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Abstract

In this paper, we determine the lower central and derived series for the braid groups of the
projective plane. We are motivated in part by the study of Fadell-Neuwirth short exact
sequences, but the problem is interesting in its own right.

The n-string braid groups BnpRP2q of the projective plane RP2 were originally stud-
ied by Van Buskirk during the 1960’s, and are of particular interest due to the fact that
they have torsion. The group B1pRP2q (resp. B2pRP2q) is isomorphic to the cyclic group
Z2 of order 2 (resp. the generalised quaternion group of order 16) and hence their lower
central and derived series are known. If n ¡ 2, we first prove that the lower central
series of BnpRP2q is constant from the commutator subgroup onwards. We observe that
Γ2pB3pRP2qq is isomorphic to pF3 �Q8q �Z3, where Fk denotes the free group of rank k,
and Q8 denotes the quaternion group of order 8, and that Γ2pB4pRP2qq is an extension of an
index 2 subgroup K of P4pRP2q by Z2`Z2. As for the derived series of BnpRP2q, we show
that for all n ¥ 5, it is constant from the derived subgroup onwards. The group BnpRP2q
being finite and soluble for n ¤ 2, the critical cases are n � 3, 4. We are able to determine
completely the derived series of B3pRP2q. The subgroups pB3pRP2qqp1q, pB3pRP2qqp2q andpB3pRP2qqp3q are isomorphic respectively to pF3 �Q8q � Z3, F3 �Q8 and F9 � Z2, and
we compute the derived series quotients of these groups. From pB3pRP2qqp4q onwards, the
derived series of B3pRP2q, as well as its successive derived series quotients, coincide with
those of F9. We analyse the derived series of B4pRP2q and its quotients up to pB4pRP2qqp4q,
and we show that pB4pRP2qqp4q is a semi-direct of F129 by F17. Finally, we give a present-
ation of Γ2pBnpRP2qq.
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1 Introduction

1.1 Generalities and definitions

Let n P N. The braid groups of the plane E2, denoted by Bn, and known as Artin braid
groups, were introduced by E. Artin in 1925 [A1, A2, A3], and admit the following well-
known presentation: Bn is generated by elements σ1, . . . , σn�1, subject to the classical
Artin relations: #

σiσj � σjσi if |i � j| ¥ 2 and 1 ¤ i, j ¤ n� 1

σiσi�1σi � σi�1σiσi�1 for all 1 ¤ i ¤ n� 2.

A natural generalisation to braid groups of arbitrary topological spaces was made at
the beginning of the 1960’s by Fox (using the notion of configuration space) [FoN].
The braid groups of compact, connected surfaces have been widely studied; (finite)
presentations were obtained in [Z1, Z2, Bi1, Sc]. As well as being interesting in their
own right, braid groups have played an important rôle in many branches of mathem-
atics, for example in topology, geometry, algebra and dynamical systems, and notably
in the study of knots and links [BZ], of the mapping class groups [Bi2, Bi3], and of
configuration spaces [CG, FH]. The reader may consult [Bi2, Han, R] for some general
references on the theory of braid groups.

Let M be a connected manifold of dimension 2 (or surface), perhaps with boundary.
Further, we shall suppose that M is homeomorphic to a compact 2-manifold with a
finite (possibly zero) number of points removed from its interior. We recall two (equi-
valent) definitions of surface braid groups. The first is that due to Fox. Let FnpMq
denote the nth configuration space of M, namely the set of all ordered n-tuples of distinct
points of M:

FnpMq �  px1, . . . , xnq | xi P M and xi � xj if i � j
(

.

Since FnpMq is a subspace of the n-fold Cartesian product of M with itself, the topology
on M induces a topology on FnpMq. Then we define the n-string pure braid group PnpMq
of M to be PnpMq � π1pFnpMqq. There is a natural action of the symmetric group Sn

on FnpMq by permutation of coordinates, and the resulting orbit space FnpMq{Sn shall
be denoted by DnpMq. The fundamental group π1pDnpMqq is called the n-string (full)
braid group of M, and shall be denoted by BnpMq. Notice that the projection FnpMq ÝÑ
DnpMq is a regular n!-fold covering map. It is well known that Bn is isomorphic to
BnpD2q, and that the subgroup Pn of pure braids of Bn is isomorphic to PnpD2q, where
D2 is the closed 2-disc.

The second definition of surface braid groups is geometric. Let P � tp1, . . . , pnu be
a set of n distinct points of M. A geometric braid of M with basepoint P is a collection
β � pβ1, . . . , βnq of n paths β : r0, 1s ÝÑ M such that:

(a) for all i � 1, . . . , n, βip0q � pi and βip1q P P .
(b) for all i, j � 1, . . . , n and i � j, and for all t P r0, 1s, βiptq � β jptq.
Two geometric braids are said to be equivalent if there exists a homotopy between them
through geometric braids. The usual concatenation of paths induces a group opera-
tion on the set of equivalence classes of geometric braids. This group is isomorphic
to BnpMq, and does not depend on the choice of P . The subgroup of pure braids, sat-
isfying additionally βip1q � pi for all i � 1, . . . , n, is isomorphic to PnpMq. There is a
natural surjective homomorphism τ : BnpMq ÝÑ Sn which to a geometric braid β asso-
ciates the permutation τpβq defined by βip1q � pτpβqpiq. The kernel is precisely PnpMq,
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and we thus obtain the following short exact sequence:

1 ÝÑ PnpMq ÝÑ BnpMq τÝÑ Sn ÝÑ 1. (1)

In this paper, we shall be primarily interested in the braid groups of the real project-
ive plane RP2. Along with the braid groups of the 2-sphere, they are of particular in-
terest, notably because they have non-trivial centre (which is also the case for the Artin
braid groups), and torsion elements (which were characterised by Murasugi [Mu], see
also [GG9]). We recall briefly some of their properties. If D2 � RP2 is a topological disc,
there is a group homomorphism ι : BnpD2q ÝÑ BnpRP2q induced by the inclusion. If
β P BnpD2q then its image ιpβq shall be denoted simply by β. A presentation of BnpRP2q
was given in [VB] (see Proposition 4); in [GG4], we obtained a presentation of PnpRP2q.
The first two braid groups of RP2 are finite: B1pRP2q and B2pRP2q are isomorphic to Z2

and Q16 respectively, where for m ¥ 2, Q4m denotes the generalised quaternion group
of order 4m [VB]. If n ¥ 3 then BnpRP2q is infinite. For n � 3, the Fadell-Neuwirth
short exact sequence of pure braid groups yields the fact that P3pRP2q is isomorphic to
a semi-direct product of a free group of rank two by Q8. If n ¥ 2, the so-called ‘full
twist’ braid ∆

2
n � pσ1 � � � σn�1qn generates the centre ZpBnpRP2qq of BnpRP2q, and is the

unique element of BnpRP2q of order 2. Here ∆n denotes the Garside (or ‘half twist’)
element of BnpRP2q, defined by

∆n � pσ1 � � � σn�1qpσ1 � � � σn�2q � � � pσ1σ2qσ1.

Further, the torsion of BnpRP2q is 4n and 4pn� 1q, and that of PnpRP2q is 2 and 4 [GG3].
In [GG8], we classified the virtually cyclic subgroups of BnpRP2q for all n P N, and
in [GG9], we characterised the finite subgroups of BnpRP2q.

Our aim in this paper is to study the lower central and derived series of the braid
groups of RP2. We recall some definitions and notation concerning these series. If G
is a group, then its lower central series tΓipGquiPN is defined inductively by Γ1pGq � G,

and Γi�1pGq � rG, ΓipGqs for all i P N, and its derived series
!

Gpiq)
iPNYt0u is defined

inductively by Gp0q � G, and Gpiq � rGpi�1q, Gpi�1qs for all i P N. One may check easily
that ΓipGq � Γi�1pGq and Gpi�1q � Gpiq for all i P N, and for all j P N, j ¡ i, ΓjpGq
(resp. Gpjq) is a normal subgroup of ΓipGq (resp. Gpiq). Notice that Γ2pGq � Gp1q is the
commutator subgroup of G. The Abelianisation of the group G, denoted by GAb is the
quotient G{Γ2pGq; the Abelianisation of an element g P G is its Γ2pGq-coset in GAb. The
group G is said to be perfect if G � Gp1q, or equivalently if GAb � t1u. Following P. Hall,
for any group-theoretic property P , a group G is said to be residually P if for any (non-
trivial) element x P G, there exists a group H with the property P and a surjective
homomorphism ϕ : G ÝÑ H such that ϕpxq � 1. It is well known that a group G
is residually nilpotent (respectively residually soluble) if and only if

�
i¥1 ΓipGq � t1u

(respectively
�

i¥0 Gpiq � t1u). If g, h P G then rg, hs � ghg�1h�1 will denote their
commutator.

The lower central series of groups and their successive quotients Γi{Γi�1 are iso-
morphism invariants, and have been widely studied using commutator calculus, in
particular for free groups of finite rank [Hal, MKS]. Falk and Randell, and independ-
ently Kohno investigated the lower central series of the pure braid group Pn, and were
able to conclude that Pn is residually nilpotent [FR1, Ko]. Falk and Randell also stud-
ied the lower central series of generalised pure braid groups [FR2, FR3]. Using the
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Reidemeister-Schreier rewriting process, Gorin and Lin obtained a presentation of the
commutator subgroup of Bn for n ¥ 3 [GL]. For n ¥ 5, they were able to infer thatpBnqp1q � pBnqp2q, and so pBnqp1q is perfect. From this it follows that Γ2pBnq � Γ3pBnq,
hence Bn is not residually nilpotent. If n � 3 then they showed that pB3qp1q is a free
group of rank 2, while if n � 4, they proved that pB4qp1q is a semi-direct product of two
free groups of rank 2. By considering the action, one may see that pB4qp1q � pB4qp2q.
The work of Gorin and Lin on these series was motivated by the study of almost peri-
odic solutions of algebraic equations with almost periodic coefficients. In [GG5, GG6]
we studied the lower central and derived series of the 2-sphere S2 and the finitely-
punctured 2-sphere. For S2, the case n � 4 is critical, in the sense that if n � 4, BnpS2q
is residually soluble if and only if n   4. It is an open question as to whether B4pS2q is
residually soluble.

The above comments indicate that the study of the lower central and derived series
of the braid groups of RP2 is an important problem in its own right, and it helps us to
understand better the structure of such groups. But we are also motivated by the in-
teresting question of the existence of a section (the ‘splitting problem’) for the following
two short exact sequences of braid groups (notably for the case M � RP2) obtained by
considering the long exact sequences in homotopy of fibrations of the corresponding
configuration spaces:

(a) let m, n P N and m ¡ n. Then we have the Fadell-Neuwirth short exact sequence of pure
braid groups [FaN]:

1 ÝÑ PnpMz tx1, . . . , xmuq i�ÝÑ Pm�npRP2q p�ÝÑ PmpRP2q ÝÑ 1, (2)

where m ¥ 3 if M � S2 [Fa, FVB], m ¥ 2 if M � RP2 [VB], and m ¥ 1 otherwise [FaN],
and where p� is the group homomorphism which geometrically corresponds to for-
getting the last n strings, and i� is inclusion (we consider PnpMz tx1, . . . , xmuq to be
the subgroup of Pm�npRP2q of pure braids whose last m strings are vertical). This
short exact sequence plays a central rôle in the study of surface braid groups. It was
used by [PR] to study mapping class groups, in the work of [GMP] on Vassiliev in-
variants for braid groups, as well as to obtain presentations for surface pure braid
groups [Bi1, Sc, GG1, GG4, GG6].
(b) let m, n P N. Consider the group homomorphism τ : Bm�npMq ÝÑ Sm�n, and let
Bm,npMq � τ�1pSm � Snq be the inverse image of the subgroup Sm � Sn of Sm�n. As
in the pure braid group case, we obtain a generalisation of the Fadell-Neuwirth short
exact sequence [GG2]:

1 ÝÑ BnpMz tx1, . . . , xmuq ÝÑ Bm,npMq p�ÝÑ BmpMq ÝÑ 1, (3)

where we take m ¥ 3 if M � S2, m ¥ 2 if M � RP2 and m ¥ 1 otherwise. Once more,
p� corresponds geometrically to forgetting the last n strings.

We remark that if the above conditions on n and m are satisfied then the existence
of a section for p� is equivalent to that of a geometric section for the corresponding
configuration spaces (cf. [GG3, GG4]). The authors have recently solved the splitting
problem for the short exact sequence (2) for all surfaces [GG7]. In [GG4], we studied
the short exact sequence (3) in the case M � S2 of the sphere, and showed that if m � 3
then (3) splits if and only if n � 0, 2 mod 3. Further, if m ¥ 4 and (3) splits then there
exist ε1, ε2 P t0, 1u such that n � ε1pm� 1qpm� 2q � ε2mpm� 2q mod mpm� 1qpm� 2q.
An open question is whether this condition is also sufficient.
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Our main aim in this paper is to study the lower central and derived series of the
braid groups of RP2. This was motivated in part by the study of the problem of the
existence of a section for the short exact sequences (2) and (3). To obtain a positive
answer, it suffices of course to exhibit an explicit section (although this may be easier
said than done!). However, and in spite of the fact that we possess presentations of
surface braid groups, in general it is very difficult to prove directly that such an exten-
sion does not split. One of the main methods that we used to prove the non-splitting
of (2) for n ¥ 2 and of (3) for m ¥ 4 was based on the following observation: let
1 ÝÑ K ÝÑ G ÝÑ Q ÝÑ 1 be a split extension of groups, where K is a normal sub-
group of G, and let H be a normal subgroup of G contained in K. Then the extension
1 ÝÑ K{H ÝÑ G{H ÝÑ Q ÝÑ 1 also splits. The condition on H is satisfied for ex-
ample if H is an element of either the lower central series or the derived series of K.
In [GG1], considering the extension (2) with n ¥ 3, we showed that it was sufficient
to take H � Γ2pKq to prove the non-splitting of the quotiented extension, and hence
that of the full extension. In this case, the kernel K{Γ2pKq is Abelian, which simplifies
somewhat the calculations in G{H. This was also the case in [GG4] for the extension (3)
with m ¥ 4. However, for the extension (2) with n � 2, it was necessary to go a stage
further in the lower central series, and take H � Γ3pKq. From the point of view of the
splitting problem, it is thus helpful to know the lower central and derived series of the
braid groups occurring in these group extensions. But as we indicated earlier, these
series are of course interesting in their own right, and help us to understand better the
structure of surface braid groups.

1.2 Statement of the main results

This paper is organised as follows. In Section 2, we recall some general results con-
cerning the splitting of the short exact sequence 1 ÝÑ Γ2pBnpRP2qq ÝÑ BnpRP2q ÝÑ�
BnpRP2q�Ab ÝÑ 1, where

�
BnpRP2q�Ab is the Abelianisation of BnpRP2q, as well

as homological conditions for the stabilisation of the lower central series of a group
(Lemma 7). We then go on to study the lower central series of BnpRP2q, and we prove
the following result.

Theorem 1. The lower central series of BnpRP2q is as follows.

(a) If n � 1 then B1pRP2q � P1pRP2q � Z2, and ΓipB1pRP2qq � t1u for all i ¥ 2.
(b) If n � 2 then B2pRP2q is isomorphic to the generalised quaternion group Q16 of order 16.
Its lower central series is given by Γ2pB2pRP2qq � Z4, Γ3pB2pRP2qq � Z2 and ΓipB2pRP2qq �t1u for all i ¥ 4.
(c) For all n ¥ 3, the lower central series of BnpRP2q is constant from the commutator sub-
group onwards: ΓmpBnpRP2qq � Γ2pBnpRP2qq for all m ¥ 2.

Further, a presentation of Γ2pBnpRP2qq is given in Proposition 12.

The lower central series of BnpRP2q is thus completely determined. In particular, for
all n � 2, the lower central series of B4pRP2q is constant from the commutator subgroup
onwards, and BnpRP2q is residually nilpotent if and only if n ¤ 3. A presentation of
Γ2pBnpRP2qq is given in Proposition 12 in Section 4. The case n � 3 is particularly
interesting: as we shall see in Proposition 8, Γ2pB3pRP2qq is a semi-direct of the formpF3 �Q8q � Z3. This may be compared with Gorin and Lin’s results for Γ2pB3q and
Γ2pB4q [GL] and with our result for B4pS2q [GG5].
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In Section 3, we study the derived series of BnpRP2q. As in the case of Bn and
BnpS2q [GL, GG5], pBnpRP2qqp1q is perfect if n ¥ 5, in other words, the derived series of
BnpRP2q is constant from pBnpRP2qqp1q onwards. The cases n � 1, 2 are straightforward,
and the groups BnpRP2q are finite and soluble. In the case n � 3, we make use of the
semi-direct product decomposition of pB3pRP2qqp1q of Proposition 8.

Theorem 2. Let n P N, n � 4. The derived series of BnpRP2q is as follows.

(a) If n � 1 then pBnpRP2qqp1q � t1u.
(b) If n � 2 then pB2pRP2qqp1q � Z4 and pB2pRP2qqp2q � t1u.
(c) Suppose that n � 3. Then

(i) pB3pRP2qqp1q � Γ2pB3pRP2qq fits into the short exact sequence

1 ÝÑ K ÝÑ pB3pRP2qqp1q ÝÑ Z3 ÝÑ 1,

where K is an index 2 subgroup of P3pRP2q.
(ii) This short exact sequence splits; a section is given by associating pρ3σ2σ1q4 P pB3pRP2qqp1q
to a generator of Z3. The commutator subgroup pB3pRP2qqp1q is isomorphic to pF3 �Q8q�Z3,
where the actions are given by Proposition 8.
(iii) We have pB3pRP2qqp2q � F3 �Q8, where the action is given by Proposition 8. The quo-
tient pB3pRP2qqp1q{pB3pRP2qqp2q � Z3, and there is a short exact sequence

1 ÝÑ pB3pRP2qqp1q{pB3pRP2qqp2q ÝÑ B3pRP2q{pB3pRP2qqp2q ÝÑ
B3pRP2q{pB3pRP2qqp1q ÝÑ 1,

where the extension B3pRP2qq{pB3pRP2qqp2q is isomorphic to the dihedral group Dih12 of order
12. Moreover, pB3pRP2qqp2q{pB3pRP2qqp3q � Z4

2, and B3pRP2q{pB3pRP2qqp3q is an extension
of Z4

2 by Dih12, so is of order 192.

(iv) We have pB3pRP2qqp3q � F9 `Z2 and pB3pRP2qqp3q{pB3pRP2qqp4q � Z9 `Z2. Further,
B3pRP2q{pB3pRP2qqp4q is an extension of Z9 ` Z2 by B3pRP2q{pB3pRP2qqp3q, so is infinite,
and for all i ¥ 4, pB3pRP2qqpiq � pF9qpi�3q.
(d) If n ¥ 5 then pBnpRP2qqp2q � pBnpRP2qqp1q, so pBnpRP2qqp1q is perfect. A presentation ofpBnpRP2qqp1q is given in Proposition 12.

So if n � 4, the derived series of BnpRP2q is thus completely determined (up to
knowing the derived series of the free group F9 of rank 9). In particular, if n � 4,
BnpRP2q is residually soluble if and only if n   4 (Corollary 10). We remark that part (c)
of Theorem 1 and the first statement of part (d) of Theorem 2 appeared in [BM] where
the authors asserted that the results may be proved along the lines of our proof in the
case of the sphere [GG5]. We give the details of the proofs. As for Bn and BnpS2q [GL,
GG5, GG6], the case n � 4 is somewhat delicate. We are able to determine some of the
terms and quotients of the derived series of B4pRP2q.
Theorem 3. Suppose that n � 4.

(a) The group pB4pRP2qqp1q � Γ2pB4pRP2qq is given by an extension

1 ÝÑ K ÝÑ pB4pRP2qqp1q ÝÑ A4 ÝÑ 1

where K is a subgroup of P4pRP2q of index two.
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(b) (i) We have the following isomorphism:pB4pRP2qqp1q � pB4pRP2qqp2q �Z3,

where the action on pB4pRP2qqp2q is given by conjugation by pρ3σ2σ1q4, andpB4pRP2qqp1q{pB4pRP2qqp2q � Z3.

(ii) We have a short exact sequence

1 ÝÑ pB4pRP2qqp1q{pB4pRP2qqp2q ÝÑ B4pRP2q{pB4pRP2qqp2q ÝÑ
B4pRP2q{pB4pRP2qqp1q ÝÑ 1,

where B4pRP2q{pB4pRP2qqp2q is isomorphic to the dihedral group Dih12 of order 12.
(iii) The group pB4pRP2qqp2q is given by an extension

1 ÝÑ K ÝÑ pB4pRP2qqp2q ÝÑ Z2 `Z2 ÝÑ 1.

(c) pB4pRP2qqp2q{pB4pRP2qqp3q � Z4
2, and pB4pRP2qqp1q{pB4pRP2qqp3q � Z4

2 �Z3, where the
action of Z3 permutes cyclically the three non-trivial elements of the first and second (resp. the
third and fourth) copies of Z2.
(d) The group pB4pRP2qqp3q is a subgroup of K of index four. Further,pB4pRP2qqp3q � pF5 � F3q �Z4,

where the action is described by equations (128)–(131). Moreover,pB4pRP2qqp3q{pB4pRP2qqp4q � Z
8
2 `Z4,

and pB4pRP2qqp4q is a semi-direct product of the form F129 � F17 where the action is that in-
duced by F3 on F5. From i � 4 onwards, we have pB4pRP2qqpi�4q � pF129 � F17qpiq for all
i ¥ 0.

A presentation of B4pRP2qqp1q derived from that of Proposition 12 is given during
the proof of Theorem 3. As in the case of B4pS2q, it is an open question as to whether
B4pRP2q is residually soluble or not.

In [BGG], the lower central series of braid groups of orientable surfaces of genus
g ¥ 1, with and without boundary, was analysed. The study of the lower central series
of non-orientable surfaces of genus at least two is the subject of work in progress.
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2 The lower central series of BnpRP2q
The main aim of this section is to prove Theorem 1, which describes the lower central
series of BnpRP2q. Before doing so, we state some general results concerning BnpRP2q,
as well as some general homological conditions for the stabilisation of the lower cent-
ral series of a group (Lemma 7). We start by recalling Van Buskirk’s presentation of
BnpRP2q.
Proposition 4 (Van Buskirk [VB]). Let n P N. The following constitutes a presentation of
the group BnpRP2q:
generators: σ1, . . . , σn�1, ρ1, . . . , ρn.
relations:

σiσj � σjσi if |i � j| ¥ 2,

σiσi�1σi � σi�1σiσi�1 for 1 ¤ i ¤ n� 2,

σiρj � ρjσi for j � i, i� 1,

ρi�1 � σ�1
i ρiσ

�1
i for 1 ¤ i ¤ n� 1,

ρ�1
i�1ρ�1

i ρi�1ρi � σi
2 for 1 ¤ i ¤ n� 1,

ρ2
1 � σ1σ2 � � � σn�2σ2

n�1σn�2 � � � σ2σ1.

Remark 5. Let n P N. It is well known that
 

Bi,j, ρk

∣

∣ 1 ¤ i   j ¤ n, 1 ¤ k ¤ n
(

is a

generating set for PnpRP2q, where

Bi,j � σj�1 � � � σi�1σ2
i σ�1

i�1 � � � σ�1
j�1.

Let n P N, let
�
BnpRP2q�Ab � BnpRP2q{Γ2pBnpRP2qq denote the Abelianisation of

BnpRP2q, and let α : BnpRP2q ÝÑ �
BnpRP2q�Ab be the canonical projection. Then we

have the following short exact sequence:

1 // Γ2pBnpRP2qq // BnpRP2q α
//
�
BnpRP2q�Ab // 1. (4)

We first prove the following result which deals with this short exact sequence.

Proposition 6. Let n P N. Then
�
BnpRP2q�Ab � BnpRP2q{Γ2pBnpRP2qq � Z2 `Z2, where

the generators of the first (resp. second) copy of Z2 is the image of the generators σi (resp. ρj).

Proof. This follows easily by Abelianising the presentation of BnpRP2q given in Pro-
position 4. The generators σi (resp. ρj) of BnpRP2q are all identified by α to a single
generator σ � αpσiq (resp. ρ � αpρjq) of the first (resp. second) Z2-summand.

We recall the following lemma from [GG5].

Lemma 7 ([GG5]). Let G be a group, and let δ : H2pG,Zq ÝÑ H2pGAb,Zq. denote the homo-
morphism induced by Abelianisation. Then Γ2pGq � Γ3pGq if and only if δ is surjective.

We now come to the proof of Theorem 1.

8



Proof of Theorem 1. Since B1pRP2q � π1pRP2q and B2pRP2q � Q16[VB], parts (a) and (b)
follow easily. Now suppose that n ¥ 3. First observe that H2pZ2 ` Z2q � Z2. By
Lemma 7, if the homomorphism δ is surjective then Γ2pBnpRP2qq � Γ3pBnpRP2qq, and
part (c) follows. Otherwise, if δ is not surjective then it is trivial, and we obtain the
following exact sequence:

1 ÝÑ Z2 ÝÑ Γ2pBnpRP2qq{Γ3pBnpRP2qq ÝÑ H1pBnpRP2q,Zq ÝÑ pBnpRP2qqAb ÝÑ 1.

It follows that Z2 ÝÑ Γ2pBnpRP2qq{Γ3pBnpRP2qq is an isomorphism. So we have the
short exact sequence:

1 ÝÑ Z2 ÝÑ BnpRP2q{Γ3pBnpRP2qq ÝÑ H1pBnpRP2q,Zqloooooooomoooooooon
Z2`Z2

ÝÑ 1,

and hence the middle group, which we denote by H, is of order 8. Since the quotient
Γ2pBnpRP2qq{Γ3pBnpRP2qq is non trivial, we conclude that H is non Abelian, and so is
either Q8 or the dihedral group Dih8.

We claim that there is no surjective homomorphism BnpRP2q ÝÑ H. To see this,
let ϕ : BnpRP2q ÝÑ H be a homomorphism. Since σiσi�1σi � σi�1σiσi�1 for all 1 ¤ i ¤
n � 2, the σi are pairwise conjugate. Hence ϕpσiq and ϕpσjq are conjugate in H for all
1 ¤ i, j ¤ n � 1. But in both Q8 and Dih8, any two conjugate elements commute.
Applying ϕ to the relation σiσi�1σi � σi�1σiσi�1 and using induction yields ϕpσiq �
ϕpσjq for all 1 ¤ i, j ¤ n � 1. If ϕpσiq � 1 then the relation ρi�1 � σ�1

i ρiσ
�1
i implies

that ϕpρiq � ϕpρi�1q for all 1 ¤ i ¤ n� 1, and thus Im pϕq � xϕpρ1qy � H. So we may
assume that ϕpσiq � 1.

Suppose first that n ¥ 4. Given 1 ¤ i ¤ n, there exists 1 ¤ j ¤ n � 1 such that σj

commutes with ρi, and so ϕpσjq commutes with ϕpρiq for all i. If n � 3 then a similar

analysis shows that ϕpρ1q and ϕpρ3q commute with the ϕpσjq. Further, ρ2 � σ�1
1 ρ1σ�1

1 ,
and hence ϕpρ2q commutes with the ϕpσjq. In both cases, we conclude that Im pϕq is
contained in the centraliser of ϕpσ1q in H. A necessary condition for ϕ to be surjective
is that ϕpσ1q be central in H, and so ϕpσ1q must be of order 2. Once more the relation

ρi�1 � σ�1
i ρiσ

�1
i implies that ϕpρiq � ϕpρi�1q for all 1 ¤ i ¤ n� 1, and hence Im pϕq �xϕpρ1q, ϕpσ1qy � H.

Thus no homomorphism BnpRP2q ÝÑ H is surjective, but this contradicts the sur-
jectivity of the canonical projection BnpRP2q ÝÑ BnpRP2q{Γ3pBnpRP2qq. This completes
the proof of part (c), and thus that of Theorem 1.

We may obtain a much better description of Γ2pB3pRP2qq as follows. This will be
helpful in the analysis of the derived series in Section 3.

Proposition 8. The group Γ2pB3pRP2qq is isomorphic to pF3 �Q8q �Z3. The actions may be
described as follows. Writing Q8 � xx, y | x2 � y2, yxy�1 � x�1y, F3 � F3pz1, z2, z3q and
Z3 � xuy, we have:

xz1x�1 � z�1
1 xz2x�1 � z�1

1 z�1
3 z1 xz3x�1 � z�1

1 z�1
2 z1

yz1y�1 � z2z3z1 yz2y�1 � z�1
2 yz3y�1 � z2z�1

3 z�1
2

uz1u�1 � x2z3z1 uz2u�1 � x2z�1
1 uz3u�1 � x2z�1

2 z�1
1 z�1

3

uxu�1 � xy uyu�1 � x,

where u � pρ3σ2σ1q4, x � ρ2ρ1, y � ρ2B1,2ρ�1
3 , z1 � ρ2

3, z2 � B2,3 and z3 � ρ3B2,3ρ�1
3 .
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Remarks 9.

(a) The commutator subgroup of B4pRP2q will be analysed in more detail in Section 3.
(b) Let n ¥ 2. Recall from [GG3, Proposition 26] that there exist two elements a, b P
BnpRP2q defined by: #

a � ρnσn�1 � � � σ1 � σ�1
n�1 � � � σ�1

1 ρ1

b � ρn�1σn�2 � � � σ1 � σ�1
n�2 � � � σ�1

1 ρ1,
(5)

of order 4n and 4pn� 1q respectively. These elements satisfy [GG3, Remark 27]:

bn�1 � ρn�1 � � � ρ1 and an � ρn � � � ρ1.

From [GG3, page 777], conjugation by a�1 permutes cyclically the following two col-
lections of elements:#

σ1, . . . , σn�1, a�1σn�1a, σ�1
1 , . . . , σ�1

n�1, a�1σ�1
n�1a, and

ρ1, . . . , ρn, ρ�1
1 , . . . , ρ�1

n .
(6)

In particular, #
anσia

�n � σ�1
i for all 1 ¤ i ¤ n� 1

anρja
�n � ρ�1

j for all 1 ¤ j ¤ n.
(7)

Further, for all 1 ¤ i ¤ n [GG9],

∆nρi∆
�1
n � ρ�1

n�1�i

in BnpRP2q, which implies that

∆na∆
�1
n � ∆nρnσn�1 � � � σ1∆

�1
n � ρ�1

1 σ1 � � � σn�1 � a�1. (8)

These observations will be used frequently in what follows.

Proof of Proposition 8. Let n ¥ 2, and let α be the Abelianisation homomorphism of
equation (4), where αpσiq � σ and αpρjq � ρ. The permutation homomorphism τ of

equation (1) induces a homomorphism τ :
�
BnpRP2q�Ab ÝÑ xσy, and we obtain the

following commutative diagram of short exact sequences:

1

��

1

��

1

��

1 // K

��

// Γ2pBnpRP2qq
��

τ1
// An � Γ2pSnq

��

// 1

1 // PnpRP2q
α1

��

// BnpRP2q
α

��

τ
// Sn

h
��

// 1

1 // xρy
��

//
�
BnpRP2q�Ab

��

τ
// xσy

��

// 1.

1 1 1

(9)
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Here τ1 (resp. α1) is the restriction of τ (resp. α) to Γ2pBnpRP2qq (resp. to PnpRP2q), h is
the homomorphism that to a transposition associates σ, and K � Ker pα1q � Ker pτ1q
is of index 2 in PnpRP2q (recall from Proposition 6 that

�
BnpRP2q�Ab � Z2 ` Z2, andxρy � xσy � Z2).

Now let n � 3. From [VB], we know that

P3pRP2q � F2 �Q8. (10)

Let us first determine generating sets of the two factors in terms of Van Buskirk’s gen-
erators (this action was previously described in [GG4], but in terms of a different gen-
erating set). From the Fadell-Neuwirth short exact sequence (2), we have

1 ÝÑ π1pRP2z tx1, x2uq ÝÑ P3pRP2q p�ÝÑ P2pRP2q � Q8 ÝÑ 1,

where π1pRP2z tx1, x2uq � F2 is a free group of rank two with basis pρ3, B2,3q. The two
elements a � ρ3σ2σ1 and b � ρ2σ1 of equation (5) are of order 12 and 8 respectively,
and satisfy:

b2 � ρ2ρ1 and a3 � ρ3ρ2ρ1. (11)

From [GG9, Proposition 15], there is a copy of Q16 in B3pRP2q of the form xb, ∆3a�1y,
and by general arguments, one sees that it has two subgroups isomorphic to Q8, of the
form xb2, ∆3a�1y and xb2, b∆3a�1y respectively. We shall be interested in the latter copy
since it is a subgroup of P3pRP2q.

We have that a4 is of order 3, a4 P Ker pαq � Γ2pB3pRP2qq, and τpa4q � τpaq �p1, 2, 3q. Since A3 � xp1, 2, 3qy, the correspondence p1, 2, 3q ÞÝÑ a4 defines a section for
τ1, and hence

Γ2pB3pRP2qq � K �Z3 (12)

from equation (9). Let us now study the structure of K in order to calculate the action.
By construction, K is the kernel of α1, and so is an index 2 subgroup of P3pRP2q �

F2 �Q8. The homomorphism α1 is defined on the generators of P3pRP2q (cf. Remark 5)
by ρj ÞÝÑ ρ for j � 1, 2, 3, and for 1 ¤ i   j ¤ 3, Bi,j is sent to the trivial element of xρy.
Since

b∆3a�1 � σ�1
1 ρ1. σ1σ2σ1. σ�1

1 σ�1
2 ρ�1

3 � σ�1
1 ρ1σ1ρ�1

3 � ρ2σ2
1 ρ�1

3 � ρ2B1,2ρ�1
3 , (13)

we see that our copy xb2, b∆3a�1y of Q8 lies in Ker pα1q. Thus we have a commutative
diagram of short exact sequences:

1

��

1

��

1 // Ker pp� |K q //

��

K
p�|K

//

��

P2pRP2q // 1

1 // F2pρ3, B2,3q //

α1∣∣
∣F2pρ3,B2,3q

��

P3pRP2q p�
//

α1
��

P2pRP2q // 1

1 // xρy
��

xρy.
��

1 1

Note that we have used the following facts in order to construct this diagram:
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(i) α1 ∣∣
∣π1pRP2ztx1,x2u is surjective onto xρy since ρ3 P F2pρ3, B2,3q.

(ii) p�pb2q � pρ2ρ1q2 � ∆
2
2 is equal to B1,2 in P2pRP2q, and p�pb∆3a�1q � ρ2B1,2 by

equation (13), and we conclude that p� |K is surjective onto P2pRP2q.
This second fact also implies that

K � K1 �Q8, (14)

where K1 � Ker pp� |K q � Ker pα1q X F2pρ3, B2,3q � Ker
�

α1 ���F2pρ3,B2,3q	 is of index two

in F2pρ3, B2,3q. The application of the Reidemeister-Schreier rewriting process with

Schreier transversal t1, ρ3u to this restriction shows that K1 � F3

�
ρ2

3, B2,3, ρ3B2,3ρ�1
3

	
is

a free group of rank 3. Combining equations (12) and (14), we obtain K � pF3 �Q8q �
Z3. The actions may be deduced from the action of Q8 � xb2, b∆3a�1y on F2pρ3, B2,3q
which we now determine. Remark 9(b) and equation (11) imply that conjugation by
b2 � ρ2ρ1 is given by:#

ρ2ρ1. ρ3. ρ�1
1 ρ�1

2 � ρ�1
3 a3ρ3a�3ρ3 � ρ�1

3

ρ2ρ1. B2,3. ρ�1
1 ρ�1

2 � ρ�1
3 a3B2,3a�3ρ3 � ρ�1

3 B�1
2,3 ρ3.

(15)

From this, we deduce that under conjugation by b2,#
ρ3 ÞÝÑ ρ�1

3

B2,3ρ3 ÞÝÑ pB2,3ρ3q�1.
(16)

As for conjugation by b∆3a�1 � ρ2B1,2ρ�1
3 , we have

ρ2B1,2ρ�1
3 . ρ3. ρ3B�1

1,2 ρ�1
2 � ρ2ρ3ρ�1

2 � ρ3ρ2B�1
2,3ρ�1

2 using Proposition 4� ρ3ρ2ρ1B�1
2,3 ρ�1

1 ρ�1
2 ρ�1

3 ρ3 � a3B�1
2,3 a�3ρ3 � B2,3ρ3 (17)

ρ2B1,2ρ�1
3 . B2,3. ρ3B�1

1,2 ρ�1
2 � b∆3a�1. B2,3. a∆

�1
3 b�1 � b∆3pa�1B2,3aq∆�1

3 b�1� baσ2
1 a�1b�1 � σ2a2σ2

1 a�2σ�1
2 from equation (5)� B�1

2,3 from equation (6). (18)

Here we have used equation (8), as well as the standard property of ∆n (in Bn) that
∆nσi∆

�1
n � σn�i for all 1 ¤ i ¤ n� 1. So under conjugation by b∆3a�1,#

ρ3 ÞÝÑ B2,3ρ3

B2,3ρ3 ÞÝÑ ρ3.
(19)

Relations (16) and (19) thus describe the action of Q8 on F2 pρ3, B2,3q, from which we

may easily deduce its action on F3

�
ρ2

3, B2,3, ρ3B2,3ρ�1
3

	
:

ρ2ρ1. ρ2
3. ρ�1

1 ρ�1
2 � ρ�2

3

ρ2ρ1. B2,3. ρ�1
1 ρ�1

2 � ρ�2
3 . ρ3B�1

2,3ρ�1
3 . ρ2

3

ρ2ρ1. ρ3B2,3ρ�1
3 . ρ�1

1 ρ�1
2 � ρ�2

3 . B�1
2,3 . ρ2

3

ρ2B1,2ρ�1
3 . ρ2

3. ρ3B�1
1,2ρ�1

2 � B2,3. ρ3B2,3ρ�1
3 . ρ2

3

ρ2B1,2ρ�1
3 . B2,3. ρ3B�1

1,2ρ�1
2 � B�1

2,3

ρ2B1,2ρ�1
3 . ρ3B2,3ρ�1

3 . ρ3B�1
1,2ρ�1

2 � B2,3. ρ3B�1
2,3 ρ�1

3 . B�1
2,3
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We now record the action of Z3 on F3 �Q8. Since

ρ�2
3 � σ2σ2

1 σ2 � σ2σ2
1 σ�1

2 σ�2
2 � B1,3B2,3

and pρ2ρ1q2 � pρ2B1,2ρ�1
3 q2 � b4 � ∆

2
3 � B1,2B1,3B2,3, (20)

we have
B1,2 � pρ2ρ1q2B�1

2,3 B�1
1,3 � pρ2ρ1q2ρ2

3. (21)

So

a4. ρ2ρ1. a�4 � ρ�1
1 ρ3 by equation (6)� ρ�1
1 ρ�1

2 . ρ2B1,2ρ�1
3 . ρ2

3B�1
1,2� pρ2ρ1q�1. ρ2B1,2ρ�1

3 . pρ2ρ1q�2 by equation (21)� ρ2ρ1. ρ2B1,2ρ�1
3 by equation (20),

and using the fact that pρ2ρ1q2 � ∆
2
3 is of order 2 and is central in B3pRP2q. Further,

a4. ρ2B1,2ρ�1
3 . a�4 � a4. ρ2ρ�1

3 B1,2. a�4 � ρ�1
1 ρ2a�1σ2

2 a by equation (6)� ρ�1
1 ρ2ρ�1

1 σ1σ2σ2
2 σ�1

2 σ�1
1 ρ1 by equation (5)� ρ�1

1 ρ2ρ�1
1 σ1σ2

2 σ1σ�2
1 ρ1 � ρ�1

1 . ρ2ρ1σ�2
1 . ρ1 � ρ�1

1 ρ1ρ2ρ1 � ρ2ρ1

using Proposition 4. This describes the action of Z3 on the Q8-factor. As for the action
of Z3 on F2pB2,3, ρ3q, using relations (20) and (21), we have

a4B2,3a�4 � B�1
1,2 by equation (6)� ∆
2
3ρ�2

3 by equations (20) and (21),

and

a4ρ3a�4 � ρ�1
2 by equation (6)� ρ�1
3 B1,2. B�1

1,2ρ3ρ�1
2 � ρ�1

3 pρ2ρ1q2ρ2
3pρ2B1,2ρ�1

3 q�1 by equation (21)� ρ3pρ2B1,2ρ�1
3 q by equation (20)

Hence the action on F3

�
ρ2

3, B2,3, ρ3B2,3ρ�1
3

	
is given by

a4ρ2
3a�4 �ρ3pρ2B1,2ρ�1

3 qρ3pρ2B1,2ρ�1
3 q� ρ3pρ2B1,2ρ�1

3 qρ3pρ2B1,2ρ�1
3 q�1

∆
2
3 by equation (20)� ρ3B2,3ρ3∆

2
3 by equation (17)� ∆

2
3. ρ3B2,3ρ�1

3 . ρ2
3

a4B2,3a�4 � ∆
2
3. ρ�2

3

a4ρ3B2,3ρ�1
3 a�4 � ρ3pρ2B1,2ρ�1

3 q∆2
3ρ�2

3 pρ2B1,2ρ�1
3 q�1ρ�1

3� ∆
2
3ρ3pB2,3ρ3q�2ρ�1

3 by equation (17)� ∆
2
3B�1

2,3 . ρ�2
3 . ρ3B�1

2,3 ρ�1
3

Setting u � a4, x � ρ2ρ1, y � ρ2B1,2ρ�1
3 , z1 � ρ2

3, z2 � B2,3 and z3 � ρ3B2,3ρ�1
3 yields the

desired actions, and completes the proof of Proposition 8.
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3 The derived series of BnpRP2q
In this section, we study the derived series of BnpRP2q and prove Theorems 2 and 3.
We start by showing that for all n � 2, 3, 4, pBnpRP2qqp1q is perfect. We then study the
cases n � 3, 4 in more detail. If n � 3, we are able to determine completely the derived
series of B3pRP2q, and deduce that it is residually soluble. If n � 4, in Theorem 3 we
obtain some partial results on the derived series of B4pRP2q and its quotients.

Proof of Theorem 2. Cases (a) and (b) follow directly from the fact that B1pRP2q � Z2

and B2pRP2q � Q16. Now consider case (d), i.e. n ¥ 5. Let H � pBnpRP2qqp1q be a
normal subgroup of BnpRP2q such that A � pBnpRP2qqp1q{H is Abelian (notice that this
condition is satisfied if H � pBnpRP2qqp2q), and let#

π : BnpRP2q ÝÑ BnpRP2q{H

β ÞÝÑ rβ
denote the canonical projection. Then the Abelianisation homomorphism α of equa-
tion (4) factors through BnpRP2q{H, in other words there exists a (surjective) homo-
morphism pα : BnpRP2q{H ÝÑ �

BnpRP2q�Ab satisfying α � pα � π. So equation (4) in-
duces the following short exact sequence:

1 ÝÑ A ÝÑ BnpRP2q{H
pαÝÑ �

BnpRP2q	Ab ÝÑ 1.

In particular,
�
BnpRP2q�Ab � Z2 ` Z2 is a quotient of BnpRP2q{H. We claim that the

two are in fact isomorphic, which using the above short exact sequence will imply that
BnpRP2qqp1q � H, and thus pBnpRP2qqp1q � pBnpRP2qqp2q. To prove the claim, first note
that pσ1, . . . , zσn�1, pρ1, . . . ,xρn generate BnpRP2q{H. Since αpσiq � αpσ1q for all 1 ¤ i ¤
n� 1, it follows that pαppσiq � pαp pσ1q. So there exist ti P A, with t1 � 1, such that pσi � ti pσ1.

We now apply π to each of the relations of Proposition 4. First suppose that 3 ¤
i ¤ n � 1. Since σi commutes with σ1, we have that pσ1 � ti pσ1 � ti pσ1 � pσ1, and hence ti

commutes with pσ1.
Now let 4 ¤ i ¤ n � 1 (such an i exists since n ¥ 5). Since σi commutes with σ2,

we obtain ti pσ1 � t2 pσ1 � t2 pσ1 � ti pσ1. But A is Abelian, and so it follows from the previous
paragraph that t2 commutes with pσ1. Applying this to the image under π of the relation
σ1σ2σ1 � σ2σ1σ2, we see that t2 � t2

2, and hence t2 � 1.
Next, if i ¥ 2 then the relation σiσi�1σi � σi�1σiσi�1 implies that ti � ti�1, and so

t2 � . . . � tn�1 � 1. Hence pσ1 � pσ2 � . . . � zσn�1, and we denote this common element
by σ.

Let 1 ¤ j ¤ n. Then from Proposition 4 there exists 1 ¤ i ¤ n � 1 such that ρj

and σi commute. So in the quotient BnpRP2q{H, pρj commutes with σ for all 1 ¤ j ¤ n.

If 1 ¤ i ¤ n � 1, the relation ρi�1 � σ�1
i ρiσ

�1
i implies that yρi�1 � pρiσ

�2. Henceyρi�1 � pρ1σ�2i. Projecting the relations ρ�1
i�1ρ�1

i ρi�1ρi � σ2
i into BnpRP2q{H, where

1 ¤ i ¤ n� 1, we obtain σ2 � 1, and so pρi � pρ1 for all 1 ¤ i ¤ n. Finally, by projecting

the surface relation of BnpRP2q into BnpRP2q{H, pρ1
2 � σ2pn�1q � 1. Therefore the group

BnpRP2q{H is a quotient of Z2 `Z2. But we know already that
�
BnpRP2q�Ab � Z2 `Z2

is a quotient of BnpRP2q{H, and so this proves the claim. Taking H � pBnpRP2qqp2q, it
follows that the group pBnpRP2qqp1q is perfect. A presentation of pBnpRP2qqp1q will be
given in Proposition 12. This proves part (d).
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We now consider case (c), so n � 3. Parts (i) and (ii) are just restatements of
the results obtained in Proposition 8. To prove part (iii), one may check easily using
the presentation of Proposition 8 that the Abelianisation pB3pRP2qqp1q{pB3pRP2qqp2q ofpB3pRP2qqp1q is cyclic of order 3, generated by the Abelianisation of a4. Since pB3pRP2qqp1q
is isomorphic to pF3 � Q8q � Z3, where the Z3-factor is generated by a4, we obtainpB3pRP2qqp2q � F3 �Q8, where the action is once more given by Proposition 8. To see
that the quotient B3pRP2q{pB3pRP2qqp2q is isomorphic to Dih12, note first that we have
the following commutative diagram of short exact sequences:

1 // pB3pRP2qqp1q
��

// B3pRP2q
��

// pB3pRP2qqAb // 1

1 // pB3pRP2qqp1q{pB3pRP2qqp2q // B3pRP2q{pB3pRP2qqp2q // pB3pRP2qqAb // 1

Since pB3pRP2qqp1q{pB3pRP2qqp2q � Z3 and pB3pRP2qqAb � Z2 ` Z2, it follows that the
quotient B3pRP2q{pB3pRP2qqp2q is an extension of Z3 by Z2 ` Z2. We claim that the
action is non trivial. To see this, we consider the conjugate of a4 (which is a coset
representative of the generator of pB3pRP2qqp1q{pB3pRP2qqp2q) by σ1 (which is a coset
representative of σ P �B3pRP2q�Ab):

σ1a4σ�1
1 � σ1pa4σ�1

1 a�4qa4 � σ1a�1σ�1
2 aa4 by equation (6)� σ1ρ�1

1 σ1σ2σ�1
2 a5 by equation (5)� ρ�1

2 ρ�1
1 ρ�1

2 ρ�1
3 a8 by Proposition 4 and equation (11).

Now

ρ�1
2 ρ�1

1 ρ�1
2 ρ�1

3 � ρ3pρ�1
3 ρ�1

2 ρ�1
1 ρ�1

2 qρ�1
3 � ρ3

�
ρ�2

3 B1,2pρ2B1,2ρ�1
3 q�1pρ2ρ1q�1

	
ρ�1

3� ρ3

�pρ2ρ1q2pρ2B1,2ρ�1
3 q�1pρ2ρ1q�1

	
ρ�1

3 by equation (21)� ρ3

�pρ2B1,2ρ�1
3 q�1pρ2ρ1q	 ρ�1

3 by equation (20).

But pρ2B1,2ρ�1
3 q�1pρ2ρ1q P pB3pRP2qqp2qfrom Proposition 8, and since pB3pRP2qqp2q �

B3pRP2q, it follows that ρ�1
2 ρ�1

1 ρ�1
2 ρ�1

3 P pB3pRP2qqp2q. Thus σ1a4σ�1
1 is congruent mod-

ulo pB3pRP2qqp2q to a�4, and the action of σ on pB3pRP2qqp1q{pB3pRP2qqp2q is multiplica-
tion by �1. In particular, B3pRP2q{pB3pRP2qqp2q is a non Abelian group of order 12. Of
the three non-Abelian groups of order 12, B3pRP2q{pB3pRP2qqp2q cannot be isomorphic
to A4 since the latter has no normal subgroup of order 3. It cannot be isomorphic to
Dic12 � Z3 � Z4 (with non-trivial action) either, since Dic12 has a unique subgroup of
order 3 with quotient Z4. We conclude that B3pRP2q{pB3pRP2qqp2q � Dih12. By the short
exact sequence

1 ÝÑ pB3pRP2qqp2q{pB3pRP2qqp3q ÝÑ B3pRP2q{pB3pRP2qqp3q ÝÑ
B3pRP2q{pB3pRP2qqp2q ÝÑ 1,

it follows that B3pRP2q{pB3pRP2qqp3q is an extension of Z4
2 by Dih12, so is of order 192.

This proves part (iii).
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Now let us prove (iv). The first part, that pB3pRP2qqp2q{pB3pRP2qqp3q � Z4
2, follows

easily by Abelianising the presentation of pB3pRP2qqp2q � F3 �Q8 given in Proposi-
tion 8. Letting ϕ denote the Abelianisation homomorphism, one observes that ϕpz1q �p1, 0, 0, 0q, ϕpz2q � ϕpz3q � p0, 1, 0, 0q, ϕpxq � p0, 0, 1, 0q, and ϕpyq � p0, 0, 0, 1q. The re-
striction of ϕ to F3 is surjective onto the subgroup H of pB3pRP2qqp2q{pB3pRP2qqp3q � Z4

2

generated by the ϕpziq, so H � Z2
2. The quotient Q of pB3pRP2qqp2q{pB3pRP2qqp3q by

H is thus isomorphic to the subgroup of pB3pRP2qqp2q{pB3pRP2qqp3q generated by ϕpxq
and ϕpyq, and so is also isomorphic to Z2

2. Since Q8 � xx, yy, ϕ induces a surjective

homomorphism ϕ : Q8 ÝÑ Q whose kernel is xx2y. But as an element of pB3pRP2qqp2q,
x2 � ∆

2
3 P Ker pϕq, and denoting Ker

�
ϕ
∣

∣

F3

�
by L, we obtain the following commutat-

ive diagram of short exact sequences:

1

��

1

��

1

��

1 // L //

��

pB3pRP2qqp3q
��

// x∆2
3y
��

// 1

1 // F3
//

ϕ|F3
��

pB3pRP2qqp2q //

ϕ
��

Q8

��

// 1

1 // H //

��

pB3pRP2qqp2q{pB3pRP2qqp3q
��

// Q

��

// 1.

1 1 1

Since ∆
2
3 � x2 P pB3pRP2qqp3q, it follows that the upper short exact sequence splits,

and the fact that x∆2
3y is central implies that the splitting gives rise to a direct product.

We conclude that pB3pRP2qqp3q � L ` Z2. Now L is the kernel of the homomorphism
ϕ
∣

∣

F3
: F3pz1, z2, z3q ÝÑ H which under identification of H with Z2 ` Z2 sends z1 top1, 0q, say, and z2 and z3 to p0, 1q. An application of the Reidemeister-Schreier rewriting

process shows that L is a free group F9 of rank 9. Thus pB3pRP2qqp3q � F9 ` Z2 andpB3pRP2qqp3q{pB3pRP2qqp4q � Z9 `Z2. It is then clear that pB3pRP2qqpiq � pF9qpi�3q for all
i ¥ 4. From the short exact sequence

1 ÝÑ pB3pRP2qqp3q{pB3pRP2qqp4q ÝÑ B3pRP2q{pB3pRP2qqp4q ÝÑ
B3pRP2q{pB3pRP2qqp3q ÝÑ 1,

we see that B3pRP2q{pB3pRP2qqp4q is an extension of Z9 `Z2 by a group of order 192, so
is infinite. This proves part (iv), and completes the proof of Theorem 2.

We obtain easily the following corollary of Theorem 2:

Corollary 10. Let n P N, n � 4. Then BnpRP2q is residually soluble if and only if n ¤ 3.

We now turn our attention to the remaining case, n � 4.

Proof of Theorem 3. Part (a) follows from the first paragraph of the proof of Proposi-
tion 8. So let us prove part (b). For this, we shall study the following presentation of
the group pB4pRP2qqp1q which may be deduced from Proposition 12 (the notation α, β
etc. is that of Proposition 12):
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generators:

B1 � η2 � ρ2σ�1
1 ρ�1

1 σ�1
1

B2 � κ2 � σ1ρ2ρ�1
1 σ�1

1

B3 � θ2 � σ1ρ1ρ2σ�1
1

B4 � λ2 � σ1ρ1σ1ρ2

Y1 � α2 � σ2σ�1
1

Y2 � β2 � σ1σ2

Y3 � γ2 � σ1ρ1σ2σ�1
1 ρ�1

1 σ�1
1

Y4 � τ2 � σ1ρ1σ1σ2ρ�1
1 σ�1

1

C1 � η3 � ρ3σ�1
1 ρ�1

1 σ�1
1

C2 � κ3 � σ1ρ3ρ�1
1 σ�1

1

C3 � θ3 � σ1ρ1ρ3σ�1
1

C4 � λ3 � σ1ρ1σ1ρ3

Z1 � α3 � σ3σ�1
1

Z2 � β3 � σ1σ3

Z3 � γ3 � σ1ρ1σ3σ�1
1 ρ�1

1 σ�1
1

Z4 � τ3 � σ1ρ1σ1σ3ρ�1
1 σ�1

1

D1 � η4 � ρ4σ�1
1 ρ�1

1 σ�1
1

D2 � κ4 � σ1ρ4ρ�1
1 σ�1

1

D3 � θ4 � σ1ρ1ρ4σ�1
1

D4 � λ4 � σ1ρ1σ1ρ4

A1 � η1 � ρ1σ�1
1 ρ�1

1 σ�1
1

A3 � θ1 � σ1ρ1ρ1σ�1
1

A4 � λ1 � σ1ρ1σ1ρ1

X2 � β1 � σ2
1

X4 � τ1 � σ1ρ1σ2
1 ρ�1

1 σ�1
1 .

For notational reasons, we set A2 � X1 � X3 � 1.

relators:

Z2X�1
2 Z�1

1 (22)

X2Z1Z�1
2 (23)

Z4X�1
4 Z�1

3 (24)

X4Z3Z�1
4 (25)

Y2Y�1
1 X�1

2 Y�1
1 (26)

X2Y1X2Y�2
2 (27)

Y4Y�1
3 X�1

4 Y�1
3 (28)

X4Y3X4Y�2
4 (29)

Y1Z2Y1Z�1
1 Y�1

2 Z�1
1 (30)

Y2Z1Y2Z�1
2 Y�1

1 Z�1
2 (31)

Y3Z4Y3Z�1
3 Y�1

4 Z�1
3 (32)

Y4Z3Y4Z�1
4 Y�1

3 Z�1
4 (33)

C2X�1
4 C�1

1 (34)

X2C1C�1
2 (35)

C4X�1
2 C�1

3 (36)

X4C3C�1
4 (37)

D2X�1
4 D�1

1 (38)

X2D1D�1
2 (39)

D4X�1
2 D�1

3 (40)

X4D3D�1
4 (41)

Y1Y�1
4 A�1

1 (42)

Y2 A1Y�1
3 (43)

Y3 A4Y�1
2 A�1

3 (44)

Y4 A3Y�1
1 A�1

4 (45)

Y1D2Y�1
4 D�1

1 (46)

Y2D1Y�1
3 D�1

2 (47)

Y3D4Y�1
2 D�1

3 (48)

Y4D3Y�1
1 D�1

4 (49)

Z1Z�1
4 A�1

1 (50)

Z2A1Z�1
3 (51)

Z3A4Z�1
2 A�1

3 (52)

Z4A3Z�1
1 A�1

4 (53)

Z1B2Z�1
4 B�1

1 (54)

Z2B1Z�1
3 B�1

2 (55)

Z3B4Z�1
2 B�1

3 (56)

Z4B3Z�1
1 B�1

4 (57)

B1X4X2 (58)

B2A�1
1 (59)

X�1
4 A4X�1

2 B�1
3 (60)

A3B�1
4 (61)

Y�1
2 B2Y�1

4 C�1
1 (62)

Y�1
1 B1Y�1

3 C�1
2 (63)

Y�1
4 B4Y�1

2 C�1
3 (64)

Y�1
3 B3Y�1

1 C�1
4 (65)

Z�1
1 C1Z�1

3 D�1
2 (66)

Z�1
2 C2Z�1

4 D�1
1 (67)

Z�1
3 C3Z�1

1 D�1
4 (68)

Z�1
4 C4Z�1

2 D�1
3 (69)

B�1
4 A�1

1 B1A4X�1
2 (70)

B2A3X�1
2 B�1

3 (71)

B�1
2 A�1

3 B3X�1
4 (72)

B�1
1 A�1

4 B4A1X�1
4 (73)

C�1
4 B�1

1 C1B4Y�1
2 Y�1

1 (74)

C�1
3 B�1

2 C2B3Y�1
1 Y�1

2 (75)

C�1
2 B�1

3 C3B2Y�1
4 Y�1

3 (76)

C�1
1 B�1

4 C4B1Y�1
3 Y�1

4 (77)

D�1
4 C�1

1 D1C4Z�1
2 Z�1

1 (78)

D�1
3 C�1

2 D2C3Z�1
1 Z�1

2 (79)

D�1
2 C�1

3 D3C2Z�1
4 Z�1

3 (80)

D�1
1 C�1

4 D4C1Z�1
3 Z�1

4 (81)

Y2Z1Z2Y1X2A�1
4 A�1

1 (82)

X2Y1Z2Z1Y2X2A�1
3 (83)

Y4Z3Z4Y3X4A�1
3 (84)

X4Y3Z4Z3Y4 A�1
1 A�1

4 . (85)
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We now Abelianise this presentation to deduce that pB4pRP2qqp1q{pB4pRP2qqp2q � Z3.
We could do this directly, but it will be convenient for what follows to carry out a
partial Abelianisation first. Let Λ denote the group obtained from the above present-
ation of pB4pRP2qqp1q by adding the relations that the following generators commute
pairwise: Ai, Bi, Ci, Di, Xi, Zi for i � 1, . . . , 4 i.e. all of the generators of pB4pRP2qqp1q
commute pairwise, with the exception of the Yi. From equations (22), (35), (36), (39)
and (40), we have

X2 � Z2Z�1
1 � C2C�1

1 � D2D�1
1 � C�1

3 C4 � D�1
3 D4 (86)

and from equations (24), (34), (37), (38) and (41), we have

X4 � Z4Z�1
3 � C2C�1

1 � D2D�1
1 � C�1

3 C4 � D�1
3 D4. (87)

So
X2 � X4 (88)

and
Z2Z3 � Z1Z4. (89)

Now from equations (42), (43), (50), (51) and (59), we have

A1 � B2 � Y1Y�1
4 � Y�1

2 Y3 � Z1Z�1
4 � Z�1

2 Z3, (90)

hence
Z1Z2 � Z3Z4. (91)

Multiplying equations (89) and (91) yields

Z2
1 � Z2

3 , Z2
2 � Z2

4 . (92)

Further, from equations (52), (53), (58), (61), (86), (87) and (91), we have

B4 � A3 � Z3 A4Z�1
2 � Z1Z�1

4 A4 (93)

B1 � X�1
2 X�1

4 � Z1Z�1
2 Z3Z�1

4 � Z2
1Z�2

4 . (94)

Substituting equations (90), (93) and (94) into equation (70) yields:

X2 � B�1
4 A�1

1 B1A4 � A�1
4 Z4Z�1

1 Z4Z�1
1 Z2

1Z�2
4 A4 � 1.

Hence

X2 � X4 � 1, Z1 � Z2, Z3 � Z4, Z2
1 � Z2

2 � Z2
3 � Z2

4 (95)

C1 � C2, D1 � D2, C3 � C4, D3 � D4, B1 � 1 (96)

by equations (86), (87), (88), (92) and (94). From equations (26), (27), (28) and (29), we
have Y2 � Y2

1 , Y1 � Y2
2 , Y4 � Y2

3 , Y3 � Y2
4 , so

Y2 � Y�1
1 , Y4 � Y�1

3 , and Y3
i � 1 for all i � 1, . . . , 4. (97)

Using equations (30), (31) and (95), we see that

1 � Y1Z2Y1Z�1
1 Y�1

2 Z�1
1 � Y1Z1Y1Z�1

1 Y1Z�1
1 (98)
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and
1 � Y2Z1Y2Z�1

2 Y�1
1 Z�1

2 � Y�1
1 Z1Y�1

1 Z�1
1 Y�1

1 Z�1
1 . (99)

Inverting equation (99) and conjugating by Z�1
1 , we obtain

1 � Y1Z1Y1Z�1
1 Y1Z1. (100)

Comparing equations (98) and (100) yields

Z2
1 � 1. (101)

From this and equations (90) and (95), it follows that

A2
1 � 1. (102)

By equations (60), (82), (90), (83), (93), (95), (97), (101) and (102), we see that

A1 � A4 � B2 � B3, A3 � B4 � 1. (103)

Now
C1 � Y�1

2 B2Y�1
4 � Y1A1Y3 � Y�1

1 Y�1
3 (104)

by equations (42), (62), (97) and (104), and

C3 � Y�1
4 B4Y�1

2 � Y3Y1 (105)

by equations (64), (97) and (103), hence

C1 � C2 � C�1
3 � C�1

4 (106)

by equation (96). Similarly,

D1 � Z�1
2 C2Z�1

4 � Z�1
1 Y�1

1 Y�1
3 Z�1

3 (107)

by equations (67), (95), (96) and (104), and

D3 � Z�1
4 C4Z�1

2 � Z�1
3 Y3Y1Z�1

1 (108)

by equations (69), (95), (96) and (105), hence

D1 � D2 � D�1
3 � D�1

4 (109)

by equations (95), (96) and (101). Using equations (75), (97), (102), (103), (105) and
(106), we see that

1 � Y�1
1 Y�1

2 � B�1
3 C�1

2 B2C3 � A1C�1
2 A1C3 � C2

3 � pY3Y1q2.

Hence Y3Y1 � Y�1
1 Y�1

3 , and so

C1 � C2 � C3 � C4, D1 � D2 � D3 � D4 (110)

by equations (106), (107), (108) and (109), as well as the fact that C2, C4, Z2 and Z4

commute pairwise. We deduce also from equations (109) and (110) that D2
i � 1 for

all i � 1, . . . , 4. Let C (resp. D) denote the common value of the Ci (resp. Di), and let
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A � A1 � A4 � B2 � B3. Running through the relations (22)–(85) one by one, we see
that our group Λ has generators Y1, Y3, Z1, Z3, A, C and D with the following defining
relations: $'&'%Y3

1 � Y3
3 � pY1Z1q3 � pY3Z3q3 � Z2

1 � Z2
3 � A2 � C2 � D2 � 1

A � CD � Y1Y3 � Z1Z3, C � Y3Y1, Y1DY3D � 1, pY3Y1q2 � 1

A, C, D, Z1 and Z3 commute pairwise.

(111)

Notice that we may write D � Y3Y1Z3Z1, and so Y1, Y3, Z1, Z3 generate Λ.
If we now Abelianise pB4pRP2qqp1q completely by adding the relations that the Yi

commute pairwise with each of the generators of Λ, we see that A � C � D �
Z1 � Z3 � 1, Y3 � Y�1

1 , Y3
1 � 1, and thus pB4pRP2qqp1q{pB4pRP2qqp2q � Z3. We un-

derline the fact that under the complete Abelianisation of pB4pRP2qqp1q, the generat-
ors Ai, Bi, Ci, Di, Xi, Zi, i � 1, . . . , 4, of pB4pRP2qqp1q are sent to the trivial element, and
Y1, Y�1

2 , Y�1
3 and Y4 are sent to the same generator of pB4pRP2qqp1q{pB4pRP2qqp2q. Taking

b � ρ3σ2σ1 � σ�1
2 σ�1

1 ρ1 P B4pRP2q which we know to be of order 12, consider b4. Since

b3 � ρ3ρ2ρ1 by Remark 9(b), we have

b4 � ρ3ρ2ρ1. ρ3σ2σ1 � C1B4A1C4Y1X2 P pB4pRP2qqp1q.
Under Abelianisation, b4 is thus sent to the pB4pRP2qqp2q-coset of Y1 which is a gener-
ator of pB4pRP2qqp1q{pB4pRP2qqp2q. Since b4 is of order 3, it follows that the short exact
sequence

1 ÝÑ pB4pRP2qqp2q ÝÑ pB4pRP2qqp1q ÝÑ pB4pRP2qqp1q{pB4pRP2qqp2q ÝÑ 1

splits, and hence pB4pRP2qqp1q � pB4pRP2qqp2q �Z3,

where the action on pB4pRP2qqp2q is given by conjugation by b4. This proves part (b)(i).
To prove part (b)(ii), consider the short exact sequence

1 ÝÑ pB4pRP2qqp1q{pB4pRP2qqp2q ÝÑ B4pRP2q{pB4pRP2qqp2q ÝÑ
B4pRP2q{pB4pRP2qqp1q ÝÑ 1.

As in part (c)(iii) of the proof of Theorem 2, since pB4pRP2qqp1q{pB4pRP2qqp2q � Z3 and
B4pRP2q{pB4pRP2qqp1q � Z2 ` Z2, to prove that B4pRP2q{pB4pRP2qqp2q � Dih12, it suf-
fices to show that the action of B4pRP2q{pB4pRP2qqp1q on the kernel is non trivial. To
achieve this, notice that the action by conjugation of σ1 (which is a representative of the
generator σ of B4pRP2q{pB4pRP2qqp1q) on Y1 (which from above is a representative of a

generator of pB4pRP2qqp1q{pB4pRP2qqp2q) is given by σ1Y1σ�1
1 � σ1σ2σ�2

1 � Y2X�1
2 . Now

modulo pB4pRP2qqp2q, Y2X�1
2 is congruent to Y2, which in turn is congruent to Y�1

1 . The

action of B4pRP2q{pB4pRP2qqp1q on pB4pRP2qqp1q{pB4pRP2qqp2q is thus non trivial, which
proves that B4pRP2q{pB4pRP2qqp2q � Dih12, and completes the proof of part (b)(ii).

To prove part (b)(iii), let n � 4 in the commutative diagram (9) of short exact se-
quences. Recall that in the lower sequence,

�
B4pRP2q�Ab � Z2 ` Z2 is generated by

two elements σ and ρ, Ker pτq � xρy, and τpσq, which we also denote by σ, is the gen-
erator of the quotient

�
B4pRP2q�Ab

L xρy. From the discussion following equation (9),
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K is of index 2 in P4pRP2q. Furthermore, the homomorphism α1 sends the generator
Bi,j, 1 ¤ i   j ¤ 4 (resp. ρk, 1 ¤ k ¤ 4) to the trivial element of xρy (resp. to ρ). This
diagram may be continued vertically by taking commutator subgroups successively;
in this way, we obtain the following commutative diagram of short exact sequences:

1 // K2 //

��

pB4pRP2qqp3q
��

// 1

��

// 1

1 // K1 //

��

pB4pRP2qqp2q
��

// Z2 `Z2

��

// 1

1 // K // pB4pRP2qqp1q // A4
// 1

(112)

The vertical arrows are inclusions, and K1 (resp. K2) is the kernel of the restriction of
τ to pB4pRP2qqp2q (resp. to pB4pRP2qqp3q). So K2 � pB4pRP2qqp3q, and since the index ofpB4pRP2qqp2q (resp. Z2 `Z2) in pB4pRP2qqp1q (resp. A4) is three, we deduce that K1 � K,
which proves part (b)(iii).

We now prove part (c). We start by studying the quotient pB4pRP2qqp1q{pB4pRP2qqp3q.
As we saw above, the elements Ai, Bi, Ci, Di, Xi, Zi, i � 1, . . . , 4 of pB4pRP2qqp1q are
sent to the trivial element of pB4pRP2qqp1q{pB4pRP2qqp2q, and so belong to pB4pRP2qqp2q.
Hence considered as elements of pB4pRP2qqp1q{pB4pRP2qqp3q they commute pairwise (we
shall not distinguish notationally between elements of pB4pRP2qqp1q and their cosets inpB4pRP2qqp1q{pB4pRP2qqp3q). These were precisely the relations that we added to those
of pB4pRP2qqp1q in order to obtain the presentation (111) of Λ, and thus the relations of Λ

hold in pB4pRP2qqp1q{pB4pRP2qqp3q. In particular, pB4pRP2qqp1q{pB4pRP2qqp3q is a quotient
of Λ.

Since Z1, Z3 P pB4pRP2qqp2q, we have that Y1Z1Y�1
1 , Y1Z3Y�1

1 P pB4pRP2qqp2q. Let G
denote the group obtained from Λ by adding the following relations to the presenta-
tion (111) of Λ: #

Z1, Z3, Y1Z1Y�1
1 , Y1Z3Y�1

1 commute pairwise

and commute with Z1, Z3, A, C and D.
(113)

Once more, considered as elements of B4pRP2q, Z1, Z3, Y1Z1Y�1
1 , Y1Z3Y�1

1 , A, C and D

belong to pB4pRP2qqp2q, and so the commutation relations of equation (113) of G also
hold in pB4pRP2qqp1q{pB4pRP2qqp3q. This implies that pB4pRP2qqp1q{pB4pRP2qqp3q is also a
quotient of G.

We now determine G and its relationship with pB4pRP2qqp1q{pB4pRP2qqp3q. Let L be
the group with generators w1, w2, w3, w4, t and defining relations:#

for all 1 ¤ i, j ¤ 4, w2
i � t3 � 1, wiwj � wjwi,

tw1t�1 � w2, tw2t�1 � w1w2, tw3t�1 � w4, tw4t�1 � w3w4.
(114)

Clearly L is isomorphic to Z4
2 �Z3, where the action of conjugation by t on xw1, . . . , w4y

permutes cyclically the elements w1, w2 and w1w2 (resp. w3, w4 and w3w4). We define a
map ψ : L ÝÑ G on the generators of L as follows:

ψpw1q � Z1, ψpw2q � Y1Z1Y�1
1 , ψpw3q � Z3, ψpw4q � Y1Z3Y�1

1 , ψptq � Y1.
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Since Z2
1 � Z2

3 � 1 and Y3
1 � 1 in G, we clearly have pψpwiqq2 � pψptqq3 � 1 for

i � 1, . . . , 4. The relations (113) of G imply that the ψpwiq commute pairwise. Further,
ψptqψpw1qpψptqq�1 � ψpw2q by definition, and

ψptqψpw2qpψptqq�1 � pψptqq2ψpw1qpψptqq�2 � Y2
1 Z1Y�2

1 � Y�1
1 Z1Y�2

1 � Z1Y1Z1Y�1
1� ψpw1qψpw2q,

using the relations Y3
1 � 1 and pY1Z1q3 � 1 of (111). Similar relations hold for w3 and

w4, and hence ψ extends to a homomorphism from L to G. Now ψ is surjective because
the generating set tZ1, Z3, Y1, Y3, A, C, Du of G may be reduced to tZ1, Z3, Y1, Y3u using
the relations (111). Thus G is a quotient of L, and hence pB4pRP2qqp1q{pB4pRP2qqp3q is
also a quotient of L.

Let us now show that the groups L and pB4pRP2qqp1q{pB4pRP2qqp3q are isomorphic.
Consider the map ϕ : pB4pRP2qqp1q ÝÑ L defined on the generators of pB4pRP2qqp1q as
follows: $''''''''&''''''''%

ϕpX2q � ϕpX4q � ϕpA3q � ϕpB1q � ϕpB4q � 1

ϕpA1q � ϕpA4q � ϕpB2q � ϕpB3q � w1w3

ϕpC1q � ϕpC2q � ϕpC3q � ϕpC4q � w1w2w3w4

ϕpD1q � ϕpD2q � ϕpD3q � ϕpD4q � w2w4

ϕpZ1q � ϕpZ2q � w1, ϕpZ3q � ϕpZ4q � w3

ϕpY1q � t, ϕpY2q � t2, ϕpY3q � pw1w2w3w4qt2, ϕpY4q � pw1w3qt. (115)

A long but straightforward calculation shows that each of the relators (22)–(85) ofpB4pRP2qqp1q is sent to the trivial element of L, and hence ϕ extends to a surjective ho-
momorphism of pB4pRP2qqp1q onto L. Such a homomorphism sends ppB4pRP2qqp1qqp2q �pB4pRP2qqp3q surjectively onto Lp2q. However Lp2q is trivial, so ϕ induces a surjective
homomorphism ϕ of pB4pRP2qqp1q{pB4pRP2qqp3q onto L, and hence L is a quotient ofpB4pRP2qqp1q{pB4pRP2qqp3q. Since L is finite and pB4pRP2qqp1q{pB4pRP2qqp3q is a quotient
of L by the previous paragraph, we conclude thatpB4pRP2qqp1q{pB4pRP2qqp3q � L � Z

4
2 �Z3, (116)

where the action is given by equation (114). Further, ψ : L ÝÑ G is surjective andpB4pRP2qqp1q{pB4pRP2qqp3q is a quotient of G, so G � pB4pRP2qqp1q{pB4pRP2qqp3q. An
easy calculation shows that ψ�1 � ϕ. From the short exact sequence

1 ÝÑ pB4pRP2qqp2q{pB4pRP2qqp3q ÝÑ pB4pRP2qqp1q{pB4pRP2qqp3q ÝÑpB4pRP2qqp1q{pB4pRP2qqp2q ÝÑ 1,

we see that pB4pRP2qqp2q{pB4pRP2qqp3q � Z4
2. It follows from the form of the isomorph-

ism that the Z2-factors of pB4pRP2qqp2q{pB4pRP2qqp3q are generated by the elements Z1,

Z3, Y1Z1Y�1
1 and Y1Z3Y�1

1 , and their images under ϕ are w1, w3, w2 and w4 respect-

ively. In particular, ϕ
�pB4pRP2qqp2q{pB4pRP2qqp3q	 � xw1, w2, w3, w4y. This completes

the proof of part (c).
We now prove part (d). Consider the commutative diagrams (9) and (112). Since

K � K1 from part (b)(iii) above, we have that K � pB4pRP2qqp2q X P4pRP2q. Conversely,
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since the homomorphism pB4pRP2qqp2q ÝÑ Z2 `Z2 of equation (112) is the restriction
of the permutation homomorphism τ : B4pRP2q ÝÑ S4 to pB4pRP2qqp2q, it follows that
any element of pB4pRP2qqp2q X P4pRP2q also belongs to K, and thus

K � pB4pRP2qqp2q X P4pRP2q. (117)

Further, from the upper exact sequence of equation (112), pB4pRP2qqp3q � K, and sincepB4pRP2qqp3q is normal in B4pRP2q, we obtain

1 ÝÑ K{pB4pRP2qqp3q ÝÑ pB4pRP2qqp2q{pB4pRP2qqp3q ÝÑ pB4pRP2qqp2q{K ÝÑ 1

by taking the quotient by pB4pRP2qqp3q of the first two terms of the middle short exact
sequence of equation (112). In particular, K{pB4pRP2qqp3q � Z2 ` Z2, and we have a
short exact sequence

1 ÝÑ pB4pRP2qqp3q ÝÑ K ÝÑ Z2 `Z2 ÝÑ 1. (118)

Recall that the Z2-factors of pB4pRP2qqp2q{pB4pRP2qqp3q are generated by Z1, Z3, Y1Z1Y�1
1

and Y1Z3Y�1
1 . Using equation (117) and the expressions for Z1, Z3 and Y1 in terms of

the standard generators of B4pRP2q, we conclude that

K{pB4pRP2qqp3q � !
1, Z1Z3, Y1Z1Z3Y�1

1 , Z1Z3Y1Z1Z3Y�1
1

)
. (119)

We now apply the Reidemeister-Schreier rewriting process to the leftmost vertical
short exact sequence of (9) to produce a set of generators of K. Taking t1, ρ1u as a
Schreier transversal of xρy in P4pRP2q and

 
Bi,j, ρk | 1 ¤ i   j ¤ 4, 1 ¤ k ¤ 4

(
as a gen-

erating set of P4pRP2q, we see that the following elements constitute a generating set
of K: $'''''''&'''''''%

B1,2 � X2, B1,3 � Y1X2Y�1
1 , B1,4 � Z1Y2X2Y�1

2 Z�1
1 , B2,3 � Y1Y2

B2,4 � Z1Y2Y1Z�1
1 , B3,4 � Z1Z2, ρ1B1,2ρ�1

1 � A1X4 A�1
1

ρ1B1,3ρ�1
1 � A1Y4X4Y�1

4 A�1
1 , ρ1B1,4ρ�1

1 � A1Z4Y3X4Y�1
3 Z�1

4 A�1
1

ρ2
1 � A1A4, ρ2

2 � B1B4, ρ2
3 � C1C4, ρ2

4 � D1D4

ρ1ρ2 � A1B4, ρ1ρ3 � A1C4, ρ1ρ4 � A1D4.

(120)

Note that we have also written each element in terms of the generators of the presenta-

tion of pB4pRP2qqp1q given at the beginning of the proof, we have deleted ρ1B2,3ρ�1
1 and

ρ1B3,4ρ�1
1 from the list of generators that appear initially in the process, and that for

i � 2, 3, 4, we have replaced ρiρ
�1
1 by ρ2

i � ρiρ
�1
1 . ρ1ρi. Since pB4pRP2qqp3q � P4pRP2q,

we may consider the image of pB4pRP2qqp3q in P3pRP2q and P2pRP2q under the projec-
tions

p3 : P4pRP2q ÝÑ P3pRP2q and p2 : P3pRP2q ÝÑ P2pRP2q
obtained geometrically by forgetting the last string in each case. We claim that p2 �
p3

�pB4pRP2qqp3q	 � xρ1ρ2y � Z4. To see this, we first use equation (118) and the

Reidemeister-Schreier rewriting process to obtain a generating set for pB4pRP2qqp3q.
This is achieved as follows. From equation (120), we see that the elements of the set

T � !
1, ρ2ρ�1

1 , ρ2ρ�1
1 . ρ3ρ�1

1 , ρ2ρ�1
1 . ρ3ρ�1

1 . ρ1ρ�1
2

)
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belong to K. Equations (115) and (119) give rise to the following commutative diagram:

K{pB4pRP2qqp3q
��

// pB4pRP2qqp2q{pB4pRP2qqp3q
��

// pB4pRP2qqp1q{pB4pRP2qqp3q
��xw1w3, w2w4y // xwi | i � 1, . . . , 4y // L,

where the horizontal arrows are inclusions, and the vertical arrows are the isomorph-

isms induced by ϕ : pB4pRP2qqp1q{pB4pRP2qqp3q ÝÑ L. Equation (120) yields ρ2ρ�1
1 �

B1A�1
1 and ρ3ρ�1

1 � C1A�1
1 , and considering the K{pB4pRP2qqp3q-cosets of these ele-

ments and applying equation (115), we obtain ϕpρ2ρ�1
1 q � w1w3 and ϕpρ3ρ�1

1 q � w2w4.

It follows that T is a Schreier transversal for K{pB4pRP2qqp3q in K, which enables us to
write down a generating set Σ for pB4pRP2qqp3q. However, to prove the claim, we do not
need to study the whole list of generators. On the one hand, applying the description
of the generators of K given by equation (120), the isomorphism ϕ and equation (115),
we see that the elements of

U � !
B1,2, B1,3, B1,4, B2,3, B2,4, ρ1B1,2ρ�1

1 , ρ1B1,3ρ�1
1 , ρ1B1,4ρ�1

1 , ρ2
1, ρ2

2, ρ2
3, ρ2

4

)
belong to pB4pRP2qqp3q, and appear as elements of Σ. Moreover, it is clear that these
elements are mapped into x∆2

2y under p2 � p3 since ρ2
1 � ρ2

2 � ∆
2
2 in P2pRP2q. The other

elements of Σ obtained by applying the Reidemeister-Schreier process to an element
u P U are just conjugates of u (the conjugating elements being the non-trivial elements
of T ), so also belong to pB4pRP2qqp3q, and since x∆2

2y is Abelian, these elements of Σ will
lie in x∆2

2y, which is contained in xρ1ρ2y. Hence it suffices to consider the elements of Σ

obtained by applying the Reidemeister-Schreier rewriting process to the three remain-
ing elements ρ1ρi, i � 2, 3, 4, of equation (120). To do this, note that under identification
of pB4pRP2qqp1q{pB4pRP2qqp3q with L, the elements of T project respectively to 1, w1w3,
w1w2w3w4 and w2w4, while ρ1ρ2 projects to w1w3, ρ1ρ3 projects to w2w4, and ρ1ρ4 pro-
jects to w1w2w3w4. The non-trivial elements of Σ arising as conjugates of ρ1ρi are as
follows:

(a) i � 2: ρ1ρ2ρ1ρ�1
2 , ρ2

2, ρ2ρ�1
1 ρ3ρ2

2ρ�1
3 ρ1ρ�1

2 , ρ2ρ�1
1 ρ3ρ�1

2 ρ1ρ2ρ1ρ�1
3 ρ1ρ�1

2 .

(b) i � 3: ρ1ρ3ρ2ρ�1
3 ρ1ρ�1

2 , ρ2ρ3ρ1ρ�1
3 ρ1ρ�1

2 , ρ2ρ�1
1 ρ2

3ρ1ρ�1
2 , ρ2ρ�1

1 ρ3ρ�1
2 ρ1ρ3.

(c) i � 4: ρ1ρ4ρ1ρ�1
3 ρ1ρ�1

2 , ρ2ρ4ρ2ρ�1
3 ρ1ρ�1

2 , ρ2ρ�1
1 ρ3ρ4, ρ2ρ�1

1 ρ3ρ�1
2 ρ1ρ4ρ1ρ�1

2 .

Under the projection p2 � p3, the elements for the cases i � 2, 3 project to elements ofx∆2
2y, while those for the case i � 4 project to ρ1ρ2 or its inverse. We conclude that

p2 � p3

�pB4pRP2qqp3q	 � xρ1ρ2y � Z4, which proves the claim. Thus the restriction

p2

∣

∣

∣p3ppB4pRP2qqp3qq : p3ppB4pRP2qqp3qq ÝÑ xρ1ρ2y
of p2 to p3

�pB4pRP2qqp3q	 is surjective.
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Now consider the following commutative diagram of short exact sequences:

1 // Ker
�

p2

∣

∣

∣p3ppB4pRP2qqp3qq	 //

��

p3

�pB4pRP2qqp3q	
��

p2

∣

∣

∣

∣p3ppB4pRP2qqp3qq
// xρ1ρ2y

��

// 1

1 // F2pρ3, B2,3q // P3pRP2q p2
// P2pRP2q // 1.

(121)
The lower short exact sequence is that of equation (2) with m � 2 and n � 1 (here
p� � p2), while the vertical arrows are inclusions. It follows that

Ker
�

p2

∣

∣

∣p3ppB4pRP2qqp3qq	 � p3

�pB4pRP2qqp3q	XF2pρ3, B2,3q. (122)

Since K � P4pRP2q, p3 restricts to K, and we have the following commutative diagram:pB4pRP2qqp3q p3

∣

∣

∣

∣pB4pRP2qqp3q
//

��

p3

�pB4pRP2qqp3q	
��

K
p3|K

// P3pRP2q. (123)

Again the vertical arrows are inclusions. Considered as elements of P4pRP2q, Bi,j, 1 ¤
i   j ¤ 3 and ρkρ4, 1 ¤ k ¤ 3, belong to K by equation (9), and we deduce that the
restriction of p3 to K is surjective. Since pB4pRP2qqp3q is of index four in K, we conclude

that p3

�pB4pRP2qqp3q	 is of index at most four in P3pRP2q.
Conversely, consider the Abelianisation of P3pRP2q. From equation (10) and the

action of Q8 on F2pρ3, B2,3q described by equations (15), (17) and (18), we see that�
B3pRP2q�Ab � Z3

2, and that the Abelianisation homomorphism π : P3pRP2q ÝÑ Z3
2

sends each of ρi, i � 1, 2, 3, to a distinct Z2-factor, and the Bi,j, 1 ¤ i   j ¤ 3, to

the trivial element. Under p3, the elements of Σ are sent to the trivial element of Z3
2,

with the exception of those elements obtained via the Reidemeister-Schreier rewriting
process using ρ1ρ4, which are sent to p1, 1, 1q. It follows that

π
�

p3

�pB4pRP2qqp3q		 � xp1, 1, 1qy � Z2,

and so π
�

p3ppB4pRP2qqp3qq	 is of index four in Z3
2. We conclude from the following

commutative diagram:

p3

�pB4pRP2qqp3q	 //

π
��

P3pRP2q
π

��

π
�

p3

�pB4pRP2qqp3q		 // Z3
2,

whose horizontal arrows are inclusions and whose vertical arrows are surjections, that

p3

�pB4pRP2qqp3q	 is of index at least four in P3pRP2q. From the previous paragraph,
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we conclude this index is exactly four, and since xρ1ρ2y is of index two in P2pRP2q,
it follows from equations (121) and (122) that p3

�pB4pRP2qqp3q	 X F2pρ3, B2,3q is of

index two in F2pρ3, B2,3q. Since B2,3 P Σ (as an element of P4pRP2q), we have that

B2,3 P p3

�pB4pRP2qqp3q	 (as an element of P3pRP2q). Thus under the canonical homo-

morphism

F2pρ3, B2,3q ÝÑ F2pρ3, B2,3qM�p3

�pB4pRP2qqp3q	XF2pρ3, B2,3q	 � Z2,

B2,3 is sent to 0, so ρ3 must be sent to 1, and hence the kernel of this homomorphism is
given by:

p3

�pB4pRP2qqp3q	XF2pρ3, B2,3q � F3pB2,3, ρ2
3, ρ3B2,3ρ�1

3 q. (124)

From equation (120), ρ4ρ3ρ2ρ1 � D1C4B1A4, and using equation (115) and the iso-
morphism of equation (116), we see that ρ4ρ3ρ2ρ1 P pB4pRP2qqp3q, and so ρ3ρ2ρ1 P
p3

�pB4pRP2qqp3q	 and ρ2ρ1 P p2 � p3

�pB4pRP2qqp3q	. But we know that each of these

three elements is of order four in its respective group [GG4, Proposition 26 and Re-
mark 27], and hence it follows from the upper sequence of equation (121) and equa-
tion (124) that

p3

�pB4pRP2qqp3q	 � F3 �Z4. (125)

We shall determine the action shortly. Returning to equation (123), both of the hori-

zontal restrictions p3

∣

∣

∣pB4pRP2qqp3q and p3 |K are surjective, and since pB4pRP2qqp3q (resp.

p3ppB4pRP2qqp3qq) is of index four in K (resp. P3pRP2q), we obtain Ker
�

p3

∣

∣

∣pB4pRP2qqp3q 	 �
Ker pp3 |K q. Thus from the upper homomorphism of equation (123) and equation (125),
we have a short exact sequence

1 ÝÑ Ker pp3 |K q ÝÑ pB4pRP2qqp3q p3

∣

∣

∣

∣pB4pRP2qqp3qÝÝÝÝÝÝÝÝÝÑ F3 �Z4 ÝÑ 1.

From equations (121), (122) and (124), a basis of the F3-factor of the quotient is given by!
B2,3, ρ2

3, ρ3B2,3ρ�1
3

)
, and by (121) and the above discussion, we may take a3 � ρ3ρ2ρ1

to be a generator of the Z4-factor. Using equation (7), we see that the action of Z4 on
F3 is given by $''&''% a3B2,3a�3 � B�1

2,3

a3ρ2
3a�3 � ρ�2

3

a3ρ3B2,3ρ�1
3 a�3 � ρ�2

3 . ρ3B�1
2,3ρ�1

3 . ρ2
3.

(126)

Consider the map s : F3 �Z4 ÝÑ pB4pRP2qqp3q defined on the generators of F3 �Z4 by:$&% x ÞÝÑ x for x P !B2,3, ρ2
3, ρ3B2,3ρ�1

3

)
a3 ÞÝÑ a4.

Note that the elements on the right hand-side are considered to be elements in B4pRP2q.
Using the given generating set of K, we have

B2,3 � Y1Y2, ρ2
3 � C1C4, ρ3B2,3ρ�1

3 � C1Y4Y3C�1
1 , a4 � ρ4ρ3ρ2ρ1 � D1C4B1A4.
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By equations (115) and (116), we see that these elements belong to pB4pRP2qqp3q, so the
map s is well defined. Using equation (7) once more, we see that the action of a4 � spa3q
(which is of order 4) on spxq, x P !

B2,3, ρ2
3, ρ3B2,3ρ�1

3

)
, is also given by equation (126),

up to replacing a3 by a4. This shows that s extends to a homomorphism from F3 �Z4

to pB4pRP2qqp3q. It is then clear that s is a section for p3

∣

∣

∣pB4pRP2qqp3q , and hencepB4pRP2qqp3q � Ker pp3 |K q � pF3 �Z4q.
From the following commutative diagram of short exact sequences,

1

��

1

��

1 // Ker pp3 |K q � F5
//

��

Ker pp3q � F3

α1|F3
//

��

xρy // 1

1 // K //

p3|K
��

P4pRP2q α1
//

p3

��

xρy // 1

P3pRP2q
��

P3pRP2q
��

1 1

we see that Ker pp3 |K q is also the kernel of the restriction of α1 to Ker pp3q which is the
free subgroup of P4pRP2q of rank three with basis tB1,4, B2,4, ρ4u. It thus follows that

Ker pp3 |K q is a free group of rank five with basis
!

B1,4, B2,4, ρ2
4, ρ4B1,4ρ�1

4 , ρ4B2,4ρ�1
4

)
.

We conclude thatpB4pRP2qqp3q � F5pB1,4, B2,4, ρ2
4, ρ4B1,4ρ�1

4 , ρ4B2,4ρ�1
4 q � �

F3pB2,3, ρ2
3, ρ3B2,3ρ�1

3 q �Z4

	� �
F5pB1,4, B2,4, ρ2

4, ρ4B1,4ρ�1
4 , ρ4B2,4ρ�1

4 q �F3pB2,3, ρ2
3, ρ3B2,3ρ�1

3 q	�Z4.

(127)

As we already mentioned above, ρ4ρ3ρ2ρ1 belongs to pB4pRP2qqp3q, and it projects to
the generator of the Z4-factor of p3ppB4pRP2qqp3qq, so may be taken as a generator of
the Z4-factor in equation (127). To determine completely pB4pRP2qqp3q, it just remains
to calculate the actions. By equation (7), the action of Z4 on the given generators of
F5 �F3 is:$'''''&'''''% B1,4 ÞÝÑ ρ2

4. B�1
1,4 . ρ�2

4 B2,4 ÞÝÑ ρ2
4. B1,4. B�1

2,4 . B�1
1,4 . ρ�2

4

ρ2
4 ÞÝÑ ρ�2

4 ρ4B1,4ρ�1
4 ÞÝÑ ρ4B�1

1,4 ρ�1
4

ρ4B2,4ρ�1
4 ÞÝÑ ρ4B1,4ρ�1

4 . ρ4B�1
2,4 ρ�1

4 . ρ4B�1
1,4 ρ�1

4 B2,3 ÞÝÑ B�1
2,3

ρ2
3 ÞÝÑ ρ�2

3 ρ3B2,3ρ�1
3 ÞÝÑ ρ�2

3 . ρ3B�1
2,3ρ�1

3 . ρ2
3,

(128)
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and so the action of Z4 by conjugation on the Abelianisation of F5 � F3 is � Id. As for
the action by conjugation of F3 on F5, we have:

B2,3 :

$'''''''&'''''''%
B1,4 ÞÝÑ B1,4

B2,4 ÞÝÑ ρ2
4. B1,4. B2,4. B�1

1,4 . ρ�2
4

ρ2
4 ÞÝÑ ρ2

4

ρ4B1,4ρ�1
4 ÞÝÑ ρ4B1,4ρ�1

4

ρ4B2,4ρ�1
4 ÞÝÑ ρ2

4 � ρ4B1,4ρ�1
4 � ρ4B2,4ρ�1

4 � ρ4B�1
1,4ρ�1

4 � ρ�2
4

(129)

ρ3B2,3ρ�1
3 :

$'''''''''''''''''''&'''''''''''''''''''%

B1,4 ÞÝÑB�1
2,4 � ρ�2

4 � ρ4B�1
2,4ρ�1

4 � ρ4B�1
1,4 ρ�1

4 � B2,4 � ρ4B1,4ρ�1
4 �

ρ4B2,4ρ�1
4 � ρ2

4 � B1,4 � ρ�2
4 � ρ4B�1

2,4ρ�1
4 � ρ4B�1

1,4ρ�1
4 � B�1

2,4 �
ρ4B1,4ρ�1

4 � ρ4B2,4ρ�1
4 � ρ2

4 � B2,4

B2,4 ÞÝÑB�1
2,4 � ρ�2

4 � ρ4B�1
2,4ρ�1

4 � ρ4B�1
1,4 ρ�1

4 � B2,4 � ρ4B1,4ρ�1
4 �

ρ4B2,4ρ�1
4 � ρ2

4 � B2,4

ρ2
4 ÞÝÑB�1

2,4 � B�1
1,4 � ρ�2

4 � ρ4B�1
2,4 ρ�1

4 � ρ2
4 � B1,4 � B2,4 � ρ4B�1

1,4 ρ�1
4 �

B�1
2,4 � ρ4B1,4ρ�1

4 � ρ4B2,4ρ�1
4 � ρ2

4 � B2,4

ρ4B1,4ρ�1
4 ÞÝÑρ4B1,4ρ�1

4

ρ4B2,4ρ�1
4 ÞÝÑB�1

2,4 � B�1
1,4 � ρ�2

4 � ρ4B2,4ρ�1
4 � ρ2

4 � B1,4 � B2,4

(130)

ρ2
3 :

$'''''''''''''&'''''''''''''%
B1,4 ÞÝÑρ4B1,4ρ�1

4 � ρ4B2,4ρ�1
4 � B�1

2,4 � B1,4 � B2,4 � ρ4B�1
2,4ρ�1

4 �
ρ4B�1

1,4 ρ�1
4

B2,4 ÞÝÑρ4B1,4ρ�1
4 � ρ4B2,4ρ�1

4 � B�1
2,4 � B�1

1,4 � B2,4 � B1,4 � B2,4�
ρ4B�1

2,4 ρ�1
4 � ρ4B�1

1,4 ρ�1
4

ρ2
4 ÞÝÑρ4B1,4ρ�1

4 � ρ4B2,4ρ�1
4 � ρ2

4 � ρ4B�1
2,4 ρ�1

4 � ρ4B�1
1,4 ρ�1

4

ρ4B1,4ρ�1
4 ÞÝÑρ4B1,4ρ�1

4

ρ4B2,4ρ�1
4 ÞÝÑρ4B2,4ρ�1

4 ,

(131)

using the relation B1,4B2,4B3,4 � ρ�2
4 in P4pRP2q. In all cases, the action of the given

generators of F3 on the Abelianisation of F5 is trivial. We thus conclude that�pB4pRP2qqp3q	Ab � pB4pRP2qqp3q{pB4pRP2qqp4q � Z
8
2 `Z4,

the Z2-factors arising from the fact that the action of Z4 on F5 � F3 is � Id. Consider
the following short exact sequence:

1 ÝÑ pB4pRP2qqp4q ÝÑ pB4pRP2qqp3q ÝÑ pB4pRP2qqp3q{pB4pRP2qqp4q ÝÑ 1.

The Z4-factor of pB4pRP2qqp3q is mapped bijectively onto the Z4-factor of the quotientpB4pRP2qqp3q{pB4pRP2qqp4q, so the kernel pB4pRP2qqp4q of the projection pB4pRP2qqp3q ÝÑpB4pRP2qqp3q{pB4pRP2qqp4q is the restriction of this projection to F5 �F3. From the form
of the action of F3 on F5, this restriction is the composition of the Abelianisation F5 �
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F3 ÝÑ Z5 ` Z3, followed by the homomorphism Z5 ` Z3 ÝÑ Z5
2 ` Z3

2 which takes
the coordinates modulo 2. We see thatpB4pRP2qqp4q � F129 �F17, (132)

where F129 (resp. F17) is the kernel of the restriction F5 ÝÑ Z5
2 (resp. of F3 ÝÑ Z3

2) of
this composition to the first (resp. second) factor, and the action is that induced by that
of F3 on F5. It is then clear that for all i ¥ 0, pB4pRP2qqp4�iq � pF129 � F17qpiq. This
completes the proof of part (d), and thus that of Theorem 3.

Remark 11. In order to decide whether B4pRP2q is residually soluble, it would be useful
to know the form of the action in equation (132). If the product F129 �F17 were almost
direct (i.e. the action of F17 on the Abelianisation of F129 were trivial) then B4pRP2q
would be residually soluble [FR1]. However, this is not the case. To see this, first
consider the following basis pe1, . . . , e5q of F5:

e1 � B1,4, e2 � B2,4, e3 � ρ4B1,4ρ�1
4 . ρ4B2,4ρ�1

4 . ρ2
4,

e4 � ρ4B1,4ρ�1
4 and e5 � ρ4B2,4ρ�1

4 .
(133)

From equation (131), the action of ρ2
3 by conjugation on this basis is given by the fol-

lowing automorphism of F5:

ϕρ2
3

:

$''''''&''''''%
e1 ÞÝÑ e4e5e�1

2 e1e2e�1
5 e�1

4

e2 ÞÝÑ e4e5e�1
2 e�1

1 e2e1e2e�1
5 e�1

4

e3 ÞÝÑ e4e5e3e�1
5 e�1

4

e4 ÞÝÑ e4

e5 ÞÝÑ e5.

(134)

It follows from the form of the projection F3 ÝÑ Z3
2 that ρ4

3 belongs to the kernelF17. We
will calculate the action of the corresponding automorphism ϕρ4

3
on a certain element

of F129. To do this, we first determine a basis of F129 using the Reidemeister-Schreier
rewriting process. A suitable transversal for the kernel of F5 ÝÑ Z5

2 relative to the basis
of equation (133) is the word

τ � e1e2e1e3e1e2e1e4e1e2e1e3e1e2e1e5e1e2e1e3e1e2e1e4e1e2e1e3e1e2e1.

Let τ0 denote the empty word, for i � 1, . . . , 31, let τi be the subword of τ consist-
ing of the first i letters, and let w denote the Schreier representative of the word w �
wpe1, . . . , e5q. Deleting the trivial elements that appear in the set!

τiejpτiejq�1 | 0 ¤ i ¤ 31, 1 ¤ j ¤ 5
)

,

gives rise to a basis of F129, and thus a basis for the Abelianisation Z129 of F129 (we shall
not distinguish notationally between a basis element of F129 and its projection in Z129).
Using equation (134), a long but straightforward calculation in Z129 shows that

ϕρ4
3
pτ5e3τ�1

2 q �e�1
2 τ�1

3 . τ3e1τ�1
2 . τ2e2τ�1

1 . τ1e1. e2τ�1
3 . τ4e�1

2 τ�1
7 . τ5e1τ�1

4 . τ4e2τ�1
7 .

τ7e1τ�1
6 . τ6e2τ�1

5 . τ5e3τ�1
2 .

Each of the terms appearing on the right hand-side of this equality, as well as τ5e3τ�1
2 ,

belongs to the given basis of Z129, and so the induced action of F17 on Z129 is non trivial.
This proves that the semi-direct product F129 �F17 is not almost direct. It thus remains
an open question as to whether B4pRP2q is residually soluble.
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4 A presentation of Γ2pBnpRP2qq, n ¥ 3

In this section, we derive a presentation of Γ2pBnpRP2qq obtained using the Reidemeister-
Schreier rewriting process.

Proposition 12. Let n ¥ 3. The following constitutes a presentation of the group Γ2pBnpRP2qq:
generators:

αi � σiσ
�1
1 , γi � σ1ρ1σiσ

�1
1 ρ�1

1 σ�1
1 for i � 2, . . . , n� 1

βi � σ1σi, τi � σ1ρ1σ1σiρ
�1
1 σ�1

1 for i � 1, . . . , n� 1

ηj � ρjσ
�1
1 ρ�1

1 σ�1
1 , θj � σ1ρ1ρjσ

�1
1 , λj � σ1ρ1σ1ρj for j � 1, . . . , n

κj � σ1ρjρ
�1
1 σ�1

1 for j � 2, . . . , n.

To simplify the expression of the relators, we set α1 � γ1 � κ1 � 1.
relators:

(a) For all 1 ¤ i, j ¤ n� 1, |i � j| ¥ 2,

αiβ jβ
�1
i α�1

j , βiαjα
�1
i β�1

j , γiτjτ
�1
i γ�1

j , τiγjγ
�1
i τ�1

j .

(b) For all 1 ¤ i ¤ n� 2,

αiβi�1αiα
�1
i�1β�1

i α�1
i�1, βiαi�1βiβ

�1
i�1α�1

i β�1
i�1,

γiτi�1γiγ
�1
i�1τ�1

i γ�1
i�1, τiγi�1τiτ

�1
i�1γ�1

i τ�1
i�1.

(c) For all 1 ¤ i ¤ n� 1 and 1 ¤ j ¤ n with j � i, i� 1,

αiκjτ
�1
i η�1

j , βiηjγ
�1
i κ�1

j , γiλjβ
�1
i θ�1

j , τiθjα
�1
i λ�1

j .

(d) For all 1 ¤ i ¤ n� 1,

β�1
i κiτ

�1
i η�1

i�1, α�1
i ηiγ

�1
i κ�1

i�1, τ�1
i λiβ

�1
i θ�1

i�1, γ�1
i θiα

�1
i λ�1

i�1.

(e) For all 1 ¤ i ¤ n� 1,

λ�1
i�1η�1

i ηi�1λiβ
�1
i α�1

i , θ�1
i�1κ�1

i κi�1θiα
�1
i β�1

i ,

κ�1
i�1θ�1

i θi�1κiτ
�1
i γ�1

i , η�1
i�1λ�1

i λi�1ηiγ
�1
i τ�1

i .

(f) (i) If n is even,

β2α3 � � � βn�2αn�1βn�1αn�2 � � � β3α2β1λ�1
1 η�1

1 , β1α2 � � � αn�2βn�1αn�1βn�2 � � � α3β2θ�1
1

τ2γ3 � � � τn�2γn�1τn�1γn�2 � � � τ3γ2τ1θ�1
1 , τ1γ2 � � �γn�2τn�1γn�1τn�2 � � �γ3τ2η�1

1 λ�1
1 .

(ii) If n is odd,

β2α3 � � � αn�2βn�1αn�1βn�2 � � � β3α2β1λ�1
1 η�1

1 , β1α2 � � � βn�2αn�1βn�1αn�2 � � � α3β2θ�1
1

τ2γ3 � � �γn�2τn�1γn�1τn�2 � � � τ3γ2τ1θ�1
1 , τ1γ2 � � � τn�2γn�1τn�1γn�2 � � �γ3τ2η�1

1 λ�1
1 .
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Remark 13. The above presentation may be used to show that Γ2pBnpRP2qq is perfect
for n ¥ 5.

Proof. Taking the standard presentation of BnpRP2q given by Proposition 4, and the
set t1, σ1, σ1ρ1, σ1ρ1σ1u as a Schreier transversal, we apply the Reidemeister-Schreier
rewriting process to the short exact sequence (4). In this way, a generating set for
Γ2pBnpRP2qq is that given in the statement of the proposition. We record the following
equalities for later use:$'''''''''''''''&'''''''''''''''%

σ1ρ1αiρ
�1
1 σ�1

1 � γi

σ1ρ1βiρ
�1
1 σ�1

1 � τi

σ1ρ1τiρ
�1
1 σ�1

1 � σ1ρ1σ1ρ1σ1σiρ
�1
1 σ�1

1 ρ�1
1 σ�1

1 � λ1βiλ
�1
1

σ1ρ1γiρ
�1
1 σ�1

1 � σ1ρ1σ1ρ1σiσ
�1
1 ρ�1

1 σ�1
1 ρ�1

1 σ�1
1 � λ1αiλ

�1
1

σ1ρ1λiρ
�1
1 σ�1

1 � σ1ρ1σ1ρ1σ1ρiρ
�1
1 σ�1

1 � λ1κi

σ1ρ1ηiρ
�1
1 σ�1

1 � σ1ρ1ρiσ
�1
1 ρ�1

1 σ�1
1 ρ�1

1 σ�1
1 � θiλ

�1
1

σ1ρ1κiρ
�1
1 σ�1

1 � σ1ρ1σ1ρiρ
�1
1 σ�1

1 ρ�1
1 σ�1

1 � λiλ
�1
1

σ1ρ1θiρ
�1
1 σ�1

1 � σ1ρ1ρ1ρiσ
�1
1 ρ�1

1 σ�1
1 � λ1ηi.

(135)

We now determine the relations of Γ2pBnpRP2qq in terms of the given generating set.
As we mentioned, we also set α1 � κ1 � γ1 � 1. For all 1 ¤ i, j ¤ n� 1, |i � j| ¥ 2, the

relator σiσjσ
�1
i σ�1

j gives rise to the following four relators, one for each element of the

Schreier transversal:

1 �σiσjσ
�1
i σ�1

j � σiσ
�1
1 . σ1σj. σ�1

i σ�1
1 . σ1σ�1

j � αiβ jβ
�1
i α�1

j

1 �σ1. σiσjσ
�1
i σ�1

j . σ�1
1 � σ1σi. σjσ

�1
1 . σ1σ�1

i . σ�1
j σ�1

1 � βiαjα
�1
i β�1

j

1 �σ1ρ1. σiσjσ
�1
i σ�1

j . ρ�1
1 σ�1

1 � σ1ρ1αiβ jβ
�1
i α�1

j ρ�1
1 σ�1

1 � γiτjτ
�1
i γ�1

j

1 �σ1ρ1σ1. σiσjσ
�1
i σ�1

j . σ�1
1 ρ�1

1 σ�1
1 � σ1ρ1βiαjα

�1
i β�1

j ρ�1
1 σ�1

1 � τiγjγ
�1
i τ�1

j .

In the third and fourth equations, we have used equation (135). Similarly, from the

relator σiσi�1σiσ
�1
i�1σ�1

i σ�1
i�1, for all 1 ¤ i ¤ n� 2, we obtain:

1 �σiσi�1σiσ
�1
i�1σ�1

i σ�1
i�1 � σiσ

�1
1 . σ1σi�1. σiσ

�1
1 . σ1σ�1

i�1. σ�1
i σ�1

1 . σ1σ�1
i�1�αiβi�1αiα

�1
i�1β�1

i α�1
i�1

1 �σ1. σiσi�1σiσ
�1
i�1σ�1

i σ�1
i�1. σ�1

1 � σ1σi. σi�1σ�1
1 . σ1σi. σ�1

i�1σ�1
1 . σ1σ�1

i . σ�1
i�1σ�1

1�βiαi�1βiβ
�1
i�1α�1

i β�1
i�1

1 �σ1ρ1. σiσi�1σiσ
�1
i�1σ�1

i σ�1
i�1. ρ�1

1 σ�1
1 � σ1ρ1αiβi�1αiα

�1
i�1β�1

i α�1
i�1ρ�1

1 σ�1
1�γiτi�1γiγ

�1
i�1τ�1

i γ�1
i�1

1 �σ1ρ1σ1. σiσi�1σiσ
�1
i�1σ�1

i σ�1
i�1. σ�1

1 ρ�1
1 σ�1

1 � σ1ρ1βiαi�1βiβ
�1
i�1α�1

i β�1
i�1ρ�1

1 σ�1
1�τiγi�1τiτ

�1
i�1γ�1

i τ�1
i�1.
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For all 1 ¤ i ¤ n� 1 and 1 ¤ j ¤ n, j � i, i� 1, the relator σiρjσ
�1
i ρ�1

j yields:

1 � σiρjσ
�1
i ρ�1

j � σiσ
�1
1 . σ1ρjρ

�1
1 σ�1

1 . σ1ρ1σ�1
i σ�1

1 ρ�1
1 σ�1

1 . σ1ρ1σ1ρ�1
j � αiκjτ

�1
i η�1

j

1 � σ1. σiρjσ
�1
i ρ�1

j . σ�1
1 � σ1σi. ρjσ

�1
1 ρ�1

1 σ�1
1 . σ1ρ1σ1σ�1

i ρ�1
1 σ�1

1 . σ1ρ1ρ�1
j σ�1

1� βiηjγ
�1
i κ�1

j

1 � σ1ρ1. σiρjσ
�1
i ρ�1

j . ρ�1
1 σ�1

1 � σ1ρ1αiκjτ
�1
i κ�1

j ρ�1
1 σ�1

1 � γiλjβ
�1
i θ�1

j

1 � σ1ρ1σ1. σiρjσ
�1
i ρ�1

j . σ�1
1 ρ�1

1 σ�1
1 � σ1ρ1βiηjγ

�1
i κ�1

j ρ�1
1 σ�1

1 � τiθjα
�1
i λ�1

j .

For all 1 ¤ i ¤ n� 1, the relator σ�1
i ρiσ

�1
i ρ�1

i�1 gives rise to:

1 � σ�1
i ρiσ

�1
i ρ�1

i�1 � σ�1
i σ�1

1 . σ1ρiρ
�1
1 σ�1

1 . σ1ρ1σ�1
i σ�1

1 ρ�1
1 σ�1

1 . σ1ρ1σ1ρ�1
i�1� β�1

i κiτ
�1
i η�1

i�1

1 � σ1. σ�1
i ρiσ

�1
i ρ�1

i�1. σ�1
1 � σ1σ�1

i . ρiσ
�1
1 ρ�1

1 σ�1
1 . σ1ρ1σ1σ�1

i ρ�1
1 σ�1

1 . σ1ρ1ρ�1
i�1σ�1

1� α�1
i ηiγ

�1
i κ�1

i�1

1 � σ1ρ1. σ�1
i ρiσ

�1
i ρ�1

i�1. ρ�1
1 σ�1

1 � σ1ρ1β�1
i κiτ

�1
i η�1

i�1ρ�1
1 σ�1

i � τ�1
i λiβ

�1
i θ�1

i�1

1 � σ1ρ1σ1. σ�1
i ρiσ

�1
i ρ�1

i�1. σ�1
1 ρ�1

1 σ�1
1 � σ1ρ1α�1

i ηiγ
�1
i κ�1

i�1ρ�1
1 σ�1

i � γ�1
i θiα

�1
i λ�1

i�1.

From the relator ρ�1
i�1ρ�1

i ρi�1ρiσ
�2
i , for all 1 ¤ i ¤ n� 1, we obtain:

1 �ρ�1
i�1ρ�1

i ρi�1ρiσ
�2
i � ρ�1

i�1σ�1
1 ρ�1

1 σ�1
1 . σ1ρ1σ1ρ�1

i . ρi�1ρ�1
1 ρ�1

1 σ�1
1 . σ1ρ1σ1ρi.

σ�1
i σ�1

1 . σ1σ�1
i � λ�1

i�1η�1
i ηi�1λiβ

�1
i α�1

i

1 �σ1. ρ�1
i�1ρ�1

i ρi�1ρiσ
�2
i . σ�1

1 � σ1ρ�1
i�1ρ�1

1 σ�1
1 . σ1ρ1ρ�1

i σ�1
1 . σ1ρi�1ρ�1

1 σ�1
1 .

σ1ρ1ρiσ
�1
1 . σ1σ�1

i . σ�1
i σ�1

1 � θ�1
i�1κ�1

i κi�1θiα
�1
i β�1

i

1 �σ1ρ1. ρ�1
i�1ρ�1

i ρi�1ρiσ
�2
i . ρ�1

1 σ�1
1 � σ1ρ1λ�1

i�1η�1
i ηi�1λiβ

�1
i α�1

i ρ�1
1 σ�1

1�κ�1
i�1θ�1

i θi�1κiτ
�1
i γ�1

i

1 �σ1ρ1σ1. ρ�1
i�1ρ�1

i ρi�1ρiσ
�2
i . σ�1

1 ρ�1
1 σ�1

1 � σ1ρ1θ�1
i�1κ�1

i κi�1θiα
�1
i β�1

i ρ�1
1 σ�1

1�η�1
i�1λ�1

i λi�1ηiγ
�1
i τ�1

i .

Finally we come to the surface relator σ1 � � � σn�1σn�1 � � � σ1ρ�2
1 . We deal with the cases

n even and odd separately.
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(a) n even. We have:

1 �σ1 � � � σn�1σn�1 � � � σ1ρ�2
1 � σ1σ2. σ3σ�1

1 � � � σ1σn�2. σn�1σ�1
1 . σ1σn�1. σn�2σ�1

1 � � �
σ1σ3. σ2σ�1

1 . σ2
1 . ρ�1

1 σ�1
1 ρ�1

1 σ�1
1 . σ1ρ1σ1ρ�1

1�β2α3 � � � βn�2αn�1βn�1αn�2 � � � β3α2β1λ�1
1 η�1

1

1 �σ1. σ1 � � � σn�1σn�1 � � � σ1ρ�2
1 . σ�1

1 � σ2
1 . σ2σ�1

1 . σ1σ3 � � � σn�2σ�1
1 . σ1σn�1. σn�1σ�1

1 .

σ1σn�2 � � � σ3σ�1
1 . σ1σ2. σ1ρ�2

1 σ�1
1 � β1α2 � � � αn�2βn�1αn�1βn�2 � � � α3β2θ�1

1

1 �σ1ρ1. σ1 � � � σn�1σn�1 � � � σ1ρ�2
1 . ρ�1

1 σ�1
1�σ1ρ1. β2α3 � � � βn�2αn�1βn�1αn�2 � � � β3α2β1λ�1

1 η�1
1 . ρ�1

1 σ�1
1�τ2γ3 � � � τn�2γn�1τn�1γn�2 � � � τ3γ2τ1θ�1

1

1 �σ1ρ1σ1. σ1 � � � σn�1σn�1 � � � σ1ρ�2
1 . σ�1

1 ρ�1
1 σ�1

1�σ1ρ1. β1α2 � � � αn�2βn�1αn�1βn�2 � � � α3β2θ�1
1 . ρ�1

1 σ�1
1�τ1γ2 � � �γn�2τn�1γn�1τn�2 � � �γ3τ2η�1

1 λ�1
1 .

(b) n odd. We have:

1 �σ1 � � � σn�1σn�1 � � � σ1ρ�2
1 � σ1σ2. σ3σ�1

1 � � � σn�2σ�1
1 . σ1σn�1. σn�1σ�1

1 . σ1σn�2 � � �
σ1σ3. σ2σ�1

1 . σ2
1 . ρ�1

1 σ�1
1 ρ�1

1 σ�1
1 . σ1ρ1σ1ρ�1

1�β2α3 � � � αn�2βn�1αn�1βn�2 � � � β3α2β1λ�1
1 η�1

1

1 �σ1. σ1 � � � σn�1σn�1 � � � σ1ρ�2
1 . σ�1

1 � σ2
1 . σ2σ�1

1 . σ1σ3 � � � σ1σn�2. σn�1σ�1
1 . σ1σn�1.

σn�2σ�1
1 � � � σ3σ�1

1 . σ1σ2. σ1ρ�2
1 σ�1

1 � β1α2 � � � βn�2αn�1βn�1αn�2 � � � α3β2θ�1
1

1 �σ1ρ1. σ1 � � � σn�1σn�1 � � � σ1ρ�2
1 . ρ�1

1 σ�1
1�σ1ρ1. β2α3 � � � αn�2βn�1αn�1βn�2 � � � β3α2β1λ�1

1 η�1
1 . ρ�1

1 σ�1
1�τ2γ3 � � �γn�2τn�1γn�1τn�2 � � � τ3γ2τ1λ�1

1 λ1θ�1
1

1 �σ1ρ1σ1. σ1 � � � σn�1σn�1 � � � σ1ρ�2
1 . σ�1

1 ρ�1
1 σ�1

1�σ1ρ1. β1α2 � � � βn�2αn�1βn�1αn�2 � � � α3β2θ�1
1 . ρ�1

1 σ�1
1�τ1γ2 � � � τn�2γn�1τn�1γn�2 � � �γ3τ2η�1

1 λ�1
1 .

This completes the proof of the proposition.
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