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This report presents a catalog of global constraints where each constraint is explicitly described in terms of graph properties and/or automata. When available, it also presents some typical usage as well as some pointers to existing filtering algorithms.

Preface

This catalog presents a list of global constraints. It contains about 235 constraints, which are explicitly described in terms of graph properties and/or automata.

This Global Constraint Catalog is an expanded version of the list of global constraints presented in [1]. The principle used for describing global constraints has been slightly modified in order to deal with a larger number of global constraints. Since 2003, we try to provide an automaton that recognizes the solutions associated with a global constraint.

Writing a dictionary is a long process, especially in a field where new words are defined every year. In this context, one difficulty has been related to the fact that we want to express explicitly the meaning of global constraints in terms of meta-data. Finding an appropriate description that easily captures the meaning of most global constraints seems to be a tricky task.

Goal of the catalog. This catalog has four main goals. First, it provides an overview of most of the different global constraints that were gradually introduced in the area of constraint programming since the work of Jean-Louis Laurière on ALICE [2]. It also identifies new global constraints for which no existing published work exists. The global constraints are arranged in alphabetic order, and for all of them a description and an example are systematically provided. When available, it also presents some typical usage as well as some pointers to existing filtering algorithms.

Second, the global constraints described in this catalog are not only accessible to humans, who can read the catalog for searching for some information. It is also available to machines, which can read and interpret it. This is why there exists an electronic version of this catalog where one can get, for most global constraints, a complete description in terms of meta-data. In fact, most of this catalog and its figures were automatically generated from this electronic version by a computer program. This description is based on two complementary ways to look at a global constraint. The first one defines a global constraint as searching for a graph with specific properties [3], while the second one characterizes a global constraint in terms of an automaton that only recognizes the solutions associated to that global constraint [4,5]. The key point of these descriptions is their ability to define explicitly in a concise way the meaning of most global constraints. In addition these descriptions can also be systematically turned into polynomial filtering algorithms. i PREFACE Third, we hope that this unified description of apparently diverse global constraints will allow for establishing a systematic link between the properties of basic concepts used for describing global constraints and the properties of the global constraints as a whole.

Finally, we also hope that it will attract more people from the algorithmic community into the area of constraints. To a certain extent this has already started at places like CWI in Amsterdam, the Max-Planck für Informatik (Saarbrücken) or the university of Waterloo.

Use of the catalog. The catalog is organized into four chapters:

• Chapter 1 explains how the meaning of global constraints is described in terms of graph-properties or in terms of automata. On the one hand, if one wants to consult the catalog for getting the informal definition of a global constraint, examples of use of that constraint or pointers to filtering algorithms, then one only needs to read the first section of Chapter 1: Describing the arguments of a global constraint, page 3 . On the other hand, if one wants to understand those entries describing explicitly the meaning of a constraint then all the material of Chapter 1 is required.

• Chapter 2 describes the content of the catalog as well as different ways for searching through the catalog. This material is essential.

• Chapter 3 covers additional topics such as the differences from the 2000 report [1] on global constraints, the generation of implied constraints that are systematically linked to the graph-based description of a global constraint, and the electronic version of the catalog. The material describing the format of the entries of a global constraint is mandatory for those who want to exploit the electronic version in order to write preprocessors for performing various tasks for a global constraint.

• Finally, Chapter 4 corresponds to the catalog itself, which gives the global constraints in alphabetical order.

Acknowledgments. Nicolas Beldiceanu was the principal investigator and main architect of the constraint catalog, provided the main ideas, and wrote a checker for the constraint descriptions and the figure generation program for the constraint descriptions.

Jean-Xavier Rampon provided the proofs for the graph invariants. Mats Carlsson contributed to the design of the meta-data format, generated some of the automata, and wrote the program that created the L A T E X version of this catalog from the constraint descriptions.

The idea of describing explicitly the meaning of global constraints in a declarative way has been inspired by the work on meta-knowledge of Jacques Pitrat.

Chapter 1

Describing global constraints required graph properties. On the other hand, the automaton-based representation denotes a global constraint as a hypergraph constructed from a given constraint checker 1 . Both, the initial graph of the graph-based representation, as well as the hypergraph of the automaton-based representation have a very regular structure, which should give the opportunity for efficient filtering algorithms taking advantage of this structure.

We now present our motivations for an explicit description of the meaning of global constraints. The current trend2 is to first use natural language for describing the meaning of a global constraint and second to work out a specialized filtering algorithm. Since we have a huge number of potential global constraints that can be combined in a lot of ways, this is an immense task. Since we are also interested in providing other services such as visualization [START_REF] Simonis | Complex constraint abstraction: Global constraint visualization[END_REF], explanations [START_REF] Rochart | Explanations for global constraints: instrumenting the stretch constraint[END_REF], cuts for linear programming [8], moves for local search [START_REF] Bohlin | Desing and implementation of a graph-based constraint model for local search[END_REF], soft global constraints [START_REF] Petit | Specific filtering algorithms for overconstrained problems[END_REF][START_REF] Beldiceanu | Cost evaluation of soft global constraints[END_REF]12], specialized heuristics for each global constraint this is even worse. One could argue that a candidate for describing explicitly the meaning of global constraints would be second order predicates calculus. This could perhaps solve our description problem but would, at least currently, not be useful for deriving any filtering algorithm. For a similar reason Prolog was restricted to Horn clauses for which one had a reasonable solving mechanism. What we want to stress through this example is the fact that a declarative description is really useful only if it also provides some hints about how to deal with that description. Our first choice of a graph-based representation has been influenced by the following observations:

• The concept of graph takes its roots in the area of mathematical recreations (see for instance L. Euler [START_REF] Euler | Solution d'une question curieuse qui ne parait soumise à aucune analyse[END_REF], H. E. Dudeney [START_REF] Dudeney | The Canterbury Puzzles[END_REF], E. Lucas [START_REF] Lucas | Récréations mathématiques[END_REF] and T. P. Kirkman [START_REF] Kirkman | On a problem in combinatorics[END_REF]), which was somehow the ancestor of combinatorial problems. In this perspective a graph-based description makes sense.

• In one of the first book introducing graph theory [START_REF] Berge | Graphes[END_REF], C. Berge presents graph theory as a way of grouping apparently diverse problems and results. This was also the case for global constraints.

• The characteristics associated with graphs are concrete and concise.

• Finally, it is well known that graph theory is an important tool with respect to the development of efficient filtering algorithms [START_REF] Régin | A filtering algorithm for constraints of difference in CSP[END_REF][START_REF] Régin | Generalized arc consistency for global cardinality constraint[END_REF][START_REF] Régin | The symmetric alldiff constraint[END_REF][START_REF] Régin | A global constraint combining a sum constraint and binary inequalities[END_REF][START_REF] Mehlhorn | Constraint programming and graph algorithms[END_REF][START_REF] Mehlhorn | Faster algorithms for bound-consistency of the sortedness and the alldifferent constraint[END_REF][START_REF] Katriel | Fast bound consistency for the global cardinality constraint[END_REF][START_REF] Beldiceanu | Filtering algorithms for the same constraint[END_REF][START_REF] Van Hoeve | A hyper-arc consistency algorithm for the soft alldifferent constraint[END_REF][START_REF] Quimper | Improved algorithms for the global cardinality constraint[END_REF].

Our second choice of an automaton-based representation has been motivated by the following observation. Writing a constraint checker is usually a straightforward task. The corresponding program can usually be turned into an automaton. Of course an automaton is typically used on a fixed sequence of symbols. But, within the context of filtering algorithms, we have to deal with a sequence of variables. For this purpose we have shown [4] for some automata how to decompose them into a conjunction of smaller constraints. In this context, a global constraint can be seen as a hypergraph corresponding to its decomposition.

Describing the arguments of a global constraint

Since global constraints have to receive their arguments in some form, no matter whether we use the graph-based or the automaton-based description, we start by describing the abstract data types that we use in order to specify the arguments of a global constraint. These abstract data types are not related to any specific programming language like Caml, C, C++, Java or Prolog. If one wants to focus on a specific language, then one has to map these abstract data types to the data types that are available within the considered programming language. In a second phase we describe all the restrictions that one can impose on the arguments of a global constraint. Finally, in a third phase we show how to use these ingredients in order to declare the arguments of a global constraint.

Basic data types

We provide the following basic data types:

• atom corresponds to an atom. Predefined atoms are MININT and MAXINT, which respectively correspond to the smallest and to the largest integer.

• int corresponds to an integer value.

• dvar corresponds to a domain variable. A domain variable is a variable that will be assigned an integer value taken from an initial finite set of integer values.

• sint corresponds to a finite set of integer values.

• svar corresponds to a set variable. A set variable is a variable that will be assigned to a finite set of integer values.

• mint corresponds to a multiset of integer values.

• mvar corresponds to a multiset variable. A multiset variable is a variable that will be assigned to a multiset of integer values.

• flt corresponds to a float number.

• fvar corresponds to a float variable. A float variable is a variable that will be assigned a float number taken from an initial finite set of intervals.

Compound data types

We provide the following compound data types:

• list(T ) corresponds to a list of elements of type T , where T is a basic or a compound data type.

• c : collection(A 1 , A 2 , . . . , A n ) corresponds to a collection c of ordered items, where each item consists of n > 0 attributes A 1 , A 2 , . . . , A n . Each attribute is an expression of the form a -T , where a is the name of the attribute and T the type of the attribute (a basic or a compound data type). All names of the attributes of a given collection should be distinct and different from the keyword key, which corresponds to an implicit3 attribute. Its value corresponds to the position of an item within the collection. The first item of a collection is associated with position 1.

The following notations are used for instantiated arguments:

• A list of elements e 1 , e 2 , . . . , e n is denoted [e 1 , e 2 , . . . , e n ].

• A finite set of integers i 1 , i 2 , . . . , i n is denoted {i 1 , i 2 , . . . , i n }.

• A multiset of integers i 1 , i 2 , . . . , i n is denoted {{i 1 , i 2 , . . . , i n }}.

• A collection of n items, each item having m attributes, is denoted by

{a 1 -v 11 . . . a m -v 1m , a 1 -v 21 . . . a m -v 2m , . . . , a 1 -v n1 . . . a m -v nm }.
Each item is separated from the previous item by a comma.

• The i th item of a collection c is denoted c[i].

• The number of items of a collection c is denoted |c|.

EXAMPLE: Let us illustrate with three examples, the types one can create. These examples concern the creation of a collection of variables, a collection of tasks and a collection of orthotopes a .

• In the first example we define VARIABLES so that it corresponds to a collection of variables. VARIABLES is for instance used in the alldifferent constraint.

The declaration VARIABLES : collection(vardvar) defines a collection of items, each of which having one attribute var that is a domain variable.

• In the second example we define TASKS so that it corresponds to a collection of tasks, each task being defined by its origin, its duration, its end and its resource consumption. Such a collection is for instance used in the cumulative constraint. The declaration TASKS : collection(origindvar, durationdvar, enddvar, heightdvar) defines a collection of items, each of which having the four attributes origin, duration, end and height which all are domain variables.

• In the last example we define ORTHOTOPES so that is corresponds to a collection of orthotopes. Each orthotope is described by an attribute orth. Unlike the previous examples, the type of this attribute does not correspond any more to a basic data type but rather to a collection of n items, where n is the number of dimensions of the orthotope b . This collection, named ORTHOTOPE, defines for a given dimension the origin, the size and the end of the object in this dimension. This leads to the two declarations:

-ORTHOTOPEcollection(oridvar, sizdvar, enddvar),

-ORTHOTOPEScollection(orth -ORTHOTOPE).

ORTHOTOPE is for instance used in the diffn constraint.

a An orthotope corresponds to the generalization of a segment, a rectangle and a box to the n-dimensional case.

b 1 for a segment, 2 for a rectangle, 3 for a box, . . . .

Restrictions

When defining the arguments of a global constraint, it is often the case that one needs to express additional conditions that refine the type declaration of its arguments. For this purpose we provide restrictions that allow for specifying these additional conditions. Each restriction has a name and a set of arguments and is described by the following items:

• A small paragraph first describes the effect of the restriction,

• An example points to a constraint using the restriction,

• Finally, a ground instance, preceded by the symbol , which satisfies the restriction is given. Similarly, a ground instance, preceded by the symbol , which violates the restriction is proposed. In this latter case, a bold font may be used for pointing to the source of the problem.

Currently the list of restrictions is:

• in attr(Arg1, Attr1, Arg2, Attr2):

-Arg1 is an argument of type collection, -Attr1 is an attribute of type dvar of the collection denoted by Arg1, -Arg2 is an argument of type collection, -Attr2 is an attribute of type int of the collection denoted by Arg2.

Let S 2 denote the set of values assigned to the Attr2 attributes of the items of the collection Arg2. This restriction enforces the following condition: For all items of the collection Arg1, the attribute Attr1 takes its value in the set S 2 .

EXAMPLE: An example of use of such restriction can be found in the cumulatives(TASKS, MACHINES, CTR) constraint: in attr(TASKS, machine, MACHINES, id) enforces that the machine attribute of each task of the TASKS collection correspond to a machine identifier (i.e. an id attribute of the MACHINES collection).

cumulatives({ machine -1 origin -2 duration -2 end -4 height -2, machine -1 origin -2 duration -2 end -4 height -2, machine -2 origin -1 duration -4 end -5 height -5, machine -1 origin -4 duration -2 end -6 height -1}, {id -1 capacity -9, id -2 capacity -8}, ≤) cumulatives({ machine -5 origin -2 duration -2 end -4 height -2, machine -1 origin -2 duration -2 end -4 height -2, machine -2 origin -1 duration -4 end -5 height -5, machine -1 origin -4 duration -2 end -6 height -1}, {id -1 capacity -9, id -2 capacity -8}, ≤)

• distinct(Arg, Attrs):

-Arg is an argument of type collection, -Attrs is an attribute of type int or a list of distinct attributes of type int of the collection denoted by Arg.

For all pairs of distinct items of the collection Arg this restriction enforces that there be at least one attribute specified by Attrs with two distinct values.

EXAMPLE: An example of use of such restriction can be found in the cycle(NCYCLE, NODES) constraint: distinct(NODES, index) enforces that all index attributes of the NODES collection take distinct values. cycle(2, {index -

1 succ -2, index -2 succ -1, index -3 succ -3}) cycle(2, {index -1 succ -2, index -1 succ -1, index -3 succ -3})
• increasing seq(Arg, Attrs):

-Arg is an argument of type collection, -Attrs is an attribute of type int or a list of distinct attributes of type int of the collection denoted by Arg.

Let n and m respectively denote the number of items of the collection Arg, and the number of attributes of Attrs. For the i th item of the collection Arg let t i denote the tuple of values v i,1 , v i,2 , . . . , v i,m where v i,j is the value of the j th attribute of Attrs of the i th item of Arg. The restriction enforces a strict lexicographical ordering on the tuples t 1 , t 2 , . . . , t n .

EXAMPLE: An example of use of such restriction can be found in the element matrix(MAX I, MAX J, INDEX I, INDEX J, MATRIX, VALUE) constraint: increasing seq (MATRIX, [i, j]) enforces that all items of the MATRIX collection be sorted in strictly increasing lexicographic order on the pair (i, j). element matrix(2, 2, 1, 2, {i -

1 j -1 v -4, i -1 j -2 v -7, i -2 j -1 v -1, i -2 j -2 v -1}, 7) element matrix(2, 2, 1, 2, {i -1 j -2 v -4, i -1 j -1 v -7, i -2 j -1 v -1, i -2 j -2 v -1}, 7)
• required(Arg, Attrs):

-Arg is an argument of type collection, -Attrs is an attribute or a list of distinct attributes of the collection denoted by Arg.

This restriction enforces that all attributes denoted by Attrs be explicitly used within all items of the collection Arg. The required restriction is usually systematically used for every attribute of a collection. It is not used when some attributes may be implicitly defined according to other attributes. In this context, we use the require at least restriction, which we now introduce.

• require at least(Atleast, Arg, Attrs):

-Atleast is a positive integer, -Arg is an argument of type collection, -Attrs is a non-empty list of distinct attributes of the collection denoted by Arg. The length of this list should be strictly greater than Atleast.

This restriction enforces that at least Atleast attributes of the list Attrs be explicitly used within all items of the collection Arg.

EXAMPLE: An example of use of such restriction can be found in the cumulative(TASKS, LIMIT) constraint: require at least (2,TASKS,[origin,duration,end]) enforces that all items of the TASKS collection mention at least two attributes from the list of attributes [origin, duration, end]. In this context, this stems from the fact that we have the equality origin + duration = end. This allows for retrieving the third attribute from the values of the two others. cumulative({ origin -2 duration -2 height -2, origin -2 end -4 height -2, duration -4 end -5 height -5, origin -4 duration -2 end -6 height -1}, 12) cumulative({ origin -2 height -2, origin -2 duration -2 end -4 height -2, origin -1 duration -4 end -5 height -5, origin -4 duration -2 end -6 height -1}, 12)

• same size(Arg, Attr):

-Arg is an argument of type collection, -Attr is an attribute of the collection denoted by Arg. This attribute should be of type collection.

This restriction enforces that all collections denoted by Attr have the same number of items.

Let v 1,1 , v 1,2 , . . . , v 1,n1 and v 2,1 , v 2,2 , . . . , v 2,n2 be the values respectively associated with Term 1 and with Term 2 . The restriction Term 1 Comparison Term 2 forces v 1,i Comparison v 2,j to hold for every i ∈ [1, n 1 ] and every j ∈ [1, n 2 ].

A term is one of the following expressions:

e, where e is an integer. The corresponding value is e.

-|c|, where c is an argument of type collection. The value of |c| is the number of items of the collection denoted by c.

EXAMPLE: This kind of expression is for instance used in the restrictions of the inverse set(X, Y) constraint: X.x ≥ 1 enforces for all items of the X collection that all the potential elements of the set variable associated with the x attribute be greater than or equal to 1. inverse set({ index -

1 x -{2, 4}, index -2 x -{4}, index -3 x -{1}, index -4 x -{4} }, index -1 y -{3}, index -2 y -{1}, index -3 y -{}, index -4 y -{1, 2, 4}, index -5 y -{} }) inverse set({ index -1 x -{0, 2, 4}, index -2 x -{4}, index -3 x -{1}, index -4 x -{4} }, index -1 y -{3}, index -2 y -{1}, index -3 y -{}, index -4 y -{1, 2, 4}, index -5 y -{} })
min(t 1 , t 2 ) or max(t 1 , t 2 ), where t 1 and t 2 are terms. Let V 1 and V 2 denote the sets of values respectively associated with the terms t 1 and t 2 .

Let min(V 1 ), max(V 1 ) and min(V 2 ), max(V 2 ) denote the minimum and maximum values of V 1 and V 2 . The value associated with min(t 1 , t 2 ) is min(min(V 1 ), min(V 2 )), while the value associated with max(t 1 , t 2 ) is max(max(V 1 ), max(V 2 )).

EXAMPLE: An example of use of such restriction can be found in the sort permutation(FROM, PERMUTATION, TO) constraint: alldifferent(PERMUTA-TION) is used to express the fact that the variables of the second argument of the sort permutation constraint should take distinct values.

Declaring a global constraint

Declaring a global constraint consists of providing the following information:

• A term ctr(A 1 , A 2 , . . . , A n ), where ctr corresponds to the name of the global constraint and A 1 , A 2 , . . . , A n to its arguments.

• A possibly empty list of type declarations, where each declaration has the form type:type declaration; type is the name of the new type we define and type declaration is a basic data type, a compound data type or a type previously defined.

• An argument declaration A 1 :T 1 , A 2 :T 2 , . . . , A n :T n giving for each argument A 1 , A 2 , . . . , A n of the global constraint ctr its type. Each type is a basic data type, a compound data type, or a type that was declared in the list of type declarations.

• A possibly empty list of restrictions, where each restriction is one of the restrictions described in Section 1. 1.3 (page 5).

EXAMPLE:

The arguments of the all differ from at least k pos constraint are described by: Constraint all differ from at least k pos(K, VECTORS) Type(s)

VECTORcollection(vardvar) Argument(s) Kint VECTORScollection(vec -VECTOR) Restriction(s) required(VECTOR, var) K ≥ 0 required(VECTORS, vec) same size (VECTORS, vec) The first line indicates that the all differ from at least k pos constraint has two arguments: K and VECTORS. The second line declares a new type VECTOR, which corresponds to a collection of variables. The third line indicates that the first argument K is an integer, while the fourth line tells that the second argument VECTORS corresponds to a collection of vectors of type VECTOR. Finally the four restrictions respectively enforce that:

• All the items of the VECTOR collection mention the var attribute,

• K be greater than or equal to 0,

• All the items of the VECTORS collection mention the vec attribute,

• All the vectors have the same number of components.

Describing global constraints in terms of graph properties

Through a practical example, we first present in a simplified form the basic principles used for describing the meaning of global constraints in terms of graph properties. We then give the full details about the different features used in the description process.

Basic ideas and illustrative example

Within the graph-based representation, a global constraint is represented as a digraph where each vertex corresponds to a variable and each arc to a binary arc constraint between the variables associated with the extremities of the corresponding arc. The main difference with classical constraint networks [START_REF] Dechter | Network-based heuristics for constraint-satisfaction problems[END_REF], stems from the fact that we don't force any more all arc constraints to hold. We rather consider this graph from which we discard all the arc constraints that do not hold and impose one or several graph properties on this remaining graph. These properties can for instance be a restriction on the number of connected components, on the size of the smallest connected component or on the size of the largest connected component. For this purpose we consider the sequence s of values 1 3 1 1 2 8 8 2 3 6 8 8 3 from which we construct the following graph G:

• To each value associated with a position in s corresponds a vertex of G,

• There is an arc from a vertex v1 to a vertex v2 if these vertices correspond to the same value.

Figure 1.1 depicts graph G. Since G is symmetric, we omit the directions of the arcs.

We have the following correspondence between graph properties and constraints on the sequence s:

• The number of connected components of G corresponds to the number of distinct values of s.

• The size of the smallest connected component of G is the smallest number of occurrences of the same value in s.

• The size of the largest connected component of G is the largest number of occurrences of the same value in s.

As a result, in this context, putting a restriction on the number of connected components of G can been seen as a global constraint on the number of distinct values of a sequence of variables. Similar global constraints can be associated with the two other graph properties.

We now explain how to generate the initial graph associated with a global constraint.

A global constraint has one or more arguments, which usually correspond to an integer value, to one variable or to a collection of variables. Therefore we have to describe the process that allows for generating the vertices and the arcs of the initial graph from the arguments of a global constraint under consideration. For this purpose we will take a concrete example. Consider the constraint nvalue(NVAL, VARIABLES) where NVAL and VARIABLES respectively correspond to a domain variable and to a collection of domain variables {var -V 1 , var -V 2 , . . . , var -V m }6 . This constraint holds if NVAL is equal to the number of distinct values assigned to the variables V 1 , V 2 , . . . , V m . We first show how to generate the initial graph associated with the nvalue constraint. We then describe the arc constraint associated with each arc of this graph. Finally, we give the graph characteristic we impose on the final graph.

To each variable of the collection VARIABLES corresponds a vertex of the initial graph. We generate an arc between each pair of vertices. To each arc, we associate an equality constraint between the variables corresponding to the extremities of that arc. We impose that NVAL, the variable corresponding to the first argument of nvalue, be equal to the number of strongly connected components of the final graph. This final graph consists of the initial graph from which we discard all arcs such that the corresponding equality constraint does not hold.

Part (A) of Figure 1.2 shows the graph initially generated for the constraint nvalue (NVAL, {var -V 1 , var -V 2 , var -V 3 , var -V 4 }), where NVAL, V 1 , V 2 , V 3 and V 4 are domain variables. Part (B) presents the final graph associated with the ground instance nvalue (3, {var-5, var-5, var-1, var-8}). For each vertex of the initial and final graph we respectively indicate the corresponding variable and the value assigned to that variable. We have removed from the final graph all the arcs associated to equalities that do not hold. The constraint nvalue (3, {var-5, var-5, var-1, var-8}) holds since the final graph contains three strongly connected components, which, in the context of the definition of the nvalue constraint, can be reinterpreted as the fact that NVAL is the number of distinct values assigned to variables Now that we have illustrated the basic ideas for describing a global constraint in terms of graph properties, we go into more details.

V 1 , V 2 , V 3 , V 4 . 1 V 2 V 3 V 4 V 5 5 1 8 (A) (B)

Ingredients used for describing global constraints

We first introduce the basic ingredients used for describing a global constraint and illustrate them shortly on the example of the nvalue constraint introduced in the previous section (page 15). We then go through each basic ingredient in more detail. The graph-based description is founded on the following basic ingredients:

• Data types and restrictions used in order to describe the arguments of a global constraint. Data types and restrictions were already described in the previous section (from page 3 to page 13).

• Collection generators used in order to derive new collections from the arguments of a global constraint for one of the following reasons:

-Collection generators are sometimes required since the initial graph of a global constraint cannot always be directly generated from the arguments of the global constraint. The nvalue(NVAL, VARIABLES) constraint did not require any collection generator since the vertices of its initial graph were directly generated from the VARIABLES collection.

-A second use of collection generators is for deriving a collection of items for different set of vertices of the final graph. This is sometimes required when we use set generators (see the last item of the enumeration).

• Elementary constraints associated with the arcs of the initial and final graph of a global constraint. The nvalue constraint was using an equality constraint, but other constraints are usually required.

• Graph generators employed for constructing the initial graph of a global constraint. In the context of the nvalue constraint the initial graph was a clique. As we will see later, other patterns are needed for generating an initial graph.

• Graph characteristics used for constraining the final graph we want to obtain.

In the context of the nvalue constraint we were using the number of strongly connected components for expressing the fact that we want to count the number of distinct values.

• Set generators which may be used for generating specific sets of vertices of the final graph on which we want to enforce a given constraint. Since the nvalue constraint enforces a graph property on the final graph (and not on subparts of the final graph) we did not use this feature.

We first start to explain each ingredient separately and then show how one can describe most global constraints in terms of these basic ingredients.

Collection generators

The vertices of the initial graph are usually directly generated from collections of items that are arguments of the global constraint G under consideration. However, it sometimes happens that we would like to derive a new collection from existing arguments of G in order to produce the vertices of the initial graph. EXAMPLE: This is for instance the case of the element(INDEX, TABLE, VALUE) constraint, where INDEX and VALUE are domain variables that we would like to group as a single item I (with two attributes) of a new derived collection. This is in fact done in order to generate the following initial graph:

• The item I as well as all items of TABLE constitute the vertices,

• There is an arc from I to each item of the TABLE collection.

We provide the following mechanism for deriving new collections:

• In a first phase we declare the name of the new collection as well as the names of its attributes and their respective types. This is achieved exactly in the same way as those collections that are used in the arguments of a global constraint (see page 4).

EXAMPLE: Consider again the example of the element(INDEX, TABLE, VALUE) constraint. The declaration ITEMcollection(indexdvar, valuedvar) introduces a new collection called ITEM where each item has an index and a value attribute.

Both attributes correspond to domain variables.

• In a second phase we give a list of patterns that are used for generating the items of the new collection. A pattern oitem(a 1v 1 , a 2v 2 , . . . , a nv n ) or item(a 1v 1 , a 2v 2 , . . . , a nv n ) specifies for each attribute a i (1 ≤ i ≤ n) of the new collection how to fill it 7 . This is done by providing for each attribute a i one of the following element v i :

CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS -A constant, -A parameter of the global constraint G,

-An attribute of a collection that is a parameter of the global constraint G,

-An attribute of a derived collection that was previously declared.

This element v i must be compatible with the type declaration of the corresponding attribute of the new collection.

EXAMPLE: We continue the example of the element(INDEX, TABLE, VALUE) constraint and the derived collection ITEMcollection(indexdvar, valuedvar). The pattern item(index -INDEX, value -VALUE) indicates that:

• The index attribute of the ITEM collection will be generated by using the INDEX argument of the element constraint. Since INDEX is a domain variable, it is compatible with the declaration ITEMcollection(indexdvar, valuedvar) of the new collection.

• The value attribute of the ITEM collection will be generated by using the VALUE argument of the element constraint. VALUE is also compatible with the declaration statement of the new collection.

We now describe how we use the pattern for generating the items of a derived collection. We have the following two cases:

• If the pattern o -item(a 1 -v 1 , a 2 -v 2 , .
. . , a nv n ) does not contain any reference to an attribute of a collection then we generate one single item for such pattern 8 . In this context the value v i of the attribute a i (1 ≤ i ≤ n) corresponds to a constant, to an argument of the global constraint or to a new derived collection.

• If the pattern oitem(a 1v 1 , a 2v 2 , . . . , a nv n ), where o is one of the comparison operators =, =, <, ≥, >, ≤, contains one or several references to an attribute of a collection 9 we denote by:

k 1 , k 2 , . . . , k m the indices of the positions corresponding to the attribute of a collection within item(a 1v 1 , a 2v 2 , . . . , a nv n ), c α1 , c α2 , . . . , c αm the corresponding collections, a α1 , a α2 , . . . , a αm the corresponding attributes.

For each combination of items c α1 [i 1 ], c α2 [i 2 ], . . . , c αm [i m ] such that:

i 1 ∈ [1, |c α1 |], i 2 ∈ [1, |c α2 |], . . . , i m ∈ [1, |c αm |] and i 1 o i 2 o . . . o i n
we generate an item of the new derived collection (a 1 -w 1 a 2 -w 2 . . . a n -w n ) defined by: We continue with three examples that mention one or several references to an attribute of some collections. We now need to explicitly give the items of these collections in order to generate the items of the derived collection. GENERATED ITEM(S) : {index -1 x -5 y -5, index -2 x -2 y -2, index -3 x -3 y -6, index -4 x -1 y -2} The pattern mentions three references VECTOR1.key, VECTOR1.var and VECTOR2.var to the collections VECTOR1 and VECTOR2 used in the arguments of the lex lesseq constraint. ∀i1 ∈ [1,|VECTOR1|], ∀i2 ∈ [1,|VECTOR2|] such that i1 = i2 b we generate an item index -v1 x -v2 y -v3 where:

w j (1 ≤ j ≤ n) =
v1 = i1, v2 = VECTOR1[i1].var, v3 = VECTOR2[i1]
.var. This leads to the four items listed in the GENERATED ITEM(S) field.

a As defined in Section 1.1.2 page 4, key is an implicit attribute corresponding to the position of an item within a collection.

b We use an equality since this is the default value of the comparison operator o when we don't use a pattern of the form oitem(. . .). GENERATED ITEM(S) : {x -1 y -0, x -4 y -0, x -4 y -1, x -6 y -0, x -6 y -1, x -6 y -4} The pattern mentions two references VARIABLES.var and VARIABLES.var to the VARIABLES collection used in the arguments of the golomb constraint. ∀i1 ∈ [1,|VARIABLES|], ∀i2 ∈ [1,|VARIABLES|] such that i1 > i2 a we generate the item x -u1 y -u2 where:

u1 = VARIABLES[i1].var, u2 = VARIABLES[i2]
.var. This leads to the six items listed in the GENERATED ITEM(S) field.

a We use the comparison operator > since we have a pattern of the form > -item(. . .).

Elementary constraints attached to the arcs

This section describes the constraints that are associated with the arcs of the initial graph of a global constraint. These constraints are called arc constraints. To each arc one can associate one or several arc constraints. An arc will belong to the final graph if and only if all its arc constraints hold. An arc constraint from a vertex v 1 to a vertex v 2 mentions variables and/or values associated with v 1 and v 2 . Before defining an arc constraint, we first need to introduce simple arithmetic expressions as well as arithmetic expressions. Simple arithmetic expressions and arithmetic expressions are defined recursively.

Simple arithmetic expressions A simple arithmetic expression is defined by one of the five following expressions.

• I: I is an integer.

• Arg: Arg is an argument of the global constraint of type int or dvar.

• Arg: Arg is a formal parameter provided by the arc generator10 of the graphconstraint.

• Col.Attr: Col is a formal parameter provided by the arc generator or the collection used in the For all items of iterator11 . Attr is an attribute of the collection referenced by Col.

EXAMPLE:

As an example consider the first graph-constraint associated with the global cardinality with costs(VARIABLES, VALUES, MATRIX, COST) constraint and its arc constraint variables.var = VALUES.val. Both, variables.var as well as VALUES.val are simple arithmetic expressions of the form Col.Attr:

-In variables.var, variables corresponds to the formal parameter provided by the arc generator SELF → collection(variables), while var is an attribute of the VARIABLES collection.

-In VALUES.val, VALUES corresponds to the collection denoted by the For all items of iterator, while val is an attribute of the VALUES collection.

• Col [Expr].Attr: Col is an argument of type collection, Attr one attribute of Col and Expr an arithmetic expression.

Col [Expr].Attr denotes the value of attribute Attr of the Expr th item of the collection denoted by Col. a This position is denoted by the expression variables.key. As defined in Section 1.1.2 page 4, key is an implicit attribute corresponding to the position of an item within a collection.

b This position is denoted by the expression values.key.

Arithmetic expressions An arithmetic expression is recursively defined by one of the following expressions:

• A simple arithmetic expression.

• Exp 1 Op Exp 2 :

-Exp 1 is an arithmetic expression, -Op is one of the following symbols +, -, * , /12 , -Exp 2 is an arithmetic expression.

• |Collection|:

-Collection is an argument of type collection and |Collection| denotes the number of items of that collection.

• |Exp|:

-Exp is an arithmetic expression, and |Exp| denotes the absolute value of this expression.

• sign(Exp):

-Exp is an arithmetic expression, and sign(Exp) the sign of Exp (-1 if Exp is negative, 0 if Exp is equal to 0, 1 if Exp is positive).

EXAMPLE: An example of use of sign can be found in the last part of the arc constraint of the crossing constraint: sign((s2.ox -s1.ex) * (s1.ey -s1.oy) -(s1.ex -s1.ox) * (s2.oy -s1.ey)) = sign((s2.ex -s1.ex) * (s2.oy -s1.oy) -(s2.ox -s1.ox) * (s2.ey -s1.ey))

• card set(Set):

-Set is a reference to a set of integers or to a set variable. card set(Set) denotes the number of elements of that set.

EXAMPLE: An example of use of card set can be found in the symmetric gcc constraint: vars.nocc = card set(vars.var).

• SimpleExp 1 mod SimpleExp 2 , min(SimpleExp 1 , SimpleExp 2 ) or max(SimpleExp 1 , SimpleExp 2 ):

-SimpleExp 1 is a simple arithmetic expression, -SimpleExp 2 is a simple arithmetic expression.

Arc constraints Now that we have introduced simple arithmetic expressions as well as arithmetic expressions we define an arc constraint. An arc constraint is recursively defined by one of the following expressions:

• TRUE: This stands for an arc constraint that always holds. As a result, the corresponding arc always belongs to the final graph.

EXAMPLE: An example of use of TRUE can be found in the sum ctr(VARIABLES, CTR, VAR) constraint, where it is used in order to enforce keeping all items of the VARIABLES collection in the final graph.

• Exp 1 Comparison Exp 2 :

-Exp 1 is an arithmetic expression, -Comparison is one of the comparison operators ≤, ≥, <, >, =, =, -Exp 2 is an arithmetic expression.

EXAMPLE:

As an example of such arc constraint, the second graph-constraint of the cumulative(TASKS, LIMIT) constraint uses the following arc constraints: -tasks1.duration > 0, -tasks2.origin ≤ tasks1.origin, -tasks1.origin < tasks2.end.

The conjunction of these three arc constraints can be interpreted in the following way: An arc from a task tasks1 to a task tasks2 will belong to the final graph if and only if tasks2 overlaps the origin of tasks1.

• Exp 1 SimpleCtr Exp 2 :

-Exp 1 is an arithmetic expression, -SimpleCtr is an argument of type atom that can only take one of the values ≤, ≥, <, >, =, =, -Exp 2 is an arithmetic expression.

EXAMPLE: An example of use of such an arc constraint can be found in the change(NCHANGE, VARIABLES, CTR) constraint: variables1.var CTR variables2.var. Within this expression, variables1 and variables2 correspond to consecutive items of the VARIABLES collection.

• Exp 1 ¬SimpleCtr Exp 2 :

-Exp 1 is an arithmetic expression, -SimpleCtr is an argument of type atom that can only take one of the values ≤, ≥, <, >, =, =, -Exp 2 is an arithmetic expression. • Ctr(Exp 1 , . . . , Exp n ):

-Ctr is a global constraint defined in the catalog for which there exists a graph-based and/or an automaton-based representation, -Exp 1 , . . . , Exp n correspond to the arguments of the global constraint Ctr.

Each argument should be a simple arithmetic expression that is compatible with the type declaration of the argument of Ctr.

EXAMPLE:

An example of such arc constraint can be found in the definition of diffn: diffn(ORTHOTOPES) uses the two orth do not overlap(ORTHOTOPE1, ORTHOTOPE2) global constraint for defining its arc constraint. Since ORTHOTOPES is a collection of type collection(oridvar, sizdvar, enddvar) and since both ORTHOTOPE1 and ORTHOTOPE2 correspond to items of ORTHOTOPES there is no type compatibility problem between the call to two orth do not overlap and its definition.

• ArcCtr 1 LogicalConnector ArcCtr 2 :

-ArcCtr 1 is an arc constraint, -LogicalConnector is one of the logical connectors ∨, ∧, ⇒, ⇔, -ArcCtr 2 is an arc constraint.

EXAMPLE: As shown by the following example, minimum(MIN, VARIABLES) uses this kind of arc constraint: variables1 = variables2 ∨ variables1.var < variables2.var, where variables1 and variables2 correspond to items of the VARIABLES collection, holds if and only if one of the following conditions holds:

-variables1 and variables2 correspond to the same item of the VARIABLES collection,

-The var attribute of variables1 is strictly less than the var attribute of variables2.

Graph generators

This section describes how to generate the initial graph associated with a global constraint. Initial graphs correspond to directed hypergraphs [START_REF] Berge | Hypergraphes, Combinatoire des ensembles finis[END_REF], which have a very regular structure. They are defined in the following way:

• The vertices of the directed hypergraph are generated from collections of items such that each item corresponds to one vertex of the directed hypergraph. These collections are either collections that arise as arguments of the global constraint, or collections that are derived from one or several arguments of the global constraint. In this latter case these derived collections are computed by using the collection generators previously introduced (see Section 1.2.2, page 17).

• To all arcs of the directed hypergraph corresponds the same arc constraint that involves vertices in a given order 13 . These arc constraints, which are mainly unary and binary constraints, were described in the previous section (see Section 1.2.2,page 22). We describe all the arcs of an initial graph with a set of predefined arc generators, which correspond to classical regular structures one can find in the graph literature [30, pages 140-153]. An arc generator of arity a 13 Usually the edges of a hypergraph are not oriented [29, pages 1-2]. However for our purpose we need to define an order on the vertices of an edge since the corresponding arc constraint takes its arguments in a given order.
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takes n collections of items, denoted c i (1 ≤ i ≤ n), as input and returns the corresponding hypergraph where the vertices are the items of the input collections c i (1 ≤ i ≤ n) and where all arcs involve a vertices. Specific arc generators allow for giving an a-ary constraint for which a is not fixed, which means that the corresponding hypergraph contains arcs involving various number of vertices.

Each arc generator has a name and takes one or several collections of items as input and generates a set of arcs. Each arc is made from a sequence of items i 1 i 2 . . . i a and is denoted by (i 1 , i 2 , . . . , i a ). a is called the arity of the arc generator. We have the following types of arc generators:

• Arc generators with a fixed predefined arity. In fact most arc generators have a fixed predefined arity of 2. The graphs they generate correspond to digraphs.

• Arc generators that can be used with any arity a greater than or equal to 1. These arc generators generate directed hypergraphs where all arcs consist of a items.

• Arc generators that generate arcs that don't involve the same number of items.

We now give the list of arc generators, listed in alphabetic order, and the arcs they generate. For each arc generator we point to a global constraint where it is used in practice. Finally, Figure 1.4 illustrates the different arc generators. At present the following arc generators are in use:

• CHAIN has a predefined arity of 2. It takes one collection c and generates the following arcs 14 :

-∀i ∈ [1, |c| -1]: (c[i], c[i + 1]), -∀i ∈ [1, |c| -1]: (c[i + 1], c[i]
).

EXAMPLE:

The arc generator CHAIN is for instance used in the group skip isolated item constraint.

• CIRCUIT has a predefined arity of 2. It takes one collection c and generates the following arcs: -(c[|c|], c [1]).

-∀i ∈ [1, |c| -1]: (c[i], c[i + 1]),

EXAMPLE:

The arc generator CIRCUIT is for instance used in the circular change constraint.

• CLIQUE can be used with any arity a greater than or equal to 2. It takes one collection c and generates the arcs:

∀i 1 ∈ [1, |c|], ∀i 2 ∈ [1, |c|], . . . , ∀i a ∈ [1, |c|] : (c[i 1 ], c[i 2 ], . . . , c[i a ]
).

EXAMPLE:

The arc generator CLIQUE is usually used with an arity a = 2. This is for instance the case of the alldifferent constraint.

• CLIQUE (Comparison) , where Comparison is one of the comparison operators ≤, ≥, <, >, =, =, can be used with any arity a greater than or equal to 2. It takes one collection c and generates the arcs: 

∀i 1 ∈ [1,

EXAMPLE:

The orchard(TREES) constraint is an example of constraint that uses the CLIQUE (<) arc generator with an arity a = 3. It generates an arc for each set of three trees.

• GRID([d 1 , d 2 , . . . , d n ]) takes a collection c consisting of

d 1 •d 2 • • • • •d n items
and generates the arcs (c[i], c[j]) where i and j satisfy the following condition.

There exists a natural number α (0 ≤ α ≤ n -1) such that ( 1) and ( 2) hold:

(1) |i -j| = 1≤k≤α d k (when α = 0 we have 1≤k≤α = 1),

Q 1≤k≤α+1 d k = j Q 1≤k≤α+1 d k . (2) i 

EXAMPLE:

The connect points constraint uses the GRID arc generator.

• LOOP has a predefined arity of 2. It takes one collection c and generates the arcs: ∀i ∈ [1, |c|]: (c[i], c[i]). LOOP is usually used in order to generate a loop on some vertices, so that they don't disappear from the final graph.

EXAMPLE:

The global contiguity(VARIABLES) constraint is an example of constraint that uses the LOOP arc generator so that each variable of the VARIABLES collection belongs to the final graph.

• PATH can be used with any arity a greater than or equal to 1. It takes one collection c, and generates the following arcs: ∀i ∈ [1, |c|a + 1] : (c[i], c[i + 1], . . . , c[i + a -1]).

EXAMPLE:

PATH is for instance used in the sliding sum(LOW, UP, SEQ, VARIABLES) constraint with an arity SEQ, where SEQ is an argument of the sliding sum constraint.

• PATH 1 generates arcs that don't involve the same number of items. It takes one collection c, and generates the following arcs: (c [1]), (c [1], c [2]), . . . , (c [1], c [2], . . . , c[|c|]).

EXAMPLE: PATH 1 is used in the size maximal starting sequence alldifferent constraint.

• PATH N generates arcs that don't involve the same number of items. It takes one collection c, and generates the following arcs: ∀i ∈ [1, |c|], ∀j ∈ [i, |c|] : (c[i], c[i + 1], . . . , c[j]).

EXAMPLE:

PATH N is for instance used in the size maximal sequence alldifferent constraint.

• PRODUCT has a predefined arity of 2. It takes two collections c 1 , c 2 and generates the arcs

: ∀i ∈ [1, |c 1 |], ∀j ∈ [1, |c 2 |] : (c 1 [i], c 2 [j])
.

EXAMPLE:

PRODUCT is for instance used in the same(VARIABLES1, VARIABLES2) constraint for generating an arc from every item of the VARIABLES1 collection to every item of the VARIABLES2 collection.

• PRODUCT (Comparison) , where Comparison is one of the comparison operators ≤, ≥, <, >, =, =, has a predefined arity of 2. It takes two collections c 1 , c 2 and generates the arcs

: ∀i ∈ [1, |c 1 |], ∀j ∈ [1, |c 2 |] such that i Comparison j : (c 1 [i], c 2 [j]
).

EXAMPLE:

PRODUCT (=) is for instance used in the differ from at least k pos(K, VECTOR1, VECTOR2) constraint in order to generate an arc between the i th component of VECTOR1 and the i th component of VECTOR2.

• SELF has a predefined arity of 1. It takes one collection c and generates the arcs: ∀i ∈ [1, |c|]: (c[i]).

EXAMPLE: SELF is for instance used in the among(NVAR, VARIABLES, VALUES) constraint in order to generate a unary arc constraint in(variables.var, VALUES) for each variable of the VARIABLES collection.

• SYMMETRIC PRODUCT has a predefined arity of 2. It takes two collections c 1 , c 2 and generates the following arcs: ∀i ∈ [1,

|c 1 |], ∀j ∈ [1, |c 2 |] : (c 1 [i], c 2 [j]) and (c 2 [j], c 1 [i]
). SYMMETRIC PRODUCT is currently not used.

• SYMMETRIC PRODUCT (Comparison) , where Comparison is one of the comparison operators ≤, ≥, <, >, =, =, has a predefined arity of 2. It takes two collections c 1 , c 2 and generates the arcs

: ∀i ∈ [1, |c 1 |], ∀j ∈ [1, |c 2 |] such that i Comparison j : (c 1 [i], c 2 [j]) and (c 2 [j], c 1 [i]).
Finally, we can combine the PRODUCT arc generator with the arc generators from the following set Generator = {CIRCUIT , CHAIN , CLIQUE , LOOP, PATH , VOID}. This is achieved by using the construction PRODUCT (G 1 , G 2 ) where G 1 and G 2 belong to Generator . It applies G 1 to the first collection c 1 passed to PRODUCT and G 2 to the second collection c 2 passed to PRODUCT . Finally, it applies PRODUCT on c 1 and c 2 . In a similar way the PRODUCT (Comparison) arc generator is extended to PRODUCT (G 1 , G 2 , Comparison).

EXAMPLE:

As an illustrative example, consider the alldifferent same value(NSAME, VARIABLES1, VARIABLES2) constraint, which uses the arc generator PRODUCT (CLIQUE , LOOP, =) on the collections VARIABLES1 and VARIABLES2. It generates the following arcs:

• Since the first argument of PRODUCT is CLIQUE it generates an arc between each pair of items of the VARIABLES1 collection.

• Since the second argument of PRODUCT is LOOP it generates a loop for each item of the VARIABLES2 collection.

• Since the third argument is the comparison operator = it finally generates an arc between an item of the VARIABLES1 collection and an item of the VARIABLES2 collection when the two items have the same position. On the one hand, for those arc generators that take one single collection, we apply them on the collection of items {i -1, i -2, i -3, i -4}. On the other hand, for those arc generators that take two collections, we apply them on {i -1, i -2} and {i -3, i -4}. We use the following pictogram for the graphical representation of a constraint network:

• A line for an arc constraint of arity 1,

• An arrow for an arc constraint of arity 2,

• A closed line for an arc constraint with an arity strictly greater than 2. In this last case, since the vertices of an arc are ordered, a black circle at one of the extremities indicates the direction of the closed line. For instance consider the example of PATH 1 in Figure 1.4. The closed line that contains vertices 1, 2 and 3 means that a 3-ary arc constraint involves items 1, 2, and 3 in this specific order.

Dotted circles represent vertices that don't belong to the graph. This stems from the fact that the arc generator did not produce any arc involving these vertices. The leftmost lowest corner indicates the arity of the corresponding arc generator:

• An integer if it has a fixed predefined arity,

• n if it can be used with any arity greater than or equal to 1,

• * if it generates arcs that don't necessarily involve the same number of items.

Graph properties

We represent a global constraint as the search of a subgraph (i.e. a final graph) of a known initial graph, so that this final graph satisfies a given set of graph properties. Most graph properties have the form Char Comparison Exp or the form Char / ∈ [Exp 1 , Exp 2 ], where Char is a graph characteristic [START_REF] Berge | Graphes[END_REF], [START_REF] Gondran | Graphs and Algorithms[END_REF], Comparison is one of the comparison operators =, <, ≥, >, ≤, =, and Exp, Exp 1 , Exp 2 are expressions that can be evaluated to an integer. Before defining each graph characteristic, let's first introduce some basic vocabulary on graphs. (G)) is a pair where V (G) is a finite set, called the set of vertices, and where E(G) is a set of ordered pairs of vertices, called the set of arcs. The arc, path, circuit and strongly connected component of a graph G correspond to oriented concepts, while the edge, chain, cycle and connected component are non-oriented concepts. However, as reported in [17, page 6] an undirected graph can be seen as a digraph where to each edge we associate the corresponding two arcs. Parts (A) and (B) of Figure 1.5 respectively illustrate the terms for undirected graphs and digraphs.

Graph terminology and notations

A digraph G = (V (G), E
• We say that e 2 is a successor of e 1 if there exists an arc that starts from e 1 and ends at e 2 . In the same way, we say that e 2 is a predecessor of e 1 if there exists an arc that starts from e 2 and ends at e 1 .

• A vertex of G that does not have any predecessor is called a source. A vertex of G that does not have any successor is called a sink.

• A sequence (e 1 , e 2 , . . . , e k ) of edges of G such that each edge has a common vertex with the previous edge, and the other vertex common to the next edge is called a chain of length k. A chain where all vertices are distinct is called an elementary chain. Each equivalence class of the relation "e i is equal to e j or there exists a chain between e i and e j " is a connected component of the graph G. • A sequence (e 1 , e 2 , . . . , e k ) of arcs of G such that for each arc e i (1 ≤ i < k) the end of e i is equal to the start of the arc e i+1 is called a path of length k. A path where all vertices are distinct is called an elementary path. Each equivalence class of the relation "e i is equal to e j or there exists a path between e i and e j " is a strongly connected component of the graph G.

• A chain (e 1 , e 2 , . . . , e k ) of G is called a cycle if the same edge does not occur more than once in the chain and if the two extremities of the chain coincide. A cycle (e 1 , e 2 , . . . , e k ) of G is called a circuit if for each edge e i (1 ≤ i < k), the end of e i is equal to the start of the edge e i+1 .

• Given a graph G, we define the reduced graph R(G) of G as follows: To each strongly connected component of G corresponds a vertex of R (G). To each arc of G that connects different strongly connected components corresponds an arc in R (G).

• The rank function associated with the vertices V (G) of a graph G that does not contain any circuit is defined in the following way:

-The rank of the vertices that do not have any predecessor (i.e. the sources) is equal to 0, -The rank r of a vertex v that is not a source is the length of longest path (e 1 , e 2 , . . . , e r ) such that the start of the arc e 1 is a source and the end of arc e r is the vertex v.

We now present the different notations used in the catalog:

• [k] corresponds to {1, • • • , k} for k any positive integer.

• Given a set X, |X| is the number of its elements.

• Given two sets X and Y , X Y denotes the union of the two sets when they are disjoint.

• Given a digraph G and x ∈ V (G), d + G (x) = |{y : y ∈ V (G) : (x, y) ∈ E(G)}| and d - G (x) = |{y : y ∈ V (G) : (y, x) ∈ E(G)}|.

• Given a digraph G and X a subset of V (G), the subdigraph of G induced by X is the digraph G[X] where V (G[X]) = X and E(G[X]) = X 2 ∩ E (G). By aim of simplicity, we denote G[V (G) -X] by G -X. Moreover, if X = {x}, we use Gx instead of G -{x}.

• Given two digraph G 1 and G 2 such that V (G 1 ) ∩ V (G 2 ) = ∅, G 1 ⊕ G 2 denotes the graph whose vertices set is V (G 1 ) ∪ V (G 2 ) and whose arcs set is E(G 1 ) ∪ E (G 2 ).

• Given a graph characteristic CH ∈ {NCC, NSCC}, a digraph G and an integer k, CH (G, k) is the number of connected components (respectively strongly connected components) of G with cardinal k.

Given a graph characteristics, for instance the number of connected components, NCC INITIAL will denote the number of connected components of the initial graph (i.e. the graph induced by the constraint under consideration), NCC will denote the number of connected components of the final graph (i.e. a subgraph of the initial graph). The use of NCC (G) will denote the number of connected components of the digraph G.

Given a global constraint C, and a graph characteristics GC used in the description of C, GC (resp. GC) denotes a lower bound (resp. upper bound) of GC among all possible final graphs compatible with the current status of C.

Graph characteristics

We list in alphabetic order the different graph characteristics we consider for a final graph G f = (V (G f ), E(G f )) associated with a global constraint and give an example of constraint where they are used:

• MAX DRG : largest distance between sources and sinks in the reduced graph associated with G f (adjacent vertices are at a distance of 1).

EXAMPLE:

We don't provide any example since MAX DRG is currently not used.

• MAX ID : number of predecessors of the vertex of G f that has the maximum number of predecessors without counting an arc from a vertex to itself.

EXAMPLE:

The circuit constraint uses the graph property MAX ID = 1 in order to force each vertex of the final graph to have at most one predecessor.

• MAX NCC : number of vertices of the largest connected component of G f .

EXAMPLE:

The longest change(SIZE, VARIABLES, CTR) constraint uses the graph property MAX NCC = SIZE in order to catch in SIZE the maximum number of consecutive variables of the VARIABLES collection for which constraint CTR holds.

• MAX NSCC : number of vertices of the largest strongly connected component of G f .

EXAMPLE:

The tree constraint covers a digraph by a set of trees in such a way that each vertex belongs to a distinct tree. It uses the graph-property MAX NSCC ≤ 1 in order to avoid to have any circuit involving more than one vertex.

• MAX OD : number of successors of the vertex of G f that has the maximum number of successors without counting an arc from a vertex to itself.

EXAMPLE:

The tour constraint enforces to cover a graph with a Hamiltonian cycle.

It uses the graph-property MAX OD = 2 to enforce that each vertex of G f have at most two a successors.

a Since the tour constraint uses the CLIQUE ( =) arc generator the vertices of G f don't have any loop.

• MIN ID : number of predecessors of the vertex of G f that has the minimum number of predecessors without counting an arc from a vertex to itself.

EXAMPLE:

The tour constraint enforces to cover a graph with a Hamiltonian cycle. It uses the graph-property MIN ID = 2 to enforce that each vertex of G f have at most two a predecessors.

a Since the tour constraint uses the CLIQUE ( =) arc generator the vertices of G f don't have any loop.

• MIN NCC : number of vertices of the smallest connected component of G f . EXAMPLE: Within the group constraint, each connected component of G f corresponds to a maximum sequence of consecutive variables that take their value in a given set of values. Therefore, the graph-property MIN NCC = MIN SIZE enforces that the smallest sequence of such variables consist of MIN SIZE variables.

• MIN NSCC : number of vertices of the smallest strongly connected component of G f .

EXAMPLE:

The circuit(N ODES) constraint enforces covering a digraph with one circuit visiting once all its vertices. The graph-property MIN NSCC = |NODES| enforces that the smallest strongly connected component of G f contain |NODES| vertices.

Since |NODES| also corresponds to the number of vertices of the initial graph this means that G f is a strongly connected component involving all the vertices. This is clearly a necessary condition a for having a circuit visiting once all vertices.

a Of course, this is not enough, and the description of the circuit constraint asks for some other properties.

• MIN OD : number of successors of the vertex of G f that has the minimum number of successors without counting an arc from a vertex to itself.

EXAMPLE:

The tour constraint enforces to cover a graph with a Hamiltonian cycle.

It uses the graph-property MIN OD = 2 to enforce that each vertex of G f have at most two a successors.

a Since the tour constraint uses the CLIQUE ( =) arc generator the vertices of G f don't have any loop.

• NARC : cardinality of the set E(G f ).

EXAMPLE:

The disjoint(VARIABLES1, VARIABLES2) constraint enforces that each variable of the collection VARIABLES1 take a value that is distinct from all the values assigned to the variables of the collection VARIABLES2. This is imposed by creating an arc from each variable of VARIABLES1 to each variable of VARIABLES2. To each arc corresponds an equality constraint involving the variables associated to the extremities of the arc. Finally, the graph property NARC = 0 forces G f to be empty so that no value is both assigned to a variable of VARIABLES1 as well as to a variable of VARIABLES2.

• NARC NO LOOP : cardinality of the set E(G f ) without considering the arcs linking the same vertex (i.e. a loop).

EXAMPLE:

The constraint alldifferent same value uses the NARC NO LOOP graph-property.
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• NCC : number of connected components of G f .

EXAMPLE:

The tree constraint covers a digraph by NTREES trees in such a way that each vertex belongs to a distinct tree. It uses the graph-property NCC = NTREES in order to state that G f is made up from NTREES connected components.

• NSCC : number of strongly connected components of G f .

EXAMPLE:

The constraint nvalue(NVAL, VARIABLES) forces NVAL to be equal to the number of distinct values assigned to the variables of the collection VARIABLES. This is enforced by using the graph-property NSCC = NVAL. Each strongly connected component of the final graph corresponds to the variables that are assigned to the same value.

• NSINK : number of vertices of G f that do not have any successor.

EXAMPLE:

The same(VARIABLES1, VARIABLES2) enforces that the variables of the VARIABLES1 collection correspond to the variables of the VARIABLES2 collection according to a permutation. We first create an arc from each variable of VARIABLES1 to each variable of VARIABLES2. To each arc corresponds an equality constraint involving the variables associated with the extremities of the arc. We use the graph-property NSINK = |VARIABLES2| in order to express the fact that each value assigned to a variable of VARIABLES2 should also be assigned to a variable of VARIABLES1.

• NSINK NSOURCE : sum over the different connected components of G f of the minimum of the number of sinks and the number of sources of a connected component.

EXAMPLE:

The soft same var(C, VARIABLES1, VARIABLES2) constraint enforces C to be the minimum number of values to change in the VARIABLES1 and the VARIABLES2 collections of variables a , so that the variables of VARIABLES2 correspond to the variables of VARIABLES1 according to a permutation. A connected component C val of the final graph G f corresponds to all variables that are assigned to the same value val : the sources and the sinks of C val respectively correspond to the variables of VARIABLES1 and to the variables of VARIABLES2 that are assigned to val . For a connected component, the minimum of the number of sources and sinks expresses the number of variables for which we don't need to make any change. Therefore we use the graph-property NSINK NSOURCE = |VARIABLES1| -C for encoding the meaning of the soft same var constraint.

a Both collections have the same number of variables.

• NSOURCE : number of vertices of G f that do not have any predecessor.

EXAMPLE:

The same(VARIABLES1, VARIABLES2) enforces that the variables of the VARIABLES1 collection correspond to the variables of the VARIABLES2 collection according to a permutation. We first create an arc from each variable of VARIABLES1 to each variable of VARIABLES2. To each arc corresponds an equality constraint involving the variables associated with the extremities of the arc. We use the graph-property NSOURCE = |VARIABLES1| in order to express the fact that each value assigned to a variable of VARIABLES1 should also be assigned to a variable of VARIABLES2.

• NTREE : number of vertices of G f that do not belong to any circuit and for which at least one successor belongs to a circuit. Such vertices can be interpreted as root nodes of a tree.

EXAMPLE:

The cycle(NCYCLE, NODES) enforces that NCYCLE equal the number of circuits for covering an initial graph in such a way that each vertex belongs to one single circuit.

The graph-property NTREE = 0 enforces that all vertices of the final graph belong to a circuit.

• NVERTEX : cardinality of the set V (G f ).

EXAMPLE:

The cutset(SIZE CUTSET, NODES) constraint considers a digraph with n vertices described by the NODES collection. It enforces that the subset of kept vertices of cardinality n -SIZE CUTSET and their corresponding arcs form a graph without a circuit. It uses the graph-property NVERTEX = n -SIZE CUTSET for enforcing that the final graph G f contain the required number of vertices.

• RANGE DRG : difference between the largest distance between sources and sinks in the reduced graph associated with G f and the smallest distance between sources and sinks in the reduced graph associated with G f .

EXAMPLE:

The tree range constraint enforces to cover a digraph in such a way that each vertex belongs to a distinct tree. In addition it forces the difference between the longest and the shortest paths of G f to be equal to the variable R. For this purpose it uses the graph-property RANGE DRG = R.

• RANGE NCC : difference between the number of vertices of the largest connected component of G f and the number of vertices of the smallest connected component of G f .

EXAMPLE:

We don't provide any example since RANGE NCC is currently not used by any constraint.

• RANGE NSCC : difference between the number of vertices of the largest strongly connected component of G f and the number of vertices of the smallest strongly connected component of G f .

EXAMPLE:

The balance(BALANCE, VARIABLES) constraint forces BALANCE to be equal to the difference between the number of occurrence of the value that occurs the most and the value that occurs the least within the collection of variables VARIABLES.

Each strongly connected component of G f corresponds to the variables that are assigned to the same value. The graph property RANGE NSCC = BALANCE allows for expressing this definition.

• ORDER(rank, default, attr) :

rank is an integer or an argument of type integer of the global constraint, default is an integer, attr is an attribute corresponding to an integer or to a domain variable that occurs in all the collections that were used for generating the vertices of the initial graph.

We explain what is the value associated with ORDER(rank, default, attr). Let V denote the vertices of rank rank of G f from which we remove any loops.

-When V is not empty, it corresponds to the values of attribute attr of the items associated with the vertices of V, -Otherwise, when V is empty, it corresponds to the default value default.

EXAMPLE:

The minimum(MIN, VARIABLES) forces MIN to be the minimum value of the collection of domain variables VARIABLES. There is an arc from a variable var1 to a variable var2 if and only if var1 < var2. The graph-property ORDER(0, MAXINT, var) = MIN expresses the fact that MIN is equal to the value of the source of G f (since rank = 0).

• PATH FROM TO(attr, from, to) :

attr is an attribute corresponding to an integer or to a domain variable that occurs in all the collections that were used for generating the vertices of the initial graph, from is an integer or an argument of type integer of the global constraint, to is an integer or an argument of type integer of the global constraint.

Let F (respectively T ) denote the vertices of G f such that attr is equal to from (respectively to). PATH FROM TO(attr, from, to) is equal to 1 if there exists a path between each vertex of F and each vertex of T , and 0 otherwise.

EXAMPLE:

The constraint lex lesseq uses the PATH FROM TO graphproperty.

• PRODUCT(col, attr)

col is a collection that was used for generating the vertices of the initial graph,

attr is an attribute corresponding to an integer or to a domain variable of the collection col.

Let V be the set of vertices of G f that were generated from the items of the collection col.

-If V is not empty, PRODUCT(col, attr) corresponds to the product of the values of attribute attr associated with the vertices of V, -Otherwise, if V is empty, PRODUCT(col, attr) is equal to 1.

EXAMPLE:

The constraint product ctr(VARIABLES, CTR, VAR) forces the product of the variables of the VARIABLES collection to be equal, less than or equal, . . . to a given domain variable VAR.

To each variable of VARIABLES corresponds a vertex of the initial graph. Since we want to keep all the vertices of the initial graph we use the SELF arc generator together with the TRUE arc constraint. Finally, PRODUCT(VARIABLES, var) CTR VAR expresses the required condition. In this expression var and CTR respectively corresponds to the attribute of the collection VARIABLES (a domain variable) and to the condition we want to enforce. Since the final graph G f contains all the vertices of the initial graph, the expression PRODUCT(VARIABLES, var) corresponds to the product of the variables of the VARIABLES collection.

• RANGE(col, attr) :

col is a collection that was used for generating the vertices of the initial graph,
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attr is an attribute corresponding to an integer or to a domain variable of the collection col.

Let V be the set of vertices of G f that were generated from the items of the collection col.

-If V is not empty, RANGE(col, attr) corresponds to the difference between the maximum and the minimum values of attribute attr associated with the vertices of V, -Otherwise, if V is empty, RANGE(col, attr) is equal to 0.

EXAMPLE:

The constraint range ctr(VARIABLES, CTR, VAR) forces the difference between the maximum value and the minimum value of the variables of the VARIABLES collection to be equal, less than or equal, . . . to a given domain variable VAR.

To each variable of VARIABLES corresponds a vertex of the initial graph. Since we want to keep all the vertices of the initial graph we use the SELF arc generator together with the TRUE arc constraint. Finally, RANGE(VARIABLES, var) CTR VAR expresses the required condition. In this expression var and CTR respectively corresponds to the attribute of the collection VARIABLES (a domain variable) and to the condition we want to enforce. Since the final graph G f contains all the vertices of the initial graph, the expression RANGE(VARIABLES, var) corresponds to the difference between the maximum value and the minimum value of the variables of the VARIABLES collection.

• SUM(col, attr) :

col is a collection that was used for generating the vertices of the initial graph,

attr is an attribute corresponding to an integer or to a domain variable of the collection col.

Let V be the set of vertices of G f that were generated from the items of the collection col.

-If V is not empty, SUM(col, attr) corresponds to the sum of the values of attribute attr associated with the vertices of V, -Otherwise, if V is empty, SUM(col, attr) is equal to 0.

EXAMPLE:

The constraint sum ctr(VARIABLES, CTR, VAR) forces the sum of the variables of the VARIABLES collection to be equal, less than or equal, . . . to a given domain variable VAR.

To each variable of VARIABLES corresponds a vertex of the initial graph. Since we want to keep all the vertices of the initial graph we use the SELF arc generator together with the TRUE arc constraint. Finally, SUM(VARIABLES, var) CTR VAR expresses the required condition. In this expression var and CTR respectively correspond to the attribute of the collection VARIABLES (a domain variable) and to the condition we want to enforce. Since the final graph G f contains all the vertices of the initial graph, the expression SUM(VARIABLES, var) corresponds to the sum of the variables of the VARIABLES collection.

• SUM WEIGHT ARC(Expr) : Expr is an arithmetic expression.

For each arc a of E(G f ), let f (a) denote the value of Expr.

SUM WEIGHT ARC(Expr) is equal to a∈E(G f ) f (a)
. The value of Expr usually depends on the attributes of the items located at the extremities of an arc.

EXAMPLE:

The constraint global cardinality with costs(VARIABLES, VALUES, MATRIX, COST) enforces that each value VALUES [i].val be assigned to exactly VALUES [i].noccurrence variables of the VARIABLES collection. In addition the COST of an assignment is equal to the sum of the elementary costs associated with the fact that we assign the i th variable of the VARIABLES collection to the j th value of the VALUES collection. These elementary costs are given by the MATRIX collection. A last graph characteristic, DISTANCE , is computed on two final graphs G 1 and G 2 that have the same set V of vertices and the sets E(G 1 ) and E(G 2 ) of arcs. This graph characteristic is the cardinality of the set

(E(G 1 )-E(G 2 ))∪(E(G 2 )-E(G 1 )).
This corresponds to the number of arcs that belong to E(G 1 ) but not to E(G 2 ), plus the number of arcs that are in E(G 2 ) but not in E(G 1 ).

Graph constraint

A global constraint can be defined as a conjunction of several simple or dynamic graph constraints 15 that all share the same name, the same arguments and the same argument restrictions 16 . This section first describes simple graph constraints and then dynamic graph constraints, which are an extension of simple graph constraints.

Simple graph constraint

To a simple graph constraint correspond several initial graphs, usually one, where all the initial graphs have the same vertices and arcs. Specifying more than one initial graph is achieved by using the FOR ALL ITEMS OF iterator, which takes a collection C and generates an initial graph G i (t) for each item t of C. In this context, the arc constraints and/or graph properties of an initial graph may depend of the attributes of the item t of C from which they were generated. All arc constraints attached to a given arc 17 have to be pairwise mutually incompatible 18 .

The graphs of a simple graph constraint are defined by the following fields:

• An Arc input(s) field, which consists of a sequence of collections

C 1 , C 2 , . . . , C d (d ≥ 1).
To each item of these collections corresponds a vertex of the initial graph.

• An Arc generator field, which can be one or several expressions 19 of the following forms:

-ARC GENERATOR → collection(item 1 , item 2 , . . . , item a )
, where ARC GENERATOR is one of the arc generators with a fixed arity 20 defined in Section 1.2.2 page 26, and item i (1 ≤ i ≤ a) denotes the i th item associated with the i th vertex of an arc. These items correspond to formal parameters 21 -ARC GENERATOR → collection, where ARC GENERATOR is one of the arc generators PATH 1 or PATH N . In this context, collection denotes a collection of items corresponding to the vertices of an arc of the initial graph. An arc constraint enforces a restriction on the items of this collection.

EXAMPLE:

The size maximal sequence alldifferent (SIZE, VARIABLES) constraint has the following Arc input(s) and Arc generator fields: * Its Arc input(s) field refers to the VARIABLES collection. * Its Arc generator field consists of PRODUCT → collection.

In this context, collection is a collection of the same type as the VARIABLES collection. It corresponds to the variables associated with an arc of the initial graph.

When the Arc generator field consists of n (n > 1) expressions then these expressions have the form: All leftmost part of the expressions must be the same since they will be involved in one single Arc constraint(s) field. The global contiguity constraint is an example of global constraint where more than one arc generator is used.

• An Arc arity field, which corresponds to the number of vertices a of each arc of the initial graph. a is either a strictly positive integer, an argument of the global constraint of type int, or the character *. In this last case, this is used for denoting the fact that all the arc constraints don't involve the same number of vertices. This is for instance the case when we use the arc generators PATH 1 or PATH N as in the arith sliding or the size maximal sequence alldifferent constraints.

• An Arc constraint(s) field, which corresponds to a conjunction of arc constraints 22 those were introduced in Section 1.2.2 page 22.

• A Graph property(ies) field, which corresponds to one or several graph properties (see Section 1.2.2 page 31) to be satisfied on the final graphs associated with an instantiated solution of the global constraint. To each initial graph corresponds one final graph obtained by removing all arcs for which the corresponding arc constraints do not hold as well as all vertices that don't have any arc.

We now give several examples of descriptions of simple graph constraints, starting from the nvalue constraint, which was introduced as a first example of global constraint that can be modeled by a graph property in Section 1.2.1 page 14.

EXAMPLE:

The constraint nvalue(NVAL, VARIABLES) restricts NVAL to be the number of distinct values taken by the variables of the collection VARIABLES. Its meaning is described by a simple graph constraint corresponding to the following items: 

EXAMPLE:

The constraint global contiguity(VARIABLES) forces all variables of the VARIABLES collection to be assigned to 0 or 1. In addition, all variables assigned to value 1 appear contiguously. Its meaning is described by a simple graph constraint corresponding to the following items: 

[i] to item VARIABLES[i + 1] (1 ≤ i < |VARIABLES|).
In addition, since we use the LOOP arc generator, we generate also an arc from each item of the VARIABLES collection to itself a . The effect of the arc constraint is to keep in the final graph those vertices for which the corresponding variable is assigned to 1. Adjacent variables assigned to 1 form a connected component of the final graph and the graph property NCC ≤ 1 enforces to have at most one such group of adjacent variables assigned to 1.

a We use the LOOP arc generator in order to keep in the final graph those isolated variables assigned to 1. This is because isolated vertices with no arcs are always removed from the final graph.

EXAMPLE:

The global cardinality(VARIABLES, VALUES) constraint enforces that each value Since this description uses the For all items of VALUES iterator on the VALUES collection we generate an initial graph for each item of the VALUES collection (i.e. one graph for each value). Each vertex of an initial graph corresponds to one item of the VARIABLES collection. Since we use the SELF arc generator we have an arc for each vertex. For an initial graph associated with a value val an arc constraint on a vertex v corresponds to an equality constraint between the variable associated with v and the value val. Finally, the Graph property(ies) field forces the final graph to have a given number of vertices (i.e. associated with the attribute val ).

VALUES[i].val (1 ≤ i ≤ |VALUES|)

Dynamic graph constraint

The purpose of a dynamic graph constraint is to enforce a condition on different subsets of variables, not known in advance. This situation occurs frequently in practice and is hard to express since one cannot use a classical constraint for which it is required to provide all variables right from the beginning. One good example of such global constraint is the cumulative constraint where one wants to force the sum of some variables to be less than or equal to a given limit. In the context of the cumulative constraint, each set of variables is defined by the height of the different tasks that overlap a given instant i. Since the origins of the tasks are not initially fixed, we don't know in advance which task will overlap a given instant and so, we cannot state any sum constraint initially.

A dynamic graph constraint is defined in exactly the same way as a simple graph constraint, except that we may omit the Graph property(ies) field, and that we have to provide the two following additional fields:

• The Set field denotes a generator of sets of vertices. Such a generator takes as argument a final graph and produces different sets of vertices. In order to have something tractable, we force the total number of generated sets to be polynomial in the number of vertices.

In practice each set of vertices is represented by a collection of items. The type of this collection corresponds either to the type of the items associated with the vertices, or to the type of a new derived collection. This is achieved by providing an expression of the form name or name-derived collection, where name represents a formal parameter, and derived collection a declaration of a new derived collection (as specified in Section 1.2.2, page 17).

• The Constraint(s) on sets field provides a global constraint defined in the catalog that has to hold for each set created by the previous generator.

We now describe the different generators of sets of vertices currently available:

• ALL VERTICES generates one single set containing all the vertices of the final graph. It is specified by a declaration of the form

ALL VERTICES>> [vertices]

where vertices represents all the vertices of the final graph. where path represents the vertices of an elementary path, ordered according to their occurrence in the path.

• PRED generates the non-empty sets corresponding to the predecessors of each vertex of the final graph. It is specified by a declaration of the form

PRED>> [predecessor, destination]
where destination represents a vertex of the final graph and predecessor its predecessors.

• SUCC generates the non-empty sets corresponding to the successors of each vertex of the final graph. It is specified by a declaration of the form

SUCC>> [source, successor]
where source represents a vertex of the final graph and successor its successors.

As an illustrative example of dynamic graph constraint we now consider the cumulative constraint.

EXAMPLE:

The cumulative(TASKS, LIMIT) constraint, where TASKS is a collection of the form collection(origindvar, durationdvar, enddvar, heightdvar), and where LIMIT is a non-negative integer, holds if, for any point the cumulated height of the set of tasks that overlap that point, does not exceed LIMIT.

The first graph constraint of cumulative enforces for each task of the TASKS collection the equality origin + duration = end. We focus on the second graph constraint, which uses a dynamic graph constraint described by the following items: The second graph constraint is defined by:

• To each item of the TASKS collection correspond two vertices of the initial graph.

• The arity of the arc constraint is 2.

• The arcs of the initial graph are constructed with the PRODUCT arc generator between the TASKS collection and the TASKS collection. Therefore, each vertex associated with a task is linked to all the vertices related to the different tasks.

• The arc constraint that is associated with an arc between a task tasks1 and a task tasks2 is an overlapping constraint that holds if both, the duration of tasks1 is strictly greater than zero, and if the origin of tasks1 is overlapped by task tasks2.

• The set generator is SUCC. The final graph will consist of those tasks for which the origin is covered by at least one task and of those corresponding tasks.

• The dynamic constraint on a set forces the sum of the heights of the tasks that belong to a successor set to not exceed LIMIT.

(A) (B) time_points tasks time_points tasks (origins of the tasks) (origins of the tasks) We label the vertices of the initial and final graph by giving the key a of the corresponding task. On both graphs the edges are oriented from left to right. On the final graph we consider the sets that consist of the successors of the different vertices; those are the sets of tasks {1}, {1, 2}, {1, 2, 3}, {2, 3, 4} and {2, 3, 4, 5}. Since the SUCC set generator uses a derived collection that only considers the height attribute of a task, these sets respectively correspond to the following collection of items:

• {var -1},

• {var -1, var -2},

• {var -1, var -2, var -1},

• {var -2, var -1, var -1},

• {var -2, var -1, var -1, var -3}.

The cumulative constraint holds since, for each successors set, the corresponding constraint holds:

• sum ctr({var -1}, ≤, 8),

• sum ctr({var -1, var -2}, ≤, 8),

• sum ctr({var -1, var -2, var -1}, ≤, 8),

• sum ctr({var -2, var -1, var -1}, ≤, 8),

• sum ctr({var -2, var -1, var -1, var -3}, ≤, 8).

The sum ctr(VARIABLES, CTR, VAR) constraint holds if the sum S of the variables of the VARIABLES collection satisfies S CTR VARIABLES, where CTR is a comparison operator.

a key is an implicit attribute corresponding to the position of an item within a collection that was introduced in Section 1.1.2, page 4.

Describing global constraints in terms of automata

This section is based on the paper describing global constraint in terms of automata [4]. The main difference with the original paper is the introduction of array of counters within the description of an automaton. We consider global constraints for which any ground instance can be checked in linear time by scanning once through their variables without using any data structure, except counters or arrays of counters. In order to concretely illustrate this point we first select a set of global constraints and write down a checker for each of them. Finally, we give for each checker a sketch of the corresponding automaton. Based on these observations, we define the type of automaton we use in the catalog.

Selecting an appropriate description

As we previously said, we focus on those global constraints that can be checked by scanning once through their variables. This is for instance the case of:

• element [START_REF] Van Hentenryck | Generality vs. specificity: an experience with AI and OR techniques[END_REF],

• minimum [33],

• pattern [START_REF] Bourdais | HIBISCUS: A constraint programming application to staff scheduling in health care[END_REF],

• global contiguity [START_REF] Maher | Analysis of a global contiguity constraint[END_REF],

• lex lesseq [START_REF] Frisch | Global Constraints for lexicographic orderings[END_REF],

• among [START_REF] Beldiceanu | Introducing global constraints in CHIP[END_REF],

• inflexion [3],

• alldifferent [START_REF] Régin | A filtering algorithm for constraints of difference in CSP[END_REF].

Since they illustrate key points needed for characterizing the set of solutions associated with a global constraint, our discussion will be based on the last five constraints for which we now recall the definition:

• The global contiguity(vars) constraint forces the sequence of 0-1 variables vars to have at most one group of consecutive 1. For instance, the constraint global contiguity ([0, 1, 1, 0]) holds since we have only one group of consecutive 1.

• The lexicographic ordering constraint -→ x ≤ lex -→ y (see lex lesseq) over two vectors of variables -→ x = x 0 , . . . , x n-1 and -→ y = y 0 , . . . , y n-1 holds iff n = 0 or x 0 < y 0 or x 0 = y 0 and x 1 , . . . , x n-1 ≤ lex y 1 , . . . , y n-1 .

• The among(nvar, vars, values) constraint restricts the number of variables of the sequence of variables vars that take their value in a given set values, to be equal to the variable nvar. For instance, among (3, [4, 5, 5, 4, 1], [1,5,8]) holds since exactly 3 values of the sequence 45541 are located in {1, 5, 8}.

• The inflexion(ninf, vars) constraint forces the number of inflexions of the sequence of variables vars to be equal to the variable ninf. An inflexion is described by one of the following patterns: a strict increase followed by a strict decrease or, conversely, a strict decrease followed by a strict increase. For instance, inflexion (4, [3, 3, 1, 4, 5, 5, 6, 5, 5, 6, 3]) holds since we can extract from the sequence 33145565563 the four subsequences 314, 565, 6556 and 563, which all follow one of these two patterns.

• The alldifferent(vars) constraint forces all pairs of distinct variables of the collection vars to take distinct values. For instance alldifferent ([6, 1, 5, 9]) holds since we have four distinct values.

x • Within the checker given by part (B1) of Figure 1.7, the components of vectors -→ x and -→ y are scanned in parallel. We first skip all the components that are equal and then perform a final check. This is represented by the automaton depicted by part (B2) of Figure 1.7. The automaton takes as input the sequence

[i]=y[i]
[i]=0 vars[i]=1 vars[i]=0 vars[i]=0 $ $ vars[i]=1 $ t z n global_contiguity i j $ vars[i+1] vars[i]= $ vars[i]=vars[i+1] vars[i]<vars[i+1] vars[i]< vars[i+1] vars[i]= vars[i+1] $ vars[i+1] vars[i]> vars[i+1] vars[i]> ninf=c t: c++ vars[i]>vars[i+1], vars[i]<vars[i+1], c++ (A1) (B1) (C1) (A2) (D2) IF vars[i]>vars[i+1
inflection (ninf,vars[0..n-1]):BOOLEAN $ t: c[vars[i]]=c[vars[i]]+1 (E2) c[_]<2 <>$, s s s {c=0} s {c=0} inflection s {c[_]=0} alldifferent IF vars[i]>v THEN v=vars[i]; i++; FOR i=u TO v DO c[i]=0; FOR i=0 TO n-1 DO c[vars[i]]=c[vars[i]]+1; FOR i=u TO v DO IF c[i]>1 THEN RETURN FALSE; RETURN TRUE; END. (E1)
x[0], y[0] , . . . , x[n -1], y[n -1]
and triggers a transition for each term of this sequence. Unlike the global contiguity constraint, some transitions now correspond to a condition (e.g. It triggers a transition for each variable of this sequence and increments c when the corresponding variable takes its value in values. The final state returns a success when the value of c is equal to nvar. At this point we want to stress the following fact: It would have been possible to use an automaton that avoids the use of counters. However, this automaton would depend on the effective value of the argument nvar. In addition, it would require more states than the automaton of part (C2) of Figure 1.7. This is typically a problem if we want to have a fixed number of states in order to save memory as well as time.

x[i] = y[i], x[i] < y[i])
• As the among constraint, the inflexion(ninf, vars) constraint involves a variable ninf whose value is computed from a given sequence of variables vars [0], . . . , vars[n -1]. Therefore, the checker depicted in part (D1) of Figure 1.7 uses also a counter c for counting the number of inflexions, and compares its final value to the ninf argument. The automaton depicted by part (D2) of Figure 1.7 represents this program. It takes as input the sequence of pairs vars [0], vars [1] , vars [1], vars [2] , . . . , vars[n -2], vars[n -1] and triggers a transition for each pair. Note that a given variable may occur in more than one pair. Each transition compares the respective values of two consecutive variables of vars [0..n -1] and increments the counter c when a new inflexion is detected. The final state returns a success when the value of c is equal to ninf.

• The checker associated with alldifferent is depicted by part (E1) of Synthesizing all the observations we got from these examples leads to the following remarks and definitions for a given global constraint C:

• For a given state, no transition can be triggered indicates that the constraint C does not hold.

• Since all transitions starting from a given state are mutually incompatible all automata are deterministic. Let M denote the set of mutually incompatible conditions associated with the different transitions of an automaton.

• Let S 0 , . . . , S m-1 denote the sequence of subsets of variables of C on which the transitions are successively triggered. All these subsets contain the same number of elements and refer to some variables of C. Since these subsets typically depend on the constraint, we leave the computation of S 0 , . . . , S m-1 outside the automaton. To each subset S i of this sequence corresponds a variable S i with an initial domain ranging over [min, min

+ |M| -1],
where min is a fixed integer. To each integer of this range corresponds one of the mutually incompatible conditions of M. The sequences S 0 , . . . , S m-1 and S 0 , . . . , S m-1 are respectively called the signature and the signature argument of the constraint. The constraint between S i and the variables of S i is called the signature constraint and is denoted by Ψ C (S i , S i ).

• From a pragmatic point the view, the task of writing a constraint checker is naturally done by writing down an imperative program where local variables, arrays, assignment statements and control structures are used. This suggested us to consider deterministic finite automata augmented with local variables and assignment statements on these variables. Regarding control structures, we did not introduce any extra feature since the deterministic choice of which transition to trigger next seemed to be good enough.

• Many global constraints involve a variable whose value is computed from a given collection of variables. This convinced us to allow the final state of an automaton to optionally return a result. In practice, this result corresponds to the value of a local variable of the automaton in the final state.

Defining an automaton

An automaton A of a global constraint C is defined by Signature, SignatureDomain, SignatureArg, SignatureArgPattern, Counters, Arrays, States, T ransitions where:

• Signature is the sequence of variables S 0 , . . . , S m-1 corresponding to the signature of the constraint C.

• SignatureDomain is an interval that defines the range of possible values of the variables of Signature.

• SignatureArg is the signature argument S 0 , . . . , S m-1 of the constraint C. The link between the variables of S i and the variable S i (0 ≤ i < m) is done by writing down the signature constraint Ψ C (S i , S i ).

• When used, SignatureArgPattern defines a symbolic name for each term of SignatureArg. These names can be used within the description of a transition for expressing an additional condition for triggering the corresponding transition.

• Counters is the, possibly empty, list of all counters used in the automaton A.

Each counter is described by a term t(Counter , InitialValue, FinalVariable ) where Counter is a symbolic name representing the counter, InitialValue is an integer giving the value of the counter in the initial state of A, and FinalVariable gives the variable that should be unified with the value of the counter in the final state of A.

• Arrays is the, possibly empty, list of all arrays used in the automaton A.

Each array is described by a term t(Array, InitialValue, FinalConstraint ) where Array is a symbolic name representing the array, InitialValue is an integer giving the value of all the entries of the array in the initial state of A.

FinalConstraint denotes an existing constraint of the catalog that should hold in the final state of A. Arguments of this constraint correspond to collections of variables that are bound to array of counters, or to variables that are bound to counters declared in Counters. For an array of counters we only consider those entries that are located between the first and the last entries that were modified while triggering a transition of A.

• States is the list of states of A, where each state has the form source(id ), sink(id ) or node(id ). id is a unique identifier associated with each state. Finally, source(id ) and sink(id ) respectively denote the initial and the final state of A.

• T ransitions is the list of transitions of A. Each transition t has the form arc(id 1 , label , id 2 ) or arc(id 1 , label , id 2 , counters). id 1 and id 2 respectively correspond to the state just before and just after t, while label denotes the value that the signature variable should have in order to trigger t. When used, counters gives for each counter of Counters its value after firing the corresponding transition. This value is specified by an arithmetic expression involving counters, constants, as well as usual arithmetic functions such as +, -, min or max. The order used in the counters list is identical to the order used in Counters.

EXAMPLE:

As an illustrative example we give the description of the automaton associated with the inflexion(ninf , vars) constraint. We have:

• Signature = S0, S1, . . . , Sn-2,

• SignatureDomain = 0..2,

• SignatureArg = vars[0], vars[1] , . . . , vars[n -2], vars [n -1] ,
• SignatureArg Pattern is not used,

• Counters = t(c, 0, ninf ),

• States = [source(s), node(i), node(j), sink (t)],

• T ransitions = [arc(s, 1, s), arc(s, 2, i), arc(s, 0, j), arc(s, $, t), arc(i, 1, i), arc(i, 2, i), arc(i, 0, j, [c + 1]), arc(i, $, t), arc(j, 1, j), arc(j, 0, j), arc(j, 2, i, [c + 1]), arc(j, $, t)].

The signature constraint relating each pair of variables vars[i], vars [i + 1] to the signature variable Si is defined as follows:

Ψinflexion(Si, vars[i], vars [i + 1]) ≡ vars[i] > vars[i + 1] ⇔ Si = 0 ∧ vars[i] = vars[i + 1] ⇔ Si = 1 ∧ vars[i] < vars[i + 1] ⇔ Si = 2.
The sequence of transitions triggered on the ground instance inflexion (4, [3, 3, 1, 4, 5, 5, 6, 5, 5, 6, 3]) is s c=0

3=3⇔S 0 =1 -------→ s 3>1⇔S 1 =0 -------→ j 1<4⇔S 2 =2 -------→ c=1 i 4<5⇔S 3 =2 -------→ i 5=5⇔S 4 =1 -------→ i 5<6⇔S 5 =2 -------→ i 6>5⇔S 6 =0 -------→ c=2 j 5=5⇔S 7 =1 -------→ j 5<6⇔S 8 =2 -------→ c=3 i 6>3⇔S 9 =0 -------→ c=4 j $ -→ t ninf =4
. Each transition gives the corresponding condition and, possibly, the value of the counter c just after firing that transition. 

Chapter 2

Description of the catalog

Which global constraints are included?

The global constraints of this catalog come from the following sources:

• Existing constraint systems like:

-Alice [2], -CHARME in C,
-CHIP [START_REF] Dincbas | The Constraint Logic Programming Language CHIP[END_REF] in Prolog, C and C++ http://www.cosytec.com -CHOCO [START_REF] Laburthe | Choco: implementing a cp kernel[END_REF] in Java http://choco.sourceforge.net/ -ECLAIR [START_REF] Platon Team | [END_REF] in Claire, -ECLiPSe [START_REF] Cheadle | Eclipse: An introduction[END_REF] in Prolog http://www-icparc.doc.ic.ac.uk/eclipse -FaCile in OCaml http://www.recherche.enac.fr/opti/facile/

Which global constraints are missing?

Constraints with too many arguments (like for instance the original cycle [START_REF] Cosytec | CHIP Reference Manual[END_REF] constraint with 16 arguments), which are in fact a combination of several constraints, were not directly put into the catalog. Constraints that have complex arguments were also omitted. Beside this, the following constraints should be added in some future version of the catalog: case [START_REF] Carlsson | SICStus Prolog User's Manual[END_REF], choquet, cumulative trapeze [START_REF] Poder | Computing a lower approximation of the compulsory part of a task with varying duration and varying resource consumption[END_REF][START_REF] Beldiceanu | Cumulated profiles of minimum and maximum resource utilisation[END_REF], inequality sum [START_REF] Régin | inequality-sum: A global constraint capturing the objective function[END_REF], no cycle [START_REF] Caseau | Solving small TSPs with constraints[END_REF], range [START_REF] Bessière | The range and roots constraints: Specifying counting and occurrence problems[END_REF], regular [5], roots [START_REF] Bessière | The range and roots constraints: Specifying counting and occurrence problems[END_REF], soft gcc [12], soft regular [12]. Finally we only consider a restricted number of constraints involving set variables since this is a relatively new area, which is currently growing rapidly since 2003.

Searching in the catalog

How to see if a global constraint is in the catalog?

Searching a given global constraint through the catalog can be achieved in the following ways:

• If you have an idea of the name of the global constraint you are looking for, then put all its letters in lower case, separate distinct words by an underscore and search the resulting name in the index. The entry where the constraint is defined is shown in bold. Common abbreviations or synonyms found in papers have also been put in the index.

• You can also search a global constraint through the list of keywords that is attached to each global constraint. All available keywords are listed alphabetically in Section 2.5 page 62. For each keyword we give the list of global constraints using the corresponding keyword as well as the definition of the keyword.

How to search for all global constraints sharing the same structure

Since we have two ways of defining global constraints (e.g. searching for a graph with specific properties or coming up with an automaton that only recognizes the solutions associated with the global constraint) we can look to the global constraints from these two perspectives.

Searching from a graph property perspective

The index contains all the arc generators as well as all the graph properties and the pages where they are mentioned 1 . This allows for finding all global constraints that use a given arc generator or a given graph property in their definition. You can further restrict your search to those global constraints using a specific combination of arc generators and graph properties. All these combinations are listed at the "signature" entry of the index. Within these combinations, a graph property with an underline means that the constraint should be evaluated each time the minimum of this graph property increases. Similarly a graph property with an overline indicates that the constraint should be evaluated each time the maximum of this graph property decreases.

For instance if we look for those constraints that both use the CLIQUE arc generator as well as the NARC graph-property we find the inverse and place in pyramid constraints. Since NARC is underlined and overlined these constraints will have to be woken each time the minimum or the maximum of NARC changes. The signature associated with a global constraint is also shown in the header of the even pages corresponding to the description of the global constraint.

Searching from an automaton perspective

We have created the following list of keywords, which allow for finding all global constraints defined by a specific type of automaton that recognizes its solutions 2 :

• "automaton" indicates that the catalog provides a deterministic automaton, 1 Arc generators and graph properties are introduced in the section "Describing Explicitly Global Constraints".

2 Automata that recognize the solutions of a global constraint were introduced in the section "Describing Explicitly Global Constraints".

• "automaton without counters" indicates that the catalog provides a deterministic automaton without counters as well as without array of counters,

• "automaton with counters" indicates that the catalog provides a deterministic automaton with counters but without array of counters,

• "automaton with array of counters" indicates that the catalog provides a deterministic automaton with array of counters and possibly with counters.

In addition we also provide a list of keywords that characterize the structure of the hypergraph associated with the decomposition of the automaton of a global constraints. Note that, when a global constraint is defined by several graph properties it is also defined by several automata (usually one automata for each graph property). This is for instance the case of the change continuity constraint. Currently we have these keywords:

• "Berge-acyclic constraint network",

• "alpha-acyclic constraint network(2)",

• "alpha-acyclic constraint network(3)",

• "alpha-acyclic constraint network( 4)",

• "sliding cyclic(1) constraint network(1)",

• "sliding cyclic(1) constraint network(2)",

• "sliding cyclic(1) constraint network(3)",

• "sliding cyclic(2) constraint network(2)",

• "circular sliding cyclic(1) constraint network(2)",

• "centered cyclic(1) constraint network(1)",

• "centered cyclic(2) constraint network(1)",

• "centered cyclic(3) constraint network( 1)".

When a global constraint is only defined by one or several automaton its signature is set to the keyword AUTOMATON.

Searching all places where a global constraint is referenced

Beside the page where a global constraint is defined (in bold), the index also gives all the pages where a global constraint is referenced. Since a global constraint can also be used for defining another global constraint the item Used in of the description of a global constraint provides this information.

Figures of the catalog

The catalog contains the following types of figures:

• Figures that illustrate a global constraint or a keyword,

• Figures that depict the initial as well as the final graphs associated with a global constraint,

• Figures that provide an automaton that only recognizes the solutions associated with a given global constraint,

• Figures that give the hypergraph associated with the decomposition of an automaton in terms of signature and transition constraints.

Most of the graph figures that depict the initial and final graph of a global constraint of this catalog were automatically generated by using the open source graph drawing software Graphviz available from AT&T3 .

Keywords attached to the global constraints

This section explains the meaning of the keywords attached to the global constraints of the catalog. For each keyword it first gives the list of global constraints using the corresponding keyword and then defines the keyword. At present the following keywords are in use.

Acyclic:

• alldifferent on intersection,

• among low up,

• arith or,

• cardinality atleast,

• cardinality atmost,

• cardinality atmost partition,

• change,

• change continuity,

• change pair,

• change partition,

• common,

• common interval,

• common modulo,

• common partition,

• correspondence,

• counts,

• cyclic change,

• cyclic change joker.

Denotes the fact that a constraint is defined by one single graph constraint for which the final graph doesn't have any circuit.

All different:

• alldifferent,

• alldifferent between sets,

• alldifferent except 0,

• alldifferent interval,

• alldifferent modulo,

• alldifferent on intersection,

• alldifferent partition,

• soft alldifferent ctr,

• soft alldifferent var,

• symmetric alldifferent,

• weighted partial alldiff.

Denotes the fact that we have a clique of disequalities or that a constraint is a variation of the alldifferent constraint. Variations may be related to relaxations (e.g. alldifferent except 0, soft alldifferent ctr, soft alldifferent var), or to specializations (e.g. symmetric alldifferent), of the alldifferent constraint. Variations may also result from an extension of the notion of disequality (e.g.alldifferent interval, alldifferent modulo, alldifferent partition).

Alignment:

• orchard.

Denotes the fact that a constraint enforces the alignment of different sets of points.

Alpha-acyclic constraint network(2):

• among,

• among diff 0,

• among interval,

• among low up,

• among modulo,

• atleast,

• atmost,

• count,

• counts,

• differ from at least k pos,

• exactly,

• group,

• group skip isolated item,

• sliding card skip0.

Before defining alpha-acyclic constraint network (2) we first need to introduce the following notions:

• The dual graph of a constraint network N is defined in the following way: To each constraint of N corresponds a vertex in the dual graph and if two constraints have a non-empty set S of shared variables, there is an edge labeled S between their corresponding vertices in the dual graph.

• An edge in the dual graph of a constraint network is redundant if its variables are shared by every edge along an alternative path between the two end points [START_REF] Dechter | Tree clustering for constraint networks[END_REF].

• If the subgraph resulting from the removal of the redundant edges of the dual graph is a tree the original constraint network is called α-acyclic [START_REF] Fagin | Degrees of acyclicity for hypergraphs and relational database schemes[END_REF].

Alpha-acyclic constraint network( 2) denotes an α-acyclic constraint network such that for any pair of constraints the two sets of involved variables share at most two variables.

Alpha-acyclic constraint network(3):

• group, • group skip isolated item,

• ith pos different from 0.

Alpha-acyclic constraint network( 3) denotes an α-acyclic constraint network (see alpha-acyclic constraint network (2)) such that for any pair of constraints the two sets of involved variables share at most three variables.

Alpha-acyclic constraint network(4):

• max index,

• min index.

Alpha-acyclic constraint network( 4) denotes an α-acyclic constraint network (see alpha-acyclic constraint network (2)) such that for any pair of constraints the two sets of involved variables share at most four variables.

Apartition:

• change continuity.

Denotes the fact that a constraint is defined by two graph constraints having the same initial graph, where each arc of the initial graph belongs to one of the final graph (but not to both).

Arithmetic constraint:

• product ctr,

• range ctr,

• sum ctr,

• sum set.

An arithmetic constraint involving a sum, a product, or a difference between a maximum and a minimum value. Such constraints were introduced within the catalog since they are required for defining a given global constraint. For instance the sum ctr constraint is used within the definition of the cumulative constraint.

Array constraint:

• elem,

• element,

• element lesseq,

• element greatereq,

• element matrix,

• element sparse.

A constraint that allows for expressing simple array equations.

Assignment:

• assign and counts,

• assign and nvalues,

• balance,

• balance interval,

• balance modulo,

• balance partition,

• bin packing,

• cardinality atleast,

• cardinality atmost,

• global cardinality,

• global cardinality low up,

• global cardinality with costs,

• indexed sum,

• interval and count,

• interval and sum,

• max nvalue,

• min nvalue,

• min size set consecutive var, • minimum weight alldifferent,

• same and global cardinality,

• sum of weights of distinct values,

• symmetric cardinality,

• symmetric gcc,

• weighted partial alldiff.

A constraint putting a restriction on all items that are assigned to the same equivalence class or on all equivalence classes that are effectively used. Usually an equivalence class corresponds to one single value (e.g. balance, bin packing, global cardinality, sum of weights of distinct values), to an interval of consecutive values (e.g. balance interval, interval and count, interval and sum) or to all values that are congruent modulo a given number (e.g. balance modulo). The restriction on all items that are assigned to the same equivalence class can for instance be a constraint on the number of items (e.g. cardinality atleast, cardinality atmost, global cardinality, global cardinality low up) or a constraint on the sum of a specific attribute (e.g. bin packing, interval and sum).

At least:

• atleast,

• cardinality atleast.

A constraint enforcing that one or several values occur a minimum number of time within a given collection of domain variables.

At most:

• atmost, • cardinality atmost,

• cardinality atmost partition.

A constraint enforcing that one or several values occur a maximum number of time within a given collection of domain variables.

Automaton:

• alldifferent,

• alldifferent except 0,

• alldifferent interval,

• alldifferent modulo,

• alldifferent on intersection,

• alldifferent same value,

• among,

• among diff 0,

• among interval,

• among low up,

• among modulo,

• arith,

• arith or,

• arith sliding,

• assign and counts,

• atleast,

• atmost,

• balance,

• balance interval,

• balance modulo,

• bin packing,

• cardinality atleast,

• cardinality atmost,

• change,

• change continuity,

• change pair,

• circular change,

• count,

• counts,

• cumulative,

• cyclic change,

• cyclic change joker,

• decreasing,

• deepest valley,

• differ from at least k pos,

• disjoint,

• distance change,

• domain constraint,

• elem,

• element,

• element greatereq,

• element lesseq,

• element matrix,

• element sparse,

• exactly,

• global cardinality,

• global contiguity,

• group,

• group skip isolated item,

• heighest peak,

• in,

• in same partition,

• increasing,

• inflexion,

• int value precede,

• int value precede chain,

• interval and count,

• interval and sum,

• inverse,

• ith pos different from 0,

• lex between,

• lex different,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq,

• longest change,

• max index,

• max nvalue,

• maximum,

• min index,

• min n,

• min nvalue,

• minimum,

• minimum except 0,

• minimum greater than,

• next element,

• no peak,

• no valley,

• not all equal,

• not in,

• nvalue,

• peak,

• same,

• sequence folding,

• sliding card skip0,

• smooth,

• stage element,

• strictly decreasing,

• strictly increasing,

• two orth are in contact,

• two orth do not overlap,

• used by,

• valley.

A constraint for which the catalog provides a deterministic automaton for the ground case. This automaton can usually be used for deriving mechanically a filtering algorithm for the general case. We have the following three types of deterministic automata:

• Deterministic automata without counters and without array of counters,

• Deterministic automata with counters but without array of counters,

• Deterministic automata with array of counters and possibly with counters.

VAR <>VALUE i VAR =VALUE, i {C=C+1} {c[VAR ]=c[VAR ]+1} i i 1, VAR =0 i VAR =1 i VAR =1 i VAR =0 i VAR =0 i global_contiguity exactly alldifferent $ N=C t: $ t: arith(C,<,2) s n z t $ $ $ s s {C=0} {C[_]=0} Figure 2.1: Examples of automata Figure 2
.1 shows three automata respectively associated with the global contiguity, the exactly and the alldifferent constraints. These automata correspond to the three types we described above.

Automaton with array of counters:

• alldifferent,

• alldifferent except 0,

• alldifferent interval,

• alldifferent modulo,

• alldifferent on intersection,

• alldifferent same value,

• assign and counts,

• balance,

• balance interval,

• balance modulo,

• bin packing,

• cardinality atleast,

• cardinality atmost,

• cumulative,

• disjoint,

• global cardinality,

• interval and count,

• interval and sum,

• inverse,

• max nvalue,

• min n,

• min nvalue,

• nvalue,

• same,

• used by.

A constraint for which the catalog provides a deterministic automaton with array of counters and possibly with counters.

Automaton with counters:

• among,

• among diff 0,

• among interval,

• among low up,

• among modulo,

• arith sliding,

• atleast,

• atmost,

• change,

• change continuity,

• change pair,

• circular change,

• count,

• counts,

• cyclic change,

• cyclic change joker,

• deepest valley,

• differ from at least k pos,

• distance change,

• exactly,

• group,

• group skip isolated item,

• heighest peak,

• inflexion,

• ith pos different from 0,

• longest change,

• max index,

• min index,

• peak,

• sliding card skip0,

• smooth,

• valley.

A constraint for which the catalog provides a deterministic automaton with counters but without array of counters.

Automaton without counters:

• arith,

• arith or,

• decreasing,

• domain constraint,

• elem,

• element,

• element greatereq,

• element lesseq,

• element matrix,

• element sparse,

• global contiguity,

• in,

• in same partition,

• increasing,

• int value precede,

• int value precede chain,

• lex between,

• lex different,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq,

• maximum,

• minimum,

• minimum except 0,

• minimum greater than,

• next element,

• no peak,

• no valley,

• not all equal,

• not in,

• sequence folding,

• stage element,

• strictly decreasing,

• strictly increasing,

• two orth are in contact,

• two orth do not overlap.

A constraint for which the catalog provides a deterministic automaton without counters and without array of counters.

Balanced tree:

• tree range.

A constraint that allows for expressing the fact that we want to cover a digraph by one (or more) balanced tree. A balanced tree is a tree where no leaf is much farther away than a given threshold from the root than any other leaf. The distance between a leaf and the root of a tree is the number of vertices on the path from the root to the leaf.

Balanced assignment:

• balance,

• balance interval,

• balance modulo,

• balance partition.

A constraint that allows for expressing a restriction on the maximum value of the difference between the maximum number of items assigned to the same equivalence class and the minimum number of items assigned to the same equivalence class.

Berge-acyclic constraint network:

• int value precede,

• int value precede chain,

• global contiguity,

• lex between,

• lex different,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq,

• two orth are in contact,

• two orth do not overlap.

A constraint for which the decomposition associated with its counter-free automaton is Berge-acyclic. Arc-consistency for a Berge-acyclic constraint network is achieved by making each constraint of the corresponding network arc-consistent. A constraint network for which the corresponding intersection graph does not contain any cycle and such that for any pair of constraints the two sets of involved variables share at most one variable is so-called Berge-acyclic. The intersection graph of a constraint network is built in the following way: to each vertex corresponds a constraint and there is an edge between two vertices if and only if the sets of variables involved in the two corresponding constraints intersect.

Parts (A), (B) and (C) of Figure 2.2 provide three examples of constraint networks, while parts (D), (E) and (F) give their corresponding intersection graph. The constraint network corresponding to part (A) is Berge-acyclic, while the constraint network associated with (B) is not (since its corresponding intersection graph (E) contains a cycle). Finally the constraint network depicted by (C) is also not Berge-acyclic since its third and fourth constraints share more than one variable. 

(A) (B) (C) (D) (E) (F)

Binary constraint:

• element greatereq,

• element lesseq,

• element sparse,

• eq set,

• stage element,

• sum set.

A constraint involving only two variables.

Bioinformatics:

• all differ from at least k pos,

• one tree,

• sequence folding.

Denotes the fact that, for a given constraint, either there is a reference to its uses in Bioinformatics, or it was inspired by a problem from the area of Bioinformatics.

Bipartite:

• alldifferent on intersection,

• among low up,

• arith or,

• cardinality atleast,

• cardinality atmost,

• cardinality atmost partition,

• common,

• common interval,

• common modulo,

• common partition,

• correspondence,

• counts.

Denotes the fact that a constraint is defined by one graph constraint for which the final graph is bipartite.

Bipartite matching:

• alldifferent,

• alldifferent between sets,

• disjoint,

• lex alldifferent. Denotes the fact that, for a given constraint, a bipartite matching algorithm can be used within its filtering algorithm. A bipartite matching is a subgraph that pairs every vertex of a bipartite graph with exactly one other vertex. A bipartite graph is a graph for which the set of vertices can be partitioned in two parts such that no two vertices in the same part are joined by an edge. Part (A) of Figure 2.3 shows a bipartite graph with a possible division of the vertices in black and white, while part (B) depicts with a thick line a bipartite matching of this graph.

(A) (B)

Boolean channel:

• domain constraint.

A constraint that allows for making the link between a set of 0-1 variables B 1 , B 2 , . . . , B n and a domain variable V . It enforces a condition of the form

V = i ⇔ B i = 1.

Border:

• period.

A constraint that can be related to the notion of border, which we define now. Given a sequence s = urv, r is a prefix of s when u is empty, r is a suffix of s when v is empty, r is a proper factor of s when r = s. A border of a non-empty sequence s is a proper factor of s, which is both a prefix and a suffix of s. We have that the smallest period of a sequence s is equal to the size of s minus the length of the longest border of s.

Bound-consistency:

• alldifferent,

• global cardinality,

• same,

• used by.

Denotes the fact that, for a given constraint, there is a filtering algorithm that ensures bound-consistency for its variables. A filtering algorithm ensures boundconsistency for a given constraint ctr if and only if for every variable V of ctr:

• There exists at least one solution for ctr such that V = min(V ) and every other variable W of ctr is assigned to a value located in its range min(W ).. max(W ),

• There exists at least one solution for ctr such that V = max(V ) and every other variable W of ctr is assigned to a value located in its range min(W ).. max(W ).

One interest of this definition is that it sometimes gives the opportunity to come up with a filtering algorithm that has a lower complexity than the algorithm that achieves arc-consistency. Discarding holes from the variables usually leads to graphs with a specific structure for which one can take advantage in order to derive more efficient graph algorithms. Filtering algorithms that achieve bound-consistency can also be used in a preprocessing phase before applying a more costly filtering algorithm that achieves arc-consistency. Note that there is a second definition of bound-consistency where the range min(W )..max(W ) is replaced by the domain of the variable W . However within the context of global constraints all current filtering algorithms don't refer to this second definition.

Centered cyclic(1) constraint network(1):

• domain constraint,

• in,

• maximum,

• minimum,

• minimum except 0,

• not in. 

Centered cyclic(2) constraint network(1):

• elem,

• element,

• element greatereq,

• element lesseq,

• element sparse,

• in same partition,

• minimum greater than,

• stage element. A constraint network corresponding to the pattern depicted by Figure 2.5. Circles depict variables, while arcs are represented by a set of variables. Gray circles correspond to optional variables.

Centered cyclic(3) constraint network(1):

• element matrix,

• next element. 

Channel routing:

• connect points.

A constraint that can be used for modeling channel routing problems. Channel routing consists of creating a layout in a rectangular region of a VLSI chip in order to link together the terminals of different modules of the chip. Connections are usually made by wire segments on two different layers: Horizontal wire segments on the first layer are placed along lines called tracks, while vertical wire segments on the second layer connect terminals to the horizontal wire segments, with vias at the intersection.

Channeling constraint:

• domain constraint, • inverse, • inverse set,
• link set to booleans,

• same.

Constraints that allow for linking two models of the same problem. Usually channeling constraints show up in the following context:

• When a problem can be modeled by using different types of variables (e.g. 0-1 variables, domain variables, set variables),

• When a problem can be modeled by using two distinct matrices of variables representing the same information redundantly,

• When, in a problem, the roles of the variables and the values can be interchanged. This is typically the case when we have a bijection between a set of variables and the values they can take.

Circuit:

• circuit,

• cutset,

• cycle,

• symmetric alldifferent.

A constraint such that its initial or its final graph corresponds to zero (e.g. cutset), one (e.g. circuit) or several (e.g. cycle, symmetric alldifferent) vertexdisjoint circuits.

Circular sliding cyclic(1) constraint network(2):

• circular change.

A constraint network corresponding to the pattern depicted by Figure 2.7. Circles depict variables, while arcs are represented by a set of variables.

These two circles correspond to the same variable Cluster:

• circuit cluster.
A constraint that partitions the vertices of an initial graph into several clusters.

Coloured:

• assign and counts, • coloured cumulative, • coloured cumulatives,

• cycle card on path,

• interval and count.

A constraint with a collection where one of the attributes is a color.

Conditional constraint:

• size maximal sequence alldifferent,

• size maximal starting sequence alldifferent.

A constraint that allows for expressing the fact that some constraints can be enforced during the enumeration phase.

Connected component:

• alldifferent on intersection,

• binary tree,

• change continuity,

• circuit cluster,

• cycle,

• cycle card on path,

• cycle resource,

• global contiguity,

• group,

• k cut,
• map,

• nvalue on intersection,

• temporal path,

• tree,

• tree range,

• tree resource.

Denotes the fact that a constraint uses in its definition a graph property (e.g. MAX NCC, MIN NCC, NCC) constraining the connected components of its associated final graph.

Consecutive loops are connected:

• group.

Denotes the fact that the graph constraints of a global constraint use only the PATH and the LOOP arc generators and that their final graphs do not contain consecutive vertices that have a loop and that are not connected together by an arc.

Consecutive values:

• max size set of consecutive var,

• min size set of consecutive var,

• nset of consecutive values.

A constraint for which the definition involves the notion of consecutive values assigned to the variables of a collection of domain variables.

Constraint between two collections of variables:

• common,

• common interval,

• common modulo,

• common partition,

• same,

• same and global cardinality,

• same intersection,

• same interval,

• same modulo,

• same partition,

• soft same interval var,

• soft same modulo var,

• soft same partition var,

• soft same var,

• soft used by interval var,

• soft used by modulo var,

• soft used by partition var,

• soft used by var,

• sort,

• used by,

• used by interval,

• used by modulo,

• used by partition.

A constraint involving only two collections of domain variables in its arguments.

Constraint between three collections of variables:

• correspondence,

• sort permutation.

A constraint involving only three collections of domain variables in its arguments.

Constraint involving set variables:

• alldifferent between sets,

• clique,

• eq set,

• in set,

• inverse set,

• k cut,

• link set to booleans,

• path from to,

• set value precede,

• strongly connected,

• sum set,

• symmetric cardinality,

• symmetric gcc,

• tour.

A constraint involving set variables in its arguments.

Constraint on the intersection:

• alldifferent on intersection,

• nvalue on intersection ,

• same intersection .

Denotes the fact that a constraint involving two collections of variables imposes a restriction on the values that occur in both collections.

Contact:

• orths are connected,

• two orth are in contact.

A constraint enforcing that some orthotopes touch each other. Part (A) of Figure 2.8 shows two orthotopes that are in contact while parts (B) and (C) give two examples of orthotopes that are not in contact. 

Convex:

• global contiguity.

A constraint involving the notion of convexity. A subset S of the plane is called convex if and only if for any pair of points p, q of this subset the corresponding line-segment is contained in S. Part (A) of Figure 2.9 gives an example of convex set, while part (B) depicts an example of non-convex set. • sum.

Given a non-convex set S, R is a convex outer approximation of S if:

• R is convex,

• If s ∈ S, then s ∈ R.
Given a non-convex set S, R is the convex hull of S if:

• R is a convex outer approximation of S,

• For every T where T is a convex outer approximation of S, R ⊆ T .

Part (A) of Figure 2.10 depicts a non-convex set, while part (B) gives its corresponding convex hull. 

(A) (B)

Cost filtering constraint:

• global cardinality with costs,

• minimum weight alldifferent,

• sum of weights of distinct values,

• weighted partial alldiff.

A constraint that has a set of decision variables as well as a cost variable and for which there exists a filtering algorithm that restricts the state variables from the minimum or maximum value of the cost variable.

Cost matrix:

• global cardinality with costs,

• minimum weight alldifferent.

A constraint for which a first argument corresponds to a collection of variables Vars, a second argument to a cost matrix M, and a third argument to a cost variable C. Let Vals denote the set of values that can be assigned to the variables of Vars. The cost matrix defines for each pair v, u (v ∈ Vars, u ∈ Vals) an elementary cost, which is used for computing C when value u is assigned to variable v.

Counting constraint:

• among,

• among diff 0,

• among interval,

• among low up,

• among modulo,

• count,

• counts,

• discrepancy,

• exactly,

• nclass,

• nequivalence,

• ninterval,

• npair,

• nvalue,

• nvalue on intersection,

• nvalues,

• nvalues except 0.

A constraint restricting the number of occurrences of some values (respectively some pairs of values) within a given collection of domain variables (respectively pairs of domain variables).

Cycle:

• cycle,

• symmetric alldifferent.

A constraint that can be used for restricting the number of cycles of a permutation or for restricting the size of the cycles of a permutation.

Cyclic:

• circular change,

• cyclic change,

• cyclic change joker,

• stretch circuit.

A constraint that involves a kind of cyclicity in its definition. It either uses the arc generator CIRCUIT or an arc constraint involving mod .

Data constraint:

• elem,

• element,

• element greatereq,

• element lesseq,

• element matrix,

• element sparse,

• elements,

• elements alldifferent,

• elements sparse,

• in relation,

• ith pos different from 0,

• next element,

• next greater element,

• stage element,

• sum.

A constraint that allows for representing an access to an element of a data structure (e.g. a table, a matrix, a relation) or to compute a value from a given data structure.

Decomposition:

• all min dist ,

• all differ from at least k pos,

• among seq ,

• arith ,

• arith or ,

• arith sliding ,

• decreasing ,

• diffn , • diffn column , • diffn include , • disjunctive , • domain constraint ,
• increasing ,

• lex alldifferent ,

• lex chain less ,

• lex chain lesseq ,

• link set to booleans ,

• orth link ori siz end ,

• sequence folding ,

• sliding distribution ,

• sliding sum ,

• strictly decreasing ,

• strictly increasing ,

• symmetric cardinality ,

• symmetric gcc .

A constraint for which the catalog provides a description in terms of a conjunction of more elementary constraints. This is the case when the constraint is described by one or several graph constraints that all satisfy the following property: The description uses the NARC graph property and forces all arcs of the initial graph to belong to the final graph. Most of the time we have only one single graph constraint. But some constraints (e.g. diffn) use more than one. Note that the arc constraint can sometimes be a logical expression involving several constraints (e.g. domain constraint).

Decomposition-based violation measure:

• soft alldifferent ctr.

A soft constraint associated to a constraint which can be described in terms of a conjunction of more elementary constraints for which the violation cost is the number of violated elementary constraints.

Demand profile:

• cumulatives,

• same and global cardinality.

A constraint that allows for representing problems where one has to allocate resources in order to cover a given demand. A profile specifies for each instant the minimum, and possibly maximum, required demand.

Derived collection:

• assign and counts,

• correspondence,

• cumulative two d,
• cumulative with level of priority,

• cumulatives,

• cycle resource,

• domain constraint,

• element,

• element matrix,

• element sparse,

• elements sparse,

• golomb,

• in,

• in relation,

• in same partition,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq,

• link set to booleans,

• minimum greater than,

• next element,

• next greater element,

• not in,

• sliding time window from start,

• sort permutation,

• track,

• tree resource,

• two layer edge crossing.

A constraint that uses one or several derived collections.

Difference:

• golomb.

Denotes the fact that the definition in terms of graph property of a constraint involves a difference between two variables within its arc constraint.

Directed acyclic graph:

• cutset.

A constraint that forces the final graph to be a directed acyclic graph. A directed acyclic graph is a digraph with no path starting and ending at the same vertex.

Disequality:

• all differ from at least k pos,

• alldifferent,

• alldifferent between sets,

• disjoint,

• elements alldifferent,

• golomb,

• lex different,
• not all equal,

• not in,

• soft alldifferent ctr,

• soft alldifferent var,

• symmetric alldifferent.

Denotes the fact that a disequality between two domain variables, one domain variable and a fixed value, or two set variables is used within the definition of a constraint. Denotes also the fact that the notion of disequality can be used within the informal definition of a constraint. This is for instance the case for the relaxation of the alldifferent constraint (i.e. soft alldifferent ctr, soft alldifferent var), which do not strictly enforce a disequality.

Domain channel:

• domain constraint.

A constraint that allows for making the link between a domain variable V and a set of 0-

1 variables B 1 , B 2 , . . . , B n . It enforces a condition of the form V = i ⇔ B i = 1.

Domain definition:

• arith, • in,

• not in.

A constraint that is used for defining the initial domain of one or several domain variables or for removing some values from the domain of one or several domain variables.

Domination:

• nvalue,

• sum of weights of distinct values.

A constraint that can be used for expressing directly the fact that we search for a dominating set in an undirected graph. Given an undirected graph G = (V, E) where V is a finite set of vertices and E a finite set of unordered pairs of distinct elements from V , a set S is a dominating set if for every vertex u ∈ V -S there exists a vertex v ∈ S such that u is adjacent to v. Part (A) of Figure 2.11 gives an undirected graph G, while part (B) depicts a dominating set S = {e, f, g} in G. A constraint that can be used as a channeling constraint in a problem where the roles of the variables and the values can be interchanged. This is for instance the case when we have a bijection between a set of variables and the values they can take.

(A) (B) S= {e,f,g } a b c d e f g h i j k a b c d e f g h i j k

Duplicated variables:

• global cardinality, • lex greater, • lex greatereq,

• lex less,

• lex lesseq.

A constraint for which the situation where the same variable can occur more than once was considered in order to derive a better filtering algorithm or to prove a complexity result for achieving arc-consistency.

Empty intersection:

• disjoint.

A constraint that enforces an empty intersection between two sets of variables.

Equality:

• eq set.

Denotes the fact that the notion of equality can be used within the informal definition of a constraint.

Equality between multisets:

• same,

• same and global cardinality.

A constraint that can be used for modeling an equality constraint between two multisets.

Equivalence:

• balance interval,

• balance modulo,

• balance partition,

• balance,

• max nvalue,

• min nvalue,

• nclass,

• nequivalence,

• ninterval,

• not all equal,

• npair,

• nvalue, • nvalues,

• soft alldifferent var.

Denotes the fact that a constraint is defined by a graph constraint for which the final graph is reflexive, symmetric and transitive.

Euler knight:

• cycle.

Denotes the fact that a constraint can be used for modeling the Euler knight problem. The Euler knight problem consists of finding a sequence of moves on a chessboard by a knight such that each square of the board is visited exactly once.

Excluded:

• not in.

A constraint that prevents certain values to be taken by a variable.

Extension:

• in relation.

A constraint that is defined by explicitly providing all its solutions.

Facilities location problem:

• cycle or accessibility,

• sum of weights of distinct values.

A constraint that allows for modeling a facilities location problem. In a facilities location problem one has to select a subset of locations from a given initial set so that a given set of conditions holds.

Flow:

• global cardinality, • global cardinality low up, • same, • soft alldifferent ctr,

• symmetric cardinality,

• symmetric gcc,

• used by.

A constraint for which there is a filtering algorithm based on an algorithm that finds a feasible flow in a graph. This graph is constructed from the variables of the constraint as well as from their potential values.

Frequency allocation problem:

• all min dist.

A constraint that was used for modeling frequency allocation problems.

Functional dependency:

• elem, • element, • elements,

• elements alldifferent,

• stage element.

A constraint that allows for representing a functional dependency between two domain variables. A variable X is said to functionally determine another variable Y if and only if each potential value of X is associated with exactly one potential value of Y .

Geometrical constraint:

• connect points,

• crossing,

• cumulative two d,

• cycle or accessibility,

• diffn,

• diffn column,

• diffn include,

• graph crossing,

• orchard,

• orth on the ground,

• orth on to of orth,

• orths are connected,

• place in pyramid,

• polyomino,

• sequence folding,

• two layer edge crossing,

• two orth are in contact,

• two orth column,

• two orth do not overlap,

• two orth include.

A constraint between geometrical objects (e.g. points, line-segments, rectangles, parallelepipeds, orthotopes) or a constraint selecting a subset of points so that a given geometrical property holds (e.g. distance).

Golomb ruler:

• golomb.

A constraint that allows for expressing the Golomb ruler problem. A Golomb ruler is a set of integers (marks) a 1 < • • • < a k such that all the differences a ia j (i > j) are distinct.

Graph constraint:

• binary tree,

• circuit,

• circuit cluster, • clique, • cutset, • cycle,
• cycle card on path,

• cycle or accessibility,

• cycle resource,

• derangement,

• inverse,

• k cut,

• map,

• one tree,

• path from to,

• strongly connected,

• symmetric alldifferent,

• temporal path,

• tour,

• tree,

• tree range,

• tree resource.

A constraint that selects a subgraph from a given initial graph so that this subgraph satisfies a given property.

Graph partitioning constraint:

• binary tree,

• circuit,

• cycle,

• cycle resource,

• map,

• symmetric alldifferent,

• temporal path,

• tree,

• tree range,

• tree resource.

A constraint that partitions the vertices of a given initial graph and that keeps one single successor for each vertex so that each partition corresponds to a specific pattern.

Guillotine cut:

• diffn column,

• two orth column.

A constraint that can enforce some kind of guillotine cut. In a lot of cutting problems the stock sheet as well as the pieces to be cut are all shaped as rectangles. In a guillotine cutting pattern all cuts must go from one edge of the rectangle corresponding to the stock sheet to the opposite edge.

Hall interval:

• alldifferent,

• global cardinality.

A constraint for which some filtering algorithms take advantage of Hall intervals. Given a set of domain variables, a Hall set is a set of values H = {v 1 , v 2 , . . . , v h } such that there are h variables whose domains are contained in H. A Hall interval is a Hall set that consists of an interval of values (and can therefore be specified by its endpoints).

Hamiltonian:

• circuit,

• tour.

A constraint enforcing to cover a graph with one Hamiltonian circuit or cycle. This corresponds to finding a circuit (respectively a cycle) passing all the vertices exactly once of a given digraph (respectively undirected graph).

Heuristics:

• discrepancy.

A constraint that was introduced for expressing a heuristics.

Hypergraph:

• among seq,

• arith sliding,

• orchard,

• relaxed sliding sum,

• size maximal sequence alldifferent,

• size maximal starting sequence alldifferent,

• sliding distribution,

• sliding sum.

Denotes the fact that a constraint uses in its definition at least one arc constraint involving more than two vertices.

Included:

• in,

• in set.

Enforces that a domain or a set variable take a value within a list of values (possibly one single value).

Inclusion:

• used by,

• used by interval,

• used by modulo,

• used by partition.

Denotes the fact that a constraint can model the inclusion of one multiset within another multiset. Usually we consider multiset of values (e.g. used by) but this can also be multisets of equivalence classes (e.g. used by interval,used by modulo, used by partition).

Indistinguishable values:

• int value precede,

• int value precede chain,

• set value precede.

A constraint which can be used for breaking symmetries of indistinguishable values. Indistinguishable values in a solution of a problem can be swapped to construct another solution of the same problem.

Interval:

• alldifferent interval,

• among interval,

• balance interval,

• common interval,

• interval and count,

• interval and sum,

• ninterval,

• same interval,

• soft same interval var,

• soft used by interval var,

• used by interval.

Denotes the fact that a constraint puts a restriction related to a set of fixed intervals (or on one fixed interval).

Joker value:

• alldifferent except 0,

• among diff 0, • connect points, • cyclic change joker, • ith pos different from 0,
• minimum except 0,

• nvalues except 0,

• period except 0,

• weighted partial alldiff.

Denotes the fact that, for some variables of a given constraint, there exist specific values that have a special meaning: for instance they can be assigned without breaking the constraint. As an example consider the alldifferent except 0 constraint, which forces a set of variables to take distinct values, except those variables that are assigned to 0.

Lexicographic order:

• allperm,

• lex2,

• lex between,

• lex chain less,

• lex chain lesseq,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq,

• strict lex2.

A constraint involving a lexicographic ordering relation in its definition.

Limited discrepancy search:

• discrepancy.

A constraint for simulating limited discrepancy search. Limited discrepancy search is useful for problems for which there is a successor ordering heuristics that usually leads directly to a solution. It consists of systematically searching all paths that differ from the heuristic path in at most a very small number of discrepancies.

Linear programming:

• circuit,

• cumulative,

• domain constraint,

• element greatereq,

• element lesseq,

• k cut,

• link set to booleans,

• path from to,

• strongly connected,

• sum,

• tour.

A constraint for which a reference provides a linear relaxation (e.g. cumulative, sum) or a constraint that was also proposed within the context of linear programming (e.g. circuit, domain constraint).

Line-segments intersection:

• crossing, • graph crossing,

• two layer edge crossing.

A constraint on the number of line-segment intersections.

Magic hexagon:

• global cardinality with costs.

A constraint that can be used for modeling the magic hexagon problem. The magic hexagon problem consists of finding an arrangement of n hexagons, where an integer from 1 to n is assigned to each hexagon so that:

• Each integer from 1 to n occurs exactly once,

• The sum of the numbers along any straight line is the same. Figure 2.12 shows a magic hexagon. A constraint that allows for modeling the magic series problem with one single constraint. A non-empty finite series S = (s 0 , s 1 , . . . , s n ) is magic if and only if there are s i occurrences of i in S for each integer i ranging from 0 to n. 3, 2, 1, 1, 0, 0, 0 is an example of such a magic series for n = 6.

Magic square:

• global cardinality with costs.

A constraint that can be used for modeling the magic square problem. The magic square problem consists in filling an n by n square with n 2 distinct integers so that the sum of each row and column and of both main diagonals be the same.

Matching:

• symmetric alldifferent.

A constraint that allows for expressing the fact that we want to find a perfect matching on a graph with an even number of vertices. A perfect matching on a graph G with n vertices is a set of n/2 edges of G such that no two edges have a vertex in common.

Matrix:

• allperm,

• colored matrix, • element matrix, • lex2, • strict lex2.
A constraint on a matrix of domain variables (e.g. allperm, colored matrix, lex2, strict lex2) or a constraint that allows for representing the access to an element of a matrix (e.g. element matrix).

Matrix model:

• allperm,

• colored matrix,

• lex2,

• strict lex2.

A constraint on a matrix of domain variables. A matrix model is a model involving one matrix of domain variables.

Matrix symmetry:

• lex2, • lex chain less, • lex chain lesseq, • lex greater,

• lex greatereq,

• lex less,

• lex lesseq.

A constraint that can be used for breaking certain types of symmetries within a matrix of domain variables.

Maximum:

• max index,

• max n,

• max nvalue,

• max size set of consecutive var,

• maximum,

• maximum modulo.

A constraint for which the definition involves the notion of maximum.

Maximum clique:

• clique.

A constraint that can be used for searching for a maximum clique in a graph. A maximum clique is a clique of maximum size, a clique being a subset of vertices such that each vertex is connected to all other vertices of the clique.

Maximum number of occurrences:

• max nvalue.

A constraint that restricts the maximum number of times that a given value is taken.

maxint:

• deepest valley, • min n, • minimum,

• minimum except 0,

• minimum modulo.

A constraint that uses maxint in its definition in terms of graph properties or in terms of automata. maxint is the largest integer that can be represented on a machine.

Minimum:

• min index,

• min n,

• min nvalue,

• min size set of consecutive var,

• minimum,

• minimum except 0,

• minimum greater than,

• minimum modulo,

• next element,

• next greater element.

A constraint for which the definition involves the notion of minimum.

Minimum number of occurrences:

• min nvalue.

A constraint that restricts the minimum number of times that a given value is taken.

Modulo:

• alldifferent modulo,

• among modulo,

• balance modulo,

• common modulo,

• maximum modulo,

• minimum modulo,

• same modulo,

• soft same modulo var,

• soft used by modulo var,

• used by modulo.

Denotes the fact that the arc constraint associated with a given constraint mentions the function mod .

Multiset:

• same,

• same and global cardinality.

A constraint using domain variables that can be used for modeling some constraint between multisets.

Multiset ordering:

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq.

Similar constraints exist also within the context of multisets.

no loop:

• alldifferent on intersection,

• all differ from at least k pos,

• among low up,

• arith or,

• cardinality atleast,

• cardinality atmost partition,

• cardinality atmost,

• change continuity,

• change pair,

• change partition,

• change,

• common interval,

• common modulo,

• common partition,

• common,

• correspondence,

• counts,

• crossing,

• cyclic change joker,

• cyclic change.

Denotes a constraint defined by a graph constraint for which the final graph doesn't have any loop.

n-queen:

• alldifferent,

• inverse.

A constraint that can be used for modeling the n-queen problem. Place n queens on a n by n chessboard in such a way that no queen attacks another. Two queens attack each other if they are located on the same column, on the same row or on the same diagonal.

Non-overlapping:

• diffn, • disjoint tasks, • orth on top of orth, • orths are connected,

• place in pyramid,

• two orth are in contact,

• two orth do not overlap.

A constraint that forces a collection of geometrical objets to not pairwise overlap.

Number of changes:

• change, • change pair, • change partition, • circular change,

• cyclic change,

• cyclic change joker,

• smooth.

A constraint restricting the number of times that a given binary constraint holds on consecutive items of a given collection.

Number of distinct equivalence classes:

• nclass,

• nequivalence,

• ninterval,

• npair,

• nvalue,

• nvalues.

A constraint on the number of distinct equivalence classes assigned to a collection of domain variables.

Number of distinct values:

• assign and nvalues,

• coloured cumulative, • coloured cumulatives, • nvalue,
• nvalue on intersection,

• nvalues,

• nvalues except 0.

A constraint on the number of distinct values assigned to one or several set of variables.

Obscure:

• one tree.

A constraint for which a better description is needed.

One succ:

• alldifferent between sets,

• alldifferent except 0,

• alldifferent interval,

• alldifferent modulo,

• alldifferent partition,

• alldifferent,

• binary tree,

• circuit cluster,

• circuit,

• cycle card on path,

• cycle,

• minimum weight alldifferent.

Denotes the fact that a constraint is defined by one single graph constraint such that:

• All the vertices of its initial graph belong to the final graph,

• All the vertices of its final graph have exactly one successor.

Order constraint:

• allperm,

• decreasing,

• increasing,

• int value precede,

• int value precede chain,

• lex2,

• lex between,

• lex chain less,

• lex chain lesseq,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq,

• max index,

• max n,

• maximum,

• maximum modulo,

• min index,

• min n,

• minimum,

• minimum except 0,

• minimum greater than,

• minimum modulo,

• next greater element,

• set value precede,

• strict lex2,

• strictly decreasing,

• strictly increasing.

A constraint involving an ordering relation in its definition. An ordering relation R on a set S is a relation such that, for every a, b, c ∈ S:

• a R b or b R a, • If a R b and b R c, then a R c, • If a R b and b R a then a = b.

Orthotope:

• diffn,

• diffn column,

• diffn include,

• orth link ori siz end,

• orth on the ground,

• orth on top of orth,

• orths are connected,

• place in pyramid,

• two orth are in contact,

• two orth column,

• two orth do not overlap,

• two orth include.

A constraint involving orthotopes. An orthotope corresponds to the generalization of the rectangle and box to the n-dimensional case.

Pair:

• change pair,

• npair.

A constraint involving a collection of pairs of variables.

Partition:

• alldifferent partition,

• balance partition,

• cardinality atmost partition,

• change partition,

• common partition,

• in same partition,

• nclass,

• same partition,

• soft same partition var,

• soft used by partition var,

• used by partition.

A constraint involving in one of its argument a partitioning of a given finite set of integers.

Path:

• path from to,

• temporal path.

A constraint allowing for expressing the fact that we search for one or several vertex-disjoint simple paths. Within a digraph a simple path is a set of links that are traversed in the same direction and such that each vertex of the simple path is visited exactly once.

Pentomino:

• polyomino.

Can be used to model a pentomino. A pentomino is an arrangement of five unit squares that are joined along their edges.

Periodic:

• period,

• period except 0.

A constraint that can be used for modeling the fact that we are looking for a sequence that has some kind of periodicity.

Permutation:

• alldifferent,

• change continuity,

• circuit,

• correspondence,

• cycle,

• derangement,

• elements alldifferent,

• inverse,

• same,

• same and global cardinality,

• same interval,

• same modulo,

• same partition,

• sort,

• sort permutation,

• symmetric alldifferent.

A constraint that can be used for modeling a permutation or a specific type or characteristic of a permutation. A permutation is a rearrangement of elements, where none are changed, added or lost.

Permutation channel:

• inverse.

A constraint that allows for modeling the link between a permutation and its inverse permutation. A permutation is a rearrangement of n distinct integers between 1 and n, where none are changed, added or lost. An inverse permutation is a permutation in which each number and the number of its position are swapped.

Phylogeny:

• one tree.

A constraint inspired by the area of phylogeny. Phylogeny is concerned by the classification of organism based on genetic connections between species.

Pick-up delivery:

• cycle.

A constraint that was used for modeling a pick-up delivery problem. In a pick-up delivery problem, vehicles have to transport loads from origins to destinations without any transshipment at intermediate locations.

Polygon:

• diffn.

A constraint that can be generalized to handle polygons.

Positioning constraint:

• diffn column,

• diffn include,

• two orth column,

• two orth include.

A constraint restricting the relative positioning of two or more geometrical objects.

Predefined constraint:

• allperm,

• colored matrix,

• eq set,

• in set,

• lex2,

• pattern,

• period,

• period except 0,

• set value precede,

• strict lex2.

A constraint for which the meaning is not explicitly described in terms of graph properties or in terms of automata.

Producer-consumer:

• cumulative,

• cumulatives.

A constraint that can be used for modeling problems where a first set of tasks produces a resource, while a second set of tasks consumes this resource. The constraint allows for imposing a limit on the minimum or the maximum stock at each instant.

Product:

• cumulative product,

• product ctr.

A constraint involving a product in its definition.

Proximity constraint:

• alldifferent same value,

• distance between,

• distance change.

A constraint restricting the distance between two collections of variables according to some measure.

Range:

• range ctr.

An arithmetic constraint involving a difference between a maximum and a minimum value.

Rank:

• max n,

• min n.

A positioning constraint according to an ordering relation.

Relation:

• in relation,

• symmetric cardinality,

• symmetric gcc.

A constraint that allows for representing the access to an element of a relation or to model a relation. A relation is a subset of the product of several finite sets.

Relaxation:

• alldifferent except 0,

• relaxed sliding sum,

• soft alldifferent ctr,

• soft alldifferent var,

• soft same interval var,

• soft same modulo var,

• soft same partition var,

• soft same var,

• soft used by interval var,

• soft used by modulo var,

• soft used by partition var,

• soft used by var,

• sum of weights of distinct values,

• weighted partial alldiff.

Denotes the fact that a constraint allows for specifying a partial degree of satisfaction.

Resource constraint:

• bin packing,

• coloured cumulative,

• coloured cumulatives,

• cumulative,

• cumulative product,

• cumulative with level of priority,

• cumulatives,

• cycle resource,

• disjunctive,

• interval and count,

• interval and sum,

• track,

• tree resource.

A constraint restricting the utilization of a resource. The utilization of a resource is computed from all items that are assigned to that resource.

Run of a permutation:

• change continuity.

A constraint that can be used for putting a restriction on the size of the longest run of a permutation. A run is a maximal increasing contiguous subsequence in a permutation.

Scalar product:

• global cardinality with costs.

A constraint that can be used for modeling a scalar product constraint.

Sequence:

• among seq,

• arith sliding,

• cycle card on path,

• deepest valley,

• heighest peak,

• inflexion,

• no peak,

• no valley,

• peak,

• period,

• period except 0,

• relaxed sliding sum,

• sequence folding,

• size maximal sequence alldifferent,

• size maximal starting sequence alldifferent,

• sliding card skip0,

• sliding distribution,

• sliding sum,

• valley.

Constrains consecutive variables (possibly not all) of a given collection of domain variables or consecutive vertices of a simple path or a simple circuit. Also a constraint restricting a variable (when fixed to 0 the variable may be omitted) according to consecutive variables of a given collection of domain variables.

Set channel:

• inverse set,

• link set to booleans.

A channeling constraint involving one or several set variables.

Scheduling constraint:

• coloured cumulative,

• coloured cumulatives,

• cumulative,

• cumulative product,

• cumulative with level of priority,

• cumulatives,

• disjoint tasks,

• disjunctive,

• period,

• period except 0,

• shift.

A constraint useful for the area of scheduling. Scheduling is concerned with the allocation or assignment of resources (e.g. manpower, machines, money), over time, to a set of tasks.

Shared table:

• elements,

• elements sparse.

A constraint for which the same table is shared by several element constraints.

Sliding cyclic(1) constraint network(1):

• decreasing,

• increasing,

• no peak,

• no valley,

• not all equal,

• strictly decreasing,

• strictly increasing.

A constraint network corresponding to the pattern depicted by Figure 2.13. Circles depict variables, while arcs are represented by a set of variables. 

Sliding cyclic(1) constraint network(2):

• change,

• change continuity,

• cyclic change,

• cyclic change joker,

• deepest valley,

• heighest peak,

• inflexion,

• peak,

• smooth,

• valley.

A constraint network corresponding to the pattern depicted by Figure 2.14. Circles depict variables, while arcs are represented by a set of variables. • longest change.

A constraint network corresponding to the pattern depicted by Figure 2.15. Circles depict variables, while arcs are represented by a set of variables. A constraint network corresponding to the pattern depicted by Figure 2.16. Circles depict variables, while arcs are represented by a set of variables.

Sliding sequence constraint:

• among seq,

• arith sliding,

• cycle card on path,

• pattern,

• relaxed sliding sum,

• sliding card skip0,

• sliding distribution,

• size maximal sequence alldifferent,

• size maximal starting sequence alldifferent,

• sliding sum,

• sliding time window,

• sliding time window from start,

• sliding time window sum,

• stretch circuit,

• stretch path.

A constraint enforcing a condition on sliding sequences of domain variables that partially overlap or a constraint computing a quantity from a set of sliding sequences. These sliding sequences can be either initially given or dynamically constructed. In the latter case they can for instance correspond to adjacent vertices of a path that has to be built.

Soft constraint:

• relaxed sliding sum,

• soft alldifferent ctr,

• soft alldifferent var,

• soft same interval var,

• soft same modulo var,

• soft same partition var,

• soft same var,

• soft used by interval var,

• soft used by modulo var,

• soft used by partition var,

• soft used by var,

• weighted partial alldiff.

A constraint that is a relaxed form of one other constraint.

Sort:

• sort,

• sort permutation.

A constraint involving the notion of sorting in its definition.

Sparse functional dependency:

• element sparse,

• elements sparse.

A constraint that allows for representing a functional dependency between two domain variables, where both variables have a restricted number of values. A variable X is said to functionally determine another variable Y if and only if each potential value of X is associated with exactly one potential value of Y .

Sparse table:

• element sparse,

• elements sparse.

An element constraint for which the table is sparse.

Sport timetabling:

• symmetric alldifferent.

A constraint used for creating sports schedules.

Squared squares:

• cumulative,

• diffn.

A constraint that can be used for modeling the squared squares problem: It consists of tiling a square with smaller squares such that each of the smaller squares has a different integer size.

Strongly connected component:

• connect points,

• cycle,

• cycle or accessibility,

• cycle resource,

• group skip isolated item,

• nclass,

• nequivalence,

• ninterval,

• npair,

• nset of consecutive values,

• nvalue,

• nvalues,

• nvalues except 0,

• polyomino,

• soft alldifferent var,

• strongly connected.

Denotes the fact that a constraint restricts the strongly connected components of its associated final graph. This is usually done by using a graph property like MAX NSCC, MIN NSCC or NSCC.

Sum:

• sliding sum,

• sliding time window sum, • sum,

• sum ctr,

• sum set.

A constraint involving one or several sums.

Sweep:

• diffn.

A constraint for which the filtering algorithm may use a sweep algorithm. A sweep algorithm solves a problem by moving an imaginary object (usually a line or a plane). The object does not move continuously, but only at particular points where we actually do something. A sweep algorithm uses the following two data structures:

• A data structure called the sweep status, which contains information related to the current position of the object that moves,

• A data structure named the event point series, which holds the events to process.

The algorithm initializes the sweep status for the initial position of the imaginary object. Then the object jumps from one event to the next event; each event is handled by updating the status of the sweep.

Symmetry:

• allperm,

• int value precede,

• int value precede chain,

• lex2,

• lex between,

• lex chain less,

• lex chain lesseq,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq,

• set value precede,

• strict lex2.

A constraint that can be used for breaking certain types of symmetries.

Symmetric:

• connect points.

Denotes the fact that a constraint is defined by a graph constraint for which the final graph is symmetric.

Table:

• elem,

• element,

• element greatereq,

• element lesseq,

• element sparse,

• elements,

• elements alldifferent,

• elements sparse,

• ith pos different from 0,

• next element,

• next greater element,

• stage element.

A constraint that allows for representing the access to an element of a table.

Temporal constraint:

• coloured cumulative,

• coloured cumulatives,

• cumulative,

• cumulative product,

• cumulative with level of priority,

• cumulatives,

• disjoint tasks,

• interval and count,

• interval and sum,

• shift,

• sliding time window,

• sliding time window from start,

• sliding time window sum,

• track.

A constraint involving the notion of time.

Ternary constraint:

• element matrix.

A constraint involving only three variables.

Timetabling constraint:

• change,

• change continuity,

• change pair,

• change partition,

• circular change,

• colored matrix,

• cyclic change,

• cyclic change joker,

• group,

• group skip isolated item,

• interval and count,

• interval and sum,

• longest change,

• pattern,

• period,

• period except 0,

• shift,

• sliding card skip0,

• smooth,

• stretch circuit,

• stretch path,

• symmetric alldifferent,

• symmetric cardinality,

• symmetric gcc,

• track.

A constraint that can occur in timetabling problems.

Time window:

• sliding time window sum.

A constraint involving one or several date ranges.

Touch:

• orths are connected,

• two orth are in contact.

A constraint enforcing that some orthotopes touch each other (see Contact).

Tree:

• binary tree,

• one tree,

• tree,

• tree range,

• tree resource.

A constraint that partitions the vertices of a given initial graph and that keeps one single successor for each vertex so that each partition corresponds to one tree. Each vertex points to its father or to itself if it corresponds to the root of a tree.

Tuple:

• in relation,

• vec eq tuple.

A constraint involving a tuple. A tuple is an element of a relation, where a relation is a subset of the product of several finite sets.

Unary constraint:

• in,

• not in.

A constraint involving only one variable.

Undirected graph:

• tour.

A constraint that deals with an undirected graph. An undirected graph is a graph whose edges consist of unordered pairs of vertices.

Value constraint:

• all min dist ,

• alldifferent ,

• alldifferent except 0 ,

• alldifferent interval ,

• alldifferent modulo ,

• alldifferent on intersection ,

• alldifferent partition ,

• among ,

• among diff 0 ,

• among interval ,

• among low up ,

• among modulo ,

• arith ,

• arith or ,

• atleast ,

• atmost ,

• balance ,

• balance interval ,

• balance modulo ,

• balance partition ,

• cardinality atleast ,

• cardinality atmost ,

• cardinality atmost partition ,

• count ,

• counts ,

• differ from at least k pos ,

• discrepancy ,

• disjoint ,

• exactly ,

• global cardinality ,

• global cardinality low up ,

• in ,

• in same partition ,

• in set ,

• link set to booleans ,

• max nvalue ,

• max size set of consecutive var,

• min nvalue ,

• min size set of consecutive var,

• not all equal ,

• not in ,

• nset of consecutive values ,

• same and global cardinality ,

• soft alldifferent ctr ,

• soft alldifferent var ,

• vec eq tuple .

A constraint that puts a restriction on how values can be assigned to usually one or several collections of variables, or possibly one or two variables. These variables usually correspond to domain variables but can sometimes be set variables.

Value partitioning constraint:

• nclass, • nequivalence, • ninterval, • npair, • nvalue,
• nvalues,

• nvalues except 0.

A constraint involving a partitioning of values in its definition.

Value precedence:

• int value precede,

• int value precede chain,

• set value precede.

A constraint that allows for expressing symmetries between values that are assigned to variables.

Variable-based violation measure:

• soft alldifferent var,

• soft same interval var,

• soft same modulo var,

• soft same partition var, • soft same var,

• soft used by interval var,

• soft used by modulo var,

• soft used by partition var,

• soft used by var.

A soft constraint for which the violation cost is the minimum number of variables to unassign in order to get back to a solution.

Variable indexing:

• indexed sum,

• elem,

• element,

• element greatereq,

• element lesseq,

• element sparse.

A constraint where one or several variables are used as an index into an array.

Variable subscript:

• indexed sum, • elem, • element,

• element greatereq,

• element lesseq.

A constraint that can be used to model one or several variables that have a variable subscript.

Vector:

• all differ from at least k pos,

• differ from at least k pos,

• lex alldifferent,

• lex between,

• lex chain less,

• lex chain lesseq,

• lex different,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq.

Denotes the fact that one (or more) argument of a constraint corresponds to a collection of vectors that all have the same number of components.

Vpartition:

• group.

Denotes the fact that a constraint is defined by two graph constraints C 1 and C 2 such that:

• The two graph constraints have the same initial graph G i ,

• Each vertex of the initial graph G i belongs to exactly one of the final graphs associated with C 1 and C 2 .

Weighted assignment:

• global cardinality with costs,

• minimum weight alldifferent,

• sum of weights of distinct values,

• weighted partial alldiff.

A constraint expressing an assignment problem such that a cost can be computed from each solution.

Workload covering:

• cumulatives.

A constraint that can be used for modeling problems where a first set of tasks T 1 has to cover a second set of tasks T 2 . Each task of T 1 and T 2 is defined by an origin, a duration and a height. At each point in time t the sum of the heights of the tasks of the first set T 1 that overlap t has to be greater than or equal to the sum of the heights of the tasks of the second set T 2 that also overlap t. 

Chapter 3

Further topics

Differences from the 2000 report

This section summarizes the main differences with the SICS report [3] as well as of the corresponding paper [1]. The main differences are listed below:

• We have both simplified and extended the way to generate the vertices of the initial graph and we have introduced a new way of defining set of vertices. We have also removed the CLIQUE(MAX) set of vertices generator since it cannot in general be evaluated in polynomial time. Therefore, we have modified the description of the constraints assign and counts, assign and nvalues, interval and count, interval and sum, bin packing, cumulative, cumulatives, coloured cumulative, coloured cumulatives, cumulative two d, which all used this feature.

• We have introduced the new arc generators PATH 1 and PATH N , which allow for specifying an n-ary constraint for which n is not fixed.

The size maximal starting sequence alldifferent and the size maximal sequence alldifferent are examples of global constraints that use these arc generators in order to generate a set of sliding alldifferent constraints.

• In addition to traditional domain variables we have introduced float, set and multiset variables as well as several global constraints mentioning float and set variables (see for instance the choquet and the alldifferent between sets constraints). This decision was initially motivated by the fact that several constraint systems and papers mention global constraints dealing with these types of variables. Later on, we realized that set variables also greatly simplify the interface of existing global constraints. This was especially true for those global constraints that explicitly deal with a graph, like clique or cutset. In this context, using a set variable for catching the successors of a vertex is quite natural. This is especially true when a vertex of the final graph can have more than one successor since it allows for avoiding a lot of 0-1 variables.

• We have introduced the possibility of using more than one graph constraint for defining a given global constraint (see for instance the cumulative or the sort constraints). Therefore we have removed the notion of dual graph, which was initially introduced in the original report. In this context, we now use two graph constraints (see for instance change continuity).

• On the one hand, we have introduced the following new graph characteristics:

-MAX DRG, -MAX OD, -MIN DRG, -MIN ID, -MIN OD, -NTREE, -PATH FROM TO, -PRODUCT, -RANGE, -RANGE DRG, -RANGE NCC, -SUM, -SUM WEIGHT ARC.
On the other hand, we have removed the following graph characteristics:

-NCC(COMP, val), -NSCC(COMP, val), Finally, MAX IN DEGREE has been renamed MAX ID.

• We have introduced an iterator over the items of a collection in order to specify in a generic way a set of similar elementary constraints or a set of similar graph properties. This was required for describing some global constraints such as global cardinality, cycle resource or stretch. All these global constraints mention a condition involving some limit depending on the specific values that are effectively used. For instance the global cardinality constraint forces each value v to be respectively used at least atleast v and at most atmost v times. This iterator was also necessary in the context of graph covering constraints where one wants to cover a digraph with some patterns. Each pattern consists of one resource and several tasks. One can now attach specific constraints to the different resources. Both the cycle resource and the tree resource constraints illustrate this point.

• We have added some standard existing global constraints that were obviously missing from the previous report. This was for instance the case of the element constraint.

• In order to make clear the notion of family of global constraints we have computed for each global constraint a signature, which summarizes its structure.

Each signature was inserted into the index so that one can retrieve all the global constraints sharing the same structure.

• We have generalized some existing global constraints. For instance the change pair constraint extends the change constraint. Finally we have introduced some novel global constraints like disjoint tasks or symmetric gcc.

• We have defined the rules for specifying arc constraints.

Graph invariants

Within the scope of the graph-based description this section shows how to use implied constraints, which are systematically linked to the description of a global constraint. This usually occurs in the following context:

• Quite often, it happens that one wants to enforce the final graph to satisfy more than one graph property. In this context, these graph properties involve several graph characteristics that cannot vary independently. • Even if the description of a global constraint involves one single graph characteristic C, we can introduce the number of vertices, NVERTEX, and the number of arcs, NARC, of the final digraph. In this context, we can take advantage of graph invariants linking C, NARC and NVERTEX.

• It also happens that we enforce two graph constraints GC 1 and GC 2 that have the same initial graph G. In this context we consider the following situations:

-Each arc of G belongs to one of the final graphs associated with GC 1 or with GC 2 (but not to both). An example of such global constraint is the change continuity constraint. Within the graph invariants this situation is denoted by apartition.

-Each vertex of G belongs to one of the final graphs associated with GC 1 or with GC 2 (but not to both). An example of such global constraint is the group constraint. Within the graph invariants this situation is denoted by vpartition.

In these situations the graph properties associated with the two graph constraints are also not independent.

In practice the graphs associated with global constraints have a regular structure which comes from the initial graph or from the property of the arc constraints. So, in addition to graph invariants that hold for any graph, we want also tighter graph invariants that hold for specific graph classes. The next section introduces the graph classes we consider, while the two other sections give the graph invariants on one and two graphs.

Graph classes

By definition, a graph invariant has to hold for any digraph. For instance, we have the graph invariant NARC ≤ NVERTEX 2 , which relates the number of arcs and the number of vertices of any digraph. This invariant is sharp since the equality is reached for a clique. However, by considering the structure of a digraph, we can get sharper invariants. For instance, if our digraph is a subset of an elementary path (e.g. we use the PATH arc generator depicted by Figure 1.4) we have that NARC ≤ NVERTEX -1, which is a tighter bound of the maximum number of arcs since NVERTEX -1 < NVERTEX 2 . For this reason, we consider recurring graph classes that show up for different global constraints of the catalog. For a given global constraint, a graph class specifies a general property that holds on its final digraph. We list the different graph classes and, for each of them, we point to some global constraints that fit in that class. Finding all the global constraints corresponding to a given graph class can be done by looking into the list of keywords (see Section 2.5 page 62).

• acyclic: graph constraint for which the final graph doesn't have any circuit.

• apartition: constraint defined by two graph constraints having the same initial graph, where each arc of the initial graph belongs to one of the final graph (but not to both).

• bipartite: graph constraint for which the final graph is bipartite.

• consecutive loops are connected: denotes the fact that the graph constraints of a global constraint use only the PATH and the LOOP arc generators and that their final graphs do not contain consecutive vertices that have a loop and that are not connected together by an arc.

• equivalence: graph constraint for which the final graph is reflexive, symmetric and transitive.

• no loop: graph constraint for which the final graph doesn't have any loop.

• one succ: graph constraint for which all the vertices of the initial graph belong to the final graph and for which all vertices of the final graph have exactly one successor.

• symmetric: graph constraint for which the final graph is symmetric.

• vpartition: constraint defined by two graph constraints having the same initial graph, where each vertex of the initial graph belongs to one of the final graph (but not to both).

In addition, we also consider graph constraints such that their final graphs is a subset of the graph generated by the arc generators:

• CHAIN , • CIRCUIT , • CLIQUE , • CLIQUE (Comparison), • GRID , • LOOP, • PATH , • PRODUCT , • PRODUCT (Comparison), • SYMMETRIC PRODUCT , • SYMMETRIC PRODUCT (Comparison),
where Comparison is one of the following comparison operators ≤, ≥, <, >, =, =.

Format of an invariant

As we previously saw, we have graph invariants that hold for any digraph as well as tighter graph invariants for specific graph classes. As a consequence, we partition the database in groups of graph invariants. A group of graph invariants corresponds to several invariants such that all invariants relate the same subset of graph characteristics and such that all invariants are variations of the first invariant of the group taking into accounts the graph class. Therefore, the first invariant of a group has no precondition, while all other invariants have a non-empty precondition that characterizes the graph class for which they hold.

EXAMPLE: As a first example consider the group of invariants denoted by Proposition 64, which relate the number of arcs NARC with the number of vertices of the smallest and largest connected component (i.e. MIN NCC and MAX NCC).

MIN NCC = MAX NCC ⇒ NARC ≥ MIN NCC + MAX NCC -2+ (MIN NCC = 1) equivalence : MIN NCC = MAX NCC ⇒ NARC ≥ MIN NCC 2 + MAX NCC 2
On the one hand, since the first rule has no precondition it corresponds to a general graph invariant. On the other hand the second rule specifies a tighter condition (since MIN NCC 2 + MAX NCC 2 is greater than or equal to MIN NCC + MAX NCC -2 + (MIN NCC = 1)), which only holds for a final graph, which is reflexive, symmetric and transitive. EXAMPLE: As a second example, consider the following group of invariants corresponding to Proposition 49, which relate the number of arcs NARC to the number of vertices NVERTEX according to the arc generator (see Figure 1 

Using the database of invariants

The purpose of this section is to provide a set of graph invariants, each invariant relating a given set of graph characteristics. Once we have these graph invariants we can use them systematically by applying the following steps:

• For a given graph constraint we extract all the graph characteristics occurring in its description. This can be done automatically by scanning the corresponding graph properties. Let GC denote this subset of graph characteristics. For each graph characteristic gc of GC we check if we have a graph property of the form gc = var where var is a domain variable. If this is the case we record the pair (gc, var ); if not, we create a new domain variable var and also record the pair (gc, var ).

• We then search for all groups of graph invariants involving a subset of the previous graph characteristics GC. For each selected group we filter out those graph invariants for which the preconditions are not compatible with the graph class of the graph constraint under consideration. In each group we finally keep those invariants that have the maximum number of preconditions (i.e. the most specialized graph invariants).

• Finally we state all the previous collected graph invariants as implied constraints. This is achieved by using the variables associated with each graph characteristic.

EXAMPLE: We continue with the example of the group constraint and its first graph constraint. The steps for creating the implied constraints are:

• We first extract the graph characteristics NCC, MIN NCC, MAX NCC and NVERTEX from the first graph constraint of the group constraint. Since all the graph properties attached to the previous graph characteristics have the form gc = var we extract the corresponding domain variables and get the following pairs (NCC, NGROUP), (MIN NCC, MIN SIZE), (MAX NCC, MAX SIZE) and (NVERTEX, NVAL).

• We search for all groups of graph invariants involving the graph characteristics NCC, MIN NCC, MAX NCC and NVERTEX and filter out the irrelevant graph invariants that can't be applied on the graph class associated with the group constraint.

• We state all the previous invariants by substituting each graph characteristics by its corresponding variable, which leads to a set of implied constraints.

The database of graph invariants

For each combination of graph characteristics we give the number of graph invariants we currently have. The items are sorted first in increasing number of graph characteristics of the invariant, second in alphabetic order on the name of the characteristics.

All graph invariants assume a digraph for which each vertex has at least one arc. For some propositions, a figure depicts the corresponding final graph, which minimizes or maximizes a given graph characteristics. The propositions of this section and their corresponding proofs use the notations introduced in Section 1.2.2 page 31.

• Graph invariants involving one graph characteristics of a final graph:

-MAX NCC: • Graph invariants involving five graph characteristics of a final graph:

-MAX NCC, MIN NCC, NARC, NCC, NVERTEX: 1 (see Proposition 110), -MIN NCC, NARC, NCC, NSCC, NVERTEX: 1 (see Proposition 111).

• Graph invariants relating two characteristics of two final graphs: • Graph invariants relating three characteristics of two final graphs: • Graph invariants relating four characteristics of two final graphs: Propositions 126 and 127), Propositions 128 and 129).

-MAX NCC
-MAX NCC 1 , MIN NCC
-MAX NCC 1 , MIN NCC 1 , MIN NCC 2 , NCC 1 : 2 (see
-MAX NCC 2 , MIN NCC 2 , MIN NCC 1 , NCC 2 : 2 (see
• Graph invariants relating five characteristics of two final graphs: Propositions 130,[START_REF] Focacci | Cost-based domain filtering[END_REF][START_REF] Sellman | An arc consistency algorithm for the minimum weight all different constraint[END_REF][START_REF] Régin | Développement d'outils algorithmiques pour l'Intelligence Artificielle[END_REF][START_REF] Gent | Supertree construction with constraint programming[END_REF]135 and 136). Propositions 137,[START_REF] Gale | A theorem on flows in networks[END_REF][START_REF] Older | Getting to the real problem: Experience with BNR Prolog in OR[END_REF][START_REF] Kızıltan | Constraint programming with multisets[END_REF][START_REF] Beldiceanu | Filtering algorithms for the same and usedby constraints[END_REF]142 and 143).

-MAX NCC 1 , MAX NCC 2 , MIN NCC 1 , MIN NCC 2 , NCC 1 : 7 (see
-MAX NCC 1 , MAX NCC 2 , MIN NCC 1 , MIN NCC 2 , NCC 2 : 7 (see
• Graph invariants relating six characteristics of two final graphs: Propositions 144 and 145). Proof. Since we don't have any isolated vertex.

-MAX NCC 1 , MAX NCC 2 , MIN NCC 1 , MIN NCC 2 , NCC 1 , NCC 2 : 2 (see

Graph invariants involving one characteristic of a final graph

NSOURCE

Proposition 12.

symmetric : NSOURCE = 0 (3.12)

Proof. Since we don't have any isolated vertex.

NVERTEX

Proposition 13.

one succ : NVERTEX = NVERTEXINITIAL (3.13) Proof. By definition of one succ. MAX NCC = 0 ⇔ NARC = 0 (3.18) Proof. By definition of MAX NCC and of NARC.

GRAPH INVARIANTS

Proposition 19.

MAX NCC > 0 ⇒ NARC ≥ max(1, MAX NCC -1) (3.19) symmetric : MAX NCC > 0 ⇒ NARC ≥ max(1, 2 • MAX NCC -2) (3.20) equivalence : NARC ≥ MAX NCC 2 (3.21) arc gen = PATH : NARC ≥ MAX NCC -1 (3.22)
Proof.

( Proposition 39.

MIN NCC / ∈ » min "- NVERTEX 2 , - NVERTEXINITIAL -1 2 « + 1, NVERTEX -1 - (3.47)
Proof. The next items correspond to the maximum number of arcs that can be achieved according to a specific arc generator.

Proposition 50.

2 • NARC ≥ NVERTEX (3.70)
Proof. By induction on the number of vertices of a graph G:

1. If NVERTEX(G) is equal to 1 or 2 Proposition 50 holds.

2. Assume that NVERTEX(G) ≥ 3.

• Assume there exists a vertex v such that, if we remove v, we don't create any isolated vertex in the remaining graph. We have

NARC(G) ≥ NARC(G - v) + 1. Thus 2 • NARC(G) ≥ 2 • NARC(G -v) + 1. Since by induction hypothesis 2 • NARC(G -v) ≥ NVERTEX(G -v) = NVERTEX(G) -1 the result holds.
• Otherwise, all the connected components of G are reduced to two elements with only one arc. We remove one of such connected component (v, w).

Thus NARC(G) = NARC(G -{v, w}) + 1. As by induction hypothesis, Proof. In a directed acyclic graph we have that each vertex corresponds to a strongly connected component involving only that vertex.

NSINK, NVERTEX

Proposition 60.

NVERTEX = 0 ⇒ NSINK = 0 (3.82)
Proof. By definition of NVERTEX and of NSINK.

Proposition 61.

NVERTEX > 0 ⇒ NSINK < NVERTEX (3.83) Proof. Holds since each sink must have a predecessor which cannot be a sink and since each vertex has at least one arc.

NSOURCE, NVERTEX

Proposition 62.

NVERTEX = 0 ⇒ NSOURCE = 0 (3.84)
Proof. By definition of NVERTEX and of NSOURCE.

Proposition 63.

NVERTEX > 0 ⇒ NSOURCE < NVERTEX (3.85)
Proof. Holds since each source must have a successor which cannot be a source and since each vertex has at least one arc. Proposition 70.

Graph invariants involving three characteristics of a final graph

if MIN NCC > 0

then k inf = - NVERTEX + MIN NCC MIN NCC else k inf = 1 if MAX NCC > 0 then ksup 1 = -NVERTEX -1 MAX NCC else ksup 1 = NVERTEX if MAX NCC < MIN NCC then ksup 2 = - MIN NCC -2 MAX NCC -MIN NCC else ksup 2 = NVERTEX ksup = min(ksup 1 , ksup 2 ) ∀k ∈ [k inf , ksup] : NVERTEX / ∈ [k • MAX NCC + 1, (k + 1) • MIN NCC -1] (3.93)
Proof. We make the proof for k ∈ N (the interval [k inf , ksup] is only used for restricting the number of intervals to check). We have that NVERTEX

∈ [k • MIN NCC, k • MAX NCC]. A forbidden interval [k • MAX NCC + 1, (k + 1) • MIN NCC -1]
corresponds to an interval between the end of interval [k Proof. We first begin with the following claim:

Let G be a graph such that V (G) -NCC(G, MAX NCC(G)) * MAX NCC(G) ≥ MAX NCC(G), then there exists a graph G such that V (G ) = V (G), MAX NCC(G ) = MAX NCC(G), NCC(G , MAX NCC(G )) = NCC(G, MAX NCC(G)) + 1 and |E(G)| ≤ |E(G )|.
Proof of the claim: Let (Ci) i∈[n] be the connected components of G on less than MAX NCC (G) vertices and such that |Ci| ≥ |Ci+1|. By hypothesis there exists (G), and then with G such that G restricted to the S k i=1 Ci be a complete graph and G restricted to V (G) - (G).

k ≤ n such that | S k-1 i=1 Ci| < MAX NCC(G) and | S k i=1 Ci| ≥ MAX NCC(G). • Either | S k i=1 Ci| = MAX NCC
S k i=1 Ci being exactly G restricted to V (G) - S k i=1 Ci we obtain the claim. • Or | S k i=1 Ci| > MAX NCC
Then C k = C 1 k C 2 k such that |( S k-1 i=1 Ci) ∪ C 1 k | = MAX NCC(G) and |C 2 k | < |C1| (notice that k ≥ 2). Then with G such that G restricted to ( S k-1 i=1 Ci) ∪ C 1 k is a complete graph and G re- stricted to V (G)-(( S k-1 i=1 Ci)∪C 1 k ) is exactly G restricted to V (G)-(( S k-1 i=1 Ci)∪C 1 k )
we obtain the claim.

End of proof of the claim

We prove by induction on r(G) = j

NVERTEX(G) MAX NCC(G) k -NCC(G, MAX NCC(G)
), where G is any graph. For r(G) = 0 the result holds (see Prop 44). Otherwise, since r(G) > 0 we have that V (G) -NCC(G, MAX NCC(G)) * MAX NCC(G) ≥ MAX NCC (G), by the previous claim there exists G with the same number of vertices and the same number of vertices in the largest connected component, such that r(G ) = r(G) -1. Consequently the result holds by induction.

Proposition 74.

NARC ≥ MAX NCC -1 + - NVERTEX -MAX NCC + 1 2 (3.98)
Proof. Let G be a graph, let X be a maximal size connected component of G, then we have 

G = G[X] ⊕ G[V (G) -X].
|E(G[V (G) -X])| ≥ l |V (G)-X| 2 m
. Thus the result follows.

MAX NCC, NCC, NVERTEX Proposition 75.

NVERTEX ≤ NCC • MAX NCC (3.99)
Proof. Proof. Since we have at least two distinct strongly connected components which respectively have MIN NSCC and MAX NSCC vertices this leads to the previous inequality.

Proposition 80.

if MIN NSCC > 0

then k inf = - NVERTEX + MIN NSCC MIN NSCC else k inf = 1 if MAX NSCC > 0 then ksup 1 = - NVERTEX -1 MAX NSCC else ksup 1 = NVERTEX if MAX NSCC < MIN NSCC then ksup 2 = - MIN NSCC -2 MAX NSCC -MIN NSCC else ksup 2 = NVERTEX ksup = min(ksup 1 , ksup 2 ) ∀k ∈ [k inf , ksup] : NVERTEX / ∈ [k • MAX NSCC + 1, (k + 1) • MIN NSCC -1] (3.106)
Proof. Proof. (3.110) The maximum number of vertices according to a fixed number of vertices NVERTEX and to the fact that there is a connected component with MIN NCC vertices is obtained by:

• Building a connected component with MIN NCC vertices and creating an arc between each pair of vertices.

• Building a connected component with all the NVERTEX -MIN NCC remaining vertices and creating an arc between each pair of vertices.

Proposition 84.

MIN NCC > 1 ⇒ NARC ≥ - NVERTEX MIN NCC • (MIN NCC -1) + NVERTEX mod MIN NCC (3.120)
Proof. Achieving the minimum number of arcs with a fixed number of vertices and with a minimum number of vertices greater than or equal to one in each connected component is achieved in the following way:

• Since the minimum number of arcs of a connected component of n vertices is n -1, splitting a connected component into k parts that all have more than one vertex saves k -1 arcs. Therefore we build a maximum number of connected components. Since each connected component has at least MIN NCC vertices we get ¨NVERTEX MIN NCC ˝connected components.

• Since we can't build a connected component with the rest of the vertices (i.e.

NVERTEX mod MIN NCC vertices left) we have to incorporate them in the previous connected components and this costs one arc for each vertex.

When MIN NCC = 1, note that Proposition 50 provides a lower bound on the number of arcs. Proof. Achieving the maximum number of arcs, provided that we have at least one strongly connected component with MIN NSCC vertices, is done by:

• Building a first strongly connected component C1 with MIN NSCC vertices and adding an arc between each pair of vertices of C1.

• Building a second strongly connected component C2 with NVERTEX -MIN NSCC vertices and adding an arc between each pair of vertices of C2.

Finally, we add an arc from every vertex of C1 to every vertex of C2. This leads to a total number of arcs of Proof. (3.124) We proceed by induction on

MIN NSCC 2 + (NVERTEX -MIN NSCC) 2 + MIN NSCC • (NVERTEX -MIN NSCC).
arc gen = CHAIN : NARC ≤ 2 • NVERTEX -2 • NCC (3.126) arc gen = CLIQUE (≤) : NARC ≤ NCC -1+ (NVERTEX -NCC + 1) • (NVERTEX -NCC + 2) 2 (3.127) arc gen = CLIQUE (≥) : NARC ≤ NCC -1+ (NVERTEX -NCC + 1) • (NVERTEX -NCC + 2) 2 (3.128) arc gen = CLIQUE (<) : NARC ≤ NCC -1+ (NVERTEX -NCC + 1) • (NVERTEX -NCC) 2 (3.129) arc gen = CLIQUE (>) : NARC ≤ NCC -1+ (NVERTEX -NCC + 1) • (NVERTEX -NCC) 2 (3.130) arc gen = CLIQUE ( =) : NARC ≤ max(0, NCC -1)+ (NVERTEX -NCC + 1) 2 -(NVERTEX -NCC + 1) (3.131) arc gen = CYCLE : NARC ≤ 2 • NVERTEX -2 • NCC + 2 • (NCC = 1) (3.
T (G) = NVERTEX(G) -|X| -(NCC(G) - 1)
, where X is any connected component of G of maximum cardinality. For T (G) = 0 then either NCC(G) = 1 and thus the formula is clearly true, or all the connected components of G, but possibly X, are reduced to one element. Since isolated vertices are not allowed, the formula holds.

Assume that T (G) ≥ 1. Then there exists Y , a connected component of G distinct from X, with more than one vertex. Let y ∈ Y and let G be the graph such that V (G ) = V (G) and E(G ) is defined by: 

• For all Z connected components of G distinct from X and Y we have G [Z] = G[Z]. • With X = X ∪ {y} and Y = Y -{y}, we have G [Y ] = G[Y ] and E(G [X ]) = E(G[X]) ∪ ( S x∈X {(x, y), (y, x)}). Clearly |E(G )| -|E(G)| ≥ 2 • |X| + 1 -(2 • |Y | -1)
equivalence : NCC > 0 ⇒ NARC ≥ (NVERTEX mod NCC) • `¨NVERTEX NCC ˝+ 1 ´2 + (NCC -NVERTEX mod NCC) • ¨NVERTEX NCC ˝2 (3.135)
Proof. Proof. For proving 3.136, it is easier to rewrite the formula as NARC ≤ (NVERTEX -

(NSCC -1)) 2 + (NCC -1) • (NVERTEX -(NSCC -1)) + NSCC•(NSCC-1)

2

. We proceed by induction on

T (G) = NVERTEX(G) -|X| -(NSCC(G) -1)
, where X is any strongly connected component of G of maximum cardinality.

For T (G) = 0 then either NSCC(G) = 1 and thus the formula is clearly true, or all the strongly connected components of G, but possibly X, are reduced to one element. Since the maximum number of arcs in a directed acyclic graph of n vertices is n•(n+1)

2

, and as the subgraph of G induced by all the strongly connected components of G excepted X is acyclic, the formula clearly holds.

Assume that T (G) ≥ 1, let (Xi)i∈I be the family of strongly connected components of G, and let Gr be the reduced graph of G induced by (Xi)i∈I (that is V (Gr) = I and ∀i1, i2 ∈ I,

(i1, i2) ∈ E(Gr) iff ∃x1 ∈ Xi 1 , ∃x2 ∈ Xi 2 such that (x1, x2) ∈ E). Consider G such that V (G ) = V (G) and E(G ) is defined by: • For all strongly connected components Z of G we have G [Z] = G[Z]. • For σ be any topological sort of Gr, ∀xi ∈ Xi, ∀xj ∈ Xj , (xi, xj) ∈ E(G ) whenever
i is less than j with respect to σ.

Notice that G satisfies the following properties: 

T (G ) = T (G), V (G ) = V (G), NSCC(G ) = NSCC(G), E(G) ⊆ E(G ), ( 
(G ) = V (G ) and E(G ) is defined by: • G [V (G) -{y}] = G [V (G) -{y}]. • With X = X ∪ {y}, we have G [Y ] = G [Y ] and E(G [X ]) = E(G [X]) ∪ ( S x∈X {(x, y), (y, x)}). • Assume that X = Xj for j ∈ I. Then ∀i ∈ I -{j}, ∀xi ∈ Xi, (xi, y) ∈ E(G )
whenever i is less than j with respect to σ and (y, xi) ∈ E(G ) whenever j is less than i with respect to σ.

Clearly |E(G )| -|E(G )| ≥ 2|X| + 1 + |V (G )| -|X| -(2 • |Y | -1 + |V (G )| -|Y |) = |X| -|Y | + 2 and since X is of maximal cardinality the difference is strictly positive. As E(G) ⊆ E(G ), |E(G )| -|E(G)| is also stricly positive. Now as NVERTEX(G ) = NVERTEX(G ) = NVERTEX(G), NSCC(G ) = NSCC(G ) = NSCC(G) and as T (G ) = T (G ) -1 = T (G)
-1 the result holds by induction hypothesis.

Proposition 91.

NARC ≥ NVERTEX - Proof. For proving part 3.138 of Proposition 91 we proceed by induction on NSCC (G).

- NSCC -1 2 (3.138) equivalence : NSCC > 0 ⇒ NARC ≥ (NVERTEX mod NSCC) • `¨NVERTEX NSCC ˝+ 1 ´2 + (NSCC -NVERTEX mod NSCC) • ¨NVERTEX NSCC ˝2 (3.139) 
If NSCC(G) = 1 then, we have NARC(G) ≥ NVERTEX(G) (i.e.
for one vertex this is true since every vertex has at least one arc, otherwise every vertex v has an arc arriving on v as well as an arc starting from v, thus we have

NARC ≥ 2•NVERTEX 2 ). If NSCC(G) > 1 let X be a strongly connected component of G. Then NARC(G) ≥ NARC(G[V (G) - X]) + NARC(G[X]). By induction hypothesis NARC(G[V (G) -X]) ≥ |V (G) -X| - j NSCC(G[V (G)-X])-1 2 k , thus NARC(G[V (G) -X]) ≥ |V (G) -X| - j (NSCC(G)-1)-1 2 k . Since NARC(G[X]) ≥ |X| we obtain NARC(G) ≥ |V (G)| - j (NSCC(G)-1)-1 2 k
, and thus the result holds.

Proposition 92.

equivalence

: NVERTEX > 0 ⇒ NSCC ≥ ‰ NVERTEX 2 NARC ı (3.140)
Proof. As shown in [START_REF] Bessière | Filtering algorithms for the nvalue constraint[END_REF], a lower bound for the minimum number of equivalence classes (e.g. strongly connected components) is the independence number of the graph and the right-hand side of Proposition 92 corresponds to a lower bound of the independence number proposed by Turán [START_REF] Turán | On an extremal problem in graph theory[END_REF].

NARC, NSINK, NVERTEX Proposition 93.

NARC ≤ (NVERTEX -NSINK) • NVERTEX (3.141)
Proof. The maximum number of arcs is achieved by the following pattern: For all non-sink vertices we have an arc to all vertices.

Proposition 94. Graphs that achieve the minimum number of arcs according to a fixed number of sinks as well as to a fixed number of vertices (A : 

NARC ≥ NSINK + max(0, NVERTEX -2 • NSINK) (3.142) NVERTEX-NSINK 2 
NSINK = 3, NVERTEX = 5, NARC = 3 + max(0, 5 -2 • 3) = 3; B : NSINK = 3, NVERTEX = 9, NARC = 3 + max(0, 9 -2 • 3) = 6) Proof. Recall that for x ∈ V (G), we have that d + G (x) + d - G (x) ≥ 1. If x is a sink then d - G (x) ≥ 1, consequently NARC(G) ≥ NSINK(G). If x is not a sink then d + G (x) ≥ 1, consequently NARC(G) ≥ |V (G)| -NSINK(G).
NSOURCE = 3, NVERTEX = 5, NARC = 3 + max(0, 5 -2 • 3) = 3; B : NSOURCE = 3, NVERTEX = 9, NARC = 3 + max(0, 9 -2 • 3) = 6) NARC, NSOURCE, NVERTEX Proposition 95. NARC ≤ (NVERTEX -NSOURCE) • NVERTEX (3.143)
Proof. The maximum number of arcs is achieved by the following pattern: For all non-source vertices we have an arc from all vertices.

Proposition 96.

NARC ≥ NSOURCE + max(0, NVERTEX -2 • NSOURCE) (3.144)
Proof. Similar to Proposition 94.

NSINK, NSOURCE, NVERTEX

Proposition 97.

NVERTEX ≥ NSOURCE + NSINK (3.145)
Proof. No vertex can be both a source and a sink (isolated vertices are removed).

Graph invariants involving four characteristics of a final graph

MAX NCC, MIN NCC, NARC, NCC Proposition 98. Let α denote max(0, NCC -1).

NARC ≤ α • MAX NCC 2 + MIN NCC 2 (3.146) arc gen = CIRCUIT : NARC ≤ α • MAX NCC + MIN NCC (3.147) arc gen = CHAIN : NARC ≤ α • (2 • MAX NCC -2) + 2 • MIN NCC -2 (3.148) arc gen ∈ {CLIQUE (≤), CLIQUE (≥)} : NARC ≤ α • MAX NCC•(MAX NCC+1) 2 + MIN NCC•(MIN NCC+1) 2 (3.149) arc gen ∈ {CLIQUE (<), CLIQUE (>)} : NARC ≤ α • MAX NCC•(MAX NCC-1) 2 + MIN NCC•(MIN NCC-1) 2 (3.150) arc gen = CLIQUE ( =) : NARC ≤ MIN NCC 2 -MIN NCC+ α • (MAX NCC 2 -MAX NCC) (3.151) arc gen = CYCLE : NARC ≤ 2 • α • MAX NCC + 2 • MIN NCC (3.152) arc gen = PATH : NARC ≤ α • (MAX NCC -1) + MIN NCC -1 (3.153)
Proof. We construct NCC -1 connected components with MAX NCC vertices and one connected component with MIN NCC vertices. n 2 corresponds to the maximum number of arcs in a connected component. n,

2•n-2, n•(n+1) 2 , n•(n+1) 2 , n•(n-1) 2 , n•(n-1)

2

, n 2 -n, 2•n and n -1 respectively correspond to the maximum number of arcs in a connected component of n vertices according to the fact that we use the arc generator CIRCUIT , CHAIN , CLIQUE (≤), NARC ≤ max(0, NSCC -1)

CLIQUE (≥), CLIQUE (<), CLIQUE (>), CLIQUE ( =), CYCLE or PATH . Proposition 99. NCC > 0 ⇒ NARC ≥ (NCC-1)•max(1, MIN NCC-1)+max(1, MAX NCC-1) (3.154) arc gen = PATH : NARC ≥ max(0, NCC-1)•(MIN NCC-1)+MAX NCC-1 (3.
• MAX NSCC 2 + MIN NSCC 2 + max(0, NSCC -1) • MIN NSCC • MAX NSCC + MAX NSCC 2 • max(0,NSCC-2)•max(0,NSCC -1) 2 (3.158) 
Proof. We assume that we have at least two strongly connected components (the case with one being obvious). Let (SCCi) i∈[NCC (G)] be the family of strongly connected components of G.

Then |E(G)| ≤ P i∈[NCC(G)] |E(G[SCCi])| + k,
where k is the number of arcs between the distinct strongly connected components of G. For any strongly connected component SCCi the number of arcs it has with the other strongly connected components is bounded by |SCCi|

• (|V (G) -SCCi|). Consequently, k ≤ 1 2 • P i∈[NCC(G)] |SCCi| • (|V (G) -SCCi|). W.l.o.g. we assume |SCC1| = MIN NCC. Then we get k ≤ 1 2 • (MIN NCC • (NCC -1) • MAX NCC + MAX NCC • ((NCC -2) • MAX NCC + MIN NCC)).

Proposition 103.

NARC ≥ max(0, NSCC -1) • MIN NSCC + MAX NSCC (3.159) Proof. Let (SCCi) i∈[NCC (G)] be the family of strongly connected components of G, as

|E(G)| ≥ P i∈[NCC(G)] |E(G[SCCi]
)|, we obtain the result since in a strongly connected graph the number of edges is at least its number of vertices. 

NARC ≤ α • γ 2 + β 2 (3.162) arc gen ∈ {CLIQUE (≤), CLIQUE (≥)} : NARC ≤ α • γ • (γ + 1) 2 + β • (β + 1) 2 (3.163) arc gen ∈ {CLIQUE (<), CLIQUE (>)} : NARC ≤ α • γ • (γ -1) 2 + β • (β -1) 2 (3.164) arc gen = CLIQUE ( =) : NARC ≤ α • γ • (γ -1) + β • (β -1) (3 
-(5 -1) • 2) 2 + (5 -1) • 2 2 = 25)
Proof. For proving inequality 3.162 we proceed by induction on the number of vertices of G.

First note that if all the connected components are reduced to one element the result is obvious. Thus we assume that the number of vertices in the maximal sized connected component of G is at least 2. Let x be an element of the maximal sized connected component of G. Then,

G -x satisfies α(G -x) = α(G), γ(G -x) = γ(G) and β(G -x) = β(G) -1. Since by induction hypothesis |E(G -x)| ≤ α(G -x) • γ(G -x) 2 + β(G -x) 2 , and since the number of arcs of G incident to x is at most 2 • (β(G) -1) + 1, we have that |E(G)| ≤ α(G) • γ(G) 2 + (β(G) -1) 2 + 2 • (β(G) -1) + 1.
And thus the result follows. 3 -1 + (7 -6 + 1)(7 -3 + 1) + (6 -3 + 1)(6 -3)/2 = 18) NARC, NCC, NSCC, NVERTEX Proposition 107.

NARC ≤ NCC -1 + (NVERTEX -NSCC + 1) • (NVERTEX -NCC + 1) + (NSCC -NCC + 1) • (NSCC -NCC) 2 (3.166)
Proof. We proceed by induction on

T (G) = NVERTEX(G) -|X| -(NCC(G) -1),
where X is any connected component of G of maximum cardinality. For T (G) = 0 then either NCC(G) = 1 and thus the formula is clearly true, by Proposition 3.136 or all the connected components of G, but possibly X, are reduced to one element. Since isolated vertices are not allowed, again by Proposition 3.136 applied on G[X], the formula holds indeed

NVERTEX(G[X]) = NVERTEX(G) -(NCC(G) -1) and NSCC(G[X]) = NSCC(G) -(NCC(G) -1). Assume that T (G) ≥ 1.
Then there exists Y , a connected component of G distinct from X, with more than one vertex.

• Firstly assume that G[Y ] is strongly connected. Let y ∈ Y and let G be the graph such that V (G ) = V (G) and E(G ) is defined by: -For all Z connected components of G distinct from X and Y we have G [Z] = G[Z]. -With X = X ∪ (Y -{y}) and Y = {y}, we have E(G [Y ]) = {(y, y)}, E(G [X ]) = E(G[X]) ∪ {(z, x) : z ∈ Y -{y}, x ∈ X} ∪ {(z, t) : z, t ∈ Y -{y}}. Clearly we have that |E(G )| -|E(G)| ≥ (|Y | -1) • |X| -2 • (|Y | -1) and since |X| ≥ |Y | ≥ 2, the difference is positive or null. Now as NVERTEX(G ) = NVERTEX(G), NCC(G ) = NCC(G), NSCC(G ) = NSCC(G) (since G [Y -{y}] is strongly connected because E(G [Y -{y}]) = {(z, t) : z, t ∈ Y -{y}}
and since the reduced graph of the strongly connected components of G [X ] is exactly the reduced graph of the strongly connected components of G[X] to which a unique source has been added) and as T (G ) ≤ T (G) -1, the result holds by induction hypothesis.

• Secondly assume that G[Y ] is not strongly connected. Let Z ⊂ Y such that Z is a strongly connected component of G[Y ] corresponding to a source in the reduced graph of the strongly connected components of G[Y ]. Let G be the graph such that V (G ) = V (G) and E(G ) is defined by: -For all W connected components of G distinct from X and Y we have G [W ] = G[W ]. -With X = X ∪ Z and Y = Y -Z, we have E(G [Y ]) = E(G[Y ]) if |Y | > 1 and E(G [Y ]) = {(y, y)} if Y = {y}. E(G [X ]) = E(G[X]) ∪ {(z, x) : z ∈ Z, x ∈ X}.
Clearly we have that

|E(G )| -|E(G)| ≥ |Z| • |X| -|Z| • (|Y | -|Z|) and since |X| > |Y | -|Z|, the difference is strictly positive. Now as NVERTEX(G ) = NVERTEX(G), NCC(G ) = NCC(G), NSCC(G ) = NSCC(G) and as T (G ) ≤ T (G) -1
, the result holds by induction hypothesis.

Proposition 108.

NARC ≥ NVERTEXmax(0, min(NCC, NSCC -NCC)) (3.167)

Proof. We prove that the invariant is valid for any digraph G. First notice that for an operational behavior, since we can't assume that Proposition 53 (i.e. NCC(G) ≤ NSCC(G)) was already triggered, we use the max operator. But since any strongly connected component is connected, then NSCC(G) -NCC(G) is never negative. Consequently we only show by induc-

tion on NSCC(G) that NARC(G) ≥ NVERTEX(G) -min(NCC(G), NSCC(G) - NCC(G)). To begin notice that if X is a strongly (non void) connected component then ei- ther NARC(G[X]) ≥ |X| or NARC(G[X]) = 0
and in this latter case we have that both |X| = 1 and X is strictly included in a connected component of G (recall that isolated vertices are not allowed). Thus we can directly assume that NSCC(G) = k > 1.

First, consider that there exists a connected component of G, say X, which is also strongly connected

. Let G = G -X, consequently we have NSCC(G ) = NSCC(G) - 1, NCC(G ) = NCC(G) -1, NVERTEX(G ) = NVERTEX(G) -|X|, and NARC(G) ≥ |X| + NARC(G ). Then NARC(G) ≥ |X| + NVERTEX(G ) - min(NCC(G ), NSCC(G ) -NCC(G )) and thus NARC(G) ≥ NVERTEX(G) - min(NCC(G) -1, NSCC(G) -NCC(G)
), which immediately gives the result.

Second consider that any strongly connected component is strictly included in a connected component of G. Then, either there exists a strongly connected component

X such that |X| ≥ 2. Let G = G -X, consequently we have NSCC(G ) = NSCC(G)-1, NCC(G ) = NCC(G), NVERTEX(G ) = NVERTEX(G)-|X|, and NARC(G) ≥ |X| + 1 + NARC(G ). Then NARC(G) ≥ |X| + 1 + NVERTEX(G ) - min(NCC(G ), NSCC(G ) -NCC(G )) and thus NARC(G) ≥ NVERTEX(G) + 1 -min(NCC(G), NSCC(G) -NCC(G) + 1)
, which immediately gives the result. Or, all the strongly connected components are reduced to one element, so we have NSCC(G) = NVERTEX (G), and thus we obtain that NVERTEX(G)-min(NCC (G), NSCC(G)-NCC(G)) = min(NCC (G), NVERTEX(G) -NCC(G)), which gives the result by for example Proposition 89 (3.134).

This bound is tight: take for example any circuit.

NARC, NSINK, NSOURCE, NVERTEX Proposition 109.

NARC ≤ NVERTEX 2 -NVERTEX • NSOURCE -NVERTEX • NSINK + NSOURCE • NSINK (3.168)
Proof. Since the maximum number of arcs of a digraph is NVERTEX 2 , and since:

• No vertex can have a source as a successor we lose NVERTEX • NSOURCE arcs,

• No sink can have a successor we lose NVERTEX • NSINK arcs.

In these two sets of arcs we count twice the arcs from the sinks to the sources, so we finally get a maximum number of arcs corresponding to the right-hand side of the inequality to prove.

Graph invariants involving five characteristics of a final graph

MAX NCC, MIN NCC, NARC, NCC, NVERTEX Proposition 110.

Let:

• ∆ = NVERTEX -NCC • MIN NCC, • δ = ∆ max(1,MAX NCC-MIN NCC) , • r = ∆ mod max(1, MAX NCC -MIN NCC), • = (r > 0). ∆ = 0 ∨ (MAX NCC = MIN NCC ∧ δ + ≤ NCC) (3.169) NARC ≤ (NCC -δ -) • MIN NCC 2 + • (MIN NCC + r) 2 + δ • MAX NCC 2 (3.170)
Proposition 110 is currently a conjecture.

MIN NCC, NARC, NCC, NSCC, NVERTEX Proposition 111.

NARC ≤(NCC -1) • max(1, (MIN NCC -1))+ (NVERTEX -NSCC + 1) • (NVERTEX -NCC + 1)+ (NSCC -NCC + 1) • (NSCC -NCC) 2 (3.171)
Proposition 111 is currently a conjecture.

Graph invariants relating two characteristics of two final graphs

MAX NCC1, NCC2

Proposition 112.

vpartition : MAX NCC1 < NVERTEXINITIAL ⇔ NCC2 > 0 (3.172) apartition : MAX NCC1 < NVERTEXINITIAL ⇔ NCC2 > 0 (3.173)
Proof. (3.172) Since we have the precondition vpartition, we know that each vertex of the initial graph belongs to the first or to the second final graphs (but not to both).

1. On the one hand, if the largest connected component of the first final graph can't contain all the vertices of the initial graph, then the second final graph has at least one connected component.

2. On the other hand, if the second final graph has at least one connected component then the largest connected component of the first final graph can't be equal to the initial graph.

(3.173) holds for a similar reason.

MAX NCC2, NCC1

Proposition 113.

vpartition : MAX NCC2 < NVERTEXINITIAL ⇔ NCC1 > 0 (3.174) apartition : MAX NCC2 < NVERTEXINITIAL ⇔ NCC1 > 0 (3.175)
Proof. Similar to Proposition 112.

MIN NCC1, NCC2

Proposition 114.

vpartition : MIN NCC1 < NVERTEXINITIAL ⇔ NCC2 > 0 (3.176)
Proof. Since we have the precondition vpartition, we know that each vertex of the initial graph belongs to the first or to the second final graphs (but not to both).

1. On the one hand, if the smallest connected component of the first final graph can't contain all the vertices of the initial graph, then the second final graph has at least one connected component.

2. On the other hand, if the second final graph has at least one connected component then the smallest connected component of the first final graph can't be equal to the initial graph.

MIN NCC2, NCC1

Proposition 115.

vpartition : MIN NCC2 < NVERTEXINITIAL ⇔ NCC1 > 0 (3.177)
Proof. Similar to Proposition 114.

NARC1, NARC2

Proposition 116.

apartition ∧ arc gen = PATH :

NARC1 + NARC2 = NVERTEXINITIAL -1 (3.178)
Proof. Holds since each arc of the initial graph belongs to one of the two final graphs and since the initial graph has NVERTEXINITIAL -1 arcs.

NCC1, NCC2

Proposition 117.

apartition ∧ arc gen = PATH : |NCC1 -NCC2| ≤ 1 (3.179) vpartition ∧ consecutive loops are connected : |NCC1 -NCC2| ≤ 1 (3.180)
Proof. Holds because the two initial graphs correspond to a path and because consecutive connected components do not come from the same graph constraint.

Proposition 118.

apartition ∧ arc gen = PATH : NCC1 + NCC2 < NVERTEXINITIAL (3.181)

Proof. Holds because the initial graph is a path.

NVERTEX1, NVERTEX2

Proposition 119.

vpartition : NVERTEX1 + NVERTEX2 = NVERTEXINITIAL (3.182)
Proof. By definition of vpartition each vertex of the initial graph belongs to one of the two final graphs (but not to both). apartition ∧ arc gen = PATH :

Graph invariants relating three characteristics of two final graphs

max(2, MIN NCC2) + max(3, MIN NCC2 + 1, MAX NCC2)+ max(2, MIN NCC1) -2 > NVERTEXINITIAL ⇒ MIN NCC2 = MAX NCC2 (3.185)
Proof. Similar to Proposition 120.

Proposition 123.

vpartition ∧ consecutive loops are connected :

max(1, MIN NCC2) + max(2, MIN NCC2 + 1, MAX NCC2)+ max(1, MIN NCC1) > NVERTEXINITIAL ⇒ MIN NCC2 = MAX NCC2 (3.186)
Proof. Similar to Proposition 121.

MIN NCC1, NARC2, NCC1

Proposition 124.

apartition ∧ arc gen = PATH ∧ NVERTEXINITIAL > 0 :

NCC1 = 1 ⇔ MIN NCC1 + NARC2 = NVERTEXINITIAL (3.187)
Proof. When MIN NCC1 + NARC2 = NVERTEXINITIAL there is no more room for an extra connected component for the first final graph.

MIN NCC1, NARC2, NCC1

Proposition 125.

apartition ∧ arc gen = PATH ∧ NVERTEXINITIAL > 0 :

NCC2 = 1 ⇔ MIN NCC2 + NARC1 = NVERTEXINITIAL (3.188)
Proof. Similar to Proposition 124. 

Graph invariants relating four characteristics of two final graphs

Proposition 127.

vpartition ∧ consecutive loops are connected :

max(1, MIN NCC1) + max(1, MAX NCC1) + max(1, MIN NCC2) > NVERTEXINITIAL ⇒ NCC1 ≤ 1 (3.190) Proof. The quantity max(1, MIN NCC1) + max(1, MAX NCC1) + max(1, MIN NCC2
) corresponds to the minimum number of variables needed for building two non-empty connected components of respective size MIN NCC1 and MAX NCC1. If this quantity is greater than the total number of variables we have that NCC1 ≤ 1.

MAX NCC2, MIN NCC2, MIN NCC1, NCC2

Proposition 128.

apartition ∧ arc gen = PATH : max(2, MIN NCC2) + max(2, MAX NCC2) + max(2, MIN NCC1) -2 > NVERTEXINITIAL ⇒ NCC2 ≤ 1 (3.191)
Proof. Similar to Proposition 126.

Proposition 129.

vpartition ∧ consecutive loops are connected :

max(1, MIN NCC2) + max(1, MAX NCC2) + max(1, MIN NCC1) > NVERTEXINITIAL ⇒ NCC2 ≤ 1 (3.192)
Proof. Similar to Proposition 127.

Graph invariants relating five characteristics of two final graphs

MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC1 Proposition 130. 
vpartition ∧ consecutive loops are connected :

MIN NCC1 • max(0, NCC1 -1) + MAX NCC1+ MIN NCC2 • max(0, NCC1 -2) + MAX NCC2 ≤ NVERTEXINITIAL (3.193)
Proof. The left-hand side of 130 corresponds to the minimum number of vertices of the two final graphs provided that we build the smallest possible connected components.

Proposition 131.

vpartition ∧ consecutive loops are connected : .194) Proof. The maximum number of connected components is achieved by building non-empty groups as small as possible, except for two groups of respective size max(1, MAX NCC1) and max(1, MAX NCC2), which have to be built.

NCC1 ≤ (MAX NCC1 > 0) + -α β + `α mod β ≥ max(1, MIN NCC1)  • α = max(0, NVERTEXINITIAL -max(1, MAX NCC1) -max(1, MAX NCC2)), • β = max(1, MIN NCC1) + max(1, MIN NCC2). ( 3 

Proposition 132.

vpartition ∧ consecutive loops are connected :

MAX NCC1 • max(0, NCC1 -1) + MIN NCC1+ MAX NCC2 • NCC1 + MIN NCC2 ≥ NVERTEXINITIAL (3.195)
Proof. The left-hand side of 132 corresponds to the maximum number of vertices of the two final graphs provided that we build the largest possible connected components.

Proposition 133.

vpartition ∧ consecutive loops are connected : .196) Proof. The minimum number of connected components is achieved by taking the groups as large as possible except for two groups of respective size MIN NCC2 and MIN NCC1, which have to be built.

NCC1 ≥ (MAX NCC2 < NVERTEXINITIAL ) + - α β + `α mod β > MAX NCC2  • α = max(0, NVERTEXINITIAL -MIN NCC1 -MIN NCC2, • β = max(1, MAX NCC1) + max(1, MAX NCC2). ( 3 

Proposition 134.

vpartition ∧ consecutive loops are connected :

MAX NCC2 ≤ max(MIN NCC2, NVERTEXINITIAL -α), with : • α = MIN NCC1 • max(0, NCC1 -1) + MAX NCC1+ MIN NCC2 + MIN NCC2 • max(0, NCC1 -3) (3.197) Proof. If NCC1 ≤ 1 we have that MAX NCC2 ≤ MIN NCC2. Otherwise, when NCC1 > 1, we have that MIN NCC1 • max(0, NCC1 -1) + MAX NCC1 + MIN NCC2+MAX NCC2+MIN NCC2•max(0, NCC1-3) ≤ NVERTEXINITIAL.
NCC1 -3 comes from the fact that we build the minimum number of connected components in the second final graph (i.e.NCC1 -1 connected components) and that we have already built two connected components of respective size MIN NCC2 and MAX NCC2. By isolating MAX NCC2 in the previous expression and by grouping the two inequalities the result follows.

Proposition 135. .198) Proof. The maximum number of connected components of G1 is achieved by:

apartition ∧ arc gen = PATH ∧ MIN NCC1 > 1 ∧ MIN NCC2 > 1 : NCC1 ≤ (MAX NCC1 > 0) + - α β + ((α mod β) + 1 ≥ MIN NCC1), with :  • α = max(0, NVERTEXINITIAL -MAX NCC1 -MAX NCC2 + 1), • β = MIN NCC1 + MIN NCC2 -2. ( 3 
• Building a first connected component of G1 involving MAX NCC1 vertices,

• Building a first connected component of G2 involving MAX NCC2 vertices,

• Building alternatively a connected component of G1 and a connected component of G2 involving respectively MIN NCC1 and MIN NCC2 vertices,

• Finally, if this is possible, building a connected component of G1 involving MIN NCC1 vertices. 

graph G 2 graph G 1 MAX_NCC 1 MIN_NCC 1 MIN_NCC 2 MAX_NCC 2 initial graph
- 5+1) = 6, β = max(2, 3+4-2) = 5, NCC1 = (4 > 0)+ ¨6 5 ˝+(((6mod5)+1) ≥ 3) = 2) Proposition 136. apartition ∧ arc gen = PATH ∧ MIN NCC1 > 1 ∧ MIN NCC2 > 1 : NCC1 ≥ (MIN NCC1 > 0) + -α β + ((α mod β) + 1 > MAX NCC2), with :  • α = max(0, NVERTEXINITIAL -MIN NCC1 -MIN NCC2 + 1), • β = MAX NCC1 + MAX NCC2 -2. ( 3 
3 -4 + 1) = 12, β = max(2, 4 + 5 -2) = 7, NCC1 = (3 > 0) + ¨12 7 ˝+ (((12 mod 7) + 1) > 5) = 3)
Proof. The minimum number of connected components of G1 is achieved by:

• Building a first connected component of G2 involving MIN NCC2 vertices,
• Building a first connected component of G1 involving MIN NCC1 vertices,

• Building alternatively a connected component of G2 and a connected component of G1 involving respectively MAX NCC2 and MAX NCC1 vertices,

• Finally, if this is possible, building a connected component of G2 involving MAX NCC2 vertices and a connected component of G1 with the remaining vertices.

Note that these remaining vertices cannot be incorporated in the connected components previously built.

MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC2

Proposition 137.

vpartition ∧ consecutive loops are connected :

MIN NCC2 • max(0, NCC2 -1) + MAX NCC2+ MIN NCC1 • max(0, NCC2 -2) + MAX NCC1 ≤ NVERTEXINITIAL (3.200)
Proof. Similar to Proposition 130.

Proposition 138.

vpartition ∧ consecutive loops are connected : .201) Proof. Similar to Proposition 131.

NCC2 ≤ (MAX NCC2 > 0) + - α β + `α mod β ≥ max(1, MIN NCC2)  • α = max(0, NVERTEXINITIAL -max(1, MAX NCC2) -max(1, MAX NCC1)), • β = max(1, MIN NCC2) + max(1, MIN NCC1). ( 3 

Proposition 139.

vpartition ∧ consecutive loops are connected :

MAX NCC2 • max(0, NCC2 -1) + MIN NCC2+ MAX NCC1 • NCC2 + MIN NCC1 ≥ NVERTEXINITIAL (3.202)
Proof. Similar to Proposition 132.

Proposition 140.

vpartition ∧ consecutive loops are connected : .203) Proof. Similar to Proposition 133.

NCC2 ≥ (MAX NCC1 < NVERTEXINITIAL ) + - α β + `α mod β > MAX NCC1  • α = max(0, NVERTEXINITIAL -MIN NCC2 -MIN NCC1, • β = max(1, MAX NCC2) + max(1, MAX NCC1). ( 3 

Proposition 141.

vpartition ∧ consecutive loops are connected :

MAX NCC1 ≤ max(MIN NCC1, NVERTEXINITIALα), with :

• α = MIN NCC2 • max(0, NCC2 -1) + MAX NCC2+ MIN NCC1 + MIN NCC1 • max(0, NCC2 -3) (3.204)
Proof. Similar to Proposition 134.

Proposition 142.

apartition

∧ arc gen = PATH ∧ MIN NCC1 > 1 ∧ MIN NCC2 > 1 : NCC2 ≤ (MAX NCC2 > 0) + - α β + ((α mod β) + 1 ≥ MIN NCC2), with :  • α = max(0, NVERTEXINITIAL -MAX NCC1 -MAX NCC2 + 1), • β = MIN NCC1 + MIN NCC2 -2. (3.205)
Proof. Similar to Proposition 135.

Proposition 143.

apartition .206) Proof. Similar to Proposition 136.

∧ arc gen = PATH ∧ MIN NCC1 > 1 ∧ MIN NCC2 > 1 : NCC2 ≥ (MIN NCC2 > 0) + -α β + ((α mod β) + 1 > MAX NCC1, with :  • α = max(0, NVERTEXINITIAL -MIN NCC1 -MIN NCC2 + 1), • β = MAX NCC1 + MAX NCC2 -2. ( 3 

Graph invariants relating six characteristics of two final graphs

MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC1, NCC2 Proposition 144. 
apartition ∧ arc gen = PATH ∧ NVERTEXINITIAL > 0 :

α • MIN NCC1 + MAX NCC1+ β • MIN NCC2 + MAX NCC2 ≤ NVERTEXINITIAL + NCC1 + NCC2 -1, with :  • α = max(0, NCC1 -1), • β = max(0, NCC2 -1). (3.207) Proof. Let CC(G1) = {CC 1 a : a ∈ [NCC1]} and CC(G2) = {CC 2 a : a ∈ [NCC2]
} be respectively the set of connected components of the first and the second final graphs. Since the initial graph is a path, and since each arc of the initial graph belongs to the first or to the second final graphs (but not to both), there exists (Ai) i∈[NCC 1 +NCC 2 ] and there exists j ∈ [2] 

such that Ai ∈ CC(G 1+(j mod 2) ), for i mod 2 = 0 and Ai ∈ CC(G 1+((j+1) mod 2) ) for i mod 2 = 1 and Ai ∩ Ai+1 = ∅ for i ∈ [NCC1 + NCC2 -1]. By inclusion-exclusion principle, since Ai ∩ Aj = ∅ whenever j = i + 1, we obtain NVERTEXINITIAL = Σ a∈[NCC1] |CC 1 a | + Σ a∈[NCC2] |CC 2 a | -Σ i∈[NCC1+NCC2-1] |Ai ∩ Ai+1|. Since |Ai ∩ Ai+1| is equal to 1 for every well defined i, we obtain Σ a∈[NCC1] |CC 1 a | + Σ a∈[NCC2] |CC 2 a | = NVERTEXINITIAL + NCC1 + NCC2 -1. Since α • MIN NCC1 + MAX NCC1 + β • MIN NCC2 + MAX NCC2 ≤ Σ a∈[NCC1] |CC 1 a | + Σ a∈[NCC2] |CC 2 a | the result follows.
Proposition 145.

apartition ∧ arc gen = PATH ∧ NVERTEXINITIAL > 0 : .208) Proof. Similar to Proposition 144.

α • MAX NCC1 + MIN NCC1+ β • MAX NCC2 + MIN NCC2 ≥ NVERTEXINITIAL + NCC1 + NCC2 -1, with :  • α = max(0, NCC1 -1), • β = max(0, NCC2 -1). ( 3 

The electronic version of the catalog

An electronic version of the catalog containing every global constraint of the catalog is given in Appendix B. This electronic version was used for generating the L A T E X file of this catalog, the figures associated with the graph-based description and a filtering algorithm for some of the constraints that use the automaton-based description. Within the electronic version, each constraint is described in terms of meta-data. A typical entry is:

ctr_date(minimum, ['20000128','20030820','20040530','20041230']).

ctr_origin(minimum, 'CHIP', []). ctr_arguments(minimum, ['MIN'-dvar , 'VARIABLES'-collection(var-dvar)]). ctr_restrictions(minimum, [size('VARIABLES') > 0 , required('VARIABLES',var)]). ctr_graph(minimum, ['VARIABLES'], 2, ['CLIQUE'>>collection(variables1,variables2)], [variables1ˆkey = variables2ˆkey #\/ variables1ˆvar < variables2ˆvar], ['ORDER'(0,'MAXINT',var) = 'MIN']).
ctr_example(minimum, minimum (2,[[var-3] 

],[],[]). minimum_signature([], [], _). minimum_signature([[var-VAR]|VARs], [S|Ss], MIN) :- S in 0..2, MIN #< VAR #<=> S #= 0, MIN #= VAR #<=> S #= 1, MIN #> VAR #<=> S #= 2, minimum_signature(VARs, Ss, MIN).
and consists of the following Prolog facts, where CONSTRAINT NAME is the name of the constraint under consideration. The facts are organized in the following 13 items:

• Items 1, 2, 5, 10 and 11 provide general information about a global constraint,

• Items 3, 4 and 6 describe the parameters of a global constraint.

• Items 7 and 8 describes the meaning of a global constraint in terms of a graphbased representation.

• Item 9 provides a ground instance which holds.

• Items 12 and 13 describe the meaning of a global constraint in term of an automaton-based representation.

Items 1, 2, 4 and 9 are mandatory, while all other items are optional. We now give the different items:

1. ctr date( CONSTRAINT NAME, LIST OF DATES OF MODIFICATIONS )

• LIST OF DATES OF MODIFICATIONS is a list of dates when the description of the constraint was modified.

ctr origin( CONSTRAINT NAME, STRING, LIST OF CONSTRAINTS NAMES )

• STRING is a string denoting the origin of the constraint.

LIST OF CONSTRAINTS NAMES is an eventually empty list of constraint names related to the origin of the constraint.

ctr types( CONSTRAINT NAME, LIST OF TYPES DECLARATIONS )

• LIST OF TYPES DECLARATIONS is a list of elements of the form name-type, where name is the name of a new type and type the type itself (usually a collection). Basic and compound data types were respectively introduced in sections 1.1.1 and 1.1.2 page 3. This field is only used when we need to declare a new type that will be used for specifying the type of the arguments of the constraint. This is for instance the case when one argument of the constraint is a collection for which the type of one attribute is also a collection. This is for instance the case of the diffn constraint where the unique argument ORTHOTOPES is a collection of ORTHOTOPE; ORTHOTOPE refers to a new type declared in LIST OF TYPES DECLARATIONS.

ctr arguments( CONSTRAINT NAME, LIST OF ARGUMENTS DECLARATIONS )

• LIST OF ARGUMENTS DECLARATIONS is a list of elements of the form arg-type, where arg is the name of an argument of the constraint and type the type of the argument. Basic and compound data types were respectively introduced in sections 1.1.1 and 1.1.2 page 3.

ctr synonyms( CONSTRAINT NAME, LIST OF SYNONYMS )

• LIST OF SYNONYMS is a list of synonyms for the constraint. This stems from the fact that, quite often, different authors use a different name for the same constraint. This is for instance the case for the alldifferent and the symmetric alldifferent constraints.

ctr restrictions( CONSTRAINT NAME, LIST OF RESTRICTIONS )

• LIST OF RESTRICTIONS is a list of restrictions on the different argument of the constraint. Possible restrictions were described in Section 1.1.3 page 5. • LIST OF ARC INPUT is a list of collections used for creating the vertices of the initial graph. This was described at page 43 of Section 1.2.3.

• ARC ARITY is the number of vertices of an arc. Arc arity was explained at page 44 of Section 1.2.3.

• ARC GENERATORS is a list of arc generators. Arc generators were introduced at page 43 of Section 1.2.3.

• ARC CONSTRAINTS is a list of arc constraints. Arc constraints were defined in Section 1.2.2 page 22.

• GRAPH PROPERTIES is a list of graph properties. Graph properties were described in Section 1.2.2 page 31.

ctr example( CONSTRAINT NAME, LIST OF EXAMPLES )

• LIST OF EXAMPLES is a list of examples (usually one). Each example corresponds to a ground instance for which the constraint holds.

10. ctr see also( CONSTRAINT NAME, LIST OF CONSTRAINTS )

• LIST OF CONSTRAINTS is a list of constraints that are related in some way to the constraint.

ctr key words( CONSTRAINT NAME, LIST OF KEYWORDS )

• LIST OF KEYWORDS is a list of keywords associated with the constraint. Keywords may be linked to the meaning of the constraint, to a typical pattern where the constraint can be applied or to a specific problem where the constraint is useful. All keywords used in the catalog are listed in alphabetic order in Section 2.5 page 62.

Each keyword has an entry explaining its meaning and providing the list of global constraints using that keyword.

12. ctr automaton( CONSTRAINT NAME, PREDICATE NAME )

• PREDICATE NAME is the name of the Prolog predicate that creates the automata (usually one) associated with the constraint. This predicate name is usually the same as the constraint name, except for those constraints corresponding to a SICStus built-in (e.g. in, element).

constraint name( LIST OF ARGUMENTS ) :-BODY:

• LIST OF ARGUMENTS is the list of argument of the constraint.

• BODY corresponds to the Prolog code that creates the signature constraints as well as the automata (usually one) associated with the constraint. Within BODY, a fact of the form automaton/9 describes the states and the transitions of the automata used for describing the set of solutions accepted by the constraint. It follows the description provided in Section 1.3.2 page 55. 

all differ from at least k pos

Origin

Inspired by [START_REF] Frutos | Demonstration of a word design strategy for DNA computing on surfaces[END_REF].

Constraint

all differ from at least k pos(K, VECTORS)

Type(s)

VECTOR : collection(vardvar)

Argument(s) K : int VECTORS : collection(vec -VECTOR) Restriction(s) required(VECTOR, var) K ≥ 0 required(VECTORS, vec) same size(VECTORS, vec)

Purpose

Enforce all pairs of distinct vectors of the VECTORS collection to differ from at least K positions.

Arc input(s) VECTORS

Arc generator

CLIQUE ( =) → collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) differ from at least k pos(K, vectors1.vec, vectors2.vec)

Graph property(ies) NARC = |VECTORS| * |VECTORS| -|VECTORS|

Example

all differ from at least k pos

0 B B B B B B B B B B B B B B B B B B @ 2, 8 > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > : vec - 8 > > < > > : var -2, var -5, var -2, var -0 9 > > = > > ; , vec - 8 > > < > > : var -3, var -6, var -2, var -1 9 > > = > > ; , vec - 8 > > < > > : var -3, var -6, var -1, var -0 9 > > = > > ; 9 > > > > > > > > > > > > > > > > > > = > > > > > > > > > > > > > > > > > > ; 1 C C C C C C C C C C C C C C C C C C A
The previous constraint holds since exactly 3 • (3 -1) = 6 arc constraints hold, namely1 :

• The first and second vectors differ from 3 positions which is greater than or equal to K = 2.

• The first and third vectors differ from 3 positions which is greater than or equal to K = 2.

• The second and third vectors differ from 2 positions which is greater than or equal to K = 2. 

Parts (A) and (B) of

Graph model

The arc constraint(s) field uses the differ from at least k pos constraint defined in this catalog. See also differ from at least k pos.

Signature

Key words

decomposition, disequality, bioinformatics, vector, no loop.

all min dist

Origin [START_REF] Régin | The global minimum distance constraint[END_REF] Constraint all min dist(MINDIST, VARIABLES)

Synonym(s) minimum distance.
Argument(s) MINDIST : int VARIABLES : collection(vardvar)

Restriction(s)

MINDIST > 0 required(VARIABLES, var) VARIABLES.var ≥ 0

Purpose

Enforce for each pair (vari, varj ) of distinct variables of the collection VARIABLES that |varivarj | ≥ MINDIST. 

Arc input(s) VARIABLES

Arc generator

CLIQUE (<) → collection(variables1, variables2)

Graph model

We generate a clique with a minimum distance constraint between each pair of distinct vertices and state that the number of arcs of the final graph should be equal to the number of arcs of the initial graph.

Usage

The all min dist constraint was initially created for handling frequency allocation problems.

Remark

The all min dist constraint can be modeled as a set of tasks which should not overlap.

For each variable var of the VARIABLES collection we create a task t where var and MINDIST respectively correspond to the origin and the duration of t.

See also alldifferent, diffn.

Key words

value constraint, decomposition, frequency allocation problem.

alldifferent

Origin [2] Constraint alldifferent(VARIABLES)

Synonym(s) alldiff, alldistinct.

Argument(s)

VARIABLES : collection(vardvar)

Restriction(s) required(VARIABLES, var)

Purpose Enforce all variables of the collection VARIABLES to take distinct values. 

Arc input(s) VARIABLES

Graph model

We generate a clique with an equality constraint between each pair of vertices (including a vertex and itself) and state that the size of the largest strongly connected component should not exceed one.

Automaton

Figure 4.4 depicts the automaton associated to the alldifferent constraint. To each item of the collection VARIABLES corresponds a signature variable Si, which is equal to 1. The automaton counts the number of occurrences of each value and finally imposes that each value is taken at most one time.

Usage

The alldifferent constraint occurs in most practical problems. A classical example is the n-queen chess puzzle problem: Place n queens on a n by n chessboard in such a way that no queen attacks another. Two queens attack each other if they are located on the same column, on the same row or on the same diagonal. This can be modelled as the conjunction of three alldifferent constraints. We associate to the i th column of the chessboard a domain variable Xi that gives the line number where the corresponding queen is located.

The three alldifferent constraints are: • alldifferent(X1, X2 + 1, . . . , Xn + n -1) for the upper-left to lower-right diagonals,

1, i i {C[VAR ]=C[VAR ]+1} $ t: arith(C,<,2) s {C[_]=0}
• alldifferent(X1, X2, . . . , Xn) for the lines,

• alldifferent(X1 + n -1, X2 + n -2, . . . , Xn) for the lower-right to upper-left diagonals.

They are respectively depicted by parts (A), ( C) and (D) of Figure 4.5. 

4 7 1 2 3 5 6 8 X X X X X X X X 2 3 4 5 6 7 8 1 4 7 1 2 3 5 6 8 X X X X X X X X 2 3 4 5 6 7 8 1 X X X X X X X X

Remark

Even if the alldifferent constraint had not this form, it was specified in ALICE [START_REF] Laurière | Un langage et un programme pour énoncer et résoudre des problèmes combinatoires[END_REF]2] by asking for an injective correspondence between variables and values:

x = y ⇒ f (x) = f (y).
For possible relaxations of the alldifferent constraints see the alldifferent except 0, the soft alldifferent ctr, the soft alldifferent var and the weighted partial alldiff constraints.

Algorithm

The first complete filtering algorithm was independently found by Marie-Christine Costa [START_REF] Costa | Persistency in maximum cardinality bipartite matchings[END_REF] and Jean-Charles Régin [START_REF] Régin | A filtering algorithm for constraints of difference in CSP[END_REF]. This algorithm is based on a corollary of Claude Berge which characterizes the edges of a graph that belong to a maximum matching but not to all [17, page 120]. A short time after, assuming that all variables have no holes in their domain, Michel Leconte came up with a filtering algorithm [START_REF] Leconte | A bounds-based reduction scheme for constraints of difference[END_REF] based on edge finding. A first bound-consistency algorithm was proposed by Bleuzen-Guernalec et al. [START_REF] Bleuzen-Guernalec | Narrowing a block of sortings in quadratic time[END_REF]. Later on, two different approaches were used to design bound-consistency algorithms. Both approaches model the constraint as a bipartite graph. The first identifies Hall intervals in this graph [START_REF] Puget | A fast algorithm for the bound consistency of alldiff constraints[END_REF][START_REF] Lopez-Ortiz | A fast and simple algorithm for bounds consistency of the alldifferent constraint[END_REF] and the second applies the same algorithm that is used to compute arcconsistency, but achieves a speedup by exploiting the simpler structure of the graph [START_REF] Mehlhorn | Faster algorithms for bound-consistency of the sortedness and the alldifferent constraint[END_REF].

Used in circuit cluster, correspondence, size maximal sequence alldifferent, size maximal starting sequence alldifferent, sort permutation.

See also alldifferent except 0, soft alldifferent var, soft alldifferent ctr, cycle, symmetric alldifferent, lex alldifferent, alldifferent on intersection, weighted partial alldiff.

Key words

value constraint, permutation, all different, disequality, bipartite matching, n-queen, Hall interval, bound-consistency, automaton, automaton with array of counters, one succ.

alldifferent between sets

Origin ILOG Constraint alldifferent between sets(VARIABLES)

Synonym(s)

all null intersect, alldiff between sets, alldistinct between sets.

Argument(s)

VARIABLES : collection(varsvar)

Restriction(s) required(VARIABLES, var)

Purpose Enforce all sets of the collection VARIABLES to be distinct. 

Arc input(s) VARIABLES

Graph model

We generate a clique with binary set equalities constraints between each pair of vertices (including a vertex and itself) and state that the size of the largest strongly connected component should not exceed one.

Usage

This constraint is available in some configuration library offered by Ilog.

See also alldifferent, link set to booleans.

Key words

all different, disequality, bipartite matching, constraint involving set variables, one succ. 

Argument(s)

VARIABLES : collection(vardvar)

Restriction(s) required(VARIABLES, var)

Purpose Enforce all variables of the collection VARIABLES to take distinct values, except those variables which are assigned to 0.

Arc input(s) VARIABLES

Arc generator CLIQUE → collection(variables1, variables2)

Arc arity 2

Arc constraint(s) 

• variables1.var = 0 • variables1.var = variables2.var Graph property(ies) MAX NSCC ≤ 1 Example alldifferent except 0 0 B B B B B B @ 8 > > > > > > < > > > > > > : var -5, var -0, var -1, var -9, var -0, var -3 9 > > > > > > = > > > > > > ; 1 C C C C C C A Parts (A)

Graph model

The graph model is the same as the one used for the alldifferent constraint, except that we discard all variables that are assigned to 0. 

Automaton

constraint i VAR =0 VAR <>0, i i i {C[VAR ]=C[VAR ]+1} $ t: arith(C,<,2) s {C[_]=0}

Usage

Quite often it appears that for some modelling reason you create a joker value. You don't want that normal constraints hold for variables that take this joker value. For this purpose we modify the binary arc constraint in order to discard the vertices for which the corresponding variables are assigned to 0. This will be effectively the case since all the corresponding arcs constraints will not hold.

alldifferent interval

Origin Derived from alldifferent.

Constraint alldifferent interval(VARIABLES, SIZE INTERVAL)

Synonym(s) alldiff interval, alldistinct interval.

Argument(s) VARIABLES : collection(var -dvar) SIZE INTERVAL : int Restriction(s) required(VARIABLES, var) SIZE INTERVAL > 0

Purpose

Enforce all variables of the collection VARIABLES to belong to distinct intervals. The intervals are defined by

[SIZE INTERVAL • k, SIZE INTERVAL • k + SIZE INTERVAL -1]
where k is an integer. In the previous example, the second parameter SIZE INTERVAL defines the following family of intervals

Arc input(s) VARIABLES

[3 • k, 3 • k + 2],
where k is an integer. Since the three variables of the collection VARIABLES take values that are respectively located within the three following distinct intervals [0,2], [3,5] and [START_REF] Bohlin | Desing and implementation of a graph-based constraint model for local search[END_REF][START_REF] Beldiceanu | Cost evaluation of soft global constraints[END_REF], the alldifferent interval constraint holds. Parts (A) and (B) of Figure 4.9 respectively show the initial and final graph. Since we use the MAX NSCC graph property we show one of the largest strongly connected component of the final graph.

Graph model

Similar to the alldifferent constraint, but we replace the binary equality constraint of the alldifferent constraint by the fact that two variables are respectively assigned to two values that belong to the same interval. We generate a clique with a belong to the same interval constraint between each pair of vertices (including a vertex and itself) and state that the size of the largest strongly connected component should not exceed one.

Automaton

Figure 4.10 depicts the automaton associated to the alldifferent interval constraint.

To each item of the collection VARIABLES corresponds a signature variable Si, which is equal to 1.

For each interval [SIZE INTERVAL•k, SIZE INTERVAL•k+SIZE INTERVAL-1]
of values the automaton counts the number of occurrences of its values and finally imposes that the values of an interval are taken at most once. 

Key words

value constraint, interval, all different, automaton, automaton with array of counters, one succ.

alldifferent modulo

Origin Derived from alldifferent.

Constraint alldifferent modulo(VARIABLES, M)

Synonym(s) alldiff modulo, alldistinct modulo.

Argument(s)

VARIABLES : collection(vardvar) M : int

Restriction(s) required(VARIABLES, var) M = 0 M ≥ |VARIABLES|

Purpose

Enforce all variables of the collection VARIABLES to have a distinct rest when divided by M. 

Arc input(s) VARIABLES

Graph model

Exploit the same model used for the alldifferent constraint. We replace the binary equality constraint by an other equivalence relation depicted by the arc constraint. We generate a clique with a binary equality modulo M constraint between each pair of vertices (including a vertex and itself) and state that the size of the largest strongly connected component should not exceed one.

Automaton

Figure 4.12 depicts the automaton associated to the alldifferent modulo constraint.

To each item of the collection VARIABLES corresponds a signature variable Si, which is equal to 1. The automaton counts for each equivalence class the number of used values and finally imposes that each equivalence class is used at most one time. 

1, i i {C[VAR mod M]=C[VAR mod M]+1} $ t: arith(C,<,2) s {C[_]=0}

Key words

value constraint, modulo, all different, automaton, automaton with array of counters, one succ.

alldifferent on intersection

Origin Derived from common and alldifferent.

Constraint

alldifferent on intersection(VARIABLES1, VARIABLES2)

Synonym(s)

alldiff on intersection, alldistinct on intersection.

Argument(s)

VARIABLES1 : collection(vardvar) VARIABLES2 : collection(vardvar)

Restriction(s) required(VARIABLES1, var) required(VARIABLES2, var)

Purpose

The values which both occur in the VARIABLES1 and VARIABLES2 collections have only one occurrence.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT → collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) MAX NCC ≤ 2

Example alldifferent on intersection Observe that all the vertices corresponding to the variables that take values 5, 2 or 6 were removed from the final graph since there is no arc for which the associated equality constraint holds.

0 B B B B B B B B B B B B B B @ 8 > > < > > : var -5, var -9, var -1, var -5 9 > > = > > ; , 8 > > > > > > < > > > > > > : var -2, var -1, var -6, var -9, var -6, var -2 9 > > > > > > = > > > > > > ; 1 C C C C C C C C C C C C C C A Parts (A)

Automaton

Figure 4.14 depicts the automaton associated to the alldifferent on intersection constraint. To each variable VAR1i of the collection VARIABLES1 corresponds a signature variable Si, which is equal to 0. To each variable VAR2i of the collection VARIABLES2 corresponds a signature variable S i+|VARIABLES1| , which is equal to 1. The automaton first counts the number of occurrences of each value assigned to the variables of the VARIABLES1 collection. It then counts the number of occurrences of each value assigned to the variables of the VARIABLES2 collection. Finally, the automaton imposes that each value is not taken by two variables of both collections.

See also alldifferent, common, nvalue on intersection, same intersection.

Key words

value constraint, all different, connected component, constraint on the intersection, automaton, automaton with array of counters, acyclic, bipartite, no loop. 

i i 1, {D[VAR ]=D[VAR ]+1} i i 1, {D[VAR ]=D[VAR ]+1} i 0, i i {C[VAR ]=C[VAR ]+1} $ t: arith_or(C,D,<,2) {C[_]=0,D[_]=0} s

alldifferent partition

Origin

Derived from alldifferent.

Constraint alldifferent partition(VARIABLES, PARTITIONS)

Synonym(s) alldiff partition, alldistinct partition.

Type(s)

VALUES : collection(valint)

Argument(s) VARIABLES : collection(var -dvar) PARTITIONS : collection(p -VALUES) Restriction(s) required(VALUES, val) distinct(VALUES, val) |VARIABLES| ≤ |PARTITIONS| required(VARIABLES, var) |PARTITIONS| ≥ 2 required(PARTITIONS, p)

Purpose

Enforce all variables of the collection VARIABLES to take values which belong to distinct partitions.

Arc input(s) VARIABLES

Arc generator CLIQUE → collection(variables1, variables2)

Arc arity 2

Arc constraint(s) in same partition(variables1.var, variables2.var, PARTITIONS) 

Graph property(ies)

MAX NSCC ≤ 1 Example alldifferent partition 0 B B @ {var -6, var -3, var -4}, 8 < : p -{val -1, val -3}, p -{val -4}, p -{val -2, val -6} 9 

Graph model

Similar to the alldifferent constraint, but we replace the binary equality constraint of the alldifferent constraint by the fact that two variables are respectively assigned to two values that belong to the same partition. We generate a clique with a in same partition constraint between each pair of vertices (including a vertex and itself) and state that the size of the largest strongly connected component should not exceed one.

See also alldifferent, in same partition.

Key words

value constraint, partition, all different, one succ. 

Restriction(s) NSAME ≥ 0 NSAME ≤ |VARIABLES1| |VARIABLES1| = |VARIABLES2| required(VARIABLES1, var) required(VARIABLES2, var)

Purpose

All the values assigned to the variables of the collection VARIABLES1 are pairwise distinct. NSAME is equal to number of constraints of the form

VARIABLES1[i].var = VARIABLES2[i].var (1 ≤ i ≤ |VARIABLES1|) that hold.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT (CLIQUE , LOOP , =) → collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies)

• MAX NSCC ≤ 1 • NARC NO LOOP = NSAME Example alldifferent same value 0 B B B B B B B B B B @ 2, 8 > > < > > : var -7, var -3, var -1, var -5 9 > > = > > ; , 8 > > < > > : var -1, var -3, var -1, var -7 9 > > = > > ; 1 C C C C C C C C C C A
Part (A) of Figure 4.16 gives the initial graph that is generated. Variables of collection VARIABLES1 are coloured, while variables of collection VARIABLES2 are kept in white. Part (B) represents the final graph associated to the example. In this graph each vertex constitutes a strongly connected component and the number of arcs that do not correspond to a loop is equal to 2 (i.e. NSAME).

Graph model

The arc generator PRODUCT (CLIQUE , LOOP , =) is used in order to generate all the arcs of the initial graph:

• The arc generator CLIQUE creates all links between the items of the first collection VARIABLES1,

• The arc generator LOOP creates one loop for all items of the second collection VARIABLES2,

• Finally the arc generator PRODUCT (=) creates an arc between items located at the same position in the collections VARIABLES1 and VARIABLES2.

Automaton

Figure 4.17 depicts the automaton associated to the alldifferent same value constraint. Let VAR1i and VAR2i respectively denote the i th variables of the VARIABLES1 and VARIABLES2 collections. To each pair of variables (VAR1i, VAR2i) corresponds a signature variable Si. The following signature constraint links VAR1i, VAR2i and Si:

VAR1i = VAR2i ⇔ Si.

Usage

When all variables of the second collection are initially bound to distinct values the alldifferent same value constraint can be explained in the following way:

• We interpret the variables of the second collection as the previous solution of a problem where all variables have to be distinct.

• We interpret the variables of the first collection as the current solution to find, where all variables should again be pairwise distinct.

The variable NSAME mesures the distance of the current solution from the previous solution. This corresponds to the number of variables of VARIABLES2 that are not assigned to the same previous value.

Key words

proximity constraint, automaton, automaton with array of counters. 

VAR1 =VAR2 , i i i i {C[VAR1 ]=C[VAR1 ]+1,D=D+1} i i VAR1 <>VAR2 , i i {C[VAR1 ]=C[VAR1 ]+1}

Purpose

Given a matrix of domain variables, enforces that the first row is lexicographically less than or equal to all permutations of all other rows.

Example allperm

"  vec -{var -1, var -2, var -3}, vec -{var -3, var -1, var -2} ff «
The previous constraint holds since vector 1, 2, 3 is lexicographically less than or equal to all the permutations of vector 3, 1, 2 (i.e. 1, 2, 3 ,

Usage

A symmetry-breaking constraint.

See also lex2, lex lesseq. 

Key words

Purpose

NVAR is the number of variables of the collection VARIABLES which take their value in VALUES. 

Arc input(s) VARIABLES

Graph model

The arc constraint corresponds to the unary constraint in(variables.var, VALUES) defined in this catalog. Since this is a unary constraint we employ the SELF arc generator in order to produce an initial graph with a single loop on each vertex. The common constraint can be seen as a generalization of the among constraint where we allow the val attributes of the VALUES collection to be domain variables.

Automaton

C 1 VAR 1 S 1 Q 1 VAR 2 S 2 VAR n S n Q =s 0 C =0 0 C =NVAR n Q =t n
See also among diff 0, exactly, global cardinality, count, common, nvalue, max nvalue, min nvalue.

among diff 0

Origin Used in the automaton of nvalue.

Constraint

among diff 0(NVAR, VARIABLES)

Argument(s) NVAR : dvar VARIABLES : collection(var -dvar) Restriction(s) NVAR ≥ 0 NVAR ≤ |VARIABLES| required(VARIABLES, var)
Purpose NVAR is the number of variables of the collection VARIABLES which take a value different from 0.

Arc input(s) VARIABLES

Arc generator SELF → collection(variables)

Arc arity 1

Arc constraint(s)

variables.var = 0 

Graph property(ies)

NARC = NVAR Example among diff 0 0 B B B B @ 3, 8 > > > > < > > > > : var -0, var -5, var -5, var -0, var -1 9 > > > > = > > > > ;

Graph model

Since this is a unary constraint we employ the SELF arc generator in order to produce an initial graph with a single loop on each vertex. See also among, nvalue.

{C=C+1} VAR <>0, i VAR =0 i $ t: NVAR=C s {C=0} Figure 4.22: Automaton of the among diff 0 constraint C 1 VAR 1 S 1 Q 1 VAR 2 S 2 VAR n S n Q =s 0 C =0 0 C =NVAR n Q =t n

Key words

value constraint, counting constraint, joker value, automaton, automaton with counters, alpha-acyclic constraint network (2).

NARC, SELF 

among interval

8 > > > > < > > > > : var -4, var -5, var -8, var -4, var -1 9 > > > > = > > > > ; , 3, 5 1 C C C C A
The constraint holds since we have 3 values, namely 4, 5 and 4 which are situated within interval [3,5]. Parts (A) and (B) of Figure 4.24 respectively show the initial and final graph. Since we use the NARC graph property, the unary arcs of the final graph are stressed in bold. 

Graph model

The arc constraint corresponds to a unary constraint. For this reason we employ the SELF arc generator in order to produce a graph with a single loop on each vertex. See also among.

Automaton

C 1 VAR 1 S 1 Q 1 VAR 2 S 2 VAR n S n Q =s 0 C =0 0 C =NVAR n Q =t n

Key words

value constraint, counting constraint, interval, automaton, automaton with counters, alpha-acyclic constraint network(2).

among low up

Origin [START_REF] Beldiceanu | Introducing global constraints in CHIP[END_REF] Constraint 

• NARC ≥ LOW • NARC ≤ UP Example among low up 0 B B B B B B @ 1, 2, {var -9, var -2, var -4, var -5}, 8 > > > > < > > > > : val -0, val -2, val -4, val -6, val -8 9 > > > > = > > > > ; 1 C C C C C C A Parts (A)

Graph model

Each arc constraint of the final graph corresponds to the fact that a variable is assigned to a value that belong to the VALUES collection. The two graph properties restrict the total number of arcs to the interval [LOW, UP]. 

Automaton

Used in

among seq, cycle card on path, interval and count, sliding card skip0.

See also among.

Key words value constraint, counting constraint, automaton, automaton with counters, alpha-acyclic constraint network(2), acyclic, bipartite, no loop. 

8 > > > > < > > > > : var -4, var -5, var -8, var -4, var -1 9 > > > > = > > > > ; , 0, 2 1 C C C C A
In this example REMAINDER = 0 and QUOTIENT = 2 specifies that we count the number of even values taken by the different variables. Parts (A) and (B) of Figure 4.30 respectively show the initial and final graph. Since we use the NARC graph property, the unary arcs of the final graph are stressed in bold.

Graph model

The arc constraint corresponds to a unary constraint. For this reason we employ the SELF arc generator in order to produce a graph with a single loop on each vertex. 

Automaton

1 VAR 1 S 1 Q 1 VAR 2 S 2 VAR n S n Q =s 0 C =0 0 C =NVAR n Q =t n

Remark

By giving explicitly all values v which satisfy the equality v modQUOTIENT = REMAINDER the among modulo constraint can be modelled with the among constraint. However the among modulo constraint provides a more compact form.

See also among.

Key words

value constraint, counting constraint, modulo, automaton, automaton with counters, alpha-acyclic constraint network (2).

NARC, PATH

among seq

Origin [START_REF] Beldiceanu | Introducing global constraints in CHIP[END_REF] Constraint among seq(LOW, UP, SEQ, VARIABLES, VALUES)

Argument(s) LOW : int UP : int SEQ : int VARIABLES : collection(var -dvar) VALUES : collection(val -int) Restriction(s) LOW ≥ 0 LOW ≤ |VARIABLES| UP ≥ LOW SEQ > 0 SEQ ≥ LOW SEQ ≤ |VARIABLES| required(VARIABLES, var) required(VALUES, val) distinct(VALUES, val)

Purpose

Constrains all sequences of SEQ consecutive variables of the collection VARIABLES to take at least LOW values in VALUES and at most UP values in VALUES.

Arc input(s) VARIABLES

Arc generator PATH → collection

Arc arity SEQ

Arc constraint(s)

among low up(LOW, UP, collection, VALUES)

Graph property(ies)

NARC = |VARIABLES| -SEQ + 1 Example among seq 0 B B B B B B B B B B B B B B B B B B @
1, 2, 4,

8 > > > > > > > > < > > > > > > > > : var -9, var -2, var -4, var -5, var -5, var -7, var -2 9 > > > > > > > > = > > > > > > > > ; , 8 > > > > < > > > > : val -0, val -2, val -4, val -6, val -8 9 > > > > = > > > > ; 1 C C C C C C C C C C C C C C C C C C A
The previous constraint holds since the different sequences of 4 consecutive variables contains respectively 2, 2, 1 and 1 even numbers.

Graph model

A constraint on sliding sequences of consecutives variables. Each vertex of the graph corresponds to a variable. Since they link SEQ variables, the arcs of the graph correspond to hyperarcs. In order to link SEQ consecutive variables we use the arc generator PATH .

The constraint associated to an arc corresponds to the among low up constraint defined at an other entry of this catalog.

Signature

Since we use the PATH arc generator with an arity of SEQ on the items of the VARIABLES collection, the expression |VARIABLES| -SEQ + 1 corresponds to the maximum number of arcs of the final graph. Therefore we can rewrite the graph property NARC = |VARIABLES| -SEQ + 1 to NARC ≥ |VARIABLES| -SEQ + 1 and simplify NARC to NARC.

Algorithm [65].

See also among, among low up.

Key words

decomposition, sliding sequence constraint, sequence, hypergraph. 

arith

Origin

Q =t n Q 1 Q =s 0 S 1 S 2 S n VAR 1 VAR 2 VAR n
var -0, var -1, var -0, var -0, var -1 9 > > > > = > > > > ; , 8 > > > > < > > > > : var -0, var -0, var -0, var -1, var -0 9 > > > > = > > > > ; , =, 0 1 C C C C C C C C C C C C C C A
The constraint holds since for all pairs of variables var1i, var2i of the VARIABLES1 and VARIABLES2 collections we have that at least one of the variables is equal to 0. Parts (A) and (B) of 

Q =t n VAR2 1 VAR2 2 VAR2 n VAR1 1 VAR1 2 VAR1 n Q 1 Q =s 0 S 1 S 2 S n
0 B B B B B B B B @ 8 > > > > > > > > < > > > > > > > > : var -0, var -0, var -1, var -2, var -0, var -0, var --3 9 > > > > > > > > = > > > > > > > > ; , <, 4 1 C C C C C C C C A
The previous constraint holds since all the following seven inequalities hold:

• 0 < 4, • 0 + 0 < 4, • 0 + 0 + 1 < 4, • 0 + 0 + 1 + 2 < 4, • 0 + 0 + 1 + 2 + 0 < 4, • 0 + 0 + 1 + 2 + 0 + 0 < 4, • 0 + 0 + 1 + 2 + 0 + 0 -3 < 4.

Automaton

Figure 4.39 depicts the automaton associated to the arith sliding constraint. To each item of the collection VARIABLES corresponds a signature variable Si, which is equal to 0.

See also arith, cumulative.

Key words

decomposition, sliding sequence constraint, sequence, hypergraph, automaton, automaton with counters. 

Q =s 0 Q 1 Q =t n VAR 1 C =0 1 VAR 2 VAR n S 1 S 2 S n C 2 C n
0 B B B B @ {val -4}, 8 > > < > > : bin -1 colour -4, bin -3 colour -4, bin -1 colour -4, bin -1 colour -5 9 > > = > > ; , ≤, 2 1 C C C C A
Parts (A) and (B) of Figure 4.41 respectively show the initial and final graph. The final graph consists of the following two connected components:

• The connected component containing six vertices corresponds to the items which are assigned to bin 1.

• The connected component containing two vertices corresponds to the items which are assigned to bin 3.

The assign and counts constraint holds since for each set of successors of the vertices of the final graph no more than two items take colour 4. 

Graph model

We enforce the counts constraint on the colour of the items that are assigned to the same bin.

Automaton

Figure 4.43 depicts the automaton associated to the assign and counts constraint. To each colour attribute COLOURi of the collection ITEMS corresponds a 0-1 signature variable Si. The following signature constraint links COLOURi and Si: COLOURi ∈ COLOURS ⇔ Si. For all items of the collection ITEMS for which the colour attribute takes its value in COLOURS, counts for each value assigned to the bin attribute its number of occurrences n, and finally imposes the condition n RELOP LIMIT.

Usage

Some persons have pointed out that it is impossible to use constraints such as among, atleast, atmost, count, or global cardinality if the set of variables is not initially known. However, this is for instance required in practice for some timetabling problems.

See also count, counts.

Key words assignment, coloured, automaton, automaton with array of counters, derived collection. • The connected component containing eight vertices corresponds to the items which are assigned to bin 2.

0 B B B B @ 8 > > > > < > > > > : bin -2 value -3, bin -1 value -5, bin -2 value -3, bin -2 value -3, bin -2 value -4 9 > > > > = > > > > ; , ≤, 2 1 C 
• The connected component containing two vertices corresponds to the items which are assigned to bin 1.

The assign and nvalues constraint holds since for each set of successors of the vertices of the final graph no more than two distinct values are used:

• The unique item assigned to bin 1 uses value 5. 

Graph model

We enforce the nvalue constraint on the items that are assigned to the same bin.

Usage

Let us give two examples where the assign and nvalues constraint is useful:

• Quite often, in bin-packing problems, each item has a specific type, and one wants to assign items of similar type to each bin.

• In a vehicle routing problem, one wants to restrict the number of towns visited by each vehicle. Note that several customers may be located at the same town. In this example, each bin would correspond to a vehicle, each item would correspond to a visit to a customer, and the colour of an item would be the location of the corresponding customer.

See also nvalue, nvalues. 

Key words

1 VAR 1 S 1 Q 1 VAR 2 S 2 VAR n S n Q =s 0 C =0 0 Q =t n C >=N n
1 VAR 1 S 1 Q 1 VAR 2 S 2 VAR n S n Q =s 0 C =0 0 Q =t n C <=N n
Restriction(s) BALANCE ≥ 0 BALANCE ≤ |VARIABLES| required(VARIABLES, var)
Purpose BALANCE is equal to the difference between the number of occurrence of the value that occurs the most and the value that occurs the least within the collection of variables VARIABLES.

Arc input(s) VARIABLES

Arc generator CLIQUE → collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies)

RANGE NSCC = BALANCE Example balance 0 B B B B @ 2, 8 > > > > < > > > > : var -3, var -1, var -7, var -1, var -1 9 > > > > = > > > > ; 1 C C C C A
In this example, values 1, 3 and 7 are respectively used 3, 1 and 1 times. BALANCE is assigned to the difference between the maximum and minimum number of the previous occurrences (i.e. 3 -1). Parts (A) and (B) of Figure 4.52 respectively show the initial and final graph. Since we use the RANGE NSCC graph property, we show the largest and smallest strongly connected components of the final graph.

Graph model

The graph property RANGE NSCC constraints the difference between the sizes of the largest and smallest strongly connected components.

Automaton

Figure 4.53 depicts the automaton associated to the balance constraint. To each item of the collection VARIABLES corresponds a signature variable Si, which is equal to 1.

Usage

One application of this constraint is to enforce a balanced assignment of values, no matter how many distinct values will be used. In this case one will push down the maximum value of the first argument of the balance constraint.

See also balance interval, balance modulo, balance partition, tree range. 

balance interval

Origin

Derived from balance. 

Constraint

8 > > > > < > > > > : var -6, var -4, var -3, var -3, var -4 9 > > > > = > > > > ; , 3 
1 C C C C A
In the previous example, the third parameter SIZE INTERVAL defines the following family of intervals

[3 • k, 3 • k + 2],
where k is an integer. Values 6,4,3,3 and 4 are respectively located within intervals [START_REF] Simonis | Complex constraint abstraction: Global constraint visualization[END_REF]8], [3,5], [3,5], [3,5] and [3,5]. Therefore intervals [START_REF] Simonis | Complex constraint abstraction: Global constraint visualization[END_REF]8] and [3,5] are respectively used 1 and 4 times. BALANCE is assigned to the difference between the maximum and minimum number of the previous occurrences (i.e. 

Graph model

The graph property RANGE NSCC constraints the difference between the sizes of the largest and smallest strongly connected components. 

Usage

One application of this constraint is to enforce a balanced assignment of interval of values, no matter how many distinct interval of values will be used. In this case one will push down the maximum value of the first argument of the balance interval constraint.

See also balance.

Key words value constraint, interval, assignment, balanced assignment, automaton, automaton with array of counters, equivalence.

balance modulo

Origin

Derived from balance. 

Constraint

8 > > > > < > > > > : var -6, var -1, var -7, var -1, var -5 9 > > > > = > > > > ; , 3 
1 C C C C A
In this example values 6, 1, 7, 1, 5 are respectively associated to the equivalence classes 0, 1, 1, 1, 2. Therefore the equivalence classes 0, 1 and 2 are respectively used 1, 3 and 1 times. BALANCE is assigned to the difference between the maximum and minimum number of the previous occurrences (i.e. 3 -1). Parts (A) and (B) of Figure 4.56 respectively show the initial and final graph. Since we use the RANGE NSCC graph property, we show the largest and smallest strongly connected components of the final graph.

Graph model

The graph property RANGE NSCC constraints the difference between the sizes of the largest and smallest strongly connected components.

Automaton

Figure 4.57 depicts the automaton associated to the balance modulo constraint. To each item of the collection VARIABLES corresponds a signature variable Si, which is equal to 1. 

Usage

One application of this constraint is to enforce a balanced assignment of values, no matter how many distinct equivalence classes will be used. In this case one will push down the maximum value of the first argument of the balance modulo constraint.

See also balance. 

balance partition

0 B B B B B B B B B B @ 1, 8 > > > > < > > > > : var -6, var -2, var -6, var -4, var -4 9 > > > > = > > > > ; , 8 < : p -{val -1, val -3}, p -{val -4}, p -{val -2, val -6} 9 = ; 1 C C C C C C C C C C A
In this example values 6, 2, 6, 4, 4 are respectively associated to the partitions p -{val -2, val -6} and p -{val -4}. Partitions p -{val -4} and p -{val -2, val -6} are respectively used 2 and 3 times. BALANCE is assigned to the difference between the maximum and minimum number of the previous occurrences (i.e. 3 -2). Note that we don't consider those partitions that are not used at all. Parts (A) and (B) of Figure 4.58 respectively show the initial and final graph. Since we use the RANGE NSCC graph property, we show the largest and smallest strongly connected components of the final graph.

Graph model

The graph property RANGE NSCC constraints the difference between the sizes of the largest and smallest strongly connected components.

Usage

One application of this constraint is to enforce a balanced assignment of values, no matter how many distinct partitions will be used. In this case one will push down the maximum value of the first argument of the balance partition constraint.

See also balance.

Key words value constraint, partition, assignment, balanced assignment, equivalence. 

bin packing

Purpose

Given several items of the collection ITEMS (each of them having a specific weight), and different bins of a fixed capacity, assign each item to a bin so that the total weight of the items in each bin does not exceed CAPACITY.

Arc input(s) ITEMS ITEMS

Arc generator

PRODUCT → collection(items1, items2) 

Graph model

We enforce the sum ctr constraint on the weight of the items that are assigned to the same bin. 

Automaton

Remark

Note the difference with the classical bin-packing problem [66, page 221] where one wants to find solutions that minimize the number of bins. In our case each item may be assigned only to specific bins (i.e. the different values of the bin variable) and the goal is to find a feasible solution. This constraint can be seen as a special case of the cumulative constraint [START_REF] Aggoun | Extending CHIP in order to solve complex scheduling and placement problems[END_REF], where all tasks durations are equal to one.

In [START_REF] Shaw | A constraint for bin packing[END_REF] the CAPACITY parameter of the bin packing constraint is replaced by a collection of domain variables representing the load of each bin (i.e. the sum of the weigths of the items assigned to a bin). This allows representing problems where a minimum level has to be reached in each bin.

Algorithm [START_REF] Müller-Hannemann | Patterns of usage for global constraints: A case study based on the bin-packing constraint[END_REF][START_REF] Müller-Hannemann | Evaluating the bin-packing constraint, part i: Overview of the algorithmic approach[END_REF][START_REF] Müller-Hannemann | Evaluating the bin-packing constraint, part ii: An adaptive rounding problem[END_REF][START_REF] Müller-Hannemann | Evaluating the bin-packing constraint, part iii: Joint evaluation with concave constraints[END_REF][START_REF] Shaw | A constraint for bin packing[END_REF].

See also cumulative.

Key words

resource constraint, assignment, automaton, automaton with array of counters.

binary tree

Origin Derived from tree.

Constraint binary tree(NTREES, NODES)

Argument(s) NTREES : dvar NODES : collection(index -int, succ -dvar) Restriction(s) NTREES ≥ 0 required(NODES, [index, succ]) NODES.index ≥ 1 NODES.index ≤ |NODES| distinct(NODES, index) NODES.succ ≥ 1 NODES.succ ≤ |NODES|

Purpose

Cover the digraph G described by the NODES collection with NTREES binary trees in such a way that each vertex of G belongs to one distinct binary tree. The edges of the binary trees are directed from their leaves to their respective root.

Arc input(s) NODES

Arc generator CLIQUE → collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies)

• MAX NSCC ≤ 1

• NCC = NTREES • MAX ID ≤ 2 Example binary tree 0 B B B B B B B B B B @ 2, 8 > > > > > > > > > > < > > > > > > > > > > : index -1 succ -1, index -2 succ -3, index -3 succ -5, index -4 succ -7, index -5 succ -1, index -6 succ -1, index -7 succ -7, index -8 succ -5 9 > > > > > > > > > > = > > > > > > > > > > ; 1 C C C C C C C C C C A
Parts (A) and (B) of Figure 4.62 respectively show the initial and final graph. Since we use the NCC graph property, we display the two connected components of the final graph. Each of them corresponds to a binary tree. Since we use the MAX ID graph property, we also show with a double circle a vertex which has a maximum number of predecessors.

The binary tree constraint holds since all strongly connected components of the final graph have no more than one vertex, since NTREES = NCC = 2 and since MAX ID = 2. 

Graph model

We use the same graph constraint as for the tree constraint, except that we add the graph property MAX ID ≤ 2 which constraints the maximum in-degree of the final graph to not exceed 2. MAX ID does not consider loops: This is why we do not have any problem with the root of each tree.

See also tree.

Key words

graph constraint, graph partitioning constraint, connected component, tree, one succ. 

cardinality atleast

Graph model

Using directly the graph property MIN ID = ATLEAST and replacing the disequality of the arc constraint by an equality does not work since it ignores values which are not assigned to any variable. This comes from the fact that isolated vertices are removed from the final graph.

Automaton

Figure 4.64 depicts the automaton associated to the cardinality atleast constraint. To each variable VARi of the collection VARIABLES corresponds a 0-1 signature variable Si.

The following signature constraint links VARi and Si: VARi ∈ VALUES ⇔ Si.

Usage

An application of this constraint is to enforce a minimum use of values. 

Algorithm

See global cardinality [START_REF] Régin | Generalized arc consistency for global cardinality constraint[END_REF].

See also global cardinality.

Key words

value constraint, assignment, at least, automaton, automaton with array of counters, acyclic, bipartite, no loop. 

cardinality atmost

8 > > > > < > > > > : var -2, var -1, var -7, var -1, var -2 9 > > > > = > > > > ; , 8 > > < > > : val -5, val -7, val -2, val -9 9 > > = > > ; 1 C C C C C C C C C C C C A
In this example, values 5, 7, 2 and 9 are respectively used 0, 1, 2 and 0 times. Therefore ATMOST is assigned to the maximum number of occurrences 2. Parts (A) and (B) of 

Usage

One application of this constraint is to enforce a maximum use of values.

Remark

This is a restricted form of a variant of the among constraint and of the global cardinality constraint. In the original global cardinality constraint, one specifies for each value its minimum and maximum number of occurrences.

Algorithm

See global cardinality [START_REF] Régin | Generalized arc consistency for global cardinality constraint[END_REF].

See also global cardinality.

Key words

value constraint, assignment, at most, automaton, automaton with array of counters, acyclic, bipartite, no loop. 

cardinality atmost partition

0 B B B B B B B B B B B B @ 2, 8 > > > > > > < > > > > > > : var -2, var -3, var -7, var -1, var -6, var -0 9 > > > > > > = > > > > > > ; , 8 < : p -{val -1, val -3}, p -{val -4}, p -{val -2, val -6} 9 = ; 1 C C C C C C C C C C C C A
In this example, two variables are assigned to values of the first partition, no variable is assigned to a value of the second partition, and finally two variables are assigned to values of the last partition. Therefore ATMOST is assigned to the maximum number of occurrences 2. Parts (A) and (B) of Figure 4.67 respectively show the initial and final graph. Since we use the MAX ID graph property, a vertex with the maximum number of predecessor is stressed with a double circle. : atom

Restriction(s) NCHANGE ≥ 0 NCHANGE < |VARIABLES| required(VARIABLES, var) CTR ∈ [=, =, <, ≥, >, ≤]
Purpose NCHANGE is the number of times that constraint CTR holds on consecutive variables of the collection VARIABLES.

Arc input(s) VARIABLES

Arc generator

PATH → collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var CTR variables2.var 

Graph property(ies)

NARC = NCHANGE Example change 0 B B B B @ 3, 8 > > > > < > > > > : var -4, var -4, var -3, var -4, var -1 9 > > > > = > > > > ; , = 1 C C C C A change 0 B B B B @ 1, 8 > > > > < > > > > : var -1, var -2, var -4, var -3, var -7 9 > > > > = > > > > ; , > 1 

Usage

This constraint can be used in the context of timetabling problems in order to put an upper limit on the number of changes of job types during a given period.

Remark

A similar constraint appears in [73, page 338] under the name of similarity constraint.

The difference consists of replacing the arithmetic constraint CTR by a binary constraint.

When CTR is equal to = this constraint is called nbchanges in [START_REF] Platon Team | [END_REF].

Algorithm [65].

Used in pattern.

See also smooth, change partition, change pair, circular change, longest change.

Key words

timetabling constraint, number of changes, automaton, automaton with counters, sliding cyclic(1) constraint network( 2), sliding cyclic(1) constraint network(3), acyclic, no loop. • NB PERIOD CONTINUITY is equal to the number of periods of continuity,

Q =s 0 C =0 0 C 1 Q 1 VAR 1 S 1 VAR 2 S 2 VAR n VAR 3 S 3 Q 2 C 2 S n-1 VAR n-1 Q =t n-1 C =NCHANGE n-1
• MIN SIZE CHANGE is equal to the number of variables of the smallest period of change,

• MAX SIZE CHANGE is equal to the number of variables of the largest period of change,

• MIN SIZE CONTINUITY is equal to the number of variables of the smallest period of continuity,

• MAX SIZE CONTINUITY is equal to the number of variables of the largest period of continuity,

• NB CHANGE is equal to the total number of changes,

• NB CONTINUITY is equal to the total number of continuities.

Arc input(s) VARIABLES

Arc generator

PATH → collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var CTR variables2.var

Graph property(ies)

• NCC = NB PERIOD CHANGE • MIN NCC = MIN SIZE CHANGE • MAX NCC = MAX SIZE CHANGE • NARC = NB CHANGE Arc input(s) VARIABLES Arc generator PATH → collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var¬ CTR variables2.var

Graph property(ies)

• NCC = NB PERIOD CONTINUITY • MIN NCC = MIN SIZE CONTINUITY • MAX NCC = MAX SIZE CONTINUITY • NARC = NB CONTINUITY Example change continuity 0 B B B B B B B B B B B B B B B B @
3, 2, 2, 4, 2, 4, 6, 4, 

8 > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > : var -1, var -3, var -1, var -8, var -8, var -4, var -7, var -7, var -7, var -7, var -2 9 > > > > > > > > > > > > > > > > = > > > > > > > > > > > > > > > > ; , = 1 C C C C C C C C C C C C C C C C A
1|3|1|8 8|4|7 7 7 7|2 <-----> <---> <-> <-> <----->

Graph model

We use two graph constraints to respectively catch the constraints on the period of changes and of the period of continuities. In both case each period corresponds to a connected component of the final graph.

Automaton Figures 4.73 ,4.74 ,4.77 ,4.78 ,4.81 ,4.82 and 4.85 

Q =s 0 C =0 0 C 1 Q 1 VAR 1 S 1 VAR 2 S 2 VAR n VAR 3 S 3 Q 2 C 2 S n-1 VAR n-1 Q =t n-1 C =NB_PERIOD_CHANGE n-1
Q =s 0 C =0 0 C 1 Q 1 VAR 1 S 1 VAR 2 S 2 VAR n VAR 3 S 3 Q 2 C 2 S n-1 VAR n-1 Q =t n-1 C =NB_PERIOD_CONTINUITY n-1
i i+1 VAR not CTR VAR , $ i i+1 VAR not CTR VAR i i+1 VAR not CTR VAR i i+1 VAR CTR VAR , {D=2} i i+1 VAR CTR VAR , i i+1 VAR CTR VAR , i i+1 VAR CTR VAR , i i+1 VAR not CTR VAR j MIN_SIZE_CHANGE=C t: {C=D} k $ {C=0,D=1} s {C=min(C,D)} {C=D} $, {C=min(C,D)} $, {D=D+1} i {D=D+1} {D=2}
$ i i+1 VAR CTR VAR , i i+1 VAR not CTR VAR i i+1 VAR CTR VAR i i+1 VAR not CTR VAR , i i+1 VAR CTR VAR i i+1 VAR CTR VAR , i i+1 VAR not CTR VAR , i i+1 VAR not CTR VAR ,
VAR 1 VAR 2 S 2 VAR n VAR 3 S 3 Q 2 C 2 S n-1 VAR n-1 Q =s 0 C =0 0 C 1 Q 1 S 1 D =1 0 D 1 D 2 Q =t n-1 D n-1 C =MIN_SIZE_CHANGE n-1
1 VAR 2 S 2 VAR n VAR 3 S 3 Q 2 C 2 S n-1 VAR n-1 Q =s 0 C =0 0 C 1 Q 1 S 1 D =1 0 D 1 D 2 Q =t n-1 D n-1 C =MIN_SIZE_CONTINUITY n-1
VAR 1 VAR 2 S 2 VAR n VAR 3 S 3 Q 2 C 2 S n-1 VAR n-1 Q =s 0 C =0 0 C 1 Q 1 S 1 D 1 D 2 Q =t n-1 D n-1 D =0 0 C =MAX_SIZE_CHANGE n-1
1 VAR 2 S 2 VAR n VAR 3 S 3 Q 2 C 2 S n-1 VAR n-1 Q =s 0 C =0 0 C 1 Q 1 S 1 D 1 D 2 Q =t n-1 D n-1 D =0 0 C =MAX_SIZE_CONTINUITY n-1
VAR not CTR VAR i i+1 VAR CTR VAR i i+1 VAR CTR VAR , i i+1 {C=C+1} VAR not CTR VAR , i i+1 {C=C+1}
Q =s 0 C =0 0 C 1 Q 1 VAR 1 S 1 VAR 2 S 2 VAR n VAR 3 S 3 Q 2 C 2 S n-1 VAR n-1 Q =t n-1 C =NB_CHANGE n-1
Q =s 0 C =0 0 C 1 Q 1 VAR 1 S 1 VAR 2 S 2 VAR n VAR 3 S 3 Q 2 C 2 S n-1 VAR n-1 Q =t n-1 C =NB_CONTINUITY n-1
Restriction(s) NCHANGE ≥ 0 NCHANGE < |PAIRS| required(PAIRS, [x, y]) CTRX ∈ [=, =, <, ≥, >, ≤] CTRY ∈ [=, =, <, ≥, >, ≤]
Purpose NCHANGE is the number of times that the following disjunction holds:

(X1 CTRX X2) ∨ (Y1 CTRY Y2)
, where (X1, Y1) and (X2, Y2) correspond to consecutive pairs of variables of the collection PAIRS.

Arc input(s) PAIRS

Arc generator

PATH → collection(pairs1, pairs2)

Arc arity 2

Arc constraint(s) pairs1.x CTRX pairs2.x ∨ pairs1.y CTRY pairs2.y

Graph property(ies)

NARC = NCHANGE Example change pair 0 B B B B B B B B B B B B B B @ 3, 8 > > > > > > > > > > > > > > < > > > > > > > > > > > > > > : x -3 y -5, x -3 y -7, x -3 y -7, x -3 y -8, x -3 y -4, x -3 y -7, x -1 y -3, x -1 y -6, x -1 y -6, x -3 y -7 9 > > > > > > > > > > > > > > = > > > > > > > > > > > > > > ; , =, > 1 C C C C C C C C C C C C C C A
In the previous example we have the following 3 changes:

• One change between pairs x -3 y -8 and x -3 y -4,

• One change between pairs x -3 y -7 and x -1 y -3,

• One change between pairs x -1 y -6 and x -3 y -7. 

Graph model

Same as change, except that each item has two attributes x and y.

Automaton

Figure 4.89 depicts the automaton associated to the change pair constraint. To each pair of consecutive pairs ((Xi, Yi), (Xi+1, Yi+1)) of the collection PAIRS corresponds a 0-1 signature variable Si. The following signature constraint links Xi, Yi, Xi+1, Yi+1 and Si: 

(Xi CTRX Xi+1) ∨ (Yi CTRY Yi+1) ⇔ Si. (X not CTRX X ) and (Y not CTRY Y ) i i+1 i i+1 (X CTRX X ) or (Y CTRY Y ), i i+1 i i+1 $ NCHANGE=C t: {C=C+1} {C=0} s Figure 4.89: Automaton of the change pair constraint Q =s 0 C =0 0 C 1 Q 1 S 3 Q 2 C 2 X 3 X n-1 X n Y 1 Y 2 Y 3 Y n-1 Y n S 2 X 2 X 1 S 1 C =NCHANGE n-1 Q =t n-1 S n-1

Usage

Here is a typical example where this constraint is useful. Assume we have to produce a set of cables. A given quality and a given cross-section that respectively correspond to the x and y attributes of the previous pairs of variables characterize each cable. The problem is to sequence the different cables in order to minimize the number of times two consecutive wire cables C1 and C2 verify the following property: C1 and C2 do not have the same quality or the cross section of C1 is greater than the cross section of C2.

See also change.

Key words

timetabling constraint, number of changes, pair, automaton, automaton with counters, sliding cyclic(2) constraint network(2), acyclic, no loop.

NARC, PATH 

change partition

8 > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > : var -6, var -6, var -2, var -1, var -3, var -3, var -1, var -6, var -2, var -2, var -2 9 > > > > > > > > > > > > > > > > = > > > > > > > > > > > > > > > > ; , 8 < : p -{val -1, val -3}, p -{val -4}, p -{val -2, val -6} 9 = ; 1 C C C C C C C C C C C C C C C C C C C C C C A
In the previous example we have the following two changes:

• One change between values 2 and 1 (since 2 and 1 respectively belong to the third and the first partition),

• One change between values 1 and 6 (since 1 and 6 respectively belong to the first and the third partition).

Parts (A) and (B) of Figure 4.91 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold. 

Usage

This constraint is useful for the following problem: Assume you have to produce a set of orders, each order belonging to a given family. In the previous example we have three families that respectively correspond to values {1, 3}, to value {4} and to values {2, 6}.

We would like to sequence the orders in such a way that we minimize the number of times two consecutive orders do not belong to the same family.

Algorithm [65].

See also change, in same partition.

Key words

timetabling constraint, number of changes, partition, acyclic, no loop.

circuit

Origin [2] Constraint circuit(NODES)

Synonym(s) atour, cycle.

Argument(s)

NODES : collection(indexint, succdvar)

Restriction(s) required(NODES, [index, succ]) NODES.index ≥ 1 NODES.index ≤ |NODES| distinct(NODES, index) NODES.succ ≥ 1 NODES.succ ≤ |NODES|

Purpose

Enforce to cover a digraph G described by the NODES collection with one circuit visiting once all vertices of G.

Arc input(s) NODES

Arc generator CLIQUE → collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index 

Graph property(ies)

• MIN NSCC = |NODES| • MAX ID = 1 Example circuit 0 B B @ 8 > > < > > : index -1 succ -2, index -2 succ -3, index -3 succ -4, index -4 succ -1 9 > > = > > ;

Graph model

The 

Remark

In the original circuit constraint of CHIP the index attribute was not explicitly present.

It was implicitly defined as the position of a variable in a list.

Within the framework of linear programming [START_REF] Althaus | SCIL-symbolic constraints in integer linear programming[END_REF] this constraint was introduced under the name atour. Within the KOALOG constraint system this constraint is called cycle.

Algorithm

Since all succ variables of the NODES collection have to take distinct values one can reuse the algorithms associated to the alldifferent constraint. A second necessary condition is to have no more than one strongly connected component. Further necessary conditions combining the fact that we have a perfect matching and one single strongly connected component can be found in [START_REF] Shufet | Generating hamiltonian circuits without backtracking from errors[END_REF]. When the graph is planar one can also use as a necessary condition discovered by Grinberg [START_REF] Ya | Plane homogeneous graphs of degree three without hamiltonian circuits[END_REF] for pruning.

See also cycle, tour.

Key words

graph constraint, graph partitioning constraint, circuit, permutation, Hamiltonian, linear programming, one succ.

circuit cluster

Origin

Inspired by [START_REF] Laporte | Some applications of the generalized travelling salesman problem[END_REF].

Constraint circuit cluster(NCIRCUIT, NODES)

Argument(s) NCIRCUIT : dvar NODES : collection(indexint, clusterint, succdvar)

Restriction(s) NCIRCUIT ≥ 1 NCIRCUIT ≤ |NODES| required(NODES, [index, cluster, succ]) NODES.index ≥ 1 NODES.index ≤ |NODES| distinct(NODES, index) NODES.succ ≥ 1 NODES.succ ≤ |NODES|

Purpose

Consider a digraph G, described by the NODES collection, such that its vertices are partitioned among several clusters. NCIRCUIT is the number of circuits containing more than one vertex used for covering G in such a way that each cluster is visited by exactly one circuit of length greater than 1.

Arc input(s) NODES

Arc generator CLIQUE → collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s)

• nodes1.succ = nodes1.index • nodes1.succ = nodes2.index Graph property(ies) • NTREE = 0 • NSCC = NCIRCUIT Sets ALL VERTICES → » variables -col " VARIABLES -collection(var -dvar), [item(var -NODES.cluster)]
« -

Constraint(s) on sets

• alldifferent(variables)

• nvalues(variables, =, size(NODES, cluster)) 

Example circuit cluster 0 B B B B B B B B B B B B @ 1, 8 > > > > > > > > > > > > < > > > > > > > > > > > > : index -1 cluster -1 succ -1, index -2 cluster -1 succ -4, index -3 cluster -2 succ -3, index -4 cluster -2 succ -5, index -5 cluster -3 succ -8, index -6 cluster -3 succ -6, index -7 cluster -3 succ -7, index -8 cluster -4 succ -2, index -9 cluster -4 succ -9 9 > > > > > > > > > > > > = > > > > > > > > > > > > ; 1 C C C C C C C C C C C C A circuit cluster 0 B B B B B B B B B B B B @ 2, 8 > > > > > > > > > > > > < > > > > > > > > > > > > : index -1 cluster -1 succ -1, index -2 cluster -1 succ -4, index -3 cluster -2 succ -3, index -4 cluster -2 succ -2, index -5 cluster -3 succ -5, index -6 cluster -3 succ -9, index -7 cluster -3 succ -7, index -8 cluster -4 succ -8, index -9 cluster -4 succ -6 9 > > > > > > > > > > > > = > > > > > > > > > > > > ; 1 C C C C C C C C C C C C A Parts (A)

Graph model

In order to express the binary constraint linking two vertices one has to make explicit the identifier of each vertex as well as the cluster to which belong each vertex. This is why the circuit cluster constraint considers objects that have the following three attributes:

• The attribute index, which is the identifier of a vertex.

• The attribute cluster, which is the cluster to which belong a vertex.

• The attribute succ, which is the unique successor of a vertex.

The partitioning of the clusters by different circuits is expressed in the following way:

• First observe the condition nodes1.succ = nodes1.index prevents the final graph of containing any loop. Moreover the condition nodes1.succ = nodes2.index imposes no more than one successor for each vertex of the final graph.

• The graph property NTREE = 0 enforces that all vertices of the final graph belong to one circuit.

• The graph property NSCC = NCIRCUIT express the fact that the number of strongly connected components of the final graph is equal to NCIRCUIT.

• The constraint alldifferent(variables) on the set ALL VERTICES (i.e. all the vertices of the final graph) states that the cluster attributes of the vertices of the final graph should be pairwise distinct. This concretely means that no cluster should be visited more than once.

• The constraint nvalues(variables, =, size(NODES, cluster)) on the set ALL VERTICES conveys the fact that the number of distinct values of the cluster attribute of the vertices of the final graph should be equal to the total number of clusters. This implies that each cluster is visited at least one time.

Usage

A related abstraction in Operations Research was introduced in [START_REF] Laporte | Some applications of the generalized travelling salesman problem[END_REF]. It was reported as the Generalized Travelling Salesman Problem (GTSP). The circuit cluster constraint differs from the GTSP because of the two following points:

• Each node of our graph belongs to one single cluster,

• We do not constrain the number of circuits to be equal to one: the number of circuits should be equal to one of the values of the domain of the variable NCIRCUIT.

See also alldifferent, nvalues.

Key words

graph constraint, connected component, cluster, one succ. 

circular change

Origin

Graph model

Since we are also interested in the constraint that links the last and the first variable we use the arc generator CIRCUIT to produce the arcs of the initial graph. 

Automaton

Q =s 0 C =0 0 C 1 Q 1 VAR 1 S 1 VAR 2 S 2 VAR n S n-1 VAR n-1 VAR 3 S 3 Q 2 C 2 Q n-1 C n-1 VAR 1 S n Q =t n C =NCHANGE n

Key words

timetabling constraint, number of changes, cyclic, automaton, automaton with counters, circular sliding cyclic(1) constraint network(2).

clique

Origin [START_REF] Fahle | Cost based filtering vs. upper bounds for maximum clique[END_REF] Constraint clique(SIZE CLIQUE, NODES)

Argument(s) SIZE CLIQUE : dvar NODES : collection(index -int, succ -svar) Restriction(s) SIZE CLIQUE ≥ 0 SIZE CLIQUE ≤ |NODES| required(NODES, [index, succ]) NODES.index ≥ 1 NODES.index ≤ |NODES| distinct(NODES, index)

Purpose

Consider a digraph G described by the NODES collection: To the i th item of the NODES collection corresponds the i th vertex of G; To each value j of the i th succ variable corresponds an arc from the i th vertex to the j th vertex. Select a subset S of the vertices of G which forms a clique of size SIZE CLIQUE (i.e. there is an arc between each pair of distinct vertices of S).

Arc input(s) NODES

Arc generator CLIQUE ( =) → collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) in set(nodes2.index, nodes1.succ)

Graph property(ies) 

• NARC = SIZE CLIQUE * SIZE CLIQUE -SIZE CLIQUE • NVERTEX = SIZE CLIQUE Example clique 0 B B B B @ 3, 8 > > > > < > > > > : index -1 succ -∅, index -2 succ -{3, 5}, index -3 succ -{2, 5}, index -4 succ -∅, index -5 succ -{2, 3} 9 > > > > = > > > > ; 1 C C C C A Part (A) of

Graph model

Observe the use of set variables for modelling the fact that the vertices of the final graph have more than one successor: The successor variable associated to each vertex contains the successors of the corresponding vertex.

Algorithm [START_REF] Fahle | Cost based filtering vs. upper bounds for maximum clique[END_REF], [START_REF] Régin | Using constraint programming to solve the maximum clique problem[END_REF].

See also link set to booleans.

Key words

graph constraint, maximum clique, constraint involving set variables. 

Restriction(s) C ≥ 0 L ≥ 0 K ≥ 0 required(MATRIX, [column, line, var]) increasing seq(MATRIX, [column, line]) |MATRIX| = C * L + C + L + 1 MATRIX.column ≥ 0 MATRIX.column ≤ C MATRIX.line ≥ 0 MATRIX.line ≤ L MATRIX.var ≥ 0 MATRIX.var ≤ K required(CPROJ, [column, val, noccurrence]) increasing seq(CPROJ, [column, val]) |CPROJ| = C * K + C + K + 1 CPROJ.column ≥ 0 CPROJ.column ≤ C CPROJ.val ≥ 0 CPROJ.val ≤ K required(LPROJ, [line, val, noccurrence]) increasing seq(LPROJ, [line, val]) |LPROJ| = L * K + L + K + 1 LPROJ.line ≥ 0 LPROJ.line ≤ L LPROJ.val ≥ 0 LPROJ.val ≤ K

Purpose

Given a matrix of domain variables, imposes a global cardinality constraint involving cardinality variables on each column and each row of the matrix.

column -0 line -0 var -3, column -0 line -1 var -1, column -0 line -2 var -3, column -1 line -0 var -4, column -1 line -1 var -4, column -1 line -2 var -3 9 > > > > > > = > > > > > > ; , 8 > > > > > > > > > > > > > > < > > > > > > > > > > > > > > : column -0 val -0 nocc -0, column -0 val -1 nocc -1, column -0 val -2 nocc -0, column -0 val -3 nocc -2, column -0 val -4 nocc -0, column -1 val -0 nocc -0, column -1 val -1 nocc -0, column -1 val -2 nocc -0, column -1 val -3 nocc -1, column -1 val -4 nocc -2 9 > > > > > > > > > > > > > > = > > > > > > > > > > > > > > ; , 8 > > > > > > > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > > > > > > > : line -0 val -0 nocc -0, line -0 val -1 nocc -0, line -0 val -2 nocc -0, line -0 val -3 nocc -1, line -0 val -4 nocc -1, line -1 val -0 nocc -0, line -1 val -1 nocc -1, line -1 val -2 nocc -0, line -1 val -3 nocc -0, line -1 val -4 nocc -1, line -2 val -0 nocc -0, line -2 val -1 nocc -0, line -2 val -2 nocc -0, line -2 val -3 nocc -2, line -2 val -4 nocc -0 9 > > > > > > > > > > > > > > > > > > > > > > > > = > > > > > > > > > > > > > > > > > > > > > > > > ; 1 C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C A

Remark

Within [START_REF] Régin | The cardinality matrix constraint[END_REF] the colored matrix constraint is called cardinality matrix.

Algorithm

The filtering algorithm described in [START_REF] Régin | The cardinality matrix constraint[END_REF] is based on network flow and does not achieve arc-consistency in general. However, when the number of values is restricted to two, the algorithm [START_REF] Régin | The cardinality matrix constraint[END_REF] achieves arc-consistency on the variables of the matrix. This corresponds in fact to a generalization of the problem called "Matrices composed of 0's and 1's" presented by Ford and Fulkerson [START_REF] Ford | Flows in Networks[END_REF].

See also global cardinality, same.

Key words

predefined constraint, timetabling constraint, matrix, matrix model.

coloured cumulative

Origin

Derived from cumulative and nvalues. 

Constraint

Purpose

Consider the set T of tasks described by the TASKS collection. The coloured cumulative constraint enforces that, at each point in time, the number of distinct colours of the set of tasks that overlap that point, does not exceed a given limit. For each task of T it also imposes the constraint origin + duration = end. 

Arc input(s) TASKS

Signature

Since TASKS is the maximum number of vertices of the final graph of the first graph constraint we can rewrite NARC = |TASKS| to NARC ≥ |TASKS|. This leads to simplify NARC to NARC.

Usage

Useful for scheduling problems where a machine can only proceed in parallel a maximum number of tasks of distinct type. This condition cannot be modelled by the classical cumulative constraint.

See also coloured cumulatives, cumulative, nvalues.

Key words

scheduling constraint, resource constraint, temporal constraint, coloured, number of distinct values.

coloured cumulatives

Origin

Derived from cumulatives and nvalues. 

Constraint

Example coloured cumulatives 0 B B B B B B B B B B @ 8 > > > > > > < > > > > > > : machine -1 origin -6 duration -6 end -colour -1, machine -1 origin -2 duration -9 end -colour -2, machine -2 origin -7 duration -3 end -colour -2, machine -1 origin -1 duration -2 end - colour -1, machine -2 origin -4 duration -5 end - colour -2, machine -1 origin -3 duration -10 end -colour -1 9 > > > > > > = > > > > > > ; ,  id -1 capacity -2, id -2 capacity -1 ff 1 C C C C C C C C C C A
Parts (A) and (B) of Figure 4.100 respectively shows the initial and final graph associated to machines 1 and 2. On the one hand, each source vertex of the final graph can be interpreted as a time point p on a specific machine m. On the other hand the successors of a source vertex correspond to those tasks which both overlap that time point p and are assigned to machine m. The coloured cumulatives constraint holds since for each successor set S of the final graph the number of distinct colours in S does not exceed the capacity of the machine corresponding to the time point associated to S. 

Usage

Useful for scheduling problems where several machines are available and where you have to assign each task to a specific machine. In addition each machine can only proceed in parallel a maximum number of tasks of distinct types.

See also coloured cumulative, cumulative, cumulatives, nvalues.

Key words

scheduling constraint, resource constraint, temporal constraint, coloured, number of distinct values. 

Restriction(s) NCOMMON1 ≥ 0 NCOMMON1 ≤ |VARIABLES1| NCOMMON2 ≥ 0 NCOMMON2 ≤ |VARIABLES2| required(VARIABLES1, var) required(VARIABLES2, var)

Purpose

NCOMMON1 is the number of variables of the collection of variables VARIABLES1 taking a value in VARIABLES2. NCOMMON2 is the number of variables of the collection of variables VARIABLES2 taking a value in VARIABLES1.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT → collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var Note that all the vertices corresponding to the variables that take values 5, 2 or 6 were removed from the final graph since there is no arc for which the associated equality constraint holds. var -8, var -6, var -6, var -0

Graph property(ies)

• NSOURCE = NCOMMON1 • NSINK = NCOMMON2 Example common 0 B B B B B B B B @ 3, 4, {var -1, var -9, var -1, var -5}, 8 > > > > > > < > > > > > > : var -2, var -1, var -9, var -9, var -6, var -9 9 > > > > > > = > > > > > > ; 1 C C C C C C C C A Parts (A)
9 > > = > > ; , 8 > > > > > > < > > > > > > : var -7, var -3, var -3, var -3, var -3, var -7 9 > > > > > > = > > > > > > ; , 3 
1 C C C C C C C C C C C C C C A
In the previous example, the last parameter SIZE INTERVAL defines the following family of intervals

[3 • k, 3 • k + 2],
where k is an integer. Parts (A) and (B) of Figure 4.103 respectively show the initial and final graph. Since we use the NSOURCE and NSINK graph properties, the source and sink vertices of the final graph are stressed with a double circle. Since the graph has only 3 sources and 2 sinks the variables NCOMMON1 and NCOMMON2 are respectively equal to 3 and 2. Note that the vertices corresponding to the variables that take values 0 or 3 were removed from the final graph since there is no arc for which the associated arc constraint holds. 

Key words

constraint between two collections of variables, interval, acyclic, bipartite, no loop.

common modulo

Origin Derived from common. Graph property(ies) 

Constraint

• NSOURCE = NCOMMON1 • NSINK = NCOMMON2 Example common modulo 0 B B B B B B B B @ 3, 4, {var -0, var -4, var -0, var -8}, 8 > > > > > > < > > > > > > : var -7, var -5, var -4, var -9, var -2, var -4 9 > > > > > > = > > > > > > ; , 5 1 C 

Key words

constraint between two collections of variables, modulo, acyclic, bipartite, no loop.

common partition

Origin Derived from common. 

Constraint

Restriction(s) required(VALUES, val) distinct(VALUES, val) NCOMMON1 ≥ 0 NCOMMON1 ≤ |VARIABLES1| NCOMMON2 ≥ 0 NCOMMON2 ≤ |VARIABLES2| required(VARIABLES1, var) required(VARIABLES2, var) required(PARTITIONS, p) |PARTITIONS| ≥ 2

Purpose

NCOMMON1 is the number of variables of the VARIABLES1 collection taking a value in a partition derived from the values assigned to the variables of VARIABLES2 and from PARTITIONS. NCOMMON2 is the number of variables of the VARIABLES2 collection taking a value in a partition derived from the values assigned to the variables of VARIABLES1 and from PARTITIONS.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT → collection(variables1, variables2)

Arc arity 2

Arc constraint(s) in same partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies)

• NSOURCE = NCOMMON1 • NSINK = NCOMMON2 Example common partition 0 B B B B B B B B B B B B B B B B B B B B @ 3, 4, 8 > > < > > : var -2, var -3, var -6, var -0 9 > > = > > ; , 8 > > > > > > < > > > > > > : var -0, var -6, var -3, var -3, var -7, var -1 9 > > > > > > = > > > > > > ; , 8 < 
: 

p -{val -1, val -3}, p -{val -4}, p -{val -2, val -6} 9 
= ; 1 C C C C C C C C C C C C C C C C C C C C A Parts (A)

Key words

constraint between two collections of variables, partition, acyclic, bipartite, no loop.

connect points

Origin

N. Beldiceanu

Constraint connect points(SIZE1, SIZE2, SIZE3, NGROUP, POINTS)

Argument(s) SIZE1 : int SIZE2 : int SIZE3 : int NGROUP : dvar POINTS : collection(p -dvar) Restriction(s) SIZE1 > 0 SIZE2 > 0 SIZE3 > 0 NGROUP ≥ 0 NGROUP ≤ |POINTS| SIZE1 * SIZE2 * SIZE3 = |POINTS| required(POINTS, p)

Purpose

On a 3-dimensional grid of variables, number of groups, where a group consists of a connected set of variables which all have a same value distinct from 0.

Arc input(s) POINTS

Arc generator

GRID([SIZE1, SIZE2, SIZE3]) → collection(points1, points2)

Arc arity 2

Arc constraint(s) 8,4,2])

• points1.p = 0 • points1.p = points2.p Graph property(ies) NSCC = NGROUP p -0, p -0, p -1, p -1, p -0, p -2, p -0, p -0, p -0, p -0, p -0, p -1, p -0, p -2, p -0, p -0, p -0, p -0, p -0, p -1, p -1, p -1, p -1, p -1, p -0, p -2, p -0, p -1, p -0, p -2, p -0, p -0, p -0, p -0, p -0, p -0, p -0, p -0, p -0, p -0, p -0, p -0, p -0, p -0, p -0, p -2, p -0, p -0, p -0, p -2, p -2, p -2, p -2, p -2, p -0, p -0, p -0, p -2, p -0, p -0, p -0, p -2, p -0, p -0 9 > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > = > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > ; 1 C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C A

Usage

Wiring problems [START_REF] Simonis | Channel routing seen as a constraint problem[END_REF], [START_REF] Zhou | Channel routing with constraint logic programming and delay[END_REF].

Key words

geometrical constraint, channel routing, strongly connected component, joker value, symmetric. 

Graph property(ies)

NARC = |PERMUTATION| fvar -1, fvar -9, fvar -1, fvar -5, fvar -2, fvar -1 9 > > > > > > = > > > > > > ; , 8 > > > > > > < > > > > > > : var -6, var -1, var -3, var -5, var -4, var -2 9 > > > > > > = > > > > > > ; , 8 > > > > > > < > > > > > > : tvar -9, tvar -1, tvar -1, tvar -2, tvar -5, tvar -1 9 > > > > > > = > > > > > > ; 1 C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C A Parts (A)

Remark

Similar to the same constraint except that we also provide the permutation which allows to go from the items of collection FROM to the items of collection TO.

See also same, sort permutation.

Key words

constraint between three collections of variables, permutation, derived collection, acyclic, bipartite, no loop.

NARC, SELF

count

Origin [START_REF] Carlsson | SICStus Prolog User's Manual[END_REF] Constraint count(VALUE, VARIABLES, RELOP, NVAR) See also among, counts, nvalue, max nvalue, min nvalue.

Argument
1 VAR 1 S 1 Q 1 VAR 2 S 2 VAR n S n Q =s 0 C =0 0 Q =t n C RELOP NVAR n

Key words

value constraint, counting constraint, automaton, automaton with counters, alpha-acyclic constraint network(2).

counts

Origin

Derived from count. 

Constraint

B B B B B B B B @ {val -1, val -3, val -4, val -9}, 8 > > > > > > < > > > > > > : var -4, var -5, var -5, var -4, var -1, var -5 9 > > > > > > = > > > > > > ; , =, 3 1 C C C C C C C C A
The Used in assign and counts.

1 VAR 1 S 1 Q 1 VAR 2 S 2 VAR n S n Q =s 0 C =0 0 Q =t n C RELOP LIMIT n
See also count, among.

Key words

value constraint, counting constraint, automaton, automaton with counters, alpha-acyclic constraint network(2), acyclic, bipartite, no loop.

crossing

Origin

Inspired by [START_REF] Cormen | Introduction to algorithms[END_REF].

Constraint crossing(NCROSS, SEGMENTS)

Argument(s) NCROSS : dvar SEGMENTS : collection(oxdvar, oydvar, exdvar, eydvar)

Restriction(s) NCROSS ≥ 0 NCROSS ≤ (|SEGMENTS| * |SEGMENTS| -|SEGMENTS|)/2 required(SEGMENTS, [ox, oy, ex, ey])
Purpose NCROSS is the number of line-segments intersections between the line-segments defined by the SEGMENTS collection. Each line-segment is defined by the coordinates (ox, oy) and (ex, ey) of its two extremities.

Arc input(s) SEGMENTS

Arc generator CLIQUE (<) → collection(s1, s2)

Arc arity 2

Arc constraint(s)

• max(s1.ox, s1.ex) ≥ min(s2.ox, s2.ex)

• max(s2.ox, s2.ex) ≥ min(s1.ox, s1.ex)

• max(s1.oy, s1.ey) ≥ min(s2.oy, s2.ey)

• max(s2.oy, s2.ey) ≥ min(s1.oy, s1.ey) 

• W 0 B B @ ( 

Graph model

Each line-segment is described by the x and y coordinates of its two extremities. In the arc generator we use the restriction < in order to generate one single arc for each pair of segments. This is required, since otherwise we would count more than once a given line-segments intersection. 

cumulative

Origin

Purpose

Cumulative scheduling constraint or scheduling under resource constraints. Consider a set T of tasks described by the TASKS collection. The cumulative constraint enforces that at each point in time, the cumulated height of the set of tasks that overlap that point, does not exceed a given limit. It also imposes for each task of T the constraint origin + duration = end. 

Arc input(s) TASKS

Graph model

The first graph constraint enforces for each task the link between its origin, its duration and its end. The second graph constraint makes sure, for each time point t corresponding to the start of a task, that the cumulated heights of the tasks that overlap t does not exceed the limit of the resource.

Signature

Since TASKS is the maximum number of vertices of the final graph of the first graph constraint we can rewrite NARC = |TASKS| to NARC ≥ |TASKS|. This leads to simplify NARC to NARC.

Automaton

Figure 4.119 depicts the automaton associated to the cumulative constraint. To each item of the collection TASKS corresponds a signature variable Si, which is equal to 1. Algorithm [START_REF] Lahrichi | Scheduling: the notions of hump, compulsory parts and their use in cumulative problems[END_REF][START_REF] Erschler | Energy-based approach for task scheduling under time and resources constraints[END_REF][START_REF] Caseau | Cumulative scheduling with task intervals[END_REF]. Within the context of linear programming, the reference [8] provides a relaxation of the cumulative constraint.

See also bin packing, cumulative product, coloured cumulative, cumulative two d, coloured cumulatives, cumulatives, cumulative with level of priority.

Key words

scheduling constraint, resource constraint, temporal constraint, linear programming, producer-consumer, squared squares, automaton, automaton with array of counters.

cumulative product

Origin Derived from cumulative. 

Constraint

Purpose

Consider a set T of tasks described by the TASKS collection. The cumulative product constraint enforces that at each point in time, the product of the height of the set of tasks that overlap that point, does not exceed a given limit. It also imposes for each task of T the constraint origin + duration = end. See also cumulative.

Arc input(s) TASKS

Key words

scheduling constraint, resource constraint, temporal constraint, product.

cumulative two d

Origin

Inspired by cumulative and diffn. 

Constraint

C C C C C C C C C C C C C C C C C C C C C C C C C C C C A

Arc input(s) RECTANGLES

Arc generator SELF → collection(rectangles) 

start1 -1 size1 -4 last1 -4 start2 -3 size2 -3 last2 -height -4, start1 -3 size1 -2 last1 -4 start2 -1 size2 -2 last2 -height -2, start1 -1 size1 -2 last1 -2 start2 -1 size2 -2 last2 -height -3, start1 -4 size1 -1 last1 -4 start2 -1 size2 -1 last2 -height -1 9 > > = > > ; , 4 
Parts (A) and (B) of Figure 4.122 respectively show the initial and final graph associated to the second graph constraint. On the one hand, each source vertex of the final graph corresponds to the corner of a rectangle of the RECTANGLES collection. On the other hand the successors of a source vertex are those rectangles which overlap that corner.

Part (A) of Figure 4.123 shows 4 rectangles of height 4, 2, 3 and 1. Part (B) gives the corresponding cumulated 2-dimensional profile, where each number is the cumulated height of all the rectangles that contain the corresponding region.

Signature

Since RECTANGLES is the maximum number of vertices of the final graph of the first graph constraint we can rewrite NARC = |RECTANGLES| to NARC ≥ |RECTANGLES|. This leads to simplify NARC to NARC.

Usage

The cumulative two d constraint is a necessary condition for the diffn constraint in 3 dimensions (i.e. the placement of parallelepipeds in such a way that they do not pairwise overlap and that each parallelepiped has his sides parallel to the sides of the placement space).

Algorithm

A first natural way to handle this constraint would be to accumulate the compulsory parts [START_REF] Lahrichi | Scheduling: the notions of hump, compulsory parts and their use in cumulative problems[END_REF] of the rectangles in a quadtree [START_REF] Samet | The design and analysis of spatial data structures[END_REF]. To each leave of the quadtree we associate the cumulated height of the rectangles containing the corresponding region. 

Purpose

Consider a set T of tasks described by the TASKS collection where each task has a given priority choosen in the range [1,PRIORITIES]. Let Ti denotes the subset of tasks of T which all have a priority less than or equal to i. For each set Ti, the cumulative with level of priority constraint enforces that at each point in time, the cumulated height of the set of tasks that overlap that point, does not exceed a given limit. Finally, it also imposes for each task of T the constraint origin + duration = end. 

Derived Collection(s) col

0 B B B B B B B B @ 8 > > > > < > > > > : priority -1 origin -1 duration -2 end -height -1, priority -1 origin -2 duration -3 end -height -1, priority -1 origin -5 duration -2 end -height -2, priority -2 origin -3 duration -2 end -height -2, priority -2 origin -6 duration -3 end -height -1 9 > > > > = > > > > ; ,  id -1 capacity -2, id -2 capacity -3 ff 1 C C C C C C C C A
Within the context of the second graph constraint, part (A) of Figure 4.124 shows the initial graphs associated to priorities 1 and 2. Part (B) of Figure 4.124 shows the corresponding final graphs associated to priorities 1 and 2. On the one hand, each source vertex of the final graph can be interpreted as a time point p. On the other hand the successors of a source vertex correspond to those tasks which both overlap that time point p and have a priority less than or equal to a given level. The cumulative with level of priority constraint holds since for each successor set S of the final graph the sum of the height of the tasks in S is less than or equal to the capacity associated to a given level of priority. Figure 4.125 shows the cumulated profile associated to both levels of priority.

Signature

Since TASKS is the maximum number of vertices of the final graph of the first graph constraint we can rewrite NARC = |TASKS| to NARC ≥ |TASKS|. This leads to simplify NARC to NARC.

Usage

The cumulative with level of priority constraint was suggested by problems from the telecommunication area where one has to ensure different levels of quality of service.

For this purpose the capacity of a transmission link is splitted so that a given percentage is reserved to each level. In addition we have that, if the capacities allocated to levels 1, 2, . . . , i is not completely used, then level i+1 can use the corresponding spare capacity.

Remark

The cumulative with level of priority constraint can be modeled by a conjunction of cumulative constraints. As shown by the next example, the consistency for all variables of the cumulative constraints does not implies consistency for the corresponding cumulative with level of priority constraint. The following cumulative with level of priority constraint :

priority -1 origin -o1 duration -height -2, priority -1 origin -o2 duration -height -1, priority -2 origin -o3 duration -height -3 9 = ; ,  id -1 capacity -2, id -2 capacity -3 ff 1 C C C C A
where the domains of o1, o2 and o3 are respectively equal to {1, 2, 3}, {1, 2, 3} and {1, 2, 3, 4} corresponds to the following conjunction of cumulative constraints cumulative

"  origin -o1 duration -2 height -2, origin -o2 duration -2 height -1 ff , 2 
« cumulative 0 @ 8 < : origin -o1 duration -2 height -2, origin -o2 duration -2 height -1, origin -o3 duration -1 height -3 9 = ; , 3 1 A 
Even if the cumulative could achieve arc-consistency, the previous conjunction of cumulative constraints would not detect the fact that there is no solution.

See also cumulative.

Key words

scheduling constraint, resource constraint, temporal constraint, derived collection. 

cumulatives

Origin

Example cumulatives 0 B B B B B B B B B B @ 8 > > > > > > > > < > > > > > > > > : machine -1 origin -2 duration -2 end -4 height --2, machine -1 origin -1 duration -4 end -5 height -1, machine -1 origin -4 duration -2 end -6 height --1, machine -1 origin -2 duration -3 end -5 height -2, machine -1 origin -5 duration -2 end -7 height -2, machine -2 origin -3 duration -2 end -5 height --1, machine -2 origin -1 duration -4 end -5 height -1 9 > > > > > > > > = > > > > > > > > ; , {id -1 capacity -0, id -2 capacity -0}, ≥ 1 C C C C C C C C C C A
Within the context of the second graph constraint, part (A) of Figure 4.126 shows the initial graphs associated to machines 1 and 2. Part (B) of Figure 4.126 shows the corresponding final graphs associated to machines 1 and 2. On the one hand, each source vertex of the final graph can be interpreted as a time point p on a specific machine m.

On the other hand the successors of a source vertex correspond to those tasks which both overlap that time point p and are assigned to machine m. Since they don't have any successors we have eliminated those vertices corresponding to the end of the last three tasks of the TASKS collection. The cumulatives constraint holds since for each successor set S of the final graph the sum of the height of the tasks in S is greather than or equal to the capacity of the machine corresponding to the time point associated to S. Figure 4.127 shows with a thick line the cumulated profile on both machines.

Signature

Since TASKS is the maximum number of vertices of the final graph of the first graph constraint we can rewrite NARC = |TASKS| to NARC ≥ |TASKS|. This leads to simplify NARC to NARC.

Usage

As shown in the previous example, the cumulatives constraint is useful for covering problems where different demand profiles have to be covered by a set of tasks. This is modelled in the following way:

• To each demand profile is associated a given machine m and a set of tasks for which all attributes (machine, origin, duration, end, height) are fixed; moreover the machine attribute is fixed to m and the height attribute is strictly negative. For each machine m the cumulated profile of all the previous tasks constitutes the demand profile to cover.

• To each task that can be used to cover the demand is associated a task for which the height attribute is a positive integer; the height attribute describes the amount of demand that can be covered by the task at each instant during its execution (between its origin and its end) on the demand profile associated to the machine attribute.

• In order to express the fact that each demand profile should completely be covered, we set the capacity attribute of each machine to 0. We can also relax the constraint by setting the capacity attribute to a negative number that specifies the maximum allowed uncovered demand at each instant.

The demand profiles might also not be completely fixed in advance.

When all the heights of the tasks are non-negative, one other possible use of the cumulatives constraint is to enforce to reach a minimum level of resource consumption. This is imposed on those time-points that are overlapped by at least one task.

By introducing a dummy task of height 0, of origin the minimum origin of all the tasks and of end the maximum end of all the tasks, this can also be imposed between the first and the last utilisation of the resource.

Finally the cumulatives constraint is also useful for scheduling problems where several cumulative machines are available and where you have to assign each task on a specific machine.

Algorithm

Three filtering algorithms for this constraint are described in [START_REF] Beldiceanu | A new multi-resource cumulatives constraint with negative heights[END_REF].

See also cumulative.

Key words

scheduling constraint, resource constraint, temporal constraint, producer-consumer, workload covering, demand profile, derived collection.

cutset

Origin [START_REF] Fages | A global constraint for cutset problems[END_REF] Constraint cutset(SIZE CUTSET, NODES)

Argument(s) SIZE CUTSET : dvar NODES : collection(index -int, succ -sint, bool -dvar) Restriction(s) SIZE CUTSET ≥ 0 SIZE CUTSET ≤ |NODES| required(NODES, [index, succ, bool]) NODES.index ≥ 1 NODES.index ≤ |NODES| distinct(NODES, index) NODES.bool ≥ 0 NODES.bool ≤ 1

Purpose

Consider a digraph G with n vertices described by the NODES collection. Enforces that the subset of kept vertices of cardinality n -SIZE CUTSET and their corresponding arcs form a graph without circuit.

Arc input(s) NODES

Arc generator CLIQUE → collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s)

• in set(nodes2.index, nodes1.succ)

• nodes1.bool = 1 • nodes2.bool = 1
Graph property(ies) 

• MAX NSCC ≤ 1 • NVERTEX = |NODES| -SIZE CUTSET Example cutset 0 B B @ 1, 8 > > < > > : index -1 succ -{2, 3, 4} bool -1, index -2 succ -{3} bool -1, index -3 succ -{4} bool -1, index -4 succ -{1} bool -0 9 > > = > > ; 1 C C A Part (A) of

Graph model

We use a set of integers for representing the successors of each vertex. Because of the arc constraint, all arcs such that the bool attribute of one extremity is equal to 0 are eliminated; Therefore all vertices for which the bool attribute is equal to 0 are also eliminated (since they will correspond to isolated vertices). The graph property MAX NSCC ≤ 1 enforces the size of the largest strongly connected component to not exceed 1; Therefore, the final graph can't contain any circuit.

Usage

The paper [START_REF] Fages | A global constraint for cutset problems[END_REF] introducing the cutset constraint mentions applications from various areas such that deadlock breaking or program verification.

Algorithm

The filtering algorithm presented in [START_REF] Fages | A global constraint for cutset problems[END_REF] uses graph reduction techniques inspired from Levy and Low [START_REF] Levy | A contraction algorithm for finding small cycle cutsets[END_REF] as well as from Lloyd, Soffa and Wang [START_REF] Lloyd | On locating minimum feedback vertex sets[END_REF].

Key words

graph constraint, circuit, directed acyclic graph. 

cycle

Origin [START_REF] Beldiceanu | Introducing global constraints in CHIP[END_REF] Constraint cycle(NCYCLE, NODES)

Argument(s) NCYCLE : dvar NODES : collection(index -int, succ -dvar) Restriction(s) NCYCLE ≥ 1 NCYCLE ≤ |NODES| required(NODES, [index, succ]) NODES.index ≥ 1 NODES.index ≤ |NODES| distinct(NODES, index) NODES.succ ≥ 1 NODES.succ ≤ |NODES|

Purpose

Consider a digraph G described by the NODES collection. NCYCLE is equal to the number of circuits for covering G in such a way that each vertex of G belongs to one single circuit. NCYCLE can also be interpreted as the number of cycles of the permutation associated to the successor variables of the NODES collection.

Arc input(s) NODES

Arc generator CLIQUE → collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies)

• NTREE = 0

• NCC = NCYCLE Example cycle 0 B B B B @ 2, 8 > > > > < > > > > : index -1 succ -2, index -2 succ -1, index -3 succ -5, index -4 succ -3, index -5 succ -4 9 > > > > = > > > > ; 1 C C C C A
In this previous example we have the following two cycles: 

1 → 2 → 1 and 3 

Graph model

From the restrictions and from the arc constraint, we deduce that we have a bijection from the successor variables to the values of interval [1,|NODES|]. With no explicit restrictions it would have been impossible to derive this property.

In order to express the binary constraint that links two vertices one has to make explicit the identifier of the vertices. This is why the cycle constraint considers objects that have two attributes:

• One fixed attribute index, which is the identifier of the vertex,

• One variable attribute succ, which is the successor of the vertex.

The graph property NTREE = 0 is used in order to avoid having vertices which both do not belong to a circuit and have at least one successor located on a circuit. This concretely means that all vertices of the final graph should belong to a circuit.

Usage

The PhD thesis of Eric Bourreau [START_REF] Bourreau | Traitement de contraintes sur les graphes en programmation par contraintes[END_REF] mentions the following applications of the cycle constraint:

• The balanced Euler knight problem where one tries to cover a rectangular chessboard of size N • M by C knights which all have to visit between 2

• (N • M )/C /2 and 2 • (N • M )/C /2 distinct locations.
For some values of N , M and C there does not exist any solution to the previous problem. This is for instance the case when N = M = C = 6.

• Some pick-up delivery problems where a fleet of vehicles has to transport a set of orders. Each order is characterized by its initial location, its final destination and its weight. In addition one has also to take into account the capacity of the different vehicles.

Remark

In the original cycle constraint of CHIP the index attribute was not explicitly present. It was implicitly defined as the position of a variable in a list.

In an early version of the CHIP their was a constraint named circuit which, from a declarative point of view, was equivalent to cycle(1, NODES). In ALICE [2] the circuit constraint was also present.

Algorithm

Since all succ variables have to take distinct values one can reuse the algorithms associated to the alldifferent constraint. A second necessary condition is to have no more than max(NCYCLE) strongly connected components. Since all the vertices of a circuit belong to the same strongly connected component an arc going from one strongly connected component to another strongly connected component has to be removed. • Clients to visit.

See also

8 > > > > > > > > > > > > < > > > > > > > > > > > > : index -1 succ -7 colour -2, index -2 succ -4 colour -3, index -3 succ -8 colour -2, index -4 succ -9 colour -1, index -5 succ -1 colour -2, index -6 succ -2 colour -1, index -7 succ -5 colour -1, index -8 succ -6 colour -1, index -9 succ -3 colour -1 9 > > > > > > > > > > > > = > > > > > > > > > > > > ; , 1, 2, 3, {val -1} 1 C C C C C C C C C C C C C C A Parts (A)
• Depots where one can reload a vehicle.

Using the cycle card on path constraint we can express a constraint like: After visiting three consecutives clients we should visit a depot. This is typically not possible with the atmost constraint since we don't know in advance the set of variables on which to post the atmost constraint.

Remark

This constraint is a special case of the sequence parameter of the cycle constraint of CHIP [93, pages 121-128].

See also cycle, among low up.

Key words

graph constraint, sliding sequence constraint, sequence, connected component, coloured, one succ.

cycle or accessibility

Origin

Inspired by [START_REF] Labbé | Path, tree and cycle location[END_REF].

Constraint

cycle or accessibility(MAXDIST, NCYCLE, NODES)

Argument(s) MAXDIST : int NCYCLE : dvar NODES : collection(index -int, succ -dvar, x -int, y -int) Restriction(s) MAXDIST ≥ 0 NCYCLE ≥ 1 NCYCLE ≤ |NODES| required(NODES, [index, succ, x, y]) NODES.index ≥ 1 NODES.index ≤ |NODES| distinct(NODES, index) NODES.succ ≥ 0 NODES.succ ≤ |NODES| NODES.x ≥ 0 NODES.y ≥ 0

Purpose

Consider a digraph G described by the NODES collection. Cover a subset of the vertices of G by a set of vertex-disjoint circuits in such a way that the following property holds: For each uncovered vertex v1 of G there exists at least one covered vertex v2 of G such that the Manhattan distance between v1 and v2 is less than or equal to MAXDIST. 3, 2,

Arc input(s) NODES

Arc

8 > > > > > > > > < > > > > > > > > : index -1 succ -6 x -4 y -5, index -2 succ -0 x -9 y -1, index -3 succ -0 x -2 y -4, index -4 succ -1 x -2 y -6, index -5 succ -5 x -7 y -2, index -6 succ -4 x -4 y -7, index -7 succ -0 x -6 y -4 9 > > > > > > > > = > > > > > > > > ; 1 C C C C C C C C A
Parts (A) and (B) of Figure 4.131 respectively show the initial and final graph associated to the second graph constraint. Figure 4.132 represents the solution associated to the previous example. The covered vertices are colored in gray while the links starting from the uncovered vertices are dashed. In the solution we have 2 circuits and 3 uncovered nodes. All the uncovered nodes are located at a distance that does not exceed 3 from at least one covered node. 

Graph model

For each vertex v we have introduced the following attributes:

• index: The label associated to v,

• succ: If v is not covered by a circuit then 0; If v is covered by a circuit then index of the successor of v.

• x: The x-coordinate of v,

• y: The y-coordinate of v.

The first graph constraint enforces all vertices which have a non-zero successor to form a set of NCYCLE vertex-disjoint circuits.

The final graph associated to the second graph constraint contains two types of arcs:

• The arcs belonging to one circuit (i.e. nodes1.succ = nodes2.index),

• The arcs between one vertex v1 that does not belong to any circuit (i.e. nodes1.succ = 0) and one vertex v2 located on a circuit (i.e. nodes2.succ = 0) such that the Manhattan distance between v1 and v2 is less than or equal to MAXDIST.

In order to specify the fact that each vertex is involved in at least one arc we use the graph property NVERTEX = |NODES|. Finally the dynamic constraint nvalues except 0(variables, =, 1) expresses the fact that for each vertex v, there is exactly one predecessor of v which belong to a circuit.

Signature

Since |NODES| is the maximum number of vertices of the final graph associated to the second graph constraint we can rewrite NVERTEX = |NODES| to NVERTEX ≥ |NODES|. This leads to simplify NVERTEX to NVERTEX.

Remark

This kind of facilities location problem is described in [94, pages 187-189] pages. In addition to our example they also mention the cost problem that is usually a trade-off between the vertices that are directly covered by circuits and the others.

See also nvalues except 0.

Key words

graph constraint, geometrical constraint, strongly connected component, facilities location problem. • There is an arc from a resource vertex r to a task vertex t if t ∈ RESOURCE[r].first task.

• There is an arc from a task vertex t to a resource vertex r if r ∈ TASK[t].next task.

• There is an arc from a task vertex t1 to a task vertex t2 if t2 ∈ TASK[t1].next task.

• There is no arc between two resource vertices. Enforce to cover G in such a way that each vertex belongs to one single circuit. Each circuit is made up from one single resource vertex and zero, one or more task vertices. For each resourcevertex a domain variable indicates how many task-vertices belong to the corresponding circuit. For each task a domain variable gives the identifier of the resource which can effectively handle that task. 

Derived Collection(s) col

Graph model

The graph model of the cycle resource constraint illustrates the following points:

• How to differentiate the constraint on the length of a circuit according to a resource that is assigned to a circuit? This is achieved by introducing a collection of resources and by asking a different graph property for each item of that collection.

• How to introduce the concept of name which corresponds to the resource that handle a given task? This is done by adding to the arc constraint associated to the cycle constraint the condition that the name variables of two consecutive vertices should be equal. 

Signature

Usage

This constraint is useful for some vehicles routing problem where the number of locations to visit depends of the vehicle type that is effectively used. The resource attribute allows expressing various constraints such as:

• The compatibility or incompability between tasks and vehicles,

• The fact that certain tasks should be performed by the same vehicle,

• The preassignment of certain tasks to a given vehicle.

Remark

This constraint could be expressed with the cycle constraint of CHIP by using the following optional parameters:

• The resource node parameter [93, page 97],

• The circuit weight parameter [93, page 101],

• The name parameter [93, page 104].

See also cycle.

Key words

graph constraint, resource constraint, graph partitioning constraint, connected component, strongly connected component, derived collection. 

8 > > > > < > > > > : var -3, var -0, var -2, var -3, var -1 9 > > > > = > > > > ; , = 1 C C C C A
In the previous example we have the two following changes:

• A first change between 0 and 2,

• A second change between 3 and 1.

However, the sequence 

Q =s 0 C =0 0 C 1 Q 1 VAR 1 S 1 VAR 2 S 2 VAR n VAR 3 S 3 Q 2 C 2 S n-1 VAR n-1 Q =t n-1 C =NCHANGE n-1

Usage

This constraint may be used for personnel cyclic timetabling problems where each person has to work according to cycles. In this context each variable of the VARIABLES collection corresponds to the type of work a person performs on a specific day. Because of some perturbation (e.g. illness, unavailability, variation of the workload) it is in practice not reasonable to ask for perfect cyclic solutions. One alternative is to use the cyclic change constraint and to ask for solutions where one tries to minimize the number of cycle breaks (i.e. the variable NCHANGE).

See also change.

Key words timetabling constraint, number of changes, cyclic, automaton, automaton with counters, sliding cyclic(1) constraint network( 2), acyclic, no loop.

NARC, PATH

cyclic change joker

Origin Derived from cyclic change. 

Constraint

Restriction(s) NCHANGE ≥ 0 NCHANGE < |VARIABLES| required(VARIABLES, var) CYCLE LENGTH > 0 CTR ∈ [=, =, <, ≥, >, ≤]
Purpose NCHANGE is the number of times that the following constraint holds:

((X + 1) mod CYCLE LENGTH) CTR Y ∧ X < CYCLE LENGTH ∧ Y < CYCLE LENGTH
X and Y correspond to consecutive variables of the collection VARIABLES.

Arc input(s) VARIABLES

Arc generator

PATH → collection(variables1, variables2)

Arc arity 2

Arc constraint(s) 

8 > > > > > > > > > > > > < > > > > > > > > > > > > : var -3, var -0, var -2, var -4, var -4, var -4, var -3, var -1, var -4 9 > > > > > > > > > > > > = > > > > > > > > > > > > ; , = 1 C C C C C C C C C C C C A
In the previous example we have the two following changes:

• A first change between 0 and 2,

• A second change between 3 and 1.

But when the joker value 4 is involved, there is no change. This is why no change is counted between values 2 and4, between 4 and4 andbetween 1 and4 

Graph model

The joker values are those values that are greater than or equal to CYCLE LENGTH. We do not count any change for those arc constraints involving at least one variable taking a joker value.

Automaton

Figure 4.138 depicts the automaton associated to the cyclic change joker constraint.

To each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a 0-1 signature variable Si. The following signature constraint links VARi, VARi+1 and Si:

(((VARi + 1) mod CYCLE LENGTH) CTR VARi+1 ∧ (VARi < CYCLE LENGTH) ∧ (VARi+1 < CYCLE LENGTH)) ⇔ Si.

Usage

The cyclic change joker constraint can be used in the same context as the cycle change constraint with the additional feature: In our example codes 0 to 3 correspond to different type of activities (i.e. working the morning, the afternoon or the night) and code 4 represents a holliday. We want to express the fact that we don't count any change for two consecutive days d1, d2 such that d1 or d2 is a holliday. 

See also change.

Key words

Q =s 0 C =0 0 C 1 Q 1 VAR 1 S 1 VAR 2 S 2 VAR n VAR 3 S 3 Q 2 C 2 S n-1 VAR n-1 Q =t n-1 C =NCHANGE n-1

decreasing

Origin

Inspired by increasing.

Constraint decreasing(VARIABLES)

Argument(s) VARIABLES : collection(vardvar)

Restriction(s) |VARIABLES| > 0 required(VARIABLES, var)

Purpose

The variables of the collection VARIABLES are decreasing. See also strictly decreasing, increasing, strictly increasing.

Arc input(s) VARIABLES

Key words

decomposition, order constraint, automaton, automaton without counters, sliding cyclic(1) constraint network(1). 2,

1 VAR 2 S 2 VAR n VAR 3 S 3 Q 2 S n-1 VAR n-1 Q =t n-1 Q =s 0 Q 1 S 1
8 > > > > > > > > > > < > > > > > > > > > > : var -5, var -3, var -4, var -8, var -8, var -2, var -7, var -1 9 > > > > > > > > > > = > > > > > > > > > > ; 1 C C C C C C C C C C A
The previous constraint holds since 2 is the deepest valley of the sequence 5 3 4 8 8 2 7 1. VARi 

< VARi+1 ⇔ Si = 0 ∧ VARi = VARi+1 ⇔ Si = 1 ∧ VARi > VARi+1 ⇔ Si = 2. VAR = VAR i i+1 VAR = VAR i i+1 i+1 i VAR < VAR u $ $ i i+1 i {C=min(C,VAR )} i i+1 i i+1 VAR > VAR VAR < VAR , VAR > VAR
1 Q 1 VAR 1 S 1 VAR 2 S 2 VAR n VAR 3 S 3 Q 2 C 2 S n-1 VAR n-1 Q =s 0 C =maxint 0 Q =t n-1 n-1 C =DEPTH

derangement

Origin

Derived from cycle.

Constraint derangement(NODES)

Argument(s) NODES : collection(indexint, succdvar)

Restriction(s) required(NODES, [index, succ]) NODES.index ≥ 1 NODES.index ≤ |NODES| distinct(NODES, index) NODES.succ ≥ 1 NODES.succ ≤ |NODES|

Purpose

Enforce to have a permutation with no cycle of length one. The permutation is depicted by the succ attribute of the NODES collection.

Arc input(s) NODES

Arc generator CLIQUE → collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s)

• nodes1.succ = nodes2.index • nodes1.succ = nodes1.index

Graph property(ies)

NTREE = 0 Example derangement 0 B B B B @ 8 > > > > < > > > > : index -1 succ -2, index -2 succ -1, index -3 succ -5, index -4 succ -3, index -5 succ -4 9 > > > > = > > > > ; 1 C C C C A
In the permutation of the previous example we have the following 

Graph model

In order to express the binary constraint that links two vertices of the NODES collection one has to make explicit the index value of the vertices. This is why the derangement constraint considers objects that have two attributes:

• One fixed attribute index, which is the identifier of the vertex,

• One variable attribute succ, which is the successor of the vertex.

Forbiding cycles of length one is achieved by the second condition of the arc constraint.

Signature

Since 0 is the smallest possible value of NTREE we can rewrite the graph property NTREE = 0 to NTREE ≤ 0. This leads to simplify NTREE to NTREE.

Remark

A special case of the cycle [START_REF] Beldiceanu | Introducing global constraints in CHIP[END_REF] constraint.

See also alldifferent, cycle.

Key words

graph constraint, permutation.

differ from at least k pos

Origin

Inspired by [START_REF] Frutos | Demonstration of a word design strategy for DNA computing on surfaces[END_REF].

Constraint differ from at least k pos(K, VECTOR1, VECTOR2)

Type(s)

VECTOR : collection(vardvar)

Argument(s) K : int VECTOR1 : VECTOR VECTOR2 : VECTOR Restriction(s) required(VECTOR, var) K ≥ 0 K ≤ |VECTOR1| |VECTOR1| = |VECTOR2|

Purpose

Enforce two vectors VECTOR1 and VECTOR2 to differ from at least K positions.

Arc input(s) VECTOR1 VECTOR2

Arc generator PRODUCT (=) → collection(vector1, vector2)

Arc arity 2

Arc constraint(s) vector1.var = vector2.var

Graph property(ies) NARC ≥ K

Example differ from at least k pos

0 B B B B B B B B B B @ 2, 8 > > < > > : var -2, var -5, var -2, var -0 9 > > = > > ; , 8 > > < > > : var -3, var -6, var -2, var -1 9 > > = > > ; 1 C C C C C C C C C C A
The previous constraint holds since the first and second vectors differ from 3 positions which is greater than or equal to K = 2. Parts (A) and (B) of Figure 4.147 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Automaton

Figure 4.148 depicts the automaton associated to the differ from at least k pos constraint. Let VAR1i and VAR2i be the i th variables of the VECTOR1 and VECTOR2 collections.

To each pair of variables (VAR1i, VAR2i) corresponds a signature variable Si. The following signature constraint links VAR1i, VAR2i and Si: VAR1i = VAR2i ⇔ Si.

Remark

Used in the Arc constraint(s) slot of the all differ from at least k pos constraint. 

1 S 1 Q 1 S 2 S n Q =s 0 C =0 0 Q =t n VAR2 1 VAR2 2 VAR2 n VAR1 1 VAR1 2 VAR1 n C >=K n

Purpose

Generalized multi-dimensional non-overlapping constraint: Holds if, for each pair of orthotopes (O1, O2), O1 and O2 do not overlap. Two orthotopes do not overlap if there exists at least one dimension where their projections do not overlap.

Arc input(s) ORTHOTOPES

Arc generator SELF → collection(orthotopes)

Arc arity 1

Arc constraint(s)

orth link ori siz end(orthotopes.orth)

Graph property(ies) NARC = |ORTHOTOPES|

Arc input(s) ORTHOTOPES

Arc generator CLIQUE ( =) → collection(orthotopes1, orthotopes2)

Arc arity 2

Arc constraint(s) two orth do not overlap(orthotopes1.orth, orthotopes2.orth) 

Graph property(ies)

NARC = |ORTHOTOPES| * |ORTHOTOPES| -|ORTHOTOPES| Example diffn 0 B B B B B B @ 8 > > > > > > < > > > > > > : orth -  ori -2 siz -2 end -4, ori -1 siz -3 end -4 ff , orth -  ori -4 siz -4 end -8, ori -3 siz -3 end -3 ff , orth -  ori -9 siz -2 end -11, ori -4 siz -3 end -7 ff 9 > > > > > > = > > > > > > ;

Graph model

The diffn constraint is expressed by using two graph constraints:

• The first graph constraint enforces for each dimension and for each orthotope the link between the corresponding ori, siz and end attributes.

• The second graph constraint imposes each pair of distinct orthotopes to not overlap. 

Signature

Usage

The diffn constraint occurs in placement and scheduling problems. It was for instance used for scheduling problems where one has to both assign each non-premptive task to a resource and fix its origin so that two tasks which are assigned to the same resource do not overlap. A practical application from the area of the design of memory-dominated embedded systems [START_REF] Szymanek | Constraint-Driven Design Space Exploration for Memory-Dominated Embedded Systems[END_REF] can be found in [START_REF] Szymanek | A constructive algorithm for memory-aware task assignment and scheduling[END_REF].

Algorithm

For the two-dimensional case of diffn a possible filtering algorithm based on sweep is described in [START_REF] Beldiceanu | Sweep as a generic pruning technique applied to the non-overlapping rectangles constraints[END_REF]. For the n-dimensional case of diffn a filtering algorithm handling the fact that two objects do not overlap is given in [START_REF] Beldiceanu | Non-overlapping constraints between convex polytopes[END_REF]. Extensions of the non-overlapping constraint to polygons and to more complex shapes are respectively described in [START_REF] Beldiceanu | Non-overlapping constraints between convex polytopes[END_REF] and in [START_REF] Ribeiro | A global constraint for nesting problems[END_REF]. Specialized propagation algorithms for the squared squares problem [START_REF] Bouwkamp | Catalogue of simple perfect squared squares of orders 21 through 25[END_REF] (based on the fact that no waste is permitted) are given in [START_REF] Gambini | Quant aux carrés carrelés[END_REF] and in [START_REF] Gambini | A method for cutting squares into distinct squares[END_REF].

Used in diffn column, diffn include, place in pyramid.

See also orth link ori siz end, two orth do not overlap.

Key words

decomposition, geometrical constraint, orthotope, polygon, non-overlapping, sweep, squared squares.

diffn column

Origin CHIP: option guillotine cut (column) of diffn. 

Constraint

orth -  ori -1 siz -3 end -4, ori -1 siz -1 end -2 ff , orth -  ori -4 siz -2 end -6, ori -1 siz -3 end -4 ff 9 > > = > > ; , 1 1 C C 
orth -  ori -1 siz -3 end -4, ori -1 siz -1 end -2 ff , orth -  ori -1 siz -2 end -3, ori -2 siz -3 end -5 ff 9 > > = > > ; , 1 1 C C A 
See also diffn, two orth include, diffn column.

Key words

decomposition, geometrical constraint, positioning constraint, orthotope. 

Graph model

The arc constraint corresponds to the constraint in set(variables.var, variables.bad) defined in this catalog. We employ the SELF arc generator in order to produce an initial graph with a single loop on each vertex.

Remark

Limited discrepancy search was first introduced by M. L. Ginsberg and W. D. Harvey as a search technique in [START_REF] Ginsberg | Limited discrepancy search[END_REF]. Later on, discrepancy based filtering was presented in the PhD thesis of F. Focacci [103, pages 171-172]. Finally the discrepancy constraint was explictely defined in the PhD thesis of W.-J. van Hoeve [104, page 104].

See also among.

Key words

value constraint, counting constraint, heuristics, limited discrepancy search.

disjoint

Origin Derived from alldifferent. 

Constraint

Graph model

PRODUCT is used in order to generate the arcs of the graph between all variables of VARIABLES1 and all variables of VARIABLES2. Since we use the graph property NARC = 0 the final graph will be empty.

Signature

Since 0 is the smallest number of arcs of the final graph we can rewrite NARC = 0 to NARC ≤ 0. This leads to simplify NARC to NARC.

Automaton

Figure 4.156 depicts the automaton associated to the disjoint constraint. To each variable VAR1i of the collection VARIABLES1 corresponds a signature variable Si, which is equal to 0. To each variable VAR2i of the collection VARIABLES2 corresponds a signature variable S i+|VARIABLES1| , which is equal to 1. 

) i i 1, {D[VAR2 ]=D[VAR2 ]+1} i i 1, {D[VAR2 ]=D[VAR2 ]+1} 0, {C[VAR1 ]=C[VAR1 ]+1} i i i $ t: arith_or(C,D,<,1) s {C[_]=0,D[_]=0}

Remark

Despite the fact that this is not an uncommon constraint, it can not be modelled in a compact way neither with a disequality constraint (i.e. two given variables have to take distinct values) nor with the alldifferent constraint. The disjoint constraint can bee seen as a special case of the common(NCOMMON1, NCOMMON2, VARIABLES1, VARIABLES2) constraint where NCOMMON1 and NCOMMON2 are both set to 0.

Algorithm

Let us note:

• n1 the minimum number of distinct values taken by the variables of the collection VARIABLES1.

• n2 the minimum number of distinct values taken by the variables of the collection VARIABLES2.

• n12 the maximum number of distinct values taken by the union of the variables of VARIABLES1 and VARIABLES2.

One invariant to maintain for the disjoint constraint is n1 +n2 ≤ n12. A lower bound of n1 and n2 can be obtained by using the algorithms provided in [33,[START_REF] Beldiceanu | Cost-filtering algorithms for the two sides of the sum of weights of distinct values constraint[END_REF]. An exact upper bound of n12 can be computed by using a bipartite matching algorithm.

See also disjoint tasks.

Key words

value constraint, empty intersection, disequality, bipartite matching, automaton, automaton with array of counters.

disjoint tasks

Origin Derived from disjoint. 

Constraint

Graph model

PRODUCT is used in order to generate the arcs of the graph between all the tasks of the collection TASKS1 and all tasks of the collection TASKS2.

The first two graph constraints respectively enforce for each task of TASKS1 and TASKS2 the fact that the end of a task is equal to the sum of its origin and its duration.

The arc constraint of the third graph constraint depicts the fact that two tasks overlap. Therefore, since we use the graph property NARC = 0 the final graph associated to the third graph constraint will be empty and no task of TASKS1 will overlap any task of TASKS2.

Signature

Since TASKS1 is the maximum number of arcs of the final graph associated to the first graph constraint we can rewrite NARC = |TASKS1|. This leads to simplify NARC to NARC.

We can apply a similar remark for the second graph constraint.

Finally, since 0 is the smallest number of arcs of the final graph we can rewrite NARC = 0 to NARC ≤ 0. This leads to simplify NARC to NARC.

Remark

Despite the fact that this is not an uncommon constraint, it cannot be modelled in a compact way with one single cumulative constraint. But it can be expressed by using the coloured cumulative constraint: We assign a first colour to the tasks of TASKS1 as well as a second distinct colour to the tasks of TASKS2. Finally we set up a limit of 1 for the maximum number of distinct colours allowed at each time point.

See also disjoint, coloured cumulative.

Key words

scheduling constraint, temporal constraint, non-overlapping.

disjunctive

Origin [START_REF] Carlier | One machine problem[END_REF] Constraint disjunctive(TASKS)

Synonym(s) one machine.

Argument(s)

TASKS : collection(origindvar, durationdvar)

Restriction(s) required(TASKS, [origin, duration]) TASKS.duration ≥ 0

Purpose

All the tasks of the collection TASKS should not overlap. 

Arc input(s) TASKS

Arc

Graph model

We generate a clique with a non-overlapping constraint between each pair of distinct tasks and state that the number of arcs of the final graph should be equal to the number of arcs of the initial graph.

Remark

A soft version of this constraint, under the hypothesis that all durations are fixed, was presented by P. Baptiste et al. in [START_REF] Baptiste | Global constraints for partial csps: A case-study of resource and due date constraints[END_REF]. In this context the goal was to perform as many tasks as possible within their respective due-dates.

Algorithm

Efficient filtering algorithms for handling the disjunctive constraint are described in [START_REF] Vilím | O(n log n) filtering algorithms for unary resource constraint[END_REF] and [START_REF] Péridy | An O(n log n) stable algorithm for immediate selections adjustments[END_REF].

See also cumulative, diffn.

Key words

scheduling constraint, resource constraint, decomposition. 

distance between

Origin

|VARIABLES1| = |VARIABLES2| CTR ∈ [=, =, <, ≥, >, ≤]
Let Ui and Vi be respectively the i th and j th variables (i = j) of the collection VARIABLES1.

In a similar way, let Xi and Yi be respectively the i th and j th variables (i = j) of the collection VARIABLES2. DIST is equal to the number of times one of the following mutually incompatible conditions are true: Purpose

• Ui CTR Vi holds and Xi CTR Yi does not hold,

• Xi CTR Yi holds and Ui CTR Vi does not hold.

Arc input(s) VARIABLES1/ VARIABLES2

Arc generator CLIQUE ( =) → collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var CTR variables2.var

Graph property(ies)

DISTANCE = DIST Example distance between 0 B B B B B B B B B B B B B B @ 2, 8 > > > > < > > > > : var -3, var -4, var -6, var -2, var -4 9 > > > > = > > > > ; , 8 > > > > < > > > > : var -2, var -6, var -9, var -3, var -6 9 > > > > = > > > > ; , < 1 C C C C C C C C C C C C C C A
Between solution var-3,var-4,var-6,var-2,var-4 and solution var-2,var-6,var-9,var-3,var-6 there are 2 changes, which respectively correspond to:

• Within the final graph associated to solution var-3,var-4,var-6,var-2,var-4 the arc 4 → 1 (i.e. values 2 → 3) does not occur in the final graph associated to var-2,var-6,var-9,var-3,var-6,

• Within the final graph associated to solution var-2,var-6,var-9,var-3,var-6 the arc 1 → 4 (i.e. values 2 → 3) does not occur in the final graph associated to var-3,var-4,var-6,var-2,var-4.

Part (A) of Figure 4.160 gives the final graph associated to the solution var-3,var-4,var-6,var-2,var-4, while part (B) shows the final graph corresponding to var-2,var-6,var-9,var-3,var-6. The two arc constraints that differ from one graph to the other are marked by a dotted line. 

Graph model

Within the arc input field, the character / indicates that we generate two distinct graphs.

The graph property DISTANCE measures the distance between two digraphs G1 and G2. This distance is defined as the sum of the following quantities:

• The number of arcs of G1 which do not belong to G2,

• The number of arcs of G2 which do not belong to G1.

Usage

Measure the distance between two solutions in term of the number of constraint changes. This should be put in contrast to the number of value changes which is sometimes superficial.

See also distance change.

Key words proximity constraint.

distance change

Origin Derived from change. 

Constraint

|VARIABLES1| = |VARIABLES2| CTR ∈ [=, =, <, ≥, >, ≤]
DIST is equal to the number of times one of the following two conditions is true 

(1 ≤ i < n): Purpose • VARIABLES1[i].
8 > > > > < > > > > : var -3, var -3, var -1, var -2, var -2 9 > > > > = > > > > ; , 8 > > > > < > > > > : var -4, var -4, var -3, var -3, var -3 9 > > > > = > > > > ; , = 1 C C C C C C C C C C C C C C A
Part (A) of Figure 4.161 gives the final graph associated to the solution var-3,var-3,var-1,var-2,var-2, while part (B) shows the final graph corresponding to var-4,var-4,var-3,var-3,var-3. Since arc 3 → 4 belongs to the first final graph but not to the second one, the distance between the two final graphs is equal to 1.

Graph model

Within the arc input field, the character / indicates that we generate two distinct graphs. The graph property DISTANCE measures the distance between two digraphs G1 and G2. This distance is defined as the sum of the following quantities:

• The number of arcs of G1 which do not belong to G2,

• The number of arcs of G2 which do not belong to G1.

Automaton

Figure 4.162 depicts the automaton associated to the distance change constraint. Let (VAR1i, VAR1i+1) and (VAR2i, VAR2i+1) respectively be the i th pairs of consecutive variables of the collections VARIABLES1 and VARIABLES2. To each quadruple (VAR1i, VAR1i+1, VAR2i, VAR2i+1) corresponds a 0-1 signature variable Si. The following signature constraint links these variables:

((VAR1i = VAR1i+1) ∧ (VAR2i = VAR2i+1)) ∨ ((VAR1i = VAR1i+1) ∧ (VAR2i = VAR2i+1)) ⇔ Si.

Usage

Measure the distance between two solutions according to the change constraint.

Remark

We measure that distance according to a given constraint and not according to the fact that the variables take distinct values.

See also change, distance between.

Key words proximity constraint, automaton, automaton with counters, sliding cyclic(2) constraint network(2). 

Q =s 0 C =0 0 C 1 Q 1 S 3 Q 2 C 2 VAR1 3 VAR2 3 S 2 S 1 VAR2 1 VAR1 1 VAR1 2 VAR2 2 VAR1 n-1 VAR2 n-1 VAR1 n VAR2 n C =DIST n-1 Q =t n-1 S n-1

Graph model

The domain constraint constraint is modelled with the following bipartite graph:

• The first class of vertices corresponds to one single vertex containing the domain variable.

• The second class of vertices contains one vertex for each item of the collection VALUES.

PRODUCT is used in order to generate the arcs of the graph. In our context it takes a collection with one single item {var01 -1 value -VAR} and the collection VALUES.

The arc constraint between the variable VAR and one potential value v expresses the following:

• If the 0-1 variable associated to v is equal to 1, VAR is equal to v.

• Otherwise, if the 0-1 variable associated to v is equal to 0, VAR is not equal to v.

Since all arc constraints should hold the final graph contains exactly |VALUES| arcs.

Signature

Since the number of arcs of the initial graph is equal to VALUES the maximum number of arcs of the final graph is also equal to VALUES. Therefore we can rewrite the graph property NARC = |VALUES| to NARC ≥ |VALUES|. This leads to simplify NARC to NARC.

Automaton

Figure 4.165 depicts the automaton associated to the domain constraint constraint. Let VAR01i and VALUEi respectively be the var01 and the value attributes of the i th item of the VALUES collection. To each triple (VAR, VAR01i, VALUEi) corresponds a 0-1 signature variable Si as well as the following signature constraint:

((VAR = VALUEi) ⇔ VAR01i) ⇔ Si.

Usage

This constraint is used in order to make the link between a formulation using finite domain constraints and a formulation exploiting 0-1 variables.

See also link set to booleans.

Key words

decomposition, channeling constraint, domain channel, boolean channel, linear programming, automaton, automaton without counters, centered cyclic(1) constraint network(1), derived collection. 

S n Q =t n Q 1 Q =s 0 VAR01 n S 2 S 1 VAR01 1 VAR01 2 VAR

elem

Origin Derived from element.

Constraint elem(ITEM, TABLE)

Usual name element

Argument(s) ITEM : collection(indexdvar, valuedvar) 

Graph property(ies)

NARC = 1 Example elem 0 B B B B @ {index -3 value -2}, 8 > > < > > : index -1 value -6, index -2 value -9, index -3 value -2, index -4 value -9 9 > > = > > ; 1 C C C C A
Parts (A) and (B) of Figure 4.167 respectively show the initial and final graph. Since we use the NARC graph property, the unique arc of the final graph is stressed in bold.

Graph model

We regroup the INDEX and VALUE parameters of the original element constraint element(INDEX, TABLE, VALUE) into the parameter ITEM. We also make explicit the different indices of the table TABLE.

Signature

Since all the index attributes of 

((INDEX = INDEXi) ∧ (VALUE = VALUEi)) ⇔ Si.

Usage

Makes the link between the decision variable INDEX and the variable VALUE according to a given table of values TABLE. We now give three typical uses of the elem constraint.

1. In some scheduling problems the duration of a task depends on the machine where the task will be assigned in final schedule. In this case we generate for each task an elem constraint of the following form:

elem 0 B B B B B @ ˘index -Machine value -Duration ¯, 8 > > > < > > > : index -1 value -Dur1, index -2 value -Dur2, . . . index -m value -Durm 9 > > > = > > > ; 1 C C C C C A
where:

• Machine is a domain variable which indicates the resource to which the task will be assigned,

• Duration is a domain variable which corresponds to the duration of the task,

• Dur1, Dur2, . . . , Durm are the respective durations of the task according to the hypothesis that it runs on machine 1, 2 or m.

2.

In some vehicle routing problems we typically use the elem constraint to express the distance between the i th location and the next location visited by a vehicle. For this purpose we generate for each location i an elem constraint of the form:

elem 0 B B B B B @ ˘index -Nexti value -distancei ¯, 8 > > > < > > > : index -1 value -Disti 1 , index -2 value -Disti 2 , . . . index -m value -Disti m 9 > > > = > > > ; 1 C C C C C A
where:

• Nexti is a domain variable which gives the index of the location the vehicle will visit just after the i th location,

• distancei is a domain variable which corresponds to the distance between location i and the location the vehicle will visit just after,

• Disti 1 , Disti 2 , . . . , Disti m are the respective distances between location i and locations 1, 2, . . . , m.

3.

In some optimization problems a classical use of the elem constraint consists expressing the link between a discrete choice and its corresponding cost. For each discrete choice we create an elem constraint of the form: ˘index

ITEM TABLE 1 1 2 3 4
-Choice value -Cost ¯, 8 > > > < > > > : index -1 value -Cost1, index -2 value -Cost2, . . . index -m value -Costm 9 > > > = > > > ; 1 C C C C C A
where:

• Choice is a domain variable which indicates which alternative will be finally selected,

• Cost is a domain variable which corresponds to the cost of the decision associated to the value of the Choice variable,

• Cost1, Cost2, . . . , Costm are the respective costs associated to the alternatives 1, 2, . . . , m.

Remark

Originally, the parameters of the elem constraint had the form element(INDEX, 

9 > > = > > ; , 2 1 C C 

Graph model

The original element constraint with three arguments. We use the derived collection ITEM for putting together the INDEX and VALUE parameters of the element constraint. Within the arc constraint we use the implicit attribute key which associates to each item of a collection its position within the collection.

Signature

Because of the first condition of the arc constraint the final graph cannot have more than one arc. Therefore we can rewrite NARC = 1 to NARC ≥ 1 and simplify NARC to NARC. 

ITEM

Usage

See elem.

Remark

In the original element constraint of CHIP the index attribute was not explicitly present in the table of values. It was implicitly defined as the position of a value in the previous table.

The case constraint [START_REF] Carlsson | SICStus Prolog User's Manual[END_REF] 

element greatereq

Origin [START_REF] Ottosson | Mixed global constraints and inference in hybrid IP-CLP solvers[END_REF] Constraint element greatereq(ITEM, 

B B B B @ {index -1 value -8}, 8 > > < > > : index -1 value -6, index -2 value -9, index -3 value -2, index -4 value -9 9 > > = > > ; 1 C C C C A
Parts (A) and (B) of Figure 4.173 respectively show the initial and final graph. Since we use the NARC graph property, the unique arc of the final graph is stressed in bold.

Graph model

Similar to the element constraint except that the equality constraint of the second condition of the arc constraint is replaced by a greater than or equal to constraint.

Signature

Since all the index attributes of 

((INDEX = INDEXi) ∧ (VALUE ≥ VALUEi)) ⇔ Si.

Usage

Used for modelling variable subscripts in linear constraints [START_REF] Ottosson | Mixed global constraints and inference in hybrid IP-CLP solvers[END_REF].

See also element, element lesseq. 

Key words

B B B B @ {index -3 value -1}, 8 > > < > > : index -1 value -6, index -2 value -9, index -3 value -2, index -4 value -9 9 > > = > > ; 1 C C C C A
Parts (A) and (B) of Figure 4.176 respectively show the initial and final graph. Since we use the NARC graph property, the unique arc of the final graph is stressed in bold.

Graph model

Similar to the element constraint except that the equality constraint of the second condition of the arc constraint is replaced by a less than or equal to constraint.

Signature

Since all the index attributes of 

((INDEX = INDEXi) ∧ (VALUE ≤ VALUEi)) ⇔ Si.

Usage

Used for modelling variable subscripts in linear constraints [START_REF] Ottosson | Mixed global constraints and inference in hybrid IP-CLP solvers[END_REF].

See also element, element greatereq. 

Key words

(i -int, j -int, v -int) VALUE : dvar Restriction(s) MAX I ≥ 1 MAX J ≥ 1 INDEX I ≥ 1 INDEX I ≤ MAX I INDEX J ≥ 1 INDEX J ≤ MAX J required(MATRIX, [i, j, v]) increasing seq(MATRIX, [i, j]) MATRIX.i ≥ 1 MATRIX.i ≤ MAX I MATRIX.j ≥ 1 MATRIX.j ≤ MAX J |MATRIX| = MAX I * MAX J

Purpose

The MATRIX collection corresponds to the two-dimensional matrix 

8 > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > : i -1 j -1 v -4, i -1 j -2 v -1, i -1 j -3 v -7, i -2 j -1 v -1, i -2 j -2 v -0, i -2 j -3 v -8, i -3 j -1 v -3, i -3 j -2 v -2, i -3 j -3 v -1, i -4 j -1 v -0, i -4 j -2 v -0, i -4 j -3 v -6 9 > > > > > > > > > > > > > > > > > > = > > > > > > > > > > > > > > > > > > ; , 7 1 C 

Graph model

Similar to the element constraint except that the arc constraint is updated according to the fact that we have a two-dimensional matrix.

Signature

Because of the first condition of the arc constraint the final graph cannot have more than one arc. Therefore we can rewrite NARC = 1 to NARC ≥ 1 and simplify NARC to NARC.

Automaton

Figure 4.180 depicts the automaton associated to the element matrix constraint. Let I k , J k and V k respectively be the i, the j and the v k th attributes of the MATRIX collection. To each sextuple (INDEX I, INDEX J, VALUE, I k , J k , V k ) corresponds a 0-1 signature variable S k as well as the following signature constraint:

((INDEX I = I k ) ∧ (INDEX J = J k ) ∧ (VALUE = V k )) ⇔ S k .
See also element. 

INDEX_I<>MATRIX_I

B B B B @ {index -2 value -5}, 8 > > < > > : index -1 value -6, index -2 value -5, index -4 value -2, index -8 value -9 9 > > = > > ; , 5 1 C 

Graph model

The final graph has between one and two arc constraints: It has two arcs when the default value DEFAULT occurs also in the table 

(INDEX = INDEXi ∧ VALUE = DEFAULT) ⇔ Si = 0 ∧ (INDEX = INDEXi ∧ VALUE = VALUEi ) ⇔ Si = 1 ∧ (INDEX = INDEXi ∧ VALUE = DEFAULT) ⇔ Si = 2
.

Usage

A sometimes more compact form of the element constraint: We are not obliged to specify explicitely the table entries that correspond to the specified default value. This can sometimes reduce drastically memory utilisation.

Remark

The original constraint of CHIP had an additional parameter SIZE giving the maximum value of ITEM.index.

See also element.

Key words array constraint, data constraint, binary constraint, table, sparse table, sparse functional dependency, variable indexing, automaton, automaton without counters, centered cyclic(2) constraint network(1), derived collection. 

elements

Origin Derived from element.

Constraint elements(ITEMS, TABLE)

Argument(s) ITEMS : collection(indexdvar, valuedvar) 

B B B B B B B B B B @ 8 > > < > > : index -2 value -9, index -1 value -6, index -4 value -9, index -3 value -2 9 > > = > > ; , 8 > > < > > : index -1 value -6, index -2 value -9, index -3 value -2, index -4 value -9 9 > > = > > ; 1 C C C C C C C C C C A
Parts (A) and (B) of Figure 4.186 respectively show the initial and final graph. Since we use the NVERTEX graph property, the vertices of the final graph are stressed in bold.

Graph model

The fact that all variables ITEMS.index are pairwise different is derived from the conjunctions of the following facts:

• From the graph property NVERTEX = |ITEMS| + |TABLE| it follows that all vertices of the initial graph belong also to the final graph,

• A vertex v belongs to the final graph if there is at least one constraint involving v that holds,

• From the first condition items.index = table.index of the arc constraint, and from the restriction distinct(TABLE.index) it follows: For all vertices v generated from the collection ITEMS at most one constraint involving v holds.

Signature

Since the final graph cannot have more than |ITEMS| + |TABLE| vertices one can simplify NVERTEX to NVERTEX.

Usage

Used for replacing by one single elements alldifferent constraint an alldifferent and a set of element constraints having the following structure:

• The union of the index variables of the element constraints is equal to the set of variables of the alldifferent constraint.

• All the element constraints share exactly the same table.

For instance, the constraint given in the previous example is equivalent to the conjunction of the following set of constraints:

alldifferent({var -2, var -1, var -4, var -3}) element 0 B B B B @ ˘index -2 value -9 ¯, 8 > > < > > : index -1 value -6, index -2 value -9, index -3 value -2, index -4 value -9 9 > > = > > ; 1 C C C C A element 0 B B B B @ ˘index -1 value -6 ¯, 8 > > < > > : index -1 value -6, index -2 value -9, index -3 value -2, index -4 value -9 9 > > = > > ; 1 C C C C A element 0 B B B B @ ˘index -3 value -2 ¯, 8 > > < > > : index -1 value -6, index -2 value -9, index -3 value -2, index -4 value -9 9 > > = > > ; 1 C C C C A element 0 B B B B @ ˘index -4 value -9 ¯, 8 > > < > > : index -1 value -6, index -2 value -9, index -3 value -2, index -4 value -9 9 > > = > > ; 1 C C C C A
As a practical example of utilization of the elements alldifferent constraint we show how to model the link between a permutation consisting of one single cycle and its expanded form. For instance, to the permutation 3, 6, 5, 2, 4, 1 corresponds the sequence 3 5 4 2 6 1. Let us note S1, S2, S3, S4, S5, S6 the permutation and V1V2V3V4V5V6 its expanded form.

The constraint:

elements alldifferent 0 B B B B B B B B B B B B B B B B B B @ 8 > > > > > > < > > > > > > : index -V1 value -V2, index -V2 value -V3, index -V3 value -V4, index -V4 value -V5, index -V5 value -V6, index -V6 value -V1 9 > > > > > > = > > > > > > ; , 8 > > > > > > < > > > > > > : index -1 value -S1, index -2 value -S2, index -3 value -S3, index -4 value -S4, index -5 value -S5, index -6 value -S6 9 > > > > > > = > > > > > > ; 1 C C C C C C C C C C C C C C C C C C A
models the fact that S1, S2, S3, S4, S5, S6 corresponds to a permutation with one single cycle. It also expresses the link between the variables S1, S2, S3, S4, S5, S6 and V1, V2, V3, V4, V5, V6.

See also alldifferent, element.

Key words

data constraint, table, functional dependency, permutation, disequality. 

3 =5 5 =4 2 =6 6 =1 1 =3 2 =5 3 =4 4 =2 5 =6 6 =1 4 =2 V V V V S V 5 3 4 2 6 S S S S V 1

elements sparse

Origin

Derived from element sparse. : 

Constraint

index -8 value -9, index -3 value -5, index -2 value -5 9 = ; , 8 > > < > > : index -1 value -6, index -2 value -5, index -4 value -2, index -8 value -9 9 > > = > > ; , 5 1 C 

Graph model

An item of the ITEMS collection may have up to two successors (see for instance the third item of the ITEMS collection of the previous example). Therefore we use the graph property NSOURCE = |ITEMS| for enforcing the fact that each item of the ITEMS collection has at least one successor.

Signature

On the one hand note that ITEMS is equal to the number of sources of the initial graph.

On the other hand observe that, in the initial graph, all the vertices which are not sources correspond to sinks. Since isolated vertices are eliminated from the final graph the sinks of the initial graph cannot become sources of the final graph. 

1 VAR 1 S 1 Q 1 VAR 2 S 2 VAR n S n Q =s 0 C =0 0 Q =t n C =N n

Key words

value constraint, counting constraint, automaton, automaton with counters, alpha-acyclic constraint network(2). 

global cardinality

9 > > = > > ; , 8 < : val -3 noccurrence -2, val -5 noccurrence -0, val -6 noccurrence -1 9 = ; 1 C C C C C C C C A
The constraint holds since values 3, 5 and 6 are respectively used 2, 0 and 1 times and since no constraint was specified for value 8. Part (A) of Figure 4.192 shows the initial graphs associated to each value 3, 5 and 6 of the VALUES collection. Part (B) of Figure 4.192 shows the two final graphs respectively associated to values 3 and 6 which are both assigned to the variables of the VARIABLES collection (since value 5 is not assigned to any variable of the VARIABLES collection the final graph associated to value 5 is empty). Since we use the NVERTEX graph property, the vertices of the final graphs are stressed in bold.

Graph model

Since we want to express one unary constraint for each value we use the "For all items of VALUES" iterator.

Automaton

Figure 4.193 depicts the automaton associated to the global cardinality constraint. To each item of the collection VARIABLES corresponds a signature variable Si, which is equal to 0. To each item of the collection VALUES corresponds a signature variable S i+|VARIABLES| , which is equal to 1.

Usage

We show how to use the global cardinality constraint in order to model the magic series problem [113, page 155] with one single global cardinality constraint. A nonempty finite series S = (s0, s1, . . . , sn) is magic if and only if there are si occurrences of i in S for each integer i ranging from 0 to n. This leads to the following constraint:

global cardinality 0 B B B B B @ ˘var -s0, var -s1, . . . , var -sn ¯, 8 > > > < > > > : val -0 noccurrence -s0, val -1 noccurrence -s1, . . . val -n noccurrence -sn 9 > > > = > > > ; 1 C C C C C A

Remark

This is a generalized form of the original global cardinality constraint: In the original global cardinality constraint [START_REF] Régin | Generalized arc consistency for global cardinality constraint[END_REF], one specifies for each value its minimum and maximum number of occurrences; Here we give for each value v a domain variable which indicates how many time value v is effectively used. By setting the minimum and maximum values of this variable to the appropriate constants we can express the same thing as in the original global cardinality constraint. However, as shown in the magic series problem, we can also use this variable in other constraints.

A last difference with the original global cardinality constraint comes from the fact that there is no constraint on the values which are not mentioned in the VALUES collection.

In the original global cardinality these values could not be assigned to the variables of the VARIABLES collection.

Within [START_REF] Bourdais | HIBISCUS: A constraint programming application to staff scheduling in health care[END_REF] the global cardinality constraint is called distribution. Within [START_REF] Régin | The cardinality matrix constraint[END_REF] the global cardinality constraint is called card var gcc.

Within [START_REF] Bessière | The tractability of global constraints[END_REF] the global cardinality constraint is called egcc or rgcc. This later case corresponds to the fact that some variables are duplicated within the VARIABLES collection.

W.-J. van Hoeve et al. present two soft versions of the global cardinality constraint in [12].

Algorithm

A flow algorithm that handles the original global cardinality constraint is described in [START_REF] Régin | Generalized arc consistency for global cardinality constraint[END_REF]. The two approaches that were used to design bound-consistency algorithms for alldifferent were generalized for the global cardinality constraint. The algorithm in [START_REF] Quimper | An efficient bounds consistency algorithm for the global cardinality constraint[END_REF] identifies Hall intervals and the one in [START_REF] Katriel | Fast bound consistency for the global cardinality constraint[END_REF] exploits convexity to achieve a fast implementation of the flow-based arc-consistency algorithm. The later algorithm can also compute bound-consistency for the count variables [START_REF] Katriel | Complete bound consistency for the global cardinality constraint[END_REF]. An improved algorithm for achieving arc-consistency is described in [START_REF] Quimper | Improved algorithms for the global cardinality constraint[END_REF]. In the same paper, it is shown that it is NP-hard to compute arc-consistency for the count variables.

See also among, count, nvalue, max nvalue, min nvalue, global cardinality with costs, symmetric gcc, symmetric cardinality, colored matrix, same and global cardinality.

Key words

value constraint, assignment, magic series, Hall interval, bound-consistency, flow, duplicated variables, automaton, automaton with array of counters. 

0, {c[VAR ]=c[VAR ]+1} i i i $ arith(C,=,0) t: 1, 1, {c[VAL ]=c[VAL ]-NOCCURRENCE } i i i {c[VAL ]=c[VAL ]-NOCCURRENCE } i i i {C[_]=0}
9 > > = > > ; , 8 < : val -3 omin -2 omax -3, val -5 omin -0 omax -1, val -6 omin -1 omax -2 9 = ; 1 C C C C C C C C A
The constraint holds since values 3, 5 and 6 are respectively used 2, 0 and 1 times and since no constraint was specified for value 8. Part (A) of Figure 4.192 shows the initial graphs associated to each value 3, 5 and 6 of the VALUES collection. Part (B) of Figure 4.192 shows the two final graphs respectively associated to values 3 and 6 which are both assigned to the variables of the VARIABLES collection (since value 5 is not assigned to any variable of the VARIABLES collection the final graph associated to value 5 is empty). Since we use the NVERTEX graph property, the vertices of the final graphs are stressed in bold.

Graph model

Since we want to express one unary constraint for each value we use the "For all items of VALUES" iterator.

Algorithm [START_REF] Régin | Generalized arc consistency for global cardinality constraint[END_REF].

Used in sliding distribution.

See also global cardinality, sliding distribution.

Key words

value constraint, assignment, flow. .noccurrence variables of the VARIABLES collection. In addition the COST of an assignment is equal to the sum of the elementary costs associated to the fact that we assign the i th variable of the VARIABLES collection to the j th value of the VALUES collection. These elementary costs are given by the MATRIX collection.

For all items of VALUES: :

Arc input(s) VARIABLES

val -3 noccurrence -3, val -5 noccurrence -0, val -6 noccurrence -1 9 = ; , 8 > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > : i -1 j -1 c -4, i -1 j -2 c -1, i -1 j -3 c -7, i -2 j -1 c -1, i -2 j -2 c -0, i -2 j -3 c -8, i -3 j -1 c -3, i -3 j -2 c -2, i -3 j -3 c -1, i -4 j -1 c -0, i -4 j -2 c -0, i -4 j -3 c -6 9 > > > > > > > > > > > > > > > > > > = > > > > > > > > > > > > > > > > > > ; , 14 
1 C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C A
Parts (A) and (B) of Figure 4.195 respectively show the initial and final graph associated to the second graph constraint. 

Graph model

The first graph constraint enforces each value of the VALUES collection to be taken by a specific number of variables of the VARIABLES collection. It is identical to the graph constraint used in the global cardinality constraint. The second graph constraint expresses the fact that the COST variable is equal to the sum of the elementary costs associated to each variable-value assignment. All these elementary costs are recorded in the MATRIX collection. More precisely, the cost cij is recorded in the attribute c of the ((i -1) • |VALUES)| + j) th entry of the MATRIX collection. This is ensured by the increasing restriction which enforces the fact that the items of the MATRIX collection are sorted in lexicographically increasing order according to attributes i and j.

Usage

A classical utilisation of the global cardinality with costs constraint corresponds to the following assignment problem. We have a set of persons P as well as a set of jobs J to perform. Each job requires a number of persons restricted to a specified interval. In addition each person p has to be assigned to one specific job taken from a subset Jp of J .

There is a cost Cpj associated to the fact that person p is assigned to job j. The previous problem is modelled with one single global cardinality with costs constraint where the persons and the jobs respectively correspond to the items of the VARIABLES and VALUES collection.

The global cardinality with costs constraint can also be used for modelling a conjunction alldifferent(X1, X2, . . . , Xn) and α1

• X1 + α2 • X2 + . . . + αn • Xn = COST.
For this purpose we set the domain of the noccurrence variables to {0, 1} and the cost attribute c of a variable Xi and one of its potential value j to αi • j. In practice this can be used for the magic squares and the magic hexagon problems where all the αi are set to 1.

Algorithm [START_REF] Régin | The symmetric alldiff constraint[END_REF] See also global cardinality, weighted partial alldiff.

Key words

cost filtering constraint, assignment, cost matrix, weighted assignment, scalar product, magic square, magic hexagon.

NCC, PATH , LOOP

global contiguity

Origin [START_REF] Maher | Analysis of a global contiguity constraint[END_REF] Constraint global contiguity(VARIABLES)

Argument(s)

VARIABLES : collection(vardvar)

Restriction(s) required(VARIABLES, var) VARIABLES.var ≥ 0 VARIABLES.var ≤ 1

Purpose

Enforce all variables of the VARIABLES collection to be assigned to 0 or 1. In addition, all variables assigned to value 1 appear contiguously. 

Arc input(s) VARIABLES

Graph model

Each connected component of the final graph corresponds to one set of contiguous variables that all take value 1.

Automaton

Figure 4.197 depicts the automaton associated to the global contiguity constraint. To each variable VARi of the collection VARIABLES corresponds a signature variable, which is equal to VARi. There is no signature constraint.

Usage

The paper [START_REF] Maher | Analysis of a global contiguity constraint[END_REF] introducing this constraint refers to hardware configuration problems.

Algorithm

A filtering algorithm for this constraint is described in [START_REF] Maher | Analysis of a global contiguity constraint[END_REF].

See also group, inflexion.

Key words connected component, convex,

Berge-acyclic constraint network, automaton, automaton without counters. 

Q =t n VAR 1 VAR 2 VAR n Q 1 Q =s 0

golomb

Origin

Inspired by [START_REF] Golomb | How to number a graph[END_REF].

Constraint golomb(VARIABLES)

Argument(s) VARIABLES : collection(vardvar)

Restriction(s) required(VARIABLES, var) VARIABLES.var ≥ 0
Purpose Enforce all differences Xi -Xj between two variables Xi and Xj (i > j) of the collection VARIABLES to be distinct. Since we use the MAX NSCC graph property we show one of the largest strongly connected component of the final graph. The constraint holds since all the strongly connected components have at most one vertex: the differences 1, 2, 3, 4, 5, 6 that one can construct from the values 0, 1, 4, 6 assigned to the variables of the VARIABLES collection are all distinct. Figure 4.200 gives a graphical interpretation of the solution given in the example in term of a graph: Each vertex corresponds to a variable, while each arc depicts a difference between two variables. One can observe that these differences are all distinct.

Derived Collection(s) col

Graph model

When applied on the collection of items {VAR1, VAR2, VAR3, VAR4}, the generator of derived collection generates the following collection of items: {VAR2 VAR1, VAR3 VAR1, VAR3 VAR2, VAR4 VAR1, VAR4 VAR2, VAR4 VAR3}. Note that we use a binary arc constraint between two vertices and that this binary constraint involves four variables.

Usage

This constraint refers to the Golomb ruler problem. We quote the definition from [START_REF] Shearer | Golomb rulers[END_REF]: "A Golomb ruler is a set of integers (marks) a1 < • • • < a k such that all the differences aiaj (i > j) are distinct".

Remark

Different constraints models for the Golomb ruler problem were presented in [START_REF] Smith | Modelling the golomb ruler problem[END_REF]. Algorithm At a first glance, one could think that, because it looks so similar to the alldifferent constraint, we could have a perfect polynomial filtering algorithm. However this is not true since one retrieves the same variable in different vertices of the graph. This leads to the fact that one has incompatible arcs in the bipartite graph (the two classes of vertices correspond to the pair of variables and to the fact that the difference between two pairs of variables takes a specific value). However one can still reuse a similar filtering algorithm as for the alldifferent constraint, but this will not lead to perfect pruning.

See also alldifferent.

Key words

Golomb ruler, disequality, difference, derived collection. 2,

graph crossing

Origin

8 > > > > > > > > > > > > > > < > > > > > > > > > > > > > > : succ -1 x -4 y -7, succ -1 x -2 y -5, succ -1 x -7 y -6, succ -2 x -1 y -2, succ -3 x -2 y -2, succ -2
x -5 y -3, succ -3

x -8 y -2, succ -9

x -6 y -2, succ -10 x -10 y -6, succ -8

x -10 y -1

9 > > > > > > > > > > > > > > = > > > > > > > > > > > > > > ; 1 C C C C C C C C C C C C C C A
Parts (A) and (B) of Figure 4.201 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Each arc of the final graph corresponds to a proper intersection between two line-segments. Figure 4.202 shows the line-segments associated to the NODES collection. One can observe the following line-segments intersection:

• Arcs 8 → 9 and 7 → 3 cross,

• Arcs 5 → 3 and 7 → 3 cross also. 

Graph model

Each node is described by its coordinates x and y, and by its successor succ in the final covering. Note that the coordinates are initially fixed. We use the arc generator CLIQUE (<) in order to avoid counting twice the same line-segment crossing.

Usage

This is a general crossing constraint that can be used in conjunction with one graph covering constraint such as cycle, tree or map. In many practical problems ones want not only to cover a graph with specific patterns but also to avoid too much crossing between the arcs of the final graph.

Remark

We did not give a specific crossing constraint for each graph covering constraint. We feel that it is better to start first with a more general constraint before going in the specificity of the pattern that is used for covering the graph.

See also crossing, two layer edge crossing, cycle, tree, map.

Key words geometrical constraint, line-segments intersection.

group

Origin 

Restriction(s) NGROUP ≥ 0 MIN SIZE ≥ 0 MAX SIZE ≥ MIN SIZE MIN DIST ≥ 0 MAX DIST ≥ MIN DIST NVAL ≥ 0 required(VARIABLES, var) required(VALUES, val) distinct(VALUES, val)
Let n be the number of variables of the collection VARIABLES. Let Xi, Xi+1, . . . , Xj (1 ≤ i ≤ j ≤ n) be consecutive variables of the collection of variables VARIABLES such that all the following conditions simultaneously apply: Purpose

• All variables Xi, . . . , Xj take their value in the set of values VALUES,

• i = 1 or Xi-1 does not take a value in VALUES,

• j = n or Xj+1 does not take a value in VALUES. We call such a set of variables a group. The constraint group is true if all the following conditions hold:

• There are exactly NGROUP groups of variables,

• MIN SIZE is the number of variables of the smallest group,

• MAX SIZE is the number of variables of the largest group,

• MIN DIST is the minimum number of variables between two consecutives groups or between one border and one group,

• MAX DIST is the maximum number of variables between two consecutives groups or between one border and one group,

• NVAL is the number of variables that take their value in the set of values VALUES.

Arc input(s) VARIABLES

Arc generator

PATH → collection(variables1, variables2) LOOP → collection(variables1, variables2)

Arc arity 2

Arc constraint(s)

• in(variables1.var, VALUES)

• in(variables2.var, VALUES)

Graph property(ies)

• NCC = NGROUP • MIN NCC = MIN SIZE • MAX NCC = MAX SIZE • NVERTEX = NVAL Arc input(s) VARIABLES Arc generator PATH → collection(variables1, variables2) LOOP → collection(variables1, variables2)

Arc arity 2

Arc constraint(s)

• not in(variables1.var, VALUES)

• not in(variables2.var, VALUES)

Graph property(ies)

• MIN NCC = MIN DIST • MAX NCC = MAX DIST Example group 0 B B B B B B B B B B B B B B B B B B B B B B @
2, 1, 2, 2, 4, 3,

8 > > > > > > > > > > > > < > > > > > > > > > > > > : var -2, var -8, var -1, var -7, var -4, var -5, var -1, var -1, var -1 9 > > > > > > > > > > > > = > > > > > > > > > > > > ; , 8 > > > > < > > > > : val -0, val -2, val -4, val -6, val -8 9 > > > > = > > > > ; 1 C C C C C C C C C C C C C C C C C C C C C C A
The previous constraint holds since:

• The final graph of the first graph constraint has two connected components. Therefore the number of groups NGROUP is equal to two.

• The number of vertices of the smallest connected component of the final graph of the first graph constraint is equal to one. Therefore MIN SIZE is equal to one.

• The number of vertices of the largest connected component of the final graph of the first graph constraint is equal to two. Therefore MAX SIZE is equal to two.

• The number of vertices of the smallest connected component of the final graph of the second graph constraint is equal to two. Therefore MIN DIST is equal to two.

• The number of vertices of the largest connected component of the final graph of the second graph constraint is equal to four. Therefore MAX DIST is equal to four.

• The number of vertices of the final graph of the first graph constraint is equal to three. Therefore NVAL is equal to three. This produces an initial graph depicted in part (A) of Figure 4.203. We use PATH LOOP and the binary constraint variables1.var ∈ VALUES ∧ variables2.var ∈ VALUES in order to catch the two following situations:

• A binary constraint has to be used in order to get the notion of group: Consecutive variables that take their value in VALUES.

• If we only use PATH then we would lose the groups that are composed from one single variable since the predecessor and the successor arc would be destroyed; this is why we use also the LOOP arc generator.

Automaton

Figures 4.204, 4.206, 4.207, 4.209, 4.210 and 4.212 • The number of periods of consecutive night shift during a complete period of work.

1 VAR 1 S 1 Q 1 VAR 2 S 2 VAR n S n Q =s 0 C =0 0 Q =t n C =NGROUP n
1 S 1 Q 1 VAR 2 S 2 VAR n S n Q =s 0 Q =t n D 1 D n C 1 C =0 0 C =MIN_SIZE n D =1 0 VAR 1 S 1 Q 1 VAR 2 S 2 VAR n S n Q =s 0 Q =t n D 1 D n C 1 C =0 0 D =0 0 C =MAX_SIZE n
VAR 1 S 1 Q 1 VAR 2 S 2 VAR n S n Q =s 0 Q =t n D 1 D n C 1 C =0 0 D =1 0 C =MIN_DIST n VAR 1 S 1 Q 1 VAR 2 S 2 VAR n S n Q =s 0 Q =t n D 1 D n C 1 C =0 0 D =0 0 C =MAX_DIST n
C 1 VAR 1 S 1 Q 1 VAR 2 S 2 VAR n S n Q =s 0 C =0 0 Q =t n C =NVAL n
• The total number of night shift during a complete period of work.

• The maximum number of allowed consecutive night shift.

• The minimum number of days (which do not correspond to night shift) between two consecutive sequences of night shift.

Remark

For this constraint we use the possibility to express directly more than one constraint on the characteristics of the final graph we want to obtain. For more propagation, it is crucial to keep this in one single constraint, since strong relations relate the different characteristics of a graph. This constraint is very similar to the group constraint introduced in CHIP, except that here, the MIN DIST and MAX DIST constraints apply also for the two borders: we cannot start or end with a group of k consecutive variables that take their values outside VALUES and such that k is less than MIN DIST or k is greater than MAX DIST.

See also group skip isolated item, change continuity, stretch path.

Key words

timetabling constraint, connected component, automaton, automaton with counters, alpha-acyclic constraint network( 2), alpha-acyclic constraint network( 3), vpartition, consecutive loops are connected.

group skip isolated item

Origin

Derived from group. Let n be the number of variables of the collection VARIABLES. Let Xi, Xi+1, . . . , Xj (1 ≤ i < j ≤ n) be consecutive variables of the collection of variables VARIABLES such that the following conditions apply: Purpose

Constraint

• All variables Xi, . . . , Xj take their value in the set of values VALUES,

• i = 1 or Xi-1 does not take a value in VALUES,

• j = n or Xj+1 does not take a value in VALUES. We call such a set of variables a group. The constraint group skip isolated item is true if all the following conditions hold:

• There are exactly NGROUP groups of variables,

• The number of variables of the smallest group is MIN SIZE,

• The number of variables of the largest group is MAX SIZE,

• The number of variables that take their value in the set of values VALUES is equal to NVAL.

Arc input(s) VARIABLES

Arc generator

CHAIN → collection(variables1, variables2)

Arc arity 2

Arc constraint(s)

• in(variables1.var, VALUES)

• in(variables2.var, VALUES)

Graph property(ies)

• NSCC = NGROUP • MIN NSCC = MIN SIZE • MAX NSCC = MAX SIZE • NVERTEX = NVAL Example group skip isolated item 0 B B B B B B B B B B B B B B B B B B B B B B @
1, 2, 2, 3,

8 > > > > > > > > > > > > < > > > > > > > > > > > > : var -2, var -8, var -1, var -7, var -4, var -5, var -1, var -1, var -1 9 > > > > > > > > > > > > = > > > > > > > > > > > > ; , 8 > > > > < > > > > : val -0, val -2, val -4, val -6, val -8 9 > > > > = > > > > ; 1 C C C C C C C C C C C C C C C C C C C C C C A
The previous constraint holds since:

• The final graph contains one strongly connected component. Therefore the number of groups is equal to one.

• The unique strongly connected component of the final graph contains two vertices. Therefore MIN SIZE and MAX SIZE are both equal to two.

• The number of vertices of the final graph is equal to two. Therefore NVAL is equal to two.

Parts (A) and (B) of Figure 4.214 respectively show the initial and final graph.

Graph model

We use the CHAIN arc generator in order to produce the initial graph. This creates the graph depicted in part (A) of Figure 4.214. We use CHAIN together with the arc constraint variables1.var ∈ VALUES ∧ variables2.var ∈ VALUES in order to skip the isolated variables that take a value in VALUES that we don't want to count as a group. This is why, on the example, value 4 is not counted as a group.

Automaton

Figures 4.215, 4.217, 4.218 and 4.220 depict the different automata associated to the group skip isolated item constraint. For the automata that respectively compute NGROUP, MIN SIZE, MAX SIZE and NVAL we have a 0-1 signature variable Si for each variable VARi of the collection VARIABLES. The following signature constraint links VARi and Si: VARi ∈ VALUES ⇔ Si.

Usage

This constraint is useful in order to specify rules about how rest days should be allocated to a person during a period of n consecutive days. In this case VALUES are the codes for the rest days (perhaps one single value) and VARIABLES corresponds to the amount of work done during n consecutive days. We can then express a rule like: In a month one should have at least 4 periods of at least 2 rest days; Isolated rest days are not counted as rest periods.

See also group, change continuity, stretch path. Automaton for the NGROUP parameter of the group skip isolated item constraint 

C 1 VAR 1 S 1 Q 1 VAR 2 S 2 VAR n S n Q =s 0 C =0 0 Q =t n C =NGROUP n
VAR 1 S 1 Q 1 VAR 2 S 2 VAR n S n Q =s 0 Q =t n D 1 D n C 1 C =0 0 C =MIN_SIZE n D =2 0 VAR 1 S 1 Q 1 VAR 2 S 2 VAR n S n Q =s 0 Q =t n D 1 D n C 1 C =0 0 D =0 0 C =MAX_SIZE n
C 1 VAR 1 S 1 Q 1 VAR 2 S 2 VAR n S n Q =s 0 C =0 0 Q =t n C =NVAL n

heighest peak

Origin

Derived from peak.

Constraint heighest peak(HEIGHT, VARIABLES)

Argument(s) HEIGHT : dvar VARIABLES : collection(vardvar)

Restriction(s)

HEIGHT ≥ 0 VARIABLES.var ≥ 0 required(VARIABLES, var)

Purpose A variable V k (1 < k < m)
of the sequence of variables VARIABLES = V1, . . . , Vm is a peak if and only if there exist an i (1

< i ≤ k) such that Vi-1 < Vi and Vi = Vi+1 = . . . = V k and V k > V k+1 .
HEIGHT is the maximum value of the peak variables. If no such variable exists HEIGHT is equal to 0.

Example

heighest peak 0 B B B B B B B B B B @ 8, 8 > > > > > > > > > > < > > > > > > > > > > : var -1, var -1, var -4, var -8, var -6, var -2, var -7, var -1 9 > > > > > > > > > > = > > > > > > > > > > ; 1 C C C C C C C C C C A
The previous constraint holds since 8 is the maximum peak of the sequence 1 1 4 8 6 2 7 1. VARi Used in among, cardinality atmost partition, group, group skip isolated item, in same partition.

> VARi+1 ⇔ Si = 0 ∧ VARi = VARi+1 ⇔ Si = 1 ∧ VARi < VARi+1 ⇔ Si = 2. VAR > VAR i i+1 VAR = VAR i i+1 VAR = VAR i i+1 i i+1 VAR < VAR VAR < VAR i i+1 u $ $ VAR > VAR , i i+1 {C=max(C,VAR )} i HEIGHT=C t: {C=0} s Figure 4.223: Automaton of the heighest peak constraint VAR 1 S 1 VAR 2 VAR n VAR 3 S 3 S n-1 VAR n-1 Q =s 0 C =0 0 C 1 Q 1 S 2 Q 2 C 2 Q =t n-1 n-1 C =HEIGHT
See also not in, in same partition.

Key words

value constraint, unary constraint, included, domain definition, automaton, automaton without counters, centered cyclic(1) constraint network(1), derived collection.

in relation

Origin

Constraint explicitely defined by tuples of values. 

Constraint

Usage

Quite often some constraints cannot be easily expressed, neither by a formula, nor by a regular pattern. In this case one has to define the constraint by specifying in extension the combinations of allowed values.

in same partition

Origin

Used for defining several entries of this catalog. 

Constraint

Graph property(ies)

• NSOURCE = 2

• NSINK = 1 Example in same partition 0 @ 6, 2, 8 < 
: 

p -{val -1, val -3}, p -{val -4}, p -{val -2, val -6} 9 

Signature

Observe that the sinks of the initial graph cannot become sources of the final graph since isolated vertices are eliminated from the final graph. Since the final graph contains two sources it also includes one arc between a source and a sink. Therefore the minimum number of sinks of the final graph is equal to one. So we can rewrite NSINK = 1 to NSINK ≥ 1 and simplify NSINK to NSINK.

Automaton

Figure 4.230 depicts the automaton associated to the in same partition constraint. Let VALUESi be the p attribute of the i th item of the PARTITIONS collection. To each triple (VAR1, VAR2, VALUESi) corresponds a 0-1 signature variable Si as well as the following signature constraint:

((VAR1 ∈ VALUESi) ∧ (VAR2 ∈ VALUESi)) ⇔ Si.
Used in alldifferent partition, balance partition, change partition, common partition, nclass, same partition, soft same partition var, soft used by partition var, used by partition.

See also

in.

Key words value constraint, partition, automaton, automaton without counters, centered cyclic(2) constraint network( 1), derived collection. 

Q =t n Q 1 Q =s 0 S 1 S 2 S n VAR1 VAR2
VAR 1 VAR 2 S 2 VAR n VAR 3 S 3 Q 2 S n-1 VAR n-1 Q =t n-1 Q =s 0 Q 1 S 1

Purpose

Given several items of the collection ITEMS (each of them having a specific fixed index as well as a weight which may be negative or positive), and a table 

Example indexed sum 0 B B B B B B @ 8 < : index -2 weight --4, index -0 weight -6, index -2 weight -1 9 = ; , 8 < : index -0 sum -6, index -1 sum -0, index -2 sum --3 9 = ; 1 C C C C C C A
Part (A) of Figure 4.235 shows the initial graphs associated to entries 0, 1 and 2. Part (B) of Figure 4.235 shows the corresponding final graphs associated to entries 0 and 2. Each source vertex of the final graph can be interpreted as an item assigned to a specific entry of 

Graph model

We enforce the sum ctr constraint on the weight of the items that are assigned to the same entry.

See also bin packing.

Key words

assignment, variable indexing, variable subscript.

inflexion

Origin N. Beldiceanu

Constraint inflexion(N, VARIABLES)

Argument(s) N : dvar VARIABLES : collection(vardvar)

Restriction(s) N ≥ 1 N ≤ |VARIABLES| required(VARIABLES, var)
N is equal to the number of times that the following conjunctions of constraints hold:

Purpose • XiCTRXi+1 ∧ Xi = Xi+1, • Xi+1 = Xi+2 ∧ • • • ∧ Xj-2 = Xj-1, • Xj-1 = Xj ∧ Xj-1¬CTRXj . where X k is the k th item of the VARIABLES collection and 1 ≤ i, i + 2 ≤ j, j ≤ n and CTR is < or >. Example inflexion 0 B B B B B B B B B B @ 3, 8 > > > > > > > > > > < > > > > > > > > > > : var -1, var -1, var -4, var -8, var -8, var -2, var -7, var -1 9 > > > > > > > > > > = > > > > > > > > > > ; 1 C C C C C C C C C C A
The previous constraint holds since the sequence 1 1 4 8 8 2 7 1 contains three inflexions peaks which respectively correspond to values 8, 2 and 7. 

(VARi > VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi < VARi+1 ⇔ Si = 2). VAR >VAR , i {C=C+1} i+1 VAR <VAR , i {C=C+1} i+1 VAR =VAR i i+1 VAR =VAR i i+1 VAR <VAR i i+1 VAR =VAR i i+1 VAR <VAR i i+1 VAR >VAR i i+1 VAR >VAR i i+1 i j $ $ t: N=C $ s {C=0} Figure 4.237: Automaton of the inflexion constraint Q =s 0 C =0 0 C 1 Q 1 VAR 1 S 1 VAR 2 S 2 VAR n VAR 3 S n-1 VAR n-1 S 3 Q 2 C 2 Q =t n-1 C =N n-1

Usage

Useful for constraining the number of inflexions of a sequence of domain variables.

Remark

Since the arity of the arc constraint is not fixed, the inflexion constraint cannot be currently described. However, this would not hold anymore if we were introducing a slot that specifies how to merge adjacent vertices of the final graph.

See also peak, valley.

Key words

sequence, automaton, automaton with counters, sliding cyclic(1) constraint network(2).

int value precede

Origin [START_REF] Law | Global constraints for integer and set value precedence[END_REF] Constraint int value precede(S, T, VARIABLES)

Argument(s) S : int T : int VARIABLES : collection(var -dvar) Restriction(s) S = T required(VARIABLES, var)

Purpose

If value T occurs in the collection of variables VARIABLES then its first occurrence should be preceded by an occurrence of value S.

Example

int value precede

0 B B B B @ 0, 1, 8 > > > > < > > > > : var -4, var -0, var -6, var -1, var -0 9 > > > > = > > > > ; 1 C C C C A
The int value precede constraint holds since the first occurrence of value 0 precedes the first occurrence of value 1.

Automaton

Figure 4.239 depicts the automaton associated to the int value precede constraint. Let VARi be the i th variable of the VARIABLES collection. To each triple (S, T, VARi) corresponds a signature variable Si as well as the following signature constraint:

(VARi = S ⇔ Si = 1) ∧ (VARi = T ⇔ Si = 2) ∧ (VARi = S ∧ VARi = T ⇔ Si = 3).

VAR <>S and VAR <>T

i i t VAR =S i s $ Figure 4
.239: Automaton of the int value precede constraint Algorithm A filtering algorithm for maintaining value precedence is presented in [START_REF] Law | Global constraints for integer and set value precedence[END_REF]. Its complexity is linear to the number of variables of the collection VARIABLES.

See also int value precede chain, set value precede.

Key words

order constraint, symmetry, indistinguishable values, value precedence, Berge-acyclic constraint network, automaton, automaton without counters. 

Q =t n VAR 1 VAR 2 VAR n Q 1 Q =s 0

Purpose

Assuming n denotes the number of items of the VALUES collection, the following condition holds for every i ∈ [1, n -1]: When it exists, the first occurrence of the (i + 1) t h value of the VALUES collection should be preceded by the first occurrence of the i t h value of the VALUES collection.

Example

int value precede chain

0 B B B B B B @ {val -4, val -0, val -1}, 8 > > > > < > > > > : var -4, var -0, var -6, var -1, var -0 9 > > > > = > > > > ; 1 C C C C C C A
The int value precede chain constraint holds since:

• The first occurrence of value 4 occurs before the first occurrence of value 0.

• The first occurrence of value 0 occurs before the first occurrence of value 1.

Automaton

Figure 4.241 depicts the automaton associated to the int value precede chain constraint. Let VARi be the i th variable of the VARIABLES collection. Let VALj (1 < j < |VALUES|) denotes the j th value of the VALUES collection. To each variable VARi corresponds a signature variable Si as well as the following signature constraint:

(VARi / ∈ VALUES ⇔ Si = 0) ∧ (VARi = VAL1 ⇔ Si = 1) ∧ (VARi = VAL2 ⇔ Si = 2) ∧ • • • ∧ (VARi = VAL |VALUES| ⇔ Si = |VALUES|).

Algorithm

The reformulation associated to the previous automaton achieves to arc-consistency.

See also int value precede. 

Key words

Q =t n VAR 1 VAR 2 VAR n Q 1 Q =s 0

Purpose

First consider the set of tasks of the TASKS collection, where each task has a specific colour which may not be initially fixed. Then consider the intervals of the form

[k •SIZE INTERVAL, k • SIZE INTERVAL + SIZE INTERVAL -1],
where k is an integer. The interval and count constraint enforces that, for each interval I k previously defined, the total number of tasks which both are assigned to I k and take their colour in COLOURS does not exceed the limit ATMOST.

Arc input(s) TASKS TASKS

Arc generator

PRODUCT → collection(tasks1, tasks2) 

Arc

Graph model

We use a bipartite graph where each class of vertices corresponds to the different tasks of the TASKS collection. There is an arc between two tasks if their origins belong to the same interval. Finally we enforce an among low up constraint on each set S of successors of the different vertices of the final graph. This put a restriction on the maximum number of tasks of S for which the colour attribute takes its value in COLOURS. There is a restriction on the maximum number of courses of a given type each morning as well as each afternoon.

Automaton

Remark

If we want to only consider intervals that correspond to the morning or to the afternoon we could extend the interval and count constraint in the following way:

• We introduce two extra parameters REST and QUOTIENT that correspond to nonnegative integers such that REST is strictly less than QUOTIENT,

• We add the following condition to the arc constraint:

(tasks1.origin/SIZE INTERVAL) ≡ REST( mod QUOTIENT)
Now, if we want to express a constraint on the morning intervals, we set REST to 0 and QUOTIENT to 2.

See also

count, among low up.

Key words

timetabling constraint, resource constraint, temporal constraint, assignment, interval, coloured, automaton, automaton with array of counters. 

interval and sum

Purpose

A maximum resource capacity constraint: We have to fix the origins of a collection of tasks in such a way that, for all the tasks that are allocated to the same interval, the sum of the heights does not exceed a given capacity. All the intervals we consider have the following form:

[k • SIZE INTERVAL, k • SIZE INTERVAL + SIZE INTERVAL -1],
where k is an integer.

Arc input(s) TASKS TASKS

Arc generator

PRODUCT → collection(tasks1, tasks2) 

8 > > < > > : origin -1 height -2, origin -10 height -2, origin -10 height -3, origin -4 height -1 9 > > = > > ; , 5 
1 C C A Figure 4
.246 shows the solution associated to the previous example. The constraint interval and sum holds since the sum of the heights of the tasks that are located in the same interval does not exceed the limit 5. Each task t is depicted by a rectangle r associated to the interval to which the task t is assigned. The rectangle r is labelled with the position of t within the items of the TASKS collection. The origin of task t is represented by a small black square located within its corresponding rectangle r. Finally, the height of a rectangle r is equal to the height of the task t to which it corresponds.

Parts (A) and (B) of Figure 4.247 respectively show the initial and final graph. Each connected component of the final graph corresponds to items which are all assigned to the same interval. 

Graph model

We use a bipartite graph where each class of vertices corresponds to the different tasks of the TASKS collection. There is an arc between two tasks if their origins belong to the same interval. Finally we enforce a sum ctr constraint on each set S of successors of the different vertices of the final graph. This put a restriction on the maximum value of the sum of the height attributes of the tasks of S.

Automaton

Figure 4.248 depicts the automaton associated to the interval and sum constraint. To each item of the collection TASKS corresponds a signature variable Si, which is equal to 1. 

{C[ORIGIN /SIZE_INTERVAL]=C[ORIGIN /SIZE_INTERVAL]+HEIGHT } i i i 1, $ arith(C,<=,LIMIT) t: s {C[_]=0}

Usage

This constraint can be use for timetabling problems. In this context the different intervals are interpreted as morning and afternoon periods of different consecutive days. We have a capacity constraint for all tasks that are assigned to the same morning or afternoon of a given day.

Key words

timetabling constraint, resource constraint, temporal constraint, assignment, interval, automaton, automaton with array of counters.

inverse

Origin CHIP

Constraint inverse(NODES)

Synonym(s) assignment.

Argument(s)

NODES : collection(indexint, succdvar, preddvar)

Restriction(s) required(NODES, [index, succ, pred]) NODES.index ≥ 1 NODES.index ≤ |NODES| distinct(NODES, index) NODES.succ ≥ 1 NODES.succ ≤ |NODES| NODES.pred ≥ 1 NODES.pred ≤ |NODES|

Purpose

Enforce each vertex of a digraph to have exactly one predecessor and one successor. In addition the following property also holds: If the successor of the i th node is the j th node then the predecessor of the j th node is the i th node.

Arc input(s) NODES

Arc generator CLIQUE → collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s)

• nodes1.succ = nodes2.index • nodes2.pred = nodes1.index Graph property(ies) NARC = |NODES| Example inverse 0 B B B B @ 8 > > > > < > > > > : index -1 succ -2 pred -2, index -2 succ -1 pred -1, index -3 succ -5 pred -4, index -4 succ -3 pred -5, index -5 succ -4 pred -3 9 > > > > = > > > > ; 1 C C C C A
Parts (A) and (B) of Figure 4.249 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Graph model

In order to express the binary constraint that links two vertices one has to make explicit the identifier of the vertices. This is why the inverse constraint considers objects that have three attributes:

• One fixed attribute index that is the identifier of the vertex,

• One variable attribute succ that is the successor of the vertex,

• One variable attribute pred that is the predecessor of the vertex.

Signature

Since all the index attributes of the NODES collection are distinct and because of the first condition nodes1.succ = nodes2.index of the arc constraint all the vertices of the final graph have at most one predecessor.

Since all the index attributes of the NODES collection are distinct and because of the second condition nodes2.pred = nodes1.index of the arc constraint all the vertices of the final graph have at most one successor.

From the two previous remarks it follows that the final graph is made up from disjoint paths and disjoint circuits. Therefore the maximum number of arcs of the final graph is equal to its maximum number of vertices NODES. So we can rewrite the graph property NARC = |NODES| to NARC ≥ |NODES| and simplify NARC to NARC.

Automaton

Figure 4.250 depicts the automaton associated to the inverse constraint. To each item of the collection NODES corresponds a signature variable Si, which is equal to 1.

Usage

This constraint is used in order to make the link between the successor and the predecessor variables. This is sometimes required by specific heuristics that use both predecessor and successor variables. In some problems, the successor and predecessor variables are respectively interpreted as column an row variables. This is for instance the case in the n-queens problem (i.e. place n queens on a n by n chessboard in such a way that no two queens are on the same row, the same column or the same diagonal) when we use the following model: To each column of the chessboard we associate a variable which gives the row where the corresponding queen is located. Symmetrically, to each row of the chessboard we create a variable which indicates the column where the associated queen is placed.

Having these two sets of variables, we can now write a heuristics which selects the column or the row for which we have the fewest number of alternatives for placing a queen.

Remark

In the original inverse constraint of CHIP the index attribute was not explicitly present. It was implicitly defined as the position of a variable in a list.

See also cycle, inverse set.

Key words

graph constraint, channeling constraint, permutation channel, permutation, dual model, n-queen, automaton, automaton with array of counters. 

C[INDEX ]=C[INDEX ]-PRED } i i i {C[SUCC ]=C[SUCC ]+INDEX , i i i 1, $ t: arith(C,=,0) s {C[_]=0}

inverse set

Origin Derived from inverse.

Constraint

inverse set(X, Y)

Argument(s) X : collection(index -int, set -svar) Y : collection(index -int, set -svar) Restriction(s) required(X, [index, set]) required(Y, [index, set]) increasing seq(X, index) increasing seq(Y, index) X.index ≥ 1 X.index ≤ |Y| Y.index ≥ 1 Y.index ≤ |X| X.set ≥ 1 X.set ≤ |Y| Y.set ≥ 1 Y.set ≤ |X|

Purpose

If value j belongs to the x set variable of the i th item of the X collection then value i belongs also to the y set variable of the j th item of the Y collection.

Arc input(s) X Y

Arc generator

PRODUCT → collection(x, y)

Arc arity 2

Arc constraint(s) in set(y.index, x.set) ⇔ in set(x.index, y.set)

Graph property(ies)

NARC = |X| * |Y| Example inverse set 0 B B B B B B B B B B B B @ 8 > > < > > : index -1 set -{2, 4}, index -2 set -{4}, index -3 set -{1}, index -4 set -{4} 9 > > = > > ; , 8 > > > > < > > > > : index -1 set -{3}, index -2 set -{1}, index -3 set -∅, index -4 set -{1, 2, 4}, index -5 set -∅ 9 > > > > = > > > > ; 1 C C C C C C C C C C C C A
Parts (A) and (B) of Figure 4.251 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Usage

The inverse set constraint can for instance be used in order to model problems where one has to place items on a rectangular board in such a way that a column or a line can have more than one item. We have one set variable for each line of the board; Its values are the column indexes corresponding to the positions where an item is placed. Similarly we have also one set variable for each column of the board; Its values are the line indexes corresponding to the positions where an item is placed. The inverse set constraint maintains the link between the lines and the columns variables. Figure 4.252 shows the board associated to the example.

See also inverse.

Key words channeling constraint, set channel, dual model, constraint involving set variables. 

Restriction(s) ITH ≥ 1 ITH ≤ |VARIABLES| POS ≥ ITH POS ≤ |VARIABLES| required(VARIABLES, var)
Purpose POS is the position of the ITH th non-zero item of the sequence of variables VARIABLES.

Example

ith pos different from 0

0 B B B B @ 2, 4, 8 > > > > < > > > > : var -3, var -0, var -0, var -8, var -6 9 > > > > = > > > > ; 1 C C C C A
The previous constraint holds since 4 corresponds to the position of the 2 th nonzero item of the sequence 3 0 0 8 6. Key words data constraint, table, joker value, automaton, automaton with counters, alpha-acyclic constraint network (3). 

Automaton

VAR 1 S 1 Q 1 VAR 2 S 2 VAR n S n Q =s 0 C 1 C =0 0 D =0 0 D 1 Q =t n C =ITH n D =POS n
Argument(s) K : int NODES : collection(index -int, succ -svar) Restriction(s) K ≥ 1 K ≤ |NODES| required(NODES, [index, succ]) NODES.index ≥ 1 NODES.index ≤ |NODES| distinct(NODES, index)

Purpose

Select some arcs of a digraph in order to have at least K connected components (an isolated vertex is counted as one connected component).

Arc input(s) NODES

Arc generator CLIQUE → collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.index = nodes2.index ∨ in set(nodes2.index, nodes1.succ) 

Graph property(ies)

NCC ≥ K Example k cut 0 B B B B @ 3, 8 > > > > < > > > > : index -1 succ -∅, index -2 succ -{3, 5}, index -3 succ -{5}, index -4 succ -∅, index -5 succ -{2, 3} 9 > > > > = > > > > ; 1 C C C C A Part (A) of

Graph model

nodes1.index = nodes2.index holds if nodes1 and nodes2 correspond to the same vertex. It is used in order to enforce keeping all the vertices of the initial graph. This is because an isolated vertex counts always as one connected component.

See also link set to booleans.

Key words

graph constraint, linear programming, connected component, constraint involving set variables. 

Purpose

Given a matrix of domain variables, enforces that both adjacent rows, and adjacent columns are lexicographically ordered (adjacent rows and adjacent columns can be equal).

Example lex2

"  vec -{var -2, var -2, var -3}, vec -{var -2, var -3, var -1} ff «

Usage

A symmetry-breaking constraint.

Remark

The idea of this symmetry-breaking constraint can allready be found in the following articles of A.Lubiw [START_REF] Lubiw | Doubly lexical orderings of matrices[END_REF][START_REF] Lubiw | Doubly lexical orderings of matrices[END_REF].

In block designs you sometimes want repeated blocks, so using the non-strict order would be required in this case.

See also strict lex2, allperm, lex lesseq, lex chain lesseq.

Key words

predefined constraint, order constraint, matrix, matrix model, symmetry, matrix symmetry, lexicographic order.

lex between

Origin [START_REF] Carlsson | Arc-consistency for a chain of lexicographic ordering constraints[END_REF] Constraint lex between(LOWER BOUND, VECTOR, UPPER BOUND) 

Argument

Purpose

The vector VECTOR is lexicographically greater than or equal to the fixed vector LOWER BOUND and lexicographically smaller than or equal to the fixed vector UPPER BOUND. 

Example

(Li < Vi) ∧ (Vi < Ui) ⇔ Si = 0 ∧ (Li < Vi) ∧ (Vi = Ui) ⇔ Si = 1 ∧ (Li < Vi) ∧ (Vi > Ui) ⇔ Si = 2 ∧ (Li = Vi) ∧ (Vi < Ui) ⇔ Si = 3 ∧ (Li = Vi) ∧ (Vi = Ui) ⇔ Si = 4 ∧ (Li = Vi) ∧ (Vi > Ui) ⇔ Si = 5 ∧ (Li > Vi) ∧ (Vi < Ui) ⇔ Si = 6 ∧ (Li > Vi) ∧ (Vi = Ui) ⇔ Si = 7 ∧ (Li > Vi) ∧ (Vi > Ui) ⇔ Si = 8.

Usage

This constraint does usually not occur explicitly in practice. However it shows up indirectly in the context of the lex chain less and the lex chain lesseq constraints: In order to have a complete filtering algorithm for the lex chain less and the lex chain lesseq constraints one has to come up with a complete filtering algorithm for the lex between constraint. The reason is that the lex chain less as well as the lex chain lesseq constraints both compute feasible lower and upper bounds for each vector they mention. Therefore one ends up with a lex between constraint for each vector of the lex chain less and lex chain lesseq constraints.

L =V and V =U i i i i L <V and V <U i i i i L =V and V <U i i i i L <V and V =U i i i i L <V and V =U i i i i L =V and V =U i i i i L >V and V =U i i i i L =V and V =U i i i i L <V and V >U i i i i L <V and V <U i i i i L <V and V =U i i i i L =V and V >U i i i i s a t $ $ b $ L <V and V <U L =V and V <U i i i i L >V and V <U L =V and V <U i i i i i i i i i i i i Figure 4.257: Automaton of the lex between constraint Q =t n Q 1 Q =s 0 S 1 S 2 S n V 1 V 2 V n
Algorithm [START_REF] Carlsson | Arc-consistency for a chain of lexicographic ordering constraints[END_REF].

See also lex less, lex lesseq, lex greater, lex greatereq, lex chain less, lex chain lesseq.

Key words

order constraint, vector, symmetry, lexicographic order, Berge-acyclic constraint network, automaton, automaton without counters.

NARC, PATH

lex chain less

Origin [START_REF] Carlsson | Arc-consistency for a chain of lexicographic ordering constraints[END_REF] Constraint lex chain less(VECTORS)

Usual name lex chain

Type(s) VECTOR : collection(vardvar)

Argument(s) VECTORS : collection(vec -VECTOR)
Restriction(s) required(VECTOR, var) required(VECTORS, vec) same size(VECTORS, vec)

Purpose

For each pair of consecutive vectors VECTORi and VECTORi+1 of the VECTORS collection we have that VECTORi is lexicographically strictly less than VECTORi+1. Given two vectors, X and Y of n components, X0, . . . , Xn and Y0, . . . , Yn , X is lexicographically strictly less than Y if and only if X0 < Y0 or X0 = Y0 and X1, . . . , Xn is lexicographically strictly less than Y1, . . . , Yn .

Arc input(s) VECTORS

Arc generator

PATH → collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) lex less(vectors1.vec, vectors2.vec)

Graph property(ies)

NARC = |VECTORS| -1 Example lex chain less 0 B B B B B B B B B B B B B B B B B B @ 8 > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > : vec - 8 > > < > > : var -5, var -2, var -3, var -9 9 > > = > > ; , vec - 8 > > < > > : var -5, var -2, var -6, var -2 9 > > = > > ; , vec - 8 > > < > > : var -5, var -2, var -6, var -3 9 > > = > > ; 9 > > > > > > > > > > > > > > > > > > = > > > > > > > > > > > > > > > > > > ; 1 C C C C C C C C C C C C C C C C C C A
Parts (A) and (B) of Figure 4.259 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

The lex chain less constraint holds since all the arc constraints of the initial graph are satisfied.

Signature

Since we use the PATH arc generator on the VECTORS collection the number of arcs of the initial graph is equal to |VECTORS| -1. For this reason we can rewrite NARC = |VECTORS| -1 to NARC ≥ |VECTORS| -1 and simplify NARC to NARC.

Usage

This constraint was motivated for breaking symmetry: More precisely when one wants to lexicographically order the consecutive columns of a matrix of decision variables. A further motivation is that using a set of lexicographic ordering constraints between two vectors does usually not allows to come up with a complete pruning.

Algorithm

A complete filtering algorithm for a chain of lexicographical constraints is presented in [START_REF] Carlsson | Arc-consistency for a chain of lexicographic ordering constraints[END_REF].

See also lex between, lex chain lesseq, lex less, lex lesseq, lex greater, lex greatereq.

Key words

decomposition, order constraint, vector, symmetry, matrix symmetry, lexicographic order.

NARC, PATH

lex chain lesseq

Origin [START_REF] Carlsson | Arc-consistency for a chain of lexicographic ordering constraints[END_REF] Constraint lex chain lesseq(VECTORS)

Usual name lex chain

Type(s) VECTOR : collection(vardvar)

Argument(s) VECTORS : collection(vec -VECTOR)
Restriction(s) required(VECTOR, var) required(VECTORS, vec) same size(VECTORS, vec)

Purpose

For each pair of consecutive vectors VECTORi and VECTORi+1 of the VECTORS collection we have that VECTORi is lexicographically less than or equal to VECTORi+1. Given two vectors, X and Y of n components, X0, . . . , Xn and Y0, . . . , Yn , X is lexicographically less than or equal to Y if and only if n = 0 or X0 < Y0 or X0 = Y0 and X1, . . . , Xn is lexicographically less than or equal to Y1, . . . , Yn .

Arc input(s) VECTORS

Arc generator

PATH → collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) lex lesseq(vectors1.vec, vectors2.vec)

Graph property(ies)

NARC = |VECTORS| -1 Example lex chain lesseq 0 B B B B B B B B B B B B B B B B B B @ 8 > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > : vec - 8 > > < > > : var -5, var -2, var -3, var -9 9 > > = > > ; , vec - 8 > > < > > : var -5, var -2, var -6, var -2 9 > > = > > ; , vec - 8 > > < > > : var -5, var -2, var -6, var -2 9 > > = > > ; 9 > > > > > > > > > > > > > > > > > > = > > > > > > > > > > > > > > > > > > ; 1 C C C C C C C C C C C C C C C C C C A
Parts (A) and (B) of Figure 4.260 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

The lex chain lesseq constraint holds since all the arc constraints of the initial graph are satisfied.

Signature

Since we use the PATH arc generator on the VECTORS collection the number of arcs of the initial graph is equal to |VECTORS| -1. For this reason we can rewrite NARC = |VECTORS| -1 to NARC ≥ |VECTORS| -1 and simplify NARC to NARC.

Usage

This constraint was motivated for breaking symmetry: More precisely when one wants to lexicographically order the consecutive columns of a matrix of decision variables. A further motivation is that using a set of lexicographic ordering constraints between two vectors does usually not allows to come up with a complete pruning.

Algorithm

A complete filtering algorithm for a chain of lexicographical constraints is presented in [START_REF] Carlsson | Arc-consistency for a chain of lexicographic ordering constraints[END_REF].

See also lex between, lex chain less, lex less, lex lesseq, lex greater, lex greatereq.

Key words

decomposition, order constraint, vector, symmetry, matrix symmetry, lexicographic order.

lex different

Origin

Used for defining lex alldifferent. 

Constraint

Automaton

Figure 4.262 depicts the automaton associated to the lex different constraint. Let VAR1i and VAR2i respectively be the var attributes of the i th items of the VECTOR1 and the VECTOR2 collections. To each pair (VAR1i, VAR2i) corresponds a 0-1 signature variable Si as well as the following signature constraint:

VAR1i = VAR2i ⇔ Si.
Used in lex alldifferent.

See also lex greatereq, lex less, lex lesseq.

Key words

vector, disequality, Berge-acyclic constraint network, automaton, automaton without counters. 

Q =t n VAR2 1 VAR2 2 VAR2 n VAR1 1 VAR1 2 VAR1 n Q 1 Q =s 0 S 1 S 2 S n

Purpose

VECTOR1 is lexicographically strictly greater than VECTOR2. Given two vectors, X and Y of n components, X0, . . . , Xn and Y0, . . . , Yn , X is lexicographically strictly greater than Y if and only if X0 > Y0 or X0 = Y0 and X1, . . . , Xn is lexicographically strictly greater than Y1, . . . , Yn . • The vertices which respectively correspond to the start and the end of the required path are stressed in bold.

Derived Collection(s) col

" DESTINATION -collection(index -int, x -int, y -int), [item(index -0, x -0, y -0)] « col " COMPONENTS -collection(index -int, x -dvar, y -dvar), [item(index -VECTOR1.key, x -VECTOR1.var, y -VECTOR2.var)] « Arc input(s) COMPONENTS DESTINATION Arc generator PRODUCT (PATH , VOID) → collection(item1, item2) Arc arity 2 Arc constraint(s) item2.index > 0 ∧ item1.x = item1.y ∨ item2.index = 0 ∧ item1.x > item1
• The arcs on the required path are also stressed in bold.

Graph model

The vertices of the initial graph are generated in the following way:

• We create a vertex ci for each pair of components which both have the same index i.

• We create an additional dummy vertex called d.

The arcs of the initial graph are generated in the following way:

• We create an arc between ci and d. We associate to this arc the arc constraint item1.x > item2.y.

• We create an arc between ci and ci+1. We associate to this arc the arc constraint item1.x = item2.y.

The lex greater constraint holds when there exist a path from c1 to d. This path can be interpreted as a sequence of equality constraints on the prefix of both vectors, immediatly followed by a greater than constraint.

Signature

Since the maximum value returned by the graph property PATH FROM TO is equal to 1 we can rewrite PATH FROM TO(index, 1, 0) = 1 to PATH FROM TO(index, 1, 0) ≥ 1. Therefore we simplify PATH FROM TO to PATH FROM TO.

Automaton

Figure 4.265 depicts the automaton associated to the lex greater constraint. Let VAR1i and VAR2i respectively be the var attributes of the i th items of the VECTOR1 and the VECTOR2 collections. To each pair (VAR1i, VAR2i) corresponds a signature variable Si as well as the following signature constraint:

(VAR1i < VAR2i ⇔ Si = 1) ∧ (VAR1i = VAR2i ⇔ Si = 2) ∧ (VAR1i > VAR2i ⇔ Si = 3).

Remark

A multiset ordering constraint and its corresponding filtering algorithm are described in [START_REF] Frisch | Multiset ordering constraints[END_REF].

Algorithm

The first complete filtering algorithm for this constraint was presented in [START_REF] Frisch | Global Constraints for lexicographic orderings[END_REF]. A second complete filtering algorithm, detecting entailment in a more eager way, was given in [START_REF] Carlsson | Revisiting the lexicographic ordering constraint[END_REF]. This second algorithm was derived from a deterministic finite automata. A third complete filtering algorithm extending the algorithm presented in [START_REF] Frisch | Global Constraints for lexicographic orderings[END_REF] detecting entailment is given in the PhD thesis of Z. Kızıltan [129,page 95]. The previous thesis [129, pages 105-109] presents also a filtering algorithm handling the fact that a given variable has more than one occurrence.

See also lex between, lex greatereq, lex less, lex lesseq, lex chain less, lex chain lesseq.

Key words

order constraint, vector, symmetry, matrix symmetry, lexicographic order, multiset ordering, duplicated variables, Berge-acyclic constraint network, automaton, automaton without counters, derived collection. :1,5,5 2:2,2,2 3:3,7,6 1:0,0,0 

(A) (B)
Q =t n VAR2 1 VAR2 2 VAR2 n VAR1 1 VAR1 2 VAR1 n Q 1 Q =s 0 S 1 S 2 S n

Purpose

VECTOR1 is lexicographically greater than or equal to VECTOR2. Given two vectors, X and Y of n components, X0, . . . , Xn and Y0, . . . , Yn , X is lexicographically greater than or equal to Y if and only if n = 0 or X0 > Y0 or X0 = Y0 and X1, . . . , Xn is lexicographically greater than or equal to Y1, . . . , Yn . • The vertices which respectively correspond to the start and the end of the required path are stressed in bold.

Derived Collection(s) col

" DESTINATION -collection(index -int, x -int, y -int), [item(index -0, x -0, y -0)] « col " COMPONENTS -collection(index -int, x -dvar, y -dvar), [item(index -VECTOR1.key, x -VECTOR1.var, y -VECTOR2.var)] « Arc input(s) COMPONENTS DESTINATION Arc generator PRODUCT (PATH , VOID) → collection(item1, item2) Arc arity 2 Arc constraint(s) W 0 @ item2.index > 0 ∧ item1.x = item1.y, item1.index < |VECTOR1| ∧ item2.index = 0 ∧ item1.x > item1.y, item1.index = |VECTOR1| ∧ item2.index = 0 ∧ item1.x ≥ item1.y
• The arcs on the required path are also stressed in bold.

Graph model

The vertices of the initial graph are generated in the following way:

• We create a vertex ci for each pair of components which both have the same index i.

• We create an additional dummy vertex called d.

The arcs of the initial graph are generated in the following way:

• We create an arc between ci and d. When ci was generated from the last components of both vectors We associate to this arc the arc constraint item1.x ≥ item2.y;

Otherwise we associate to this arc the arc constraint item1.x > item2.y;

• We create an arc between ci and ci+1. We associate to this arc the arc constraint item1.x = item2.y.

The lex greatereq constraint holds when there exist a path from c1 to d. This path can be interpreted as a maximum sequence of equality constraints on the prefix of both vectors, eventually followed by a greater than constraint.

Signature

Since the maximum value returned by the graph property PATH FROM TO is equal to 1 we can rewrite PATH FROM TO(index, 1, 0) = 1 to PATH FROM TO(index, 1, 0) ≥ 1. Therefore we simplify PATH FROM TO to PATH FROM TO.

Automaton

Figure 4.268 depicts the automaton associated to the lex greatereq constraint. Let VAR1i and VAR2i respectively be the var attributes of the i th items of the VECTOR1 and the VECTOR2 collections. To each pair (VAR1i, VAR2i) corresponds a signature variable Si as well as the following signature constraint:

(VAR1i < VAR2i ⇔ Si = 1) ∧ (VAR1i = VAR2i ⇔ Si = 2) ∧ (VAR1i > VAR2i ⇔ Si = 3).

Remark

A multiset ordering constraint and its corresponding filtering algorithm are described in [START_REF] Frisch | Multiset ordering constraints[END_REF].

Algorithm

The first complete filtering algorithm for this constraint was presented in [START_REF] Frisch | Global Constraints for lexicographic orderings[END_REF]. A second complete filtering algorithm, detecting entailment in a more eager way, was given in [START_REF] Carlsson | Revisiting the lexicographic ordering constraint[END_REF]. This second algorithm was derived from a deterministic finite automata. A third complete filtering algorithm extending the algorithm presented in [START_REF] Frisch | Global Constraints for lexicographic orderings[END_REF] detecting entailment is given in the PhD thesis of Z. Kızıltan [129,page 95]. The previous thesis [129, pages 105-109] presents also a filtering algorithm handling the fact that a given variable has more than one occurrence.

See also lex between, lex greater, lex less, lex lesseq, lex chain less, lex chain lesseq.

Key words

order constraint, vector, symmetry, matrix symmetry, lexicographic order, multiset ordering, duplicated variables, Berge-acyclic constraint network, automaton, automaton without counters, derived collection. :1,5,5 2:2,2,2 3:3,8,6 1:0,0,0 4:4,9, 

Q =t n VAR2 1 VAR2 2 VAR2 n VAR1 1 VAR1 2 VAR1 n Q 1 Q =s 0 S 1 S 2 S n

Purpose

VECTOR1 is lexicographically strictly less than VECTOR2. Given two vectors, X and Y of n components, X0, . . . , Xn and Y0, . . . , Yn , X is lexicographically strictly less than Y if and only if X0 < Y0 or X0 = Y0 and X1, . . . , Xn is lexicographically strictly less than Y1, . . . , Yn . • The vertices which respectively correspond to the start and the end of the required path are stressed in bold.

Derived Collection(s) col

" DESTINATION -collection(index -int, x -int, y -int), [item(index -0, x -0, y -0)] « col " COMPONENTS -collection(index -int, x -dvar, y -dvar), [item(index -VECTOR1.key, x -VECTOR1.var, y -VECTOR2.var)] « Arc input(s) COMPONENTS DESTINATION Arc generator PRODUCT (PATH , VOID) → collection(item1, item2) Arc arity 2 Arc constraint(s) item2.index > 0 ∧ item1.x = item1.y ∨ item2.index = 0 ∧ item1.x < item1
• The arcs on the required path are also stressed in bold.

Graph model

The vertices of the initial graph are generated in the following way:

• We create a vertex ci for each pair of components which both have the same index i.

• We create an additional dummy vertex called d.

The arcs of the initial graph are generated in the following way:

• We create an arc between ci and d. We associate to this arc the arc constraint item1.x < item2.y.

• We create an arc between ci and ci+1. We associate to this arc the arc constraint item1.x = item2.y.

The lex less constraint holds when there exist a path from c1 to d. This path can be interpreted as a sequence of equality constraints on the prefix of both vectors, immediately followed by a less than constraint.

Signature

Since the maximum value returned by the graph property PATH FROM TO is equal to 1 we can rewrite PATH FROM TO(index, 1, 0) = 1 to PATH FROM TO(index, 1, 0) ≥ 1. Therefore we simplify PATH FROM TO to PATH FROM TO.

Automaton

Figure 4.271 depicts the automaton associated to the lex less constraint. Let VAR1i and VAR2i respectively be the var attributes of the i th items of the VECTOR1 and the VECTOR2 collections. To each pair (VAR1i, VAR2i) corresponds a signature variable Si as well as the following signature constraint:

(VAR1i < VAR2i ⇔ Si = 1) ∧ (VAR1i = VAR2i ⇔ Si = 2) ∧ (VAR1i > VAR2i ⇔ Si = 3).

Remark

A multiset ordering constraint and its corresponding filtering algorithm are described in [START_REF] Frisch | Multiset ordering constraints[END_REF].

Algorithm

The first complete filtering algorithm for this constraint was presented in [START_REF] Frisch | Global Constraints for lexicographic orderings[END_REF]. A second complete filtering algorithm, detecting entailment in a more eager way, was given in [START_REF] Carlsson | Revisiting the lexicographic ordering constraint[END_REF]. This second algorithm was derived from a deterministic finite automata. A third complete filtering algorithm extending the algorithm presented in [START_REF] Frisch | Global Constraints for lexicographic orderings[END_REF] detecting entailment is given in the PhD thesis of Z. Kızıltan [129,page 95]. The previous thesis [129, pages 105-109] presents also a filtering algorithm handling the fact that a given variable has more than one occurrence.

Used in lex chain less.

See also lex between, lex lesseq, lex greater, lex greatereq, lex chain lesseq.

Key words order constraint, vector, symmetry, matrix symmetry, lexicographic order, multiset ordering, duplicated variables, Berge-acyclic constraint network, automaton, automaton without counters, derived collection. :1,5,5 2:2,2,2 3:3,3,6 1:0,0,0 

(A) (B)
Q =t n VAR2 1 VAR2 2 VAR2 n VAR1 1 VAR1 2 VAR1 n Q 1 Q =s 0 S 1 S 2 S n

Purpose

VECTOR1 is lexicographically less than or equal to VECTOR2. Given two vectors, X and Y of n components, X0, . . . , Xn and Y0, . . . , Yn , X is lexicographically less than or equal to Y if and only if n = 0 or X0 < Y0 or X0 = Y0 and X1, . . . , Xn is lexicographically less than or equal to Y1, . . . , Yn . • The vertices which respectively correspond to the start and the end of the required path are stressed in bold.

Derived Collection(s) col

" DESTINATION -collection(index -int, x -int, y -int), [item(index -0, x -0, y -0)] « col " COMPONENTS -collection(index -int, x -dvar, y -dvar), [item(index -VECTOR1.key, x -VECTOR1.var, y -VECTOR2.var)] « Arc input(s) COMPONENTS DESTINATION Arc generator PRODUCT (PATH , VOID) → collection(item1, item2) Arc arity 2 Arc constraint(s) W 0 @ item2.index > 0 ∧ item1.x = item1.y, item1.index < |VECTOR1| ∧ item2.index = 0 ∧ item1.x < item1.y, item1.index = |VECTOR1| ∧ item2.index = 0 ∧ item1.x ≤ item1.y
• The arcs on the required path are also stressed in bold.

Graph model

The vertices of the initial graph are generated in the following way:

• We create a vertex ci for each pair of components which both have the same index i.

• We create an additional dummy vertex called d.

The arcs of the initial graph are generated in the following way:

• We create an arc between ci and d. When ci was generated from the last components of both vectors We associate to this arc the arc constraint item1.x ≤ item2.y;

Otherwise we associate to this arc the arc constraint item1.x < item2.y;

• We create an arc between ci and ci+1. We associate to this arc the arc constraint item1.x = item2.y.

The lex lesseq constraint holds when there exist a path from c1 to d. This path can be interpreted as a maximum sequence of equality constraints on the prefix of both vectors, eventually followed by a less than constraint.

Signature

Since the maximum value returned by the graph property PATH FROM TO is equal to 1 we can rewrite PATH FROM TO(index, 1, 0) = 1 to PATH FROM TO(index, 1, 0) ≥ 1. Therefore we simplify PATH FROM TO to PATH FROM TO.

Automaton

Figure 4.274 depicts the automaton associated to the lex lesseq constraint. Let VAR1i and VAR2i respectively be the var attributes of the i th items of the VECTOR1 and the VECTOR2 collections. To each pair (VAR1i, VAR2i) corresponds a signature variable Si as well as the following signature constraint:

(VAR1i < VAR2i ⇔ Si = 1) ∧ (VAR1i = VAR2i ⇔ Si = 2) ∧ (VAR1i > VAR2i ⇔ Si = 3).

Remark

A multiset ordering constraint and its corresponding filtering algorithm are described in [START_REF] Frisch | Multiset ordering constraints[END_REF].

Algorithm

The first complete filtering algorithm for this constraint was presented in [START_REF] Frisch | Global Constraints for lexicographic orderings[END_REF]. A second complete filtering algorithm, detecting entailment in a more eager way, was given in [START_REF] Carlsson | Revisiting the lexicographic ordering constraint[END_REF]. This second algorithm was derived from a deterministic finite automata. A third complete filtering algorithm extending the algorithm presented in [START_REF] Frisch | Global Constraints for lexicographic orderings[END_REF] detecting entailment is given in the PhD thesis of Z. Kızıltan [129,page 95]. The previous thesis [129, pages 105-109] presents also a filtering algorithm handling the fact that a given variable has more than one occurrence.

Used in lex between, lex chain lesseq.

See also lex less, lex greater, lex greatereq, lex chain less.

Key words order constraint, vector, symmetry, matrix symmetry, lexicographic order, multiset ordering, duplicated variables, Berge-acyclic constraint network, automaton, automaton without counters, derived collection. :1,5,5 2:2,2,2 3:3,3,6 1:0,0,0 4:4,1, 

Q =t n VAR2 1 VAR2 2 VAR2 n VAR1 1 VAR1 2 VAR1 n Q 1 Q =s 0 S 1 S 2 S n
Restriction(s) required(BOOLEANS, [bool, val]) BOOLEANS.bool ≥ 0 BOOLEANS.bool ≤ 1 distinct(BOOLEANS, val)

Purpose

Make the link between a set variable SVAR and those 0-1 variables that are associated to each potential value belonging to SVAR: The 0-1 variables, which are associated to a value belonging to the set variable SVAR, are equal to 1, while the remaining 0-1 variables are all equal to 0.

Derived Collection(s)

col(SETcollection(oneint, setvarsvar), [item(one -1, setvar -SVAR)])

Arc input(s) SET BOOLEANS

Arc generator

PRODUCT → collection(set, booleans)

Arc arity 2

Arc constraint(s) booleans.bool = set.one ⇔ in set(booleans.val, set.setvar)

Graph property(ies)

NARC = |BOOLEANS| Example link set to booleans 0 B B B B B B B B @ {1, 3, 4}, 8 > > > > > > < > > > > > > : bool -0 val -0, bool -1 val -1, bool -0 val -2, bool -1 val -3, bool -1 val -4, bool -0 val -5 9 > > > > > > = > > > > > > ; 1 C C C C C C C C A
In the previous example, the 0-1 variables associated to the values 1,3 and 4 are all set to 1, while the other 0-1 variables are set to 0. The link set to booleans constraint holds since the final graph contains exactly 6 arcs (one for each 0-1 variable). Parts (A) and (B) of Figure 4.276 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Graph model

The link set to booleans constraint is modelled with the following bipartite graph. The first set of vertices corresponds to one single vertex containing the set variable. The second class of vertices contains one vertex for each item of the collection BOOLEANS. The arc constraint between the set variable SVAR and one potential value v of the set variable expresses the following:

• If the 0-1 variable associated to v is equal to 1 then v should belong to SVAR.

• Otherwise if the 0-1 variable associated to v is equal to 0 then v should not belong to SVAR.

Since all arc constraints should hold the final graph contains exactly |BOOLEANS| arcs.

Signature

Since the initial graph contains |BOOLEANS| arcs the maximum number of arcs of the final graph is equal to |BOOLEANS|. Therefore we can rewrite the graph property NARC = |BOOLEANS| to NARC ≥ |BOOLEANS| and simplify NARC to NARC.

Usage

This constraint is used in order to make the link between a formulation using set variables and a formulation based on linear programming.

See also domain constraint, clique, symmetric gcc, tour, strongly connected, path from to.

Key words decomposition, value constraint, channeling constraint, set channel, linear programming, constraint involving set variables, derived collection. : atom

Restriction(s) SIZE ≥ 0 SIZE < |VARIABLES| required(VARIABLES, var) CTR ∈ [=, =, <, ≥, >, ≤]
Purpose SIZE is the maximum number of consecutive variables of the collection VARIABLES for which constraint CTR holds in an uninterrupted way. We count a change when X CTR Y holds; X and Y are two consecutive variables of the collection VARIABLES.

Arc input(s) VARIABLES

Arc generator

PATH → collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var CTR variables2.var 

Graph property(ies)

MAX NCC = SIZE Example longest change 0 B B B B B B B B B B B B @ 4, 8 > > > > > > > > > > > > < > > > > > > > > > > > > : var -8, var -8, var -3, var -4, var -1, var -1, var -5, var -5, var -2 9 > > > > > > > > > > > > = > > > > > > > > > > > > ; , = 1 C C C C C C C C C C C C A Parts (A)

Graph model

In order to specify the longest change constraint, we use MAX NCC, which is the number of vertices of the largest connected component. Since the initial graph corresponds to a path, this will be the length of the longest path in the final graph. See also change.

Key words

timetabling constraint, automaton, automaton with counters, sliding cyclic(1) constraint network (3). 

VAR 1 VAR 2 S 2 VAR n VAR 3 S 3 Q 2 C 2 S n-1 VAR n-1 Q =s 0 C =0 0 C 1 Q 1 S 1 D =1 0 D 1 D 2 Q =t n-1 C =SIZE n-1 D n-1

map

Origin

Inspired by [START_REF] Sedgewick | An introduction to the analysis of algorithms[END_REF] Constraint map(NBCYCLE, NBTREE, NODES)

Argument(s) NBCYCLE : dvar NBTREE : dvar NODES : collection(index -int, succ -dvar) Restriction(s) NBCYCLE ≥ 0 NBTREE ≥ 0 required(NODES, [index, succ]) NODES.index ≥ 1 NODES.index ≤ |NODES| distinct(NODES, index) NODES.succ ≥ 1 NODES.succ ≤ |NODES|
Number of trees and number of cycles of a map. We take the description of a map from [130, page 459]:

Purpose

Every map decomposes into a set of connected components, also called connected maps. Each component consists of the set of all points that wind up on the same cycle, with each point on the cycle attached to a tree of all points that enter the cycle at that point.

Arc input(s) NODES

Arc generator CLIQUE → collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies)

• NCC = NBCYCLE • NTREE = NBTREE Example map 0 B B B B B B B B B B B B @ 2, 3, 8 > > > > > > > > > > > > < > > > > > > > > > > > > : index -1 succ -5, index -2 succ -9, index -3 succ -8, index -4 succ -2, index -5 succ -9, index -6 succ -2, index -7 succ -9, index -8 succ -8, index -9 succ -1 9 > > > > > > > > > > > > = > > > > > > > > > > > > ; 1 C C C C C C C C C C C C A
Parts (A) and (B) of Figure 4.280 respectively show the initial and final graph. Since we use the NCC graph property, we display the two connected components of the final graph. Each of them corresponds to a connected map. The first connected map is made up from one circuit and two trees, while the second one consists of one circuit and one tree. Since we also use the NTREE graph property, we display with a double circle those vertices which do not belong to any circuit but for which at least one successor belong to a circuit. 

Graph model

Observe that, for the argument NBTREE of the map constraint, we consider a definition different from the one used for the argument NTREES of the tree constraint:

• In the map constraint the number of trees NBTREE is equal to the number of vertices of the final graph, which both do not belong to any circuit and have a successor which is located on a circuit. Therefore we count three trees in the previous example.

• In the tree constraint the number of trees NTREES is equal to the number of connected components of the final graph.

See also cycle, tree, graph crossing.

Key words

graph constraint, graph partitioning constraint, connected component.

max index

Origin N. Beldiceanu Constraint max index(MAX INDEX, VARIABLES) Argument(s) MAX INDEX : dvar VARIABLES : collection(index -int, var -dvar) Restriction(s) |VARIABLES| > 0 MAX INDEX ≥ 0 MAX INDEX ≤ |VARIABLES| required(VARIABLES, [index, var]) VARIABLES.index ≥ 1 VARIABLES.index ≤ |VARIABLES| distinct(VARIABLES, index)
Purpose MAX INDEX is the index of the variables corresponding to the maximum value of the collection of variables VARIABLES.

Arc input(s) VARIABLES

Arc generator CLIQUE → collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.key = variables2.key ∨ variables1.var > variables2.var

Graph property(ies)

ORDER(0, 0, index) = MAX INDEX Example max index 0 B B B B @ 3, 8 > > > > < > > > > : index -1 var -3, index -2 var -2, index -3 var -7, index -4 var -2, index -5 var -6 9 > > > > = > > > > ; 1 C C C C A
Parts (A) and (B) of Figure 4.281 respectively show the initial and final graph. Since we use the ORDER graph property, the vertex of rank 0 (without considering the loops) of the final graph is shown in gray.

Automaton

Figure 4.282 depicts the automaton associated to the max index constraint. To each item of the collection VARIABLES corresponds a signature variable Si, which is equal to 0.

See also min index.

Key words

order constraint, maximum, automaton, automaton with counters, alpha-acyclic constraint network(4). 

1 I 1 J 1 J =0 0 M =-1000000 0 Q =s 0 S 1 S 2 VAR 1 VAR 2 Q 1 Q =t n M n I =0 0 I =MAX_INDEX n J n S n VAR n
8 > > > > < > > > > : var -3, var -1, var -7, var -1, var -6 9 > > > > = > > > > ; 1 C C C C A
Parts (A) and (B) of Figure 4.284 respectively show the initial and final graph. Since we use the ORDER graph property, the vertex of rank 1 (without considering the loops) of the final graph is shown in gray.

Algorithm [33].

See also maximum, min n.

Key words

order constraint, rank, maximum.

max nvalue

Origin Derived from nvalue.

Constraint max nvalue(MAX, VARIABLES)

Argument(s) MAX : dvar VARIABLES : collection(vardvar)

Restriction(s) MAX ≥ 1 MAX ≤ |VARIABLES| required(VARIABLES, var)
Purpose MAX is the maximum number of times that the same value is taken by the variables of the collection VARIABLES.

Arc input(s) VARIABLES

Arc generator CLIQUE → collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies)

MAX NSCC = MAX Example max nvalue 0 B B B B B B B B B B B B B B @ 3, 8 > > > > > > > > > > > > > > < > > > > > > > > > > > > > > : var -9, var -1, var -7, var -1, var -1, var -6, var -7, var -7, var -4, var -9 9 > > > > > > > > > > > > > > = > > > > > > > > > > > > > > ; 1 C C C C C C C C C C C C C C A
In the previous example, values 1,4,[START_REF] Simonis | Complex constraint abstraction: Global constraint visualization[END_REF][START_REF] Rochart | Explanations for global constraints: instrumenting the stretch constraint[END_REF][START_REF] Bohlin | Desing and implementation of a graph-based constraint model for local search[END_REF] are respectively used 3, 1, 1, 3, 2 times. So the maximum number of time MAX that a same value occurs is 3. Parts (A) and (B) of Figure 4.285 respectively show the initial and final graph. Since we use the MAX NSCC graph property, we show the largest strongly connected component of the final graph.

Graph model

Because of the arc constraint, each strongly connected component of the final graph corresponds to a distinct value which is assigned to a subset of variables of the VARIABLES collection. Therefore the number of vertices of the largest strongly connected component is equal to the mostly used value.

Automaton

Figure 4.286 depicts the automaton associated to the max nvalue constraint. To each item of the collection VARIABLES corresponds a signature variable Si, which is equal to 0. 

Usage

This constraint may be used in order to replace a set of count or among constraints were one would have to generate explicitly one constraint for each potential value. Also useful for constraining the number of occurrences of the mostly used value without knowing this value in advance and without giving explicitly an upper limit on the number of occurrences of each value as it is done in the global cardinality constraint.

See also nvalue, min nvalue.

Key words

value constraint, assignment, maximum number of occurrences, maximum, automaton, automaton with array of counters, equivalence. 6,

max size set of consecutive var

8 > > > > > > > > > > > > > > < > > > > > > > > > > > > > > : var -3, var -1, var -3, var -7, var -4, var -1, var -2, var -8, var -7, var -6 9 > > > > > > > > > > > > > > = > > > > > > > > > > > > > > ; 1 C C C C C C C C C C C C C C A
In the previous example, the following sets of variables {var -3, var -1, var -3, var -4, var -1, var -2} and {var -7, var -8, var -7, var -6} take their values in the two following sets of consecutive values {1, 2, 3, 4} and {6, 7, 8}. The max size set of consecutive var constraint holds since the cardinality of the largest set of variables is 6. Parts (A) and (B) of Figure 4.287 respectively show the initial and final graph. Since we use the MAX NSCC graph property, we show the largest strongly connected component of the final graph.

Graph model

Since the arc constraint is symmetric each strongly connected component of the final graph corresponds exactly to one connected component of the final graph.

See also nset of consecutive values.

Key words

value constraint, consecutive values, maximum.

maximum

Origin CHIP 

Constraint

Graph model

We use a similar definition that the one that was utilized for the minimum constraint. Within the arc constraint, we replace the comparaison operator < by >.

Automaton

Figure 4.289 depicts the automaton associated to the maximum constraint. Let VARi be the i th variable of the VARIABLES collection. To each pair (MAX, VARi) corresponds a signature variable Si as well as the following signature constraint:

(MAX > VARi ⇔ Si = 0) ∧ (MAX = VARi ⇔ Si = 1) ∧ (MAX < VARi ⇔ Si = 2).

Usage

In some project scheduling problems one has to introduce dummy activities which correspond for instance to the completion time of a given set of activities. In this context one can use the maximum constraint to get the maximum end of a set of tasks.

Remark

Note that maximum is a constraint and not just a function that computes the maximum value of a collection of variables: The values of MAX influence the variables and reciprocally the values of the variables influence MAX. Algorithm [33].

See also minimum.

Key words

order constraint, maximum, automaton, automaton without counters, centered cyclic(1) constraint network (1). See also maximum, minimum modulo.

S n Q =t n Q 1 Q =s 0 S 2 S 1 VAR 1 VAR 2 VAR n MAX

Key words

order constraint, modulo, maximum. 

min index

Origin

Restriction(s) |VARIABLES| > 0 MIN INDEX ≥ 0 MIN INDEX ≤ |VARIABLES| required(VARIABLES, [index, var]) VARIABLES.index ≥ 1 VARIABLES.index ≤ |VARIABLES| distinct(VARIABLES, index)
Purpose MIN INDEX is the index of the variables corresponding to the minimum value of the collection of variables VARIABLES.

Arc input(s) VARIABLES

Arc generator CLIQUE → collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.key = variables2.key ∨ variables1.var < variables2.var 

Graph property(ies)

ORDER(0, 0, index) = MIN INDEX Example min index 0 B B B B @ 2, 8 > > > > < > > > > : index -1 var -3, index -2 var -2, index -3 var -7, index -4 var -2, index -5 var -6 9 > > > > = > > > > ; 1 C C C C A min index 0 B B B B @ 4, 8 > > > > < > > > > : index -1 var -3, index -2 var -2, index -3 var -7, index -4 var -2, index -5 var -6 9 > > > > = > > > > ;

Graph model

Within the context of scheduling, assume the variables of the VARIABLES collection correspond to the starts of a set of tasks. Then MIN INDEX gives the indexes of those tasks which can be scheduled first. See also max index.

1 I 1 J 1 J =0 0 Q =s 0 S 1 S 2 VAR 1 VAR 2 Q 1 Q =t n M n I =0 0 J n S n VAR n M =1000000 0 I =MIN_INDEX n

Key words

order constraint, minimum, automaton, automaton with counters, alpha-acyclic constraint network(4).

min n

Origin [33] Constraint min n(MIN, RANK, VARIABLES)

Argument(s) MIN : dvar RANK : int VARIABLES : collection(var -dvar) Restriction(s) |VARIABLES| > 0 RANK ≥ 0 RANK < |VARIABLES| required(VARIABLES, var)
Purpose MIN is the minimum value of rank RANK (i.e. the RANK th smallest distinct value) of the collection of domain variables VARIABLES. Sources have a rank of 0. 

Arc input(s) VARIABLES

8 > > > > < > > > > : var -3, var -1, var -7, var -1, var -6 9 > > > > = > > > > ; 1 C C C C A
Note that identical values are only counted once. This is why the minimum of order 1 is 3 instead of 1 in the previous example. Parts (A) and (B) of Figure 4.295 respectively show the initial and final graph. Since we use the ORDER graph property, the vertex of rank 1 (without considering the loops) of the final graph is shown in gray.

Graph model

A generalization of the minimum constraint.

Automaton

Figure 4.296 depicts the automaton associated to the min n constraint. Figure 4.296 depicts the automaton associated to the min n constraint. To each item of the collection VARIABLES corresponds a signature variable Si, which is equal to 1.

Algorithm [33].

See also minimum, max n, ith pos different from 0.

Key words

order constraint, rank, minimum, maxint, automaton, automaton with array of counters. 

min nvalue

Origin

Restriction(s) MIN ≥ 1 MIN ≤ |VARIABLES| required(VARIABLES, var)
Purpose MIN is the minimum number of times that the same value is taken by the variables of the collection VARIABLES.

Arc input(s) VARIABLES

Arc generator CLIQUE → collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies)

MIN NSCC = MIN Example min nvalue 0 B B B B B B B B B B B B B B @ 2, 8 > > > > > > > > > > > > > > < > > > > > > > > > > > > > > : var -9, var -1, var -7, var -1, var -1, var -7, var -7, var -7, var -7, var -9 9 > > > > > > > > > > > > > > = > > > > > > > > > > > > > > ; 1 C C C C C C C C C C C C C C A
In the previous example, values 1, 7, 9 are respectively used 3, 5, 2 times. So the minimum number of time that a same value occurs is 2. Parts (A) and (B) of Figure 4.297 respectively show the initial and final graph. Since we use the MIN NSCC graph property, we show the smallest strongly connected component of the final graph.

Automaton

Figure 4.298 depicts the automaton associated to the min nvalue constraint. To each item of the collection VARIABLES corresponds a signature variable Si, which is equal to 0.

Usage

This constraint may be used in order to replace a set of count or among constraints were one would have to generate explicitly one constraint for each potential value. Also useful for constraining the number of occurrences of the less used value without knowing this value in advance and without giving explicitly a lower limit on the number of occurrences of each value as it is done in the global cardinality constraint. 4,

8 > > > > > > > > > > > > > > < > > > > > > > > > > > > > > : var -3, var -1, var -3, var -7, var -4, var -1, var -2, var -8, var -7, var -6 9 > > > > > > > > > > > > > > = > > > > > > > > > > > > > > ; 1 C C C C C C C C C C C C C C A
In the previous example, the following sets of variables {var -3, var -1, var - 

Graph model

Since the arc constraint is symmetric each strongly connected component of the final graph corresponds exactly to one connected component of the final graph.

See also nset of consecutive values.

Key words value constraint, assignment, consecutive values, minimum.

minimum

Origin CHIP 

Constraint

Graph model

The condition variables1.key = variables2.key holds if and only if variables1 and variables2 corresponds to the same vertex. It is used in order to enforce to keep all the vertices of the initial graph. ORDER(0, MAXINT, var) refers to the source vertices of the graph, i.e. those vertices that do not have any predecessor.

Automaton

Figure 4.301 depicts the automaton associated to the minimum constraint. Let VARi be the i th variable of the VARIABLES collection. To each pair (MIN, VARi) corresponds a signature variable Si as well as the following signature constraint:

(MIN < VARi ⇔ Si = 0) ∧ (MIN = VARi ⇔ Si = 1) ∧ (MIN > VARi ⇔ Si = 2).

Remark

Note that minimum is a constraint and not just a function that computes the minimum value of a collection of variables: The values of MIN influence the variables and reciprocally the values of the variables influence MIN.

Algorithm [33].

Used in minimum greater than, next element, next greater element.

See also maximum.

Key words

order constraint, minimum, maxint, automaton, automaton without counters, centered cyclic(1) constraint network (1). 3,

S n Q =t n Q 1 Q =s 0 S 2 S 1 VAR 1 VAR 2 VAR n MIN
8 > > > > > > < > > > > > > : var -3, var -7, var -6, var -7, var -4, var -7 9 > > > > > > = > > > > > > ; 1 C C C C C C A minimum except 0 0 B B B B B B @ 2, 8 > > > > > > < > > > > > > : var -3, var -2, var -0, var -7, var -2, var -6 9 > > > > > > = > > > > > > ; 1 C C C C C C A minimum except 0 0 B B B B B B @ 1000000, 8 > > > > > > < > > > > > > : var -0, var -0, var -0, var -0, var -0, var -0 9 > > > > > > = > > > > > > ; 1 C C C C C C A
Parts (A) and (B) of Figure 4.303 respectively show the initial and final graph of the second example. Since we use the ORDER graph property, the vertices of rank 0 (without considering the loops) of the final graph are shown in gray.

Since the graph associated to the third example does not contain any vertex, ORDER returns the default value MAXINT.

Graph model

Because of the first two conditions of the arc constraint, all vertices that correspond to 0 will be removed from the final graph.

Automaton

Figure 4.304 depicts the automaton associated to the minimum except 0 constraint. Let VARi be the i th variable of the VARIABLES collection. To each pair (MIN, VARi) corresponds a signature variable Si as well as the following signature constraint:

((VARi = 0) ∧ (MIN = MAXINT)) ⇔ Si = 0 ∧ ((VARi = 0) ∧ (MIN = MAXINT)) ⇔ Si = 1 ∧ ((VARi = 0) ∧ (MIN = VARi)) ⇔ Si = 2 ∧ ((VARi = 0) ∧ (MIN < VARi)) ⇔ Si = 3.

Remark

The joker value 0 makes sense only because we restrict the variables of the VARIABLES collection to take non-negative values.

See also minimum, min nvalue.

Key words

order constraint, joker value, minimum, maxint, automaton, automaton without counters, centered cyclic(1) constraint network(1). 

S n Q =t n Q 1 Q =s 0 S 2 S 1 VAR 1 VAR 2 VAR n MIN
8 > > < > > : var -8, var -5, var -3, var -8 9 > > = > > ; 1 C C A
The minimum greater than constraint holds since value 5 is the smallest value strictly greater than value 3 among values 8, 5, 3 and 8. Parts (A) and (B) of Figure 4.306 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold. The source and the sinks of the final graph respectively correspond to the variable VAR2 and to the variables of the VARIABLES collection which are strictly greater than VAR2. VAR1 is set to the smallest value of the var attribute of the sinks of the final graph.

Graph model

Similar to the next greater element constraint, except that there is no order on the variables of the collection VARIABLES.

Automaton

Figure 4.307 depicts the automaton associated to the minimum greater than constraint. Let VARi be the i th variable of the VARIABLES collection. To each triple (VAR1, VAR2, VARi) corresponds a signature variable Si as well as the following signature constraint:

((VARi < VAR1) ∧ (VARi ≤ VAR2)) ⇔ Si = 0 ∧ ((VARi = VAR1) ∧ (VARi ≤ VAR2)) ⇔ Si = 1 ∧ ((VARi > VAR1) ∧ (VARi ≤ VAR2)) ⇔ Si = 2 ∧ ((VARi < VAR1) ∧ (VARi > VAR2)) ⇔ Si = 3 ∧ ((VARi = VAR1) ∧ (VARi > VAR2)) ⇔ Si = 4 ∧ ((VARi > VAR1) ∧ (VARi > VAR2)) ⇔ Si = 5.
The automaton is constructed in order to fullfit the following conditions:

• We look for an item of the VARIABLES collection such that vari = VAR1 and vari > VAR2,

• There should not exist any item of the VARIABLES collection such that vari < VAR1 and vari > VAR2.

See also next greater element.

Key words

order constraint, minimum, automaton, automaton without counters, centered cyclic(2) constraint network(1), derived collection. var -9, var -1, var -7, var -6, var -5

9 > > > > = > > > > ; , 3 
1 C C C C A minimum modulo 0 B B B B @ 9, 8 > > > > < > > > > : var -9, var -1, var -7, var -6, var -5 9 > > > > = > > > > ; , 3 1 C C C C A 
Parts (A) and (B) of Figure 4.309 respectively show the initial and final graph associated to the second example. Since we use the ORDER graph property, the vertex of rank 0 (without considering the loops) associated to value 9 is shown in gray.

Graph model

We use a similar definition that the one that was utilized for the minimum constraint. Within the arc constraint we replace the condition X < Y by the condition (X mod M) < (Y mod M).

See also minimum, maximum modulo.

Key words

order constraint, modulo, maxint, minimum.

var -2, var -3, var -1, var -4 9 > > = > > ; , 8 > > > > > > > > > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > > > > > > > > > : i -1 j -1 c -4, i -1 j -2 c -1, i -1 j -3 c -7, i -1 j -4 c -0, i -2 j -1 c -1, i -2 j -2 c -0, i -2 j -3 c -8, i -2 j -4 c -2, i -3 j -1 c -3, i -3 j -2 c -2, i -3 j -3 c -1, i -3 j -4 c -6, i -4 j -1 c -0, i -4 j -2 c -0, i -4 j -3 c -6, i -4 j -4 c -5 9 > > > > > > > > > > > > > > > > > > > > > > > > > > = > > > > > > > > > > > > > > > > > > > > > > > > > > ; , 17 
1 C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C A
The cost 17 corresponds to the sum MATRIX[(1 -1) [2].c + MATRIX [START_REF] Rochart | Explanations for global constraints: instrumenting the stretch constraint[END_REF].c + MATRIX [START_REF] Bohlin | Desing and implementation of a graph-based constraint model for local search[END_REF].c + MATRIX [START_REF] Kirkman | On a problem in combinatorics[END_REF].c = 1 + 8 + 3 + 5. Parts (A) and (B) of Figure 4.310 respectively show the initial and final graph. Since we use the SUM WEIGHT ARC graph property, the arcs of the final graph are stressed in bold; We also indicate their corresponding weight.

• 4 + 2].c + MATRIX[(2 -
1) • 4 + 3].c + MATRIX[(3 -1) • 4 + 1].c + MATRIX[(4 -1) • 4 + 4].c = MATRIX

Graph model

Since each variable takes one value, and because of the arc constraint variables1 = variables.key, each vertex of the initial graph belongs to the final graph and has exactly one successor. Therefore the sum of the out-degrees of the vertices of the final graph is equal to the number of vertices of the final graph. Since the sum of the in-degrees is equal to the sum of the out-degrees, it is also equal to the number of vertices of the final graph.

Since NTREE = 0, each vertex of the final graph belongs to a circuit. Therefore each vertex of the final graph has at least one predecessor. Since we saw that the sum of the in-degrees is equal to the number of vertices of the final graph, each vertex of the final graph has exactly one predecessor. We conclude that the final graph consists of a set of vertex-disjoint elementary circuits.

Finally the graph constraint expresses the fact that the COST variable is equal to the sum of the elementary costs associated to each variable-value assignment. All these elementary costs are recorded in the MATRIX collection. More precisely, the cost cij is recorded in the attribute c of the ((i -1) • |VARIABLES)| + j) th entry of the MATRIX collection. This is ensured by the increasing restriction which enforces the fact that the items of the MATRIX collection are sorted in lexicographically increasing order according to attributes i and j.

Algorithm

A filtering algorithm is described in [START_REF] Sellman | An arc consistency algorithm for the minimum weight all different constraint[END_REF]. It can be used for handling both side of the minimum weight alldifferent constraint:

• Evaluating a lower bound of the COST variable and pruning the variables of the VARIABLES collection in order to not exceed the maximum value of COST.

• Evaluating an upper bound of the COST variable and pruning the variables of the VARIABLES collection in order to not be under the minimum value of COST.

See also alldifferent, global cardinality with costs, weighted partial alldiff.

Key words

cost filtering constraint, assignment, cost matrix, weighted assignment, one succ.

nclass

Origin Derived from nvalue. 

Constraint

Purpose

Number of partitions of the collection PARTITIONS such that at least one value is assigned to at least one variable of the collection VARIABLES.

Arc input(s) VARIABLES

Arc generator CLIQUE → collection(variables1, variables2)

Arc arity 2

Arc constraint(s) in same partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies)

NSCC = NCLASS Example nclass 0 B B B B B B B B B B @ 2, 8 > > > > < > > > > : var -3, var -2, var -7, var -2, var -6 9 > > > > = > > > > ; , 8 < 
:

p -{val -1, val -3}, p -{val -4}, p -{val -2, val -6} 9 
= ; 1 C C C C C C C C C C A
Parts (A) and (B) of Figure 4.311 respectively show the initial and final graph. Since we use the NSCC graph property we show the different strongly connected components of the final graph. Each strongly connected component corresponds to one class of values which were assigned to some variables of the VARIABLES collection. We effectively use two classes of values that respectively correspond to values {3} and {2, 6}. Note that we do not consider value 7 since it does not belong to the different classes of values we gave: all corresponding arc constraints do not hold.

nequivalence

Origin Derived from nvalue. 2, 3, 

Constraint

8 > > > > > > > > < > > > > > > > > : var -3, var -2, var -5, var -6, var -15, var -3, var -3 9 > > > > > > > > = > > > > > > > > ; 1 C C C C C C C C A Parts (A)

Algorithm

Since constraints X = Y and X ≡ Y ( mod M ) are similar, one should also use a similar algorithm as the one [33,[START_REF] Beldiceanu | Cost-filtering algorithms for the two sides of the sum of weights of distinct values constraint[END_REF] provided for constraint nvalue.

See also nvalue, nclass, ninterval, npair.

Key words

counting constraint, value partitioning constraint, number of distinct equivalence classes, strongly connected component, equivalence. 

next element

Origin

Example next element 0 B B B B @ 2, 3, 8 > > > > < > > > > : index -1 value -1, index -2 value -8, index -3 value -9, index -4 value -5, index -5 value -9 9 > > > > = > > > > ; , 9 
1 C C C C A
The next element constraint holds since 3 is the smallest entry located after entry 2 that contains value 9. Parts (A) and (B) of Figure 4.313 respectively show the initial and final graph associated to the second graph constraint. Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Automaton

Figure 4.314 depicts the automaton associated to the next element constraint. Let I k and V k respectively be the index and the value attributes of the k th item of the TABLE collections. To each quintuple (THRESHOLD, INDEX, VAL, I k , V k ) corresponds a signature variable S k as well as the following signature constraint:

((I k ≤ THRESHOLD) ∧ (I k < INDEX) ∧ (V k = VAL)) ⇔ S k = 0 ∧ ((I k ≤ THRESHOLD) ∧ (I k < INDEX) ∧ (V k = VAL)) ⇔ S k = 1 ∧ ((I k ≤ THRESHOLD) ∧ (I k = INDEX) ∧ (V k = VAL)) ⇔ S k = 2 ∧ ((I k ≤ THRESHOLD) ∧ (I k = INDEX) ∧ (V k = VAL)) ⇔ S k = 3 ∧ ((I k ≤ THRESHOLD) ∧ (I k > INDEX) ∧ (V k = VAL)) ⇔ S k = 4 ∧ ((I k ≤ THRESHOLD) ∧ (I k > INDEX) ∧ (V k = VAL)) ⇔ S k = 5 ∧ ((I k > THRESHOLD) ∧ (I k < INDEX) ∧ (V k = VAL)) ⇔ S k = 6 ∧ ((I k > THRESHOLD) ∧ (I k < INDEX) ∧ (V k = VAL)) ⇔ S k = 7 ∧ ((I k > THRESHOLD) ∧ (I k = INDEX) ∧ (V k = VAL)) ⇔ S k = 8 ∧ ((I k > THRESHOLD) ∧ (I k = INDEX) ∧ (V k = VAL)) ⇔ S k = 9 ∧ ((I k > THRESHOLD) ∧ (I k > INDEX) ∧ (V k = VAL)) ⇔ S k = 10 ∧ ((I k > THRESHOLD) ∧ (I k > INDEX) ∧ (V k = VAL)) ⇔ S k = 11.
The automaton is constructed in order to fullfit the following conditions:

• We look for an item of the 

8 > > < > > : var -3, var -5, var -8, var -9 9 > > = > > ; 1 C C A
The next greater element constraint holds since:

• VAR2 is fixed to the first value 8 strictly greater than VAR1 = 7,

• The var attributes of the items of the collection VARIABLES are sorted in strictly increasing order.

Parts (A) and (B) of Figure 4.316 respectively show the initial and final graph associated to the second graph constraint. Since we use the NARC graph property, the arcs of the final graph are stressed in bold. 

Usage

Originally introduced for modelling the fact that a nucleotide has to be consumed as soon as possible at cycle VAR2 after a given cycle VAR1.

Remark

Similar to the minimum greater than constraint, except for the fact that the var attributes are sorted.

See also minimum greater than, next element.

Key words

order constraint, minimum, data constraint, table, derived collection.

ninterval

Origin Derived from nvalue. 1] where k is an integer. NVAL is the number of intervals for which at least one value is assigned to at least one variable of the collection VARIABLES. The values 1, 3 and the value 9 which respectively correspond to intervals [0,3] and [START_REF] Rochart | Explanations for global constraints: instrumenting the stretch constraint[END_REF][START_REF] Bohlin | Desing and implementation of a graph-based constraint model for local search[END_REF] are assigned to the variables of the VARIABLES collection.

Constraint

Arc input(s) VARIABLES

Usage

The ninterval constraint is useful for counting the number of effectively used periods, no matter how many time each period is used. A period can for example stand for a hour or for a day.

Algorithm [33,[START_REF] Beldiceanu | Cost-filtering algorithms for the two sides of the sum of weights of distinct values constraint[END_REF].

See also nvalue, nclass, nequivalence, npair.

Key words

counting constraint, value partitioning constraint, number of distinct equivalence classes, interval, strongly connected component, equivalence.

no peak

Origin Derived from peak.

Constraint no peak(VARIABLES)

Argument(s) VARIABLES : collection(vardvar)

Restriction(s) |VARIABLES| > 0 required(VARIABLES, var) Purpose A variable V k (1 < k < m)
of the sequence of variables VARIABLES = V1, . . . , Vm is a peak if and only if there exist an i (1

< i ≤ k) such that Vi-1 < Vi and Vi = Vi+1 = . . . = V k and V k > V k+1
. The total number of peaks of the sequence of variables VARIABLES is equal to 0.

Example

no peak 0 B B B B @ 8 > > > > < > > > > : var -1, var -1, var -4, var -8, var -8 9 > > > > = > > > > ; 1 C C C C A
The previous constraint holds since the sequence 1 1 4 8 8 does not contain any peak. 

(VARi < VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi > VARi+1 ⇔ Si = 2).
See also peak, no valley, valley.

Key words

sequence, automaton, automaton without counters, sliding cyclic(1) constraint network (1). 

i i+1 VAR =VAR i i+1 VAR =VAR i i+1 VAR >VAR i i+1 VAR >VAR i i+1 VAR <VAR i t s $ $ Figure 4.319: Automaton of the no peak constraint VAR 1 VAR 2 S 2 VAR n VAR 3 S 3 Q 2 S n-1 VAR n-1 Q =t n-1 Q =s 0 Q 1 S 1

Example

no valley 0 B B B B B B @ 8 > > > > > > < > > > > > > : var -1, var -1, var -4, var -8, var -8, var -2 9 > > > > > > = > > > > > > ; 1 C C C C C C A
The previous constraint holds since the sequence 1 1 4 8 8 2 does not contain any valley. 

(VARi < VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi > VARi+1 ⇔ Si = 2).
See also valley, no peak, peak.

Key words

sequence, automaton, automaton without counters, sliding cyclic(1) constraint network (1). 

i i+1 VAR =VAR i i+1 VAR =VAR i i+1 VAR <VAR i i+1 VAR <VAR i i+1 VAR >VAR i t s $ $ Figure 4.322: Automaton of the no valley constraint VAR 1 VAR 2 S 2 VAR n VAR 3 S 3 Q 2 S n-1 VAR n-1 Q =t n-1 Q =s 0 Q 1 S 1

Purpose

The variables of the collection VARIABLES should take more than one single value. 

Arc input(s) VARIABLES

Algorithm

If the intersection of the domains of the variables of the VARIABLES collection is empty the not all equal constraint is entailed. Otherwise, when only one single variable V remains not fixed, remove the unique value (unique since the constraint is not entailed) taken by the other variables from the domain of V .

See also nvalue.

Key words

value constraint, disequality, automaton, automaton without counters, sliding cyclic(1) constraint network(1), equivalence. 

VAR 1 VAR 2 S 2 VAR n VAR 3 S 3 Q 2 S n-1 VAR n-1 Q =t n-1 Q =s 0 Q 1 S 1

Remark

Entailment occurs immediately after posting this constraint.

Used in group.

See also in.

Key words value constraint, unary constraint, excluded, disequality, domain definition, automaton, automaton without counters, centered cyclic(1) constraint network( 1), derived collection. Since we use the NSCC graph property we show the different strongly connected components of the final graph. Each strongly connected component corresponds to one pair of values which is assigned to some pairs of variables of the PAIRS collection. In our example we have the following pairs of values: (3,1) and (1,5).

Remark

This is an example of a number of distinct values constraint where there is more than one attribute that is associated to each vertex of the final graph.

See also nvalue, nclass, nequivalence, ninterval.

Key words

counting constraint, value partitioning constraint, number of distinct equivalence classes, pair, strongly connected component, equivalence. 

nset of consecutive values

Graph model

Since the arc constraint is symmetric each strongly connected component of the final graph corresponds exactly to one connected component of the final graph.

Usage

Used for specifying the fact that the values have to be used in a compact way is achieved by setting N to 1.

See also

min size set of consecutive var.

Key words

value constraint, consecutive values, strongly connected component. 

nvalue

Origin

Usage

This constraint occurs in many practical applications. In the context of timetabling one wants to set up a limit on the maximum number of activity types it is possible to perform.

For frequency allocation problems, one optimisation criteria corresponds to the fact that you want to minimize the number of distinct frequencies that you use all over the entire network. The nvalue constraint generalizes several constraints like: • alldifferent(VARIABLES): in order to get the alldifferent constraint, one has to set NVAL to the total number of variables.

• not all equal(VARIABLES): in order to get the not all equal constraint, one has to set the minimum value of NVAL to 2.

Remark

This constraint appears in [73, page 339] under the name of Cardinality on Attributes Values. A constraint called kdiff enforcing that a set of variables takes at least k distinct values appears in the PhD thesis of J.-C. Régin [START_REF] Régin | Développement d'outils algorithmiques pour l'Intelligence Artificielle[END_REF].

Algorithm [33,[START_REF] Beldiceanu | Cost-filtering algorithms for the two sides of the sum of weights of distinct values constraint[END_REF][START_REF] Bessière | Filtering algorithms for the nvalue constraint[END_REF].

Used in track.

See also alldifferent, not all equal, nvalues, nvalues except 0, npair, nvalue on intersection, among diff 0. 

Key words

9 > > = > > ; , 8 > > > > > > < > > > > > > : var -2, var -1, var -9, var -9, var -6, var -9 9 > > > > > > = > > > > > > ; 1 C C C C C C C C C C C C C C A
Parts (A) and (B) of Figure 4.334 respectively show the initial and final graph. Since we use the NCC graph property we show the connected components of the final graph. The variable NVAL is equal to this number of connected components. Observe that all the vertices corresponding to the variables that take values 5, 2 or 6 were removed from the final graph since there is no arc for which the associated equality constraint holds.

See also nvalue, common, alldifferent on intersection, same intersection.

Key words

counting constraint, number of distinct values, connected component, constraint on the intersection. 

Usage

Used in the Constraint(s) on sets slot for defining some constraints like assign and nvalues, circuit cluster or coloured cumulative.

Used in assign and nvalues, circuit cluster, coloured cumulative, coloured cumulatives.

See also

nvalues except 0, nvalue.

Key words

counting constraint, value partitioning constraint, number of distinct equivalence classes, number of distinct values, strongly connected component, equivalence.

nvalues except 0

Origin Derived from nvalues. 

Constraint

Used in cycle or accessibility.

See also nvalues, nvalue, assign and nvalues.

Key words

counting constraint, value partitioning constraint, number of distinct values, strongly connected component, joker value.

one tree

Origin

Inspired by [START_REF] Gent | Supertree construction with constraint programming[END_REF] Constraint one tree(NODES) 

Argument

Purpose

Merge two trees that have some leaves in common so that all the precedence constraints induced by the father relation of both trees are preserved.

Arc input(s) NODES

Arc generator CLIQUE → collection(nodes1, nodes2)

Arc arity 2 Arc constraint(s) W 0 B B B B B B B B @ nodes1.index = nodes2.index ∧ nodes1.father = nodes1.index, V 0 B B B B B B @ nodes1.index = nodes2.index, nodes1.father = nodes2.index, W " nodes1.type mod 2 = 0 ∧ nodes1.depth1 > nodes2.depth1, nodes1.type mod 2 > 0 ∧ nodes1.depth1 = nodes2.depth1 « , W " nodes1.type mod 3 = 0 ∧ nodes1.depth2 > nodes2.depth2, nodes1.type mod 3 > 0 ∧ nodes1.depth2 = nodes2.depth2 « 1 C C C C C C A 1 C C C C C C C C A Graph property(ies) • MAX NSCC ≤ 1 • NCC = 1 • NVERTEX = |NODES| Example one tree 0 B B B B B B B B B B B B B B B B B B B B B B @ 8 > > > > > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > > > > > : id -x index -1 type -2 father -6 depth1 -2 depth2 -2, id -x index -2 type -2 father -2 depth1 -1 depth2 -0, id -x index -3 type -3 father -6 depth1 -1 depth2 -3, id -x index -4 type -3 father -5 depth1 -2 depth2 -4, id -x index -5 type -3 father -1 depth1 -2 depth2 -3, id -x index -6 type -3 father -7 depth1 -1 depth2 -2, id -x index -7 type -3 father -2 depth1 -1 depth2 -1, id -g index -8 type -2 father -1 depth1 -3 depth2 -2, id -a index -9 type -6 father -4 depth1 -3 depth2 -5, id -f index -10 type -6 father -7 depth1 -2 depth2 -2, id -b index -11 type -3 father -4 depth1 -2 depth2 -5, id -c index -12 type -3 father -5 depth1 -2 depth2 -4, id -e index -13 type -3 father -3 depth1 -1 depth2 -4, id -d index -14 type -3 father -3 depth1 -1 depth2 -4 9 > > > > > > > > > > > > > > > > > > > > > > = > > > > > > > > > > > > > > > > > > > > > > ; 1 C C C C C C C C C C C C C C C C C C C C C C A Figure 4
.337 shows the two trees we want to merge. Note that the leaves a and f occur in both trees. In order to ease the link with the merged tree given in part (B) of Figure 4.338, each vertex of the original trees contains the id, the index, the type, the father and the corresponding depth. 

Graph model

The information about the two trees to merge is modelled in the following way: 3:x,3,3,6,1,3 4:x,4,3,5,2,4 5:x,5,3,1,2,3 8:g,8,2,1,3,2 9:a,9,6,4,3,5 10:f,10,6,7,2,2 11:b,11,3,4,2,5 12:c,12,3,5,2,4 13:e,13,3,3,1,4 14:d,14,3,3,1,4 (A) (B)

Figure 4.338: Initial and final graph of the one tree constraint

• A vertex which only belongs to the first (respectively second) tree has its type attribute set to 2 (respectively 3), while a vertex which belongs to both trees has its type attribute set to 6. This encoding was selected so that the statement type mod 2 = 0 (respectively type mod 3 = 0) allows determining whether a vertex belongs or not to the first (respectively second) tree.

• For a vertex belonging to the first (respectively second) tree, the depth1 (respectively depth2) attribute indicates the depth of that vertex in the corresponding tree.

The arc constraint is a disjunction of two conditions which respectively capture the following ideas:

• The first condition describes the fact that we link a vertex to itself. This vertex corresponds to the root of the merged tree we construct.

• The first part of the second condition describes the fact that we link a child vertex nodes1 to its father nodes2. The last part of the second condition expresses the fact that we want to preserve the father relation imposed by the first and second trees. This is achieved by using the following idea: When the child vertex nodes1 belongs to the first (respectively second) tree we enforce a strict inequality between the depth1 (respectively depth2) attributes of nodes1 and nodes2; Otherwise we enforce an equality constraint.

Finally we use the following three graph properties in order to enforce to get a merged tree:

• The first graph property MAX NSCC ≤ 1 enforces the fact that the size of the largest strongly connected component does not exceed one. This avoid having circuits containing more than one vertex. In fact the root of the merged tree is a strongly connected component with one single vertex.

• The second graph property NCC = 1 imposes having only one single tree.

• Finally the third graph property NVERTEX = |NODES| imposes that the merged tree contains effectively all the vertices of the first and second tree.

Remark

A compact way to model the construction of a tree of life [START_REF] Gent | Supertree construction with constraint programming[END_REF].

See also tree.

Key words

graph constraint, tree, bioinformatics, phylogeny, obscure.

orchard

Origin [START_REF] Jackson | Rational amusements for winter evenings[END_REF] Constraint orchard(NROW, TREES) 10,

Argument
8 > > > > > > > > > > > > < > > > > > > > > > > > > : index -1 x -0 y -0, index -2 x -4 y -0, index -3 x -8 y -0, index -4 x -2 y -4, index -5 x -4 y -4, index -6 x -6 y -4, index -7 x -0 y -8, index -8 x -4 y -8, index -9 x -8 y -8 9 > > > > > > > > > > > > = > > > > > > > > > > > > ; 1 C C C C C C C C C C C C A
The 10 alignments of 3 trees correspond to the following triples of trees: (1,2,3), (1,4,8), (1,5,[START_REF] Bohlin | Desing and implementation of a graph-based constraint model for local search[END_REF], (2,4,[START_REF] Rochart | Explanations for global constraints: instrumenting the stretch constraint[END_REF], (2,5,8), (2,[START_REF] Simonis | Complex constraint abstraction: Global constraint visualization[END_REF][START_REF] Bohlin | Desing and implementation of a graph-based constraint model for local search[END_REF], (3,5,[START_REF] Rochart | Explanations for global constraints: instrumenting the stretch constraint[END_REF], (3,[START_REF] Simonis | Complex constraint abstraction: Global constraint visualization[END_REF]8), (4,5,[START_REF] Simonis | Complex constraint abstraction: Global constraint visualization[END_REF], [START_REF] Rochart | Explanations for global constraints: instrumenting the stretch constraint[END_REF]8,[START_REF] Bohlin | Desing and implementation of a graph-based constraint model for local search[END_REF]. Figure 4.339 shows the 9 trees and the 10 alignments corresponding to the example.

Graph model

The arc generator CLIQUE (<) with an arity of three is used in order to generate all the arcs of the directed hypergraph. Each arc is an ordered triple of trees. We use the restriction < in order to generate one single arc for each set of three trees. This is required, since otherwise we would count more than once a given alignment of three trees. The formula used within the arc constraint expresses the fact that the three points of respective coordinates (trees1.x, trees1.y), (trees2.x, trees2.y) and (trees3. 

Purpose

The ori attribute of the VERTICAL DIM th item of the ORTHOTOPES collection should be fixed to one. Used in place in pyramid.

Arc input(s) ORTHOTOPE

See also place in pyramid.

Key words geometrical constraint, orthotope.

orth on top of orth

Origin

Used for defining place in pyramid. 

Constraint

Used in place in pyramid.

See also place in pyramid.

Key words

geometrical constraint, non-overlapping, orthotope. 

Purpose

There should be one single group of connected orthotopes. Two orthotopes touch each other (i.e. are connected) if they overlap in all dimensions except one, and if, for the dimension where they do not overlap, the distance between the two orthotopes is equal to 0. Graph property(ies)

Arc input(s) ORTHOTOPES

• NVERTEX = |ORTHOTOPES| • NCC = 1 Example orths are connected 0 B B B B B B B B B B @ 8 > > > > > > > > > > < > > > > > > > > > > : orth -  ori -2 siz -4 end -6, ori -2 siz -2 end -4 ff , orth -  ori -1 siz -2 end -3, ori -4 siz -3 end -7 ff , orth -  ori -7 siz -4 end -11, ori -1 siz -2 end -3 ff , orth -  ori -6 siz -2 end -8, ori -3 siz -2 end -5 ff 9 > > > > > > > > > > = > > > > > > > > > > ; 1 C C C C C C C C C C A
Parts (A) and (B) of Figure 4.343 respectively show the initial and final graph. Since we use the NVERTEX graph property the vertices of the final graph are stressed in bold. Since we also use the NCC graph property we show the unique connected component of the final graph. An arc between two vertices indicates that two rectangles are in contact. Figure 4.344 shows the rectangles associated to the example. One can observe that:

• Rectangle 2 touch rectangle 1,

• Rectangle 1 touch rectangle 2 and rectangle 4,

• Rectangle 4 touch rectangle 1 and rectangle 3,

• Rectangle 3 touch rectangle 4. 

Usage

In floor planning problem there is a typical constraint, which states that one should be able to access every room from any room.

See also two orth are in contact.

Key words

geometrical constraint, touch, contact, non-overlapping, orthotope.

path from to

Origin [START_REF] Althaus | SCIL-symbolic constraints in integer linear programming[END_REF] Constraint path from to(FROM, TO, NODES)

Usual name path

Argument(s) FROM : int TO : int NODES : collection(indexint, succsvar)

Restriction(s) FROM ≥ 1 FROM ≤ |NODES| TO ≥ 1 TO ≤ |NODES| required(NODES, [index, succ]) NODES.index ≥ 1 NODES.index ≤ |NODES| distinct(NODES, index)

Purpose

Select some arcs of a digraph G so that there is still a path between two given vertices of G.

Arc input(s) NODES

Arc generator CLIQUE → collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) in set(nodes2.index, nodes1.succ)

Graph property(ies)

PATH FROM TO(index, FROM, TO) = 1

Example path from to • The vertices which respectively correspond to the start and the end of the required path are stressed in bold.

0 B B B B @ 4, 3, 8 > > > > < > > > > : index -1 succ -∅, index -2 succ -∅, index -3 succ -{5}, index -4 succ -{5}, index -5 succ -{2, 3} 9 > > > > = > > > > ; 1 C C C C A Part (A) of
• The arcs on the required path are also stressed in bold.

The path from to constraint holds since there is a path from vertex 4 to vertex 3 (4 and 3 refer to the index attribute of a vertex).

Signature

Since the maximum value returned by the graph property PATH FROM TO is equal to 1 we can rewrite PATH FROM TO(index, FROM, TO) = 1 to PATH FROM TO(index, FROM, TO) ≥ 1.

Therefore we simplify PATH FROM TO to PATH FROM TO.

See also

temporal path, link set to booleans.

Key words

graph constraint, path, linear programming, constraint involving set variables.

pattern

Origin [START_REF] Bourdais | HIBISCUS: A constraint programming application to staff scheduling in health care[END_REF] Constraint pattern(VARIABLES, PATTERNS) 

Purpose

We quote the definition from the original paper [34, page 157] introducing the pattern constraint.

We call a k-pattern any sequence of k elements such that no two successive elements have the same value. Consider a set V = {v1, v2, . . . , vm} and a sequence s = s1, s2, . . . , sn of elements of V . Consider now the sequence vi 1 , vi 2 , . . . , vi l of the types of the successive stretches that appear in s. Let P be a set of k-pattern. Vector s satisfies P if and only if every subsequence of k elements in vi 1 , vi 2 , . . . , vi l belongs to P.

Example pattern 0 B B B B B B B B B B B B B B B B @ 8 > > > > > > > > > > < > > > > > > > > > > : var -1, var -1, var -2, var -2, var -2, var -1, var -3, var -3 9 > > > > > > > > > > = > > > > > > > > > > ; , 8 < : pat -{var -1, var -2, var -1}, pat -{var -1, var -2, var -3}, pat -{var -2, var -1, var -3} 9 
= ; 1 C C C C C C C C C C C C C C C C A

Usage

The pattern constraint was originally introduced within the context of staff scheduling. In this context, the value of the i th variable of the VARIABLES collection corresponds to the type of shift performed by a person on the i th day. A stretch is a maximum sequence of consecutive variables which are all assigned to the same value. The pattern constraint imposes that each sequence of k consecutive stretches belongs to a given list of patterns.

Remark

A generalization of the pattern constraint to the regular constraint enforcing the fact that a sequence of variables corresponds to a regular expression is presented in [5].

See also stretch path, sliding distribution, group.

peak

Origin Derived from inflexion.

Constraint peak(N, VARIABLES)

Argument(s) N : dvar VARIABLES : collection(vardvar)

Restriction(s) N ≥ 0 2 * N ≤ max(|VARIABLES| -1, 0) required(VARIABLES, var) Purpose A variable V k (1 < k < m)
of the sequence of variables VARIABLES = V1, . . . , Vm is a peak if and only if there exist an i (1

< i ≤ k) such that Vi-1 < Vi and Vi = Vi+1 = . . . = V k and V k > V k+1
. N is the total number of peaks of the sequence of variables VARIABLES.

Example peak

0 B B B B B B B B B B @ 2, 8 > > > > > > > > > > < > > > > > > > > > > : var -1, var -1, var -4, var -8, var -6, var -2, var -7, var -1 9 > > > > > > > > > > = > > > > > > > > > > ; 1 C C C C C C C C C C A
The previous constraint holds since the sequence 1 1 4 8 6 2 7 1 contains two peaks which correspond to the variables which are assigned to values 8 and 7. 

(VARi > VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi < VARi+1 ⇔ Si = 2). VAR > VAR i i+1 VAR = VAR i i+1 VAR = VAR i i+1 i i+1 VAR < VAR VAR < VAR i i+1 u t: N=C $ $ VAR > VAR , i i+1 {C=C+1} {C=0} s Figure 4.347: Automaton of the peak constraint Q =s 0 C =0 0 C 1 Q 1 VAR 1 S 1 VAR 2 S 2 VAR n VAR 3 S n-1 VAR n-1 S 3 Q 2 C 2 Q =t n-1 C =N n-1

Usage

Useful for constraining the number of peaks of a sequence of domain variables.

Remark

Since the arity of the arc constraint is not fixed, the peak constraint cannot be currently described. However, this would not hold anymore if we were introducing a slot that specifies how to merge adjacent vertices of the final graph.

See also no peak, inflexion, valley.

Key words

sequence, automaton, automaton with counters, sliding cyclic(1) constraint network(2). 3,

8 > > > > > > > > > > < > > > > > > > > > > : var -1, var -1, var -4, var -1, var -1, var -4, var -1, var -1 9 > > > > > > > > > > = > > > > > > > > > > ; , = 1 C C C C C C C C C C A
The smallest period of the previous sequence is equal to 3.

Algorithm

When CTR corresponds to the equality constraint, a potentially incomplete filtering algorithm based on 13 deductions rules is described in [START_REF] Beldiceanu | The period constraint[END_REF]. The generalization of these rules to the case where CTR is not the equality constraint is discussed.

See also period except 0.

Key words

predefined constraint, periodic, timetabling constraint, scheduling constraint, sequence, border.

period except 0

Origin Derived from period. 3,

Constraint

8 > > > > > > > > > > < > > > > > > > > > > : var -1, var -1, var -4, var -1, var -1, var -0, var -1, var -1 9 > > > > > > > > > > = > > > > > > > > > > ; , = 1 C C C C C C C C C C A
Since value 0 is considered as a joker the fact that 4 is different from 0 does not matter. Therefore, the smallest period of the previous sequence is equal to 3.

Usage

Useful for timetabling problems where a person should repeat some work pattern over an over except when he is unavailable for some reason. The value 0 represents the fact that he is unavailable, while the other values are used in the work pattern.

Algorithm

See [START_REF] Beldiceanu | The period constraint[END_REF].

See also period.

Key words

predefined constraint, periodic, timetabling constraint, scheduling constraint, sequence, joker value. 

Purpose

For each pair of orthotopes (O1, O2) of the collection ORTHOTOPES, O1 and O2 do not overlap (two orthotopes do not overlap if there exists at least one dimension where their projections do not overlap). In addition, each orthotope of the collection ORTHOTOPES should be supported by one other orthotope or by the ground. The vertical dimension is given by the parameter VERTICAL DIM. 

Arc input(s) ORTHOTOPES

> > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > : orth -  ori -1 siz -3 end -4, ori -1 siz -2 end -3 ff , orth -  ori -1 siz -2 end -3, ori -3 siz -3 end -6 ff , orth -  ori -5 siz -6 end -11, ori -1 siz -2 end -3 ff , orth -  ori -5 siz -2 end -7, ori -3 siz -2 end -5 ff , orth -  ori -8 siz -3 end -11, ori -3 siz -2 end -5 ff , orth -  ori -8 siz -2 end -10, ori -5 siz -2 end -7 ff 9 > > > > > > > > > > > > > > > > > > = > > > > > > > > > > > > > > > > > > ; , 2 
1 C C C C C C C C C C C C C C C C C C A
Parts (A) and (B) of Figure 4.349 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold. Figure 4.350 depicts the placement associated to the example. 

Graph model

The arc constraint of the graph constraint enforces one of the following conditions:

• If the arc connects the same orthotope O then the ground directly supports O,

• Otherwise, if we have an arc from a orthotope O1 to a distinct orthotope O2, the condition is: O1 is on top of O2 (i.e. in all dimensions, except dimension VERTICAL DIM, the projection of O1 is included in the projection of O2, while in dimension VERTICAL DIM the projection of O1 is located after the projection of O2).

Usage

The diffn constraint is not enough if one wants to produce a placement where no orthotope floats in the air. This constraint is usually handled with a heuristic during the enumeration phase.

See also orth on top of orth, orth on the ground.

polyomino

Origin

Inspired by [START_REF] Golomb | Polyominoes[END_REF]. Enforce all cells of the collection CELLS to be connected. Each cell is defined by the following attributes: Purpose 1. The index attribute of the cell, which is an integer between 1 and the total number of cells, is unique for each cell.

Constraint

2. The right attribute, which is the index of the cell located immediately to the right of that cell (or 0 if no such cell exists).

3. The left attribute, which is the index of the cell located immediately to the left of that cell (or 0 if no such cell exists).

4. The up attribute, which is the index of the cell located immediately on top of that cell (or 0 if no such cell exists).

5. The down attribute, which is the index of the cell located immediately above that cell (or 0 if no such cell exists). This corresponds to a polyomino [START_REF] Golomb | How to number a graph[END_REF]. 

Arc input(s) CELLS

Graph model

The graph constraint models the fact that all the cells are connected. We use the CLIQUE ( =) arc generator in order to only consider connections between two distinct cells. 

Purpose

Constrains that there exist between ATLEAST and ATMOST sequences of SEQ consecutive variables of the collection VARIABLES such that the sum of the variables is in interval [LOW, UP].

Arc input(s) VARIABLES

Arc generator PATH → collection

Arc arity SEQ

Arc constraint(s)

• sum ctr(collection, ≥, LOW)

• sum ctr(collection, ≤, UP)

Graph property(ies)

• NARC ≥ ATLEAST • NARC ≤ ATMOST Example relaxed sliding sum 0 B B B B B B B B @
3, 4, 3, 7, 4,

8 > > > > > > > > < > > > > > > > > : var -2, var -4, var -2, var -0, var -0, var -3, var -4 9 > > > > > > > > = > > > > > > > > ; 1 C C C C C C C C A
The final directed hypergraph associated to the previous example is given by Figure 4.355. For each vertex of the graph we show its corresponding position within the collection of variables. The constraint associated to each arc corresponds to a conjunction of two sum ctr constraints involving 4 consecutive variables. We did not put vertex 1 since the single arc constraint that mentions vertex 1 does not hold (i.e. the sum 2 + 4 + 2 + 0 = 8 is not located in interval [3,[START_REF] Rochart | Explanations for global constraints: instrumenting the stretch constraint[END_REF]). However, the directed hypergraph contains 3 arcs, so the relaxed sliding sum constraint is satisfied since it was requested to have between 3 and 4 arcs. See also sliding sum, sum ctr.

Key words

sliding sequence constraint, soft constraint, relaxation, sequence, hypergraph. 

Purpose

The variables of the VARIABLES2 collection correspond to the variables of the VARIABLES1 collection according to a permutation.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT → collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies)

• for all connected components:

NSOURCE = NSINK • NSOURCE = |VARIABLES1| • NSINK = |VARIABLES2| Example same 0 B B B B B B B B B B B B B B B B B B @ 8 > > > > > > < > > > > > > : var -1, var -9, var -1, var -5, var -2, var -1 9 > > > > > > = > > > > > > ; , 8 > > > > > > < > > > > > > : var -9, var -1, var -1, var -1, var -2, var -5 9 > > > > > > = > > > > > > ; 1 C C C C C C C C C C C C C C C C C C A
Parts (A) and (B) of Figure 4.356 respectively show the initial and final graph. Since we use the NSOURCE and NSINK graph properties, the source and sink vertices of the final graph are stressed with a double circle. Since there is a constraint on each connected component of the final graph we also show the different connected components. Each of them corresponds to an equivalence class according to the arc constraint. The same constraint holds since:

• Each connected component of the final graph has the same number of sources and of sinks.

• The number of sources of the final graph is equal to |VARIABLES1|.

• The number of sinks of the final graph is equal to |VARIABLES2|. 

Automaton

To each item of the collection VARIABLES1 corresponds a signature variable Si, which is equal to 0. To each item of the collection VARIABLES2 corresponds a signature variable S i+|VARIABLES1| , which is equal to 1.

Usage

The same constraint can be used in the following contexts:

• Pairing problems taken from [START_REF] Beldiceanu | Filtering algorithms for the same constraint[END_REF]. The organization Doctors Without Borders has a list of doctors and a list of nurses, each of whom volunteered to go on one mission in the next year. Each volunteer specifies a list of possible dates and each mission involves one doctor and one nurse. The task is to produce a list of pairs such that each pair includes a doctor and a nurse who are available at the same date and each volunteer appears in exactly one pair. The problem is modelled by a same (D = d1, d2, . . . , dm, N = n1, n2, . . . , nm) constraint where each doctor is respresented by a domain variable in D and each nurse by a domain variable in N . For a given doctor or nurse the corresponding domain variable gives the dates when the person is available. When the number of nurses is different from the number of doctors we replace the same constraint by a used by constraint.

• Timetabling problems where we wish to produce fair schedules for different persons is a second use of the same constraint. Assume we need to generate a plan over a period of D consecutive days for P persons. For each day d and each person p we need to decide whether person p works in the morning shift, in the afternoon shift, in the night shift or does not work at all on day d. In a fair schedule, the number of morning shifts should be the same for all the persons. The same condition holds for the afternoon and the night shifts as well as for the days off. We create for each person p the sequence of variables vp, 1, vp,2, . . . , vp,D. vp,D is equal to one of 0, 1, 2 and 3, depending on whether person p does not work, works in the morning, in the afternoon or during the night on day d. We can use P -1 same constraints to express the fact that v1,1, v1,2, . . . , v1,D should be a permutation of vp,1, vp,2, . . . , vp,D for each (1 < p ≤ P ).

• The same constraint can also be used as a chanelling constraint for modelling the following recurring pattern: Given the number of 1s in each line and each column of a 0-1 matrix M with n lines and m columns, reconstruct the matrix. This pattern usually occurs with additional constraints about compatible positions of the 1s, or about the overall shape reconstructed from all the 1's (e.g. convexity, connectivity). If we restrict ourself to the basic pattern there is an O(mn) algorithm for reconstructing a m • n matrix from its horizontal and vertical directions [START_REF] Gale | A theorem on flows in networks[END_REF]. We show how to model this pattern with the same constraint. Let li (1 ≤ i ≤ n) and cj (1 ≤ j ≤ m) denote respectively, the required number of 1s in the ith line and the jth column of M. We number the entries of the matrix as shown in the left-hand side of 4.358. For line i we create li domain variables v ik where k ∈ [1, li]. Similarly, for each column j we create cj domain variables u jk where k ∈ [1, ci]. The domain of each variable contains the set of entries that belong to the row or column that the variable corresponds to. Thus, each domain variable represents a 1 which appears in the designated row or column. Let V be the set of variables corresponding to rows and U be the set of variables corresponding to columns. To make sure that each 1 is placed in a different entry, we impose the constraint alldifferent(U). In addition, the constraint same(U, V) enforces that the 1s exactly coincide on the lines and the columns. A solution is shown on the right-hand side of 4.358. Note that the same and global cardinality constraint allows to model the matrix reconstruction problem without the additional alldifferent constraint.

Remark

The same constraint is a relaxed version of the sort constraint introduced in [START_REF] Older | Getting to the real problem: Experience with BNR Prolog in OR[END_REF]. We don't enforce the second collection of variables to be sorted in increasing order.

If we interpret the collections VARIABLES1 and VARIABLES2 as two multisets variables [START_REF] Kızıltan | Constraint programming with multisets[END_REF], the same constraint can be considered as an equality constraint between two multisets variables.

The same constraint can be modeled by two global cardinality constraints. For instance, the same constraint

i i 1, {c[VAR ]=c[VAR ]-1} i i 1, {c[VAR ]=c[VAR ]-1} 0, {c[VAR ]=c[VAR ]+1} i i i $ arith(C,= ,0) t: 
s same( [5,[START_REF] Simonis | Complex constraint abstraction: Global constraint visualization[END_REF]3,8], [3,5,[START_REF] Simonis | Complex constraint abstraction: Global constraint visualization[END_REF]8]) where the union of the domains of the different variables is {1, 2, 3, 4} corresponds to the conjunction of the following two global cardinality constraints:

{C[_]=0}
u u u u v v v v in {1,5} in {3,7} in {2,6} in {4,8} v v v v
global cardinality 0 B B B B @ ˘var -x1, var -x2 ¯, 8 > > < > > : val -1 noccurrence -c1, val -2 noccurrence -c2, val -3 noccurrence -c3, val -4 noccurrence -c4 9 > > = > > ; 1 C C C C A global cardinality 0 B B B B @ ˘var -y1, var -y2 ¯, 8 > > < > > : val -1 noccurrence -c1, val -2 noccurrence -c2, val -3 noccurrence -c3, val -4 noccurrence -c4 9 > > = > > ; 1 C C C C A
As shown by the next example, the consistency for all variables of the two global cardinality constraints does not implies consistency for the corresponding same constraint. This is for instance the case when the domains of x1, x2, y1 and y2 is respectively equal to {1, 2}, {3, 4}, {1, 2, 3, 4} and {3, 4}. The conjunction of the two global cardinality constraints does not remove values 3 and 4 from y1.

In his PhD thesis, W.-J. van Hoeve introduces a soft version of the same constraint where the cost is the minimum number of variables to unassign in order to get back to a solution [104, page 78]. In the context of the same constraint this violation cost corresponds to the difference between the number of variables in VARIABLES1 and the number of values which both occur in VARIABLES1 and in VARIABLES2 (provided that one value of VARIABLES1 matches at most one value of VARIABLES2).

Algorithm

In [START_REF] Beldiceanu | Filtering algorithms for the same and usedby constraints[END_REF], [START_REF] Beldiceanu | Filtering algorithms for the same constraint[END_REF] and [START_REF] Beldiceanu | Filtering algorithms for the same and usedby constraints[END_REF] it is shown how to model this constraint by a flow network that enables to compute arc-consistency and bound-consistency. Unlike the networks used for alldifferent and global cardinality, the network now has three sets of nodes, so the algorithms are more complex, in particular the efficient bound-consistency algorithm.

See also colored matrix, correspondence, same interval, same modulo, same partition, same and global cardinality, same intersection.

Example

same and global cardinality

0 B B B B B B B B B B B B B B B B B B B B B B B B B B B B @ 8 > > > > > > < > > > > > > : var -1, var -9, var -1, var -5, var -2, var -1 9 > > > > > > = > > > > > > ; , 8 > > > > > > < > > > > > > : var -9, var -1, var -1, var -1, var -2, var -5 9 > > > > > > = > > > > > > ; , 8 > > > > < > > > > : val -1 noccurrence -3, val -2 noccurrence -1, val -5 noccurrence -1, val -7 noccurrence -0, val -9 noccurrence -1 9 > > > > = > > > > ; 1 C C C C C C C C C C C C C C C C C C C C C C C C C C C C A
Parts (A) and (B) of Figure 4.359 respectively show the initial and final graph associated to the first graph constraint. Since we use the NSOURCE and NSINK graph properties, the source and sink vertices of the final graph are stressed with a double circle.

Since there is a constraint on each connected component of the final graph we also show the different connected components. Each of them corresponds to an equivalence class according to the arc constraint. The same and global cardinality constraint holds since:

• The values 1, 9, 1, 5, 2, 1 assigned to |VARIABLES1| correspond to a permutation of the values 9, 1, 1, 1, 2, 5 assigned to |VARIABLES2|.

• The values 1, 2, 5, 7 and 6 are respectively used 3, 1, 1, 0 and 1 times. 

Usage

The same and global cardinality constraint can be used for modeling the following assignment problem with one single constraint. The organization Doctors Without Borders has a list of doctors and a list of nurses, each of whom volunteered to go on one rescue mission. Each volunteer specifies a list of possible dates and each mission should include one doctor and one nurse. In addition we have for each date the minimum and maximum number of missions that should be effectively done. The task is to produce a list of pairs such that each pair includes a doctor and a nurse who are available on the same date and each volunteer appears in exactly one pair so that for each day we build the required number of missions.

Algorithm

In [START_REF] Beldiceanu | Gcc-like restrictions on the same constraint[END_REF], the flow network that was used to model the same constraint [START_REF] Beldiceanu | Filtering algorithms for the same and usedby constraints[END_REF][START_REF] Beldiceanu | Filtering algorithms for the same constraint[END_REF] is extended to support the cardinalities. Then, algorithms are developed to compute arc-consistency and bound-consistency.

See also same, global cardinality.

Key words

constraint between two collections of variables, value constraint, permutation, multiset, equality between multisets, assignment, demand profile. > > > > > > < > > > > > > :

var -1, var -9, var -1, var -5, var -2, var -1 9 > > > > > > = > > > > > > ; , 8 > > > > > > > > < > > > > > > > > : var -9, var -1, var -1, var -1, var -3, var -5, var -8 9 > > > > > > > > = > > > > > > > > ; 1 C C C C C C C C C C C C C C C C C C C C A
Parts (A) and (B) of Figure 4.360 respectively show the initial and final graph. The same intersection constraint holds since each connected component of the final graph has the same number of sources and sinks. Note that all the vertices corresponding to the variables that take values 2, 3 or 8 were removed from the final graph since there is no arc for which the associated equality constraint holds.

See also same, common, alldifferent on intersection, nvalue on intersection.

Key words

constraint between two collections of variables, constraint on the intersection. var -1, var -7, var -6, var -0, var -1, var -7

9 > > > > > > = > > > > > > ; , 8 > > > > > > < > > > > > > : var -8, var -8, var -8, var -0, var -1, var -2 9 > > > > > > = > > > > > > ; , 3 
1 C C C C C C C C C C C C C C C C C C A
In the previous example, the third parameter SIZE INTERVAL defines the following family of intervals

[3 • k, 3 • k + 2],
where k is an integer. Parts (A) and (B) of Figure 4.361 respectively show the initial and final graph. Since we use the NSOURCE and NSINK graph properties, the source and sink vertices of the final graph are stressed with a double circle. Since there is a constraint on each connected component of the final graph we also show the different connected components. Each of them corresponds to an equivalence class according to the arc constraint. The same interval constraint holds since:

• Each connected component of the final graph has the same number of sources and of sinks.

• The number of sources of the final graph is equal to |VARIABLES1|.

• The number of sinks of the final graph is equal to |VARIABLES2|. 

Algorithm

See algorithm of the same constraint.

See also same.

Key words

constraint between two collections of variables, permutation, interval.

> > > > > > < > > > > > > : var -1, var -9, var -1, var -5, var -2, var -1 9 > > > > > > = > > > > > > ; , 8 > > > > > > < > > > > > > : var -6, var -4, var -1, var -1, var -5, var -5 9 > > > > > > = > > > > > > ; , 3 
1 C C C C C C C C C C C C C C C C C C A
Parts (A) and (B) of Figure 4.362 respectively show the initial and final graph. Since we use the NSOURCE and NSINK graph properties, the source and sink vertices of the final graph are stressed with a double circle. Since there is a constraint on each connected component of the final graph we also show the different connected components. Each of them corresponds to an equivalence class according to the arc constraint. The same modulo constraint holds since:

• Each connected component of the final graph has the same number of sources and of sinks.

• The number of sources of the final graph is equal to |VARIABLES1|.

• The number of sinks of the final graph is equal to |VARIABLES2|. See also same.

Key words

constraint between two collections of variables, permutation, modulo.

> > > > > > < > > > > > > : var -1, var -2, var -6, var -3, var -1, var -2 9 > > > > > > = > > > > > > ; , 8 > > > > > > < > > > > > > : var -6, var -6, var -2, var -3, var -1, var -3 9 > > > > > > = > > > > > > ; , 8 < : p -{val -1, val -3}, p -{val -4}, p -{val -2, val -6} 9 
= ; 1 C C C C C C C C C C C C C C C C C C C C C C C C A
Parts (A) and (B) of Figure 4.363 respectively show the initial and final graph. Since we use the NSOURCE and NSINK graph properties, the source and sink vertices of the final graph are stressed with a double circle. Since there is a constraint on each connected component of the final graph we also show the different connected components. Each of them corresponds to an equivalence class according to the arc constraint. The same partition constraint holds since:

• Each connected component of the final graph has the same number of sources and of sinks.

• The number of sources of the final graph is equal to |VARIABLES1|.

• The number of sinks of the final graph is equal to |VARIABLES2|. See also same, in same partition.

Key words

constraint between two collections of variables, permutation, partition. 

> > > > > > > > > > > > < > > > > > > > > > > > > : index -1 next -1, index -2 next -8, index -3 next -3, index -4 next -5, index -5 next -5, index -6 next -7, index -7 next -7, index -8 next -8, index -9 next -9 9 > > > > > > > > > > > > = > > > > > > > > > > > > ; 1 C C C C C C C C C C C C A
Parts (A) and (B) of Figure 4.364 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold. Figure 4.365 gives the folded sequence associated to the previous example. Each number represents the index of an item. 

Graph model

In the list of restrictions note the increasing statement which imposes the items of the LETTERS collection to be ordered in increasing order of their index attribute. This is used so that the arc generator CLIQUE (<) only generates arcs between vertices for which the indices are increasing. The arc constraint of the second graph constraint avoids the following conditions to be both true:

• The second letter is located before the letter associated to the first letter,

• The letter associated to the second letter is located after the letter associated to the first letter.

Observe that, from the previous remark, we know that the first letter is located before the second letter. The graph property enforces all arcs constraints to hold. 

Signature

(INDEXi ≤ NEXTi) ∧ (INDEXj ≤ NEXTj) ∧ (NEXTi ≤ NEXTj ) ⇔ Si,j = 0 ∧ (INDEXi ≤ NEXTi) ∧ (INDEXj ≤ NEXTj) ∧ (NEXTi > INDEXj ) ∧ (NEXTj ≤ NEXTi) ⇔ Si,j = 1.
NEXT <=NEXT 

Usage

Motivated by RNA folding [START_REF] Flamm | RNA in silico: The computational biology of RNA secondary structures[END_REF].

Key words decomposition, geometrical constraint, sequence, bioinformatics, automaton, automaton without counters. 

set value precede

Purpose

If there exists a set variable v1 of VARIABLES such that S does not belong to v1 and T does, then there also exists a set variable v2 preceding v1 such that S belongs to v2 and T does not.

Example

set value precede

0 B B @ 2, 1, 8 > > < > > : var -{0, 2}, var -{0, 1}, var -∅, var -{1} 9 > > = > > ; 1 C C A
The set value precede constraint holds since the first occurrence of value 2 precedes the first occurrence of value 1.

Algorithm

A filtering algorithm for maintaining value precedence on a sequence of set variables is presented in [START_REF] Law | Global constraints for integer and set value precedence[END_REF]. Its complexity is linear to the number of variables of the collection VARIABLES.

See also int value precede. The difference between the end of the last task of a shift and the origin of the first task of a shift should not exceed the quantity MAX RANGE. Two tasks t1 and t2 belong to the same shift if at least one of the following conditions is true: Purpose

Key words

• Task t2 starts after the end of task t1 at a distance that is less than or equal to the quantity MIN BREAK,

• Task t1 starts after the end of task t2 at a distance that is less than or equal to the quantity MIN BREAK.

• Task t1 overlaps task t2.

Arc input(s) TASKS

Arc generator SELF → collection(tasks) 

8 > > > > < > > > > : id -1 origin -17 end -20, id -2 origin -7 end -10, id -3 origin -2 end -4, id -4 origin -21 end -22, id -5 origin -5 end -6 9 > > > > = > > > > ; 1 C C C C A
Parts (A) and (B) of Figure 4.367 respectively show the initial and final graph associated to the second graph constraint. Since we use the set generator CC we show the two connected components of the final graph. They respectively correspond to the two shifts which are displayed in Figure 4.368. Each task is drawn as a rectangle with its corresponding id in the middle. We indicate the distance between two consecutives tasks of a same shift and check that it is less than or equal to the value of the MIN BREAK parameter (6 in the example). Since each shift has a range that is less than or equal to the MAX RANGE parameter, the shift constraint holds (the range of a shift is the difference between the end of the last task of the shift and the origin of the first task of the shift). 

Graph model

The first graph constraint enforces the following two constraints between the attributes of each task:

• The end of a task should not be situated before its start,

• The duration of a task should not be greater than the MAX RANGE parameter.

The second graph constraint decomposes the final graph in connected components where each component corresponds to a given shift. Finally, the constraint(s) on sets field restricts the stretch of each shift.

Signature

Consider the first graph constraint. Since we use the SELF arc generator on the TASKS collection the maximum number of arcs of the final graph is equal to |TASKS|. Therefore we can rewrite the graph property NARC = |TASKS| to NARC ≥ |TASKS| and simplify NARC to NARC.

Usage

The shift constraint can be used in machine scheduling problems where one has to shut down a machine for maintenance purpose after a given maximum utilisation of that machine. In this case the MAX RANGE parameter indicates the maximum possible utilisation of the machine before maintenance, while the MIN BREAK parameter gives the minimum time needed for maintenance.

The shift constraint can also be used for timetabling problems where the rest period of a person can move in time. In this case MAX RANGE indicates the maximum possible working time for a person, while MIN BREAK specifies the minimum length of the break that follows a working time period.

See also sliding time window.

Key words

scheduling constraint, timetabling constraint, temporal constraint. 

8 > > > > > > > > < > > > > > > > > : var -2, var -2, var -4, var -5, var -2, var -7, var -4 9 > > > > > > > > = > > > > > > > > ; 1 C C C C C C C C A
The previous constraint holds since the constraint alldifferent(var -4, var -5, var -2, var -7) holds and since the following three constraints do not hold:

• alldifferent(var -2, var -2, var -4, var -5, var -2),

• alldifferent(var -2, var -4, var -5, var -2, var -7),

• alldifferent (var -4, var -5, var -2, var -7, var -4).

Graph model

Observe that this is an example of global constraint where the arc constraints don't have the same arity. However they correspond to the same type of constraint.

See also alldifferent, size maximal starting sequence alldifferent.

Key words

sliding sequence constraint, conditional constraint, sequence, hypergraph. 

8 > > > > > > > > < > > > > > > > > : var -9, var -2, var -4, var -5, var -2, var -7, var -4 9 > > > > > > > > = > > > > > > > > ; 1 C C C C C C C C A
The previous constraint holds since the constraint alldifferent(var -9, var -2, var -4, var -5) holds and since alldifferent(var -9, var -2, var -4, var -5, var -2) does not hold. Parts (A) and (B) of Figure 4.369 respectively show the initial and final graph.

Graph model

Observe that this is an example where the arc constraints don't have the same arity. However they correspond to the same constraint.

Remark

A conditional constraint [START_REF] Mittal | Dynamic constraint satisfaction problems[END_REF] with the specific structure that one can relax the constraints on the last variables of the collection VARIABLES.

See also alldifferent, size maximal sequence alldifferent.

Key words

sliding sequence constraint, conditional constraint, sequence, hypergraph. Let n be the total number of variables of the collection VARIABLES. A maximum non-zero set of consecutive variables Xi..Xj (1 ≤ i ≤ j ≤ n) is defined in the following way: Purpose

• All variables Xi, . . . , Xj take a non-zero value,

• i = 1 or Xi-1 is equal to 0,

• j = n or Xj+1 is equal to 0. Enforces that each maximum non-zero set of consecutive variables of the collection VARIABLES contains at least ATLEAST and at most ATMOST values from the collection of values VALUES. 2, 3,

Arc input(s) VARIABLES

8 > > > > > > > > > > > > < > > > > > > > > > > > > : var -0, var -7, var -2, var -9, var -0, var -0, var -9, var -4, var -9 9 > > > > > > > > > > > > = > > > > > > > > > > > > ; , {val -7, val -9} 1 C C C C C C C C C C C C C C A
Parts (A) and (B) of Figure 4.370 respectively show the initial and final graph. Since we use the set generator CC we show the two connected components of the final graph. Since these two connected components both contains between 2 and 3 variables which take there value in {7, 9} the sliding card skip0 constraint holds. 

Graph model

Note that the arc constraint will produce the different sequences of consecutives variables that do not contain any 0. The CC set generator produces all the connected components of the final graph.

Automaton

Figure 4.371 depicts the automaton associated to the sliding card skip0 constraint. To each variable VARi of the collection VARIABLES corresponds a signature variable Si. The following signature constraint links VARi and Si:

(VARi = 0) ⇔ Si = 0 ∧ (VARi = 0 ∧ VARi / ∈ VALUES) ⇔ Si = 1 ∧ (VARi = 0 ∧ VARi ∈ VALUES) ⇔ Si = 2.

Usage

This constraint is useful in timetabling problems where the variables are interpreted as the type of job that a person does on consecutive days. Value 0 represents a rest day and one imposes a cardinality constraint on periods that are located between rest periods. 

1 VAR 1 S 1 Q 1 VAR 2 S 2 VAR n S n Q =s 0 C =0 0 Q =t n C n
8 > > > > > > > > < > > > > > > > > : var -0, var -5, var -6, var -6, var -5, var -0, var -0 9 > > > > > > > > = > > > > > > > > ; , 8 > > > > < > > > > : val -0 omin -1 omax -2, val -1 omin -0 omax -4, val -4 omin -0 omax -4, val -5 omin -1 omax -2, val -6 omin -0 omax -2 9 > > > > = > > > > ; 1 C C C C C C C C C C C C C C C C C C A
The sliding distribution constraint holds since:

• On the first sequence of 4 consecutive variables 0566 values 0, 1, 4, 5 and 6 are respectively used 1, 0, 0, 1 and 2 times.

• On the second sequence of 4 consecutive variables 5665 values 0, 1, 4, 5 and 6 are respectively used 0, 0, 0, 2 and 2 times.

• On the third sequence of 4 consecutive variables 6650 values 0, 1, 4, 5 and 6 are respectively used 1, 0, 0, 1 and 2 times.

• On the third sequence of 4 consecutive variables 6500 values 0, 1, 4, 5 and 6 are respectively used 2, 0, 0, 1 and 1 times. 

8 > > > > > > > > < > > > > > > > > : var -1, var -4, var -2, var -0, var -0, var -3, var -4 9 > > > > > > > > = > > > > > > > > ; 1 C C C C C C C C A
The previous example considers all sliding sequences of 4 consecutive variables and constraints the sum to be between 3 and 7. The constraint holds since the sum associated to the different sequences are respectively 7, 6, 5 and 7.

Graph model

We use sum ctr as an arc constraint. sum ctr takes a collection of domain variables as its first argument.

Signature

Since we use the PATH arc generator with an arity of SEQ on the items of the VARIABLES collection, the expression |VARIABLES| -SEQ + 1 corresponds to the maximum number of arcs of the final graph. Therefore we can rewrite the graph property NARC = |VARIABLES| -SEQ + 1 to NARC ≥ |VARIABLES| -SEQ + 1 and simplify NARC to NARC. 

8 > > > > < > > > > : id -1 origin -10 duration -3, id -2 origin -5 duration -1, id -3 origin -6 duration -2, id -4 origin -14 duration -2, id -5 origin -2 duration -2 9 > > > > = > > > > ; 1 C C C C A
Parts (A) and (B) of Figure 4.373 respectively show the initial and final graph. In the final graph, the successors of a given task t correspond to the set of tasks that do not start before task t and intersect the time window that starts at the origin of task t.

The lower part of Figure 4.374 indicates the different tasks on the time axis. Each task is drawn as a rectangle with its corresponding identifier in the middle. Finally the upper part of Figure 4.374 shows the different time windows and the respective contribution of the tasks in these time windows. A line with two arrows depicts each time window. The two arrows indicate the start and the end of the time window. At the right of each time window we give its occupation. Since this occupation is always less than or equal to the limit 6, the sliding time window constraint holds.

Graph model

We generate an arc from a task t1 to a task t2 if task t2 does not start before task t1 and if task t2 intersects the time window that starts at the origin of task t1. Each set generated by SUCC corresponds to all tasks that intersect in time the time window that starts at the origin of a given task.

Usage

The sliding time window constraint is useful for timetabling problems in order to put an upper limit on the total work over sliding time windows.

See also

shift, sliding time window from start, sliding time window sum.

Key words

sliding sequence constraint, temporal constraint. 

sliding time window from start

8 > > > > < > > > > : id -1 origin -10 end -13 npoint -2, id -2 origin -5 end -6 npoint -3, id -3 origin -6 end -8 npoint -4, id -4 origin -14 end -16 npoint -5, id -5 origin -2 end -4 npoint -6 9 > > > > = > > > > ; 1 C C C C A
Parts (A) and (B) of Figure 4.376 respectively show the initial and final graph. In the final graph, the successors of a given task t correspond to the set of tasks that both do not end before the end of task t, and intersect the time window that starts at the end -1 of task t.

The lower part of Figure 4.377 indicates the different tasks on the time axis. Each task is drawn as a rectangle with its corresponding identifier in the middle. Finally the upper part of Figure 4.377 shows the different time windows and the respective contribution of the tasks in these time windows. A line with two arrows depicts each time window. The two arrows indicate the start and the end of the time window. At the right of each time window we give its occupation. Since this occupation is always less than or equal to the limit 16, the sliding time window sum constraint holds. 

Graph model

We generate an arc from a task t1 to a task t2 if task t2 does not end before the end of task t1 and if task t2 intersects the time window that starts at the last instant of task t1. Each set generated by SUCC corresponds to all tasks that intersect in time the time window that starts at instant end -1, where end is the end of a given task.

Signature

Consider the first graph constraint. Since we use the SELF arc generator on the TASKS collection the maximum number of arcs of the final graph is equal to |TASKS|. Therefore we can rewrite NARC = |TASKS| to NARC ≥ |TASKS| and simplify NARC to NARC.

Usage

This constraint may be used for timetabling problems in order to put an upper limit on the cumulated number of points in a shift.

See also sliding time window. 

Usage

This constraint is useful for the following problems:

• Assume that VARIABLES corresponds to the number of people that work on consecutive weeks. One may not normally increase or decrease too drastically the number of people from one week to the next week. With the smooth constraint you can state a limit on the number of drastic changes. You want to generate the orders in such a way that there is not a too big difference between the values of the attributes of two consecutives orders. If you can't achieve this on two given specific orders, this would imply a set-up or a cost. Again, with the smooth constraint, you can control this kind of drastic changes.

Q =s 0 C =0 0 C 1 Q 1 VAR 1 S 1 VAR 2 S 2 VAR n VAR 3 S 3 Q 2 C 2 S n-1 VAR n-1 Q =t n-1 C =NCHANGE n-1
Algorithm [65].

See also change.

Key words

timetabling constraint, number of changes, automaton, automaton with counters, sliding cyclic(1) constraint network(2). 

soft alldifferent ctr

Graph model

We generate an initial graph with binary equalities constraints between each vertex and its successors. We use the arc generator CLIQUE (<) in order to avoid counting twice the same equality constraint. The graph property states that C is equal to the number of equalities that hold in the final graph.

Usage

A soft alldifferent constraint.

Algorithm

Since it focus on the soft aspect of the alldifferent constraint, the original paper [START_REF] Petit | Specific filtering algorithms for overconstrained problems[END_REF] which introduces this constraint describes how to evaluate the minimum value of C and how to prune according to the maximum value of C. The corresponding filtering algorithm does not achieve arc-consistency. W.-J. van Hoeve [START_REF] Van Hoeve | A hyper-arc consistency algorithm for the soft alldifferent constraint[END_REF] presents a new filtering algorithm which achieves arc-consistency. This algorithm is based on a reformulation into a minimum-cost flow problem.

See also alldifferent, soft alldifferent var. 

Key words

Purpose

C is the minimum number of variables of the collection VARIABLES for which the value needs to be changed in order that all variables of VARIABLES take a distinct value. 

Arc input(s) VARIABLES

Graph model

We generate a clique with binary equalities constraints between each pairs of vertices (this include an arc between a vertex and itself) and we state that C is equal to the difference between the total number of variables and the number of strongly connected components.

Usage

A soft alldifferent constraint.

Remark

Since it focus on the soft aspect of the alldifferent constraint, the original paper [START_REF] Petit | Specific filtering algorithms for overconstrained problems[END_REF] which introduce this constraint describes how to evaluate the minimum value of C and how to prune according to the maximum value of C. 

soft same interval var

8 > > > > > > < > > > > > > : var -9, var -9, var -9, var -9, var -9, var -1 9 > > > > > > = > > > > > > ; , 8 > > > > > > < > > > > > > : var -9, var -1, var -1, var -1, var -1, var -8 9 > > > > > > = > > > > > > ; , 3 
1 C C C C C C C C C C C C C C C C C C 

Algorithm

See algorithm of the soft same var constraint.

See also same interval.

Key words

soft constraint, constraint between two collections of variables, relaxation, variable-based violation measure, interval. 4, 

soft same modulo var

Origin

8 > > > > > > < > > > > > > : var -9, var -9, var -9, var -9, var -9, var -1 9 > > > > > > = > > > > > > ; , 8 > > > > > > < > > > > > > : var -9, var -1, var -1, var -1, var -1, var -8 9 > > > > > > = > > > > > > ; , 3 
1 C C C C C C C C C C C C C C C C C C 

Algorithm

See algorithm of the soft same var constraint.

See also same modulo.

Key words

soft constraint, constraint between two collections of variables, relaxation, variable-based violation measure, modulo.

Example

soft same partition var 

0 B B B B B B B B B B B B B B B B B B B B B B B B @ 4, 8 > > > > > > < > > > > > > : var -9, var -9, var -9, var -9, var -9, var -1 9 > > > > > > = > > > > > > ; , 8 > > > > > > < > > > > > > : var -9, var -1, var -1, var -1, var -1, var -8 9 > > > > > > = > > > > > > ; , 8 < : p -{val -1, val -2}, p -{val -9}, p -{val -7, val -8} 9 
= ; 1 C C C C C C C C C C C C C C C C C C C C C C C C 

Algorithm

See algorithm of the soft same var constraint.

See also same partition.

Key words

soft constraint, constraint between two collections of variables, relaxation, variable-based violation measure, partition. 4, NSINK_NSOURCE=min(5,1)+min(1,4)=2 See also used by partition.

soft same var

8 > > > > > > < > > > > > > : var -9, var -9, var -9, var -9, var -9, var -1 9 > > > > > > = > > > > > > ; , 8 > > > > > > < > > > > > > : var -9, var -1, var -1, var -1, var -1, var -8 9 > > > > > > = > > > > > > ; 1 C C C C C C C C C C C C C C C C C C A 
B B B B B B B B B B B B @ 2, 8 > > > > < > > > > : var -9, var -1, var -1, var -8, var -8 9 > > > > = > > > > ; , 8 > > < > > : var -9, var -9, var -9, var -1 9 > > = > > ; , 3 1 C 
B B B B B B B B B B B B @ 2, 8 > > > > < > > > > : var -9, var -1, var -1, var -8, var -8 9 > > > > = > > > > ; , 8 > > < > > : var -9, var -9, var -9, var -1 9 > > = > > ; , 3 1 C 

Key words

soft constraint, constraint between two collections of variables, relaxation, variable-based violation measure, partition. 

soft used by var

B B B B B B B B B B B B @ 2, 8 > > > > < > > > > : var -9, var -1, var -1, var -8, var -8 9 > > > > = > > > > ; , 8 > > < > > : var -9, var -9, var -9, var -1 9 > > = > > ; 1 C C C C C C C C C C C C A 
= |VARIABLES2| -1 Example sort 0 B B B B B B B B B B B B B B B B B B @ 8 > > > > > > < > > > > > > : var -1, var -9, var -1, var -5, var -2, var -1 9 > > > > > > = > > > > > > ; , 8 > > > > > > < > > > > > > : var -1, var -1, var -1, var -2, var -5, var -9 9 > > > > > > = > > > > > > ; 1 C C C C C C C C C C C C C C C C C C A
Parts (A) and (B) of Figure 4.391 respectively show the initial and final graph associated to the first graph constraint. Since it uses the NSOURCE and NSINK graph properties, the source and sink vertices of this final graph are stressed with a double circle.

Since there is a constraint on each connected component of the final graph we also show the different connected components. The sort constraint holds since:

• Each connected component of the final graph of the first graph constraint has the same number of sources and of sinks.

• The number of sources of the final graph of the first graph constraint is equal to |VARIABLES1|.

• The number of sinks of the final graph of the first graph constraint is equal to |VARIABLES2|.

• Finally the second graph constraint holds also since its corresponding final graph contains exactly |VARIABLES1 -1| arcs: All the inequalities constraints between consecutive variables of VARIABLES2 holds. 

Remark

A variant of this constraint was introduced in [START_REF] Zhou | A permutation-based approach for solving the job-shop problem[END_REF]. In this variant an additional list of domain variables represents the permutation which allows to go from VARIABLES1 to VARIABLES2.

Algorithm [START_REF] Bleuzen-Guernalec | Narrowing a block of sortings in quadratic time[END_REF][START_REF] Mehlhorn | Faster algorithms for bound-consistency of the sortedness and the alldifferent constraint[END_REF].

See also same, sort permutation.

Key words

constraint between two collections of variables, sort, permutation.

var -1, var -9, var -1, var -5, var -2, var -1 9 > > > > > > = > > > > > > ; , 8 > > > > > > < > > > > > > : var -1, var -6, var -3, var -5, var -4, var -2 9 > > > > > > = > > > > > > ; , 8 > > > > > > < > > > > > > : var -1, var -1, var -1, var -2, var -5, var -9 9 > > > > > > = > > > > > > ; 1 C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C A
Parts (A) and (B) of Figure 4.392 respectively show the initial and final graph associated to the first graph constraint. In both graphs the source vertices correspond to the items of the derived collection FROM PERMUTATION, while the sink vertices correspond to the items of the TO collection. Since the first graph constraint uses the NARC graph property, the arcs of its final graph are stressed in bold. The sort permutation constraint holds since:

• The first graph constraint holds since its final graph contains exactly PERMUTATION arcs.

• Finally the second graph constraint holds also since its corresponding final graph contains exactly |PERMUTATION -1| arcs: All the inequalities constraints between consecutive variables of TO holds. Algorithm [START_REF] Zhou | A permutation-based approach for solving the job-shop problem[END_REF].

See also correspondence, sort.

Key words

constraint between three collections of variables, sort, permutation, derived collection.

stage element

Origin CHOCO, derived from element. 

Constraint

Graph model

The first graph constraint models the restrictions on the low and up attributes of the 

B B B B B B B B B B B B B B B B B B @ 8 > > > > > > > > > > < > > > > > > > > > > : var -6, var -6, var -3, var -1, var -1, var -1, var -6, var -6 9 > > > > > > > > > > = > > > > > > > > > > ; , 8 > > < > > : val -1 lmin -2 lmax -4, val -2 lmin -2 lmax -3, val -3 lmin -1 lmax -6, val -6 lmin -2 lmax -4 9 > > = > > ; 1 C C C C C C C C C C C C C C C C C C A
Part (A) of Figure 4.396 shows the initial graphs associated to values 1, 2, 3 and 6. Part (B) of Figure 4.396 shows the final graphs associated to values 1, 3 and 6. Since value 2 is not assigned to any variable of the VARIABLES collection the final graph associated to value 2 is empty. The stretch circuit constraint holds since:

• For value 1 we have one connected component for which the number of vertices is greater than or equal to 2 and less than or equal to 4,

• For value 2 we don't have any connected component,

• For value 3 we have one connected component for which the number of vertices is greater than or equal to 1 and less than or equal to 6,

• For value 6 we have one connected component for which the number of vertices is greater than or equal to 2 and less than or equal to 4. 

Usage

The paper [START_REF] Pesant | A filtering algorithm for the stretch constraint[END_REF] which originally introduced the stretch constraint quotes rostering problems as typical examples of use of this constraint.

Remark

We split the origin stretch constraint into the stretch circuit and the stretch path constraints which respectively use the PATH LOOP and CIRCUIT LOOP arc generator. We also reorganize the parameters: the VALUES collection describes the attributes of each value that can be assigned to the variables of the stretch circuit constraint.

Finally we skipped the pattern constraint which tells what values can follow a given value.

Algorithm

A first filtering algorithm was described in the original paper of G. Pesant [START_REF] Pesant | A filtering algorithm for the stretch constraint[END_REF]. An algorithm which also generates explanations is given in [START_REF] Rochart | Explanations for global constraints: instrumenting the stretch constraint[END_REF]. The first filtering algorithm achieving arc-consistency is depicted in [START_REF] Hellsten | A domain consistency algorithm for the stretch constraint[END_REF]. This algorithm is based on dynamic programming and handles the fact that some values can be followed by only a given subset of values.

See also stretch path, sliding distribution, group, pattern.

Key words

timetabling constraint, sliding sequence constraint, cyclic.

Example

stretch path 0 B B B B B B B B B B B B B B B B B B @ 8 > > > > > > > > > > < > > > > > > > > > > : var -6, var -6, var -3, var -1, var -1, var -1, var -6, var -6 9 > > > > > > > > > > = > > > > > > > > > > ; , 8 > > < > > : val -1 lmin -2 lmax -4, val -2 lmin -2 lmax -3, val -3 lmin -1 lmax -6, val -6 lmin -2 lmax -2 9 > > = > > ; 1 C C C C C C C C C C C C C C C C C C A
Part (A) of Figure 4.397 shows the initial graphs associated to values 1, 2, 3 and 6. Part (B) of Figure 4.397 shows the final graphs associated to values 1, 3 and 6. Since value 2 is not assigned to any variable of the VARIABLES collection the final graph associated to value 2 is empty. The stretch path constraint holds since:

• For value 1 we have one connected component for which the number of vertices 3 is greater than or equal to 2 and less than or equal to 4,

• For value 2 we don't have any connected component,

• For value 3 we have one connected component for which the number of vertices 1 is greater than or equal to 1 and less than or equal to 6,

• For value 6 we have two connected components which both contain two vertices: This is greater than or equal to 2 and less than or equal to 2. 

Graph model

During the presentation of this constraint at CP'2001 the following point was mentioned: It could be useful to allow domain variables for the minimum and the maximum values of a stretch. This could be achieved in the following way: The lmin (respectively lmax) attribute would now be a domain variable which gives the size of the shortest (respectively longest) stretch. Finally within the graph property(ies) field we would replace ≥(and ≤) by =.

Usage

The paper [START_REF] Pesant | A filtering algorithm for the stretch constraint[END_REF] which originally introduced the stretch constraint quotes rostering problems as typical examples of use of this constraint.

Remark

We split the original stretch constraint into the stretch path and the stretch circuit constraints which respectively use the PATH LOOP and CIRCUIT LOOP arc generator. We also reorganize the parameters: the VALUES collection describes the attributes of each value that can be assigned to the variables of the stretch path constraint. Finally we skipped the pattern constraint which tells what values can follow a given value.

Algorithm

A first filtering algorithm was described in the original paper of G. Pesant [START_REF] Pesant | A filtering algorithm for the stretch constraint[END_REF]. A second filtering algorithm, based on dynamic programming, achieving arc-consistency is depicted in [START_REF] Hellsten | A domain consistency algorithm for the stretch constraint[END_REF]. It also handles the fact that some values can be followed by only a given subset of values.

See also stretch circuit, sliding distribution, group, pattern.

Key words

timetabling constraint, sliding sequence constraint.

strict lex2

Origin [START_REF] Flener | Breaking row and column symmetries in matrix models[END_REF] Constraint strict lex2(MATRIX) 

Purpose

The variables of the collection VARIABLES are strictly decreasing. See also decreasing, increasing, strictly increasing.

Arc input(s) VARIABLES

Key words

decomposition, order constraint, automaton, automaton without counters, sliding cyclic(1) constraint network(1). See also increasing, decreasing, strictly decreasing.

1 VAR 2 S 2 VAR n VAR 3 S 3 Q 2 S n-1 VAR n-1 Q =t n-1 Q =s 0 Q 1 S 1

Key words

decomposition, order constraint, automaton, automaton without counters, sliding cyclic(1) constraint network(1). 

VAR 1 VAR 2 S 2 VAR n VAR 3 S 3 Q 2 S n-1 VAR n-1 Q =t n-1 Q =s 0 Q 1 S 1
B B B B @ 8 > > > > < > > > > : index -1 succ -{2}, index -2 succ -{3}, index -3 succ -{2, 5}, index -4 succ -{1}, index -5 succ -{4} 9 > > > > = > > > > ; 1 C C C C A Part (A) of

sum

Origin [START_REF] Tallys | On the sum constraint: Relaxation and applications[END_REF]. 

Constraint

ind -8 set -{2, 3}, ind -1 set -{3}, ind -3 set -{1, 4, 5}, ind -6 set -{2, 4} 9 > > = > > ; , 8 > > > > < > > > > : cst -4, cst -9, cst -1, cst -3, cst -1 9 > > > > = > > > > ; , 10 1 C 

Graph model

According to the value assigned to INDEX the arc constraint selects for the final graph:

• The INDEX th item of the SETS collection,

• The items of the CONSTANTS collection for which the key correspond to the indices of the INDEX th set of the SETS collection.

Finally, since we use the SUM graph property on the cst attribute of the CONSTANTS collection, the last argument S of the sum constraint is equal to the sum of the constants associated to the vertices of the final graph.

Usage

In his paper introducing the sum constraint, Tallys H. Yunes mentions the Sequence Dependent Cumulative Cost Problem as the subproblem that originally motivate this constraint.

Algorithm

The paper [START_REF] Tallys | On the sum constraint: Relaxation and applications[END_REF] gives the convex hull relaxation of the sum constraint.

See also element, sum ctr, sum set. 

Key words

B B B B @ {2, 3, 6}, 8 > > < > > : val -2 coef -7, val -9 coef -1, val -5 coef -7, val -6 coef -2 9 > > = > > ; , =, 9 1 
B B @ 8 > > < > > : index -1 succ -3, index -2 succ -4, index -3 succ -1, index -4 succ -2 9 > > = > > ;

Graph model

In order to express the binary constraint that links two vertices one has to make explicit the identifier of the vertices.

Signature

Since all the index attributes of the NODES collection are distinct, and because of the first condition nodes1.succ = nodes2.index of the arc constraint, each vertex of the final graph has at most one successor. Therefore the maximum number of arcs of the final graph is equal to the maximum number of vertices |NODES| of the final graph. So we can rewrite NARC = |NODES| to NARC ≥ |NODES| and simplify NARC to NARC.

Usage

As it was reported in [20, page 420], this constraint is useful to express matches between persons. The symmetric alldifferentconstraint also appears implicitly in the cycle cover problem and corresponds to the four conditions given in section 1 Modeling the Cycle Cover Problem of [START_REF] Pesant | An optimal strategy for the constrained cycle cover problem[END_REF].

Remark

This constraint is referenced under the name one factor in [START_REF] Henz | Global constraints for round robin tournament scheduling[END_REF] as well as in [START_REF] Trick | Integer and constraint programming approaches for round robin tournament scheduling[END_REF]. From a modelling point of view this constraint can be express with the cycle constraint [START_REF] Beldiceanu | Introducing global constraints in CHIP[END_REF] where one imposes the additional condition that each cycle has only two nodes.

Algorithm [START_REF] Régin | The symmetric alldiff constraint[END_REF].

See also cycle, alldifferent.

Key words

graph constraint, circuit, cycle, timetabling constraint, sport timetabling, permutation, all different, disequality, graph partitioning constraint, matching. 

Example

symmetric cardinality 0 B B B B B B B B B B @ 8 > > < > > : idvar -1 var -{3} l -0 u -1, idvar -2 var -{1} l -1 u -2, idvar -3 var -{1, 2} l -1 u -2, idvar -4 var -{1, 3} l -2 u -3 9 > > = > > ; , 8 > > < > > : idval -1 val -{2, 3, 4} l -3 u -4, idval -2 val -{3} l -1 u -1, idval -3 val -{1, 4} l -1 u -2, idval -4 val -∅ l -0 u -1 9 > > = > > ; 1 C C C C C C C C C C A Parts ( 

Usage

The most simple example of applying symmetric gcc is a variant of personnel assignment problem, where one person can be assigned to perform between n and m (n ≤ m) jobs, and every job requires between p and q (p ≤ q) persons. In addition every job requires different kind of skills. The previous problem can be modelled as follows:

• For each person we create an item of the VARS collection,

• For each job we create an item of the VALS collection,

• There is an arc between a person and the particular job if this person is qualified to perform it.

Remark

The symmetric gcc constraint generalizes the global cardinality constraint by allowing a variable to take more than one value.

Algorithm

A flow-based arc-consistency algorithm for the symmetric cardinality constraint is described in [START_REF] Kocjan | Filtering methods for symmetric cardinality constraint[END_REF].

See also symmetric gcc, global cardinality, link set to booleans.

Key words

decomposition, timetabling constraint, assignment, relation, flow, constraint involving set variables.

symmetric gcc

Origin

Derived from global cardinality by W. Kocjan. 

Constraint

Usage

The most simple example of applying symmetric gcc is a variant of personnel assignment problem, where one person can be assigned to perform between n and m (n ≤ m) jobs, and every job requires between p and q (p ≤ q) persons. In addition every job requires different kind of skills. The previous problem can be modelled as follows:

• For each person we create an item of the VARS collection,

• For each job we create an item of the VALS collection,

• There is an arc between a person and the particular job if this person is qualified to perform it.

Remark

The symmetric gcc constraint generalizes the global cardinality constraint by allowing a variable to take more than one value. It corresponds to a variant of the symmetric cardinality constraint described in [START_REF] Kocjan | Filtering methods for symmetric cardinality constraint[END_REF] where the occurrence variables of the VARS and VALS collections are replaced by fixed intervals. 

See also

Purpose

Let G be the digraph described by the NODES collection. Partition G with a set of disjoint paths such that each vertex of the graph belongs to a single path. In addition, for all pairs of consecutive vertices of a path we have a precedence constraint that enforces the end associated to the first vertex to be less than or equal to the start related to the second vertex. • We show with a double circle a vertex which has the maximum number of predecessors.

Arc input(s) NODES

• We show the two connected components corresponding to the two paths.

• We put in bold the vertices. 

Graph model

The arc constraint is a conjunction of four conditions that respectively correspond to:

• A constraint that links the successor variable of a first vertex to the index attribute of a second vertex,

• A precedence constraint that applies on one vertex and its distinct successor,

• One precedence constraint between the start and the end of the vertex that corresponds to the departure of an arc,

• One precedence constraint between the start and the end of the vertex that corresponds to the arrival of an arc.

We use the following three graph properties in order to enforce the partitioning of the graph in distinct paths:

• The first property MAX ID = 1 enforces that each vertex has only one single predecessor (except the last vertex of a path which has also itself as a predecessor),

• The second property NCC = NPATH ensures that we have the required number of paths,

• The third property NVERTEX = |NODES| enforces that for each vertex, the start is not located after the end. 

Signature

Remark

This constraint is related to the path constraint of Ilog Solver. It can also be directly expressed with the cycle [START_REF] Beldiceanu | Introducing global constraints in CHIP[END_REF] constraint of CHIP by using the diff nodes and the origin parameters. A generic model based on linear programming that handles paths, trees and cycles is presented in [START_REF] Labbé | Path, tree and cycle location[END_REF].

See also path from to.

Key words

graph constraint, graph partitioning constraint, path, connected component. 

tour

Graph model

The first graph property enforces the subsequent condition: If we have an arc from the i th vertex to the j th vertex then we have also an arc from the j th vertex to the i th vertex. The second graph property enforces the following constraints:

• We have one strongly connected component containing |NODES| vertices,

• Each vertex has exactly two predecessors and two successors. The previous constraint holds since:

Signature

• The first and second tasks both overlap instant 1 and have a respective trail of 1 and 2, which makes two distinct values for the trail attribute at instant 1,

• The third and fourth tasks both overlap instant 2 and have a respective trail of 1 and 2, which makes two distinct values for the trail attribute at instant 2,

• The third and fifth tasks both overlap instant 3 and have a respective trail of 1 and 2, which makes two distinct values for the trail attribute at instant 3. See also nvalue.

Key words

timetabling constraint, resource constraint, temporal constraint, derived collection. 

tree

Graph model

We use the graph property MAX NSCC ≤ 1 in order to specify the fact that the size of the largest strongly connected component should not exceed one. In fact each root of a tree is a strongly connected component with one single vertex. The second graph property NCC = NTREES enforces the number of trees to be equal to the number of connected components.

Algorithm

An arc-consistency filtering algorithm for the tree constraint is described in [START_REF] Beldiceanu | The tree constraint[END_REF]. This algorithm is based on a necessary and sufficient condition that we now depict.

To any tree constraint we associate the digraph G = (V, E), where:

• To each item NODES[i] of the NODES collection corresponds a vertex vi of G.

• For every pair of items (NODES[i], NODES[j]) of the NODES collection, where i and j are not necessarily distinct, there is an arc from vi to vj in E if j is a potential value of NODES[i].succ.

A strongly connected component C of G is called a sink component if all the successors of all vertices of C belong to C. Let MINTREES and MAXTREES respectively denote the number of sink components of G and the number of vertices of G with a loop.

The tree constraint has a solution if and only if:

• Each sink component of G contains at least one vertex with a loop,

• The domain of NTREES has at least one value within interval [MINTREES, MAXTREES].

See also binary tree, cycle, map, tree resource, graph crossing.

Key words

graph constraint, graph partitioning constraint, connected component, tree, one succ.

tree range

Origin Derived from tree. See also tree.

Constraint

Key words

graph constraint, tree, resource constraint, graph partitioning constraint, connected component, derived collection.

two layer edge crossing

Origin

Inspired by [START_REF] Harary | A new crossing number for bipartite graphs[END_REF]. 

Constraint

Graph model

As usual for the two-layer edge crossing problem [START_REF] Harary | A new crossing number for bipartite graphs[END_REF], [START_REF] Di Battista | Graph Drawing: Algorithms for the Visualization of Graphs[END_REF], positions of the vertices on each layer are represented as a permutation of the vertices. We generate a derived collection which, for each edges, contains the position of its extremities on both layers. In the arc generator we use the restriction < in order to generate one single arc for each pair of segments. This is required, since otherwise we would count more than once a line-segments intersection.

two orth are in contact

Origin

Used for defining orths are connected. Enforce the following conditions on two orthotopes O1 and O2: Purpose

Constraint

• For all dimensions i, except one dimension, the projections of O1 and O2 on i have a non-empty intersection.

• For all dimensions i, the distance between the projections of O1 and O2 on i is equal to 0. 

Arc input(s)

Automaton

Figure 4.422 depicts the automaton associated to the two orth are in contact constraint. Let ORI1i, SIZ1i and END1i respectively be the ori, the siz and the end attributes of the i th item of the ORTHOTOPE1 collection. Let ORI2i, SIZ2i and END2i respectively be the ori, the siz and the end attributes of the i th item of the ORTHOTOPE2 collection. To each sextuple (ORI1i, SIZ1i, END1i, ORI2i, SIZ2i, END2i) corresponds a signature variable Si, which takes its value in {0, 1, 2}, as well as the following signature constraint: Key words geometrical constraint, touch, contact, non-overlapping, orthotope, Berge-acyclic constraint network, automaton, automaton without counters.

((SIZ1i > 0) ∧ (SIZ2i > 0) ∧ (END1i > ORI2i) ∧ (END2i > ORI1i)) ⇔ Si = 0 ((SIZ1i > 0) ∧ (SIZ2i > 0) ∧ (END1i = ORI2i ∨ END2i = ORI1i)) ⇔ Si =

two orth column

Origin

Used for defining diffn column. 

Purpose

For two orthotopes O1 and O2 enforce that there exist at least one dimension i such that the projections on i of O1 and O2 do not overlap. Since we use the NARC graph property, the unique arc of the final graph is stressed in bold. It corresponds to the fact that the projection in dimension 1 of the first orthotope is located before the projection in dimension 1 of the second orthotope. Therefore the two orthotopes do not overlap.

Graph model

We build an initial graph where each arc corresponds to the fact that, either the projection of an orthotope on a given dimension is empty, either it is located before the projection in the same dimension of the other orthotope. Finally we ask that at least one arc constraint remains in the final graph.

Automaton

Figure 4.426 depicts the automaton associated to the two orth do not overlap constraint. Let ORI1i, SIZ1i and END1i respectively be the ori, the siz and the end attributes of the i th item of the ORTHOTOPE1 collection. Let ORI2i, SIZ2i and END2i respectively be the ori, the siz and the end attributes of the i th item of the ORTHOTOPE2 collection. To each sextuple (ORI1i, SIZ1i, END1i, ORI2i, SIZ2i, END2i) corresponds a 0-1 signature variable Si as well as the following signature constraint: ((SIZ1i > 0) ∧ (SIZ2i > 0) ∧ (END1i > ORI2i) ∧ (END2i > ORI1i)) ⇔ Si.

Used in diffn.

Key words geometrical constraint, non-overlapping, orthotope, Berge-acyclic constraint network, automaton, automaton without counters. Since we use the NSOURCE and NSINK graph properties, the source and sink vertices of the final graph are stressed with a double circle. Since there is a constraint on each connected component of the final graph we also show the different connected components. Each of them corresponds to an equivalence class according to the arc constraint. Note that the vertex corresponding to the variable assigned to value 9 was removed from the final graph since there is no arc for which the associated equality constraint holds. The used by constraint holds since:

• For each connected component of the final graph the number of sources is greater than or equal to the number of sinks.

• The number of sinks of the final graph is equal to |VARIABLES2|.

Signature

Since the initial graph contains only sources and sinks, and since sources of the initial graph cannot become sinks of the final graph, we have that the maximum number of sinks of the final graph is equal to |VARIABLES2|. Therefore we can rewrite NSINK = |VARIABLES2| to NSINK ≥ |VARIABLES2| and simplify NSINK to NSINK.

Automaton

Figure 4.430 depicts the automaton associated to the used by constraint. To each item of the collection VARIABLES1 corresponds a signature variable Si, which is equal to 0. To each item of the collection VARIABLES2 corresponds a signature variable S i+|VARIABLES1| , which is equal to 1.

Algorithm

As described in [START_REF] Beldiceanu | Filtering algorithms for the same and usedby constraints[END_REF] we can pad VARIABLES2 with dummy variables such that its cardinality will be equal to that cardinality of VARIABLES1. The domain of a dummy variable contains all of the values. Then, we have a same constraint between the two sets. Direct arc-consistency and bound-consistency algorithms are also proposed in [START_REF] Beldiceanu | Filtering algorithms for the same and usedby constraints[END_REF] and in [START_REF] Beldiceanu | Filtering algorithms for the same and usedby constraints[END_REF].

Key words

constraint between two collections of variables, inclusion, flow, bound-consistency, automaton, automaton with array of counters. Since there is a constraint on each connected component of the final graph we also show the different connected components. Each of them corresponds to an equivalence class according to the arc constraint. Note that the vertex corresponding to the variable that takes value 9 was removed from the final graph since there is no arc for which the associated equivalence constraint holds. The used by interval constraint holds since:

• For each connected component of the final graph the number of sources is greater than or equal to the number of sinks.

• The number of sinks of the final graph is equal to |VARIABLES2|. See also used by.

Key words

constraint between two collections of variables, inclusion, interval. Since we use the NSOURCE and NSINK graph properties, the source and sink vertices of the final graph are stressed with a double circle. Since there is a constraint on each connected component of the final graph we also show the different connected components. Each of them corresponds to an equivalence class according to the arc constraint. Note that the vertex corresponding to the variable that takes value 9 was removed from the final graph since there is no arc for which the associated equivalence constraint holds. The used by modulo constraint holds since:

• For each connected component of the final graph the number of sources is greater than or equal to the number of sinks.

• The number of sinks of the final graph is equal to |VARIABLES2|. Since we use the NSOURCE and NSINK graph properties, the source and sink vertices of the final graph are stressed with a double circle. Since there is a constraint on each connected component of the final graph we also show the different connected components. Each of them corresponds to an equivalence class according to the arc constraint. Note that the vertex corresponding to the variable that takes value 9 was removed from the final graph since there is no arc for which the associated equivalence constraint holds. The used by partition constraint holds since:

• For each connected component of the final graph the number of sources is greater than or equal to the number of sinks.

• The number of sinks of the final graph is equal to |VARIABLES2|. See also used by, in same partition.

Key words

constraint between two collections of variables, inclusion, partition.

valley

Origin Derived from inflexion. The previous constraint holds since the sequence 1 1 4 8 8 2 7 1 contains one valley which corresponds to the variable which is assigned to value 2. 

Constraint

Usage

Useful for constraining the number of valleys of a sequence of domain variables.

Remark

Since the arity of the arc constraint is not fixed, the valley constraint cannot be currently described. However, this would not hold anymore if we were introducing a slot that specifies how to merge adjacent vertices of the final graph.

See also no valley, inflexion, peak.

Key words

sequence, automaton, automaton with counters, sliding cyclic(1) constraint network(2).

vec eq tuple

Origin Used for defining in relation. 

Constraint

Graph model

The restriction in attr(VARIABLES, var, VALUES, val) imposes all variables of the VARIABLES collection to take a value from the val attribute of the VALUES collection. We use the PRODUCT to generate an arc from every variables of the VARIABLES collection to every value of the VALUES collection. Because of the arc constraint, the final graph contains only those arcs arriving at a value different from UNDEFINED. The graph property MAX ID ≤ 1 enforces that no vertex of the final graph has more than one predecessor. As a consequence, all variables of the VARIABLES collection which are not assigned to value UNDEFINED must have pairwise distinct values.

Usage

In his PhD thesis [160, pages 71-72], Sven Thiel describes the following three potential scenarios of the weighted partial alldiff constraint:

• Given a set of tasks (i.e. the items of the VARIABLES collection), assign to each task a resource (i.e. an item of the VALUES collection). Except for the resource associated to value UNDEFINED, every resource can be used at most once. The cost of a resource is independent from the task to which the resource is assigned. The cost of value UNDEFINED is equal to 0. The total cost COST of an assignment corresponds to the sum of the costs of the resources effectively assigned to the tasks. Finally we impose an upper bound on the total cost.

• Given a set of persons (i.e. the items of the VARIABLES collection), select for each person an offer (i.e. an item of the VALUES collection). Except for the offer associated to value UNDEFINED, every offer should be selected at most once. The profit associated to an offer is independant from the person which select that offer. The profit of value UNDEFINED is equal to 0. The total benefit COST is equal to the sum [0], [A]). [arc(s,0,s),arc(s,1,s,[I+1]),arc(s,$,t)], [I], [0], [A]). ctr_example( crossing, crossing ( 3, [[ox-1,oy-4,ex-9,ey-2],

[ox-1,oy-1,ex-3,ey-5], [ox-3,oy-2,ex-7,ey-4],

[ox-9,oy-1,ex-9,ey-4]])). 6, 8, [[id-1,origin-17,end-20], [id-2,origin-7,end-10], [id-3,origin-2,end-4], [id-4,origin-21,end-22],

[id-5,origin-5,end-6]])). acyclic,[START_REF] Puget | A fast algorithm for the bound consistency of alldiff constraints[END_REF]195,215,230,274,278,281,285,290,300,304,333,337,339,341,348,356,404,407 Aggoun A.,264,362 alignment,[START_REF] Lopez-Ortiz | A fast and simple algorithm for bounds consistency of the alldifferent constraint[END_REF]713 all different,[START_REF] Puget | A fast algorithm for the bound consistency of alldiff constraints[END_REF]179,180,184,188,192,195,198,811,815,883,948 all differ from at least k pos, [START_REF] Euler | Solution d'une question curieuse qui ne parait soumise à aucune analyse[END_REF][START_REF] Müller-Hannemann | Evaluating the bin-packing constraint, part i: Overview of the algorithmic approach[END_REF][START_REF] Régin | The cardinality matrix constraint[END_REF][START_REF] Ford | Flows in Networks[END_REF][START_REF] Bourreau | Traitement de contraintes sur les graphes en programmation par contraintes[END_REF][START_REF] Vilím | O(n log n) filtering algorithms for unary resource constraint[END_REF]172,422,424 all min dist, 5, 13, 27, 43, 51-54, 62, 65, 67, 71, 72, 81, 82, 87, 93, 95, 97, 108, 112, 161, 174, 176, 180, 182, 184, 186, 188, 190, 192, 194, 195, 198, 200, 307, 312, 387, 419, 436, 438, 482-484, 498, 504, 510, 582, 668, 700, 756, 758, 782, 784, 810, 811, 814, 815, 883, 948 alldifferent between sets, 62, 71, 76, 81, 95, 112, 180, 490 alldifferent except 0, 62, 65, 67, 88, 95, 99, 108, 178, 179, 182, 948 alldifferent interval, 62, 65, 67, 88, 95, 108, 186 alldifferent modulo, 62, 65, 67, 92, 95, 108, 190 alldifferent on intersection, 62, 65, 67, 70, 75, 77, 93, 108, 179, 194, 333, 702, 764 alldifferent partition, 62, 95, 96, 108, 198, 543 alldifferent same value, 30, 36, 65, 67, 98, 200 alldistinct, [START_REF] Frisch | Constraints for breaking more row and column symmetries[END_REF][START_REF] Martello | Knapsack problems. Algorithms and Computer Implementations[END_REF][START_REF] Shaw | A constraint for bin packing[END_REF][START_REF] Pachet | Automatic generation of music programs[END_REF][START_REF] Régin | Using constraint programming to solve the maximum clique problem[END_REF][START_REF] Lahrichi | Scheduling: the notions of hump, compulsory parts and their use in cumulative problems[END_REF][START_REF] Beldiceanu | Cost-filtering algorithms for the two sides of the sum of weights of distinct values constraint[END_REF][START_REF] Vilím | O(n log n) filtering algorithms for unary resource constraint[END_REF]456,462,851 element,[START_REF] Berge | Graphes[END_REF][START_REF] Régin | A filtering algorithm for constraints of difference in CSP[END_REF][START_REF] Régin | Generalized arc consistency for global cardinality constraint[END_REF][START_REF] Bessière | The range and roots constraints: Specifying counting and occurrence problems[END_REF][START_REF] Frisch | Constraints for breaking more row and column symmetries[END_REF][START_REF] Martello | Knapsack problems. Algorithms and Computer Implementations[END_REF][START_REF] Shaw | A constraint for bin packing[END_REF][START_REF] Pachet | Automatic generation of music programs[END_REF][START_REF] Régin | Using constraint programming to solve the maximum clique problem[END_REF][START_REF] Ford | Flows in Networks[END_REF][START_REF] Lahrichi | Scheduling: the notions of hump, compulsory parts and their use in cumulative problems[END_REF][START_REF] Gambini | Quant aux carrés carrelés[END_REF][START_REF] Van Hoeve | Operations Research Techniques in Constraint Programming[END_REF][START_REF] Beldiceanu | Cost-filtering algorithms for the two sides of the sum of weights of distinct values constraint[END_REF][START_REF] Vilím | O(n log n) filtering algorithms for unary resource constraint[END_REF][START_REF] Van Hentenryck | Constraint Satisfaction in Logic Programming[END_REF]162,456,456,459,460,464,465,468,469,473,476,477,480,483,484,487,539,850,851,871 element greatereq,[START_REF] Frisch | Constraints for breaking more row and column symmetries[END_REF][START_REF] Martello | Knapsack problems. Algorithms and Computer Implementations[END_REF][START_REF] Shaw | A constraint for bin packing[END_REF][START_REF] Müller-Hannemann | Evaluating the bin-packing constraint, part i: Overview of the algorithmic approach[END_REF][START_REF] Pachet | Automatic generation of music programs[END_REF][START_REF] Régin | Using constraint programming to solve the maximum clique problem[END_REF][START_REF] Beldiceanu | A new multi-resource cumulatives constraint with negative heights[END_REF][START_REF] Beldiceanu | Cost-filtering algorithms for the two sides of the sum of weights of distinct values constraint[END_REF][START_REF] Vilím | O(n log n) filtering algorithms for unary resource constraint[END_REF]459,462,464,469 element lesseq,[START_REF] Frisch | Constraints for breaking more row and column symmetries[END_REF][START_REF] Martello | Knapsack problems. Algorithms and Computer Implementations[END_REF][START_REF] Shaw | A constraint for bin packing[END_REF][START_REF] Müller-Hannemann | Evaluating the bin-packing constraint, part i: Overview of the algorithmic approach[END_REF][START_REF] Pachet | Automatic generation of music programs[END_REF][START_REF] Régin | Using constraint programming to solve the maximum clique problem[END_REF][START_REF] Beldiceanu | A new multi-resource cumulatives constraint with negative heights[END_REF][START_REF] Beldiceanu | Cost-filtering algorithms for the two sides of the sum of weights of distinct values constraint[END_REF][START_REF] Vilím | O(n log n) filtering algorithms for unary resource constraint[END_REF]459,462,465,468 element matrix,8,[START_REF] Frisch | Constraints for breaking more row and column symmetries[END_REF][START_REF] Martello | Knapsack problems. Algorithms and Computer Implementations[END_REF][START_REF] Shaw | A constraint for bin packing[END_REF][START_REF] Pachet | Automatic generation of music programs[END_REF][START_REF] Régin | Using constraint programming to solve the maximum clique problem[END_REF][START_REF] Ford | Flows in Networks[END_REF][START_REF] Levy | A contraction algorithm for finding small cycle cutsets[END_REF][START_REF] Beldiceanu | Cost-filtering algorithms for the two sides of the sum of weights of distinct values constraint[END_REF]459,462,472 element sparse,[START_REF] Frisch | Constraints for breaking more row and column symmetries[END_REF][START_REF] Martello | Knapsack problems. Algorithms and Computer Implementations[END_REF][START_REF] Shaw | A constraint for bin packing[END_REF][START_REF] Müller-Hannemann | Evaluating the bin-packing constraint, part i: Overview of the algorithmic approach[END_REF][START_REF] Pachet | Automatic generation of music programs[END_REF][START_REF] Régin | Using constraint programming to solve the maximum clique problem[END_REF][START_REF] Ford | Flows in Networks[END_REF][START_REF] Van Hoeve | Operations Research Techniques in Constraint Programming[END_REF][START_REF] Beldiceanu | Cost-filtering algorithms for the two sides of the sum of weights of distinct values constraint[END_REF][START_REF] Vilím | O(n log n) filtering algorithms for unary resource constraint[END_REF]459,462,476,486,487 INDEX elements,[START_REF] Régin | Using constraint programming to solve the maximum clique problem[END_REF][START_REF] Lahrichi | Scheduling: the notions of hump, compulsory parts and their use in cumulative problems[END_REF][START_REF] Gambini | Quant aux carrés carrelés[END_REF][START_REF] Beldiceanu | Cost-filtering algorithms for the two sides of the sum of weights of distinct values constraint[END_REF]459,462,480,482 elements alldiff, 482 elements alldifferent, [START_REF] Régin | Using constraint programming to solve the maximum clique problem[END_REF][START_REF] Ford | Flows in Networks[END_REF][START_REF] Lahrichi | Scheduling: the notions of hump, compulsory parts and their use in cumulative problems[END_REF][START_REF] Beldiceanu | Sweep as a generic pruning technique applied to the non-overlapping rectangles constraints[END_REF][START_REF] Beldiceanu | Cost-filtering algorithms for the two sides of the sum of weights of distinct values constraint[END_REF]459,462 [START_REF] Zhou | Channel routing with constraint logic programming and delay[END_REF]250,254,258,261,630,648,671,674,682,688,694,700,704,815 Erschler J.,362 Euler knight,[START_REF] Cormen | Introduction to algorithms[END_REF]387 exactly,[START_REF] Lopez-Ortiz | A fast and simple algorithm for bounds consistency of the alldifferent constraint[END_REF][START_REF] Martello | Knapsack problems. Algorithms and Computer Implementations[END_REF][START_REF] Aggoun | Extending CHIP in order to solve complex scheduling and placement problems[END_REF][START_REF] Shaw | A constraint for bin packing[END_REF][START_REF] Régin | Using constraint programming to solve the maximum clique problem[END_REF][START_REF] Baptiste | Global constraints for partial csps: A case-study of resource and due date constraints[END_REF]207,244,248 Flajolet O., 622 Flamm C.,772 Flener P.,580,862,902 flow,[START_REF] Cormen | Introduction to algorithms[END_REF]498,501,758,811,888,891,931 Focacci F.,434,666 frequency allocation problem, 85, 174 Frisch A.,204,580,598,606,610,862 Frutos A.G.,172,422 INDEX not all equal, [START_REF] Martello | Knapsack problems. Algorithms and Computer Implementations[END_REF][START_REF] Shaw | A constraint for bin packing[END_REF][START_REF] Ford | Flows in Networks[END_REF][START_REF] Zhou | Channel routing with constraint logic programming and delay[END_REF][START_REF] Gambini | Quant aux carrés carrelés[END_REF][START_REF] Baptiste | Global constraints for partial csps: A case-study of resource and due date constraints[END_REF]688,700 not in,[START_REF] Martello | Knapsack problems. Algorithms and Computer Implementations[END_REF][START_REF] Shaw | A constraint for bin packing[END_REF][START_REF] Müller-Hannemann | Evaluating the bin-packing constraint, part iii: Joint evaluation with concave constraints[END_REF][START_REF] Ford | Flows in Networks[END_REF][START_REF] Simonis | Channel routing seen as a constraint problem[END_REF][START_REF] Cormen | Introduction to algorithms[END_REF][START_REF] Carlier | One machine problem[END_REF][START_REF] Baptiste | Global constraints for partial csps: A case-study of resource and due date constraints[END_REF]537,690 npair,[START_REF] Régin | Using constraint programming to solve the maximum clique problem[END_REF][START_REF] Zhou | Channel routing with constraint logic programming and delay[END_REF][START_REF] Labbé | Path, tree and cycle location[END_REF][START_REF] Szymanek | A constructive algorithm for memory-aware task assignment and scheduling[END_REF][START_REF] Van Hoeve | Operations Research Techniques in Constraint Programming[END_REF][START_REF] Baptiste | Global constraints for partial csps: A case-study of resource and due date constraints[END_REF]671,674,682,694,700 NSCC,[START_REF] Beldiceanu | Introducing global constraints in CHIP[END_REF]310,342,525,670,674,682,688,694,696,698,704,706,814 nset of consecutive values, [START_REF] Ya | Plane homogeneous graphs of degree three without hamiltonian circuits[END_REF][START_REF] Van Hoeve | Operations Research Techniques in Constraint Programming[END_REF][START_REF] Baptiste | Global constraints for partial csps: A case-study of resource and due date constraints[END_REF]632,650,696 NSINK,[START_REF] Beldiceanu | Introducing global constraints in CHIP[END_REF]332,336,338,340,542,754,760,764,766,768,770,842,930,934,936,938 NSINK NSOURCE,[START_REF] Beldiceanu | Introducing global constraints in CHIP[END_REF]818,820,822,824,828,832,836,838 NSOURCE,[START_REF] Dincbas | The Constraint Logic Programming Language CHIP[END_REF]332,336,338,340,486,542,754,760,764,766,768,770,842,876,930,934,936,938 NTREE,[START_REF] Dincbas | The Constraint Logic Programming Language CHIP[END_REF]310,386,390,394,399,418,622,666 number of changes,[START_REF] Labbé | Path, tree and cycle location[END_REF]285,300,304,316,404,407,808 number of distinct equivalence classes,[START_REF] Labbé | Path, tree and cycle location[END_REF]671,674,682,694,700,704 number of distinct values,[START_REF] Labbé | Path, tree and cycle location[END_REF]240,326,330,700,702,704,706 nvalue,[START_REF] Lucas | Récréations mathématiques[END_REF][START_REF] Kirkman | On a problem in combinatorics[END_REF][START_REF] Berge | Graphes[END_REF][START_REF] Beldiceanu | Introducing global constraints in CHIP[END_REF][START_REF] Cosytec | CHIP Reference Manual[END_REF][START_REF] Martello | Knapsack problems. Algorithms and Computer Implementations[END_REF][START_REF] Aggoun | Extending CHIP in order to solve complex scheduling and placement problems[END_REF][START_REF] Régin | Using constraint programming to solve the maximum clique problem[END_REF][START_REF] Simonis | Channel routing seen as a constraint problem[END_REF][START_REF] Cormen | Introduction to algorithms[END_REF][START_REF] Labbé | Path, tree and cycle location[END_REF][START_REF] Van Hoeve | Operations Research Techniques in Constraint Programming[END_REF][START_REF] Baptiste | Global constraints for partial csps: A case-study of resource and due date constraints[END_REF]207,208,210,240,352,498,628,630,648,670,671,674,682,688,694,698,702,704,706,877,901 nvalue on intersection, 75, 77, 79, 94, 195, 333, 700, 702, 764 nvalues, 79, 84, 94, 104, 108, 238, 240, 312, 324, 326, 328, 330, 700, 704, 706 nvalues except 0,[START_REF] Régin | Using constraint programming to solve the maximum clique problem[END_REF][START_REF] Samet | The design and analysis of spatial data structures[END_REF][START_REF] Labbé | Path, tree and cycle location[END_REF][START_REF] Van Hoeve | Operations Research Techniques in Constraint Programming[END_REF][START_REF] Baptiste | Global constraints for partial csps: A case-study of resource and due date constraints[END_REF]396,700,704,706 NVERTEX,[START_REF] Dincbas | The Constraint Logic Programming Language CHIP[END_REF]318,382,395,399,482,496,500,502,517,525,708,722,745,760,892,910 ,179,180,184,188,192,198,270,307,312,387,392,668,903 one tree,[START_REF] Simonis | Complex constraint abstraction: Global constraint visualization[END_REF][START_REF] Müller-Hannemann | Evaluating the bin-packing constraint, part i: Overview of the algorithmic approach[END_REF][START_REF] Erschler | Energy-based approach for task scheduling under time and resources constraints[END_REF][START_REF] Labbé | Path, tree and cycle location[END_REF][START_REF] Beldiceanu | Sweep as a generic pruning technique applied to the non-overlapping rectangles constraints[END_REF][START_REF] Carlier | One machine problem[END_REF]708 orchard,[START_REF] Dechter | Network-based heuristics for constraint-satisfaction problems[END_REF][START_REF] Lopez-Ortiz | A fast and simple algorithm for bounds consistency of the alldifferent constraint[END_REF][START_REF] Lahrichi | Scheduling: the notions of hump, compulsory parts and their use in cumulative problems[END_REF][START_REF] Caseau | Cumulative scheduling with task intervals[END_REF]712 ORDER,[START_REF] Laburthe | Choco: implementing a cp kernel[END_REF]624,626,634,638,640,644,652,656,664 order constraint,[START_REF] Szymanek | Constraint-Driven Design Space Exploration for Memory-Dominated Embedded Systems[END_REF]204,411,549,556,558,580,586,589,593,599,603,607,611,624,626,636,638,642,644,654,657,661,664,681,776,862,864 [START_REF] Puget | A fast algorithm for the bound consistency of alldiff constraints[END_REF][START_REF] Althaus | SCIL-symbolic constraints in integer linear programming[END_REF][START_REF] Régin | Using constraint programming to solve the maximum clique problem[END_REF][START_REF] Ford | Flows in Networks[END_REF][START_REF] Erschler | Energy-based approach for task scheduling under time and resources constraints[END_REF][START_REF] Levy | A contraction algorithm for finding small cycle cutsets[END_REF][START_REF] Beldiceanu | Sweep as a generic pruning technique applied to the non-overlapping rectangles constraints[END_REF][START_REF] Van Hoeve | Operations Research Techniques in Constraint Programming[END_REF][START_REF] Beldiceanu | Cost-filtering algorithms for the two sides of the sum of weights of distinct values constraint[END_REF]161,179,387,882 symmetric alldistinct, 882 symmetric cardinality, 65, 77, 80, 84, 99, 106, 498, 546, 886, 891 symmetric gcc, 24, 65, 77, 80, 84, 99, 106, 113, 498, 546, 615, 888 [START_REF] Ginsberg | Limited discrepancy search[END_REF]204,556,558,580,586,589,593,599,603,607,611,776,862 Szymanek R.,426 table,[START_REF] Beldiceanu | Cost-filtering algorithms for the two sides of the sum of weights of distinct values constraint[END_REF]459,462,465,469,477,480,484,487,577,677,681,851 Tallys H. Yunes,870 Tamassia R.,914 temporal constraint,[START_REF] Beldiceanu | Cost-filtering algorithms for the two sides of the sum of weights of distinct values constraint[END_REF]326,330,365,368,377,381,442,562,566,780,796,799,804,901 temporal path,[START_REF] Shufet | Generating hamiltonian circuits without backtracking from errors[END_REF][START_REF] Erschler | Energy-based approach for task scheduling under time and resources constraints[END_REF][START_REF] Szymanek | A constructive algorithm for memory-aware task assignment and scheduling[END_REF]727,892 ternary constraint, 106, 475 Thiel A.J.,172,422 Thiel S.,176,426,436,496,670,674,682,698,754,760,842,876,882,930,946 Thorsteinsson E.,464,468 time window,[START_REF] Carlier | One machine problem[END_REF]804 timetabling constraint,[START_REF] Beldiceanu | Cost-filtering algorithms for the two sides of the sum of weights of distinct values constraint[END_REF]285,290,300,304,316,323,404,407,523,530,562,566,620,731,736,738,780,789,808,856,860,883,888,891,901 Tollis I.G.,914 Toth P.,264 touch,[START_REF] Carlier | One machine problem[END_REF]724,920 tour,[START_REF] Maher | Analysis of a global contiguity constraint[END_REF][START_REF] Frisch | Global Constraints for lexicographic orderings[END_REF][START_REF] Laporte | Some applications of the generalized travelling salesman problem[END_REF][START_REF] Erschler | Energy-based approach for task scheduling under time and resources constraints[END_REF][START_REF] Caseau | Cumulative scheduling with task intervals[END_REF][START_REF] Beldiceanu | A new multi-resource cumulatives constraint with negative heights[END_REF][START_REF] Carlier | One machine problem[END_REF]307,546,615,896 track,[START_REF] Ford | Flows in Networks[END_REF][START_REF] Ribeiro | A global constraint for nesting problems[END_REF][START_REF] Beldiceanu | Cost-filtering algorithms for the two sides of the sum of weights of distinct values constraint[END_REF]700,900 tree,[START_REF] Carlier | One machine problem[END_REF]270,711,903,907,911 tree,[START_REF] Maher | Analysis of a global contiguity constraint[END_REF][START_REF] Beldiceanu | Introducing global constraints in CHIP[END_REF][START_REF] Shufet | Generating hamiltonian circuits without backtracking from errors[END_REF][START_REF] Erschler | Energy-based approach for task scheduling under time and resources constraints[END_REF][START_REF] Carlier | One machine problem[END_REF]268,270,387,514,623,711,902,906,907,910,911 vector,[START_REF] Vilím | O(n log n) filtering algorithms for unary resource constraint[END_REF]173,424,582,586,589,593,596,599,603,607,611 Vilím P.,444 VOID,29 vpartition,[START_REF] Péridy | An O(n log n) stable algorithm for immediate selections adjustments[END_REF]523 Walsh T.,508,580,598,606,610,698,754,862 Wang C.C.,382 Wei W.,708 weighted assignment,[START_REF] Péridy | An O(n log n) stable algorithm for immediate selections adjustments[END_REF]504,668,877,948 weighted partial alldiff,[START_REF] Puget | A fast algorithm for the bound consistency of alldiff constraints[END_REF]65,[START_REF] Fahle | Cost based filtering vs. upper bounds for maximum clique[END_REF][START_REF] Samet | The design and analysis of spatial data structures[END_REF][START_REF] Ribeiro | A global constraint for nesting problems[END_REF][START_REF] Focacci | Solving Combinatorial Optimization Problems in Constraint Programming[END_REF][START_REF] Péridy | An O(n log n) stable algorithm for immediate selections adjustments[END_REF]178,179,184,504,668,815,877,946 weighted partial alldifferent, 946 weighted partial alldistinct, 946 Weihe K., 264 workload covering, 110, 381 wpa, 946 Yan H., 362 Zhou J.,842,342 

Index

EXAMPLE:

  An example of use of such restriction can be found in the cumulative(TASKS, LIMIT) constraint: required(TASKS, height) enforces that all items of the TASKS collection mention the height attribute. cumulative({ origin -2 duration -2 end -4 height -2, origin -2 duration -2 end -4 height -2, origin -1 duration -4 end -5 height -5, origin -4 duration -2 end -6 height -1}, 12) cumulative({ origin -2 duration -2 end -4, origin -2 duration -2 end -4 height -2, origin -1 duration -4 end -5 height -5, origin -4 duration -2 end -6 height -1}, 12)
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 11 Figure 1.1: Illustration of the link between graph-properties and global constraints

Figure 1 . 2 :

 12 Figure 1.2: Initial and final graph associated with nvalue

  cα p [ip].aα p ifj ∈ {k1, k2, . . . , km}, j = kp vj ifj / ∈ {k1, k2, . . . , km} EXAMPLE CONSTRAINT : domain constraint( VAR , VALUES) DERIVED COLLECTION: VALUEcollection(var01int, valuedvar) PATTERN(S) : item(var01 -1, value -VAR) GENERATED ITEM(S) : {var01 -1 value-VAR } We generate one single item where the two attributes var01 and value respectively take value 1 and the first argument of the domain constraint constraint.

  5, var -2, var -3, var -1} VECTOR2 : {var -5, var -2, var -6, var -2} DERIVED COLLECTION: COMPONENTScollection(indexint, xdvar, ydvar) PATTERN(S) : item(index -VECTOR1.key a , x -VECTOR1.var, y -VECTOR2.var)

  1 origin -1 duration -4 end -5 height -1, machine -1 origin -4 duration -2 end -6 height -3, machine -1 origin -2 duration -3 end -5 height -2, machine -2 origin -5 duration -2 end -7 height -2} DERIVED COLLECTION: TIME POINTS -collection(idm -int, durationdvar, pointdvar) PATTERN(S) : item(idm -TASKS.machine, duration -TASKS.duration, point -TASKS.origin) item(idm -TASKS.machine, duration -TASKS.duration, point -TASKS.end)GENERATED ITEM(S) :{idm -1 duration -4 point -1, idm -1 duration -2 point -4, idm -1 duration -3 point -2, idm -2 duration -2 point -5, idm -1 duration -4 point -5, idm -1 duration -2 point -6, idm -1 duration -3 point -5, idm -2 duration -2 point -7}The two patterns mention the references TASKS.machine, TASKS.duration, TASKS.origin and TASKS.end of the TASKS collection used in the arguments of the cumulatives constraint. ∀i ∈ [1, |TASKS|], we generate two items idm -u1 duration -u2 point -u3 , idm -v1 duration -v2 point -v3 where: u1 = TASKS[i].machine, u2 = TASKS[i].duration, u3 = TASKS[i].origin, v1 = TASKS[i].machine, v2 = TASKS[i].duration, v3 = TASKS[i].end. This leads to the eight items listed in the GENERATED ITEM(S) field. EXAMPLE CONSTRAINT : golomb( VARIABLES ) VARIABLES : {var -0, var -1, var -4, var -6} DERIVED COLLECTION: PAIRScollection(xdvar, ydvar) PATTERN(S) : > -item(x -VARIABLES.var, y -VARIABLES.var)

EXAMPLE:

  As an example consider the global cardinality with costs( VARIABLES, VALUES, MATRIX, COST) constraint and its second graph-constraint, which defines the COST variable. The expression MATRIX[(variables.key -1) * |VALUES|+ values.key].c is a simple arithmetic expression of the form Col[Expr].Attr: -MATRIX is a collection of items collection(iint, jint, cint) where all items are sorted in increasing order on attributes i, j (because of the restriction increasing seq(MATRIX, [i, j])). -MATRIX[(variables.key -1) * |VALUES| + values.key].c denotes the value of attribute c of an item of the MATRIX collection. The position of this item within the MATRIX collection depends on the position of a variable of the VARIABLES collection a as well as on the position of a value of the VALUES collection b .
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 1 Figure 1.3 shows the generated graph under the hypothesis that VARIABLES1 and VARIABLES2 have respectively 3 and 3 items.

3 Figure 1 . 3 :

 313 Figure 1.3: Example of initial graph generated by PRODUCT (CLIQUE , LOOP, =)
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 1415 Figure 1.4: Examples of arc generators

  The graph-property SUM WEIGHT ARC * size(VALUES)+ values.key].c) = COST expresses the fact that the COST variable is equal to the sum of the elementary costs associated with each variable-value assignment. All these elementary costs are recorded in the MATRIX collection. More precisely, the cost cij is recorded in the attribute c of the ((i -1) * |VALUES)| + j) th entry of the MATRIX collection.

  which can be used within an arc constraint. When the Arc input(s) field consists of one single collection (d = 1), item i (1 ≤ i ≤ a) represents an item of the collection C 1 . Otherwise, when d > 1, we must have a = d and, in this context, item i (1 ≤ i ≤ a) represents an item of C i . EXAMPLE: The alldifferent(VARIABLES) constraint has the following Arc input(s) and Arc generator fields: EXAMPLE: The same(VARIABLES1, VARIABLES2) constraint has the following Arc input(s) and Arc generator fields: * Its Arc input(s) field refers to the collections VARIABLES1 and VARIABLES2 (i.e. d = 2). * Its Arc generator field consists of PRODUCT → collection(variables1, variables2) (i.e. a = 2). In this context, where d > 1, variables1 and variables1 respectively correspond to items of the VARIABLES1 and the VARIABLES2 collections.

  variables1.var = variables2.varGraph property(ies): NSCC = NVALSince this description does not use the FOR ALL ITEMS OF iterator we generate one single initial graph. Each vertex of this graph corresponds to one item of the VARIABLES collection. Since we use the CLIQUE arc generator we have an arc between each pair of vertices. An arc constraint corresponds to an equality constraint between the two variables that are associated with the extremities of the arc. Finally, the Graph property(ies) field forces the final graph to have NVAL strongly connected components.

  be taken by exactly VALUES[i].noccurrence variables of the VARIABLES collection. Its meaning is described by a simple graph constraint corresponding to the following items: For all items of VALUES: variables.var = VALUES.val Graph property(ies): NVERTEX = VALUES.noccurrence
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 16 Figure 1.6: Initial and final graph of an instance of the cumulative constraint
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 17 Figure 1.7: Five checkers and their corresponding automata Parts (A1), (B1), (C1), (D1) and (E1) of Figure 1.7 depict the five checkers respectively associated with global contiguity, with lex lesseq, with among, with

  between two variables of the lex lesseq constraint.• Note that the among(nvar, vars, values) constraint involves a variable nvar whose value is computed from a given collection of variables vars. The checker depicted by part (C1) of Figure 1.7 counts the number of variables of vars[0], . . . , vars[n -1] that take their value in values. For this purpose it uses a counter c, which is eventually tested against the value of nvar. This convinced us to allow the use of counters in an automaton. Each counter has an initial value, which can be updated while triggering certain transitions. The final state of an automaton can force a variable of the constraint to be equal to a given counter. Part (C2) of Figure 1.7 describes the automaton corresponding to the code given in part (C1) of the same figure. The automaton uses the counter variable c initially set to 0 and takes as input the sequence vars[0], . . . , vars[n -1].

Fig- ure 1 . 7 .

 17 It first initializes an array of counters to 0. The entries of the array correspond to the potential values of the sequence vars[0], . . . , vars[n -1]. In a second phase the checker computes for each potential value its number of occurrences in the sequence vars[0], . . . , vars[n -1]. This is done by scanning this sequence. Finally in a third phase the checker verifies that no value is used more than once. These three phases are represented by the automaton depicted by part (E2) of Figure 1.7. The automaton depicted by part (E2) takes as input the sequence vars[0], . . . , vars[n -1]. Its initial state initializes an array of counters to 0. Then it triggers successively a transition for each element vars[i] of the input sequence and increments by 1 the entry corresponding to vars[i]. The final state checks that all entries of the array of counters are strictly less than 2, which means that no value occurs more than once in the sequence vars[0], . . . , vars[n -1].
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 22 Figure 2.2: Illustration of Berge-acyclic constraint network
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 23 Figure 2.3: A bipartite graph and one of its bipartite matching
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 24 Figure 2.4: Hypergraph associated with a centered cyclic(1) constraint network(1) A constraint network corresponding to the pattern depicted by Figure 2.4. Circles depict variables, while arcs are represented by a set of variables. Gray circles correspond to optional variables. All pairs of constraints have at most one variable in common.
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 25 Figure 2.5: Hypergraph associated with a centered cyclic(2) constraint network(1)
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 26 Figure 2.6: Hypergraph associated with a centered cyclic(3) constraint network(1)
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 27 Figure 2.7: Hypergraph corresponding to a circular sliding cyclic(1) constraint network(2)
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 28 Figure 2.8: Illustration of the notion of contact
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 29 Figure 2.9: A convex set and a non-convex set
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 210 Figure 2.10: Convex hull of a non-convex set Within the context of linear programming the convex hull relaxation of a nonconvex set S corresponds to the set of linear constraints characterizing the convex hull of S.
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 2 Figure 2.11: A graph and one of its dominating set

  Figure 2.12: A magic hexagon
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 213 Figure 2.13: Hypergraph associated with a sliding cyclic(1) constraint network(1)
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 214 Figure 2.14: Hypergraph associated with a sliding cyclic(1) constraint network(2)
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 215 Figure 2.15: Hypergraph associated with a sliding cyclic(1) constraint network(3) Sliding cyclic(2) constraint network(2):
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 216 Figure 2.16: Hypergraph associated with a sliding cyclic(2) constraint network(2)

  .4) used for generating the initial digraph: NARC ≤ NVERTEX 2 arc gen = CIRCUIT : NARC ≤ NVERTEX arc gen = CHAIN : NARC ≤ 2 • NVERTEX -2 arc gen = CLIQUE (≤) : NARC ≤ NVERTEX • (NVERTEX + 1) 2 arc gen = CLIQUE (≥) : NARC ≤ NVERTEX • (NVERTEX + 1) 2 arc gen = CLIQUE (<) : NARC ≤ NVERTEX • (NVERTEX -1) 2 arc gen = CLIQUE (>) : NARC ≤ NVERTEX • (NVERTEX -1) 2 arc gen = CLIQUE ( =) : NARC ≤ NVERTEX 2 -NVERTEX arc gen = CYCLE : NARC ≤ 2 • NVERTEX arc gen = PATH : NARC ≤ NVERTEX -1

Figure 3 . 1 :

 31 Figure 3.1: Illustration of Proposition 73. A graph that achieves the maximum number of arcs according to the size of the largest connected component as well as to a fixed number of vertices (MAX NCC = 3, NVERTEX = 11, NARC = 3 2 • ¨11 3 ˝+ (11 mod 3) 2 = 31)

2 ( 3 . 113 ) 2 ( 3 . 114 ) 2 ( 3 . 115 ) 2 ( 3 . 116 )

 23113231142311523116 arc gen = CIRCUIT : NARC ≤ NVERTEX -2 • (MIN NCC < NVERTEX) (3.111) arc gen = CHAIN : NARC ≤ NVERTEX -2 • (MIN NCC < NVERTEX) (3.112) arc gen = CLIQUE (≤) : NARC ≤ MIN NCC • (MIN NCC + 1) 2 + (NVERTEX -MIN NCC) • (NVERTEX -MIN NCC + 1) arc gen = CLIQUE (≥) : NARC ≤ MIN NCC • (MIN NCC + 1) 2 + (NVERTEX -MIN NCC) • (NVERTEX -MIN NCC + 1) arc gen = CLIQUE (<) : NARC ≤ MIN NCC • (MIN NCC -1) 2 + (NVERTEX -MIN NCC) • (NVERTEX -MIN NCC -1) arc gen = CLIQUE (>) : NARC ≤ MIN NCC • (MIN NCC -1) 2 + (NVERTEX -MIN NCC) • (NVERTEX -MIN NCC -1) arc gen = CLIQUE ( =) : NARC ≤ MIN NCC 2 -MIN NCC+ (NVERTEX -MIN NCC) 2 -(NVERTEX -MIN NCC) (3.117) arc gen = CYCLE : NARC ≤ NVERTEX -4 • (MIN NCC < NVERTEX) (3.118) arc gen = PATH : NARC ≤ max(0, MIN NCC -1)+ max(0, NVERTEX -MIN NCC -1) (3.119)

  The smallest number of vertices is obtained by taking all connected components to their minimum number of vertices MIN NCC. MIN NSCC, NARC, NVERTEX Proposition 86.NARC ≤ NVERTEX 2 + MIN NSCC 2 -NVERTEX • MIN NSCC(3.122) 

MIN

  Since each strongly connected component contains at least MIN NSCC vertices the total number of vertices is greater than or equal to NSCC • MIN NSCC. NARC, NCC, NVERTEX Proposition 88. NARC ≤ (NVERTEX -NCC + 1) 2 + NCC -1 (3.124) arc gen = CIRCUIT : NARC ≤ NVERTEX -NCC + 1 -(NCC = 1) (3.125)

132 )Figure 3 . 2 :

 13232 Figure 3.2: Illustration of Proposition 88. A graph that achieves the maximum number of arcs according to a fixed number of connected components as well as to a fixed number of vertices (NCC = 5, NVERTEX = 7, NARC = (7 -5 + 1) 2 + 5 -1 = 13)

  and since X is of maximal cardinality the difference is strictly positive. Now as NVERTEX(G ) = NVERTEX(G), NCC(G ) = NCC(G) and as T (G ) = T (G) -1 the result holds by induction hypothesis.

( 3 . 134 )Figure 3 . 3 :

 313433 Figure 3.3: Illustration of Proposition 90(3.136). A graph that achieves the maximum number of arcs according to a fixed number of strongly connected components as well as to a fixed number of vertices (NSCC = 5, NVERTEX = 6, NARC = (6-5+1)•6+ 5•(5-1) 2 = 22)

  Xi)i∈I is still the family of strongly connected components of G , and moreover, for every i ∈ I and every xi ∈ Xi we have that xi is connected to any vertex outside Xi, that is the number of arcs incident to xi and incident to vertices outside Xi is exactly |V (G )| -|Xi|. Now, as T (G ) ≥ 1, there exists Y , a strongly connected component of G distinct from X, with more than one vertex. Let y ∈ Y and let G be the graph such that V

Figure 3 . 4 :

 34 Figure 3.4: Illustration of Proposition 3.138. A graph that achieves the minimum number of arcs according to a fixed number of strongly connected components as well as to a fixed number of vertices (NSCC = 7, NVERTEX = 10, NARC = 10 -¨7 2 ˝= 7)

Figure 3 . 5 :

 35 Figure 3.5: Illustration of Proposition 94. Graphs that achieve the minimum number of

Figure 3 . 6 :

 36 Figure 3.6: Illustration of Proposition 96. Graphs that achieve the minimum number of arcs according to a fixed number of sources as well as to a fixed number of vertices (A :

155 )

 155 Proof.(3.154) We construct NCC -1 connected components with MIN NCC vertices and one connected component with MAX NCC vertices. The quantity max(1, n-1) corresponds to the minimum number of arcs in a connected component of n (n > 0) vertices. MAX NCC, MIN NCC, NCC, NVERTEX Proposition 100. NVERTEX ≤ max(0, NCC -1) • MAX NCC + MIN NCC (3.156) Proof. Derived from the definitions of MIN NCC and MAX NCC. Proposition 101. NVERTEX ≥ max(0, NCC -1) • MIN NCC + MAX NCC (3.157) Proof. Derived from the definitions of MIN NCC and MAX NCC. MAX NSCC, MIN NSCC, NARC, NSCC Proposition 102.

Proposition 106 .

 106 MAX NSCC, MIN NSCC, NSCC, NVERTEX Proposition 104. NVERTEX ≤ max(0, NSCC -1) • MAX NSCC + MIN NSCC (3.160) Proof. Derived from the definitions of MIN NSCC and MAX NSCC. Proposition 105. NVERTEX ≥ max(0, NSCC -1) • MIN NSCC + MAX NSCC (3.161) Proof. Derived from the definitions of MIN NSCC and MAX NSCC. MIN NCC, NARC, NCC, NVERTEX Let α, β and γ respectively denote max(0, NCC -1), NVERTEXα • MIN NCC and MIN NCC.

Figure 3 . 7 :

 37 Figure 3.7: Illustration of Proposition 106(3.162). Graphs that achieve the maximum number of arcs according to a minimum number of vertices in a connected component, to a number of connected components, as well as to a fixed number of vertices (MIN NCC = 2, NCC = 5, NVERTEX = 11, NARC = (11 -(5 -1) • 2) 2 + (5 -1) • 2 2 = 25)

Figure 3 . 8 :

 38 Figure 3.8: Illustration of Proposition 107. A graph that achieves the maximum number of arcs according to a fixed number of connected components, to a fixed number of strongly connected components as well as to a fixed number of vertices (NCC = 3, NSCC = 6, NVERTEX = 7, NARC = 3 -1 + (7 -6 + 1)(7 -3 + 1) + (6 -3 + 1)(6 -3)/2 = 18)

  apartition ∧ arc gen = PATH : max(2, MIN NCC1) + max(3, MIN NCC1 + 1, MAX NCC1)+ max(2, MIN NCC2) -2 > NVERTEXINITIAL ⇒ MIN NCC1 = MAX NCC1 (3.183) Proof. The quantity max(2, MIN NCC1) + max(3, MIN NCC1 + 1, MAX NCC1) + max(2, MIN NCC2) -2 corresponds to the minimum number of variables needed for building two non-empty connected components of respective size MIN NCC1 and MAX NCC1 such that MAX NCC1 is strictly greater than MIN NCC1. If this quantity is greater than the total number of variables we have that MIN NCC1 = MAX NCC1. Proposition 121. vpartition ∧ consecutive loops are connected : max(1, MIN NCC1) + max(2, MIN NCC1 + 1, MAX NCC1)+ max(1, MIN NCC2) > NVERTEXINITIAL ⇒ MIN NCC1 = MAX NCC1 (3.184) Proof. The quantity max(1, MIN NCC1) + max(2, MIN NCC1 + 1, MAX NCC1) + max(1, MIN NCC2) corresponds to the minimum number of variables needed for building two non-empty connected components of respective size MIN NCC1 and MAX NCC1 such that MAX NCC1 is strictly greater than MIN NCC1. If this quantity is greater than the total number of variables we have that MIN NCC1 = MAX NCC1. MAX NCC2, MIN NCC2, MIN NCC1 Proposition 122.

2 ,

 2 apartition ∧ arc gen = PATH : max(2, MIN NCC1) + max(2, MAX NCC1) + max(2, MIN NCC2) -MIN NCC2) -2 corresponds to the minimum number of variables needed for building two non-empty connected components of respective size MIN NCC1 and MAX NCC1. If this quantity is greater than the total number of variables we have that NCC1 ≤ 1.

Figure 3 . 9 :

 39 Figure 3.9: Illustration of Proposition 135. Configuration achieving the maximum number of connected components for G1 according to the size of the smallest and largest connected components of G1 and G2 and to an initial number of vertices (MAX NCC1 = 4, MAX NCC2 = 5, MIN NCC1 = 3, MIN NCC2 = 4, NVERTEXINITIAL = 14, α = max(0, 14 -4 -5+1) = 6, β = max(2, 3+4-2) = 5, NCC1 = (4 > 0)+ ¨6 5 ˝+(((6mod5)+1) ≥ 3) = 2)

Figure 3 . 10 :

 310 Figure 3.10: Illustration of Proposition 136. Configuration achieving the minimum number of connected components for G1 according to the size of the smallest and largest connected components of G1 and G2 and to an initial number of vertices (MAX NCC1 = 4, MAX NCC2 = 5, MIN NCC1 = 3, MIN NCC2 = 4, NVERTEXINITIAL = 18, α = max(0, 18 -3 -4 + 1) = 12, β = max(2, 4 + 5 -2) = 7, NCC1 = (3 > 0) + ¨12 7 ˝+ (((12 mod 7) + 1) > 5) = 3)

7 .

 7 ctr derived collections( CONSTRAINT NAME, LIST OF DERIVED COLLECTIONS ) • LIST OF DERIVED COLLECTIONS is a list of derived collections. Derived collections are collections that are computed from the arguments of the constraint and are used in the graph-based description. Derived collections were described in Section 1.2.2 page 17. 8. ctr graph( CONSTRAINT NAME, LIST OF ARC INPUT, ARC ARITY, ARC GENERATORS, ARC CONSTRAINTS, GRAPH PROPERTIES )

  cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.40 circular change . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.41 clique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.42 colored matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.43 coloured cumulative . . . . . . . . . . . . . . . . . . . . . diffn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . greatereq . . . . . . . . . . . . . . . . . . . . . . . . . 4.83 element lesseq . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.84 element matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.85 element sparse . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.86 elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . pos different from 0 . . . . . . . . . . . . . . . . . . . . . . set to booleans . . . . . . . . . . . . . . . . . . . . . . . . 4.126longest change . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.127map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.128max index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.129max n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 4 .Figure 4 . 1 :

 441 Figure 4.1: Initial and final graph of the all differ from at least k pos constraint

  Since we use the CLIQUE ( =) arc generator on the items of the VECTORS collection, the expression |VECTORS| • |VECTORS| -|VECTORS| corresponds to the maximum number of arcs of the final graph. Therefore we can rewrite the graph property NARC = |VECTORS|• |VECTORS| -|VECTORS| to NARC ≥ |VECTORS| • |VECTORS| -|VECTORS|. This leads to simplify NARC to NARC.

Arc arity 2

 2 Arc constraint(s) abs(variables1.var -variables2.var) ≥ MINDIST Graph property(ies) NARC = |VARIABLES| * (|VARIABLES| -1)/2 Example all min dist `2, {var -5, var -1, var -9, var -3} Ṕarts (A) and (B) of Figure 4.2 respectively show the initial and final graph. The all min dist constraint holds since all the arcs of the initial graph belong to the final graph: all the minimum distance constraints are satisfied.

1

 1 Example alldifferent({var -5, var -1, var -9, var -3}) Parts (A) and (B) of Figure 4.3 respectively show the initial and final graph. Since we use the MAX NSCC graph property we show one of the largest strongly connected component of the final graph. The alldifferent holds since all the strongly connected components have at most one vertex: A value is used at most once.

Figure 4 . 3 :

 43 Figure 4.3: Initial and final graph of the alldifferent constraint

Figure 4 . 4 :

 44 Figure 4.4: Automaton of the alldifferent constraint

Figure 4 . 5 :

 45 Figure 4.5: Upper-left to lower-right diagonals (A-B), lines (C) and lower-right to upper-left diagonals (D-E)

  and (B) of Figure4.6 respectively show the initial and final graph. Since we use the MAX NSCC graph property we show one of the largest strongly connected component of the final graph. The alldifferent between sets holds since all the strongly connected components have at most one vertex.

Figure 4 . 6 :

 46 Figure 4.6: Initial and final graph of the alldifferent between sets constraint

  and (B) of Figure 4.7 respectively show the initial and final graph. Since we use the MAX NSCC graph property we show one of the largest strongly connected component of the final graph. The alldifferent except 0 holds since all the strongly connected components have at most one vertex: A value different from 0 is used at most once.

Figure 4 .

 4 8 depicts the automaton associated to the alldifferent except 0 constraint. To each variable VARi of the collection VARIABLES corresponds a 0-1 signature variable Si. The following signature constraint links VARi and Si: VARi = 0 ⇔ Si. The automaton counts the number of occurrences of each value different from 0 and finally imposes that each non-zero value is taken at most one time.

Figure 4 . 7 :

 47 Figure 4.7: Initial and final graph of the alldifferent except 0 constraint

Figure 4 . 8 :

 48 Figure 4.8: Automaton of the alldifferent except 0 constraint

1

 1 Examplealldifferent interval({var -2, var -3, var -10}, 3)

Figure 4 . 9 :Figure 4 . 10 :

 49410 Figure 4.9: Initial and final graph of the alldifferent interval constraint

  The equivalences classes associated to values 25, 1, 14 and 3 are respectively equal to 25 mod 5 = 0, 1 mod 5 = 1, 14 mod 5 = 4 and 3 mod 5 = 3. Since they are distinct the alldifferent modulo constraint holds. Parts(A) and (B) of Figure4.11 respectively show the initial and final graph. Since we use the MAX NSCC graph property we show one of the largest strongly connected component of the final graph.

Figure 4 . 11 :

 411 Figure 4.11: Initial and final graph of the alldifferent modulo constraint

Figure 4 . 12 :

 412 Figure 4.12: Automaton of the alldifferent modulo constraint

  and (B) of Figure 4.13 respectively show the initial and final graph. Since we use the MAX NCC graph property we show one of the largest connected component of the final graph. The alldifferent on intersection constraint holds since each connected component has at most two vertices.

Figure 4 . 13 :

 413 Figure 4.13: Initial and final graph of the alldifferent on intersection constraint

Figure 4 . 14 :

 414 Figure 4.14: Automaton of the alldifferent on intersection constraint

  Since all variables take values that are located within distinct partitions the alldifferent partition constraint holds. Parts(A) and (B) of Figure4.15 respectively show the initial and final graph. Since we use the MAX NSCC graph property we show one of the largest strongly connected component of the final graph.

Figure 4 . 15 :

 415 Figure 4.15: Initial and final graph of the alldifferent partition constraint

Figure 4 . 16 :

 416 Figure 4.16: Initial and final graph of the alldifferent same value constraint

Figure 4 . 17 :

 417 Figure 4.17: Automaton of the alldifferent same value constraint

Figure 4 . 18 :

 418 Figure 4.18: Initial and final graph of the among constraint

Figure 4 .Figure 4 . 19 :

 4419 Figure 4.19: Automaton of the among constraint

Figure 4 . 20 :

 420 Figure 4.20: Hypergraph of the reformulation corresponding to the automaton of the among constraint

Figure 4 . 21 :

 421 Figure 4.21: Initial and final graph of the among diff 0 constraint

Figure 4 . 23 :

 423 Figure 4.23: Hypergraph of the reformulation corresponding to the automaton of the among diff 0 constraint

Figure 4 . 24 :

 424 Figure 4.24: Initial and final graph of the among interval constraint

Figure 4 .Figure 4 . 25 :

 4425 Figure 4.25: Automaton of the among interval constraint

Figure 4 . 26 :

 426 Figure 4.26: Hypergraph of the reformulation corresponding to the automaton of the among interval constraint

  and (B) of Figure 4.27 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold. The among low up constraint holds since between 1 and 2 variables of the VARIABLES collection are assigned to a value of the VALUES collection.

Figure 4 .

 4 28 depicts the automaton associated to the among low up constraint. To each variable VARi of the collection VARIABLES corresponds a 0-1 signature variable Si. The following signature constraint links VARi and Si: VARi ∈ VALUES ⇔ Si. The automaton counts the number of variables of the VARIABLES collection which take their value in VALUES and finally checks that this number is within the interval [LOW, UP].

Figure 4 . 27 :Figure 4 . 28 :Figure 4 . 29 :

 427428429 Figure 4.27: Initial and final graph of the among low up constraint

Figure 4 .Figure 4 . 30 :Figure 4 . 31 :

 4430431 Figure 4.30: Initial and final graph of the among modulo constraint
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Figure 4 . 32 :

 432 Figure 4.32: Hypergraph of the reformulation corresponding to the automaton of the among modulo constraint

Figure 4 . 33 :Figure 4 . 34 :

 433434 Figure 4.33: Initial and final graph of the arith constraint

Figure 4 . 35 :

 435 Figure 4.35: Hypergraph of the reformulation corresponding to the automaton of the arith constraint

Figure 4 .Figure 4 . 36 :Figure 4 . 37 :

 4436437 Figure 4.36: Initial and final graph of the arith or constraint

Figure 4 . 38 :

 438 Figure 4.38: Hypergraph of the reformulation corresponding to the automaton of the arith or constraint

Figure 4 . 39 :

 439 Figure 4.39: Automaton of the arith sliding constraint

Figure 4 . 40 :

 440 Figure 4.40: Hypergraph of the reformulation corresponding to the automaton of the arith sliding constraint

Figure 4 .Figure 4 . 41 :Figure 4 . 42 :

 4441442 Figure 4.41: Initial and final graph of the assign and counts constraint

  and (B) of Figure 4.44 respectively show the initial and final graph. The final graph consists of the following two connected components:

Figure 4 . 44 :Figure 4 . 45 :

 444445 Figure 4.44: Initial and final graph of the assign and nvalues constraint

Figure 4 .

 4 Figure 4.45 depicts the solution corresponding to the example.

Figure 4 . 47 :

 447 Figure 4.47: Automaton of the atleast constraint

C

  

Figure 4 . 48 :Figure 4 . 49 :

 448449 Figure 4.48: Hypergraph of the reformulation corresponding to the automaton of the atleast constraint

Figure 4 . 50 :

 450 Figure 4.50: Automaton of the atmost constraint

C

  

Figure 4 . 51 :

 451 Figure 4.51: Hypergraph of the reformulation corresponding to the automaton of the atmost constraint

Figure 4 . 52 :Figure 4 . 53 :

 452453 Figure 4.52: Initial and final graph of the balance constraint

4 - 1 )

 41 . Parts(A) and(B) of Figure4.54 respectively show the initial and final graph. Since we use the RANGE NSCC graph property, we show the largest and smallest strongly connected components of the final graph.

Figure 4 . 54 :

 454 Figure 4.54: Initial and final graph of the balance interval constraint

Figure 4 . 55 :

 455 Figure 4.55: Automaton of the balance interval constraint

Figure 4 . 56 :Figure 4 . 57 :

 456457 Figure 4.56: Initial and final graph of the balance modulo constraint

" 3 5

 3 VARIABLEScollection(vardvar), [item(var -ITEMS.weight)] « Constraint(s) on sets sum ctr(variables, ≤, CAPACITY) weight -4, bin -1 weight -3, bin -3 weightand (B) of Figure 4.59 respectively show the initial and final graph. Each connected component of the final graph corresponds to the items which are all assigned to the same bin. The bin packing constraint holds since the sum of the height of items which are assigned to bins 1 and 3 is respectively equal to 3 and 5. The previous quantities are both less than or equal to the maximum CAPACITY 5.

Figure 4 .

 4 [START_REF] Leconte | A bounds-based reduction scheme for constraints of difference[END_REF] shows the solution associated to the previous example.

Figure 4 .Figure 4 . 59 :Figure 4 . 61 :

 4459461 Figure 4.59: Initial and final graph of the bin packing constraint

Figure 4 . 62 :

 462 Figure 4.62: Initial and final graph of the binary tree constraint

Figure 4 . 63 :

 463 Figure 4.63: Initial and final graph of the cardinality atleast constraint

Figure 4 . 64 :

 464 Figure 4.64: Automaton of the cardinality atleast constraint

Figure 4 .

 4 65 respectively show the initial and final graph. Since we use the MAX ID graph property, the vertex which has the maximum number of predecessor is stressed with a double circle.AutomatonFigure4.66 depicts the automaton associated to the cardinality atmost constraint. To each variable VARi of the collection VARIABLES corresponds a 0-1 signature variable Si.The following signature constraint links VARi and Si: VARi ∈ VALUES ⇔ Si.

Figure 4 . 65 :Figure 4 . 66 :

 465466 Figure 4.65: Initial and final graph of the cardinality atmost constraint

Figure 4 . 67 :

 467 Figure 4.67: Initial and final graph of the cardinality atmost partition constraint

  In the first example the changes are located between values 4 and 3, 3 and 4, 4 and 1. In the second example the unique change occurs between values 4 and 3. Parts (A) and (B) of Figure4.68 respectively show the initial and final graph of the first example. Since we use the NARC graph property, the arcs of the final graph are stressed in bold.Graph modelSince we are only interested by the constraints linking two consecutive items of the collection VARIABLES we use PATH to generate the arcs of the initial graph.AutomatonFigure 4.69 depicts the automaton associated to the change constraint. To each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a 0-1 signature variable Si. The following signature constraint links VARi, VARi+1 and Si: VARi CTR VARi+1 ⇔ Si.

Figure 4 . 68 :Figure 4 . 69 :

 468469 Figure 4.68: Initial and final graph of the change constraint

Figure 4 . 70 :

 470 Figure 4.70: Hypergraph of the reformulation corresponding to the automaton of the change constraint

Figure 4 .

 4 Figure 4.71 makes clear the different parameters that are associated to the given example. We place character | for representing a change and a blank for a continuity. On top of the solution we represent the different periods of change, while below we show the different periods of continuity. Parts (A) and (B) of Figure 4.72 respectively show the initial and final graph associated to the first graph constraint.

Figure 4 . 71 :

 471 Figure 4.71: Periods of changes and periods of continuities

Figure 4 . 72 :Figure 4 . 73 :Figure 4 . 74 :

 472473474 Figure 4.72: Initial and final graph of the change continuity constraint

Figure 4 . 75 :

 475 Figure 4.75: Hypergraph of the reformulation corresponding to the automaton of the NB PERIOD CHANGE parameter of the change continuity constraint

Figure 4 . 76 :

 476 Figure 4.76: Hypergraph of the reformulation corresponding to the automaton of the NB PERIOD CONTINUITY parameter of the change continuity constraint

Figure 4 . 77 :

 477 Figure 4.77: Automaton for the MIN SIZE CHANGE parameter of the change continuity constraint

Figure 4 . 78 :

 478 Figure 4.78: Automaton for the MIN SIZE CONTINUITY parameter of the change continuity constraint

Figure 4 . 79 :

 479 Figure 4.79: Hypergraph of the reformulation corresponding to the automaton of the MIN SIZE CHANGE parameter of the change continuity constraint

VAR

  

Figure 4 . 80 :

 480 Figure 4.80: Hypergraph of the reformulation corresponding to the automaton of the MIN SIZE CONTINUITY parameter of the change continuity constraint

Figure 4 Figure 4 . 82 :

 4482 Figure 4.81: Automaton for the MAX SIZE CHANGE parameter of the change continuity constraint

Figure 4 . 83 :

 483 Figure 4.83: Hypergraph of the reformulation corresponding to the automaton of the MAX SIZE CHANGE parameter of the change continuity constraint
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Figure 4 . 84 :

 484 Figure 4.84: Hypergraph of the reformulation corresponding to the automaton of the MAX SIZE CONTINUITY parameter of the change continuity constraint

Figure 4 . 85 :

 485 Figure 4.85: Automata for the NB CHANGE and NB CONTINUITY parameters of the change continuity constraint

Figure 4 . 86 :

 486 Figure 4.86: Hypergraph of the reformulation corresponding to the automaton of the NB CHANGE parameter of the change continuity constraint

Figure 4 . 87 :

 487 Figure 4.87: Hypergraph of the reformulation corresponding to the automaton of the NB CONTINUITY parameter of the change continuity constraint

Figure 4 . 88 :

 488 Figure 4.88: Initial and final graph of the change pair constraint

Figure 4 . 90 :

 490 Figure 4.90: Hypergraph of the reformulation corresponding to the automaton of the change pair constraint

Figure 4 . 91 :

 491 Figure 4.91: Initial and final graph of the change partition constraint

  and (B) of Figure 4.92 respectively show the initial and final graph. The circuit constraint holds since the final graph consists of one circuit mentioning once every vertex of the initial graph.

Figure 4 . 93 :

 493 Figure 4.93: Initial and final graph of the circuit cluster constraint

  required(VARIABLES, var) CTR ∈ [=, =, <, ≥, >, ≤]PurposeNCHANGE is the number of times that CTR holds on consecutive variables of the collection VARIABLES. The last and the first variables of the collection VARIABLES are also considered to be consecutive.In the previous example the changes are located between values 4 and 3, 3 and 4, 4 and 1, and 1 and 4. We count one change for each disequality constraint (between two consecutives variables) which holds. Parts (A) and (B) of Figure4.94 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Figure 4 .

 4 95 depicts the automaton associated to the circular change constraint. To each pair of consecutive variables (VARi, VAR (i mod |VARIABLES|)+1 ) of the collection VARIABLES corresponds a 0-1 signature variable Si. The following signature constraint links VARi, VAR (i mod |VARIABLES|)+1 and Si: VARi CTR VAR (i mod |VARIABLES|)+1 ⇔ Si.

Figure 4 . 94 :Figure 4 . 95 :

 494495 Figure 4.94: Initial and final graph of the circular change constraint

Figure 4 . 96 :

 496 Figure 4.96: Hypergraph of the reformulation corresponding to the automaton of the circular change constraint

Figure 4 .

 4 97 shows the initial graph from which we start. It is derived from the set associated to each vertex. Each set describes the potential values of the succ attribute of a given vertex. Part (B) of Figure 4.97 gives the final graph associated to the example. Since we both use the NARC and NVERTEX graph properties, the arcs and the vertices of the final graph are stressed in bold. The final graph corresponds to a clique containing three vertices.

Figure 4 . 97 :

 497 Figure 4.97: Initial and final graph of the clique set constraint

  TASKS : collection(origindvar, durationdvar, enddvar, colourdvar) LIMIT : int Restriction(s) require at least(2, TASKS, [origin, duration, end]) required(TASKS, colour) TASKS.duration ≥ 0 LIMIT ≥ 0

Figure 4 . 98 :Figure 4 .

 4984 Figure 4.98: Initial and final graph of the coloured cumulative constraint

MACHINES 0 Purpose

 0 : collection(idint, capacityint) Restriction(s) required(TASKS, [machine, colour]) require at least(2, TASKS, [origin, duration, end]) TASKS.duration ≥ 0 required(MACHINES, [id, capacity]) distinct(MACHINES, id) MACHINES.capacity ≥ Consider a set T of tasks described by the TASKS collection. The coloured cumulatives constraint enforces for each machine m of the MACHINES collection the following condition: At each point in time p, the numbers of distinct colours of the set of tasks that both overlap that point p and are assigned to machine m does not exceed the capacity of machine m. It also imposes for each task of T the constraint origin + duration = end. tasks.origin + tasks.duration = tasks.end Graph property(ies) NARC = |TASKS| For all items of MACHINES: machine = MACHINES.id • tasks1.machine = tasks2.machine • tasks1.duration > 0 • tasks2.origin ≤ tasks1.origin • tasks1.origin < tasks2.end nvalues(variables, ≤, MACHINES.capacity)

Figure 4 .Figure 4 . 100 :

 44100 Figure 4.100: Initial and final graph of the coloured cumulatives constraint

Figure 4 . 101 :

 4101 Figure 4.101: Assignment of the tasks on the two machines

  and (B) of Figure 4.102 respectively show the initial and final graph. Since we use the NSOURCE and NSINK graph properties, the source and sink vertices of the final graph are stressed with a double circle. Since the final graph has only 3 sources and 4 sinks the variables NCOMMON1 and NCOMMON2 are respectively equal to 3 and 4.

Figure 4 . 102 : 0 Purpose

 41020 Figure 4.102: Initial and final graph of the common constraint

Figure 4 . 103 :

 4103 Figure 4.103: Initial and final graph of the common interval constraint

0 Purpose

 0 NCOMMON1 is the number of variables of the collection of variables VARIABLES1 taking a value situated in an equivalence class (congruence modulo a fixed number M) derived from the values assigned to the variables of VARIABLES2 and from M. NCOMMON2 is the number of variables of the collection of variables VARIABLES2 taking a value situated in an equivalence class (congruence modulo a fixed number M) derived from the values assigned to the variables of VARIABLES1 and from M. mod M = variables2.var mod M

4 .Figure 4 . 104 :

 44104 Figure 4.104: Initial and final graph of the common modulo constraint

  : collection(vardvar) VARIABLES2 : collection(vardvar) PARTITIONS : collection(p -VALUES)

Figure 4 . 105 :

 4105 Figure 4.105: Initial and final graph of the common partition constraint

Figure 4 .

 4 Figure 4.106 gives the initial graph constructed by the GRID arc generator. Figure 4.107 corresponds to the solution where we describe separately each layer of the grid.We have two groups: A first one for the variables assigned to value 1, and a second one for the variables assigned to value 2.

Figure 4 . 106 :

 4106 Figure 4.106: Graph generated by GRID([8,4,2])

Figure 4 . 107 :

 4107 Figure 4.107: The two layers of the solution

  and (B) of Figure4.108 respectively show the initial and final graph. In both graphs the source vertices correspond to the derived collection FROM PERMUTATION, while the sink vertices correspond to the collection TO. Since the final graph contains exactly |PERMUTATION| arcs the correspondence constraint holds. As we use the NARC graph property, the arcs of the final graph are stressed in bold.

Figure 4 . 108 :

 4108 Figure 4.108: Initial and final graph of the correspondence constraint

Figure 4 . 109 :Figure 4 . 110 :

 41094110 Figure 4.109: Initial and final graph of the count constraint

C

  

Figure 4 . 111 :

 4111 Figure 4.111: Hypergraph of the reformulation corresponding to the automaton of the count constraint

Figure 4 . 112 :Figure 4 . 113 :

 41124113 Figure 4.112: Initial and final graph of the counts constraint

C

  

Figure 4 . 114 :

 4114 Figure 4.114: Hypergraph of the reformulation corresponding to the automaton of the counts constraint

  s2.ox -s1.ex) * (s1.ey -s1.oy) -(s1.ex -s1.ox) * (s2.oy -s1.ey) = 0, (s2.ex -s1.ex) * (s2.oy -s1.oy) -(s2.ox -s1.ox) * (s2.ey -s1.ey) = 0, sign((s2.ox -s1.ex) * (s1.ey -s1.oy) -(s1.ex -s1.ox) * (s2.oy -s1.ey)) = sign((s2.ex -s1.ex) * (s2.oy -s1.oy) -(s2.ox -s1.ox) * (s2.ey -s1.ey)) ox -1 oy -4 ex -9 ey -2, ox -1 oy -1 ex -3 ey -5, ox -3 oy -2 ex -7 ey -4, ox -9 oy -1 ex -9 eyand (B) of Figure 4.115 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold. An arc constraint expresses the fact the two line-segments intersect. It is taken from [84, page 889]. Each arc of the final graph corresponds to a line-segments intersection.

Figure 4 .

 4 [START_REF] Katriel | Complete bound consistency for the global cardinality constraint[END_REF] gives a picture of the previous example, where one can observe three line-segments intersections.

  TASKS : collection(origindvar, durationdvar, enddvar, heightdvar) LIMIT : int Restriction(s) require at least(2, TASKS, [origin, duration, end]) required(TASKS, height) TASKS.duration ≥ 0 TASKS.height ≥ 0 LIMIT ≥ 0

Figure 4 . 117 :

 4117 Figure 4.117: Initial and final graph of the cumulative constraint

Figure 4 . 119 :

 4119 Figure 4.118: Resource consumption profile

  TASKS : collection(origindvar, durationdvar, enddvar, heightdvar) LIMIT : int Restriction(s) require at least(2, TASKS, [origin, duration, end]) required(TASKS, height) TASKS.duration ≥ 0 TASKS.height ≥ 1 LIMIT ≥ 0

Figure 4 . 120 :Figure 4 . 121 :

 41204121 Figure 4.120: Initial and final graph of the cumulative product constraint

Figure 4 . 122 :Figure 4 . 123 :

 41224123 Figure 4.122: Initial and final graph of the cumulative two d constraint

0 @

 0 TIME POINTScollection(idpint, durationdvar, pointdvar), » item(idp -TASKS.priority, duration -TASKS.duration, point -TASKS.origin), item(idp -TASKS.priority, duration -TASKS.duration, point -TASKS.end) tasks.origin + tasks.duration = tasks.endGraph property(ies) NARC = |TASKS|For all items of PRIORITIES:

Figure 4 . 124 :

 4124 Figure 4.124: Initial and final graph of the cumulative with level of priority constraint

Figure 4 . 125 :

 4125 Figure 4.125: Resource consumption profile according to both levels of priority

MACHINES 0 @

 0 : collection(idint, capacityint) CTR : atom Restriction(s) required(TASKS, [machine, height]) require at least(2, TASKS, [origin, duration, end]) in attr(TASKS, machine, MACHINES, id) TASKS.duration ≥ 0 required(MACHINES, [id, capacity]) distinct(MACHINES, id) CTR ∈ [≤, ≥]PurposeConsider a set T of tasks described by the TASKS collection. When CTR is equal to ≤ (repectively ≥), the cumulatives constraint enforces the following condition for each machine m: At each point in time, where at least one task assigned on machine m is present, the cumulated height of the set of tasks that both overlap that point and are assigned to machine m should be less than or equal to (repectively greater than or equal to) the capacity associated to machine m. It also imposes for each task of T the constraint origin + duration = end.Derived Collection(s)col TIME POINTScollection(idmint, durationdvar, pointdvar), » item(idm -TASKS.machine, duration -TASKS.duration, point -TASKS.origin), item(idm -TASKS.machine, duration -TASKS.duration, point -TASKS.end) • time points.idm = MACHINES.id • time points.idm = tasks.machine • time points.duration > 0 • tasks.origin ≤ time points.point • time points.point < tasks.end sum ctr(variables, CTR, MACHINES.capacity)

Figure 4 . 126 :Figure 4 . 127 :

 41264127 Figure 4.126: Initial and final graph of the cumulatives constraint

Figure 4 .

 4 128 shows the initial graph from which we have choose to start. It is derived from the set associated to each vertex. Each set describes the potential values of the succ attribute of a given vertex. Part (B) of Figure 4.128 gives the final graph associated to the example. Since we use the NVERTEX graph property, the vertices of the final graph are stressed in bold. The cutset constraint holds since the final graph does not contain any circuit and since the number of removed vertices SIZE CUTSET is equal to 1.

Figure 4 . 128 :

 4128 Figure 4.128: Initial and final graph of the cutset set constraint

→ 5 → 4 → 3 .

 543 Parts (A) and (B) of Figure 4.129 respectively show the initial and final graph. Since we use the NCC graph property, we show the two connected components of the final graph. The constraint holds since all the vertices belong to a circuit (i.e. NTREE = 0) and since NCYCLE = NCC = 2.

Figure 4 . 130 :

 4130 Figure 4.130: Initial and final graph of the cycle card on path constraint

  abs(nodes1.x -nodes2.x) + abs(nodes1.y -nodes2.y) ≤ MAXDIST variablescol(VARIABLEScollection(vardvar),[item(var -NODES.succ)

Figure 4 . 131 :

 4131 Figure 4.131: Initial and final graph of the cycle or accessibility constraint

Figure 4 . 132 : 4 .

 41324 Figure 4.132: Final graph associated to the facilities location problem

0 @ 1 id - 4

 014 RESOURCE TASKcollection(indexint, succdvar, namedvar), » item(index -RESOURCE.id, succ -RESOURCE.first task, name -RESOURCE.id), item(index -TASK.id, succ -TASK.next task, name -TASK.resource) .succ = resource task2.index • resource task1.name = resource task2.nameGraph property(ies)• NTREE = 0• NCC = |RESOURCE| • NVERTEX = |RESOURCE| + |TASK|For all items of RESOURCE: .succ = resource task2.index•resource task1.name = resource task2.name • resource task1.name = RESOURCE.id Graph property(ies) NVERTEX = RESOURCE.nb task + first task -5 nb task -3, id -2 first task -2 nb task -0, id -3 first task -8 nb tasknext task -7 resource -1, id -5 next task -4 resource -1, id -6 next task -3 resource -3, id -7 next task -1 resource -1, id -8 next task -6 resourceof Figure 4.133 shows the initial graphs (of the second graph constraint) associated to resources 1, 2 and 3. Part (B) of Figure 4.133 shows the final graphs (of the second graph constraint) associated to resources 1, 2 and 3. Since we use the NVERTEX graph property, the vertices of the final graphs are stressed in bold. To each resource corresponds a circuit of respectively 3, 0 and 2 task-vertices.

  Since the initial graph of the first graph constraint contains |RESOURCE| + |TASK| vertices, the corresponding final graph cannot have more than |RESOURCE| + |TASK| vertices. Therefore we can rewrite the graph property NVERTEX = |RESOURCE| + |TASK| to NVERTEX ≥ |RESOURCE| + |TASK| and simplify NVERTEX to NVERTEX.

Figure 4 . 133 :

 4133 Figure 4.133: Initial and final graph of the cycle resource constraint

3 0

 3 does not correspond to a change since (3 + 1) mod 4 is equal to 0. Parts (A) and (B) of Figure 4.134 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold. Automaton Figure 4.135 depicts the automaton associated to the cyclic change constraint. To each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a 0-1 signature variable Si. The following signature constraint links VARi, VARi+1 and Si: ((VARi + 1) mod CYCLE LENGTH) CTR VARi+1 ⇔ Si.

Figure 4 . 134 :Figure 4 . 135 :

 41344135 Figure 4.134: Initial and final graph of the cyclic change constraint

Figure 4 . 136 :

 4136 Figure 4.136: Hypergraph of the reformulation corresponding to the automaton of the cyclic change constraint

Figure 4 . 137 :

 4137 Figure 4.137: Initial and final graph of the cyclic change joker constraint

Figure 4 . 139 :

 4139 Figure 4.139: Hypergraph of the reformulation corresponding to the automaton of the cyclic change joker constraint

1 Figure 4 . 140 :

 14140 Figure 4.140: Initial and final graph of the decreasing constraint

Figure 4 . 141 :

 4141 Figure 4.141: Automaton of the decreasing constraint

VAR

  

Figure 4 . 142 :

 4142 Figure 4.142: Hypergraph of the reformulation corresponding to the automaton of the decreasing constraint

Figure 4 . 143 :

 4143 Figure 4.143: The sequence and its deepest valley Automaton Figure 4.144 depicts the automaton associated to the deepest valley constraint. To each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a signature variable Si. The following signature constraint links VARi, VARi+1 and Si:

Figure 4 . 144 :

 4144 Figure 4.144: Automaton of the deepest valley constraint

C

  

Figure 4 . 145 :

 4145 Figure 4.145: Hypergraph of the reformulation corresponding to the automaton of the deepest valley constraint

2 cycles: 1 → 2 → 1 and 3 → 5 → 4 → 3 .

 123543 Parts (A) and (B) of Figure 4.146 respectively show the initial and final graph. The constraint holds since the final graph does not contain any vertex which do not belong to a circuit (i.e. NTREE = 0).

Figure 4 . 147 :Figure 4 . 148 :

 41474148 Figure 4.147: Initial and final graph of the differ from at least k pos constraint

C

  

Figure 4 . 149 :

 4149 Figure 4.149: Hypergraph of the reformulation corresponding to the automaton of the differ from at least k pos constraint

  and (B) of Figure4.150 respectively show the initial and final graph associated to the second graph constraint. Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Figure 4 .Figure 4 . 150 : 1 1Figure 4 . 151 :

 4415014151 Figure 4.150: Initial and final graph of the diffn constraint

  Since |ORTHOTOPES| is the maximum number of vertices of the final graph of the first graph constraint we can rewrite NARC = |ORTHOTOPES| to NARC ≥ |ORTHOTOPES|. This leads to simplify NARC to NARC. Since we use the CLIQUE ( =) arc generator on the ORTHOTOPES collection, |ORTHOTOPES| • |ORTHOTOPES| -|ORTHOTOPES| is the maximum number of vertices of the final graph of the second graph constraint. Therefore we can rewrite NARC = |ORTHOTOPES|•|ORTHOTOPES|-|ORTHOTOPES| to NARC ≥ |ORTHOTOPES|• |ORTHOTOPES| -|ORTHOTOPES|. Again, this leads to simplify NARC to NARC.

Figure 4 . 153 :var - 4 Figure 4 . 154 :

 415344154 Figure 4.153: Initial and final graph of the diffn include constraint

Purpose

  Each variable of the collection VARIABLES1 should take a value that is distinct from all the values assigned to the variables of the collection VARIABLES2.In this example, values 1, 5, 9 are used by the variables of VARIABLES1 and values 0, 2, 6, 7, 8 by the variables of VARIABLES2. Since there is no intersection between the two previous sets of values the disjoint constraint holds. Figure4.155 shows the initial graph. Since we use the NARC = 0 graph property the final graph is empty.

Figure 4 . 155 :

 4155 Figure 4.155: Initial graph of the disjoint constraint (the final graph is empty)

Figure 4 . 156 :

 4156 Figure 4.156: Automaton of the disjoint constraint

0 PurposeFigure 4 .

 04 Figure 4.157 shows the initial graph of the third graph constraint. Because of the graph property NARC = 0 the corresponding final graph is empty. Figure4.158 displays the two groups of tasks (i.e. the tasks of TASKS1 and the tasks of TASKS2). Since no task of the first group overlaps any task of the second group, the disjoint tasks constraint holds.

Figure 4 . 157 :Figure 4 . 158 :

 41574158 Figure 4.157 shows the initial graph of the third graph constraint. Because of the graph property NARC = 0 the corresponding final graph is empty. Figure4.158 displays the two groups of tasks (i.e. the tasks of TASKS1 and the tasks of TASKS2). Since no task of the first group overlaps any task of the second group, the disjoint tasks constraint holds.

  generator CLIQUE (<) → collection(tasks1, tasks2) + tasks1.duration ≤ tasks2.origin, tasks2.origin + tasks2.duration ≤ tasks1.origin and (B) of Figure4.159 respectively show the initial and final graph. The disjunctive constraint holds since all the arcs of the initial graph belong to the final graph: all the non-overlapping constraints holds.

Figure 4 . 160 :

 4160 Figure 4.160: Final graphs of the distance between constraint

Figure 4 .

 4 Figure 4.161: Final graphs of the distance change constraint

Figure 4 .

 4 Figure 4.162: Automaton of the distance change constraint

Figure 4 . 1 Graph

 41 Figure 4.163: Hypergraph of the reformulation corresponding to the automaton of the distance change constraint

Figure 4 .Figure 4 .

 44 Figure 4.164: Initial and final graph of the domain constraint constraint

Figure 4 .

 4 Figure 4.166: Hypergraph of the reformulation corresponding to the automaton of the domain constraint constraint

Figure 4 .

 4 Figure 4.167: Initial and final graph of the elem constraint

A

  Parts(A) and(B) of Figure4.170 respectively show the initial and final graph. Since we use the NARC graph property, the unique arc of the final graph is stressed in bold.

Figure 4 .Figure 4 .

 44 Figure 4.171: Automaton of the element constraint

Figure 4 .Figure 4 .

 44 Figure 4.176: Initial and final graph of the element lesseq constraint

Figure 4 .

 4 Figure 4.179: Initial and final graph of the element matrix constraint

  and (B) of Figure4.182 respectively show the initial and final graph. Since we use the NARC graph property the final graph is outline with thick lines.

Figure 4 .

 4 Figure 4.182: Initial and final graph of the element sparse constraint

Figure 4 .Figure 4 .

 44 Figure 4.183: Automaton of the element sparse constraint

Figure 4 .

 4 Figure 4.186: Initial and final graph of the elements alldifferent constraint

Figure 4 .

 4 Figure 4.187: Two representations of a permutation containing one single cycle

  and (B) of Figure 4.188 respectively show the initial and final graph. Since we use the NSOURCE graph property, the vertices of the final graph are drawn with a double circle.

Figure 4 .Figure 4 .

 44 Figure 4.188: Initial and final graph of the elements sparse constraint

Figure 4 .

 4 Figure 4.190: Automaton of the exactly constraint

C

  

Figure 4 .

 4 Figure 4.191: Hypergraph of the reformulation corresponding to the automaton of the exactly constraint

Figure 4 .

 4 Figure 4.192: Initial and final graph of the global cardinality constraint

Figure 4 .

 4 Figure 4.194: Initial and final graph of the global cardinality low up constraint

Figure 4 .

 4 Figure 4.195: Initial and final graph of the global cardinality with costs constraint

  and (B) ofFigure 4.196 respectively show the initial and final graph. The global contiguity constraint holds since the final graph does not contain more than one connected component. This connected component corresponds to 2 contiguous variables which are both assigned to 1.

Figure 4 .Figure 4 .

 44 Figure 4.196: Initial and final graph of the global contiguity constraint

Figure 4 .

 4 Figure 4.198: Hypergraph of the reformulation corresponding to the automaton of the global contiguity constraint

"

  PAIRScollection(xdvar, ydvar), [> -item(x -VARIABLES.var, y -VARIABLES.var)] -pairs1.x = pairs2.y -pairs2.x Graph property(ies) MAX NSCC ≤ 1 Example golomb({var -0, var -1, var -4, var -6}) Parts (A) and (B) of Figure 4.199 respectively show the initial and final graph.

Figure 4 . 0 Figure 4 .

 404 Figure 4.199: Initial and final graph of the golomb constraint

0 •

 0 succdvar, xint, yint) Restriction(s) NCROSS ≥ 0 required(NODES, [succ, x, y]) NODES.succ ≥ 1 NODES.succ ≤ |NODES| Purpose NCROSS is the number of proper intersections between line-segments, where each line-segment is an arc of the directed graph defined by the arc linking a node and its unique successor. n1.x, NODES[n1.succ].x) ≥ min(n2.x, NODES[n2.succ].x) • max(n2.x, NODES[n2.succ].x) ≥ min(n1.x, NODES[n1.succ].x) • max(n1.y, NODES[n1.succ].y) ≥ min(n2.y, NODES[n2.succ].y) • max(n2.y, NODES[n2.succ].y) ≥ min(n1.y, NODES[n1.succ].y) • (n2.x -NODES[n1.succ].x) * (NODES[n1.succ].y -n1.y)-(NODES[n1.succ].x -n1.x) * (n2.y -NODES[n1.succ].y) = (NODES[n2.succ].x -NODES[n1.succ].x) * (n2.y -n1.y)-(n2.x -n1.x) * (NODES[n2.succ].y -NODES[n1.succ].y) x -NODES[n1.succ].x) * (NODES[n1.succ].y -n1.y)-(NODES[n1.succ].x -n1.x) * (n2.y -NODES[n1.succ].y) « = sign " (NODES[n2.succ].x -NODES[n1.succ].x) * (n2.y -n1.y)-(n2.x -n1.x) * (NODES[n2.succ].y -NODES[n1.succ].y)

Figure 4 .Figure 4 .

 44 Figure 4.201: Initial and final graph of the graph crossing constraint

Figure 4 .

 4 Figure 4.203: Initial and final graph of the group constraint

Figure 4 .

 4 Figure 4.204: Automaton for the NGROUP parameter of the group constraint
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Figure 4 .Figure 4 .Figure 4 .

 444 Figure 4.205: Hypergraph of the reformulation corresponding to the automaton of the NGROUP parameter of the group constraint
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Figure 4 .Figure 4 .Figure 4 .

 444 Figure 4.208: Hypergraphs of the reformulations corresponding to the automata of the MIN SIZE and MAX SIZE parameters of the group constraint

Figure 4 .Figure 4 .

 44 Figure 4.211: Hypergraphs of the reformulations corresponding to the automata of the MIN DIST and MAX DIST parameters of the group constraint

Figure 4 .

 4 Figure 4.213: Hypergraph of the reformulation corresponding to the automaton of the NVAL parameter of the group constraint

Figure 4 .

 4 Figure 4.214: Initial and final graph of the group skip isolated item constraint

Figure 4 .

 4 Figure 4.216: Hypergraph of the reformulation corresponding to the automaton of the NGROUP parameter of the group skip isolated item constraint

Figure 4 Figure 4

 44 Figure 4.217: Automaton for the MIN SIZE parameter of the group skip isolated item constraint

Figure 4 .Figure 4 .

 44 Figure 4.219: Hypergraphs of the reformulations corresponding to the automata of the MIN SIZE and MAX SIZE parameters of the group skip isolated item constraint

Figure 4 .

 4 Figure 4.221: Hypergraph of the reformulation corresponding to the automaton of the NVAL parameter of the group skip isolated item constraint

Figure 4 .

 4 Figure 4.222: The sequence and its heighest peak Automaton Figure 4.223 depicts the automaton associated to the heighest peak constraint. To each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a signature variable Si. The following signature constraint links VARi, VARi+1 and Si:

Figure 4 .PurposeFigure 4 .Figure 4 .

 444 Figure 4.224: Hypergraph of the reformulation corresponding to the automaton of the heighest peak constraint

2

 2 : collection(vardvar) TUPLE OF VALS : collection(valint) Argument(s) VARIABLES : TUPLE OF VARS TUPLES OF VALS : collection(tuple -TUPLE OF VALS) Restriction(s) required(TUPLE OF VARS, var) required(TUPLE OF VALS, val) required(TUPLES OF VALS, tuple) min size(TUPLES OF VALS, tuple) = |VARIABLES| max size(TUPLES OF VALS, tuple) = |VARIABLES| Purpose Enforce the tuple of variables VARIABLES to take its value out of a set of tuples of values TUPLES OF VALS. The value of a tuple of variables V1, V2, . . . , Vn is a tuple of values U1, U2, . . . , Un if and only if V1 = U1 ∧ V2 = U2 ∧ • • • ∧ Vn = Un. Derived Collection(s) col(TUPLES OF VARScollection(vec -TUPLE OF VARS), [item(vec -VARIABLES)]) Arc input(s) TUPLES OF VARS TUPLES OF VALS Arc generator PRODUCT → collection(tuples of vars, tuples of vals) Arc arity Arc constraint(s) vec eq tuple(tuples of vars.vec, tuples of vals.tuple) -5, val -2, val -3}, tuple -{val -5, val -2, val -6}, tuple -{val -5, val -3, valand (B) of Figure 4.228 respectively show the initial and final graph. Since we use the NARC graph property, the unique arc of the final graph is stressed in bold.

= ; 1 A

 1 Parts(A) and(B) ofFigure 4.229 respectively show the initial and final graph. Since we both use the NSOURCE and NSINK graph properties, the source and sink vertices of the final graph are shown with a double circle. Graph model VAR1 and VAR2 are put together in the derived collection VARIABLES. Since both VAR1 and VAR2 should take their value in one of the partition depicted by the PARTITIONS collection, the final graph should have two sources corresponding respectively to VAR1 and VAR2. Since two, possibly distinct, values should be assigned to VAR1 and VAR2 and since these values belong to the same partition p the final graph should only have one sink. This sink corresponds in fact to partition p.

Figure 4 .Figure 4 .

 44 Figure 4.229: Initial and final graph of the in same partition constraint

Figure 4 . 1 Figure 4 .Figure 4 .

 4144 Figure 4.231: Hypergraph of the reformulation corresponding to the automaton of the in same partition constraint

Figure 4 .

 4 Figure 4.234: Hypergraph of the reformulation corresponding to the automaton of the increasing constraint

Figure 4 . 555 AutomatonFigure 4 .

 45554 Figure 4.236: The sequence and its three inflexions

Figure 4 .

 4 Figure 4.238: Hypergraph of the reformulation corresponding to the automaton of the inflexion constraint

Figure 4 .

 4 Figure 4.240: Hypergraph of the reformulation corresponding to the automaton of the int value precede constraint

Figure 4 .

 4 Figure 4.242: Hypergraph of the reformulation corresponding to the automaton of the int value precede chain constraint

arity 2 "Figure 4 .

 24 Figure 4.243 shows the solution associated to the previous example. The constraint interval and count holds since, for each interval, the number of tasks taking colour 4 does not exceed the limit 2. Parts (A) and (B) of Figure4.244 respectively show the initial and final graph. Each connected component of the final graph corresponds to items which are all assigned to the same interval.

Figure 4 .Figure 4 .

 44 Figure 4.243: Solution with the use of each interval

Figure 4 .Figure 4 .

 44 Figure 4.245: Automaton of the interval and count constraint

"

  VARIABLEScollection(vardvar), [item(var -TASKS.height)]

Figure 4 .Figure 4 .

 44 Figure 4.246: Solution showing for each interval the corresponding tasks

Figure 4 .

 4 Figure 4.248: Automaton of the interval and sum constraint

Figure 4 .

 4 Figure 4.249: Initial and final graph of the inverse constraint

Figure 4 .

 4 Figure 4.250: Automaton of the inverse constraint

Figure 4 .

 4 Figure 4.251: Initial and final graph of the inverse set constraint

Figure 4 .

 4 253 depicts the automaton associated to the ith pos different from 0 constraint. To each variable VARi of the collection VARIABLES corresponds a 0-1 signature variable Si. The following signature constraint links VARi and Si: VARi = 0 ⇔ Si.

Figure 4 .

 4 Figure 4.253: Automaton of the ith pos different from 0 constraint

Figure 4 .

 4 Figure 4.254: Hypergraph of the reformulation corresponding to the automaton of the ith pos different from 0 constraint

Figure 4 .

 4 255 shows the initial graph from which we have choose to start. It is derived from the set associated to each vertex. Each set describes the potential values of the succ attribute of a given vertex. Part (B) of Figure 4.255 gives the final graph associated to the example. The k cut constraint holds since we have at least K = 3 connected components in the final graph.

Figure 4 .

 4 Figure 4.255: Initial and final graph of the k cut set constraint

lex between 0 @ 1 AFigure 4 .

 014 {var -5, var -2, var -3, var -9}, {var -5, var -2, var -6, var -2}, {var -5, var -2, var -6, var -3} Automaton 257 depicts the automaton associated to the lex between constraint. Let Li, Vi and Ui respectively be the var attributes of the i th items of the LOWER BOUND, the VECTOR and the UPPER BOUND collections. To each triple (Li, Vi, Ui) corresponds a signature variable Si as well as the following signature constraint:

Figure 4 .

 4 Figure 4.258: Hypergraph of the reformulation corresponding to the automaton of the lex between constraint

Purpose 5 ,

 5 Vectors VECTOR1 and VECTOR2 differ from at least one component. var -2, var -7, var -1}, {var -5, var -3, var -7, var -1} « Parts (A) and (B) of Figure 4.261 respectively show the initial and final graph. Since we use the NARC graph property, the unique arc of the final graph is stressed in bold. It corresponds to a component where the two vectors differ.

Figure 4 .Figure 4 .

 44 Figure 4.261: Initial and final graph of the lex different constraint

Figure 4 .

 4 Figure 4.263: Hypergraph of the reformulation corresponding to the automaton of the lex different constraint

5 ,

 5 var -2, var -7, var -1}, {var -5, var -2, var -6, var -2} « Parts (A) and (B) of Figure 4.264 respectively show the initial and final graph. Since we use the PATH FROM TO graph property we show the following information on the final graph:

Figure 4 .Figure 4 .

 44 Figure 4.264: Initial and final graph of the lex greater constraint

Figure 4 .

 4 Figure 4.266: Hypergraph of the reformulation corresponding to the automaton of the lex greater constraint

5 ,

 5 var -2, var -8, var -9}, {var -5, var -2, var -6, var -2} « lex greatereq " {var -5, var -2, var -3, var -9}, {var -5, var -2, var -3, var -9} « Parts (A) and (B) of Figure 4.267 respectively show the initial and final graph associated to the first example. Since we use the PATH FROM TO graph property we show on the final graph the following information:

Figure 4 .

 4 Figure 4.267: Initial and final graph of the lex greatereq constraint

Figure 4 .

 4 Figure 4.268: Automaton of the lex greatereq constraint

Figure 4 .

 4 Figure 4.269: Hypergraph of the reformulation corresponding to the automaton of the lex greatereq constraint

5 ,

 5 var -2, var -3, var -9}, {var -5, var -2, var -6, var -2} « Parts (A) and (B) of Figure 4.270 respectively show the initial and final graph. Since we use the PATH FROM TO graph property we show on the final graph the following information:

Figure 4 .Figure 4 .

 44 Figure 4.270: Initial and final graph of the lex less constraint

Figure 4 .

 4 Figure 4.272: Hypergraph of the reformulation corresponding to the automaton of the lex less constraint

5 ,

 5 var -2, var -3, var -1}, {var -5, var -2, var -6, var -2} « lex lesseq " {var -5, var -2, var -3, var -9}, {var -5, var -2, var -3, var -9} « Parts (A) and (B) of Figure 4.273 respectively show the initial and final graph associated to the first example. Since we use the PATH FROM TO graph property we show on the final graph the following information:

Figure 4 .Figure 4 .

 44 Figure 4.273: Initial and final graph of the lex lesseq constraint

Figure 4 .

 4 Figure 4.275: Hypergraph of the reformulation corresponding to the automaton of the lex lesseq constraint

Figure 4 .

 4 Figure 4.276: Initial and final graph of the link set to booleans constraint

  and (B) of Figure 4.277 respectively show the initial and final graph. Since we use the MAX NCC graph property we show the largest connected component of the final graph. It corresponds to the longest period of uninterrupted changes: Sequence 8, 3, 4, 1, which involves 4 consecutives variables.

Figure 4 .

 4 Figure 4.277: Initial and final graph of the longest change constraint

Figure 4 .

 4 Figure 4.278: Automaton of the longest change constraint

Figure 4 .

 4 Figure 4.279: Hypergraph of the reformulation corresponding to the automaton of the longest change constraint

Figure 4 .

 4 Figure 4.280: Initial and final graph of the map constraint

Figure 4 .

 4 Figure 4.281: Initial and final graph of the max index constraint

Figure 4 .

 4 Figure 4.282: Automaton of the max index constraint

M

  

Figure 4 .

 4 Figure 4.283: Hypergraph of the reformulation corresponding to the automaton of the max index constraint

Figure 4 .Figure 4 .

 44 Figure 4.285: Initial and final graph of the max nvalue constraint

  required(VARIABLES, var)PurposeMAX is the size of the largest set of variables of the collection VARIABLES which all take their value in a set of consecutive values.

  MAX is the maximum value of the collection of domain variables VARIABLES. and (B) of Figure4.288 respectively show the initial and final graph. Since we use the ORDER graph property, the vertex of rank 0 (without considering the loops) of the final graph is shown in gray.

Figure 4 .Figure 4 .

 44 Figure 4.288: Initial and final graph of the maximum constraint

Figure 4 .

 4 Figure 4.290: Hypergraph of the reformulation corresponding to the automaton of the maximum constraint

  dvar VARIABLES : collection(indexint, vardvar)

  and (B) of Figure 4.292 respectively show the initial and final graph associated to both examples. Since we use the ORDER graph property, the vertices of rank 0 (without considering the loops) of the final graph are shown in gray.

Figure 4 .

 4 Figure 4.292: Initial and final graph of the min index constraint

Figure 4 .

 4 Figure 4.293: Automaton of the min index constraint

M

  

Figure 4 .

 4 Figure 4.294: Hypergraph of the reformulation corresponding to the automaton of the min index constraint

  = variables2.key ∨ variables1.var < variables2.varGraph property(ies)ORDER(RANK, MAXINT, var)

  : collection(vardvar)

Figure 4 .

 4 Figure 4.297: Initial and final graph of the min nvalue constraint

Figure 4

 4 Figure 4.298: Automaton of the min nvalue constraint

3 ,

 3 var -4, var -1, var -2} and {var -7, var -8, var -7, var -6} take their values in the two following sets of consecutive values {1, 2, 3, 4} and {6, 7, 8}. The min size set of consecutive var constraint holds since the cardinality of the smallest set of variables is 4. Parts (A) and (B) of Figure 4.299 respectively show the initial and final graph. Since we use the MIN NSCC graph property, we show the smallest strongly connected component of the final graph.

  MIN is the minimum value of the collection of domain variables VARIABLES. and (B) of Figure 4.300 respectively show the initial and final graph. Since we use the ORDER graph property, the vertices of rank 0 (without considering the loops) of the final graph are shown in gray.

Figure 4 . 0 Purpose 0 •

 400 Figure 4.302: Hypergraph of the reformulation corresponding to the automaton of the minimum constraint

Figure 4 .Figure 4 .

 44 Figure 4.303: Initial and final graph of the minimum except 0 constraint

Figure 4 .

 4 Figure 4.305: Hypergraph of the reformulation corresponding to the automaton of the minimum except 0 constraint

Figure 4 .Figure 4 .

 44 Figure 4.306: Initial and final graph of the minimum greater than constraint

Figure 4 .

 4 Figure 4.310: Initial and final graph of the minimum weight alldifferent constraint

  NEQUIV ≥ min(1, |VARIABLES|) NEQUIV ≤ min(M, |VARIABLES|) M > 0 required(VARIABLES, var)PurposeNEQUIV is the number of distinct rests obtained by dividing the variables of the collection VARIABLES by M.

  and (B) of Figure 4.312 respectively show the initial and final graph. Since we use the NSCC graph property we show the different strongly connected components of the final graph. Each strongly connected component corresponds to one equivalence class: We have two equivalence classes that respectively correspond to values {3, 6, 15} and {2, 5}.

Figure 4 .

 4 Figure 4.316: Initial and final graph of the next greater element constraint

  and (B) of Figure4.317 respectively show the initial and final graph. Since we use the NSCC graph property we show the different strongly connected components of the final graph. Each strongly connected component corresponds to those values of an interval which are assigned to some variables of the VARIABLES collection.

Figure 4 .

 4 Figure 4.318: A sequence without any peak

Figure 4 .

 4 Figure 4.320: Hypergraph of the reformulation corresponding to the automaton of the no peak constraint

Figure 4 .

 4 Figure 4.321: A sequence without any valley Automaton Figure 4.322 depicts the automaton associated to the no valley constraint. To each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a signature variable Si. The following signature constraint links VARi, VARi+1 and Si: (VARi < VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi > VARi+1 ⇔ Si = 2).

Figure 4 .

 4 Figure 4.323: Hypergraph of the reformulation corresponding to the automaton of the no valley constraint

  and (B) of Figure4.324 respectively show the initial and final graph. Since we use the NSCC graph property we show the different strongly connected components of the final graph. Each strongly connected component corresponds to one value which is assigned to some variables of the VARIABLES collection. The not all equal holds since the final graph contains more than one strongly connected component.AutomatonFigure4.325 depicts the automaton associated to the not all equal constraint. To each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a signature variable Si. The following signature constraint links VARi, VARi+1 and Si: VARi = VARi+1 ⇔ Si.

Figure 4 .Figure 4 .

 44 Figure 4.324: Initial and final graph of the not all equal constraint

Figure 4 .

 4 Figure 4.326: Hypergraph of the reformulation corresponding to the automaton of the not all equal constraint

Figure 4 .Figure 4 .

 44 Figure 4.328: Automaton of the not in constraint

  required(VARIABLES, var)PurposeN is the number of set of consecutive values used by the variables of the collection VARIABLES.In this example, the variables of the collection VARIABLES use the following two sets of consecutive values: {1, 2, 3} and {7, 8}. Parts (A) and (B) of Figure4.331 respectively show the initial and final graph. Since we use the NSCC graph property, we show the two strongly connected components of the final graph.

  : collection(vardvar) Restriction(s) NVAL ≥ min(1, |VARIABLES|) NVAL ≤ |VARIABLES| required(VARIABLES, var) Purpose NVAL is the number of distinct values taken by the variables of the collection VARIABLES. and (B) of Figure 4.332 respectively show the initial and final graph. Since we use the NSCC graph property we show the different strongly connected components of the final graph. Each strongly connected component corresponds to one value which is assigned to some variables of the VARIABLES collection. The 4 following values 1, 3, 6 and 7 are used by the variables of the VARIABLES collection.AutomatonFigure4.333 depicts the automaton associated to the nvalue constraint. To each item of the collection VARIABLES corresponds a signature variable Si, which is equal to 0.

Figure 4 .Figure 4 .

 44 Figure 4.332: Initial and final graph of the nvalue constraint

Figure 4 .

 4 Figure 4.334: Initial and final graph of the nvalue on intersection constraint

  , var) RELOP ∈ [=, =, <, ≥, >, ≤]PurposeLet N be the number of distinct values, different from 0, assigned to the variables of the VARIABLES collection. Enforce condition N RELOP LIMIT to hold. and (B) of Figure4.336 respectively show the initial and final graph. Since we use the NSCC graph property we show the different strongly connected components of the final graph. Each strongly connected component corresponds to one value distinct from 0 which is assigned to some variables of the VARIABLES collection. Beside value 0, the 3 following values 1, 4 and 5 are assigned to the variables of the VARIABLES collection.

Figure 4 .

 4 Figure 4.337: The two trees to merge Parts (A) and (B) of Figure 4.338 respectively show the initial and final graph. Since we use the NVERTEX graph property, the vertices of the final graph are stressed in bold.

  : collection(indexint, xdvar, ydvar)Restriction(s) NROW ≥ 0 TREES.index ≥ 1 TREES.index ≤ |TREES| required(TREES, [index, x, y]) distinct(TREES, index) TREES.x ≥ 0 TREES.y ≥ 0Orchard problem[START_REF] Jackson | Rational amusements for winter evenings[END_REF]:PurposeYour aid I want, Nine trees to plant, In rows just half a score, And let there be, In each row, three-Solve this: I ask no more! * trees2.y -trees1.x * trees3.y, trees1.y * trees3.x -trees1.y * trees2.x, trees2.x * trees3.y -trees2.y * trees3.x

1 «Figure 4 .

 14 Figure 4.341: Initial and final graph of the orth on the ground constraint

5 Figure 4 .

 54 Figure 4.342: Initial and final graph of the orth on top of orth constraint

  in contact(orthotopes1.orth, orthotopes2.orth)

Figure 4 .Figure 4 .

 44 Figure 4.343: Initial and final graph of the orths are connected constraint

Figure 4 .

 4 345 shows the initial graph from which we choose to start. It is derived from the set associated to each vertex. Each set describes the potential values of the succ attribute of a given vertex. Part (B) of Figure 4.345 gives the final graph associated to the example. Since we use the PATH FROM TO graph property we show on the final graph the following information:

1 Figure 4 .

 14 Figure 4.346: The sequence and its two peaks

Figure 4 .

 4 Figure 4.348: Hypergraph of the reformulation corresponding to the automaton of the peak constraint

  required(VARIABLES, var) CTR ∈ [=, =, <, ≥, >, ≤]PurposeLet us note V0, V1, . . . , Vm-1 the variables of the VARIABLES collection. PERIOD is the period of the sequence V0 V1 . . . Vm-1 according to constraint CTR . This means that PERIOD is the smallest natural number such that Vi CTR Vi+PERIOD ∨ Vi = 0 ∨ Vi+PERIOD = 0 holds for all i ∈ 0, 1, . . . , m -PERIOD -

  = orthotopes2.key, orth on the ground(orthotopes1.orth, VERTICAL DIM) « , V " orthotopes1.key = orthotopes2.key, orth on top of orth(orthotopes1.orth, orthotopes2.orth, VERTICAL DIM)
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 44 Figure 4.349: Initial and final graph of the place in pyramid constraint

index - 1 Figure 4 .Figure 4 .

 144 Figure 4.351: Initial and final graph of the polyomino constraint

Figure 4 .

 4 Figure 4.355: Final directed hypergraph associated to the example

Figure 4 .

 4 Figure 4.356: Initial and final graph of the same constraint

Figure 4

 4 Figure 4.357: Automaton of the same constraint

Figure 4 .

 4 Figure 4.358: Modelling the 0-1 matrix reconstruction problem with the same constraint

Figure 4 .

 4 Figure 4.359: Initial and final graph of the same and global cardinality constraint

Figure 4 .

 4 Figure 4.360: Initial and final graph of the same intersection constraint

Figure 4 .

 4 Figure 4.361: Initial and final graph of the same interval constraint

Figure 4 .

 4 Figure 4.362: Initial and final graph of the same modulo constraint

Figure 4 .

 4 Figure 4.363: Initial and final graph of the same partition constraint

Figure 4 .Figure 4 .

 44 Figure 4.364: Initial and final graph of the sequence folding constraint

Figure 4 .

 4 Figure 4.366: Automaton of the sequence folding constraint

Figure 4 .

 4 Figure 4.367: Initial and final graph of the shift constraint

Figure 4 .

 4 Figure 4.368: The two shifts of the example

Figure 4 .

 4 Figure 4.370: Initial and final graph of the sliding card skip0 constraint

Figure 4 .

 4 Figure 4.371: Automaton of the sliding card skip0 constraint

C

  

Figure 4 .

 4 Figure 4.372: Hypergraph of the reformulation corresponding to the automaton of the sliding card skip0 constraint

  and (B) of Figure 4.375 respectively show the initial and final graph. To each arc of the final graph we associate the intersection of the corresponding sink task with interval [START, START + WINDOW SIZE -1]. The constraint sliding time window from start holds since the sum of the previous intersections does not exceed LIMIT.Graph modelSince we use the TRUE arc constraint the final and the initial graph are identical. The unique source of the final graph corresponds to the interval [START, START + WINDOW SIZE -1].Each sink of the final graph represents a given task of the TASKS collection. We valuate each arc by the intersection of the task associated to one of the extremities of the arc with the time window [START, START + WINDOW SIZE -1]. Finally, the graph property SUM WEIGHT ARC sums up all the valuations of the arcs and check that it does not exceed a given limit.

Figure 4 .

 4 Figure 4.376: Initial and final graph of the sliding time window sum constraint

  In the previous example we have one change between values 5 and 2 since the difference in absolute value is greater than the tolerance (i.e. |5 -2| > 2). Parts(A) and(B) of Figure4.378 respectively show the initial and final graph. Since we use the NARC graph property, the unique arc of the final graph is stressed in bold.AutomatonFigure4.379 depicts the automaton associated to the smooth constraint. To each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a 0-1 signature variable Si. The following signature constraint links VARi, VARi+1 and Si:(|VARi -VARi+1|) > TOLERANCE ⇔ Si = 1.

Figure 4 .Figure 4 .

 44 Figure 4.378: Initial and final graph of the smooth constraint

Figure 4 .

 4 Figure 4.380: Hypergraph of the reformulation corresponding to the automaton of the smooth constraint

0 C

 0 ≤ (|VARIABLES| * |VARIABLES| -|VARIABLES|)/2 required(VARIABLES, var)PurposeConsider the disequality constraints involving two distinct variables of the collection VARIABLES. Among the previous set of constraints, C is the number of disequality constraints which do not hold. and (B) of Figure4.381 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold. Since four equality constraints remain in the final graph the cost variable C is equal to 4.

  and (B) of Figure4.382 respectively show the initial and final graph. Since we use the NSCC graph property we show the different strongly connected components of the final graph. Each strongly connected component of the final graph includes all variables which take the same value. Since we have 6 variables and 3 strongly connected components the cost variable C is equal to 6 -3.

AFigure 4 .

 4 Figure 4.383: Initial and final graph of the soft same interval var constraint

0 Purpose

 0 For each integer R in [0, M -1], let N1 R (respectively N2 R ) denote the number of variables of VARIABLES1 (respectively VARIABLES2) which have R as a rest when divided by M. C is the minimum number of values to change in the VARIABLES1 and VARIABLES2 collections so that for all R in [0, M -1] we have N1 R = N2 R . mod M = variables2.var mod MGraph property(ies)NSINK NSOURCE = |VARIABLES1| -

AFigure 4 .

 4 Figure 4.384: Initial and final graph of the soft same modulo var constraint

AFigure 4 .

 4 Figure 4.385: Initial and final graph of the soft same partition var constraint

C

  is the minimum number of values to change in the VARIABLES1 and VARIABLES2 collections so that the variables of the VARIABLES2 collection correspond to the variables of the VARIABLES1 collection according to a permutation.

  Parts(A) and(B) of Figure4.386 respectively show the initial and final graph. Since we use the NSINK NSOURCE graph property, the source and sink vertices of the final graph are stressed with a double circle. The soft same var constraint holds since the cost 4 corresponds to the difference between the number of variables of VARIABLES1 and the sum over the different connected components of the minimum number of sources and sinks.

  and (B) of Figure4.387 respectively show the initial and final graph. Since we use the NSINK NSOURCE graph property, the source and sink vertices of the final graph are stressed with a double circle. The soft used by interval var constraint holds since the cost 2 corresponds to the difference between the number of variables of VARIABLES2 and the sum over the different connected components of the minimum number of sources and sinks.

0 Purpose

 0 For each integer R in [0, M -1], let N1 R (respectively N2 R ) denote the number of variables of VARIABLES1 (respectively VARIABLES2) which have R as a rest when divided by M. C is the minimum number of values to change in the VARIABLES1 and VARIABLES2 collections so that for all R in [0, M -1] we have N2 R > 0 ⇒ N1 R > 0. mod M = variables2.var mod M Graph property(ies) NSINK NSOURCE = |VARIABLES2| -C Example soft used by modulo var 0

Figure 4 .

 4 Figure 4.389: Initial and final graph of the soft used by partition var constraint

  minimum number of values to change in the VARIABLES1 and VARIABLES2 collections so that all the values of the variables of collection VARIABLES2 are used by the variables of collection VARIABLES1.

  Parts(A) and(B) of Figure4.390 respectively show the initial and final graph. Since we use the NSINK NSOURCE graph property, the source and sink vertices of the final graph are stressed with a double circle. The soft used by var constraint holds since the cost 2 corresponds to the difference between the number of variables of VARIABLES2 and the sum over the different connected components of the minimum number of sources and sinks.

Figure 4 .•

 4 Figure 4.391: Initial and final graph of the sort constraint

Figure 4 .

 4 Figure 4.392: Initial and final graph of the sort permutation constraint

  and (B) of Figure4.393 respectively show the initial and final graph associated to the second graph constraint. Since we use the NARC graph property, the unique arc of the final graph is stressed in bold.

Figure 4 .Figure 4 .

 44 Figure 4.394: Automaton of the stage element constraint

Figure 4 .

 4 Figure 4.396: Initial and final graph of the stretch circuit constraint

Figure 4 .

 4 Figure 4.397: Initial and final graph of the stretch path constraint

  and (B) of Figure4.398 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold.AutomatonFigure4.399 depicts the automaton associated to the strictly decreasing constraint.To each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a 0-1 signature variable Si. The following signature constraint links VARi, VARi+1 and Si: VARi ≤ VARi+1 ⇔ Si.

Figure 4 .Figure 4 .

 44 Figure 4.398: Initial and final graph of the strictly decreasing constraint

VAR

  

Figure 4 .Purpose

 4 Figure 4.400: Hypergraph of the reformulation corresponding to the automaton of the strictly decreasing constraint

Figure 4 .Figure 4 .

 44 Figure 4.401: Initial and final graph of the strictly increasing constraint

Figure 4 .

 4 Figure 4.403: Hypergraph of the reformulation corresponding to the automaton of the strictly increasing constraint

Figure 4 .

 4 404 shows the initial graph from which we start. It is derived from the set associated to each vertex. Each set describes the potential values of the succ attribute of a given vertex. Part (B) of Figure 4.404 gives the final graph associated to the example. The strongly connected constraint holds since the final graph contains one single strongly connected component mentioning every vertex of the initial graph. Signature Since the maximum number of vertices of the final graph is equal to |NODES| we can rewrite the graph property MIN NSCC = |NODES| to MIN NSCC ≥ |NODES| and simplify MIN NSCC to MIN NSCC.

Figure 4 .

 4 Figure 4.404: Initial and final graph of the strongly connected set constraint

  and (B) of Figure 4.405 respectively show the initial and final graph. Since we use the SUM graph property we show the vertices from which we compute S in a box.

  and (B) of Figure4.408 respectively show the initial and final graph.

Figure 4 .

 4 Figure 4.408: Initial and final graph of the sum set constraint

  and (B) of Figure 4.409 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Figure 4 .

 4 Figure 4.410: Initial and final graph of the symmetric cardinality constraint

idvar - 1 idval - 1 0 9Figure 4 .

 1104 Figure 4.411: Initial and final graph of the symmetric gcc constraint

index - 1

 1 • nodes1.succ = nodes2.index • nodes1.succ = nodes1.index ∨ nodes1.end ≤ nodes2.start • nodes1.start ≤ nodes1.end • nodes2.start ≤ nodes2.end succ -2 start -0 end -1, index -2 succ -6 start -3 end -5, index -3 succ -4 start -0 end -3, index -4 succ -5 start -4 end -6, index -5 succ -7 start -7 end -8, index -6 succ -6 start -7 end -9, index-7 succ -7 start -9 endand (B) of Figure 4.412 respectively show the initial and final graph. Since we use the MAX ID, the NCC and the NVERTEX graph properties we display the following information on the final graph:

Figure 4 .

 4 Figure 4.412: Initial and final graph of the temporal path constraint

  Since we use the graph property NVERTEX = |NODES| together with the restriction |NODES| > 0 the final graph is not empty. Therefore the smallest possible value of MAX ID is equal to 1. So we can rewrite MAX ID = 1 to MAX ID ≤ 1 and simplify MAX ID to MAX ID. Since the maximum number of vertices of the final graph is equal to |NODES| we can rewrite the graph property NVERTEX = |NODES| to NVERTEX ≥ |NODES| and simplify NVERTEX to NVERTEX.

index - 1

 1 NODES : collection(indexint, succsvar) Restriction(s) |NODES| ≥ 3 required(NODES, [index, succ]) NODES.index ≥ 1 NODES.index ≤ |NODES| distinct(NODES, index) Purpose Enforce to cover an undirected graph G described by the NODES collection with a Hamiltonian cycle. in set(nodes2.index, nodes1.succ) ⇔ in set(nodes1.index, nodes2.succ) succ -{2, 4}, index -2 succ -{1, 3}, index -3 succ -{2, 4}, index -4 succ -{1, Figure 4.413 shows the initial graph from which we start. It is derived from the set associated to each vertex. Each set describes the potential values of the succ attribute of a given vertex. Part (B) of Figure 4.413 gives the final graph associated to the example. The tour constraint holds since the final graph corresponds to a Hamiltonian cycle.

898NARC,Figure 4 . 0 @trail - 1

 401 Figure 4.413: Initial and final graph of the tour set constraint

Figure 4 .

 4 Figure 4.414: Initial and final graph of the track constraint

  , [index, succ]) NODES.index ≥ 1 NODES.index ≤ |NODES| distinct(NODES, index) NODES.succ ≥ 1 NODES.succ ≤ |NODES|PurposeCover a digraph G by a set of trees in such a way that each vertex of G belongs to one distinct tree. The edges of the trees are directed from their leaves to their respective roots. > > > > > > > :index -1 succ -1, index -2 succ -5, index -3 succ -5, index -4 succ -7, index -5 succ -1, index -6 succ -1, index -7 succ -7,index -8 succand (B) of Figure4.415 respectively show the initial and final graph. Since we use the NCC graph property, we display the two connected components of the final graph. Each of them corresponds to a tree. The tree constraint holds since all strongly connected components of the final graph have no more than one vertex and since NTREES = NCC = 2.

index - 1 1

 11 required(NODES, [index, succ]) NODES.index ≥ 1 NODES.index ≤ |NODES| distinct(NODES, index) NODES.succ ≥ 1 NODES.succ ≤ |NODES|PurposeCover the digraph G described by the NODES collection with NTREES trees in such a way that each vertex of G belongs to one distinct tree. R is the difference between the longest and the shortest paths of the final graph. succ -1, index -2 succ -5, index -3 succ -5, index -4 succ -7, index -5 succ -1, index -6 succ -1, index -7 succ -7, index -8 succand (B) ofFigure 4.416 respectively show the initial and final graph. Since we use the RANGE DRG graph property, we respectively display the longest and shortest paths of the final graph with a bold and a dash line. • resource task1.succ = resource task2.index • resource task1.name = resource task2.name • resource task1.name = RESOURCE.id Graph property(ies) NVERTEX = RESOURCE.nb task + nb task -4, id -2 nb task -0, id -3 nb taskid -4 father -8 resource -1, id -5 father -3 resource -3, id -6 father -8 resource -1, id -7 father -1 resource -1, id -8 father -1 resource -For the second graph constraint, part (A) of Figure 4.417 shows the initial graphs associated to resources 1, 2 and 3. For the second graph constraint, part (B) of Figure 4.417 shows the final graphs associated to resources 1, 2 and 3. Since we use the NVERTEX graph property, the vertices of the final graphs are stressed in bold. To each resource corresponds a tree of respectively 4, 0 and 1 task-vertices. Signature Since the initial graph of the first graph constraint contains |RESOURCE| + |TASK| vertices, the corresponding final graph cannot have more than |RESOURCE| + |TASK| vertices. Therefore we can rewrite the graph property NVERTEX = |RESOURCE| + |TASK| to NVERTEX ≥ |RESOURCE| + |TASK| and simplify NVERTEX to NVERTEX.

2 , 4 Figure 4 .Figure 4 .

 2444 Figure 4.418: Initial and final graph of the two layer edge crossing constraint

0 , 0 Graph 1

 001 max(orthotope1.ori, orthotope2.ori)min(orthotope1.end, orthotope2.end) ´= siz -3 end -4, ori -5 siz -2 end -7 ff ,  ori -3 siz -2 end -5,ori -2 siz -3 endand (B) of Figure4.420 respectively show the initial and final graph associated to the first graph constraint. Since we use the NARC graph property, the unique arc of the final graph is stressed in bold. It corresponds to the fact that the projection in dimension 1 of the two rectangles of the example overlap.

Figure 4 .Figure 4 .Figure 4 .

 444 Figure 4.420: Initial and final graph of the two orth are in contact constraint

Figure 4 .

 4 Figure 4.423: Hypergraph of the reformulation corresponding to the automaton of the two orth are in contact constraint

1 A 1 Figure 4 .

 114 Figure 4.424: Initial and final graph of the two orth column constraint

0 Graph 2

 02 orthotope1.end ≤ orthotope2.ori ∨ orthotope1.siz = siz -2 end -4, ori -1 siz -3 end -4 ff , ori -4 siz -4 end -8, ori -3 siz -3 endand (B) of Figure4.425 respectively show the initial and final graph.

Figure 4 .Figure 4 .

 44 Figure 4.427: Hypergraph of the reformulation corresponding to the automaton of the two orth do not overlap constraint

Purpose 1 ,

 1 All the values of the variables of collection VARIABLES2 are used by the variables of collection VARIABLES1. var -1, var -2, varand (B) of Figure 4.429 respectively show the initial and final graph.

Figure 4 .Figure 4 .

 44 Figure 4.429: Initial and final graph of the used by constraint

0 Purpose

 0 Let Ni (respectively Mi) denote the number of variables of the collection VARIABLES1 (respectively VARIABLES2) that take a value in the interval[SIZE INTERVAL • i, SIZE INTERVAL • i + SIZE INTERVAL -1]. For all integer i we have Mi > 0 ⇒ Ni > 0.In the previous example, the third parameter SIZE INTERVAL defines the following family of intervals[3 • k, 3 • k + 2],where k is an integer. Parts(A) and (B) of Figure4.431 respectively show the initial and final graph. Since we use the NSOURCE and NSINK graph properties, the source and sink vertices of the final graph are stressed with a double circle.

Figure 4 .

 4 Figure 4.431: Initial and final graph of the used by interval constraint

0 Purpose

 0 For each integer R in [0, M -1], let N1 R (respectively N2 R) denote the number of variables of VARIABLES1 (respectively VARIABLES2) which have R as a rest when divided byM. For all R in [0, M -1] we have N2 R > 0 ⇒ N1 R > 0. mod M = variables2.var mod MGraph property(ies)• for all connected components: NSOURCE ≥ NSINK • and (B) of Figure4.432 respectively show the initial and final graph.

Figure 4 . 1 ,

 41 Figure 4.432: Initial and final graph of the used by modulo constraint

Figure 4 .

 4 Figure 4.433: Initial and final graph of the used by partition constraint

2 *

 2 N ≤ max(|VARIABLES| -1, 0) required(VARIABLES, var) Purpose A variable V k (1 < k < m)of the sequence of variables VARIABLES = V1, . . . , Vm is a valley if and only if there exist an i (1< i ≤ k) such that Vi-1 > Vi and Vi = Vi+1 = . . . = V k and V k < V k+1. N is the total number of valleys of the sequence of variables VARIABLES.

Figure 4 .

 4 Figure 4.434: The sequence and its unique valley

  Figure 4.435: Automaton of the valley constraint

Figure 4 .

 4 Figure 4.436: Hypergraph of the reformulation corresponding to the automaton of the valley constraint

5 ,Figure 4 .

 54 Figure 4.437: Initial and final graph of the vec eq tuple constraint

Figure 4 .

 4 Figure 4.438: Initial and final graph of the weighted partial alldiff constraint

  var-B]|C],E,=).change_signature([[var-A],[var-B]|C],[D|E],=\=) :-!, A#\=B#<=>D, change_signature([[var-B]|C],E,=\=).change_signature([[var-A],[var-B]|C],[D|E],<) #<=>D, change_signature([[var-B]|C],E,>).change_signature([[var-A],[var-B]|C],[D|E],=<) var-B]|C],E,1,=<).change_continuity_signature([[var-A],[var-B]|C],[D|E],0,=) :-!, A#\=B#<=>D, change_continuity_signature([[var-B]|C],E,0,=).change_continuity_signature([[var-A],[var-B]|C],[D|E],0,=\=) #\/B#=D#<=>F, change_pair_signature([[x-C,y-D]|E],G,=,=). change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=,=\=) :-!, A#=C#\/B#\=D#<=>F, change_pair_signature([[x-C,y-D]|E],G,=,=\=). change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=,<) :-!, A#=C#\/B#<D#<=>F, change_pair_signature([[x-C,y-D]|E],G,=,<). change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=,>=) :-!, A#=C#\/B#>=D#<=>F, change_pair_signature([[x-C,y-D]|E],G,=,>=). change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=,>) :-!, A#=C#\/B#>D#<=>F, change_pair_signature([[x-C,y-D]|E],G,=,>). change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=,=<) :-!, A#=C#\/B#=<D#<=>F, change_pair_signature([[x-C,y-D]|E],G,=,=<). change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=\=,=) :-!, A#\=C#\/B#=D#<=>F, change_pair_signature([[x-C,y-D]|E],G,=\=,=). change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=\=,=\=) :-!, A#\=C#\/B#\=D#<=>F, change_pair_signature([[x-C,y-D]|E],G,=\=,=\=). change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=\=,<) :-!, A#\=C#\/B#<D#<=>F, change_pair_signature([[x-C,y-D]|E],G,=\=,<). change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=\=,>=) :-!, A#\=C#\/B#>=D#<=>F, change_pair_signature([[x-C,y-D]|E],G,=\=,>=). change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=\=,>) :-!, A#\=C#\/B#>D#<=>F, change_pair_signature([[x-C,y-D]|E],G,=\=,>). change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=\=,=<) :-!, A#\=C#\/B#=<D#<=>F, change_pair_signature([[x-C,y-D]|E],G,=\=,=<). change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],<,=#\/B#<D#<=>F, change_pair_signature([[x-C,y-D]|E],G,<,<). change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],<,>=) :-!, A#<C#\/B#>=D#<=>F, change_pair_signature([[x-C,y-D]|E],G,<,>=). change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],<,>) :-!, A#<C#\/B#>D#<=>F, change_pair_signature([[x-C,y-D]|E],G,<,>). change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],<,=<) :-!, A#<C#\/B#=<D#<=>F, change_pair_signature([[x-C,y-D]|E],G,<,=<). change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>=,=) :-!, A#>=C#\/B#=D#<=>F, change_pair_signature([[x-C,y-D]|E],G,>=,=).change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>=,=\=) :-!, A#>=C#\/B#\=D#<=>F, change_pair_signature([[x-C,y-D]|E],G,>=,=\=). change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>=,<) :-!, A#>=C#\/B#<D#<=>F, change_pair_signature([[x-C,y-D]|E],G,>=,<). change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>=,>=) :-!, A#>=C#\/B#>=D#<=>F, change_pair_signature([[x-C,y-D]|E],G,>=,>=). change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>=,>) :-!, A#>=C#\/B#>D#<=>F, change_pair_signature([[x-C,y-D]|E],G,>=,>). change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>=,=<) :-!, A#>=C#\/B#=<D#<=>F, change_pair_signature([[x-C,y-D]|E],G,>=,=<). change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>,=) :-!, A#>C#\/B#=D#<=>F, change_pair_signature([[x-C,y-D]|E],G,>,=). change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>,=\=) :-!, A#>C#\/B#\=D#<=>F, change_pair_signature([[x-C,y-D]|E],G,>,=\=). change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>,<) :-!, A#>C#\/B#<D#<=>F, change_pair_signature([[x-C,y-D]|E],G,>,<). change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>,>=) :-!, A#>C#\/B#>=D#<=>F, change_pair_signature([[x-C,y-D]|E],G,>,>=). change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>,>) :-!, A#>C#\/B#>D#<=>F, change_pair_signature([[x-C,y-D]|E],G,>,>). change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],>,=<) :-!, A#>C#\/B#=<D#<=>F, change_pair_signature([[x-C,y-D]|E],G,>,=<). change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=<,=) :-!, A#=<C#\/B#=D#<=>F, change_pair_signature([[x-C,y-D]|E],G,=<,=). change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=<,=\=) :-!, A#=<C#\/B#\=D#<=>F, change_pair_signature([[x-C,y-D]|E],G,=<,=\=). change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=<,<) :-!, A#=<C#\/B#<D#<=>F, change_pair_signature([[x-C,y-D]|E],G,=<,<). change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=<,>=) :-!, A#=<C#\/B#>=D#<=>F, change_pair_signature([[x-C,y-D]|E],G,=<,>=). change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=<,>) :-!, A#=<C#\/B#>D#<=>F, change_pair_signature([[x-C,y-D]|E],G,=<,>). change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=<,=<) :-!, A#=<C#\/B#=<D#<=>F, change_pair_signature([[x-C,y-D]|E],G,=<,=<).

  #<=>D, circular_change_signature([[var-B]|C],E,=). circular_change_signature([[var-A],[var-B]|C],[D|E],=\=) :

  cyclic_change_joker_signature([[var-A],[var-B]|C],[D|E],F,>) :-!, (A+1)mod F#>B#/\A#<F#/\B#<F#<=>D, cyclic_change_joker_signature([[var-B]|C],E,F,>). cyclic_change_joker_signature([[var-A],[var-B]|C],[D|E],F,=<) :-!, (A+1)mod F#=<B#/\A#<F#/\B#<F#<=>D, cyclic_change_joker_signature([[var-B]|C],E,F,=<). #/\D#<E#\/A#<B#/\D#>=E#<=>G, distance_change_signature([[var-B]|C],[[var-E]|F],H,>=). #/\D#=<E#\/A#=<B#/\D#>E#<=>G, distance_change_signature([[var-B]|C],[[var-E]|F],H,>). distance_change_signature( [[var-A],[var-B]|C], [[var-D],[var-E]|F]#/\D#>E#\/A#>B#/\D#=<E#<=>G, distance_change_signature([[var-B]|C],[[var-E]|F],H,=<).
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  two layer edge crossing, 914 NARC, CLIQUE ( =) symmetric alldifferent, 882 NARC, CLIQUE ( =); MAX ID, MAX OD, MIN ID, MIN NSCC, MIN OD, CLIQUE ( = ) tour, 896 NARC, NVERTEX, CLIQUE ( =) sequence alldifferent, 784 NARC, PATH N size maximal sequence alldifferent, 782 NARC, PATH ; NARC, PRODUCT stage element, 850 NARC, PATH ; NARC, PRODUCT , SUCC next greater element, 680 of orth, 720 two orth are in contact, 918 two orth column, 922 two orth include, 928 vec eq tuple, 944 NARC, PRODUCT ; NARC, PATH sort permutation, 846 NARC, PRODUCT , SUCC minimum greater than, ground, 718 NARC, SELF ; CLIQUE , CC shift, 778 NARC, SELF ; CLIQUE , SUCC sliding time window sum, 802 NARC, SELF ; NARC, CLIQUE (<) sequence folding, 772 INDEX NARC, SELF ; NARC, CLIQUE ( =) diffn, 426 NARC, SELF ; NARC, PRODUCT disjoint tasks, 440 NARC, SELF ; NCC, NVERTEX, CLIQUE ( =) orths are connected, 722 NARC, SELF ; PRODUCT , ∀, SUCC coloured cumulatives, 328 cumulative with level of priority, 374 cumulatives, 378 NARC, SELF ; PRODUCT , SUCC coloured cumulative, 324 , CLIQUE ; NVERTEX, CLIQUE , PRED cycle or accessibility, 394 NCC, NTREE, CLIQUE , PATH LENGTH cycle card on path, 390 NCC, NTREE, NVERTEX, CLIQUE ; NVERTEX, CLIQUE , ∀ cycle resource, 398 NCC, NVERTEX, CLIQUE ( =) soft alldifferent var, 814 NSCC, GRID([SIZE1, SIZE2, SIZE3]) connect points, 342 NSCC, NTREE, CLIQUE , ALL VERTICES circuit cluster, 310 NSINK NSOURCE, PRODUCT soft same interval var, 818 soft same modulo var, 820 soft same partition var, 822 soft same var, 824 soft used by interval var, 828 soft used by modulo var, 832 soft used by partition var, 836 soft used by var, 838 NSINK, CC(NSINK, NSOURCE), PRODUCT used by, 930 used by interval, 934 used by modulo, 936 used by partition, 938 NSINK, NSOURCE, CC(NSINK, NSOURCE), PRODUCT same, 754 same interval, 766 same modulo, 768 same partition, 770 NSINK, NSOURCE, CC(NSINK, NSOURCE), PRODUCT ; NARC, PATH sort, 842 NSINK, NSOURCE, CC(NSINK, NSOURCE), PRODUCT ; NVERTEX, SELF , ∀ INDEX same and global cardinality, 760 sum of weights of distinct values, 876 NTREE, CLIQUE derangement, 418 NTREE, SUM WEIGHT ARC, CLIQUE minimum weight alldifferent, 666 NVERTEX, PRODUCT elements alldifferent, 482 NVERTEX, SELF , ∀ global cardinality, 496 global cardinality low up, 500 NVERTEX, SELF , ∀; SUM WEIGHT ARC, PRODUCT global cardinality with costs, 502

  NB CHANGE, NB CONTINUITY, VARIABLES, CTR) constraint: variables1.var ¬CTR variables2.var. Within this expression, variables1 and variables2 correspond to consecutive items of the VARIABLES collection.

					found
	in	the	change continuity(NB PERIOD CHANGE,	NB PERIOD CONTINUITY,
	MIN SIZE CHANGE,	MAX SIZE CHANGE,	MIN SIZE CONTINUITY,
	MAX SIZE CONTINUITY,	

EXAMPLE:

An example of use of such an arc constraint can be

  |c|], ∀i 2 ∈ [1, |c|] such that i 1 Comparison i 2 , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,∀i a ∈ [1, |c|] such that i a-1 Comparison i a : (c[i 1 ], c[i 2 ], . . . , c[i a ]).

  Since this description does not use the FOR ALL ITEMS OF iterator we generate one single initial graph. Each vertex of this graph corresponds to one item of the VARIABLES collection. Since we use the PATH arc generator we generate an arc from item VARIABLES

	Arc input(s)	: VARIABLES
	Arc generator Arc arity	: PATH → collection(variables1, variables2) LOOP → collection(variables1, variables2) : 2
	Arc constraint(s) : variables1.var = variables2.var
		variables1.var = 1
	Graph property(ies): NCC ≤ 1

•

  CC generates one set of vertices for each connected component of the final graph. These sets correspond to all the vertices of a given connected component. It is specified by a declaration of the form CC>> [connected component] where connected component represents the vertices of a connected component of the final graph.• PATH LENGTH(L) generates all elementary paths 23 of L vertices of the final graph such that, discarding loops, all vertices of a path have no more than one successor and one predecessor in the final graph. It is specified by a declaration of the form

	PATH LENGTH(L)>> [path]

vars[0..n-1]):BOOLEAN

  

			among
		vars[i]
		in values,
		c++
		vars[i]
		notin values
			$
	lex_lesseq(x[0..n-1],y[0..n-1]):BOOLEAN	x[i]<y[i] $
		t	nvar=c t:
		(B2)	(C2)
	BEGIN	
	i=0; c=0;	
	WHILE i<n-1 AND vars[i]=vars[i+1] DO i++;	
	IF i<n-1 THEN less=(vars[i]<vars[i+1]);	
	WHILE i<n-1 DO	
	IF less THEN	
	] THEN c++; less=FALSE;	
	ELSE	
	IF vars[i]<vars[i+1] THEN c++; less=TRUE;	
	i++;	
	RETURN (ninf=c);	
	END.	
	(D1)	
	u=vars[0]; v=vars[0]; i=1;	
	WHILE i<n DO	
	IF vars[i]<u THEN u=vars[i];	

lex_lesseq BEGIN alldifferent(
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  As a practical example, consider the group constraint and its first graph constraint. It involves the four graph characteristics NCC, MIN NCC, MAX NCC and NVERTEX, which respectively correspond to the number of connected components, the number of vertices of the smallest connected component, the number of vertices of the largest connected component and the number of vertices of the final graph. In this example the number of connected components of the final graph cannot vary independently from the size of the smallest connected component. The same remark applies also for the size of the largest connected component. Having a graph invariant that directly relates the four graph characteristics can dramatically improve the propagation.

EXAMPLE:

  1 , NCC 2 : 1 (see Proposition 112),

	-MAX NCC 2 , NCC 1 : 1 (see Proposition 113),
	-MIN NCC 1 , NCC 2 : 1 (see Proposition 114),
	-MIN NCC 2 , NCC 1 : 1 (see Proposition 115),
	-NARC 1 , NARC 2 : 1 (see Proposition 116),
	-NCC 1 , NCC 2 : 2 (see Propositions 117 and 118),
	-NVERTEX 1 , NVERTEX 2 : 1 (see Proposition 119).

  1 , MIN NCC 2 : 2 (see Propositions 120 and 121), -MAX NCC 2 , MIN NCC 2 , MIN NCC 1 : 2 (see Propositions 122 and 123), -MIN NCC 1 , NARC 2 , NCC 1 : 1 (see Proposition 124), -MIN NCC 2 , NARC 1 , NCC 2 : 1 (see Proposition 125).

  Proof. By definition of no loop, each strongly connected component has at least two vertices.

	NCC	
	MAX NCC Proposition 8. Proposition 1. Proof. By definition of no loop, each connected component has at least two vertices. no loop : 2 • NCC ≤ NVERTEXINITIAL no loop : MAX NCC = 1 (3.1)	(3.8)
	Proof. Since we don't have any loop, a non-empty connected component has at least two ver-tices. Proposition 9.
	MAX NSCC	consecutive loops are connected : 2 • NCC ≤ NVERTEXINITIAL + 1	(3.9)
	Proof. By definition of consecutive loops are connected. Proposition 2. acyclic : MAX NSCC ≤ 1 NSCC	(3.2)
	Proof. Since we don't have any circuit, a non-empty strongly connected component consists of one single vertex. no loop : MAX NSCC = 1 (3.3) Proposition 3. Proposition 10. no loop : 2 • NSCC ≤ NVERTEXINITIAL	(3.10)
	Proof. Since we don't have any loop, a non-empty strongly connected component has at least
	two vertices.		
	MIN NCC		
	Proposition 4.	no loop : MIN NCC = 1	(3.4)
	Proof. Since we don't have any loop, a non-empty connected component has at least two ver-tices.
	MIN NSCC		
	Proposition 5.	acyclic : MIN NSCC ≤ 1	(3.5)
	Proof. Since we don't have any circuit, a non-empty strongly connected component consists of one single vertex.
	Proposition 6.	no loop : MIN NSCC = 1	(3.6)
	Proof. Since we don't have any loop, a non-empty strongly connected component has at least two vertices.
	NARC		
	Proposition 7.	one succ : NARC = NVERTEXINITIAL	(3.7)
	Proof. By definition of one succ.	

NSINK

Proposition 11.

symmetric : NSINK = 0

(3.11) 
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  Proof. By definition of MAX NCC and of MAX NSCC.Proof. By definition of MAX NCC and of MIN NCC.

	MAX NCC, MAX NSCC	
	Proposition 14.	MAX NCC = 0 ⇔ MAX NSCC = 0	(3.14)
	Proposition 15.	MAX NSCC ≤ MAX NCC	(3.15)
	Proof. MAX NSCC is a lower bound of the size of the largest connected component since
	the largest strongly connected component is for sure included within a connected component.
	MAX NCC, MIN NCC	
	Proposition 16.	MAX NCC = 0 ⇔ MIN NCC = 0	(3.16)
	Proposition 17.	MIN NCC ≤ MAX NCC	(3.17)
	Proof. By definition of MIN NCC and of MAX NCC.	
	MAX NCC, NARC	
	Proposition 18.		

Proposition 24.

  Proof. By definition of MAX NCC and of NSINK. Proof. By definition of MAX NCC and of NVERTEX. Proof. By definition of MAX NSCC and of MIN NSCC.Proof. By definition of MAX NSCC and of NARC.

	(3.21) Finally, when the graph is reflexive, symmetric and transitive, MAX NCC 2 arcs are MAX NSCC, MIN NSCC
	needed to connect MAX NCC vertices that belong to a given connected component. (3.22) When the initial graph corresponds to a path, the minimum number of arcs of a connected component involving n vertices is equal to n -1. Proposition 26. MAX NSCC = 0 ⇔ MIN NSCC = 0 (3.29)
	MAX NCC, NSINK Proposition 27. MIN NSCC ≤ MAX NSCC Proposition 20. Proof. By definition of MIN NSCC and of MAX NSCC. MAX NCC = 0 ⇒ NSINK = 0 MAX NSCC, NARC	(3.30)	(3.23)
	Proposition 21. Proposition 28. MAX NSCC = 0 ⇔ NARC = 0 NSINK ≥ 1 ⇒ MAX NCC ≥ 2	(3.31)	(3.24)
	Proof. Since we don't have any isolated vertex a sink is connected to at least one other vertex. Therefore, if the graph has a sink, there exists at least one connected component with at least two vertices. Proposition 29. NARC ≥ MAX NSCC (3.32)
	MAX NCC, NSOURCE symmetric : NARC ≥ 2 • MAX NSCC	(3.33)	
	Proposition 22. equivalence : NARC ≥ MAX NSCC 2 MAX NCC = 0 ⇒ NSOURCE = 0 Proof. (3.32) In a strongly connected component at least one arc has to leave each vertex. Since (3.34)	(3.25)
	we have at least one strongly connected component of MAX NSCC vertices this leads to the Proof. By definition of MAX NCC and of NSOURCE. previous inequality.	
	Proposition 23. MAX NSCC, NVERTEX Proof. Since we don't have any isolated vertex a source is connected to at least one other vertex. (3.26) NSOURCE ≥ 1 ⇒ MAX NCC ≥ 2 Therefore, if the graph has a source, there exists at least one connected component with at least Proposition 30. (3.35) MAX NSCC = 0 ⇔ NVERTEX = 0 two vertices. Proof.
	MAX NCC, NVERTEX		
	MAX NCC = 0 ⇔ NVERTEX = 0		(3.27)
	Proposition 25.		
	NVERTEX ≥ MAX NCC		(3.28)
	.19) MAX NCC-1 arcs are needed to connect MAX NCC vertices that belong to a given connected component containing at least two vertices. And one arc is required for a connected Proof. By definition of MAX NCC.	
	component containing one single vertex.		
	(3.20) Similarly, when the graph is symmetric, 2 • MAX NCC -2 arcs are needed to con-nect MAX NCC vertices that belong to a given connected component containing at least two	
	vertices.		

By definition of MAX NSCC and of NVERTEX. Proposition 31.

  

	MIN NCC, NARC	
	Proposition 34.	MIN NCC = 0 ⇔ NARC = 0	(3.39)
	Proof. By definition of MIN NCC and of NARC.
	Proposition 35.	
		MIN NCC > 0 ⇒ NARC ≥ max(1, MIN NCC -1)	(3.40)
	symmetric : MIN NCC > 0 ⇒ NARC ≥ max(1, 2 • MIN NCC -2)	(3.41)
		equivalence : NARC ≥ MIN NCC 2	(3.42)
		arc gen = PATH : NARC ≥ MIN NCC -1	(3.43)
	Proof. Similar to Proposition 19.
	MIN NCC, NCC	
	Proposition 36.	
	consecutive loops are connected : (MIN NCC+1)•NCC ≤ NVERTEXINITIAL +1 (3.44)
	Proof. By definition of consecutive loops are connected.
	MIN NCC, NVERTEX
	Proposition 37.	MIN NCC = 0 ⇔ NVERTEX = 0	(3.45)
	Proof.		
		NVERTEX ≥ MAX NSCC	(3.36)
	Proof. By definition of MAX NSCC.	
	MIN NCC, MIN NSCC	
	Proposition 32.	MIN NCC = 0 ⇔ MIN NSCC = 0	(3.37)
	Proof. By definition of MIN NCC and of MIN NSCC.
	Proposition 33.	MIN NCC ≥ MIN NSCC	(3.38)
	Proof. By construction MIN NCC is an upper bound of the number of vertices of the smallest strongly connected component.

By definition of MIN NCC and of NVERTEX. Proposition 38.

  

	NVERTEX ≥ MIN NCC	(3.46)
	Proof. By definition of MIN NCC.	

Proposition 45.

  On the one hand, if NCC ≤ 1, we have that MIN NCC ≥ NVERTEX. Proof. By definition of MIN NSCC and of NVERTEX.Proof. By definition of NARC and of NSCC.

	MIN NSCC, NARC NARC, NVERTEX	
	Proposition 40. Proposition 48. MIN NSCC = 0 ⇔ NARC = 0 NARC = 0 ⇔ NVERTEX = 0 Proof. By definition of MIN NSCC and of NARC. Proof. By definition of NARC and of NVERTEX. Proposition 41. NARC ≥ MIN NSCC Proposition 49. NARC ≤ NVERTEX 2 symmetric : NARC ≥ 2 • MIN NSCC arc gen = CIRCUIT : NARC ≤ NVERTEX equivalence : NARC ≥ MIN NSCC 2 Proof. Similar to Proposition 29. arc gen = CHAIN : NARC ≤ 2 • NVERTEX -2 (3.48) (3.49) (3.50) (3.51)	(3.59) (3.60) (3.61) (3.62)
	MIN NSCC, NVERTEX arc gen = CLIQUE (≤) : NARC ≤ Proposition 42. MIN NSCC = 0 ⇔ NVERTEX = 0 NVERTEX • (NVERTEX + 1) 2 (3.52) arc gen = CLIQUE (≥) : NARC ≤ NVERTEX • (NVERTEX + 1) 2	(3.63) (3.64)
	Proposition 43. Proof. By definition of MIN NSCC. arc gen = CLIQUE (<) : NARC ≤ NVERTEX ≥ MIN NSCC NVERTEX • (NVERTEX -1) (3.53) 2 NARC, NCC arc gen = CLIQUE (>) : NARC ≤ NVERTEX • (NVERTEX -1) 2	(3.65) (3.66)
	Proposition 44. Proof. By definition of NARC and of NCC. arc gen = CLIQUE ( =) : NARC ≤ NVERTEX 2 -NVERTEX (3.54) NARC = 0 ⇔ NCC = 0 arc gen = CYCLE : NARC ≤ 2 • NVERTEX	(3.67) (3.68)
	(3.55) Proof. Each connected component contains at least one arc (since, by hypothesis, each vertex arc gen = PATH : NARC ≤ NVERTEX -1 NARC ≥ NCC Proof. 3.60 holds since each vertex of a digraph can have at most NVERTEX successors. (3.69)
	has at least one arc).		
	NARC, NSCC		
	Proposition 46.	NARC = 0 ⇔ NSCC = 0	(3.56)
	Proposition 47. On the other hand, if NCC > 1, we have that MIN NCC + MIN NCC ≤ (3.57) NARC ≥ NSCC NVERTEX and that MIN NCC + MIN NCC + 1 ≤ NVERTEXINITIAL, which by isolating MIN NCC and by grouping the two inequalities leads to MIN NCC ≤ min `¨NVERTEX 2 ˝, ¨NVERTEXINITIAL-1 2 ˝´. The result follows. (3.58) no loop : NARC ≥ 2 • NSCC Proof. 3.57 (respectively 3.58) holds since each strongly connected component contains at least one (respectively two) arc(s).

Proposition 55.

  Proof. By definition of NCC and of NSCC.

	NSCC, NVERTEX	
	2 • NARC(G -{v, w}) ≥ NVERTEX(G -{v, w}) = NVERTEX(G) -2 the result holds. Proposition 57. NSCC = 0 ⇔ NVERTEX = 0 Proof. By definition of NSCC and of NVERTEX.	(3.78)
	Proposition 58. Proposition 51. arc gen = LOOP : NARC = NVERTEX NSCC ≤ NVERTEX no loop : 2 • NSCC ≤ NVERTEX Proof. 3.79 (respectively 3.80) holds since each strongly connected component contains at least (3.79) (3.71) (3.80) Proof. From the definition of LOOP. one (respectively 2) vertex.
	NCC, NSCC Proposition 52. Proposition 59.	NCC = 0 ⇔ NSCC = 0 acyclic : NSCC = NVERTEX	(3.72)	(3.81)
	Proposition 53.		NCC ≤ NSCC	(3.73)
	Proof. Holds since each connected component contains at least one strongly connected compo-
	nent.			
	NCC, NVERTEX			
	Proposition 54.	NCC = 0 ⇔ NVERTEX = 0	(3.74)
	Proof. By definition of NCC and of NVERTEX.	
			NCC ≤ NVERTEX	(3.75)
		no loop : 2 • NCC ≤ NVERTEX	(3.76)
	Proof. 3.75 (respectively 3.76) holds since each connected component contains at least one (respectively two) vertex.
	Proposition 56.			
	vpartition ∧ consecutive loops are connected : NVERTEX ≤ NVERTEXINITIAL -(NCC -1)	(3.77)
	Proof. Holds since between two "consecutive" connected components of the initial graph there is at least one vertex, which is missing.

89) Proof. Since we have at least two distinct connected components which respectively have MIN NCC and MAX NCC vertices this leads to the previous inequality. Proposition 67.

  Proof. On the one hand, if NCC ≤ 1, we have that MAX NCC ≤ MIN NCC. On the other hand, if NCC > 1, we have thatNVERTEX ≥ max(1, MIN NCC) + MAX NCC (i.e. MAX NCC ≤ NVERTEXmax(1, MIN NCC)).The result is obtained by taking the maximum value of the right hand side of the two inequalities. Proof. On the one hand, if NCC ≤ 1, we have that NVERTEX ≤ MIN NCC. On the other hand, if NCC > 1, we have that NVERTEX ≥ MIN NCC + MAX NCC. Since MIN NCC ≤ MIN NCC + MAX NCC the result follows.

	Proposition 69.	
	MAX NCC, MIN NCC, NARC NVERTEX / ∈ [MIN NCC + 1, MIN NCC + MAX NCC -1]	(3.92)
	Proposition 64.		
	MIN NCC = MAX NCC ⇒ NARC ≥ MIN NCC + MAX NCC -2 + (MIN NCC = 1)	(3.86)
		equivalence : MIN NCC = MAX NCC ⇒ NARC ≥ MIN NCC 2 + MAX NCC 2	(3.87)
	Proof. (3.86) n -1 arcs are needed to connect n (n > 1) vertices that all belong to a given connected component. Since we have two connected components which respectively
	have MIN NCC and MAX NCC vertices this leads to the previous inequality. When
	MIN NCC is equal to one we need an extra arc.	
	MAX NCC, MIN NCC, NCC	
	Proposition 65.	MIN NCC = MAX NCC ⇒ NCC ≥ 2	(3.88)
	Proof. If MIN NCC and MAX NCC are different then they correspond for sure to at least two distinct connected components.
	MAX NCC, MIN NCC, NVERTEX	
	Proposition 66.		
	MAX NCC ≤ max(MIN NCC, NVERTEX -max(1, MIN NCC))	(3.90)
	Proposition 68.		
	MIN NCC / ∈ [NVERTEX -max(1, MAX NCC) + 1, NVERTEX -1] (3.91)
	Proof. On the one hand, if NCC ≤ 1, we have that MIN NCC ≥ NVERTEX. On the other hand, if NCC > 1, we have that MIN NCC + max(1, MAX NCC) ≤ NVERTEX (i.e. MIN NCC ≤ NVERTEX -max(1, MAX NCC)). The result follows.

MIN NCC = MAX NCC ⇒ NVERTEX ≥ MIN NCC + MAX NCC (3.

  On the one hand, as G[X] is connected, by setting NCC = 1 in 3.134 of Proposition 89, we have |E(G[X]) ≥ |X| -1, on the other hand, by Proposition 50,

  Similar to Proposition 70.

	MAX NSCC, NSCC, NVERTEX	
	Proposition 81.	NVERTEX ≤ NSCC • MAX NSCC	(3.107)
	Proof. Since each strongly connected component contains at most MAX NSCC vertices the total number of vertices is less than or equal to NSCC • MAX NSCC.
	Proposition 82.		
		NVERTEX ≥ MAX NSCC + max(0, NSCC -1)	(3.108)
	no loop : NVERTEX ≥ MAX NSCC + max(0, 2 • NSCC -2)	(3.109)
	Proof. (3.108) The minimum number of vertices according to a fixed number of strongly con-nected components NSCC such that one of them contains MAX NSCC vertices is equal to
	MAX NSCC + max(0, NSCC -1).	
	MIN NCC, NARC, NVERTEX	
	Proposition 83.		

NARC ≤ MIN NCC 2 + (NVERTEX -MIN NCC) 2

4.19 arith or

  

	Origin	Used in the definition of several automata
	Constraint	arith or(VARIABLES1, VARIABLES2, RELOP, VALUE)
	Argument(s)	VARIABLES1 : collection(var -dvar) VARIABLES2 : collection(var -dvar) RELOP : atom
		VALUE	: int
	Restriction(s)	required(VARIABLES1, var)
		required(VARIABLES2, var)
		|VARIABLES1| = |VARIABLES2|
	Arc input(s)	VARIABLES1 VARIABLES2
	Arc generator	PRODUCT (=) → collection(variables1, variables2)
	Arc arity	2
	Arc constraint(s)	variables1.var RELOP VALUE ∨ variables2.var RELOP VALUE
	Graph property(ies) Example	NARC = |VARIABLES1| arith or 0 B B 8 > > > > < B B B B B @ B B B B B B B > > > > :

RELOP ∈ [=, =, <, ≥, >, ≤]

Purpose

Enforce for all pairs of variables var1i, var2i of the VARIABLES1 and VARIABLES2 collections to have var1i RELOP VALUE ∨ var2i RELOP VALUE.

4.21 assign and counts

  

	Origin	N. Beldiceanu			
	Constraint	assign and counts(COLOURS, ITEMS, RELOP, LIMIT)	
	Argument(s)	COLOURS : collection(val -int) ITEMS : collection(bin -dvar, colour -dvar) RELOP : atom	
		LIMIT	: dvar			
	Restriction(s)	required(COLOURS, val)		
		distinct(COLOURS, val)		
	Arc input(s)	ITEMS ITEMS			
	Arc generator	PRODUCT → collection(items1, items2)	
	Arc arity	2				
	Arc constraint(s)	items1.bin = items2.bin	
	Sets	SUCC → 2 4 source, variables -col	"	[item(var -ITEMS.colour)] VARIABLES -collection(var -dvar),	«	3 5
	Constraint(s) on sets	counts(VALUES, variables, RELOP, LIMIT)	
	Example	assign and counts			

required(ITEMS, [bin, colour]) RELOP ∈ [=, =, <, ≥, >, ≤]

Purpose

Given several items (each of them having a specific colour which may not be initially fixed), and different bins, assign each item to a bin, so that the total number n of items of colour COLOURS in each bin satisfies the condition n RELOP LIMIT.

Derived Collection(s)

col(VALUEScollection(valint), [item(val -COLOURS.val)])

22 assign and nvalues

  PurposeGiven several items (each of them having a specific value which may not be initially fixed), and different bins, assign each item to a bin, so that the number n of distinct values in each bin satisfies the condition n RELOP LIMIT.

	Origin	Derived from assign and counts and nvalues.
	Constraint	assign and nvalues(ITEMS, RELOP, LIMIT)
	Argument(s)	ITEMS : collection(bin -dvar, value -dvar) RELOP : atom
		LIMIT : dvar	
	Restriction(s)	required(ITEMS, [bin, value])	
		RELOP ∈ [=, =, <, ≥, >, ≤]	
	Arc input(s)	ITEMS ITEMS	
	Arc generator	PRODUCT → collection(items1, items2)
	Arc arity	2	
	Arc constraint(s)	items1.bin = items2.bin	
	Sets	SUCC → » source,	
			{C[_]=0}
		not_in(COLOUR ,COLOURS) i	s	i {C[BIN ]=C[BIN ]+1} i in(COLOUR ,COLOURS), i
			$
			t:
		arith(C,RELOP,LIMIT)

Figure 4.43: Automaton of the assign and counts constraint 4.variablescol(VARIABLEScollection(vardvar), [item(var -ITEMS.value)]) -Constraint(s) on sets nvalues(variables, RELOP, LIMIT) Example assign and nvalues

  assignment, number of distinct values.Figure 4.46: Initial and final graph of the atleast constraint Automaton Figure 4.47 depicts the automaton associated to the atleast constraint. To each variable VARi of the collection VARIABLES corresponds a 0-1 signature variable Si. The following signature constraint links VARi and Si: VARi = VALUE ⇔ Si. The automaton counts the number of variables of the VARIABLES collection which are assigned to VALUE and finally checks that this number is greater than or equal to N.

							NARC, SELF
		4.23 atleast				
	Origin	CHIP				
	Constraint	atleast(N, VARIABLES, VALUE) {C=0}		
	Argument(s)	N VARIABLES : collection(var -dvar) : int VALUE {C=C+1} : int i VAR =VALUE, i VAR <>VALUE s	
	Restriction(s)	N ≥ 0 required(VARIABLES, var) N ≤ |VARIABLES| $			
			t:			
			N<=C			
			VARIABLES		
		4	3	2	1	1:4	3:4
						NARC=2
			(A)			(B)
	Graph model	Since we use a unary arc constraint (VALUE is fixed) we employ the SELF arc generator in order to produce a graph with a single loop on each vertex.

Purpose

At least N variables of the VARIABLES collection are assigned to value VALUE.

Arc input(s) VARIABLES

Arc generator SELF → collection(variables) Arc arity 1 Arc constraint(s) variables.var = VALUE Graph property(ies) NARC ≥ N Example atleast(2, {var -4, var -2, var -4, var -5}, 4) Parts (A) and (B) of Figure 4.46 respectively show the initial and final graph. Since we use the NARC graph property, the unary arcs of the final graph are stressed in bold. The atleast constraint holds since at least 2 variables are assigned to value 4.

  PurposeConsider the largest set S1 (respectively the smallest set S2) of variables of the collection VARIABLES which have the same remainder when divided by M. BALANCE is equal to the difference between the cardinality of S2 and the cardinality of S1.

		balance modulo(BALANCE, VARIABLES, M)
	Argument(s)	BALANCE VARIABLES : collection(var -dvar) : dvar M : int
	Restriction(s)	BALANCE ≥ 0 BALANCE ≤ |VARIABLES| required(VARIABLES, var)
		M > 0		
	Arc input(s)	VARIABLES		
	Arc generator	CLIQUE → collection(variables1, variables2)
	Arc arity	2		
	Arc constraint(s)	variables1.var mod M = variables2.var mod M
	Graph property(ies)	RANGE NSCC = BALANCE
			0	
	Example	balance modulo	B B B B @	2,

  PurposeATMOST is the maximum number of occurrences of each value of VALUES within the variables of the collection VARIABLES.

	Origin	Derived from global cardinality.
	Constraint	cardinality atmost(ATMOST, VARIABLES, VALUES)
	Argument(s)	ATMOST VARIABLES : collection(var -dvar) : dvar VALUES : collection(val -int)
	Restriction(s)	ATMOST ≥ 0 ATMOST ≤ |VARIABLES| required(VARIABLES, var)
		required(VALUES, val)	
		distinct(VALUES, val)	
	Arc input(s)	VARIABLES VALUES		
	Arc generator	PRODUCT → collection(variables, values)
	Arc arity	2		
	Arc constraint(s)	variables.var = values.val
	Graph property(ies)	MAX ID = ATMOST		
			0	
	Example	cardinality atmost	B B B B @ B B B B B B B B	2,

  On the one hand a change is defined by the fact that constraint VARIABLES[i].var CTR VARIABLES[i + 1].var holds. On the other hand a continuity is defined by the fact that constraint VARIABLES[i].var CTR VARIABLES[i + 1].var does not hold.

			0	NB PERIOD CHANGE,	1
	Constraint	change continuity	B B B B B B B B B B B B B B @	NB PERIOD CONTINUITY, MIN SIZE CHANGE, MAX SIZE CHANGE, MIN SIZE CONTINUITY, MAX SIZE CONTINUITY, NB CHANGE, NB CONTINUITY, VARIABLES,	C C C C C C C C C C C C C C A
				CTR	
	Argument(s)	NB PERIOD CHANGE NB PERIOD CONTINUITY : dvar : dvar	
		MIN SIZE CHANGE		: dvar	
		MAX SIZE CHANGE		: dvar	
		MIN SIZE CONTINUITY	: dvar	
		MAX SIZE CONTINUITY	: dvar	
		NB CHANGE		: dvar	
		NB CONTINUITY		: dvar	
		VARIABLES CTR		: collection(var -dvar) : atom
	Restriction(s)	NB PERIOD CHANGE ≥ 0 NB PERIOD CONTINUITY ≥ 0 MIN SIZE CHANGE ≥ 0 MAX SIZE CHANGE ≥ MIN SIZE CHANGE MIN SIZE CONTINUITY ≥ 0 MAX SIZE CONTINUITY ≥ MIN SIZE CONTINUITY NB CHANGE ≥ 0 NB CONTINUITY ≥ 0 required(VARIABLES, var)	

CTR ∈ [=, =, <, ≥, >, ≤] A period of change on variables VARIABLES[i].var, VARIABLES[i + 1].var, . . . , VARIABLES[j].var (i < j) is defined by the fact that all constraints VARIABLES[k].var CTR VARIABLES[k + 1].var hold for k ∈ [i, j -1]. A period of continuity on variables VARIABLES[i].var, VARIABLES[i + 1].var, . . . , VARIABLES[j].var (i < j) is defined by the fact that all constraints VARIABLES[k].var CTR VARIABLES[k + 1].var do not hold for k ∈ [i, j -1]. The constraint change continuity holds if and only if: Purpose • NB PERIOD CHANGE is equal to the number of periods of change,

  RemarkIf the variables of the collection VARIABLES have to take distinct values between 1 and the total number of variables, we have what is called a permutation. In this case, if we choose the binary constraint <, then MAX SIZE CHANGE gives the size of the longest run of the permutation; A run is a maximal increasing contiguous subsequence in a permutation.

depict the automata associated to the different graph characteristics of the change continuity constraint. For the automata that respectively compute NB PERIOD CHANGE, NB PERIOD CONTINUITY MIN SIZE CHANGE, MIN SIZE CONTINUITY MAX SIZE CHANGE, MAX SIZE CONTINUITY NB CHANGE and NB CONTINUITY we have a 0-1 signature variable Si for each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES. The following signature constraint links VARi, VARi+1 and Si: VARi CTR VARi+1 ⇔ Si.

  first graph property enforces to have one single strongly connected component containing |NODES| vertices. The second graph property imposes to only have circuits. Since each vertex of the final graph has only one successor we don't need to use set variables for representing the successors of a vertex.Because of the graph property MIN NSCC = |NODES| the final graph contains at least one vertex. Since a vertex v belongs to the final graph only if there is an arc that has v as one of its extremities the final graph contains at least one arc. Therefore MAX ID is greater than or equal to 1. So we can rewrite the graph property MAX ID = 1 to MAX ID ≤ 1. This leads to simplify MAX ID to MAX ID.

Signature

Since the initial graph contains |NODES| vertices the final graph contains at most |NODES| vertices. Therefore we can rewrite the graph property MIN NSCC = |NODES| to MIN NSCC ≥ |NODES|. This leads to simplify MIN NSCC to MIN NSCC.

4.42 colored matrix

  

	Origin	KOALOG	
	Constraint	colored matrix(C, L, K, MATRIX, CPROJ, LPROJ)
	Synonym(s)	cardinality matrix, card matrix.
	Argument(s)	C L	: int : int
		K	: int

MATRIX : collection(columnint, lineint, vardvar) CPROJ : collection(columnint, valint, noccurrencedvar) LPROJ : collection(lineint, valint, noccurrencedvar)

  PurposeConsider a set R of rectangles described by the RECTANGLES collection. Enforces that at each point of the plane, the cumulated height of the set of rectangles that overlap that point, does not exceed a given limit.

		cumulative two d(RECTANGLES, LIMIT)
	Argument(s)	RECTANGLES : collection LIMIT : int	0 B B B B B B B B @	start1 -dvar, size1 -dvar, last1 -dvar, start2 -dvar, size2 -dvar, last2 -dvar, height -dvar	1 C C C C C C C C A
	Restriction(s)	require at least(2, RECTANGLES, [start1, size1, last1])
		require at least(2, RECTANGLES, [start2, size2, last2])
		required(RECTANGLES, height)
		RECTANGLES.size1 ≥ 0 RECTANGLES.size2 ≥ 0 RECTANGLES.height ≥ 0 LIMIT ≥ 0	
	Derived Collection(s)	col	0 B B B B B B B B B B B B B B B B B B B B B B B B B B B B @	2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4 CORNERS -collection(size1 -dvar, size2 -dvar, x -dvar, y -dvar), item 0 B B @ size2 -RECTANGLES.size2, x -RECTANGLES.start1, y -RECTANGLES.start2 C C A , item 0 B B @ size1 -RECTANGLES.size1, size2 -RECTANGLES.size2, x -RECTANGLES.start1, y -RECTANGLES.last2 1 C C A , item 0 B B @ size1 -RECTANGLES.size1, size2 -RECTANGLES.size2, x -RECTANGLES.last1, y -RECTANGLES.start2 1 C C A , item 0 B B @ size1 -RECTANGLES.size1, size2 -RECTANGLES.size2, y -RECTANGLES.last2 x -RECTANGLES.last1, 1 C C A 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 size1 -RECTANGLES.size1, 1 3	1

4.57 cumulative with level of priority

  

	Origin	H. Simonis				
	Constraint	cumulative with level of priority(TASKS, PRIORITIES)
	Argument(s)	TASKS	: collection	0 B B B B @	priority -int, origin -dvar, duration -dvar, height -dvar end -dvar,	1 C C C C A

PRIORITIES : collection(idint, capacityint) Restriction(s) required(TASKS, [priority, height]) require at least(2, TASKS, [origin, duration, end]) TASKS.priority ≥ 1 TASKS.priority ≤ |PRIORITIES| TASKS.duration ≥ 0 TASKS.height ≥ 0 required(PRIORITIES, [id, capacity]) PRIORITIES.id ≥ 1 PRIORITIES.id ≤ |PRIORITIES| increasing seq(PRIORITIES, id) increasing seq(PRIORITIES, capacity)

61 cycle card on path

  circuit, cycle card on path, cycle resource, derangement, inverse, map, symmetric alldifferent, tree. NCYCLE is the number of circuits for covering G in such a way that each vertex belongs to one single circuit. In addition the following constraint must also hold: On each set of PATH LENGTH consecutive distinct vertices of each final circuit, the number of vertices for which the attribute colour takes his value in the collection of values VALUES should be located within the range [ATLEAST, ATMOST].

	Constraint(s) on sets	among low up(ATLEAST, ATMOST, variables, VALUES)
				0
	Example	Origin Constraint Argument(s) cycle card on path CHIP cycle card on path(NCYCLE, NODES, ATLEAST, ATMOST, PATH LEN, VALUES) NCYCLE : dvar NODES : collection(index -int, succ -dvar, colour -dvar) ATLEAST : int B B B B B B B B @ B B B B B B 2,
				ATMOST	: int
				PATH LEN : int
				VALUES	: collection(val -int)
		Restriction(s)	NCYCLE ≥ 1 NCYCLE ≤ |NODES| required(NODES, [index, succ, colour])
				NODES.index ≥ 1 NODES.index ≤ |NODES| distinct(NODES, index)
				NODES.succ ≥ 1 NODES.succ ≤ |NODES| ATLEAST ≥ 0 ATLEAST ≤ PATH LEN ATMOST ≥ ATLEAST PATH LEN ≥ 0 required(VALUES, val)
				distinct(VALUES, val)
		Arc input(s)		NODES
	Key words	graph constraint, Arc generator CLIQUE → collection(nodes1, nodes2) circuit, cycle, permutation, graph partitioning constraint, connected component, strongly connected component, Euler knight, pick-up delivery, one succ. Arc arity 2
		Arc constraint(s)	nodes1.succ = nodes2.index
		Graph property(ies)	• NTREE = 0 • NCC = NCYCLE
		Sets		PATH LENGTH(PATH LEN) → » variables -col " [item(var -NODES.colour)] VARIABLES -collection(var -dvar),	« -

4.

Purpose

Consider a digraph G described by the NODES collection.

  A 

	4.72 diffn include	
	Origin	CHIP: option guillotine cut (include) of diffn.
	Constraint	diffn include(ORTHOTOPES, N)	
	Type(s)	ORTHOTOPE : collection(ori -dvar, siz -dvar, end -dvar)
	Argument(s)	ORTHOTOPES : collection(orth -ORTHOTOPE) N : int
	Restriction(s)	|ORTHOTOPE| > 0 require at least(2, ORTHOTOPE, [ori, siz, end])
		ORTHOTOPE.siz ≥ 0 required(ORTHOTOPES, orth)	
		same size(ORTHOTOPES, orth)	
		N > 0		
		ORTHOTOPES N ≤ |ORTHOTOPE| diffn(ORTHOTOPES)	1:1,3,4
				1,1,2
	Purpose		1	
	Arc input(s)	2 ORTHOTOPES	2:4,2,6 1,3,4
	Arc generator	NARC=1 CLIQUE (<) → collection(orthotopes1, orthotopes2)
	Arc arity	2	(A)	(B)
	Figure 4.152: Initial and final graph of the diffn column constraint Arc constraint(s) two orth include(orthotopes1.orth, orthotopes2.orth, N)
	Graph property(ies) Example	NARC = |ORTHOTOPES| * (|ORTHOTOPES| -1)/2 diffn include 0 B 8 > > < B @ > > :
	See also	diffn, two orth column, diffn include.
	Key words	decomposition, geometrical constraint, positioning constraint, orthotope, guillotine cut.

  TABLE : collection(indexint, valuedvar)

	Restriction(s)	required(ITEM, [index, value])
		ITEM.index ≥ 1 ITEM.index ≤ |TABLE| |ITEM| = 1 required(TABLE, [index, value])
		TABLE.index ≥ 1 TABLE.index ≤ |TABLE| distinct(TABLE, index)

Purpose

ITEM is equal to one of the entries of the table TABLE. Arc input(s) ITEM TABLE Arc generator PRODUCT → collection(item, table) Arc arity 2 Arc constraint(s) • item.index = table.index • item.value = table.value

  TABLE are distinct and because of the first condition of the arc constraint the final graph cannot have more than one arc. Therefore we can rewrite NARC = 1 to NARC ≥ 1 and simplify NARC to NARC. Automaton Figure 4.168 depicts the automaton associated to the elem constraint. Let INDEX and VALUE respectively be the index and the value attributes of the unique item of the ITEM collection. Let INDEXi and VALUEi respectively be the index and the value attributes of the i th item of the TABLE collection. To each quadruple (INDEX, VALUE, INDEXi, VALUEi) corresponds a 0-1 signature variable Si as well as the following signature constraint:

  TABLE, VALUE), where INDEX and VALUE were two domain variables and TABLE a list of non-negative integers.

		4.81 element
	Origin		[32]		
	Constraint	element(INDEX, TABLE, VALUE)
	Argument(s)	INDEX : dvar TABLE : collection(value -dvar) VALUE : dvar
	Restriction(s)	INDEX ≥ 1 INDEX ≤ |TABLE| required(TABLE, value)
	See also	element, element greatereq, element lesseq, element sparse, element matrix,
		elements, elements alldifferent, stage element.
	Key words	array constraint,		data constraint,	table,	functional dependency,
		variable indexing,	variable subscript,	automaton,	automaton without counters,
		centered cyclic(2) constraint network(1).
	Graph property(ies)	NARC = 1
	Example		element	0 B B @ 3,	8 > > < > > :	value -6, value -9, value -2, value -9

Purpose

VALUE is equal to the INDEX th item of TABLE. Derived Collection(s) col " ITEMcollection(indexdvar, valuedvar), [item(index -INDEX, value -VALUE)] « Arc input(s) ITEM TABLE Arc generator PRODUCT → collection(item, table) Arc arity 2 Arc constraint(s) • item.index = table.key • item.value = table.value

TABLE 1

 1 

				1:3,2
	4	3	2	1
				3:2
				NARC=1
		(A)		(B)
	Figure 4.170: Initial and final graph of the element constraint
	s	INDEX<>TABLE_KEY or VALUE<>TABLE_VALUE i i
		INDEX=TABLE_KEY and VALUE=TABLE_VALUE i i
	t			

  is a generalization of the element constraint, where the table is replaced by a directed acyclic graph describing the set of solutions.

	See also	elem, element greatereq, element lesseq, element sparse, element matrix,
		elements, elements alldifferent, stage element.	
	Key words	array constraint,	data constraint,	table,	functional dependency,
		variable indexing,	variable subscript,	automaton,	automaton without counters,
		centered cyclic(2) constraint network(1), derived collection.	

TABLE )

 ) 

	Argument(s)	ITEM TABLE : collection(index -int, value -int) : collection(index -dvar, value -dvar)
	Restriction(s)	required(ITEM, [index, value])
		ITEM.index ≥ 1 ITEM.index ≤ |TABLE| |ITEM| = 1 required(TABLE, [index, value])
		TABLE.index ≥ 1 TABLE.index ≤ |TABLE| distinct(TABLE, index)
	Arc input(s)	ITEM TABLE
	Arc generator	PRODUCT → collection(item, table)
	Arc arity	2
	Arc constraint(s)	• item.index = table.index • item.value ≥ table.value
	Graph property(ies)	NARC = 1
		0
	Example	element greatereq

Purpose

ITEM.value is greater than or equal to one of the entries (i.e. the value attribute) of the table

TABLE

.

  TABLE are distinct and because of the first arc constraint the final graph cannot have more than one arc. Therefore we can rewrite NARC = 1 to NARC ≥ 1 and simplify NARC to NARC. Automaton Figure 4.174 depicts the automaton associated to the element greatereq constraint. Let INDEX and VALUE respectively be the index and the value attributes of the unique item of the ITEM collection. Let INDEXi and VALUEi respectively be the index and the value attributes of the i th item of the TABLE collection. To each quadruple (INDEX, VALUE, INDEXi, VALUEi) corresponds a 0-1 signature variable Si as well as the following signature constraint:

  TABLE are distinct and because of the first arc constraint the final graph cannot have more than one arc. Therefore we can rewrite NARC = 1 to NARC ≥ 1 and simplify NARC to NARC. Automaton Figure 4.177 depicts the automaton associated to the element lesseq constraint. Let INDEX and VALUE respectively be the index and the value attributes of the unique item of the ITEM collection. Let INDEXi and VALUEi respectively be the index and the value attributes of the i th item of the TABLE collection. To each quadruple (INDEX, VALUE, INDEXi, VALUEi) corresponds a 0-1 signature variable Si as well as the following signature constraint:

  AutomatonFigure4.183 depicts the automaton associated to the element sparse constraint. Let INDEX and VALUE respectively be the index and the value attributes of the unique item of the ITEM collection. Let INDEXi and VALUEi respectively be the index and the value attributes of the i th item of the TABLE collection.

	To each quintuple
	(INDEX, VALUE, DEFAULT, INDEXi, VALUEi) corresponds a signature variable Si as well as
	the following signature constraint: 8 <
	:

TABLE; Otherwise it has only one arc.

  TABLE : collection(indexint, valuedvar)PurposeAll the items of ITEMS should be equal to one of the entries of the tableTABLE.SignatureSince all the index attributes of TABLE collection are distinct and because of the first condition items.index = table.index of the arc constraint, a source vertex of the final graph can have at most one successor. Therefore |ITEMS| is the maximum number of arcs of the final graph and we can rewrite NARC = |ITEMS| to NARC ≥ |ITEMS|. So we can simplify NARC to NARC.

						481
		4.87 elements alldifferent		
	Origin	Derived from elements and alldifferent.	
	Constraint	elements alldifferent(ITEMS, TABLE)	
	Synonym(s)	elements alldiff, elements alldistinct.	
	Restriction(s) Argument(s) Restriction(s) Arc input(s)	required(ITEMS, [index, value]) ITEMS.index ≥ 1 ITEMS : collection(index -dvar, value -dvar) TABLE : collection(index -int, value -dvar) ITEMS.index ≤ |TABLE| required(ITEMS, [index, value]) required(TABLE, [index, value]) TABLE.index ≥ 1 TABLE.index ≤ |TABLE| distinct(TABLE, index) ITEMS TABLE ITEMS.index ≥ 1 ITEMS.index ≤ |TABLE| |ITEMS| = |TABLE| required(TABLE, [index, value]) ITEMS 1 2 TABLE.index ≥ 1 TABLE.index ≤ |TABLE| distinct(TABLE, index)
	Arc generator Arc arity		PRODUCT → collection(items, table) 2 1:4,9	2:1,6
	Arc constraint(s)	4	1 • items.index = table.index 2 3 • items.value = table.value	4:4,9	1:1,6
	Graph property(ies) Example Figure 4.185: Initial and final graph of the elements constraint TABLE NARC = |ITEMS| elements 0 B B B B @ NARC=2 {index -4 value -9, index -1 value -6}, 8 > > < > > : index -1 value -6, index -2 value -9, index -3 value -2, 9 > > = (A) (B) > > ; index -4 value -9 0	1 C C C C A
	Example		elements alldifferent		
	Usage	Used for replacing several element constraints sharing exactly the same table by one single constraint.
	See also	element.		
	Key words	data constraint, table, shared table, functional dependency.

Parts

(A) 

and

(B) 

of Figure

4

.185 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Purpose

All the items of the ITEMS collection should be equal to one of the entries of the table TABLE and all the variables ITEMS.index should take distinct values. Arc input(s) ITEMS TABLE Arc generator PRODUCT → collection(items, table) Arc arity 2 Arc constraint(s) • items.index = table.index • items.value = table.value Graph property(ies) NVERTEX = |ITEMS| + |TABLE|

  Therefore the maximum number of sources of the final graph is equal to ITEMS. We can rewrite NSOURCE = |ITEMS| to NSOURCE ≥ |ITEMS| and simplify NSOURCE to NSOURCE.

	Usage	Used for replacing several element constraints sharing exactly the same sparse table by one single constraint.
	See also	element, element sparse.
	Key words	data constraint, table, shared table, sparse table, sparse functional dependency,
		derived collection.

92 global cardinality low up

  

	Origin	Used for defining sliding distribution.
	Constraint	global cardinality low up(VARIABLES, VALUES)
	Argument(s)	VARIABLES : collection(var -dvar) VALUES : collection(val -int, omin -int, omax -int)
	Restriction(s)	required(VARIABLES, var)		
		|VALUES| > 0 required(VALUES, [val, omin, omax])
		distinct(VALUES, val)		
		VALUES.omin ≥ 0 VALUES.omax ≤ |VARIABLES| VALUES.omin ≤ VALUES.omax		
	Arc input(s)	VARIABLES		
	Arc generator	SELF → collection(variables)	
	Arc arity	1		
	Arc constraint(s)	variables.var = VALUES.val		
	Graph property(ies) Example	• NVERTEX ≥ VALUES.omin • NVERTEX ≤ VALUES.omax global cardinality low up 0 B B B B B B B @ B	8 > > < > > :	var -3, var -3, var -8, var -6

s Figure 4.193: Automaton of the global cardinality constraint 4.Purpose Each value VALUES[i].val (1 ≤ i ≤ |VALUES|) should be taken by at least VALUES[i].omin and at most VALUES[i].omax variables of the VARIABLES collection.

For all items of VALUES:

4.93 global cardinality with costs

  

	Origin	[117]
	Constraint	global cardinality with costs(VARIABLES, VALUES, MATRIX, COST)
	Synonym(s)	gccc, cost gcc.
	Argument(s)	VARIABLES : collection(var -dvar) VALUES : collection(val -int, noccurrence -dvar) MATRIX : collection(i -int, j -int, c -int) COST : dvar
	Restriction(s)	required(VARIABLES, var)
		required(VALUES, [val, noccurrence])
		distinct(VALUES, val)
		VALUES.noccurrence ≥ 0 VALUES.noccurrence ≤ |VARIABLES| required(MATRIX, [i, j, c])
		increasing seq(MATRIX, [i, j])
		MATRIX.i ≥ 1 MATRIX.i ≤ |VARIABLES| MATRIX.j ≥ 1 MATRIX.j ≤ |VALUES| |MATRIX| = |VARIABLES| * |VALUES|

Purpose

Each value VALUES

[i]

.val should be taken by exactly

VALUES[i]

  depict the different automata associated to the group constraint. For the automata that respectively compute NGROUP, MIN SIZE, MAX SIZE, MIN DIST, MAX DIST and NVAL we have a 0-1 signature variable Si for each variable VARi of the collection VARIABLES. The following signature constraint links VARi and Si: VARi ∈ VALUES ⇔ Si.

		{C=0}	
		s	not_in(VAR ,VALUES) i
		in(VAR ,VALUES), i	
		{C=C+1}	
		not_in(VAR ,VALUES) i	
	in(VAR ,VALUES) i	i	$
		$	
		t:	
		NGROUP=C

  group skip isolated item(NGROUP, MIN SIZE, MAX SIZE, NVAL, VARIABLES, VALUES)

	Argument(s)	NGROUP MIN SIZE	: dvar : dvar
		MAX SIZE	: dvar
		NVAL	: dvar
		VARIABLES : collection(var -dvar) VALUES : collection(val -int)
	Restriction(s)	NGROUP ≥ 0 MIN SIZE ≥ 0 MAX SIZE ≥ MIN SIZE NVAL ≥ 0 required(VARIABLES, var)
		required(VALUES, val)
		distinct(VALUES, val)

TABLE )

 ) 

	Argument(s)	ITEMS : collection(index -dvar, weight -dvar) TABLE : collection(index -int, sum -dvar)
	Restriction(s)	|ITEMS| > 0 |TABLE| > 0 required(ITEMS, [index, weight])
		ITEMS.index ≥ 0 ITEMS.index < |TABLE| required(TABLE, [index, sum])
		TABLE.index ≥ 0 TABLE.index < |TABLE| increasing seq(TABLE, index)

TABLE .

 . The indexedsum constraint holds since the sum variables associated to each entry of TABLE are equal to the sum of the weights of the items assigned to the corresponding entry.

		ITEMS		TABLE:0	TABLE:2
	2	1	3	2:0,6	3:2,1	1:2,-4
	1	3	2			
				1:0,6	3:2,-3	
		TABLE				
		(A)			(B)	

Figure 4.235: Initial and final graph of the indexed sum constraint

  PurposeVAR2 is the value strictly greater than VAR1 located at the smallest possible entry of the tableTABLE. In addition, the variables of the collection VARIABLES are sorted in strictly increasing order.

		4.146 next greater element
		Origin	M. Carlsson	ITEM
		Constraint	next greater element(VAR1, VAR2, VARIABLES)
		Argument(s)	VAR1 VAR2		: dvar : dvar	1
			VARIABLES : collection(var -dvar)	1:2,9
		Restriction(s)	3 required(VARIABLES, var) 4 5 |VARIABLES| > 0	2	1
						3:3,9	5:5,9
					TABLE
						NARC=2
					(A) THRESHOLD	(B)
			VAL Figure 4.313: Initial and final graph of the next element constraint INDEX
		Arc input(s)	VARIABLES	
		Arc generator	VALUE 1 PATH → collection(variables1, variables2) VALUE 2 VALUE n
		Arc arity	2	S 1	S 2	S n
	See also Key words	minimum greater than, next greater element. data constraint, minimum, table, automaton, s INDEX >INDEX i Q 1 Q =s 0 variables1.var < variables2.var Arc constraint(s) INDEX <=THRESHOLD Q =t n i VALUE <>VAL i Graph property(ies) NARC = |VARIABLES| -1 Figure 4.315: Hypergraph of the reformulation corresponding to the automaton of the Arc input(s) V VARIABLES next element constraint automaton without counters, INDEX >THRESHOLD and INDEX =INDEX and VALUE =VAL i i i Arc generator PRODUCT → collection(v, variables) centered cyclic(3) constraint network(1), derived collection. INDEX <=THRESHOLD i Arc arity 2
		Arc constraint(s)	e v.var < variables.var INDEX >=INDEX i	VALUE <=VAL i
		Graph property(ies)	NARC > 0	$
		Sets	SUCC → [source, variables]
		Constraint(s) on sets	t minimum(VAR2, variables)
						0
		Example	Figure 4.314: Automaton of the next element constraint next greater element B B @ 7, 8,

TABLE collection such that INDEXi > THRESHOLD and INDEXi = INDEX and VALUEi = VAL, • There should not exist any item of the TABLE collection such that INDEXi > THRESHOLD and INDEXi < INDEX and VALUEi = VAL.

Usage

Originally introduced for modelling the fact that a nucleotide has to be consumed as soon as possible at cycle INDEX after a given cycle represented by variable THRESHOLD.

Derived Collection(s)

col(Vcollection(vardvar), [item(var -VAR1)])

  PurposeConsider the intervals of the form[SIZE INTERVAL•k, SIZE INTERVAL•k+SIZE INTERVAL-

		ninterval(NVAL, VARIABLES, SIZE INTERVAL)
	Argument(s)	NVAL VARIABLES SIZE INTERVAL : int : dvar : collection(var -dvar)
	Restriction(s)	NVAL ≥ min(1, |VARIABLES|) NVAL ≤ |VARIABLES| required(VARIABLES, var)
		SIZE INTERVAL > 0

  counting constraint, value partitioning constraint, number of distinct equivalence classes, number of distinct values, strongly connected component, domination, automaton, automaton with array of counters, equivalence.

						NCC, PRODUCT
	4.155 nvalue on intersection
	Origin	Derived from common and nvalue.		
	Constraint	nvalue on intersection(NVAL, VARIABLES1, VARIABLES2)
	Argument(s)	NVAL VARIABLES1 : collection(var -dvar) : dvar VARIABLES2 : collection(var -dvar)
	Restriction(s)	NVAL ≥ 0 NVAL ≤ |VARIABLES1| NVAL ≤ |VARIABLES2| required(VARIABLES1, var)			
		required(VARIABLES2, var)			
	Purpose	NVAL is the number of distinct values which both occur in the VARIABLES1 and VARIABLES2 collections.
	Arc input(s)	VARIABLES1 VARIABLES2				
	Arc generator	PRODUCT → collection(variables1, variables2)
	Arc arity	2				
	Arc constraint(s)	variables1.var = variables2.var
	Graph property(ies)	NCC = NVAL				
	Example	nvalue on intersection	0 B B B B B B B @ B B B B B B B	2,	8 > > < > > :	var -1, var -9, var -1, var -5

160 orth link ori siz end

  PurposeEnforce for each item of the ORTHOTOPE collection the constraint ori + siz = end. Figure 4.340: Initial and final graph of the orth link ori siz end constraint Signature Since we use the SELF arc generator on the ORTHOTOPE collection the number of arcs of the initial graph is equal to |ORTHOTOPE|. Therefore the maximum number of arcs of the final graph is also equal to |ORTHOTOPE|. For this reason we can rewrite the graph property NARC = |ORTHOTOPE| to NARC ≥ |ORTHOTOPE| and simplify NARC to NARC.

					NARC, SELF
	Used in Key words	diffn, two orth are in contact, orth on the ground, two orth include. 4.161 orth on the ground orth on top of orth, two orth column, two orth do not overlap, orths are connected, 4.Origin Used by several constraints between orthotopes decomposition, orthotope. Origin Used for defining place in pyramid. x, trees3.y) are aligned. It corresponds to the development of the expression: Constraint orth link ori siz end(ORTHOTOPE) Constraint orth on the ground(ORTHOTOPE, VERTICAL DIM)
	Key words	˛trees1.x trees2.y 1 trees2.x trees2.y 1 trees3.x trees3.y 1 geometrical constraint, alignment, hypergraph. Argument(s) ORTHOTOPE : collection(ori -dvar, siz -dvar, end -dvar) ˛= 0 Restriction(s) Argument(s) ORTHOTOPE : collection(ori -dvar, siz -dvar, end -dvar) VERTICAL DIM : int |ORTHOTOPE| > 0 require at least(2, ORTHOTOPE, [ori, siz, end]) ORTHOTOPE.siz ≥ 0 Restriction(s) |ORTHOTOPE| > 0 require at least(2, ORTHOTOPE, [ori, siz, end])
		Arc input(s)	ORTHOTOPE ORTHOTOPE.siz ≥ 0 VERTICAL DIM ≥ 1 VERTICAL DIM ≤ |ORTHOTOPE| orth link ori siz end(ORTHOTOPE)
		Arc generator	SELF → collection(orthotope)
		Arc arity	1	
		Arc constraint(s)	orthotope.ori + orthotope.siz = orthotope.end
		Graph property(ies) Example	NARC = |ORTHOTOPE| orth link ori siz end Parts (A) and (B) of Figure 4.340 respectively show the initial and final graph. "  ff « ori -2 siz -2 end -4, ori -1 siz -3 end -4
			Since we use the NARC graph property, the unary arcs of the final graph are stressed in
			bold.	
			ORTHOTOPE
			2	1	1:2,2,4	2:1,3,4
					NARC=2
			(A)		(B)
		Usage	Used in the Arc constraint(s) slot for defining some constraints like diffn, place in pyramid or orths are connected.

4.163 orths are connected

  

	Origin	N. Beldiceanu
	Constraint	orths are connected(ORTHOTOPES)
	Type(s)	ORTHOTOPE : collection(ori -dvar, siz -dvar, end -dvar)
	Argument(s)	ORTHOTOPES : collection(orth -ORTHOTOPE)
	Restriction(s)	|ORTHOTOPE| > 0 require at least(2, ORTHOTOPE, [ori, siz, end])
		ORTHOTOPE.siz > 0
		required(ORTHOTOPES, orth)
		same size(ORTHOTOPES, orth)

  PurposeLet us note V0, V1, . . . , Vm-1 the variables of the VARIABLES collection. PERIOD is the period of the sequence V0 V1 . . . Vm-1 according to constraint CTR . This means that PERIOD is the smallest natural number such that Vi CTR Vi+PERIOD holds for all i ∈ 0, 1, . . . , m -PERIOD -1.

		4.167 period
	Origin	N. Beldiceanu
	Constraint	period(PERIOD, VARIABLES, CTR)
	Argument(s)	PERIOD VARIABLES : collection(var -dvar) : dvar CTR : atom
	Restriction(s)	PERIOD ≥ 1 PERIOD ≤ |VARIABLES| required(VARIABLES, var)
		CTR ∈ [=, =, <, ≥, >, ≤]
			0
	Example	period	B B B B B B B B B B @

4.169 place in pyramid

  

	Origin	N. Beldiceanu
	Constraint	place in pyramid(ORTHOTOPES, VERTICAL DIM)
	Type(s)	ORTHOTOPE : collection(ori -dvar, siz -dvar, end -dvar)
	Argument(s)	ORTHOTOPES VERTICAL DIM : int : collection(orth -ORTHOTOPE)
	Restriction(s)	|ORTHOTOPE| > 0 require at least(2, ORTHOTOPE, [ori, siz, end])
		ORTHOTOPE.siz ≥ 0 same size(ORTHOTOPES, orth)
		VERTICAL DIM ≥ 1 diffn(ORTHOTOPES)

  CELLS : collection(indexint, rightdvar, leftdvar, updvar, downdvar)

		polyomino(CELLS)
	Argument(s)	
	Restriction(s)	CELLS.index ≥ 1 CELLS.index ≤ |CELLS| |CELLS| ≥ 1 required(CELLS, [index, right, left, up, down])
		distinct(CELLS, index)
		CELLS.right ≥ 0 CELLS.right ≤ |CELLS| CELLS.left ≥ 0 CELLS.left ≤ |CELLS| CELLS.up ≥ 0 CELLS.up ≤ |CELLS| CELLS.down ≥ 0 CELLS.down ≤ |CELLS|

  The first graph property NVERTEX = |CELLS| avoid the case isolated cells,

			NARC, PATH
		4.173 relaxed sliding sum
	Origin	CHIP	
	Constraint	relaxed sliding sum(ATLEAST, ATMOST, LOW, UP, SEQ, VARIABLES)
	Argument(s)	ATLEAST ATMOST	: int : int
		LOW	: int
		UP	: int
		SEQ	: int
		VARIABLES : collection(var -dvar)
	Restriction(s)	ATLEAST ≥ 0 ATMOST ≥ ATLEAST ATMOST ≤ |VARIABLES| -SEQ + 1 UP ≥ LOW SEQ > 0
		SEQ ≤ |VARIABLES| required(VARIABLES, var)

4.180 sequence folding

  PurposeExpress the fact that a sequence is folded in a way that no crossing occurs. A sequence is modelled by a collection of letters. For each letter l1 of a sequence, we indicate the next letter l2 located after l1 which is directly in contact with l1 (l1 itself if such a letter does not exist).

	Origin	J. Pearson	
	Constraint	sequence folding(LETTERS)
	Argument(s)	LETTERS : collection(index -int, next -dvar)
	Restriction(s)	|LETTERS| ≥ 1 required(LETTERS, [index, next])
		LETTERS.index ≥ 1 LETTERS.index ≤ |LETTERS| increasing seq(LETTERS, index)
		LETTERS.next ≥ 1 LETTERS.next ≤ |LETTERS|
	Arc input(s)	LETTERS	
	Arc generator	SELF → collection(letters)
	Arc arity	1	
	Arc constraint(s)	letters.next ≥ letters.index
	Graph property(ies)	NARC = |LETTERS|
	Arc input(s)	LETTERS	
	Arc generator	CLIQUE (<) → collection(letters1, letters2)
	Arc arity	2	
	Arc constraint(s)	letters2.index ≥ letters1.next ∨ letters2.next ≤ letters1.next
	Graph property(ies)	NARC = |LETTERS| * (|LETTERS| -1)/2 0 8
	Example	sequence folding	B B B B B B B B B B B B @

  Consider the first graph constraint. Since we use the SELF arc generator on the LETTERS collection the maximum number of arcs of the final graph is equal to |LETTERS|. Therefore we can rewrite the graph property NARC = |LETTERS| to NARC ≥ |LETTERS| and simplify NARC to NARC. Consider now the second graph constraint. Since we use the CLIQUE (<) arc generator on the LETTERS collection the maximum number of arcs of the final graph is equal to |LETTERS| • (|LETTERS| -1)/2. Therefore we can rewrite the graph property NARC = |LETTERS| • (|LETTERS| -1)/2 to NARC ≥ |LETTERS| • (|LETTERS| -1)/2 and simplify NARC to NARC.AutomatonFigure4.366 depicts the automaton associated to the sequence folding constraint. Consider the i th and the j th (i < j) items of the collection LETTERS. Let INDEXi and NEXTi respectively denote the index and the next attributes of the i th item of the collection LETTERS. Similarly, let INDEXj and NEXTj respectively denote the index and the next attributes of the j th item of the collection LETTERS. To each quadruple (INDEXi, NEXTi, INDEXj, NEXTj ) corresponds a signature variable Si,j, which takes its value in {0, 1, 2}, as well as the following signature constraint:

4.182 shift

  

	Origin	N. Beldiceanu
	Constraint	shift(MIN BREAK, MAX RANGE, TASKS)
	Argument(s)	MIN BREAK : int MAX RANGE : int
		TASKS	: collection(id -int, origin -dvar, end -dvar)
	Restriction(s)	MIN BREAK > 0
		MAX RANGE > 0
		required(TASKS, [id, origin, end])
		distinct(TASKS, id)

  PurposeSIZE is the size of the maximal sequence (among all sequences of consecutives variables of the collection VARIABLES) for which the alldifferent constraint holds.

				NARC, PATH N
	4.183 size maximal sequence alldifferent
	Origin	N. Beldiceanu		
	Constraint	size maximal sequence alldifferent(SIZE, VARIABLES)
	Synonym(s)	size maximal sequence alldiff, size maximal sequence alldistinct.
	Argument(s)	SIZE VARIABLES : collection(var -dvar) : dvar	
	Restriction(s)	SIZE ≥ 0 SIZE ≤ |VARIABLES| required(VARIABLES, var)		
	Arc input(s)	VARIABLES		
	Arc generator	PATH N → collection		
	Arc arity	*		
	Arc constraint(s)	alldifferent(collection)		
	Graph property(ies)	NARC = SIZE		
			0	
	Example	size maximal sequence alldifferent	B B B B B B @ B B	4,

  PurposeSIZE is the size of the maximal sequence (among all sequences of consecutives variables of the collection VARIABLES starting at position one) for which the alldifferent constraint holds.

				NARC, PATH 1
	4.184 size maximal starting sequence alldifferent
	Origin	N. Beldiceanu		
	Constraint	size maximal starting sequence alldifferent(SIZE, VARIABLES)
	Synonym(s)	size maximal starting sequence alldiff, size maximal starting sequence alldistinct.
	Argument(s)	SIZE VARIABLES : collection(var -dvar) : dvar		
	Restriction(s)	SIZE ≥ 0 SIZE ≤ |VARIABLES| required(VARIABLES, var)		
	Arc input(s)	VARIABLES		
	Arc generator	PATH 1 → collection		
	Arc arity	*		
	Arc constraint(s)	alldifferent(collection)		
	Graph property(ies)	NARC = SIZE		
			0	
	Example	size maximal starting sequence alldifferent	B B B B B B @ B B	4,

  RemarkOne cannot initially state a global cardinality constraint since the rest days are not yet allocated. One can also not use an among seq constraint since it does not hold for the sequences of consecutive variables that contains at least one rest day.

	See also	among, among low up, global cardinality.		
	Key words	timetabling constraint,	sliding sequence constraint,	sequence,	automaton,
		automaton with counters, alpha-acyclic constraint network(2).		

4.186 sliding distribution

  

	Origin	[146]		
	Constraint	sliding distribution(SEQ, VARIABLES, VALUES)
	Argument(s)	SEQ VARIABLES : collection(var -dvar) : int VALUES : collection(val -int, omin -int, omax -int)
	Restriction(s)	SEQ > 0		
		SEQ ≤ |VARIABLES| required(VARIABLES, var)	
		|VALUES| > 0 required(VALUES, [val, omin, omax])
		distinct(VALUES, val)		
		VALUES.omin ≥ 0 VALUES.omax ≤ SEQ VALUES.omin ≤ VALUES.omax
	Arc input(s)	VARIABLES		
	Arc generator	PATH → collection		
	Arc arity	SEQ		
	Arc constraint(s)	global cardinality low up(collection, VALUES)
	Graph property(ies)	NARC = |VARIABLES| -SEQ + 1
			0	
	Example	sliding distribution	B B B B B B @ B B B B B B B B B B B B	4,

Purpose

For each sequence of SEQ consecutive variables of the VARIABLES collection, each value

VALUES[i].val (1 ≤ i ≤ |VALUES|

) should be taken by at least VALUES[i].omin and at most VALUES[i].omax variables.

4.187 sliding sum

  PurposeConstrains all sequences of SEQ consecutive variables of the collection VARIABLES so that the sum of the variables belongs to interval [LOW, UP].

	Origin	CHIP		
	Constraint	sliding sum(LOW, UP, SEQ, VARIABLES)
	Argument(s)	LOW UP	: int : int
		SEQ	: int
		VARIABLES : collection(var -dvar)
	Restriction(s)	UP ≥ LOW SEQ > 0		
		SEQ ≤ |VARIABLES| required(VARIABLES, var)
	Arc input(s)	VARIABLES		
	Arc generator	PATH → collection
	Arc arity	SEQ		
	Arc constraint(s)	• sum ctr(collection, ≥, LOW) • sum ctr(collection, ≤, UP)
	Graph property(ies)	NARC = |VARIABLES| -SEQ + 1 0
	Example	sliding sum	B B B B B B @ B B	3, 7, 4,

4.188 sliding time window

  PurposeFor any time window of size WINDOW SIZE, the intersection of all the tasks of the collection TASKS with this time window is less than or equal to a given limit LIMIT.

	Origin	N. Beldiceanu		
	Constraint	sliding time window(WINDOW SIZE, LIMIT, TASKS)
	Argument(s)	WINDOW SIZE : int LIMIT : int	
		TASKS	: collection(id -int, origin -dvar, duration -dvar)
	Restriction(s)	WINDOW SIZE > 0	
		LIMIT ≥ 0 required(TASKS, [id, origin, duration])
		distinct(TASKS, id)	
		TASKS.duration ≥ 0	
	Arc input(s)	TASKS		
	Arc generator	CLIQUE → collection(tasks1, tasks2)
	Arc arity	2		
	Arc constraint(s)	• tasks1.origin ≤ tasks2.origin • tasks2.origin -tasks1.origin < WINDOW SIZE
	Sets	SUCC → [source, tasks]
	Constraint(s) on sets	sliding time window from start(WINDOW SIZE, LIMIT, tasks, source.origin)
				0
	Example	sliding time window	B B B B @	9, 6,

  PurposeThe sum of the intersections of all the tasks of the TASKS collection with interval [START, START + WINDOW SIZE -1] is less than or equal to LIMIT.

	Origin	Used for defining sliding time window.
	Constraint	sliding time window from start(WINDOW SIZE, LIMIT, TASKS, START)
	Argument(s)	WINDOW SIZE : int LIMIT : int					
		TASKS START	: collection(id -int, origin -dvar, duration -dvar) : dvar
	Restriction(s)	WINDOW SIZE > 0					
		LIMIT ≥ 0 required(TASKS, [id, origin, duration])
		distinct(TASKS, id)					
		TASKS.duration ≥ 0					
	Arc input(s)	S TASKS						
	Arc generator	PRODUCT → collection(s, tasks)
	Arc arity	2						
	Arc constraint(s)	TRUE						
	Graph property(ies)	SUM WEIGHT ARC	"	max	"	0,	max(s.var, tasks.origin) min(s.var + WINDOW SIZE, tasks.origin + tasks.duration)-	« «
				0				
	Example	sliding time window	@ 9, 6,		

Derived Collection(s)

col(Scollection(vardvar), [item(var -START)])

  PurposeNCHANGE is the number of times that |X -Y | > TOLERANCE holds; X and Y correspond to consecutive variables of the collection VARIABLES.

				NARC, PATH
	4.191 smooth
	Origin	Derived from change.
	Constraint	smooth(NCHANGE, TOLERANCE, VARIABLES)
	Argument(s)	NCHANGE TOLERANCE : int : dvar
		VARIABLES : collection(var -dvar)
	Restriction(s)	NCHANGE ≥ 0 NCHANGE < |VARIABLES| TOLERANCE ≥ 0 required(VARIABLES, var)
	Arc input(s)	VARIABLES	
	Arc generator	PATH → collection(variables1, variables2)
	Arc arity	2		
	Arc constraint(s)	abs(variables1.var -variables2.var) > TOLERANCE
	Graph property(ies)	NARC = NCHANGE
			0	
	Example	smooth	B B B B @	1, 2,

  soft constraint, value constraint, relaxation, decomposition-based violation measure, all different, disequality, flow.

4.193 soft alldifferent var

  

	Origin	[10]
	Constraint	soft alldifferent var(C, VARIABLES)
	Synonym(s)	soft alldiff var, soft alldistinct var.
	Argument(s)	C VARIABLES : collection(var -dvar) : dvar
	Restriction(s)	C ≥ 0 C < |VARIABLES| required(VARIABLES, var)

4.202 sort

  PurposeThe variables of the collection VARIABLES2 correspond to the variables of VARIABLES1 according to a permutation. The variables of VARIABLES2 are also sorted in increasing order.

	Origin	[139]
	Constraint	sort(VARIABLES1, VARIABLES2)
	Argument(s)	VARIABLES1 : collection(var -dvar) VARIABLES2 : collection(var -dvar)
	Restriction(s)	|VARIABLES1| = |VARIABLES2| required(VARIABLES1, var)
		required(VARIABLES2, var)
	Arc input(s)	VARIABLES1 VARIABLES2
	Arc generator	PRODUCT → collection(variables1, variables2)
	Arc arity	2
	Arc constraint(s)	variables1.var = variables2.var
	Graph property(ies)	• for all connected components: NSOURCE = NSINK • NSOURCE = |VARIABLES1| • NSINK = |VARIABLES2|
	Arc input(s)	VARIABLES2
	Arc generator	PATH → collection(variables1, variables2)
	Arc arity	2
	Arc constraint(s)	variables1.var ≤ variables2.var
	Graph property(ies)	NARC

  stage element(ITEM, TABLE) 

	Usual name	stage elt
	Argument(s)	ITEM	: collection(index -dvar, value -dvar)

  TABLE : collection(lowint, upint, valueint)

	Restriction(s)	required(ITEM, [index, value])
		|ITEM| = 1 required(TABLE, [low, up, value])

Purpose

Let lowi, up i and valuei respectively denote the values of the low, up and value attributes of the i th item of the TABLE collection. First we have that: lowi ≤ up i and up i + 1 = lowi+1. Second, the stageelement constraint enforces the following equivalence: lowi ≤ ITEM.index ∧ ITEM.index ≤ up i ⇔ ITEM.value = valuei.

Arc input(s)

TABLE Arc

 Arc 

	Example	stage element	0 B B B B @	{index -5 value -6}, 8 > > < > > : low -3 up -7 low -8 up -8 low -9 up -14 value -2, value -6, value -9, low -15 up -19 value -9
	generator	PATH → collection(table1, table2)
	Arc arity		2	
	Arc constraint(s)	• table1.low ≤ table1.up • table1.up + 1 = table2.low • table2.low ≤ table2.up
	Graph property(ies)	NARC = |TABLE| -1
	Arc input(s)		ITEM TABLE
	Arc generator	PRODUCT → collection(item, table)
	Arc arity		2	
	Arc constraint(s)	• item.index ≥ table.low • item.index ≤ table.up • item.value = table.value
	Graph property(ies)	NARC = 1

  TABLE collection, while the second graph constraint is similar to the one used for defining the element constraint. Automaton Figure 4.394 depicts the automaton associated to the stage element constraint. Let INDEX and VALUE respectively be the index and the value attributes of the unique item of the ITEM collection. Let LOWi, UPi and VALUEi respectively be the low, the up and the value attributes of the i th item of the TABLE collection. To each quintuple (INDEX, VALUE, LOWi, UPi, VALUEi) corresponds a 0-1 signature variable Si as well as the following signature constraint: ((LOWi ≤ INDEX) ∧ (INDEX ≤ UPi) ∧ (VALUE = VALUEi)) ⇔ Si.

				ITEM
				1
					1:5,6
			4	3	2	1
					1:3,7,6
				TABLE
					NARC=1
				(A)	(B)
			Figure 4.393: Initial and final graph of the stage element constraint
	See also	element, elem.		
	Key words	data constraint, s	binary constraint, TABLE_LOW >ITEM_INDEX or ITEM_INDEX>TABLE_UP or ITEM_VALUE<>TABLE_VALUE table, functional dependency, automaton, i i i
		automaton without counters, centered cyclic(2) constraint network(1).
		TABLE_LOW =<ITEM_INDEX and ITEM_INDEX=<TABLE_UP and ITEM_VALUE=TABLE_VALUE i i i
		t		

  PurposeGiven a matrix of domain variables, enforces that both adjacent rows, and adjacent columns are lexicographically ordered (adjacent rows and adjacent columns cannot be equal).

					NARC, PATH
		4.208 strictly decreasing			
	Origin	Derived from strictly increasing.			
	Constraint	strictly decreasing(VARIABLES)			
	Type(s) Argument(s)	VECTOR : collection(var -dvar) VARIABLES : collection(var -dvar)			
	Argument(s) Restriction(s) Restriction(s)	MATRIX : collection(vec -VECTOR) required(VECTOR, var) |VARIABLES| > 0 required(VARIABLES, var)			
		required(MATRIX, vec)			
		same size(MATRIX, vec)			
	Example	strict lex2				
	See also	lex2, allperm, lex lesseq, lex chain lesseq.		
	Key words	predefined constraint,	order constraint,	matrix,	matrix model,	symmetry,
		lexicographic order.				

"  vec -{var -2, var -2, var -3}, vec -{var -2, var -3, var -1} ff «

Usage

A symmetry-breaking constraint.

4.210 strongly connected

  PurposeConsider a digraph G described by the NODES collection. Select a subset of arcs of G so that we have one single strongly connected component involving all vertices of G.

	Origin	[74]
	Constraint	strongly connected(NODES)
	Argument(s)	NODES : collection(index -int, succ -svar)
	Restriction(s)	required(NODES, [index, succ])
		NODES.index ≥ 1 NODES.index ≤ |NODES| distinct(NODES, index)
	Arc input(s)	NODES
	Arc generator	CLIQUE → collection(nodes1, nodes2)
	Arc arity	2
	Arc constraint(s)	in set(nodes2.index, nodes1.succ)
	Graph property(ies)	MIN NSCC = |NODES| 0
	Example	strongly connected

  PurposeS is equal to the sum of the constants corresponding to the INDEX th set of the SETS collection.

		sum(INDEX, SETS, CONSTANTS, S)
	Argument(s)	INDEX SETS CONSTANTS : collection(cst -int) : dvar : collection(ind -int, set -sint) S : dvar
	Restriction(s)	|SETS| ≥ 1 required(SETS, [ind, set])
		distinct(SETS, ind)
		|CONSTANTS| ≥ 1 required(CONSTANTS, cst)
	Arc input(s)	SETS CONSTANTS
	Arc generator	PRODUCT → collection(sets, constants)
	Arc arity	2			
	Arc constraint(s)	• INDEX = sets.ind • in set(constants.key, sets.set)
	Graph property(ies)	SUM(CONSTANTS, cst) = S
	Example	sum	0 B B B B B @ B B B B B B B	8,	8 > > < > > :

  data constraint, linear programming, convex hull relaxation, sum.

	Used in	bin packing,	cumulative,		cumulative two d,
		cumulative with level of priority,	cumulatives,	indexed sum,
		interval and sum,	relaxed sliding sum,	sliding sum,
		sliding time window sum.		
	See also	sum, sum set, product ctr, range ctr.	
	Key words	arithmetic constraint, sum.		

4.213 sum of weights of distinct values

  PurposeAll variables of the VARIABLES collection take a value in the VALUES collection. In addition COST is the sum of the weight attributes associated to the distinct values taken by the variables of VARIABLES. Parts (A) and (B) of Figure 4.407 respectively show the initial and final graph. Since we use the NSOURCE graph property, the source vertices of the final graph are shown in a double circle. Since we also use the SUM graph property we show the vertices from which we compute the total cost in a box. Signature Since we use the PRODUCT arc generator, the number of sources of the final graph cannot exceed the number of sources of the initial graph. Since the initial graph contains |VARIABLES| sources, this number is an upper bound of the number of sources of the final graph. Therefore we can rewrite NSOURCE = |VARIABLES| to NSOURCE ≥ |VARIABLES| and simplify NSOURCE to NSOURCE.PurposeLet SUM denotes the sum of the coef attributes of the VALUES collection for which the corresponding values val occur in the set SV. Enforce the following constraint to hold: SUM CTR VAR.

									SUM, SELF
	See also		minimum weight alldifferent, weighted partial alldiff. 4.214 sum set	global cardinality with costs,	nvalue,
	Key words	Origin Origin	[106] cost filtering constraint, assignment, relaxation, domination, weighted assignment, facilities location problem. H. Cambazard
		Constraint Constraint	sum of weights of distinct values(VARIABLES, VALUES, COST) sum set(SV, VALUES, CTR, VAR)
		Synonym(s) Argument(s) Argument(s) Restriction(s) Restriction(s)	swdv. VARIABLES : collection(var -dvar) VALUES SV : svar VALUES : collection(val -int, coef -int) CTR : atom : collection(val -int, weight -int) COST VAR : dvar : dvar required(VALUES, [val, coef]) required(VARIABLES, var) distinct(VALUES, val)
				required(VALUES, [val, weight]) VALUES.weight ≥ 0 distinct(VALUES, val) VALUES.coef ≥ 0 CTR ∈ [=, =, <, ≥, >, ≤]			
				COST ≥ 0				
		Arc input(s)	VALUES				
		Arc input(s) Arc generator Arc arity Arc generator Arc constraint(s)	SELF → collection(values) VARIABLES VALUES 1 PRODUCT → collection(variables, values) in set(values.val, SV)
		Arc arity Graph property(ies)	2 SUM(VALUES, coef) CTR VAR			
		Arc constraint(s)	variables.var = values.val 0			
		Graph property(ies) Example Example	• NSOURCE = |VARIABLES| sum of weights of distinct values • SUM(VALUES, weight) = COST sum set	0 B B B B B B @	8 < : 8 < :	var -1, var -6, var -1 val -1 weight -5, 9 ; , val -2 weight -3, val -6 weight -7 =	9 = ;	, 12	A C C C C C C 1

4.215 symmetric alldifferent

  

	Origin	[20]		
	Constraint	symmetric alldifferent(NODES)	
	Synonym(s)	symmetric alldiff,	symmetric alldistinct,	symm alldifferent,
		symm alldiff, symm alldistinct, one factor.	
	Argument(s)	NODES : collection(index -int, succ -dvar)	
	Restriction(s)	required(NODES, [index, succ])	
		NODES.index ≥ 1 NODES.index ≤ |NODES| distinct(NODES, index)		
		NODES.succ ≥ 1 NODES.succ ≤ |NODES|		
	Arc input(s)	NODES		
	Arc generator	CLIQUE ( =) → collection(nodes1, nodes2)	
	Arc arity	2		
	Arc constraint(s)	• nodes1.succ = nodes2.index • nodes2.succ = nodes1.index	
	Graph property(ies)	NARC = |NODES|	0	
	Example	symmetric alldifferent		

Purpose

All variables associated to the succ attribute of the NODES collection should be pairwise distinct. In addition enforce the following condition: If variable NODES

[i]

.succ takes value j then variable NODES

[j]

.succ takes value i. This can be interpreted as a graph-covering problem where one has to cover a digraph G with circuits of length two in such a way that each vertex of G belongs to one single circuit.

  symmetric gcc(VARS, VALS) VARS : collection(idvarint, varsvar, noccdvar) VALS : collection(idvalint, valsvar, noccdvar)PurposePut in relation two sets: For each element of one set gives the corresponding elements of the other set to which it is associated. In addition, enforce a cardinality constraint on the number of occurrences of each value.

	Synonym(s)	sgcc.
	Argument(s)	
	Restriction(s)	required(VARS, [idvar, var, nocc])
		|VARS| ≥ 1 VARS.idvar ≥ 1 VARS.idvar ≤ |VARS| distinct(VARS, idvar)
		VARS.nocc ≥ 0 VARS.nocc ≤ |VALS| required(VALS, [idval, val, nocc])
		|VALS| ≥ 1 VALS.idval ≥ 1 VALS.idval ≤ |VALS| distinct(VALS, idval)
		VALS.nocc ≥ 0 VALS.nocc ≤ |VARS|

  symmetric cardinality, global cardinality, link set to booleans. NPATH : dvar NODES : collection(indexint, succdvar, startdvar, enddvar)

			4.218 temporal path		
	Origin		ILOG			
	Constraint	temporal path(NPATH, NODES)		
	Argument(s)				
	Restriction(s)	NPATH ≥ 1 NPATH ≤ |NODES| required(NODES, [index, succ, start, end])	
			|NODES| > 0 NODES.index ≥ 1 NODES.index ≤ |NODES| distinct(NODES, index)		
			NODES.succ ≥ 1 NODES.succ ≤ |NODES|		
	Key words	decomposition,	timetabling constraint,	assignment,	relation,	flow,
		constraint involving set variables.		

  Since the maximum number of vertices of the final graph is equal to |NODES|, we can rewrite the graph property MIN NSCC = |NODES| to MIN NSCC ≥ |NODES| and simplify MIN NSCC to MIN NSCC.

	See also	circuit, cycle, link set to booleans.		
	Key words	graph constraint,	undirected graph,	Hamiltonian,	linear programming,
		constraint involving set variables.		

  two layer edge crossing(NCROSS, VERTICES LAYER1, VERTICES LAYER2, EDGES) collection(idint, posdvar) VERTICES LAYER2 : collection(idint, posdvar) EDGES: collection(idint, vertex1int, vertex2int)

	NCROSS VERTICES LAYER1 : Restriction(s) : dvar Argument(s) NCROSS ≥ 0 required(VERTICES LAYER1, [id, pos])
		VERTICES LAYER1.id ≥ 1 VERTICES LAYER1.id ≤ |VERTICES LAYER1| distinct(VERTICES LAYER1, id)
		required(VERTICES LAYER2, [id, pos])
		VERTICES LAYER2.id ≥ 1 VERTICES LAYER2.id ≤ |VERTICES LAYER2| distinct(VERTICES LAYER2, id)
		required(EDGES, [id, vertex1, vertex2])
		EDGES.id ≥ 1 EDGES.id ≤ |EDGES| distinct(EDGES, id)
		EDGES.vertex1 ≥ 1 EDGES.vertex1 ≤ |VERTICES LAYER1| EDGES.vertex2 ≥ 1 EDGES.vertex2 ≤ |VERTICES LAYER2|
	Purpose	NCROSS is the number of line-segments intersections.
	Derived Collection(s)	col	0 @	EDGES EXTREMITIES -collection(layer1 -dvar, layer2 -dvar), » item " layer2 -EDGES.vertex2(VERTICES LAYER2, pos, id) layer1 -EDGES.vertex1(VERTICES LAYER1, pos, id), « -	1 A
	Arc input(s)	EDGES EXTREMITIES
	Arc generator	CLIQUE (<) → collection(edges extremities1, edges extremities2)
	Arc arity	2						
	Arc constraint(s)	W	0 B B @	V V	" "	edges extremities1.layer1 < edges extremities2.layer1, edges extremities1.layer2 > edges extremities2.layer2 edges extremities1.layer1 > edges extremities2.layer1,	«	,
								edges extremities1.layer2 < edges extremities2.layer2

  two orth are in contact(ORTHOTOPE1, ORTHOTOPE2) ORTHOTOPE : collection(oridvar, sizdvar, enddvar)

	Type(s)	
	Argument(s)	ORTHOTOPE1 : ORTHOTOPE ORTHOTOPE2 : ORTHOTOPE
	Restriction(s)	|ORTHOTOPE| > 0 require at least(2, ORTHOTOPE, [ori, siz, end])
		ORTHOTOPE.siz > 0
		|ORTHOTOPE1| = |ORTHOTOPE2| orth link ori siz end(ORTHOTOPE1)
		orth link ori siz end(ORTHOTOPE2)

  1.Figure 4.422: Automaton of the two orth are in contact constraint

	s	i SIZ1 >0 and SIZ2 >0 and END1 >ORI2 and END2 >ORI1 i i i i	i
	i SIZ1 >0 and SIZ2 >0 and (END1 =ORI2 or i i i	END2 =ORI1 ) i i
	z	i SIZ1 >0 and SIZ2 >0 and END1 >ORI2 and END2 >ORI1 i i i i	i
	$		
	t		
		ORI1 1	ORI1 2	ORI1 n
		SIZ1 1	SIZ1 2	SIZ1 n
		END1 1	END1 2	END1 n
		ORI2 1	ORI2 2	ORI2 n
		SIZ2 1	SIZ2 2	SIZ2 n
		END2 1	END2 2	END2 n
		S 1	S 2	S n
		Q =s 0	Q 1	Q =t n

  Figure 4.425: Initial and final graph of the two orth do not overlap constraintFigure 4.426: Automaton of the two orth do not overlap constraint

	s	SIZ1 >0 and SIZ2 >0 and END1 >ORI2 and END2 >ORI1 i i i i i i
	SIZ1 =0 or SIZ2 =0 or END1 <=ORI2 or END2 <=ORI1 i i i i i i
	t				
		ORI1 1	ORI1 2	ORI1 n
		SIZ1 1	SIZ1 2	SIZ1 n
		END1 1	END1 2	END1 n
		ORI2 1	ORI2 2	ORI2 n
		SIZ2 1	SIZ2 2	SIZ2 n
		END2 1	END2 2	END2 n
	ORTHOTOPE1	S 1	S 2	S n
	2	1 Q =s 0	Q 1	1:2,2,4	Q =t n
	2	1			
				1:4,4,8	
	ORTHOTOPE2		NARC=1	
		(A)		(B)	

  [START_REF] Régin | The cardinality matrix constraint[END_REF][START_REF] Lahrichi | Scheduling: the notions of hump, compulsory parts and their use in cumulative problems[END_REF][START_REF] Baptiste | Global constraints for partial csps: A case-study of resource and due date constraints[END_REF] 174 

	all null intersect, 180
	ALL VERTICES, 47, 310
	alldiff, 176
	alldiff between sets, 180
	alldiff except 0, 182
	alldiff interval, 186
	alldiff modulo, 190
	alldiff on intersection, 194
	alldiff partition, 198
	alldiff same value, 200
	alldifferent,

  MAX NCC, MIN NCC, NCC, NVERTEX, PATH , LOOP ; MAX NCC, MIN NCC, PATH , LOOP

			INDEX
	signature NARC, CIRCUIT
	AUTOMATON circular change, 314 group, 516
	deepest valley, 414 MAX NCC, PATH NARC, CLIQUE (<)
	heighest peak, 532 longest change, 618 all min dist, 174
	inflexion, 554 int value precede, 556 diffn column, 430 MAX NCC, PATH , LOOP , ∀ stretch path, 858 diffn include, 432
	int value precede chain, 558 MAX NCC, PRODUCT disjunctive, 444
	ith pos different from 0, 576 alldifferent on intersection, 194 lex alldifferent, 582
	lex between, 584 MAX NSCC, CLIQUE NARC, CLIQUE ( =)
	no peak, 684 all differ from at least k pos, 172 alldifferent, 176
	no valley, 686 alldifferent between sets, 180 NARC, CLIQUE
	peak, 732 inverse, 568	alldifferent except 0, 182
	valley, 940 place in pyramid, 740 alldifferent interval, 186
	CC(NSINK, NSOURCE), PRODUCT alldifferent modulo, 190 NARC, CLIQUE (<)
	same intersection, 764 alldifferent partition, 198 crossing, 358
	CLIQUE , SUCC golomb, 508 graph crossing, 512
	sliding time window, 794 MAX NSCC, CLIQUE orchard, 712
	DISTANCE, CLIQUE ( =) max nvalue, 628 soft alldifferent ctr, 810
	distance between, 446 max size set of consecutive var, 632
	DISTANCE, PATH MAX NSCC, MIN NSCC, NSCC, NVERTEX, CHAIN
	distance change, 448 group skip isolated item, 524
	MAX ID, MAX NSCC, NCC, CLIQUE MAX NSCC, NARC NO LOOP, PRODUCT (CLIQUE , LOOP, =)
	binary tree, 268 alldifferent same value, 200
	MAX ID, MIN NSCC, CLIQUE MAX NSCC, NCC, CLIQUE
	circuit, 306	tree, 902
	MAX ID, NCC, NVERTEX, CLIQUE MAX NSCC, NCC, NVERTEX, CLIQUE
	temporal path, 892 one tree, 708
	MAX ID, PRODUCT cardinality atleast, 272 MAX NSCC, NCC, NVERTEX, CLIQUE ; NVERTEX, CLIQUE , ∀ tree resource, 910
	cardinality atmost, 276 MAX NSCC, NCC, RANGE DRG, CLIQUE
	cardinality atmost partition, 280 tree range, 906
	MAX ID, SUM, PRODUCT MAX NSCC, NVERTEX, CLIQUE
	weighted partial alldiff, 946 cutset, 382
	MIN NSCC, CLIQUE MAX NCC, CIRCUIT , LOOP , ∀ stretch circuit, 854 min nvalue, 646
	MAX NCC, MIN NCC, NARC, NCC, PATH min size set of consecutive var, 650
	change continuity, 288 strongly connected, 868	, 866

A constraint checker is a program that takes an instance of a constraint for which all variables are fixed and tests whether the constraint is satisfied or not.

This can be observed in all constraint manuals where the description of the meaning is always informal.

This attribute is not explicitly defined.

This stems from the fact that restrictions are defined on the ground instance of a global constraint.

/ denotes an integer division, a division in which the fractional part is discarded.

var corresponds to the name of the attribute used in the collection of variables.

o is one of the comparison operators =, =, <, ≥, >, ≤. When omitted its default value is =.

Arc generators are described in Section 1.2.2 (page 26).

The For all items of iterator is described in Section 1.2.3 (page 43).

/ denotes an integer division, a division in which the fractional part is discarded.

As defined in Section 1.1.2 (page 4) we use the following notation: For a given collection c, |c| and c[i] respectively denote the number of items of c and the i th item of c.

For an example of global constraint that is defined by more than one graph constraint see for instance the sort constraint and its two graph constraints.

The arguments and the argument restrictions were described in Section 1.1.4, page 13. 

A path where all vertices are distinct is called an elementary path.

http://www.research.att.com/sw/tools/graphviz

Each item corresponds to two arc constraints.

See alsoalldifferent, weighted partial alldiff.Key wordsvalue constraint, relaxation, joker value, all different, automaton, automaton with array of counters, one succ.

Key wordsvalue constraint, counting constraint, automaton, automaton with counters, alpha-acyclic constraint network(2).

NARC, SELFSee alsoatmost, among, exactly.Key wordsvalue constraint, at least, automaton, automaton with counters, alpha-acyclic constraint network(2).

NARC, SELFSee alsoatleast, among, exactly, cumulative.Key wordsvalue constraint, at most, automaton, automaton with counters, alpha-acyclic constraint network(2).

Key wordsvalue constraint, assignment, balanced assignment, automaton, automaton with array of counters, equivalence.

Key wordsvalue constraint, modulo, assignment, balanced assignment, automaton, automaton with array of counters, equivalence.

See alsoglobal cardinality, in.Key words value constraint, partition, at most, acyclic, bipartite, no loop.

See alsogroup, group skip isolated item, stretch path.Key wordstimetabling constraint, run of a permutation, permutation, connected component, automaton, automaton with counters, sliding cyclic(1) constraint network(2), sliding cyclic(1) constraint network(3), acyclic, no loop, apartition.

NARC, PRODUCT (=)Used inall differ from at least k pos.Key words value constraint, vector, automaton, automaton with counters, alpha-acyclic constraint network(2).

Key wordsarray constraint, data constraint, ternary constraint, matrix, automaton, automaton without counters, centered cyclic(3) constraint network(1), derived collection.

Key wordsconstraint between two collections of variables, channeling constraint, permutation, multiset, equality between multisets, flow, bound-consistency, automaton, automaton with array of counters.

Used insliding time window.Key wordssliding sequence constraint, temporal constraint, derived collection.

Constraint(s) on setssum ctr(variables, ≤, LIMIT)

NSINK, NSOURCE, CC(NSINK, NSOURCE), PRODUCT ; NARC, PATH

See alsotree, balance.Key wordsgraph constraint, graph partitioning constraint, connected component, tree, balanced tree.

element_matrix_signature(D,E,F,G,I).

[orth-[[ori-6,siz-2,end-8],[ori-3,siz-2,end-5]]]])).

4.157nvalues except 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 4.158one tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.159orchard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.160orth link ori siz end . . . . . . . . . . . . . . . . . . . . . . . . 4.161orth on the ground . . . . . . . . . . . . . . . . . . . . . . . . . 4.162orth on top of orth . . . . . . . . . . . . . . . . . . . . . . . . . 4.163orths are connected . . . . . . . . . . . . . . . . . . . . . . . . 4.164path from to . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.165pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.166peak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.167period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.168period except 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.169place in pyramid . . . . . . . . . . . . . . . . . . . . . . . . . . 4.170polyomino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.171product ctr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.172range ctr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.173relaxed sliding sum . . . . . . . . . . . . . . . . . . . . . . . . 4.174same . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.175same and global cardinality . . . . . . . . . . . . . . . . . . . . 4.176same intersection . . . . . . . . . . . . . . . . . . . . . . . . . . 4.177same interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.178same modulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.179same partition . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.180sequence folding . . . . . . . . . . . . . . . . . . . . . . . . . . 4.181set value precede . . . . . . . . . . . . . . . . . . . . . . . . . . 4.182shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.183size maximal sequence alldifferent . . . . . . . . . . . . . . . . 4.184size maximal starting sequence alldifferent . . . . . . . . . . . 4.185sliding card skip0 . . . . . . . . . . . . . . . . . . . . . . . . . 4.186sliding distribution . . . . . . . . . . . . . . . . . . . . . . . . . 4.187sliding sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.188sliding time window . . . . . . . . . . . . . . . . . . . . . . . . 4.189sliding time window from start . . . . . . . . . . . . . . . . . . 4.190sliding time window sum . . . . . . . . . . . . . . . . . . . . . 4.191smooth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.192soft alldifferent ctr . . . . . . . . . . . . . . . . . . . . . . . . . 4.193soft alldifferent var . . . . . . . . . . . . . . . . . . . . . . . . 4.194soft same interval var . . . . . . . . . . . . . . . . . . . . . . . 4.195soft same modulo var . . . . . . . . . . . . . . . . . . . . . . . 4.196soft same partition var . . . . . . . . . . . . . . . . . . . . . . 4.197soft same var . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.198soft used by interval var . . . . . . . . . . . . . . . . . . . . . 4.199soft used by modulo var . . . . . . . . . . . . . . . . . . . . . .
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Chapter 4

Global constraint catalog

Example eq set({3, 5}, {3, 5})

Used in alldifferent between sets.

Key words

predefined constraint, binary constraint, equality, constraint involving set variables.

See also peak, deepest valley.

Key words

sequence, automaton, automaton with counters, sliding cyclic(1) constraint network (2). 

Purpose

All the vectors of the collection VECTORS are distinct. Two vectors (u1, u2, . . . , un) and (v1, v2, . . . , vn) are distinct if and only if there exist i ∈ [1, n] such that ui = vi. 

Arc input(s) VECTORS

Key words

value constraint, assignment, minimum number of occurrences, minimum, automaton, automaton with array of counters, equivalence. 

Purpose

All variables of the VARIABLES collection should take a distinct value located within interval [1,|VARIABLES|]. In addition COST is equal to the sum of the costs associated to the fact that we assign value i to variable j. These costs are given by the matrix MATRIX.

Arc input(s) VARIABLES

Arc generator CLIQUE → collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.key

Graph property(ies)

• NTREE = 0

• SUM WEIGHT ARC (MATRIX[(variables1.key -1) * |VARIABLES| + variables1.var].c) = COST Algorithm [33,[START_REF] Beldiceanu | Cost-filtering algorithms for the two sides of the sum of weights of distinct values constraint[END_REF].

See also nvalue, nequivalence, ninterval, npair, in same partition.

Key words

counting constraint, value partitioning constraint, number of distinct equivalence classes, partition, strongly connected component, equivalence. while the second graph property NCC = 1 enforces to have one single group of connected cells.

Signature

From the graph property NVERTEX = |CELLS| and from the restriction |CELLS| ≥ 1 we have that the final graph is not empty. Therefore it contains at least one connected component. So we can rewrite NCC = 1 to NCC ≤ 1 and simplify NCC to NCC.

Usage

Enumeration of polyominoes.

Key words

geometrical constraint, strongly connected component, pentomino.

PRODUCT , SELF 

product ctr

Origin

Graph model

Since we want to keep all the vertices of the initial graph we use the SELF arc generator together with the TRUE arc constraint. This predefined arc constraint allways holds.

Used in cumulative product.

See also sum ctr, range ctr.

Key words

arithmetic constraint, product. 

RANGE, SELF

range ctr

Origin

Purpose

Constraint the difference between the maximum value and the minimum value of a set of domain variables. More precisely let R denotes the difference between the largest and the smallest variables of the VARIABLES collection. Enforce the following constraint to hold: R CTR VAR.

Arc input(s) VARIABLES

Arc generator SELF → collection(variables)

Arc arity 1

Arc constraint(s) TRUE

Graph property(ies) RANGE(VARIABLES, var) CTR VAR

Example range ctr({var -1, var -9, var -4}, =, 8)

Parts (A) and (B) of Figure 4.354 respectively show the initial and final graph. Since we use the TRUE arc constraint both graphs are identical. 

Graph model

Since we want to keep all the vertices of the initial graph we use the SELF arc generator together with the TRUE arc constraint. This predefined arc constraint allways holds.

Used in shift.

See also sum ctr, product ctr.

Key words

arithmetic constraint, range. 

same and global cardinality

Purpose

The variables of the VARIABLES2 collection correspond to the variables of the VARIABLES1 collection according to a permutation. In addition, each value VALUES [i].val (1 ≤ i ≤ |VALUES|) should be taken by exactly VALUES [i].noccurrence variables of the VARIABLES1 collection.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT → collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies)

• for all connected components:

For all items of VALUES:

Arc input(s) VARIABLES1

Arc generator SELF → collection(variables) 

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT → collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var mod M = variables2.var mod M

Graph property(ies)

• for all connected components: 

same partition

Purpose

For each integer i in [1,|PARTITIONS|], let N1 i (respectively N2 i ) denote the number of variables of VARIABLES1 (respectively VARIABLES2) which take their value in the i th partition of the collection PARTITIONS. For all i in [1,|PARTITIONS|] we have N1 i = N2 i.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator

PRODUCT → collection(variables1, variables2)

Arc arity 2

Arc constraint(s) in same partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies)

• for all connected components: 

Purpose

For any time window of size WINDOW SIZE, the sum of the points of the tasks of the collection TASKS that overlap that time window do not exceed a given limit LIMIT.

Arc input(s) TASKS

Arc generator SELF → collection(tasks) 

Algorithm

The filtering algorithm presented in [START_REF] Petit | Specific filtering algorithms for overconstrained problems[END_REF] achieves arc-consistency.

See also alldifferent, soft alldifferent ctr, weighted partial alldiff.

Key words

soft constraint, value constraint, relaxation, variable-based violation measure, all different, disequality, strongly connected component, equivalence. 

Purpose

For each integer i in [1,|PARTITIONS|], let N1 i (respectively N2 i ) denote the number of variables of VARIABLES1 (respectively VARIABLES2) which take their value in the i th partition of the collection PARTITIONS. C is the minimum number of values to change in the VARIABLES1 and VARIABLES2 collections so that for all i in [1,|PARTITIONS|] we have N1 i = N2 i .

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT → collection(variables1, variables2)

Arc arity 2

Arc constraint(s) in same partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies)

Algorithm [104, page 80].

See also same.

Key words

soft constraint, constraint between two collections of variables, relaxation, variable-based violation measure.

Usage

A soft used by interval constraint.

See also used by interval.

Key words

soft constraint, constraint between two collections of variables, relaxation, variable-based violation measure, interval. NSINK_NSOURCE=min (1,3)+min(2,1)=2 

Purpose

For each integer i in [1,|PARTITIONS|], let N1 i (respectively N2 i ) denote the number of variables of VARIABLES1 (respectively VARIABLES2) which take their value in the i th partition of the collection PARTITIONS. C is the minimum number of values to change in the VARIABLES1 and VARIABLES2 collections so that for all i in [1,|PARTITIONS|] we have N1 i = N2 i .

Arc input(s)

VARIABLES1 VARIABLES2 NSINK_NSOURCE=min (1,3)+min(2,1)=2 

Purpose

The variables of collection FROM correspond to the variables of collection TO according to the permutation PERMUTATION. The variables of collection TO are also sorted in increasing order. Let n be the number of variables of the collection VARIABLES. Let Xi, . . . , Xj (0 ≤ i < n, 0 ≤ j < n) be consecutive variables of the collection of variables VARIABLES such that the following conditions apply: Purpose

• All variables Xi, . . . , Xj take a same value from the set of values of the val attribute,

• X (i-1) mod n is different from Xi,

• X (j+1) mod n is different from Xj . We call such a set of variables a stretch. The span of the stretch is equal to 1 + (ji) mod n, while the value of the stretch is Xi. An item (valv, lmins, lmaxt) gives the minimum value s as well as the maximum value t for the span of a stretch of value v.

For all items of VALUES: Let n be the number of variables of the collection VARIABLES. Let Xi, . . . , Xj (1 ≤ i ≤ j ≤ n) be consecutive variables of the collection of variables VARIABLES such that the following conditions apply: Purpose

• All variables Xi, . . . , Xj take a same value from the set of values of the val attribute,

• j = n or Xj+1 is different from Xj . We call such a set of variables a stretch. The span of the stretch is equal to ji + 1, while the value of the stretch is Xi. An item (valv, lmins, lmaxt) gives the minimum value s as well as the maximum value t for the span of a stretch of value v.

For all items of VALUES: 

Graph model

Since we want to keep all the vertices of the initial graph we use the SELF arc generator together with the TRUE arc constraint. This predefined arc constraint allways holds.

Remark

When CTR corresponds to = this constraint is referenced under the name constant sum in KOALOG. 

Remark

The two-layer edge crossing minimization problem was proved to be NP-hard in [START_REF] Garey | Crossing number is np-complete[END_REF].

See also crossing, graph crossing.

Key words geometrical constraint, line-segments intersection, derived collection. 

used by partition

Purpose

For each integer i in [1,|PARTITIONS|], let N1 i (respectively N2 i ) denote the number of variables of VARIABLES1 (respectively VARIABLES2) which take their value in the i th partition of the collection PARTITIONS. For all i in [1,|PARTITIONS|] we have

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT → collection(variables1, variables2)

Arc arity 2

Arc constraint(s) in same partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies)

• for all connected components: NSOURCE ≥ NSINK

of the profits of the offers effectively selected. In addition we impose a lower bound on the total benefit.

• The last scenario deals with an application to an over-constraint problem involving the alldifferent constraint. Allowing some variables to take an "undefined" value is done by setting all weights of all the values different from UNDEFINED to 1. As a consequence all variables assigned to a value different from UNDEFINED will have to take distinct values. The COST variable allows to control the number of such variables.

Algorithm

A filtering algorithm is given in [160, pages 73-104]. After showing that, deciding whether the weighted partial alldiff has a solution is NP-complete, [160, pages 105-106] gives the following results of his filtering algorithm with respect to consistency under the three scenarios previously decribed:

• For scenario 1, if there is no restriction of the lower bound of the COST variable, the filtering algorithm achieves arc-consistency for all variables of the VARIABLES collection (but not for the COST variable itself).

• For scenario 2, if there is no restriction of the upper bound of the COST variable, the filtering algorithm achieves arc-consistency for all variables of the VARIABLES collection (but not for the COST variable itself).

• Finally, for scenario 3, the filtering algorithm achieves arc-consistency for all variables of the VARIABLES collection as well as for the COST variable.

See also alldifferent, alldifferent except 0, minimum weight alldifferent, global cardinality with costs, soft alldifferent var, sum of weights of distinct values.

Key words

cost filtering constraint, soft constraint, all different, assignment, relaxation, joker value, weighted assignment.

Appendix A

Legend for the description

This section provides the list of restrictions, of arc generators, of graph generators and of set generators sorted in alphabetic order with the page where there are defined.

APPENDIX A. LEGEND FOR THE DESCRIPTION

Restrictions :

• Term 1 Comparison Term 2 p. 9

• distinct p. 7

• in attr p. 6

• in list p. 6

• increasing seq p. 7

• required p. 8

• require at least p. 8

• same size p. 9

Arc generators :

• CHAIN p. 27

• CIRCUIT p. 27

• CLIQUE (C) p. 28

• GRID p. 28

• LOOP p. 28

• PATH p. 28

• PATH 1 p. 28

• PATH N p. 29

• PRODUCT p. 29

• PRODUCT (C) p. 29

• SELF p. 29

• SYMMETRIC PRODUCT p. 29

• SYMMETRIC PRODUCT (C) p. 29

Graph characteristics :

• MAX DRG p. 34 [[vec-[[var-2], [var-5], [var-2], [var-0]]], [vec-[[var-3], [var-6], [var-2], [var-1]]], [vec-[[var-3], [var-6], [var-1], [var-0]]]])). ['20000128','20030820','20040530'] [[vec-[[var-1]

B.12 among

ctr_automaton(among,among).

ctr_date (among,['20000128','20030820','20040807'] [[var-4], [var-5], [var-5], [var-4]

B.14 among interval

ctr_automaton(among_interval,among_interval).

ctr_date (among_interval,['20030820','20040530'] [[var-4], [var-5], [var-8], [var-4]

B.16 among modulo

ctr_automaton(among_modulo,among_modulo).

ctr_date (among_modulo,['20030820','20040530']).

ctr_origin(among_modulo,'Derived from %c.',[among]). arith, arith([[var-4], [var-5], [var-7], [var-4], [var-5]],<,9)).

arith_signature ([[var-A]|B], [C|D],=<,E) :-A#=<E#<=>C, arith_signature(B,D,=<,E). 

B.19 arith or

domain (D,0,0), arith_sliding_signature (A,E,D),

[bin-1,colour-5]], =<, 2)).

B.23 atleast

ctr_automaton(atleast,atleast). ctr_date (atleast,['20030820','20040807']).

ctr_example( atleast, atleast (2,[[var-4], [var-2], [var-4], [var-5]],4)).

atleast (A,B,C) 

B.24 atmost

ctr_automaton(atmost,atmost).

ctr_date (atmost,['20030820','20040807']).

ctr_example( atmost, atmost (1,[[var-4], [var-2], [var-4], [var-5]],2)).

B.25 balance

ctr_date(balance, ['20000128','20030820']).

ctr_example( balance, balance (2,[[var-3], [var-1], [var-7],[var-1],[var-1]])).

B.27 balance modulo

ctr_date(balance_modulo, ['20030820']).

ctr_origin(balance_modulo,'Derived from %c.',[balance]). [[var-6]

)).

B.29 bin packing

ctr_date(bin_packing, ['20000128','20030820','20040530'] [[bin-3,weight-4],[bin-1,weight-3],[bin-3,weight-1]])).

B.31 cardinality atleast

ctr_date (cardinality_atleast,['20030820','20040530'] [val-4]]], [p-[[val-2], [val-6]]]])).

B.34 change

ctr_automaton(change,change).

ctr_date (change,['20000128','20030820','20040530']). [change(3,[[var-4], [var-4], [var-3], [var-4] [source(s),node(i),node(j),node(k),sink(t)], [arc(s,0,s), arc(s,1,i, [D,2]), arc(s,$,t, [D,E]), arc(i,0,j, [E,E]), arc(i,1,i, [D,E+1]), arc(i,$,t, [E,E]), arc(j,0,j), arc(j,1,k, [D,2]), arc(j,$,t, [D,E]), arc(k,0,j,[min (D,E)

B.37 change partition

ctr_date(change_partition, ['20000128','20030820','20040530'] 

B.54 cumulative

ctr_date(cumulative, ['20000128','20030820','20040530'] 

B.57 cumulative with level of priority

B.60 cycle

ctr_date(cycle, ['20000128','20030820'] 

B.64 cyclic change

ctr_automaton(cyclic_change,cyclic_change). ctr_date(cyclic_change, ['20000128','20030820','20040530'] [arc(s,0,s),arc(s,1,s, [G+1]),arc(s,$,t)], [G], [0], [A]). 

B.65 cyclic change joker

ctr_automaton(cyclic_change_joker,cyclic_change_joker).

ctr_date ( cyclic_change_joker, ['20000128','20030820','20040530'] [[orth-[[ori-1,siz-3,end-4],[ori-1,siz-1,end-2]]], [orth-[[ori-4,siz-2,end-6], [ori-1,siz-3,end-4]]]], 1)).

B.72 diffn include

ctr_date(diffn_include, ['20030820'] ctr_date (element_sparse,['20030820','20040530']).

ctr_origin (element_sparse,'CHIP',[]).

ctr_usual_name (element_sparse,element) 

B.102 in same partition

ctr_automaton (in_same_partition,in_same_partition).

ctr_date (in_same_partition,['20030820','20040530'] 

B.106 inflexion

ctr_automaton(inflexion,inflexion). ctr_date (inflexion,['20000128','20030820','20040530'] [0,0], [A,B]).

B.115 lex2

ctr_predefined(lex2). ctr_date(lex2, ['20031008','20040530'] [[vec-[[var-2], [var-2], [var-3]]], [vec-[[var-2], [var-3], [var-1]]]])).

B.117 lex between

ctr_automaton(lex_between,lex_between).

ctr_date (lex_between,['20030820','20040530']).

ctr_origin (lex_between,'\\cite{BeldiceanuCarlsson02c}',[] [[var-5], [var-2], [var-3], [var-9]], [[var-5], [var-2], [var-6], [var-2]], [[var-5] (1,N,[1..1]), node (2,N,[2..2]), node (3,N,[3..3]), node (6,N,[6..6 (2,N,[2..2]), node (5,N,[5..5]), node (6,N,[6..6]), node (7,N,[7..7]), node (8,N,[8..8])]) ), lex_between_signature (B,D,F,H).

B.119 lex chain lesseq

ctr_date (lex_chain_lesseq,['20030820','20040530']). ctr_origin (lex_chain_lesseq,'\\cite{BeldiceanuCarlsson02c}',[]). ctr_usual_name(lex_chain_lesseq,lex_chain). ctr_types(lex_chain_lesseq,['VECTOR '-collection(var-dvar) [[vec-[[var-5], [var-2], [var-3], [var-9]]], [vec-[[var-5], [var-2], [var-6], [var-2]]], [vec-[[var-5], [var-2], [var-6], [var-2]]]])).

B.120 lex different

ctr_automaton(lex_different,lex_different).

ctr_date (lex_different,['20030820','20040530'] 

B.126 longest change

ctr_automaton(longest_change,longest_change).

ctr_date (longest_change,['20000128','20030820','20040530'] 

B.132 maximum

ctr_automaton(maximum,maximum).

ctr_date (maximum,['20000128','20030820','20040530','20041230'] 

B.133 maximum modulo

ctr_date (maximum_modulo,['20000128','20030820','20041230'] ['CLIQUE'>>collection(variables1,variables2)],

[#\/(variables1ˆkey=variables2ˆkey, variables1ˆvar mod 'M'>variables2ˆvar mod 'M')], ['ORDER'(0,'MININT',var)='MAX']). ctr_example( maximum_modulo, maximum_modulo ( 5, [[var-9], [var-1], [var-7], [var-6], [var-5]],

3)).

B.136 min nvalue

ctr_date(min_nvalue, ['20000128','20030820'] 

B.138 minimum

ctr_automaton(minimum,minimum).

ctr_date (minimum,['20000128','20030820','20040530','20041230'] 

B.139 minimum except 0

ctr_automaton(minimum_except_0,minimum_except_0).

ctr_date(minimum_except_0, ['20030820','20040530','20041230'] [minimum_except_0( 3, [[var-3], [var-7], [var-6], [var-7], [var-4], [var-7]]), minimum_except_0 ( 2, [[var-3] 6, [[var-9], [var-1], [var-7], [var-6], [var-5]],

3), minimum_modulo ( 9, [[var-9], [var-1], [var-7], [var-6], [var-5]],

3)]).

B.142 minimum weight alldifferent

ctr_date (minimum_weight_alldifferent,['20030820','20040530'] [[var-3] [val-4]]], [p-[[val-2], [val-6]]]])).

B.144 nequivalence

ctr_date(nequivalence, ['20000128','20030820'] [source(s),node(i),sink(t)], [arc(s,0,s), arc(s,1,s), arc(s,2,i), arc(s,$,t), [source(s),node(i),sink(t)], [arc(s,0,s), arc(s,1,s),

B.150 not all equal

ctr_automaton(not_all_equal,not_all_equal).

ctr_date (not_all_equal,['20030820','20040530','20040726'] 

B.154 nvalue

ctr_date(nvalue, ['20000128','20030820','20040530'] 

ctr_example ( orth_on_top_of_orth, orth_on_top_of_orth( [[ori-5,siz-2,end-7], [ori-3,siz-3,end-6]], [[ori-3,siz-5,end-8],[ori-1,siz-2,end-3]],

2)).

B.166 peak

ctr_automaton(peak,peak).

ctr_date (peak,['20040530']).

ctr_origin(peak,'Derived from %c.',[inflexion]).

ctr_arguments(peak,['N'-dvar,'VARIABLES'-collection(var-dvar)]). [source(s),node(u),sink(t)], [arc(s,0,s), arc(s,1,s), arc(s,2,u), arc(s,$,t), arc(u,0,s, [E+1]), arc(u,1,u), arc(u,2,u), arc(u,$,t)], [E],

B.167 period ctr_predefined(period).

ctr_date (period,['20000128','20030820','20040530'] [[var-1],

B.169 place in pyramid

ctr_date (place_in_pyramid,['20000128','20030820','20041230'] 

ctr_example ( place_in_pyramid, place_in_pyramid( [[orth-[[ori-1,siz-3,end-4],[ori-1,siz-2,end-3]]], [orth-[[ori-1,siz-2,end-3], [ori-3,siz-3,end-6]]], [orth-[[ori-5,siz-6,end-11],[ori-1,siz-2,end-3]]],

B.170 polyomino ctr_date(polyomino,['20000128','20030820'] [[var-1], [var-2], [var-6], [var-3], [var-1], [var-2]], [[var-6], [var-6], [var-2], [var-3], [var-1], [var-3]], [[p-[[val-1], [val-3]]], [p-[[val-4]]], [p-[[val-2], [val-6]]]])). >>('SUCC', [source, -(variables, col('VARIABLES'-collection(var-dvar), [item(var-'TASKS'ˆnpoint)]))])], [sum_ctr(variables,=<,'LIMIT')]).

B.191 smooth

ctr_automaton(smooth,smooth). ctr_date (smooth,['20000128','20030820','20040530'] [[var-9],[var-1],[var-1], [var-8], [var-8]], [[var-9], [var-9], [var-9],[var-1]],

3)).

ctr_example( soft_used_by_partition_var, soft_used_by_partition_var ( 2, [[var-9], [var-1], [var-1], [var-8], [var-8]], [[var-9], [var-9], [var-9], [var-1]], [[p-[[val-1], [val-2]]], [p-[[val-9]]], [p-[[val-7], [val-8]]]])). [[var-1], [var-9], [var-1], [var-5], [var-2], [var-1]], [[var-1], [var-6], [var-3], [var-5], [var-4], [var-2]], [[var-1], [var-1], [var-1], [var-2], [var-5], [var-9]])). 

B.208 strictly decreasing

B.225 two orth are in contact

ctr_automaton (two_orth_are_in_contact,two_orth_are_in_contact).

ctr_date (two_orth_are_in_contact,['20030820','20040530'] [[ori-2,siz-2,end-4], [ori-1,siz-3,end-4]],
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