

Le Pape C., 444

Leconte M., 176

Lee J.H.M., 556, 558, 776

Leiserson C.E., 358

Levy H., 382

lex2, 89, 91, 95, 98, 105, 204, 580, 862

lex alldiff, 582

lex alldifferent, 71, 80, 109, 179, 582, 596

lex alldistinct, 582

lex between, 66, 68, 69, 89, 95, 105, 109, 584, 589, 593, 599, 603, 607, 611

lex chain, 588, 592

lex chain less, 80, 89, 91, 95, 105, 109, 584, 586, 588, 593, 599, 603, 607, 611

lex chain lesseq, 80, 89, 91, 95, 105, 109, 580, 584, 586, 589, 592, 599, 603, 607, 611, 862

lex different, 66, 68, 69, 81, 109, 582, 596

lex greater, 66, 68, 69, 81, 83, 89, 91, 93, 95, 105, 109, 586, 589, 593, 598, 603, 607, 611

lex greatereq, 66, 68, 69, 81, 83, 89, 91, 93, 95, 105, 109, 586, 589, 593, 596, 599, 602, 607,
611

lex less, 66, 68, 69, 81, 83, 89, 91, 93, 95, 105, 109, 586, 589, 593, 596, 599, 603, 606, 611

lex lesseq, 19, 20, 29, 40, 51–53, 66, 68, 69, 81, 83, 89, 91, 93, 95, 105, 109, 204, 580, 586,
589, 593, 596, 599, 603, 607, 610, 862

lexicographic order, 89, 204, 580, 586, 589, 593, 599, 603, 607, 611, 862

limited discrepancy search, 89, 435

line-segments intersection, 89, 360, 514, 916

linear programming, 89, 307, 365, 453, 465, 469, 578, 615, 727, 868, 871, 897

link set to booleans, 74, 76, 80, 81, 89, 100, 108, 180, 319, 453, 546, 578, 614, 727, 868,
887, 888, 891, 897

Liu Q., 172, 422

INDEX 1365

Lloyd E.L., 382

Lodi A., 666

longest change, 34, 66, 68, 102, 106, 285, 618

LOOP , 28, 506, 516, 517, 786, 854, 858

Lopez P., 362

Lorca X., 902

Low D.W., 382

Lubiw A., 580

Müller T., 882

Müller-Hannemann M., 264

magic hexagon, 90, 504

magic series, 90, 498

magic square, 90, 504

Maher M., 506

map, 75, 86, 387, 514, 622, 903

Marte M., 900

Martello S., 264

matching, 91, 883

matrix, 91, 204, 323, 475, 580, 862

matrix model, 91, 204, 323, 580, 862

matrix symmetry, 91, 580, 589, 593, 599, 603, 607, 611

MAX DRG, 34

MAX ID, 34, 268, 272, 276, 280, 306, 892, 896, 946

max index, 64, 66, 68, 91, 95, 624, 642

max n, 91, 95, 99, 626, 644

MAX NCC, 34, 194, 289, 290, 517, 618, 854, 858

MAX NSCC, 35, 176, 180, 182, 186, 190, 198, 200, 268, 382, 508, 525, 628, 632, 708, 902,
906, 910

max nvalue, 64, 66, 67, 83, 91, 92, 108, 207, 352, 498, 628, 648

MAX OD, 35, 896

1366 INDEX

max size, 10

max size set of consecutive var, 76, 91, 108, 632

maximum, 91, 624, 626, 630, 632, 636, 638

maximum, 66, 68, 72, 91, 95, 626, 634, 638, 654

maximum clique, 92, 319

maximum number of occurrences, 92, 630

maximum modulo, 91, 92, 95, 638, 664

maxint, 92, 416, 644, 654, 657, 664

Mehlhorn K., 176, 306, 726, 842, 868, 896

Miguel I., 204, 580, 598, 606, 610, 862

Milano M., 666

MIN DRG, 35

MIN ID, 35, 896

min index, 64, 66, 68, 92, 95, 624, 640

min n, 66, 67, 92, 95, 99, 576, 626, 644

MIN NCC, 35, 289, 290, 517, 854, 858

MIN NSCC, 36, 306, 525, 646, 650, 868, 896

min nvalue, 64, 66, 67, 83, 92, 108, 207, 352, 498, 630, 646, 657

MIN OD, 36, 896

min size, 10

min size set consecutive var, 65

min size set of consecutive var, 76, 92, 108, 650, 696

min weight alldiff, 666

min weight alldifferent, 666

min weight alldistinct, 666

minimum, 92, 642, 644, 648, 650, 654, 657, 661, 664, 677, 681

minimum, 26, 39, 51, 66, 68, 72, 92, 95, 634, 636, 644, 652, 656, 657, 664

minimum number of occurrences, 92, 648

minimum distance, 174

INDEX 1367

minimum except 0, 66, 68, 72, 88, 92, 95, 656

minimum greater than, 66, 68, 73, 81, 92, 95, 654, 660, 677, 681

minimum modulo, 92, 95, 638, 664

minimum weight alldiff, 666

minimum weight alldifferent, 65, 78, 95, 110, 666, 877, 948

minimum weight alldistinct, 666

Mittal S., 784

modulo, 92, 192, 220, 258, 339, 638, 664, 769, 821, 833, 937

multiset, 93, 758, 762

multiset ordering, 93, 599, 603, 607, 611

n-queen, 93, 179, 569

NARC, 36, 172, 174, 206, 208, 212, 214, 218, 222, 224, 228, 232, 242, 246, 284, 289, 290,
298, 302, 314, 318, 324, 328, 346, 350, 354, 358, 362, 366, 371, 374, 378, 402, 406, 410, 422,
426, 430, 432, 434, 436, 440, 444, 452, 456, 460, 464, 468, 472, 476, 480, 492, 512, 536, 538,
548, 568, 572, 582, 588, 592, 596, 614, 660, 676, 680, 690, 712, 716, 718, 720–722, 740, 752,
772, 778, 782, 784, 790, 792, 802, 806, 810, 842, 846, 850, 864, 866, 882, 886, 890, 896, 900,
914, 918, 922, 924, 928, 944

NARC NO LOOP, 36, 200

nbchanges, 284

NCC, 37, 268, 289, 290, 386, 390, 394, 399, 506, 517, 578, 622, 702, 708, 722, 745, 892, 902,
906, 910

nclass, 79, 83, 94, 96, 104, 108, 543, 670, 674, 682, 694

nequivalence, 79, 83, 94, 104, 108, 671, 674, 682, 694

next element, 66, 68, 73, 79, 81, 92, 106, 654, 676, 681

next greater element, 79, 81, 92, 95, 106, 654, 660, 661, 677, 680

ninterval, 12, 79, 83, 88, 94, 104, 108, 671, 674, 682, 694

no cycle, 58

no loop, 93, 173, 195, 215, 230, 274, 278, 281, 285, 290, 300, 304, 333, 337, 339, 341, 348,
356, 360, 404, 407

no peak, 66, 68, 100, 101, 684, 686, 734

no valley, 66, 68, 100, 101, 684, 686, 942

non-overlapping, 94, 428, 442, 721, 724, 742, 920, 925

1368 INDEX

not all equal, 66, 68, 81, 83, 101, 108, 688, 700

not in, 66, 68, 72, 81, 82, 84, 107, 108, 537, 690

npair, 79, 83, 94, 96, 104, 108, 671, 674, 682, 694, 700

NSCC, 37, 310, 342, 525, 670, 674, 682, 688, 694, 696, 698, 704, 706, 814

nset of consecutive values, 76, 104, 108, 632, 650, 696

NSINK, 37, 332, 336, 338, 340, 542, 754, 760, 764, 766, 768, 770, 842, 930, 934, 936, 938

NSINK NSOURCE, 37, 818, 820, 822, 824, 828, 832, 836, 838

NSOURCE, 38, 332, 336, 338, 340, 486, 542, 754, 760, 764, 766, 768, 770, 842, 876, 930,
934, 936, 938

NTREE, 38, 310, 386, 390, 394, 399, 418, 622, 666

number of changes, 94, 285, 300, 304, 316, 404, 407, 808

number of distinct equivalence classes, 94, 671, 674, 682, 694, 700, 704

number of distinct values, 94, 240, 326, 330, 700, 702, 704, 706

nvalue, 15–17, 37, 45, 66, 67, 79, 82, 84, 94, 104, 108, 207, 208, 210, 240, 352, 498, 628, 630,
648, 670, 671, 674, 682, 688, 694, 698, 702, 704, 706, 877, 901

nvalue on intersection, 75, 77, 79, 94, 195, 333, 700, 702, 764

nvalues, 79, 84, 94, 104, 108, 238, 240, 312, 324, 326, 328, 330, 700, 704, 706

nvalues except 0, 79, 88, 94, 104, 108, 396, 700, 704, 706

NVERTEX, 38, 318, 382, 395, 399, 482, 496, 500, 502, 517, 525, 708, 722, 745, 760, 892,
910, 911

obscure, 94, 711

Older W.J., 754, 842

one succ, 95

one factor, 882, 883

one machine, 444

one succ, 179, 180, 184, 188, 192, 198, 270, 307, 312, 387, 392, 668, 903

one tree, 6, 70, 86, 94, 97, 107, 708

orchard, 28, 63, 85, 87, 712

ORDER, 39, 624, 626, 634, 638, 640, 644, 652, 656, 664

order constraint, 95, 204, 411, 549, 556, 558, 580, 586, 589, 593, 599, 603, 607, 611, 624, 626,
636, 638, 642, 644, 654, 657, 661, 664, 681, 776, 862, 864, 866

INDEX 1369

orth link ori siz end, 80, 96, 428, 716

orth on the ground, 85, 96, 717, 718, 741

orth on to of orth, 85

orth on top of orth, 94, 96, 717, 720, 741

orthotope, 96, 428, 430, 432, 717, 719, 721, 724, 742, 920, 922, 925, 929

orths are connected, 77, 85, 94, 96, 107, 716, 717, 722, 918, 920

Ottosson G., 464, 468

Péridy L., 444

Pachet F., 284, 698

pair, 96, 300, 694

partition, 96, 198, 261, 281, 304, 341, 543, 671, 771, 823, 837, 939

PATH , 28, 222, 284, 289, 298, 302, 402, 406, 410, 448, 506, 516, 517, 548, 588, 592, 618, 680,
752, 786, 790, 792, 806, 842, 846, 850, 858, 864, 866

path, 96, 727, 894

path, 726, 894

PATH 1 , 28, 232, 784

PATH FROM TO, 39, 598, 602, 606, 610, 726

path from to, 76, 86, 89, 96, 546, 615, 726, 894

PATH LENGTH, 48

PATH LENGTH(PATH LEN), 390

PATH N , 29, 782

pattern, 51, 98, 103, 106, 285, 730, 791, 856, 860

peak, 66, 68, 100, 101, 532, 534, 555, 684, 686, 732, 942

Pearson J., 580, 582, 772, 862

pentomino, 96, 746

period, 71, 97, 98, 100, 106, 736, 738

period except 0, 88, 97, 98, 100, 106, 736, 738

periodic, 97, 736, 738

permutation, 97, 179, 290, 307, 348, 387, 419, 484, 569, 758, 762, 767, 769, 771, 844, 848, 883

permutation channel, 97, 569

1370 INDEX

Pesant G., 496, 538, 730, 854, 858, 882

Petit T., 810, 814

phylogeny, 97, 711

pick-up delivery, 97, 387

place in pyramid, 59, 85, 94, 96, 428, 716, 718–721, 740

Poder E., 736, 738

polygon, 98, 428

polyomino, 85, 96, 104, 744

positioning constraint, 98, 430, 432, 922, 929

PRED, 48, 395

predefined constraint, 98, 204, 323, 490, 546, 580, 731, 736, 738, 862

producer-consumer, 98, 365, 381

PRODUCT , 29, 194, 214, 234, 238, 264, 272, 276, 280, 324, 328, 332, 336, 338, 340, 346,
354, 362, 366, 371, 375, 378, 436, 440, 452, 456, 460, 464, 468, 472, 476, 480, 482, 486, 502,
536, 538, 542, 552, 560, 564, 572, 614, 660, 676, 680, 690, 702, 754, 760, 764, 766, 768, 770,
798, 818, 820, 822, 824, 828, 832, 836, 838, 842, 846, 850, 870, 876, 886, 890, 900, 930, 934,
936, 938, 946

PRODUCT (=), 228, 422, 596, 720, 918, 922, 928, 944

PRODUCT (CLIQUE ,LOOP ,=), 200

PRODUCT (PATH ,VOID), 598, 602, 606, 610

PRODUCT, 40, 748

product, 98, 368, 748

PRODUCT (Comparison), 29

product ctr, 40, 64, 98, 748, 750, 875

Prosser P., 708

proximity constraint, 98, 201, 447, 449

Puget J.-F., 176, 790

Quimper C.-G., 176, 496

Régin J.-C., 174, 176, 272, 276, 318, 322, 496, 500, 502, 698, 790, 810, 814, 882

RANGE, 40, 750

INDEX 1371

range, 99, 750

range, 58

range ctr, 41, 64, 99, 748, 750, 875

RANGE DRG, 38, 906

RANGE NCC, 39

RANGE NSCC, 39, 250, 252, 256, 260

rank, 99, 626, 644

Refalo P., 452

regular, 58

relation, 99, 539, 888, 891

relaxation, 99, 184, 753, 811, 815, 819, 821, 823, 825, 829, 833, 837, 839, 877, 948

relaxed sliding sum, 12, 87, 99, 100, 103, 752, 875

require at least, 8

required, 8

resource constraint, 99, 266, 326, 330, 365, 368, 377, 381, 400, 444, 562, 566, 901, 911

rgcc, 497

Ribeiro C., 426

Rivest R.L., 358

Rivreau D., 444

Rochart G., 854

Rodrı́guez-Martı́n I., 394, 892

roots, 58

Rousseau J.M., 496

row and column lex, 580

Roy P., 284, 698

run of a permutation, 100, 290

Sadjad S.B., 496

same, 29, 37, 38, 44, 66, 67, 72, 74, 76, 83, 84, 93, 97, 323, 347, 348, 754, 760, 762, 764,
766–771, 825, 844, 931

same and gcc, 760

1372 INDEX

same and global cardinality, 65, 76, 80, 83, 93, 97, 108, 498, 756, 758, 760

same gcc, 760

same intersection, 76, 77, 195, 333, 702, 758, 764

same interval, 76, 88, 97, 758, 766, 818, 819

same modulo, 76, 92, 97, 758, 768, 820, 821

same partition, 76, 96, 97, 543, 758, 770, 822, 823

same size, 9

same with cardinalities, 760

Samet H., 370

Sanner A.M.W., 172, 422

scalar product, 100, 504

scheduling constraint, 100, 326, 330, 365, 368, 377, 381, 442, 444, 736, 738, 780

Schwenk A.J., 914

Sedgewick R., 622

SELF , 29, 206, 208, 212, 218, 224, 242, 246, 324, 328, 350, 362, 366, 370, 374, 378, 426, 434,
440, 492, 496, 500, 502, 716, 718, 722, 748, 750, 760, 772, 778, 802, 874, 880, 900

Sellman M., 666

sequence, 100, 223, 232, 392, 416, 534, 555, 684, 686, 734, 736, 738, 753, 774, 782, 784, 789,
791, 793, 942

sequence folding, 66, 68, 70, 80, 85, 100, 772

set channel, 100, 573, 615

set value precede, 77, 88, 95, 98, 105, 109, 556, 776

sgcc, 760, 890

shared table, 101, 480, 487

Shaw P., 264

Shearer J.B., 508

shift, 101, 106, 750, 778, 796

Shufet J.A., 306

sign, 24

INDEX 1373

signature

AUTOMATON

deepest valley, 414

heighest peak, 532

inflexion, 554

int value precede, 556

int value precede chain, 558

ith pos different from 0, 576

lex between, 584

no peak, 684

no valley, 686

peak, 732

valley, 940

CC(NSINK,NSOURCE),PRODUCT

same intersection, 764

CLIQUE , SUCC

sliding time window, 794

DISTANCE,CLIQUE(6=)

distance between, 446

DISTANCE,PATH

distance change, 448

MAX ID,MAX NSCC,NCC,CLIQUE

binary tree, 268

MAX ID,MIN NSCC,CLIQUE

circuit, 306

MAX ID,NCC,NVERTEX,CLIQUE

temporal path, 892

MAX ID,PRODUCT

cardinality atleast, 272

cardinality atmost, 276

cardinality atmost partition, 280

MAX ID,SUM,PRODUCT

weighted partial alldiff, 946

MAX NCC,CIRCUIT ,LOOP , ∀
stretch circuit, 854

MAX NCC,MIN NCC,NARC,NCC,PATH

change continuity, 288

1374 INDEX

MAX NCC,MIN NCC,NCC,NVERTEX,PATH ,LOOP ; MAX NCC,MIN NCC,PATH ,LOOP

group, 516

MAX NCC,PATH

longest change, 618

MAX NCC,PATH ,LOOP , ∀
stretch path, 858

MAX NCC,PRODUCT

alldifferent on intersection, 194

MAX NSCC,CLIQUE

alldifferent, 176

alldifferent between sets, 180

alldifferent except 0, 182

alldifferent interval, 186

alldifferent modulo, 190

alldifferent partition, 198

golomb, 508

MAX NSCC,CLIQUE

max nvalue, 628

max size set of consecutive var, 632

MAX NSCC,MIN NSCC,NSCC,NVERTEX,CHAIN

group skip isolated item, 524

MAX NSCC,NARC NO LOOP,PRODUCT (CLIQUE ,LOOP ,=)

alldifferent same value, 200

MAX NSCC,NCC,CLIQUE

tree, 902

MAX NSCC,NCC,NVERTEX,CLIQUE

one tree, 708

MAX NSCC,NCC,NVERTEX,CLIQUE ; NVERTEX,CLIQUE , ∀
tree resource, 910

MAX NSCC,NCC,RANGE DRG,CLIQUE

tree range, 906

MAX NSCC,NVERTEX,CLIQUE

cutset, 382

MIN NSCC,CLIQUE

min nvalue, 646

min size set of consecutive var, 650

strongly connected, 868

INDEX 1375

NARC,CIRCUIT

circular change, 314

NARC,CLIQUE(<)

all min dist, 174

diffn column, 430

diffn include, 432

disjunctive, 444

lex alldifferent, 582

NARC,CLIQUE(6=)

all differ from at least k pos, 172

NARC,CLIQUE

inverse, 568

place in pyramid, 740

NARC,CLIQUE(<)

crossing, 358

graph crossing, 512

orchard, 712

soft alldifferent ctr, 810

two layer edge crossing, 914

NARC,CLIQUE(6=)

symmetric alldifferent, 882

NARC,CLIQUE(6=); MAX ID,MAX OD,MIN ID,MIN NSCC,MIN OD,CLIQUE(6=
)

tour, 896

NARC,NVERTEX,CLIQUE (6=)

clique, 318

NARC,PATH

among seq, 222

decreasing, 410

increasing, 548

lex chain less, 588

lex chain lesseq, 592

sliding distribution, 790

sliding sum, 792

strictly decreasing, 864

strictly increasing, 866

NARC,PATH

1376 INDEX

change, 284

change pair, 298

change partition, 302

cyclic change, 402

cyclic change joker, 406

relaxed sliding sum, 752

smooth, 806

NARC,PATH 1

arith sliding, 232

size maximal starting sequence alldifferent, 784

NARC,PATH N

size maximal sequence alldifferent, 782

NARC,PATH ; NARC,PRODUCT

stage element, 850

NARC,PATH ; NARC,PRODUCT , SUCC

next greater element, 680

NARC,PRODUCT

element sparse, 476

in relation, 538

NARC,PRODUCT (=)

differ from at least k pos, 422

lex different, 596

NARC,PRODUCT

disjoint, 436

not in, 690

NARC,PRODUCT

among low up, 214

correspondence, 346

counts, 354

domain constraint, 452

elem, 456

element, 460

element greatereq, 464

element lesseq, 468

element matrix, 472

elements, 480

in, 536

INDEX 1377

inverse set, 572

link set to booleans, 614

symmetric cardinality, 886

symmetric gcc, 890

NARC,PRODUCT (=)

arith or, 228

orth on top of orth, 720

two orth are in contact, 918

two orth column, 922

two orth include, 928

vec eq tuple, 944

NARC,PRODUCT ; NARC,PATH

sort permutation, 846

NARC,PRODUCT , SUCC

minimum greater than, 660

next element, 676

NARC, SELF

arith, 224

atleast, 242

orth link ori siz end, 716

NARC, SELF

atmost, 246

NARC, SELF

among, 206

among diff 0, 208

among interval, 212

among modulo, 218

count, 350

discrepancy, 434

exactly, 492

orth on the ground, 718

NARC, SELF ; CLIQUE ,CC

shift, 778

NARC, SELF ; CLIQUE , SUCC

sliding time window sum, 802

NARC, SELF ; NARC,CLIQUE(<)

sequence folding, 772

1378 INDEX

NARC, SELF ; NARC,CLIQUE (6=)

diffn, 426

NARC, SELF ; NARC,PRODUCT

disjoint tasks, 440

NARC, SELF ; NCC,NVERTEX,CLIQUE(6=)

orths are connected, 722

NARC, SELF ; PRODUCT , ∀, SUCC

coloured cumulatives, 328

cumulative with level of priority, 374

cumulatives, 378

NARC, SELF ; PRODUCT , SUCC

coloured cumulative, 324

cumulative, 362

cumulative product, 366

cumulative two d, 370

track, 900

NARC, SYMMETRIC PRODUCT (=)

two orth do not overlap, 924

NCC,CLIQUE

k cut, 578

NCC,NTREE,CLIQUE

cycle, 386

NCC,NTREE,CLIQUE

map, 622

NCC,NTREE,CLIQUE ; NVERTEX,CLIQUE ,PRED

cycle or accessibility, 394

NCC,NTREE,CLIQUE ,PATH LENGTH

cycle card on path, 390

NCC,NTREE,NVERTEX,CLIQUE ; NVERTEX,CLIQUE , ∀
cycle resource, 398

NCC,NVERTEX,CLIQUE(6=)

polyomino, 744

NCC,PATH ,LOOP

global contiguity, 506

NCC,PRODUCT

nvalue on intersection, 702

NSCC,CLIQUE

INDEX 1379

not all equal, 688

NSCC,CLIQUE

nclass, 670

nequivalence, 674

ninterval, 682

npair, 694

nset of consecutive values, 696

nvalue, 698

nvalues, 704

nvalues except 0, 706

soft alldifferent var, 814

NSCC,GRID([SIZE1, SIZE2, SIZE3])

connect points, 342

NSCC,NTREE,CLIQUE ,ALL VERTICES

circuit cluster, 310

NSINK NSOURCE,PRODUCT

soft same interval var, 818

soft same modulo var, 820

soft same partition var, 822

soft same var, 824

soft used by interval var, 828

soft used by modulo var, 832

soft used by partition var, 836

soft used by var, 838

NSINK,CC(NSINK,NSOURCE),PRODUCT

used by, 930

used by interval, 934

used by modulo, 936

used by partition, 938

NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT

same, 754

same interval, 766

same modulo, 768

same partition, 770

NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT ; NARC,PATH

sort, 842

NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT ; NVERTEX, SELF , ∀

1380 INDEX

same and global cardinality, 760

NSINK,NSOURCE,PRODUCT

common, 332

common interval, 336

common modulo, 338

common partition, 340

in same partition, 542

NSOURCE,PRODUCT

elements sparse, 486

NSOURCE,SUM,PRODUCT

sum of weights of distinct values, 876

NTREE,CLIQUE

derangement, 418

NTREE,SUM WEIGHT ARC,CLIQUE

minimum weight alldifferent, 666

NVERTEX,PRODUCT

elements alldifferent, 482

NVERTEX, SELF , ∀
global cardinality, 496

global cardinality low up, 500

NVERTEX, SELF , ∀; SUM WEIGHT ARC,PRODUCT

global cardinality with costs, 502

ORDER,CLIQUE

max index, 624

max n, 626

maximum, 634

maximum modulo, 638

min index, 640

min n, 644

minimum, 652

minimum except 0, 656

minimum modulo, 664

PATH FROM TO,CLIQUE

path from to, 726

PATH FROM TO,PRODUCT (PATH ,VOID)

lex greater, 598

lex greatereq, 602

INDEX 1381

lex less, 606

lex lesseq, 610

PATH ,LOOP ,CC

sliding card skip0, 786

PREDEFINED

allperm, 204

colored matrix, 322

eq set, 490

in set, 546

lex2, 580

pattern, 730

period, 736

period except 0, 738

set value precede, 776

strict lex2, 862

PRODUCT , ∀, SUCC

indexed sum, 552

PRODUCT , SELF

product ctr, 748

PRODUCT , SUCC

assign and counts, 234

assign and nvalues, 238

bin packing, 264

interval and count, 560

interval and sum, 564

RANGE NSCC,CLIQUE

balance, 250

balance interval, 252

balance modulo, 256

balance partition, 260

RANGE, SELF

range ctr, 750

SUM WEIGHT ARC,PRODUCT

sliding time window from start, 798

SUM,PRODUCT

sum, 870

SUM, SELF

sum ctr, 874

sum set, 880

1382 INDEX

similarity, 284

Simonis H., 342, 374

size maximal sequence alldiff, 782

size maximal sequence alldifferent, 29, 44, 75, 87, 100, 103, 112, 178, 782, 784

size maximal sequence alldistinct, 782

size maximal starting sequence alldiff, 784

size maximal starting sequence alldifferent, 28, 75, 87, 100, 103, 112, 178, 782, 784

size maximal starting sequence alldistinct, 784

sliding cyclic(1) constraint network(1), 101, 411, 549, 684, 686, 688, 864, 866

sliding cyclic(1) constraint network(2), 101, 285, 290, 404, 407, 416, 534, 555, 734, 808, 942

sliding cyclic(1) constraint network(3), 102, 285, 290, 620

sliding cyclic(2) constraint network(2), 102, 300, 449

sliding sequence constraint, 103, 223, 232, 392, 731, 753, 782, 784, 789, 791, 793, 796, 799,
804, 856, 860

sliding card skip0, 63, 66, 68, 100, 103, 106, 215, 786

sliding distribution, 80, 87, 100, 103, 500, 501, 730, 790, 856, 860

sliding sum, 28, 80, 87, 100, 103, 105, 753, 792, 875

sliding time window, 103, 106, 780, 794, 798, 799, 802, 803

sliding time window from start, 81, 103, 106, 796, 798

sliding time window sum, 103, 105–107, 796, 802, 875

Smith B., 708

Smith B.M., 508

Smith L.M., 172, 422

smooth, 66, 68, 94, 101, 106, 285, 806

Soffa M.L., 382

soft constraint, 103, 753, 811, 815, 819, 821, 823, 825, 829, 833, 837, 839, 948

soft alldiff ctr, 810

soft alldiff var, 814

soft alldifferent ctr, 62, 80–82, 84, 99, 103, 108, 178, 179, 810, 815

soft alldifferent var, 62, 81, 82, 84, 99, 103, 104, 108, 109, 178, 179, 811, 814, 948

INDEX 1383

soft alldistinct ctr, 810

soft alldistinct var, 814

soft gcc, 58

soft regular, 58

soft same, 824

soft same interval, 818

soft same interval var, 76, 88, 99, 103, 109, 818

soft same modulo, 820

soft same modulo var, 76, 92, 99, 103, 109, 820

soft same partition, 822

soft same partition var, 76, 96, 99, 103, 109, 543, 822

soft same var, 37, 76, 99, 103, 109, 819, 821, 823, 824

soft used by, 838

soft used by interval, 828

soft used by interval var, 76, 88, 99, 103, 109, 828

soft used by modulo, 832

soft used by modulo var, 76, 92, 99, 103, 109, 832

soft used by partition, 836

soft used by partition var, 76, 96, 99, 103, 109, 543, 836

soft used by var, 76, 99, 103, 109, 838

Soriano P., 882

sort, 103, 844, 848

sort, 42, 76, 97, 104, 112, 756, 842, 846, 848

sort permutation, 13, 76, 81, 97, 104, 178, 346, 348, 844, 846

sparse functional dependency, 104, 477, 487

sparse table, 104, 477, 487

sport timetabling, 104, 883

squared squares, 104, 365, 428

Sriskandarajah C., 310

1384 INDEX

Stadler P.F., 772

stage element, 66, 68, 70, 73, 79, 85, 106, 459, 462, 850

stage elt, 850

Stergiou K., 508

Stille W., 264

stretch, 113, 854, 858

stretch circuit, 79, 103, 106, 854, 860

stretch path, 103, 106, 290, 523, 525, 730, 856, 858

strict lex2, 89, 91, 95, 98, 105, 580, 862

strictly decreasing, 66, 68, 80, 95, 101, 411, 549, 864, 866

strictly increasing, 66, 68, 80, 95, 101, 411, 549, 864, 866

strongly connected component, 104, 343, 387, 396, 400, 530, 671, 674, 682, 694, 696, 700, 704,
706, 746, 815, 868

strongly connected, 77, 86, 89, 104, 546, 615, 868

SUCC, 48, 234, 238, 264, 324, 329, 362, 366, 371, 375, 379, 552, 560, 564, 660, 676, 680, 794,
802, 900

SUM, 41, 870, 874, 876, 880, 946

sum, 105, 793, 804, 871, 875, 880

sum, 78, 79, 89, 105, 546, 870, 875, 880

sum ctr, 24, 42, 49, 50, 64, 105, 264, 553, 566, 748, 750, 753, 792, 871, 874, 880

sum of weights of distinct values, 65, 78, 82, 84, 99, 110, 876, 948

sum set, 64, 70, 77, 105, 546, 871, 875, 880

SUM WEIGHT ARC, 42, 503, 666, 798

swc, 760

swdv, 876

sweep, 105, 428

Swinkels G.M., 754, 842

symm alldiff, 882

symm alldifferent, 882

symm alldistinct, 882

INDEX 1385

symmetric, 105, 344

symmetric alldiff, 882

symmetric alldifferent, 62, 74, 79, 81, 86, 91, 97, 104, 106, 161, 179, 387, 882

symmetric alldistinct, 882

symmetric cardinality, 65, 77, 80, 84, 99, 106, 498, 546, 886, 891

symmetric gcc, 24, 65, 77, 80, 84, 99, 106, 113, 498, 546, 615, 888, 890

SYMMETRIC PRODUCT , 29

SYMMETRIC PRODUCT (=), 924

SYMMETRIC PRODUCT (Comparison), 29

symmetry, 105, 204, 556, 558, 580, 586, 589, 593, 599, 603, 607, 611, 776, 862

Szymanek R., 426

table, 106, 459, 462, 465, 469, 477, 480, 484, 487, 577, 677, 681, 851

Tallys H. Yunes, 870

Tamassia R., 914

temporal constraint, 106, 326, 330, 365, 368, 377, 381, 442, 562, 566, 780, 796, 799, 804, 901

temporal path, 75, 86, 96, 727, 892

ternary constraint, 106, 475

Thiel A.J., 172, 422

Thiel S., 176, 426, 436, 496, 670, 674, 682, 698, 754, 760, 842, 876, 882, 930, 946

Thorsteinsson E., 464, 468

time window, 107, 804

timetabling constraint, 106, 285, 290, 300, 304, 316, 323, 404, 407, 523, 530, 562, 566, 620,
731, 736, 738, 780, 789, 808, 856, 860, 883, 888, 891, 901

Tollis I.G., 914

Toth P., 264

touch, 107, 724, 920

tour, 35, 36, 77, 86, 87, 89, 107, 307, 546, 615, 896

track, 81, 99, 106, 700, 900

tree, 107, 270, 711, 903, 907, 911

tree, 35, 37, 75, 86, 107, 268, 270, 387, 514, 623, 711, 902, 906, 907, 910, 911

1386 INDEX

tree range, 38, 69, 75, 86, 107, 250, 906

tree resource, 75, 81, 86, 99, 107, 113, 903, 910

Trick M.A., 882

TRUE, 24

tuple, 107, 539, 945

two layer edge crossing, 81, 85, 89, 360, 514, 914

two orth are in contact, 66, 68, 69, 77, 85, 94, 96, 107, 717, 724, 918

two orth column, 85, 86, 96, 98, 430, 717, 922

two orth do not overlap, 26, 29, 66, 68, 69, 85, 94, 96, 428, 717, 924

two orth include, 85, 96, 98, 432, 717, 928

unary constraint, 107, 537, 691

undirected graph, 107, 897

used by, 66, 67, 72, 76, 84, 88, 756, 838, 839, 930, 934–939

used by interval, 76, 88, 828, 829, 934

used by modulo, 76, 88, 92, 832, 833, 936

used by partition, 76, 88, 96, 543, 836, 837, 938

valley, 66, 68, 100, 101, 414, 416, 555, 684, 686, 734, 940

value constraint, 108, 174, 179, 184, 188, 192, 195, 198, 207, 210, 213, 215, 220, 225, 230, 244,
248, 250, 254, 258, 261, 274, 278, 281, 352, 356, 424, 435, 438, 494, 498, 501, 537, 543, 546,
615, 630, 632, 648, 650, 688, 691, 696, 762, 811, 815, 945

value partitioning constraint, 108, 671, 674, 682, 694, 700, 704, 706

value precedence, 109, 556, 558, 776

van Beek P., 176, 496, 854, 858

Van Emden M.H., 754, 842

Van Hentenryck P., 460, 496

van Hoeve W.-J., 434, 496, 754, 810, 824

variable indexing, 109, 459, 462, 465, 469, 477, 553

variable subscript, 109, 459, 462, 465, 469, 553

variable-based violation measure, 109, 815, 819, 821, 823, 825, 829, 833, 837, 839

vec eq tuple, 107, 108, 944

INDEX 1387

vector, 109, 173, 424, 582, 586, 589, 593, 596, 599, 603, 607, 611

Vilı́m P., 444

VOID , 29

vpartition, 110, 523

Walsh T., 508, 580, 598, 606, 610, 698, 754, 862

Wang C.C., 382

Wei W., 708

weighted assignment, 110, 504, 668, 877, 948

weighted partial alldiff, 62, 65, 78, 88, 99, 103, 110, 178, 179, 184, 504, 668, 815, 877,
946

weighted partial alldifferent, 946

weighted partial alldistinct, 946

Weihe K., 264

workload covering, 110, 381

wpa, 946

Yan H., 362

Zhou J., 842, 846

Zhou N.-F., 342

	Preface
	Describing global constraints
	Describing the arguments of a global constraint
	Basic data types
	Compound data types
	Restrictions
	Declaring a global constraint

	Describing global constraints in terms of graph properties
	Basic ideas and illustrative example
	Ingredients used for describing global constraints
	Graph constraint

	Describing global constraints in terms of automata
	Selecting an appropriate description
	Defining an automaton

	Description of the catalog
	Which global constraints are included?
	Which global constraints are missing?
	Searching in the catalog
	How to see if a global constraint is in the catalog?
	How to search for all global constraints sharing the same structure
	Searching all places where a global constraint is referenced

	Figures of the catalog
	Keywords attached to the global constraints

	Further topics
	Differences from the 2000 report
	Graph invariants
	Graph classes
	Format of an invariant
	Using the database of invariants
	The database of graph invariants

	The electronic version of the catalog

	Global constraint catalog
	all_differ_from_at_least_k_pos
	all_min_dist
	alldifferent
	alldifferent_between_sets
	alldifferent_except_0
	alldifferent_interval
	alldifferent_modulo
	alldifferent_on_intersection
	alldifferent_partition
	alldifferent_same_value
	allperm
	among
	among_diff_0
	among_interval
	among_low_up
	among_modulo
	among_seq
	arith
	arith_or
	arith_sliding
	assign_and_counts
	assign_and_nvalues
	atleast
	atmost
	balance
	balance_interval
	balance_modulo
	balance_partition
	bin_packing
	binary_tree
	cardinality_atleast
	cardinality_atmost
	cardinality_atmost_partition
	change
	change_continuity
	change_pair
	change_partition
	circuit
	circuit_cluster
	circular_change
	clique
	colored_matrix
	coloured_cumulative
	coloured_cumulatives
	common
	common_interval
	common_modulo
	common_partition
	connect_points
	correspondence
	count
	counts
	crossing
	cumulative
	cumulative_product
	cumulative_two_d
	cumulative_with_level_of_priority
	cumulatives
	cutset
	cycle
	cycle_card_on_path
	cycle_or_accessibility
	cycle_resource
	cyclic_change
	cyclic_change_joker
	decreasing
	deepest_valley
	derangement
	differ_from_at_least_k_pos
	diffn
	diffn_column
	diffn_include
	discrepancy
	disjoint
	disjoint_tasks
	disjunctive
	distance_between
	distance_change
	domain_constraint
	elem
	element
	element_greatereq
	element_lesseq
	element_matrix
	element_sparse
	elements
	elements_alldifferent
	elements_sparse
	eq_set
	exactly
	global_cardinality
	global_cardinality_low_up
	global_cardinality_with_costs
	global_contiguity
	golomb
	graph_crossing
	group
	group_skip_isolated_item
	heighest_peak
	in
	in_relation
	in_same_partition
	in_set
	increasing
	indexed_sum
	inflexion
	int_value_precede
	int_value_precede_chain
	interval_and_count
	interval_and_sum
	inverse
	inverse_set
	ith_pos_different_from_0
	k_cut
	lex2
	lex_alldifferent
	lex_between
	lex_chain_less
	lex_chain_lesseq
	lex_different
	lex_greater
	lex_greatereq
	lex_less
	lex_lesseq
	link_set_to_booleans
	longest_change
	map
	max_index
	max_n
	max_nvalue
	max_size_set_of_consecutive_var
	maximum
	maximum_modulo
	min_index
	min_n
	min_nvalue
	min_size_set_of_consecutive_var
	minimum
	minimum_except_0
	minimum_greater_than
	minimum_modulo
	minimum_weight_alldifferent
	nclass
	nequivalence
	next_element
	next_greater_element
	ninterval
	no_peak
	no_valley
	not_all_equal
	not_in
	npair
	nset_of_consecutive_values
	nvalue
	nvalue_on_intersection
	nvalues
	nvalues_except_0
	one_tree
	orchard
	orth_link_ori_siz_end
	orth_on_the_ground
	orth_on_top_of_orth
	orths_are_connected
	path_from_to
	pattern
	peak
	period
	period_except_0
	place_in_pyramid
	polyomino
	product_ctr
	range_ctr
	relaxed_sliding_sum
	same
	same_and_global_cardinality
	same_intersection
	same_interval
	same_modulo
	same_partition
	sequence_folding
	set_value_precede
	shift
	size_maximal_sequence_alldifferent
	size_maximal_starting_sequence_alldifferent
	sliding_card_skip0
	sliding_distribution
	sliding_sum
	sliding_time_window
	sliding_time_window_from_start
	sliding_time_window_sum
	smooth
	soft_alldifferent_ctr
	soft_alldifferent_var
	soft_same_interval_var
	soft_same_modulo_var
	soft_same_partition_var
	soft_same_var
	soft_used_by_interval_var
	soft_used_by_modulo_var
	soft_used_by_partition_var
	soft_used_by_var
	sort
	sort_permutation
	stage_element
	stretch_circuit
	stretch_path
	strict_lex2
	strictly_decreasing
	strictly_increasing
	strongly_connected
	sum
	sum_ctr
	sum_of_weights_of_distinct_values
	sum_set
	symmetric_alldifferent
	symmetric_cardinality
	symmetric_gcc
	temporal_path
	tour
	track
	tree
	tree_range
	tree_resource
	two_layer_edge_crossing
	two_orth_are_in_contact
	two_orth_column
	two_orth_do_not_overlap
	two_orth_include
	used_by
	used_by_interval
	used_by_modulo
	used_by_partition
	valley
	vec_eq_tuple
	weighted_partial_alldiff

	Legend for the description
	Electronic constraint catalog
	all_differ_from_at_least_k_pos
	all_min_dist
	alldifferent
	alldifferent_between_sets
	alldifferent_except_0
	alldifferent_interval
	alldifferent_modulo
	alldifferent_on_intersection
	alldifferent_partition
	alldifferent_same_value
	allperm
	among
	among_diff_0
	among_interval
	among_low_up
	among_modulo
	among_seq
	arith
	arith_or
	arith_sliding
	assign_and_counts
	assign_and_nvalues
	atleast
	atmost
	balance
	balance_interval
	balance_modulo
	balance_partition
	bin_packing
	binary_tree
	cardinality_atleast
	cardinality_atmost
	cardinality_atmost_partition
	change
	change_continuity
	change_pair
	change_partition
	circuit
	circuit_cluster
	circular_change
	clique
	colored_matrix
	coloured_cumulative
	coloured_cumulatives
	common
	common_interval
	common_modulo
	common_partition
	connect_points
	correspondence
	count
	counts
	crossing
	cumulative
	cumulative_product
	cumulative_two_d
	cumulative_with_level_of_priority
	cumulatives
	cutset
	cycle
	cycle_card_on_path
	cycle_or_accessibility
	cycle_resource
	cyclic_change
	cyclic_change_joker
	decreasing
	deepest_valley
	derangement
	differ_from_at_least_k_pos
	diffn
	diffn_column
	diffn_include
	discrepancy
	disjoint
	disjoint_tasks
	disjunctive
	distance_between
	distance_change
	domain_constraint
	elem
	element
	element_greatereq
	element_lesseq
	element_matrix
	element_sparse
	elements
	elements_alldifferent
	elements_sparse
	eq_set
	exactly
	global_cardinality
	global_cardinality_low_up
	global_cardinality_with_costs
	global_contiguity
	golomb
	graph_crossing
	group
	group_skip_isolated_item
	heighest_peak
	in
	in_relation
	in_same_partition
	in_set
	increasing
	indexed_sum
	inflexion
	int_value_precede
	int_value_precede_chain
	interval_and_count
	interval_and_sum
	inverse
	inverse_set
	ith_pos_different_from_0
	k_cut
	lex2
	lex_alldifferent
	lex_between
	lex_chain_less
	lex_chain_lesseq
	lex_different
	lex_greater
	lex_greatereq
	lex_less
	lex_lesseq
	link_set_to_booleans
	longest_change
	map
	max_index
	max_n
	max_nvalue
	max_size_set_of_consecutive_var
	maximum
	maximum_modulo
	min_index
	min_n
	min_nvalue
	min_size_set_of_consecutive_var
	minimum
	minimum_except_0
	minimum_greater_than
	minimum_modulo
	minimum_weight_alldifferent
	nclass
	nequivalence
	next_element
	next_greater_element
	ninterval
	no_peak
	no_valley
	not_all_equal
	not_in
	npair
	nset_of_consecutive_values
	nvalue
	nvalue_on_intersection
	nvalues
	nvalues_except_0
	one_tree
	orchard
	orth_link_ori_siz_end
	orth_on_the_ground
	orth_on_top_of_orth
	orths_are_connected
	path_from_to
	pattern
	peak
	period
	period_except_0
	place_in_pyramid
	polyomino
	product_ctr
	range_ctr
	relaxed_sliding_sum
	same
	same_and_global_cardinality
	same_intersection
	same_interval
	same_modulo
	same_partition
	sequence_folding
	set_value_precede
	shift
	size_maximal_sequence_alldifferent
	size_maximal_starting_sequence_alldifferent
	sliding_card_skip0
	sliding_distribution
	sliding_sum
	sliding_time_window
	sliding_time_window_from_start
	sliding_time_window_sum
	smooth
	soft_alldifferent_ctr
	soft_alldifferent_var
	soft_same_interval_var
	soft_same_modulo_var
	soft_same_partition_var
	soft_same_var
	soft_used_by_interval_var
	soft_used_by_modulo_var
	soft_used_by_partition_var
	soft_used_by_var
	sort
	sort_permutation
	stage_element
	stretch_circuit
	stretch_path
	strict_lex2
	strictly_decreasing
	strictly_increasing
	strongly_connected
	sum
	sum_ctr
	sum_of_weights_of_distinct_values
	sum_set
	symmetric_alldifferent
	symmetric_cardinality
	symmetric_gcc
	temporal_path
	tour
	track
	tree
	tree_range
	tree_resource
	two_layer_edge_crossing
	two_orth_are_in_contact
	two_orth_column
	two_orth_do_not_overlap
	two_orth_include
	used_by
	used_by_interval
	used_by_modulo
	used_by_partition
	valley
	vec_eq_tuple
	weighted_partial_alldiff

	Bibliography
	Index

