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Abstract

In this paper, we determine the lower central and derived series for the braid groups of the
projective plane. We are motivated in part by the study of Fadell-Neuwirth short exact
sequences, but the problem is interesting in its own right.

The n-string braid groups B, (RP?) of the projective plane RP? were originally stud-
ied by Van Buskirk during the 1960's, and are of particular interest due to the fact that
they have torsion. The group By (RP?) (resp. By(RP?)) is isomorphic to the cyclic group
Zy of order 2 (resp. the generalised quaternion group of order 16) and hence their lower
central and derived series are known. If n > 2, we first prove that the lower central
series of B,(RP?) is constant from the commutator subgroup onwards. We observe that
[2(B3(RP?)) is isomorphic to (F3 x Qg) x Zs, where Fy. denotes the free group of rank k,
and Qg denotes the quaternion group of order 8, and that To(By(RP?)) is an extension of an
index 2 subgroup K of Py(RP?) by Z ® Zy. As for the derived series of B,(RP?), we show
that for all n > 5, it is constant from the derived subgroup onwards. The group B,(RP?)
being finite and soluble for n < 2, the critical cases are n = 3,4. We are able to determine
completely the derived series of B3(RP?). The subgroups (Bs(RP?))™M), (B3(RP?))?) and
(B3 (RPz))(3) are isomorphic respectively to (F3 x Qg) x Z3, F3 x Qg and Fg x Zy, and
we compute the derived series quotients of these groups. From (B3(RP?))®) onwards, the
derived series of B3 (RPz), as well as its successive derived series quotients, coincide with
those of Fg. We analyse the derived series of By(RP?) and its quotients up to (By(RP2))™®),
and we show that (B4(RP2))®) is a semi-direct of F1o9 by F1;. Finally, we give a present-
ation of T»(B,(RP?)).
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Keywords: surface braid group, projective plane braid group, lower central series, derived series,
configuration space, exact sequence
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1 Introduction

1.1 Generalities and definitions

Let n € N. The braid groups of the plane E?, denoted by B,;, and known as Artin braid
groups, were introduced by E. Artin in 1925 [[AT], [AZ], [A3]], and admit the following well-
known presentation: B, is generated by elements o7, ...,0;,_1, subject to the classical
Artin relations:

,1<n—1

J

<ij
0;0;,10; = 0;,10;0;,¢ forall 1 <i<n—2.

{O’i0’~ = 0;0; if|li—j| >2and 1
A natural generalisation to braid groups of arbitrary topological spaces was made at
the beginning of the 1960’s by Fox (using the notion of configuration space) [FoN].
The braid groups of compact, connected surfaces have been widely studied; (finite)
presentations were obtained in [[Z1, 2, Bil, Bd]. As well as being interesting in their
own right, braid groups have played an important role in many branches of mathem-
atics, for example in topology, geometry, algebra and dynamical systems, and notably
in the study of knots and links [B4], of the mapping class groups [Bid, Bij], and of
configuration spaces [CQ, FH]. The reader may consult [Bi2, Han| R] for some general
references on the theory of braid groups.

Let M be a connected manifold of dimension 2 (or surface), perhaps with boundary.
Further, we shall suppose that M is homeomorphic to a compact 2-manifold with a
tinite (possibly zero) number of points removed from its interior. We recall two (equi-
valent) definitions of surface braid groups. The first is that due to Fox. Let F,(M)
denote the n'" configuration space of M, namely the set of all ordered n-tuples of distinct
points of M:

Fu(M) = {(x1,..., %) | xie Mand x; # xjifi # j}.

Since F, (M) is a subspace of the n-fold Cartesian product of M with itself, the topology
on M induces a topology on F,(M). Then we define the n-string pure braid group P,(M)
of M to be P,(M) = mt1(F,(M)). There is a natural action of the symmetric group S,
on F,(M) by permutation of coordinates, and the resulting orbit space F,(M)/S, shall
be denoted by D, (M). The fundamental group 711(D,,(M)) is called the n-string (full)
braid group of M, and shall be denoted by B,,(M). Notice that the projection F, (M) —
D,(M) is a regular n!-fold covering map. It is well known that B, is isomorphic to
B,(D?), and that the subgroup P, of pure braids of B, is isomorphic to P,(D?), where
D? is the closed 2-disc.

The second definition of surface braid groups is geometric. Let P = {p1,..., pxn} be
a set of n distinct points of M. A geometric braid of M with basepoint P is a collection
B=(B1,.-.,Bn)of npaths B: [0,1] — M such that:
(a) foralli=1,...,n, B;(0) = p;and B;(1) € P.
(b) foralli,j=1,...,nandi # j,and forall t € [0, 1], B;(t) # B;(t).
Two geometric braids are said to be equivalent if there exists a homotopy between them
through geometric braids. The usual concatenation of paths induces a group opera-
tion on the set of equivalence classes of geometric braids. This group is isomorphic
to B, (M), and does not depend on the choice of P. The subgroup of pure braids, sat-
isfying additionally B8;(1) = p; foralli = 1,...,n, is isomorphic to P,(M). There is a
natural surjective homomorphism 7v: B, (M) — S, which to a geometric braid 8 asso-
ciates the permutation 7(g) defined by (1) = p(g)(;)- The kernel is precisely P,(M),
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and we thus obtain the following short exact sequence:
1— Py(M) — B,(M) — S, — 1. (1)

In this paper, we shall be primarily interested in the braid groups of the real project-
ive plane RP2. Along with the braid groups of the 2-sphere, they are of particular in-
terest, notably because they have non-trivial centre (which is also the case for the Artin
braid groups), and torsion elements (which were characterised by Murasugi [Mu], see
also [[GGY]). We recall briefly some of their properties. If D> < RP? is a topological disc,
there is a group homomorphism :: B,(D?) — B, (RP?) induced by the inclusion. If
B € B, (D?) then its image () shall be denoted simply by B. A presentation of B, (RP?)
was given in [[VB] (see Proposition fl); in [GGA], we obtained a presentation of P,(RP?).
The first two braid groups of RP? are finite: B;(RP?) and B, (IRP?) are isomorphic to Z;
and Q1 respectively, where for m > 2, Q4,, denotes the generalised quaternion group
of order 4m [VB]. If n > 3 then B,(RP?) is infinite. For n = 3, the Fadell-Neuwirth
short exact sequence of pure braid groups yields the fact that P;(RP?) is isomorphic to
a semi-direct product of a free group of rank two by Qg. If n > 2, the so-called ‘full
twist’ braid A2 = (071 - - - 0,,_1)" generates the centre Z(B, (RP?)) of B,(RP?), and is the
unique element of B,(RP?) of order 2. Here A, denotes the Garside (or ‘half twist’)
element of B, (RP?), defined by

Ap = (01 0y-1)(01" " On—2) -+ (0102)071.

Further, the torsion of B, (RP?) is 4n and 4(n — 1), and that of P,,(RP?) is 2 and 4 [GGJ].
In [GGH], we classified the virtually cyclic subgroups of B,(RP?) for all n € N, and
in [GGY], we characterised the finite subgroups of B, (RP?).

Our aim in this paper is to study the lower central and derived series of the braid
groups of RP2. We recall some definitions and notation concerning these series. If G
is a group, then its lower central series {I';(G)};oy is defined inductively by I'1 (G) = G,

and I';,1(G) = [G,T;(G)] for all i € N, and its derived series {G(")}. o) is defined
1ENU

inductively by G© = G, and G = [GU—1),GI=V] for all i € N. One may check easily
that T;(G) 2 T;41(G) and G¢-D o GO foralli € N, and forall j € N, j > i, [;(G)
(resp. G1)) is a normal subgroup of T;(G) (resp. G)). Notice that T>(G) = G is the
commutator subgroup of G. The Abelianisation of the group G, denoted by GA® is the
quotient G/T»>(G); the Abelianisation of an element ¢ € G is its I';(G)-coset in GAP. The
group G is said to be perfect if G = G, or equivalently if GAP = {1}. Following P. Hall,
for any group-theoretic property P, a group G is said to be residually ‘P if for any (non-
trivial) element x € G, there exists a group H with the property P and a surjective
homomorphism ¢: G — H such that ¢(x) # 1. It is well known that a group G
is residually nilpotent (respectively residually soluble) if and only if (1,5, T;(G) = {1}
(respectively (5o G® = {1}). If g,h € G then [g,h] = ghg~'h~! will denote their
commutator.

The lower central series of groups and their successive quotients I';/I’; ;1 are iso-
morphism invariants, and have been widely studied using commutator calculus, in
particular for free groups of finite rank [Hal, MKS]. Falk and Randell, and independ-
ently Kohno investigated the lower central series of the pure braid group P,, and were
able to conclude that P, is residually nilpotent [FR1], Kd]. Falk and Randell also stud-
ied the lower central series of generalised pure braid groups [[FR2, fK3]. Using the
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Reidemeister-Schreier rewriting process, Gorin and Lin obtained a presentation of the
commutator subgroup of B, for n > 3 [[GL]. For n > 5, they were able to infer that
(By)M = (B,)?, and so (B,)(V) is perfect. From this it follows that T'»(B,) = I'3(By),
hence B, is not residually nilpotent. If n = 3 then they showed that (B3)(!) is a free
group of rank 2, while if n = 4, they proved that (B4)") is a semi-direct product of two
free groups of rank 2. By considering the action, one may see that (By)) 2 (B4)?.
The work of Gorin and Lin on these series was motivated by the study of almost peri-
odic solutions of algebraic equations with almost periodic coefficients. In GGd]
we studied the lower central and derived series of the 2-sphere S? and the finitely-
punctured 2-sphere. For S?, the case n = 4 is critical, in the sense that if n # 4, B, (S?)
is residually soluble if and only if n < 4. It is an open question as to whether B4(S?) is
residually soluble.

The above comments indicate that the study of the lower central and derived series
of the braid groups of RP? is an important problem in its own right, and it helps us to
understand better the structure of such groups. But we are also motivated by the in-
teresting question of the existence of a section (the ‘splitting problem’) for the following
two short exact sequences of braid groups (notably for the case M = RP?) obtained by
considering the long exact sequences in homotopy of fibrations of the corresponding
configuration spaces:

(a) letm,n e Nand m > n. Then we have the Fadell-Neuwirth short exact sequence of pure

braid groups [FaN]:
1 Py(M\{x1, ..., Xm}) =% Pouin(RP?) 25 P, (RP?) — 1, 2)

where m > 3if M = S? [[Fd, FVB], m > 2 if M = RP? [VB]], and m > 1 otherwise [FaN],
and where p. is the group homomorphism which geometrically corresponds to for-
getting the last n strings, and i, is inclusion (we consider P,,(M\ {xy,...,xu}) to be
the subgroup of Py, (RP?) of pure braids whose last m strings are vertical). This
short exact sequence plays a central role in the study of surface braid groups. It was
used by [PR] to study mapping class groups, in the work of [[GMB] on Vassiliev in-
variants for braid groups, as well as to obtain presentations for surface pure braid
groups [Bill, Bd, GGT|, [GG4, [GGE].

(b) let m,n € N. Consider the group homomorphism 7: By4,(M) — Sp4n, and let
Bun(M) = 77 1(S,; x S,) be the inverse image of the subgroup S, x S, of Sy4n. As
in the pure braid group case, we obtain a generalisation of the Fadell-Neuwirth short
exact sequence [[GGA:

1 — By(M\ {x1, ..., %m}) — Bun(M) 25 By(M) — 1, 3)

where we take m > 3if M = S%, m > 2 if M = RP? and m > 1 otherwise. Once more,
ps corresponds geometrically to forgetting the last n strings.

We remark that if the above conditions on n and m are satisfied then the existence
of a section for p. is equivalent to that of a geometric section for the corresponding
configuration spaces (cf. GG4]). The authors have recently solved the splitting
problem for the short exact sequence (@) for all surfaces [GG7]. In [GG4], we studied
the short exact sequence (B) in the case M = S? of the sphere, and showed thatif m = 3
then (§) splits if and only if n = 0,2 mod 3. Further, if m > 4 and (f) splits then there
exist €1,€ € {0,1} such that n = ey (m — 1)(m —2) — exym(m — 2) mod m(m — 1)(m — 2).
An open question is whether this condition is also sufficient.

4



Our main aim in this paper is to study the lower central and derived series of the
braid groups of RP2. This was motivated in part by the study of the problem of the
existence of a section for the short exact sequences (fJ) and ([@). To obtain a positive
answer, it suffices of course to exhibit an explicit section (although this may be easier
said than done!). However, and in spite of the fact that we possess presentations of
surface braid groups, in general it is very difficult to prove directly that such an exten-
sion does not split. One of the main methods that we used to prove the non-splitting
of (B) for n > 2 and of (B) for m > 4 was based on the following observation: let
1 — K — G — Q — 1 be a split extension of groups, where K is a normal sub-
group of G, and let H be a normal subgroup of G contained in K. Then the extension
1 — K/H — G/H — Q — 1 also splits. The condition on H is satisfied for ex-
ample if H is an element of either the lower central series or the derived series of K.
In [GGI], considering the extension (@) with n > 3, we showed that it was sufficient
to take H = I';(K) to prove the non-splitting of the quotiented extension, and hence
that of the full extension. In this case, the kernel K/I';(K) is Abelian, which simplifies
somewhat the calculations in G/H. This was also the case in [[GG4] for the extension ([))
with m > 4. However, for the extension (Bl) with n = 2, it was necessary to go a stage
further in the lower central series, and take H = I'3(K). From the point of view of the
splitting problem, it is thus helpful to know the lower central and derived series of the
braid groups occurring in these group extensions. But as we indicated earlier, these
series are of course interesting in their own right, and help us to understand better the
structure of surface braid groups.

1.2 Statement of the main results

This paper is organised as follows. In Section P, we recall some general results con-
cerning the splitting of the short exact sequence 1 —> I'y(B,(RP?)) — B, (RP?) —>
(Bx(RP?)) AP — 1, where (B,(RP2))AP is the Abelianisation of B,(RP2), as well
as homological conditions for the stabilisation of the lower central series of a group
(Lemma [)). We then go on to study the lower central series of B, (RP?), and we prove
the following result.

Theorem 1. The lower central series of B,(RP?) is as follows.

(a) Ifn = 1 then B{(RP?) = P;(RP?) = Z,, and T;(B1(RP?)) = {1} forall i > 2.

(b) If n = 2 then By(RP?) is isomorphic to the generalised quaternion group Q14 of order 16.
Its lower central series is given by To(Bo(RP?)) = Zg4, T3(B2(RP?)) = Zy and T';(Ba(RP?)) =
{1} foralli > 4.

(c) For all n > 3, the lower central series of B, (RP?) is constant from the commutator sub-
group onwards: Ty (B, (RP?)) = To(B,(RP?)) for all m > 2.

Further, a presentation of T (B, (RP?)) is given in Proposition [[2.

The lower central series of B, (RP?) is thus completely determined. In particular, for
alln # 2, the lower central series of By(RP?) is constant from the commutator subgroup
onwards, and B, (RP?) is residually nilpotent if and only if n < 3. A presentation of
I>(B,(RP?)) is given in Proposition [[@ in Section f]. The case n = 3 is particularly
interesting: as we shall see in Proposition f, T'»(B3(RP?)) is a semi-direct of the form
(F3 x Qg) x Z3. This may be compared with Gorin and Lin’s results for I';(B3) and
I'5(By) [[GIN] and with our result for B4(S?) [GGH].



In Section B, we study the derived series of B,(RP?). As in the case of B, and
B,(S?) [GL, GG, (B, (RP?))M) is perfect if n > 5, in other words, the derived series of
B,,(RP?) is constant from (B, (RP?))(}) onwards. The cases 1 = 1,2 are straightforward,
and the groups By, (RP?) are finite and soluble. In the case n = 3, we make use of the
semi-direct product decomposition of (Bz(RP2))() of Proposition .

Theorem 2. Let n € N, n # 4. The derived series of B,(RP?) is as follows.
(a) Ifn =1 then (B,(RP?))M = {1}.

(b) Ifn = 2 then (By(RP?))D) = Z4 and (By(RP?))® = {1}.

(c) Suppose that n = 3. Then

(i) (B3(RP?))M) = T'(B3(RP?)) fits into the short exact sequence

1— K — (B3(RP?)V — Z5 — 1,

where K is an index 2 subgroup of P3(RP?).

(ii) This short exact sequence splits; a section is given by associating (030201)* € (B3(RP?))(M)
to a generator of Z. The commutator subgroup (Bs(RP?))() is isomorphic to (F3 x Qg) x Za,
where the actions are given by Proposition [§.

(iii) We have (B3(RP?))® = 3 x Qg, where the action is given by Proposition §. The quo-
tient (B3(RP2))(D/(B3(RP?))?) = Zs, and there is a short exact sequence

1 — (B3(RP?))M/(B3(RP?))® — B3(RP?)/(B3(RP?)® —
B3(RP?)/(B3(RP?))D — 1,

where the extension B3(RP?))/(Bs(RP?))® is isomorphic to the dihedral group Dihy of order
12. Moreover, (B3(RP?))?) /(B3(RP?))®) = 73, and B3(RP?)/(B3(RP?))®) is an extension
of Z3 by Dihyy, so is of order 192.

(iv) We have (B3(RP2))® =~ Fg @ Z, and (B3(RP?))®) /(B3(RP2)*) =~ 7Z° @ Z,. Further,
B3(RP?)/(B3(RP?))® is an extension of 7 @ 7, by B3(RP?)/(B3(RP?))®), so is infinite,
and for all i > 4, (B3(RP?))®) = (Fg)(=9),

(d) Ifn = 5 then (B,(RP?))® = (B,(RP?))M), so (B,(RP2))M) is perfect. A presentation of
(Bu(RP?)) is given in Proposition [,

So if n # 4, the derived series of B,(RP?) is thus completely determined (up to
knowing the derived series of the free group g of rank 9). In particular, if n # 4,
B,(RP?)is residually soluble if and only if n < 4 (Corollary [[(). We remark that part (d)
of Theorem [] and the first statement of part (d) of Theorem P} appeared in [BM] where
the authors asserted that the results may be proved along the lines of our proof in the
case of the sphere [GGJ]. We give the details of the proofs. As for B, and B,(S?) [GI],

GGH, GGA], the case n = 4 is somewhat delicate. We are able to determine some of the
terms and quotients of the derived series of By(RP?).

Theorem 3. Suppose that n = 4.
(a) The group (B4(RP?))M) = I'y(B4(RP?)) is given by an extension

1— K — (B4(RP?)D — Ay —1

where K is a subgroup of Py(RP?) of index two.



(b) (i) We have the following isomorphism:
(Bs(RP?)M = (B4(RP?))? x Zs,
where the action on (B4(RP?))?) is given by conjugation by (030201)*, and
(B4(RP*))/(By(RP?))?) = Zj.

(ii) We have a short exact sequence

1 — (B4(RP?))M/(B4(RP?))® — B4(RP?)/(B4(RP?)® —
By(RP?)/(By(RP?))D — 1,

where By(RP?)/(B4(RP?))? is isomorphic to the dihedral group Dihy of order 12.
(iii) The group (Bs(RP?))® is given by an extension

1— K —> (B4(RP?))? — Z, @7, —> 1.

(c) (B4(RP?))@)/(B4(RP?))®) =~ 73, and (B4(RP?))D /(B4(RP?))® = Z3 x Zs, where the
action of Zgz permutes cyclically the three non-trivial elements of the first and second (resp. the
third and fourth) copies of Z.

(d) The group (B4(RP?))® is a subgroup of K of index four. Further,

(Bs(RP?)® = (Fs5 » F3) # Zy,
where the action is described by equations ([28)—([[31). Moreover,
(By(RP?))®)/(By(RP*))W) =~ Z3 @ 2,

and (By (RPz))(4) is a semi-direct product of the form F1a9 x [F17 where the action is that in-
duced by F3 on Fs. From i = 4 onwards, we have (B4(RP2))(1+4) ~ (Fip9 % Fly)(l) for all
i>0.

A presentation of By(RP?))(1) derived from that of Proposition [ is given during
the proof of Theorem §. As in the case of B4(S?), it is an open question as to whether
B4(RP?) is residually soluble or not.

In [BGQ], the lower central series of braid groups of orientable surfaces of genus
g = 1, with and without boundary, was analysed. The study of the lower central series
of non-orientable surfaces of genus at least two is the subject of work in progress.
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2 The lower central series of B, (RP?)

The main aim of this section is to prove Theorem [[, which describes the lower central
series of B, (RP?). Before doing so, we state some general results concerning B,(RP?),
as well as some general homological conditions for the stabilisation of the lower cent-
ral series of a group (Lemma []). We start by recalling Van Buskirk’s presentation of
B, (RP?).

Proposition 4 (Van Buskirk [VB])). Let n € N. The following constitutes a presentation of
the group B, (RP?):

generators: oy,...,0,_1,01,---,0n-

relations:

o0 = 0j0; ifli—jl =2,
0i01410; = 034103034 for1<i<n-—2,
oipj = P;o; forj#i,i+1,
piv1 =0 ot forl<i<n-—1,
Pi_+11pi_1pi+1pi =0? forl<i<n-—1,

2 2
P1 =0103 0y 20y 10y_p " 0707.

Remark 5. Let n € N. It is well known that {B;, pr| 1<i<j<n 1<k<n}isa
generating set for P,(RP?), where

-1 -1
-0 1°

—_— . . 2 ..
Bij=0j1-0i41070; 50,

Let n € N, let (B,(RP?)) AP = B, (RP?)/T»(B,(RP?)) denote the Abelianisation of
B,(RP?), and let a: B,(RP?) —> (B,(RP?)) AP be the canonical projection. Then we
have the following short exact sequence:

1—=T5(B,(RP?2)) —= B, (RP?) —— (B, (RP?)) A —1. (4)

We first prove the following result which deals with this short exact sequence.

Proposition 6. Let n € N. Then (B,(RP?)) 4 = B, (RP2)/T(B,(RP?)) = Z, ® Z,, where
the generators of the first (resp. second) copy of Z, is the image of the generators o; (resp. p;).

Proof. This follows easily by Abelianising the presentation of B,(RP?) given in Pro-
position fl. The generators o; (resp. p;) of B,(RP?) are all identified by « to a single
generator 0 = a(0;) (resp. p = a(p;)) of the first (resp. second) Z,-summand. O

We recall the following lemma from [GGH].

Lemma 7 ([GGA)). Let G be a group, and let §: Ha(G,Z) — Hy(GA?, 7). denote the homo-
morphism induced by Abelianisation. Then I',(G) = I's(G) if and only if J is surjective.

We now come to the proof of Theorem [Il.



Proof of Theorem[ll. Since By (RP?) = 711(RP?) and B,(RP?) =~ Q14[VB], parts @) and (B)
follow easily. Now suppose that n > 3. First observe that Hy(Z, @ Zp) = Z,. By
Lemma [}, if the homomorphism § is surjective then I'y(B,(RP?)) = I'3(B,(RP?)), and
part (d) follows. Otherwise, if J is not surjective then it is trivial, and we obtain the
following exact sequence:

1 — Zp —> Tp(Bu(RP?))/T3(By(RP?)) —> Hy(B,(RP?),Z) — (B,(RP?))*® — 1.

It follows that Zy —> T'(B,(RP?))/T3(B,(RP?)) is an isomorphism. So we have the
short exact sequence:

1 — Zy —> B,(RP?)/T3(B,(RP?)) — Hi (B, (RPZ),ZQ — 1,

Lo ®Zy

and hence the middle group, which we denote by H, is of order 8. Since the quotient
I5(B,,(RP?))/T3(B,(RP?)) is non trivial, we conclude that H is non Abelian, and so is
either Qg or the dihedral group Dihg.

We claim that there is no surjective homomorphism B, (RP?) — H. To see this,
let ¢: B,(RP?) — H be a homomorphism. Since 0,0;,,0; = 0;,,0,0;, forall 1 <i <
n — 2, the 0; are pairwise conjugate. Hence ¢(¢;) and ¢(0;) are conjugate in H for all
1 <i,j < n—1. But in both Qg and Dihg, any two conjugate elements commute.
Applying ¢ to the relation 0,0, ,0; = 0;,,0,0;,; and using induction yields ¢(c;) =
@(0;) forall 1 < i,j < n—1. If p(0;) = 1 then the relation p; 11 = U’i_lpia’i_l implies
that ¢(p;) = @(pi+1) forall 1 <i < n—1, and thus Im (¢) = {(¢(p1)) # H. So we may
assume that ¢(0;) # 1.

Suppose first that n > 4. Given 1 < i < n, there exists 1 < j < n —1 such that o}

commutes with p;, and so ¢(c;) commutes with ¢(p;) for all i. If n = 3 then a similar

analysis shows that ¢(p1) and ¢(p3) commute with the ¢(c;). Further, po = o7 1p101_ L

and hence ¢(p2) commutes with the ¢(cj). In both cases, we conclude that Im (¢) is
contained in the centraliser of ¢(07) in H. A necessary condition for ¢ to be surjective
is that ¢(07) be central in H, and so ¢(07) must be of order 2. Once more the relation
Pit1 = (Tl-_lpi(fi_l implies that ¢(p;) = @(p;+1) forall 1 <i < n—1, and hence Im (¢) =
(@(p1), ¢(01)) # H.

Thus no homomorphism B, (RP?) —s H is surjective, but this contradicts the sur-
jectivity of the canonical projection B, (RP?) — B, (RP?)/T'3(B,(RP?)). This completes
the proof of part (), and thus that of Theorem [l]. O

We may obtain a much better description of I';(B3(RP?)) as follows. This will be
helpful in the analysis of the derived series in Section B.

Proposition 8. The group T'»(B3(RP?)) is isomorphic to (F3 x Qg) x Z3. The actions may be
described as follows. Writing Qg = (x,y | x*> = y?, yxy~! = x71), F3 = F3(z1,2,23) and
Z3 = {u), we have:

lex_1 = zl_1 xzzx_1 = zl_lzglzl x23x_1 = zl_lzz_lzl
yzly_l = 22371 yzzy_l = 22_1 y23y_1 = 27_23_122_1
uzlu_1 = x22321 uzzu_1 = xzzl_1 u23u_1 = xzzz_lzl_lzg1
uxu~! = xy uyu_1 = X,

where u = (030201)%, X = pap1, y = p2B12p3 ", 21 = 03, 22 = Ba and z3 = p3By 305

9



Remarks 9.

(a) The commutator subgroup of By(RP?) will be analysed in more detail in Section 3.
(b) Let n > 2. Recall from [[GG3, Proposition 26] that there exist two elements a,b €
B, (RP?) defined by:

— _ 1 -1
{a _pno'n_l...o'l _0"”_1...0"1 p]_

(5)

-1 -1
b = Pn—10p—2"" 01 =0, -0 P1,

of order 4n and 4(n — 1) respectively. These elements satisfy Remark 27]:
"t =p,_1---prand a” = p, - py.

From page 777], conjugation by a~! permutes cyclically the following two col-
lections of elements:

{ 01, ., Oy, 4 V0,14, (71_1, . .,an__ll, a_lan__lla, and ©)
OP1s «++sPn/ pl_l,...,pgl.

In particular,

aoiaT"t = (71._1 foralll<i<n-1

n —n -1 : (7)

a‘pja =p; foralll <j<n.
Further, for all 1 <1 < n [GGY],

Anpid =1
in B,(RP?), which implies that
AnaAf = Anpnan—l N -0'1A;1 = ()1_10'1 e Op—1 = Ll_l. (8)

These observations will be used frequently in what follows.

Proof of Proposition[d. Let n > 2, and let a be the Abelianisation homomorphism of
equation (i), where a(0;) = 7 and a(p;) = p. The permutation homomorphism 7 of
equation () induces a homomorphism T: (B,(RP?)) 4P — (7), and we obtain the
following commutative diagram of short exact sequences:

1 1 1
1 K To(By(RP2)) —~> A, = T5(S,) — 1
1—— P,(RP?) B, (RP?) —= Sy 1 )
ol % h
1 ©) (Bu(RP?)) A0 — @) 1
1 1 1



Here T’ (resp. &) is the restriction of T (resp. &) to I'2(B,(RP?)) (resp. to P, (RP?)), h is
the homomorphism that to a transposition associates ¢, and K = Ker (¢') = Ker (7’)
is of index 2 in P,(RP?) (recall from Proposition B that (B,(RP?)) Ab ~ 7, ® 7, and
) ={(0) = 7).
Now let n = 3. From [VB], we know that
P3(RP?) =~ F, x Q. (10)

Let us first determine generating sets of the two factors in terms of Van Buskirk’s gen-
erators (this action was previously described in [GG4], but in terms of a different gen-
erating set). From the Fadell-Neuwirth short exact sequence (@), we have

1 — 11 (RP?\ {x1, x2}) —> P3(RP?) 2% Pp(RP?) =~ Q5 —> 1,

where 711 (RP?\ {x1, x5}) = [, is a free group of rank two with basis (o3, B2 3). The two
elements a = p30207 and b = py07 of equation (f]) are of order 12 and 8 respectively,
and satisfy:
b* = pyp1 and a® = p30201. (11)

From [GGY, Proposition 15], there is a copy of Q14 in B3(RP?) of the form (b, Aza~1),
and by general arguments, one sees that it has two subgroups isomorphic to Qg, of the
form (b?, Aza=1) and (b?, bAza~') respectively. We shall be interested in the latter copy
since it is a subgroup of P3(RP?).

We have that a* is of order 3, a* € Ker (a) = T»(B
(1,2,3). Since Az = {(1,2,3)), the correspondence (1,2,
7/, and hence

3(RP?)), and t(a*) = 7(a) =
3) > a* defines a section for

T»(B3(RP?)) = K % Z3 (12)

from equation (f)). Let us now study the structure of K in order to calculate the action.

By construction, K is the kernel of &/, and so is an index 2 subgroup of P;(RP?) =~
[F» x Qg. The homomorphism &’ is defined on the generators of P3(RP?) (cf. Remark f)
by pj —> pforj=1,2,3,and for1 <i <j < 3, B; is sent to the trivial element of {p).
Since

bAsa™ = o7 'pr.o1oaor. 07 toy 3t = o7 p1o1p3 " = p20ip3 " = p2Bioey ,  (13)

we see that our copy (b?, bAza~!) of Qg lies in Ker (¢’). Thus we have a commutative
diagram of short exact sequences:

1 1
Px ‘K )
1—Ker (p« [k) K P (RP?) —1
1—>Fy(03, By3) — P3(RP2) > Py (RP2) — 1
o ’Fz (03.B2,3) of
11— {p)=————=).
1 1

Note that we have used the following facts in order to construct this diagram:

11



(i) & | 7 (RP2\(x,,x,} 1S SUTjective onto (o) since p3 € F(p3, By 3).

(ii) p«(b?) = (0201)* = A% is equal to By in P,(RP?), and p.(bAza~t) = p2B1, by
equation (T3), and we conclude that p. | is surjective onto P,(RP?).
This second fact also implies that

K >~ K' x Qg, (14)

where K' = Ker (p. |x) = Ker («’) nFy(p3, B23) = Ker (zx’
in F»(p3,B23). The application of the Reidemeister-Schreier rewriting process with

Fz(p3,le3)) is of index two

Schreier transversal {1, p3} to this restriction shows that K’ = F3 (p%, By 3,03B2305 1) is

a free group of rank 3. Combining equations ([2) and ([4)), we obtain K = (F3 x Qg)
Z3. The actions may be deduced from the action of Qg = (b?,bAza~") on IF, (03,B23)
which we now determine. Remark () and equation (1]) imply that conjugation by
b? = ppp1 is given by:

P201- 0307 05 = p5 @ p3aps = p3! 5
B -1 -1 _ -1 3B -3 _ —1B—1 ( )
P201-B23-01 P = pP3 @ 05234 03 =03 5303
From this, we deduce that under conjugation by b?,
— o1
Porzbs (16)
Byzp3 — (Ba303) -
As for conjugation by bAza~! = paB1 05", we have
szsz;l. 03. pri%pz_l = p2p3p2_1 = pg,szz_épz_l using Proposition f
= p30201B3 307 05 05 03 = a®By3a %03 = Bagps  (17)
szllngl. Bz/3. I03B1_,.%p2_1 = bA3a_1. 32’3. aA;lb_l = bA3 (a_lel3a)A;1b_1

= bacta~ b7 = mpa*efa?o;!  from equation (B)
= Bz_g from equation (§). (18)

Here we have used equation (B), as well as the standard property of A, (in B,) that
AnoiAY = 0,_;forall 1 <i<n—1.Sounder conjugation by bAza~1,

p3 — By 303 (19)
B; 303 — p3.

Relations ([d) and ([9) thus describe the action of Qg on F; (p3, B2 3), from which we
may easily deduce its action on [3 (p%, B>, 03B2305 1):

0201-03-01 05 = p3°
0201-B2. 07 07" = 037 03B3303 - 03
p201-03B23p5 1 0103 = P37 B33 03
02B1203 " 03- 03B 505 ' = Bas.p3Ba3ps ' 03
02B12p3 " Ba. 03B, ' = By
02B1205 " 03B2305 - 03B 05 = Bag. 03By 305 B3

12



We now record the action of Z3 on F3 x Qg. Since

-2 2 2 -1 _-2
037 = 0207102 = 02010, 0, = By3B23

and
(0201)* = (02B1op3")? = b* = A3 = B12B13Bo3, (20)
we have
Bi2 = (p201)°B33B1 5 = (0201)%03. (21)
So

a*. 000107 = pl_lpg by equation (f)
= 0103 p2B1203 " P3B1
= (0201) ™" p2B12p3 " (p201) > by equation 1)
= 0201- szszgl by equation (£0),
and using the fact that (02p1)* = A} is of order 2 and is central in B3(RP?). Further,

—4 2

=a*.p2p5'Bip.a* = p;'p2a""03a by equation (§)
= p1 'p2p1 100305 to o1 by equation (B)
= py toapy tonos 0107 %01 = p1 . 020107 2 p1 = P P10201 = P21

using Proposition fl This describes the action of Z3 on the Qg-factor. As for the action
of Zz on (B, 3, p3), using relations (Z0) and (1)), we have

4 -1
a*.02B1pp5 . a

a*Bysa~* = By, by equation (B)
= A%rp; 2 by equations (20) and (21)),
and
a*pza ™ = 05 1" by equation (B)
= p3 ' By 31_159397__1 = 05 (0201)°03(02B1,205)~" by equation (1)
= p3(02B1,205 1) by equation (20)

Hence the action on [3 (p%, B3, 03B2305 1) is given by

a*p3a~* =p3(0p2B1,205 " )p3(02B1.205 ")

= p3(02B1,205 1 )p3(p2B1,205 ") A3 by equation (20)
= p3B2303A3 by equation (7))
= A3.p3B23p5 . 03
a*Byza* = Aj.p5?
a*03By 305 'a™* = p3(02B1205 ) A3052(02B1205 1) 1p5 !
= A3p3(Bo3ps) 2p5" by equation (I7)
= A3B33-p57-p3B 305"

Setting u = a*, x = ppp1, Yy = p2B12p3 ", 21 = 03,22 = Boz and z3 = p3By 305" yields the
desired actions, and completes the proof of Proposition B. O
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3 The derived series of B,(RP?)

In this section, we study the derived series of B,(RP?) and prove Theorems [ and J.
We start by showing that for all n # 2,3,4, (B,(RP2))(1) is perfect. We then study the
cases n = 3,4 in more detail. If n = 3, we are able to determine completely the derived
series of B3(RP?), and deduce that it is residually soluble. If n = 4, in Theorem [ we
obtain some partial results on the derived series of B4(RP?) and its quotients.

Proof of Theorem[J. Cases (f) and (B) follow directly from the fact that B;(RP?) =~ Z,
and B,(RP?) =~ Q4. Now consider case (), ie. n = 5. Let H = (B,(RP?))M be a
normal subgroup of B, (RP?) such that A = (B,,(RP?))()/H is Abelian (notice that this
condition is satisfied if H = (B, (RP?))?), and let

p—F
denote the canonical projection. Then the Abelianisation homomorphism « of equa-
tion @) factors through B, (RP?)/H, in other words there exists a (surjective) homo-
morphism a: B,(RP?)/H — (B,(RP?)) AP satisfying « = & o 7. So equation (@) in-
duces the following short exact sequence:

{n: B,(RP?) — B,(RP?)/H

1— A — Bu(RP?)/H - (BH(RP2)> Ab 1,

In particular, (B,(RP2)) AP ~ Z, ®Z, is a quotient of B,(RP?)/H. We claim that the
two are in fact isomorphic, which using the above short exact sequence will imply that
B,(RP?))) = H, and thus (B,(RP?))D = (B,(RP?))?. To prove the claim, first note
that 71,...,0,_1,01,--.,0n generate B,(RP?)/H. Since a(0;) = a(cy) forall 1 < i <
n—1,it follows that a(0;) = a(07). So there exist t; € A, with t; = 1, such that 0; = t;73.

We now apply 7 to each of the relations of Proposition f]. First suppose that 3 <
i < n—1. Since 0; commutes with 07, we have that 77 - t;07 = t;0; - 71, and hence ¢;
commutes with 77.

Now let 4 < i < n—1 (such an i exists since n > 5). Since 0; commutes with o>,
we obtain t;07 - to07 = tr07 - 1;07. But A is Abelian, and so it follows from the previous
paragraph that t, commutes with ;. Applying this to the image under 7t of the relation
010201 = 02010, we see that t, = t%, and hence t, = 1.

Next, if i > 2 then the relation 0;0;,10; = 0;410;0;4+1 implies that t; = t;,1, and so
th=...=t,_1 =1.Hence oy = 0> = ... = 7,,_1, and we denote this common element
by o.

Let 1 < j < n. Then from Proposition [ there exists 1 < i < n —1 such that p;

and ¢; commute. So in the quotient B,(RP?)/H, 0j commutes with ¢ forall 1 < j < n.

2 Hence

If1 <i < n—1, the relation p;y; = 07 'pjo; ! implies that p;1; = pic
@ _ {5‘1 0.—21
1 <i<n-1,weobtain c? = 1,and so g; = g for all 1 < i < n. Finally, by projecting
the surface relation of B,(RP?) into B,(RP?)/H, p]z = ¢2("=1) = 1. Therefore the group
B,(RP?)/Hisa quotient of Zp @ Z,. But we know already that (Bn (RPZ)) Ab ~ 7, D7,
is a quotient of B,,(RP?)/H, and so this proves the claim. Taking H = (B,,(RP?))®, it
follows that the group (B, (RP?))(1) is perfect. A presentation of (B,(RP?))™) will be
given in Proposition [[2. This proves part ().

. Projecting the relations pl.jrllpi_lpiﬂpi = 07 into B,(RP?)/H, where

14



We now consider case (d), so n = 3. Parts (f) and () are just restatements of
the results obtained in Proposition §. To prove part (fii), one may check easily using
the presentation of Proposition J that the Abelianisation (B3(RP?))™M)/(B3(RP?))® of
(B3(RP?))(D is cyclic of order 3, generated by the Abelianisation of a*. Since (B3(RP?))(1)
is isomorphic to (F3 x Qg) x Z3, where the Zs-factor is generated by a*, we obtain
(B3(RP?))? =~ 3 x Qg, where the action is once more given by Proposition B. To see
that the quotient B3(RP?)/(B3(RP?))®? is isomorphic to Dihy,, note first that we have
the following commutative diagram of short exact sequences:

1

(B3(RP2))(1) B3(RP?) (B3(RP?))Ab —1

| | |

1— (B3(RP?))M /(B3(RP?))@ —— B3(RP?)/(B3(RP?))1?) — (B3(RP?))A> —1

Since (B3(RP?))M /(B3(RP?))? = Zz and (B3(RP?))AP =~ Z, @ Z,, it follows that the
quotient B3(RP?)/(B3(RP?)) is an extension of Z3 by Z, @ Z,. We claim that the
action is non trivial. To see this, we consider the Con]ugate of a* (which is a coset
representative of the generator of (B3(RP2))™)/(B3(RP?))?) by oy (which is a coset
representative of 7 € (B3(RP?2)) AP):

cato;t = oy (ato; a*)a* = a0y taa® by equation ()

= Ulpl_lfflffztfz_l > by equation (B)

=0, p1 p2 p3 ~1a® by Proposition fjand equation (TT).

Now

070107 05" = pa(03 07 7 07 )05 = o3 (05 2B12(02B1205 ) " (o2p1) ) 03

1

=p3 ((PZPl) (02B1205 ") " (0201)” )pg by equation (1)

=p3 ((PzB1,2P3_1)_1(PZP1)) p31 by equation (20).

But (szszgl)_l (0201) € (B3(RP?))@from Proposition B, and since (B3(RP?))? <
B;(RP?), it follows that p5 o7 o, o5t € (B3(RP?))?). Thus gyato; ! is congruent mod-
ulo (B3(RP?))? to a4, and the action of & on (B3(RP?))(D/(B3(RP?))? is multiplica-
tion by —1. In particular, B3(RP?)/(B3(RP?))® is a non Abelian group of order 12. Of
the three non-Abelian groups of order 12, B3(RP?)/(B3(RP?))? cannot be isomorphic
to A4 since the latter has no normal subgroup of order 3. It cannot be isomorphic to
Dicyp = Z3 x Z4 (with non-trivial action) either, since Dicj, has a unique subgroup of
order 3 with quotient Z,. We conclude that B3(RP?)/(B3(RP?))?) = Dihy,. By the short
exact sequence

1 — (B3(RP%))®@ /(B3(RP?))®) — B3(RP?)/(B3(RP?)®) —
B3(RP?)/(B3(RP?))® — 1,

it follows that B3(RP?)/(B3(RP?))®) is an extension of Z5 by Dihy, so is of order 192.
This proves part (fi).
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Now let us prove (¥)). The first part, that (B3(RP?))?) /(B3(RP?))® = Z3, follows
easily by Abelianising the presentation of (B3(RP?))?) =~ F3 x Qg given in Proposi-
tion . Letting ¢ denote the Abelianisation homomorphism, one observes that ¢(z1) =
(1,0,0,0), ¢(z2) = ¢(z3) = (0,1,0,0), ¢(x) = (0,0,1,0), and ¢(y) = (0,0,0,1). The re-
striction of ¢ to IF3 is surjective onto the subgroup H of (B3(RP?))? /(B3(RP?))®) = 73
generated by the ¢(z;), so H = Z3. The quotient Q of (B3(RP?))? /(B3(RP?))® by
H is thus isomorphic to the subgroup of (B3(RP?))?/(B3(RP?))® generated by ¢(x)
and ¢(y), and so is also isomorphic to Z3. Since Qg = (x,y), ¢ induces a surjective
homomorphism §: Qg —> Q whose kernel is (x?). But as an element of (B3(RP?))?,
x? = A3 € Ker (¢), and denoting Ker (¢ |, ) by L, we obtain the following commutat-
ive diagram of short exact sequences:

1 1 1
1 L (B3(RP?))®) (D3) 1
1 I3 (B3(RP?))® Qs 1
9|r, 9
1—— H— (B3(RP?))®/(B3(RP?))®) Q 1.
1 1 1

Since A2 = x% e (B3(RP?))®), it follows that the upper short exact sequence splits,
and the fact that (A%) is central implies that the splitting gives rise to a direct product.
We conclude that (B3(RP?))®) ~ L @®Z,. Now L is the kernel of the homomorphism
¢ |F, : F3(z1,22,23) — H which under identification of H with Z, ® Z; sends z; to
(1,0), say, and z; and z3 to (0, 1). An application of the Reidemeister-Schreier rewriting
process shows that L is a free group Fg of rank 9. Thus (B3(RP2))®) = Fy @ Z; and
(B3(RP2))®) /(B3(RP?))®) ~ Z° @ Z,. It is then clear that (B3(RP2))() =~ (Fg)(=2) for all
i > 4. From the short exact sequence

1 — (B3(RP?))®) /(B3(RP?))® — B3(RP?)/(B3(RP?))W —
B3(RP?)/(B3(RP?))® — 1,

we see that B3(RP?)/(B3(RP?))® is an extension of Z° @ Z; by a group of order 192, so
is infinite. This proves part (i), and completes the proof of Theorem P. O

We obtain easily the following corollary of Theorem pP:
Corollary 10. Let n € N, n # 4. Then B,(RP?) is residually soluble if and only ifn <3. O

We now turn our attention to the remaining case, n = 4.

Proof of Theorem [J. Part (B)) follows from the first paragraph of the proof of Proposi-
tion §. So let us prove part (f). For this, we shall study the following presentation of
the group (B4(RP?))(M) which may be deduced from Proposition [J (the notation «, 8
etc. is that of Proposition [7):
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generators:
Bi =12 = p207 0y 'O}
By =%y = 01p2p1_101_1
By = 0, = 01910207 "
By = Ay = 01010102
Yl =Ny = 0'20'1_1
Yo = B2 =00

-1 -1 —
Y3 = 72 = 01010207 p7 0y

-1 —
Y4 =T = 0101010201 04

1

1

1

C1 =113 = paoy 'py oy !

C=x3 = 01p3p1_101_1

Cs = 03 = 01010307 "

Cy = A3 = 01010103

Z1 = N3 = 0'30'1_1

Zy = B3 = 0103

Z3 = y3 = 01010307 'py 07

-1 -1
Z4 =13 = 0101010301 03

1

For notational reasons, we set A, = X; = X3 = 1.

relators:

ZoX, 17!
X2Z1Z5"
74X, 173!
X4Z3Z} "

Yoy Xyt
X2 Y1 XpY5 2
Yoy tx vt

YA Y5t

Y3A4Y; AT
Y A3 Y TAL
V1D, Y, 'D;!
Y,D1Y; D5 !
Y3D,Y; D5
Y,D;Y; D!

-1 -1~-1
Y, 'B,Y; G
-1 —1,--1
Y;1BY; G,
z7'C1z;'D;!
Z,'Cz, Dt
z;1Cz'Dy?
Z,'Cz;'D3!
B 1A 'B1 A
ByA3 X5 'B;?

(22)
(23)
(24)
(25)
(26)
(27)
(28)

(43)
(44)
(45)
(46)
(47)
(48)
(49)

(64)
(65)
(66)
(67)
(68)
(69)
(70)
(71)

X1YsXeY, 2 (29)
Y1ZoviZ7Ytzet (30)
Y2 Z1Y2Z, 'Yzt (31)
Y3Z4Y5Z3 'Y, 127 (32)
YaZ3YaZ 'Yz (33)
CoX'Cyt (34)
X,C1Cy (35)
Z1Z, A (50)
ZoAZ5 " (51)
Z3A4Z; 1 AT (52)
ZyAsZT AL (53)
Z1B,Z, ' B! (54)
ZyB1Z;'B; ! (55)
Z3ByZ, ' B! (56)

By 1A B X! (72)
By YA "By A X! (73)
C,'B{'CiBsY, 1Y (74)
C;'By1GBsY Y, (75)
Cy'B;1CsBoY, MYt (76)
C'B'CiB Y Yt (77)
D, 'C'D1CuZ5 1zt (78)

DG DGz Zy Tt (79)

17

D1 = 14 = paoy o7 tor !

Dy =x4 = 01p4p1_101_1
D3 = 04 = 01010407 "
Dy = Ay = 1p10104
Ay =1 =pio7 Py 0]
Az =0y = 01010107
Ay =M = 01p10101

1

Xo=p1 = (712
Xy=1 = 01p10'12p1_10'1_1.
CsX5'C51 (36)
X4C3C; ! (37)
D)X, 'D;! (38)
X,D1D;! (39)
D,X; D3t (40)
X,D3D; ! (41)
Y Y, LAY (42)
Z4B3Z7 B! (57)
B1X4 X5 (58)
B AT! (59)
XA B (60)
A3B} ! (61)
Y, iRy tert (62)
Y'Y ICh (63)
D;'C' DGz 'z (80)
D'C'DsC1Z5 Zt (81)
Y2Z1ZY1 XA AT (82)
XoV1ZoZ1 Y2 X A5 (83)
Y1Z5Z4Y3 X4 A5 (84)

X4Y3Z4Z3 Y4 AT ALY (85)



We now Abelianise this presentation to deduce that (B4(RP?))(1) /(B4 (RP?))® = Zj.
We could do this directly, but it will be convenient for what follows to carry out a
partial Abelianisation first. Let A denote the group obtained from the above present-
ation of (B4(RP?))™) by adding the relations that the following generators commute
pairwise: A;, B;,C;, D;, X;, Z; fori = 1,...,4 i.e. all of the generators of (B4(RP2))(1)
commute pairwise, with the exception of the Y;. From equations 23), (B3), (B4), (B9)
and (g0), we have

Xy = ZpZ;7' = CoC ' = DDt = C5'Cy = D3 'Dy (86)
and from equations (24), (4), (B7), (B§) and (&I]), we have
Xy = Z4Z3' = CGCt = DoDy ! = C5'Cy = D3 D (87)
So
X, = Xy (88)
and
7075 = Z174. (89)
Now from equations (£2), [@3), (B0), ((T) and (§9), we have
A1 =B =Y, ' =Y,y =271 = 7,17, (90)
hence
Z1Zy = Z37Z4. 91)
Multiplying equations (B9) and (01) yields
73 =7% 73=173 (92)
Further, from equations (52), (£3), B8), (1)), Bd), B7) and (B1)), we have
By = Az = Z3AuZyt = 212, Ay (93)
Bi=X,'X, ' = 217251237, = 737 (94)

Substituting equations (P0), (P3) and (P4)) into equation (70) yields:
Xo =B 'A'B1Ay = A 2471 2,71 73 7,2 Ay = 1.
Hence

Xo=Xy=1,21 =2y, Z3 =74, Z3 =25 =73 = 73 (95)
Ci=Cy, D1 =Dy, C3=C4 D3 =Dy, B1 =1 (96)

by equations (B6)), 87), (B8), (02) and (P4). From equations (26), 27), (B§) and (29), we
have Y, = Y2, Y1 = Y2, Yy = Y2, Y3 = Y, s0

Yo=Y, Ya=Y;', and Y} = 1foralli=1,...,4 (97)
Using equations (30), (B1) and (P5)), we see that
1=Y2ZZ7 WY 27 =z zi 'z ! (98)
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and
1=Y%Z1YZ 'Yz =Yz tz oy z o (99)

Inverting equation (B9) and conjugating by Z;” !, we obtain
1=1Z1V1Z7'Y1Z,. (100)
Comparing equations (08) and (00) yields
72 =1. (101)
From this and equations (P0) and (B3), it follows that

21, (102)
By equations (B0), 82), (B0), B3), (B3, (PF), ®7), ([0T)) and ([02), we see that
A = Ay = By—Bs, Ay = By = 1. (103)
Now
C1 =Y "By, = VA Y5 =Yyt (104)
by equations (&2), (52), (F7) and (I03), and
Gy =Y, 'BY; !t =Y3Y, (105)
by equations (b4), (B7) and (f03), hence
C=C=C'=c" (106)
by equation (D6). Similarly,
Dy =Z,'Coz;t =z st (107)
by equations (67), (P5), (P4) and ([[04), and
D3 =Z,'CsZ5' = 23 7! (108)
by equations (£9), (P5), (P4) and (I03), hence
Dy =D, =D;' =D;! (109)

by equations (P5), (P6) and ([01)). Using equations (73), (07), ([{02), (I03), (I0F) and
([08), we see that

1 =YY, =BG ' ByCy = A1C 1 A1Cs = G5 = (Y3Yq)%

Hence Y3Y7 = Y| 1Y3_ 1 and so
Ci=C=C=Cy, Di=Dy=D3 =Dy (110)

by equations ([[06), (I07), ([I08) and (I09), as well as the fact that Cy,C4,Z> and Z4
commute pairwise. We deduce also from equations ([[0%) and (II0) that D? = 1 for
alli =1,...,4. Let C (resp. D) denote the common value of the C; (resp. D;), and let
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A = A} = Ay = By = B3. Running through the relations (2)-(B3) one by one, we see
that our group A has generators Y7, Y3, Z1, Z3, A, C and D with the following defining
relations:

P =Y =MZ)’ = (3230 =2} =25 =A*=C*=D*=1
A=CD=Y1Ys =Z1Z3, C=Y3Y;, 1DY3D =1, (Y3Y;)? =1 (111)
A,C,D,Z; and Z3 commute pairwise.

Notice that we may write D = Y3Y1Z37, and so Y1, Y3,Z1, Z3 generate A.

If we now Abelianise (B4(RP?))() completely by adding the relations that the Y;
commute pairwise with each of the generators of A, we see that A = C = D =
Z1 =73 =1,Y = Y7, Y} = 1, and thus (Bs(RP?))M)/(B4(RP?))® = Z;. We un-
derline the fact that under the complete Abelianisation of (B4(RP?))(1), the generat-
ors A;, B;,C;,D;, X;, Z;,i = 1,...,4, of (By (RPZ))(l) are sent to the trivial element, and
Y1,Y, L Yy Land Y; are sent to the same generator of (B4(RP?))(D)/(B4(RP?))?). Taking
b = pzopoy =0, 1(71_ 1p1 € B4(RP?) which we know to be of order 12, consider b*. Since
b® = p3p201 by Remark P(H), we have

b* = p30201. 030201 = C1B4A1CyY1 X, € (By(RP2))D.

Under Abelianisation, b* is thus sent to the (B4(RP?))®-coset of Y; which is a gener-
ator of (B4(RP?))M /(B4(RP?))@). Since b* is of order 3, it follows that the short exact
sequence

1 —> (B4(RP?)@ — (B4(RP?))M — (By(RP?))V) /(B4(RP?)® — 1

splits, and hence
(B4(RP?))M) = (By(RP?))?) » Z3,

where the action on (B4(RP?))) is given by conjugation by b*. This proves part (B)(@).
To prove part (B)(fi), consider the short exact sequence

1 — (B4(RP?))M/(B4(RP?))® — B4(RP?)/(B4(RP?))® —
B4(RP?)/(B4(RP*))) — 1.

As in part (@) of the proof of Theorem P, since (B4(RP?))(D/(B4(RP?))?) = Z3 and
B4(RP?)/(B4(RP?))N) = Z, @ Z,, to prove that B4(RP?)/(B4(RP?))? =~ Dihyy, it suf-
fices to show that the action of By(RP?)/(B4(RP2))) on the kernel is non trivial. To
achieve this, notice that the action by conjugation of o7 (which is a representative of the
generator 7 of B4(RP?)/(B4(RP?))M) on Y; (which from above is a representative of a
generator of (By(RP?))(M)/(By(RP?))?) is given by 01Y1(71_1 = (71(7201_2 = Y2X2_1. Now
modulo (B4(RP?))@, Yo X5 lis congruent to Y, which in turn is congruent to Y, 1 The
action of B4(RP?)/(B4(RP?))M on (B4(RP2))M /(B4(RP?))? is thus non trivial, which
proves that By(RP?)/(B4(RP?))? = Dihy,, and completes the proof of part (B)(f).

To prove part (B)(il), let # = 4 in the commutative diagram (f) of short exact se-
quences. Recall that in the lower sequence, (B4(RP?)) AP ~ Z, ®Z, is generated by
two elements o and p, Ker (T) = {p), and T(7), which we also denote by 7, is the gen-
erator of the quotient (B4(RP?)) AP/ (p). From the discussion following equation (f),
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K is of index 2 in P4(RP?). Furthermore, the homomorphism a’ sends the generator
Bij, 1 <i<j<4(resp. pr, 1 < k < 4) to the trivial element of {p) (resp. to p). This
diagram may be continued vertically by taking commutator subgroups successively;
in this way, we obtain the following commutative diagram of short exact sequences:

1— K" — (B4(RP?))©® 1 1
1— K — (B4(RP?)® —Zy ®Zy — 1 (112)
1— K — (B4(RP?))M Ay 1

The vertical arrows are inclusions, and K’ (resp. K”) is the kernel of the restriction of
T to (B4(RP?))@ (resp. to (B4(RP?))®). So K” = (B4(RP?))®), and since the index of
(B4(RP?))® (resp. Zp @ Z,) in (B4(RP2))(M) (resp. Ay) is three, we deduce that K’ = K,
which proves part (B)(f).

We now prove part (). We start by studying the quotient (By(RP?))() /(B4 (RP2))®).
As we saw above, the elements A;,B;, C;,D;, X;,Z;, i = 1,...,4 of (B4(RP2))(1) are
sent to the trivial element of (B4(RP2))(1)/(B4(RP?))?), and so belong to (B4(RP2))?.
Hence considered as elements of (B4(RP?))() /(B4(RP?))®) they commute pairwise (we
shall not distinguish notationally between elements of (B4(RP?))(1) and their cosets in
(B4(RP?))D /(B4(RP?))®)). These were precisely the relations that we added to those
of (B4(RP?))(M in order to obtain the presentation (IT1)) of A, and thus the relations of A
hold in (B4(RP?))D /(B4(RP?))®). In particular, (Bs(RP?))™) /(B4(RP?))® is a quotient
of A.

Since Z1, Z3 € (B4(RP?))?), we have that Y1Z;Y; !, Y1Z3Y; ! € (B4(RP?))@. Let G
denote the group obtained from A by adding the following relations to the presenta-
tion ([L11)) of A:

{ 71,723, Y1Z1Y1_1, leg,Yl_l commute pairwise (113)

and commute with Z;,Z3, A,C and D.

Once more, considered as elements of B4(RP?), Z1,Z3,Y1Z1 Y_l Y1Z3Y] 1'A,Cand D

belong to (B4(RP?))?), and so the commutation relations of e(%uatlon (m) of G also
hold in (B4(RP?))1)/ (B4 (RP2))®). This implies that (B4(RP?))(M /(B4(RP?))®) is also a
quotient of G.

We now determine G and its relationship with (B4(RP?))®) /(B4(RP?))®). Let L be
the group with generators wy, wy, w3, wy, t and defining relations:

foralll1 <i,j < 4w2—t3—1 ww]—w]wl,
(114)

twit™ 1 wo, tht = W1W>, tw3t = Wy, tumjf‘1 = W3Wjy.

Clearly L is isomorphic to Zj3 x Z3, where the action of conjugation by t on (wy, . .., ws)
permutes cyclically the elements wy, wy and wyw; (resp. w3, wy and wiw,). We define a
map §: L — G on the generators of L as follows:

P(wr) = Zy, Y(wa) = NZ1YT, p(ws) = Zs, p(wy) = V1Z3Y{, ¢(t) =
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Since Z% =
i=1,...,4
P(t)p(wr) (P
PO Pp(w2) (P(H) ™ = () P(wr) (P() > = YT Z1 Y72 = Y71 Z1Y 2 = Zi 1 Zy Yy

= P(w1)P(w2),

using the relations Y13 = 1land (V1Z1)® = 1 of (I1T). Similar relations hold for w3 and
wy, and hence 1 extends to a homomorphism from L to G. Now ¢ is surjective because
the generating set {Z1, Z3, Y1, Y3, A, C, D} of G may be reduced to {Z1, Z3, Y1, Y3} using
the relations ([TT)). Thus G is a quotient of L, and hence (B4(RP?))M) /(B4(RP?))®) is
also a quotient of L.

Let us now show that the groups L and (B4 (RP?))1) /(B4(RP?))®) are isomorphic.
Consider the map ¢: (B4(RP?))()) — L defined on the generators of (B4(RP?))() as
follows:

Z3 = 1and ¥} = 1in G, we clearly have ((w;))* = (p(t))* = 1 for
The relations ([I3) of G imply that the (w;) commute pairwise. Further,
(t))~! = ¢(wy) by definition, and

(115)

=
I
=
g
I
LS
=
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S
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S
-
\F.-N
=
£
I
g
S
N

A long but straightforward calculation shows that each of the relators (22)-(B3) of
(B4(RP?))M) is sent to the trivial element of L, and hence ¢ extends to a surjective ho-
momorphism of (B4(RP?))() onto L. Such a homomorphism sends ((B4(RP2))1)?) =
(B4(RP?))®) surjectively onto L. However L® is trivial, so ¢ induces a surjective
homomorphism @ of (B4(RP?))(1)/(B4(RP?))® onto L, and hence L is a quotient of
(B4(RP?))M) /(B4(RP?))®). Since L is finite and (B4(RP?))M /(B4(RP?))®) is a quotient
of L by the previous paragraph, we conclude that

(By(RP?))V/(B4(RP?)®) = L = 73 » Zs, (116)

where the action is given by equation ([14)). Further, : L — G is surjective and
(B4(RP?))M /(B4(RP?))®) is a quotient of G, so G = (B4(RP2))M)/(B4(RP?))®). An
easy calculation shows that ¥y~! = @. From the short exact sequence

1 —> (B4(RP?)@/(B4(RP?))® — (B4(RP?))M /(By(RP?))®) —
(B4(RP%))V) /(By(RP2)@ — 1,

we see that (B4(RP?))® /(B4(RP?))®) = Z3. It follows from the form of the isomorph-
ism that the Z,-factors of (B4(RP?))® /(B4(RP?))® are generated by the elements Z;,
73, Y1Z1Y] Land Y;1Z3Y!, and their images under ¢ are wy, w3, wy and wy respect-
ively. In particular, @ ((B4(RP2))(2) / (B4(RP2))(3)> = (w1, Wy, w3, wys). This completes
the proof of part ().

We now prove part (d). Consider the commutative diagrams (f) and (I12). Since
K = K’ from part ()({i) above, we have that K = (B4(RP2))® ~ Py (RP?). Conversely,
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since the homomorphism (B4(RP?))? —s Z, @ Z; of equation ([12) is the restriction
of the permutation homomorphism 7: B4(RP?) — S, to (B4(RP?))®), it follows that
any element of (B4(RP2))® ~ P,(RP?) also belongs to K, and thus

K = (B4(RP?))® A Py (RP?). (117)

Further, from the upper exact sequence of equation ([12), (B4(RP?))® < K, and since
(B4(RP?))® is normal in B4(RP?), we obtain

1— K/(B4(RP*)® — (B4(RP?))?)/(By(RP?))® — (By(RP?)P/K — 1

by taking the quotient by (B4(RP?))® of the first two terms of the middle short exact
sequence of equation ([TJ). In particular, K/(B4(RP?))®) = Z, ®Z,, and we have a
short exact sequence

1 — (B4RP)®) K —Zy®7Z) —> 1. (118)

Recall that the Z-factors of (B4(RP2))® /(B4(RP?))®) are generated by Z1, Z3, Y1Z; Y, !
and Y1Z3Y] L Using equation ([I7) and the expressions for Z;, Z3 and Y; in terms of
the standard generators of By(RP?), we conclude that

K/(By(RP)®) = {1, 2,23, W1 23, 2125 2a 23 Y, (119)

We now apply the Reidemeister-Schreier rewriting process to the leftmost vertical
short exact sequence of (f) to produce a set of generators of K. Taking {1,p1} as a
Schreier transversal of (o) in P4(RP?) and {B;j, px | 1 <i<j<4,1<k<4}asagen-

erating set of P4(RP?), we see that the following elements constitute a generating set
of K:

(B1o = Xy, Bz = V1XaY{!, Biy = Z15Xo Y, ' Z7Y, By = V1Yo
Bos = Z1YoY1Z1!, Bys = Z1Z, p1B1opy ! = A1 X4 AL!

{ p1BispTt = A1 YaXaYTATY, 01Brapr! = A1ZaYs Xy Y5 Z AT (120)
07 = A1A4, 05 = B1By, 05 = C1Cy, 0§ = D1Dy

| 0102 = A1By, p1p3 = A1Cy, p104 = A1D4.

Note that we have also written each element in terms of the generators of the presenta-
tion of (B4(RP?))() given at the beginning of the proof, we have deleted p; Bysp; ! and
p1B3 407 ! from the list of generators that appear initially in the process, and that for
i = 2,3,4, we have replaced p;p;* by p? = p;p;*. p1p;. Since (B4(RP?))®) < Py(RP?),
we may consider the image of (B4(RP?))® in P3(RP?) and P,(RP?) under the projec-
tions
p3: Py(RP?) —> P3(RP?) and py: P3(RP?) — P,(RP?)

obtained geometrically by forgetting the last string in each case. We claim that p, o
p3 ((B4(RP2))(3)> = {0102) = Z4. To see this, we first use equation ([18§) and the

Reidemeister-Schreier rewriting process to obtain a generating set for (By4(RP?))®).
This is achieved as follows. From equation ([20), we see that the elements of the set

T = {1 o207 0207 0307 207" P37 o107 }
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belong to K. Equations ([13) and ([19) give rise to the following commutative diagram:

K/(B4(RP?))®) —— (B4(RP?))) /(B4(RP?))® —— (B4(RP2))(D /(B4(RP?))®)

| | |

(wws, wywyy ——(w;|i=1,...,4)

4

where the horizontal arrows are inclusions, and the vertical arrows are the isomorph-
isms induced by @: (By4(RP?))D/(B4(RP?))®) — L. Equation ([20) yields 0207 e
B1AT land 0307 b — Ci1A] !, and considering the K/(B4(RP?))®)-cosets of these ele-
ments and applying equation ([15), we obtain (007 1y = wywsz and P(p3p] Yy = wowy.
It follows that 7 is a Schreier transversal for K/(B4(RP?))® in K, which enables us to
write down a generating set = for (B,(RP?))®). However, to prove the claim, we do not
need to study the whole list of generators. On the one hand, applying the description
of the generators of K given by equation ([20), the isomorphism @ and equation ([15),
we see that the elements of

U= {B1,2/ B3, B14, Bas, Bas, 01B12p7 ", 01B1307, 01B1apT s 01, 03, 03, Pﬁ}

belong to (B4(RP?))®), and appear as elements of ¥.. Moreover, it is clear that these
elements are mapped into (A3) under p, o p3 since p3 = p3 = A3 in P,(RP?). The other
elements of X obtained by applying the Reidemeister-Schreier process to an element
u € U are just conjugates of u (the conjugating elements being the non-trivial elements
of T), so also belong to (B4(RP?))®), and since (A3) is Abelian, these elements of . will
lie in (A3), which is contained in {p1p2). Hence it suffices to consider the elements of %
obtained by applying the Reidemeister-Schreier rewriting process to the three remain-
ing elements (01/91‘, i =2,3,4, of equation (I20). To do this, note that under identification
of (B4(RP?))M) /(B4(RP?))® with L, the elements of 7 project respectively to 1, wyws,
wiwywzwy and wowy, while p1p projects to wyws, p1p3 projects to wowy, and p1p4 pro-
jects to wiwowswy. The non-trivial elements of X arising as conjugates of p1p; are as
follows:

() i =2: p1p20103 1 03, p2py 1939%93; 10192; ! p2py 'o3p5 1(;10291(;3‘ 191{;2‘ L
(b) 1= 3: 01030205 P103 /02030103 P13+ P2PL P3PIR2 S P20T 307 P103.
(c) i=4: 01040103 P103 , P2040203 L1057+ P207 P304, P201 L305 P1P40105 -

Under the projection py o p3, the elements for the cases i = 2,3 project to elements of
(A3), while those for the case i = 4 project to pjp; or its inverse. We conclude that

P20 p3 ((B4 (RPZ))(3)> = (01p2) = Z4, which proves the claim. Thus the restriction

P2 |pa((Ba(rrry®) * P3((Ba(RP?)) — (p1p2)

of p to p3 ((B4(RP2))(3)) is surjective.
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Now consider the following commutative diagram of short exact sequences:

P2|ps ((By(rP2)3)
1 F2(ps, By3) P;(RP?) = Py(RP?) — 1.
(121)

The lower short exact sequence is that of equation (fJ) with m = 2 and n = 1 (here
p« = p2), while the vertical arrows are inclusions. It follows that

Ker (Pz p3((B4(RP2))(3))> = 3 ((34(RP2))(3)> N2 (03, B2 ). (122)

Since K = P4(RP?), p; restricts to K, and we have the following commutative diagram:

P3|(p,(®pP2))(
(Ba(®P2)® — T b (Ba(P2)®)
L l (123)
K Pl P;(RP?).

Again the vertical arrows are inclusions. Considered as elements of P,(RP?), Bij, 1<
i <j<3and pgps, 1 < k < 3, belong to K by equation ({), and we deduce that the
restriction of p3 to K is surjective. Since (Bs(RP?))®) is of index four in K, we conclude

that p3 ((B4 (RPZ))(3)> is of index at most four in P3(RP?).

Conversely, consider the Abelianisation of P3(RP?). From equation ([7) and the
action of Qg on Fy(p3, By 3) described by equations (I5), (I7) and ([8), we see that
(Bs(RP?)) AP =~ 73, and that the Abelianisation homomorphism 7: P3(RP?) — Z3
sends each of p;, i = 1,2,3, to a distinct Z,-factor, and the Bij, 1 <i<j<3to
the trivial element. Under p3, the elements of X are sent to the trivial element of Zg,
with the exception of those elements obtained via the Reidemeister-Schreier rewriting
process using p1p4, which are sent to (1,1, 1). It follows that

7 (ps ((Bu(®P)®)) = (LT T) = 2,

and so 7 (p3((B4 (RPZ))(3))) is of index four in Z3. We conclude from the following

commutative diagram:

ps ((Ba(RP2)) Py(RP?)

7 (s ((By(RP2))) 7,

whose horizontal arrows are inclusions and whose vertical arrows are surjections, that

p3 ((B4 (RPZ))(3)> is of index at least four in P3(RP?). From the previous paragraph,
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we conclude this index is exactly four, and since {p105) is of index two in P»(RP?),
it follows from equations ([21) and ([22)) that p3 ((B4(RP2))(3)> N Fa(p3, Bo3) is of
index two in F(p3, By3). Since By3 € X (as an element of Py(RP?)), we have that
Bys € p3 ((B4 (RPZ))(3)> (as an element of P;(RP?)). Thus under the canonical homo-

morphism
IF2 (03, Bo3) — Fa(p3, Boj3) /(P3 ((34(RP2))(3)> N Fa(ps, Bz,3)> = 7,

B, 3 is sent to 0, so p3 must be sent to 1, and hence the kernel of this homomorphism is
given by:

& ((34(RP2))(3)> N Fa(p3, B23) = F3(Bas, 03, 0382303 )- (124)
From equation ([[20), psp30201 = D1CsB1A4, and using equation ([15) and the iso-
morphism of equation ([16), we see that py030201 € (B4(RP?))®), and so p3p201 €
Ps3 ((B4(RP2))(3)> and pp1 € p2op3 ((B4(RP2))(3)>. But we know that each of these

three elements is of order four in its respective group [[GG4, Proposition 26 and Re-
mark 27], and hence it follows from the upper sequence of equation (I21)) and equa-

tion ([24) that
pa ((Ba(RP?)) = F3 1 Zy. (125)

We shall determine the action shortly. Returning to equation ([23), both of the hori-
zontal restrictions p3 ‘(34(RP2))(3) and p3 |k are surjective, and since (B4(RP?))® (resp.

p3((B4(RP?))®)) is of index four in K (resp. P3(RP?)), we obtain Ker (pg ) (B4 (RP2))() ) =

Ker (p3 |k ). Thus from the upper homomorphism of equation ([23) and equation ([25),
we have a short exact sequence

P3| (B, (rP2)®)

1 — Ker (p3|x) — (B4(RP?))®) F3 5 Zy — 1.

From equations ([21)), (I23) and ([24), a basis of the F3-factor of the quotient is given by
{Bz/g, 03, 03B2303 " }, and by (T21)) and the above discussion, we may take a> = p30201

to be a generator of the Z,-factor. Using equation ([]), we see that the action of Z4 on
[F5 is given by
LZ3B2,3&_3 = Bz_,;
a3p§a_3 = p3_2 (126)
a*03Basp3"a = p37. 03By 5057 03

Consider the map s: F3 x Zy — (By (RPZ))(3) defined on the generators of IF3 x Zy4 by:

{ x—x forxe {leg,pé, p3Bz,3p3_1}

Note that the elements on the right hand-side are considered to be elements in By(RP?).
Using the given generating set of K, we have

Bas = Y1Ys, p3 = C1Cq, 03Bogp; " = C1YaYsCyl, a* = psps3p2p1 = D1CyB1 Ay
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By equations (I13) and ([T6)), we see that these elements belong to (B4(RP?))®), so the
map s is well defined. Using equation (f]) once more, we see that the action of a* = s(a%)

(which is of order 4) on s(x), x € {Bzﬁ, 03, 03B2305 1}, is also given by equation ([26)),
up to replacing a® by a*. This shows that s extends to a homomorphism from F3 x Z,4

to (B4(RP?))®). It is then clear that s is a section for p3 ’(34 (RP2))(3) , and hence

(B4(RP?))®) ~ Ker (p3 |x) x (F3 x Zy).
From the following commutative diagram of short exact sequences,

1 1

1—>Ker(p3|1<) gF5—>Ker(p3) §F3—><p>—>1

1 K Py(RP2) —% (g) —1
P3\K p3
Py(RP?) ———— Py(RP?)
1 1

we see that Ker (p3 |k ) is also the kernel of the restriction of a’ to Ker (p3) which is the
free subgroup of Py(RP?) of rank three with basis {B14,B24,p4}. It thus follows that
Ker (p3 |k ) is a free group of rank five with basis {31,4, By 4, pﬁ, ,04B1,4p;1,p432,4p;1}.
We conclude that

(B4(RP?))®) = F5(By 4, Bog, p3, 04B14p5 ", p4Boapy ") » (Fg(B2,3,p§,p3Bz,393_ ) % Z4)

= (F5(31,4, Baa, 03, 04B1apy ", 0aBaapy ) % F3(Bag, 03, 03B2305 1)) X Ly
(127)

As we already mentioned above, p4030201 belongs to (B4(RP?))®), and it projects to
the generator of the Zy-factor of p3((B4(RP?))®), so may be taken as a generator of
the Z4-factor in equation ([27). To determine completely (B4(RP2))®), it just remains
to calculate the actions. By equation (f]), the action of Z, on the given generators of
[F5 x 3 is:

( B4 — 0. Br4.05° Bya — 03 Bia. By By 05 °
pi— Py > 04B1ap; " — p4BT 05"
{ Boio-' e 0uBiao-" 0aB=1o=1 0uB~1p—1 By B-1
0452404 P4D1,404 - P45y 404 - P4D1 404 2,3 2,3
\ 03— p5° 03Ba303" — p37. p3B3305 " 03,
(128)
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and so the action of Z4 by conjugation on the Abelianisation of s x [F3 is —Id. As for
the action by conjugation of 3 on 5, we have:

( Bi4— Big

By — 03 B4 Baa. B14 P4
Bag: | 03— o} (129)
paB1ap; " — paBrap)’
Boio~1 s 02 0uBr st 0uBo a0 0aB=1p=1 . =2
| 045240, P4 P4D1,4Py - P4D2,40, - 04D 404 - Py

Bia By 05" - paBys0y " - paBy 10y Boa-paBrapy
P4Baapy" - 0% Bia- 037 - paByi0r " - paBrapy - Boy
04Brapy " - p4Boapy " - 03 - Boa

Boa By -0y - paBys0y " - 0aBy 40y Boa-paBrapy

03B2303" 1 4 e 'Pﬁ B (130)
o3 ’—’Bzi Bii-Pi - 0aByi0r" 03 Bua-Boa-puBiior

By - P4B140; " - p4Baapy ! - 05 - Boa
p4B1403 ' —p4Biapy "
| 04Baapy ' — By, - Bry -0y - 0aBoapy ' 05 Bia-Baa

Bi4 —paB14p; " - 04Boap)’ 'Bz_,i *B14-Bog ‘P4Bz_,iPZ h
paBy 03"
Boa —p4B140; " p4Boap) Bz_,i : Bl_,i Bo4 - Bi1a- By
0 ] paBy a0y - paBrapy’ (131)
03 ——04B1ap; - p4Boapy - 03 'P4Bz_,iP4_1 'P4B1_,iP4_1
p4B14py " —0aB1 40"
| p4B24py " ——paBaapy !,

using the relation By 4B;4B34 = ‘04?2 in P4(RP?). In all cases, the action of the given
generators of [F3 on the Abelianisation of F5 is trivial. We thus conclude that

((Ba(®P2)) A — (By(RP?))/(ByRP))® = Zi @ Zy,

the Z,-factors arising from the fact that the action of Z; on [F5 x F3 is —Id. Consider
the following short exact sequence:

1 — (By(RP?)® — (B4(RP?)® — (By(RP?))¥/(By(RP?))H — 1.
The Z4-factor of (B4(RP?))® is mapped bijectivel(y onto the Z4-factor of the quotient
(B4(RP?))®) /(B4(RP?))™, so the kernel (B4(RP?))® of the projection (B4(RP?))®) —

(B4(RP?))®)/(B4(RP?))® is the restriction of this projection to 5 x 3. From the form
of the action of 3 on I, this restriction is the composition of the Abelianisation 5 x
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F;3 — 7> @73, followed by the homomorphism 7° 73 —> Zg ® Zg which takes
the coordinates modulo 2. We see that

(B4(RP?))® = Fip9 » Fy7, (132)

where Fiy9 (resp. Fiy) is the kernel of the restriction F5 — Zg (resp. of F3 — Zg) of
this composition to the first (resp. second) factor, and the action is that induced by that
of F3 on Fs. It is then clear that for all i > 0, (B4(RP?))#+) =~ (Fi59 x Fy7)@. This
completes the proof of part (d), and thus that of Theorem B. O

Remark 11. In order to decide whether B4(IRP?) is residually soluble, it would be useful
to know the form of the action in equation ([32). If the product F19 x F1; were almost
direct (i.e. the action of Fy7 on the Abelianisation of o9 were trivial) then By(RP?)
would be residually soluble [FRT]. However, this is not the case. To see this, first
consider the following basis (ey, . . ., e5) of s:

e1 = B14, €2 = Bys, €3 = p4B140; ' paBaapy . 03,
€y = ,0431,4[);1 and €5 = ‘0432,4p4_1.

From equation ([[31)), the action of p3 by conjugation on this basis is given by the fol-
lowing automorphism of Fs:

(133)

(61 —> e4e5egleleze5_1€;1

€y —> 646562_161_162616265_1611
Po2*q e3—> 64656365_164_1 (134)

€4 —> €4

€5 — €5.

\

It follows from the form of the projection F3 — Z3 that p3 belongs to the kernel F;. We
will calculate the action of the corresponding automorphism ¢ piona certain element

of F19. To do this, we first determine a basis of Fjy9 using the Reidemeister-Schreier
rewriting process. A suitable transversal for the kernel of F5 —> Zj relative to the basis
of equation (I33) is the word

T = €1€2€1€3€1€2€1€4€162€163€6162€1€65€1€2€1€3€1€2€1€4€1€2€1€3€1€2€1.

Let 19 denote the empty word, for i = 1,...,31, let 7; be the subword of T consist-
ing of the first i letters, and let W denote the Schreier representative of the word w =
w(ey, ..., es5). Deleting the trivial elements that appear in the set

{nq@§r4|0<i<3L1<j<5}

gives rise to a basis of [F1p9, and thus a basis for the Abelianisation Zjy9 of 159 (we shall
not distinguish notationally between a basis element of 159 and its projection in Zy9).
Using equation ([34), a long but straightforward calculation in Zip9 shows that

~1 ~1_-1 ~1 ~1 -1 . —1_—1 -1 ~1
gop%(r56372 ) =€y Ty .T3eIT, .Toe2T; .Tie1.€2T5 -T4l, T, .T561T, .T4€2T, .

’L'7€1’L'6_1. T662T5_1. T5€3T2_1.
Each of the terms appearing on the right hand-side of this equality, as well as T5e37, L
belongs to the given basis of Z9, and so the induced action of 17 on Zj29 is non trivial.
This proves that the semi-direct product 159 x Fy7 is not almost direct. It thus remains
an open question as to whether By(RP?) is residually soluble.
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4 A presentation of I';,(B,(RP?)),n > 3

In this section, we derive a presentation of I' (B, (RP?)) obtained using the Reidemeister-
Schreier rewriting process.

Proposition 12. Let n > 3. The following constitutes a presentation of the group T'>(B,,(RP?)):

generators:
n; = (71'(71_1, vi = alplaial_lpl_lal_l fori=2,...,n—-1
Bi =010, Ti= 01p101(7ip1_101_1 fori=1,...,n—1
;= pjoy prtort, 0 =appjort,  Aj=o1piovp; forj=1,...,n
K]‘=(71p]'p1_1(71_1 forj=2,...,n.

To simplify the expression of the relators, we set a1 = y1 = k1 = 1.
relators:

(@) Forall1<i,j<n—1,|i—j| =2
N T L R P AT

(b) Foralll <i<n-2,

1 —1 -1 ., —1p-1

1,Bz+1‘x 0‘14.1.8 1+1’ :Bi‘xi'i'llB'lel“ :Bz+1’
-1 —1
')’iTi+1’Yi7i+1Ti 7i+1' TYi1T z+1’)’z Tiv1

(c) Foralll<i<n—landl<j<nwithj#1i,i+1,
DcinTi_lﬂ]-_l, ,Bﬂy]"yi_lxj_l, 'yi/\]',Bl.—19]._1, TiGjoci_l/\]._l.
(d) Foralll <i<n-1,
B 1Kffi‘1’7i‘+11, o K TNBTTOLh, v e AL

(e) Foralll <i<n-—1,

/\i_+11’7i_1’7i+1)‘i:3i_1“i_1' 91+11K Kip1650 ! 1'

K0 0ty AT Ay
(f) (i) Ifnis even,
Batts - Br—an_1Bu_10n—2 - Bat2fiAT Y, Biaa - wn—oBn_18n_1Bu—2 - x3B207"
Y3 Tn—2Yn-1Tn—1Yn—2"" 'T3’72T191_1, Y2 Yn—2Tn-1Yn-1Tn—2"" '73T2771_17\1_1-
(ii) If nis odd,
Btz - ay_aPu_18n_1PBn—2 - B3raPrAT T, Praz - Bu—a@y_1Pu_1tn—2- - &3Pl

-1 1,1
Y3 Yn—2Tn-1Yn-1Tn—2" " TBY2T0; , TY2 Tu—2Vn-1Tn-1Yn—2""" 132N, A{ -
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Remark 13. The above presentation may be used to show that I';(B,(RP?)) is perfect
forn > 5.

Proof. Taking the standard presentation of B,(RP?) given by Proposition ], and the
set {1,01,01p1,01p101} as a Schreier transversal, we apply the Reidemeister-Schreier
rewriting process to the short exact sequence (fl). In this way, a generating set for
T»(B,(RP?)) is that given in the statement of the proposition. We record the following
equalities for later use:

( p=1=1 _ .
0101401 01 =7%i

a1p1Bipy o7 = T

no1Te; oyt = aproipronoipy toy e ot = MBiAL!
ap17ipy oy - = gy ey oy e ot = AqAT!
mo1Aier o = qip1oie1010i07 0y = A
aoriey oy = aprpioy oy oy e e = AT
apikipy oy = apenpipr oy oy oy = AT

| 100y oyt = vprprpioy oot = A

(135)

We now determine the relations of I'»(B,(IRP?)) in terms of the given generating set.
As we mentioned, we alsosetw; =x1 =1 = 1. Forall1 <i,j <n—1,|i —j| =2, the
relator (Ti(Tj(Ti_lUj_l gives rise to the following four relators, one for each element of the
Schreier transversal:
PP B R | 11 _
1 =0i0j0; 0; =00y .010.0; 0y (71(7 le,B][B zx
_ JEPE S P (SR | ~1 _,‘—1—1
1 =01. 07040, o .(71 = 010;.0j0; . 010; .O’j (71 = Binju; ,Bj

-1 -1 —1,-1,-1_-1 1,1
1 =0101. 0y0j0; (7 p1 (71 = 1014 Bip; L I (L T

1 —1 1,1 —1p-1,-1_-1 1.1
1 =1p101. 03007 o; N p1 oy = p1Bin;e; /3]. P1 07 =TY1 T

In the third and fourth equations, we have used equation ([35). Similarly, from the

relator 0;0;,.10;0; +11(7 1(71 +11, forall1 <i <n—2,we obtain:
-1 -1_-1 -1 -1 -1 -1 -1 -1
1 =0;0;1100;10; (71+1 = 0;0] . 010741. 0307 .010;,7.0; 07 .010,
-1
Z“iﬁi+10‘i“,‘+1ﬁ' X1
-1 -1_-1 -1 -1 1 -1 -1 -1 -1
1 =01.070741070;,10; "0, 1.07 = 010;.0;1107 .010;.0; 107 . 010; .0, 107

:,Bi"‘i+1/3i5i+1“i :Bi+1

1 =(71P1-Ui0i+1(7i(7i111f7f1‘7;11-Pfl‘ffl = 01P1Mﬁi+106i0¢i_+115i_10‘;1191_1‘71_
=YYV T Vi

1 =010101. 01(71+1f71 oo oo e o = e Bisia BiBr e B e or

—1
=TYi+1T 1+1r)/1 Tiv1e

1

1
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Foralll<i<n-—-land1<j<mn,j#1ii+1,therelator aipjai_lpj_l yields:

1= aipja._lpj_l = Uial_l.Ulpjpl_lal_l.Ulpla._lal_lpl_lal_l. alplalpj_l = ocinTi_liy]._l
1 =0.0pj0; p] 1 = 010;.pj0y pl (71 - alplalai_lpl_lal_l.Ulplp]._lal_l

= ,31'17]")/1. !
1=0101. aip]'ai_lpj_l. 91_1(71_1 = Ulplocixjri_lxj_lpl_lal_l = 'yi/\]',Bl.—19]._1

1=aipor.op0; o ey oy = apr By G ey oy = Tl A
Forall1 <i <n—1, the relator o; pla pl +1 gives rise to:

o1, 1.1 —1 -1 R -1 -1.-1_—1 -1
1 =0; pio; p;q =0, 07 -010ip] 07 01010, 07 p1 07 0101010, 4

= /51'_1Ki'fi_1’7i_+11
1= 0’1.(Ti_1pi0’i_1pi_+11.(71_1 = al(fi_l.pial_lpl_lal_l.01p101c7i_1p1_101_1. (flplp;rllcfl_l
= a; iy K
1=a1p1.07 'pio; o pr oyt = oo BT ey o = T BT,
1= 1010107 pioy o0 Py o7 = a1y ey G e o = 0 AL,

From the relator p; +1p1 Pz+1Pz 2, forall 1 <i<n—1,we obtain:

o1 1. 21 1.1 -1 1 1.1 -1 ,
1 =p, 10, Piv10i0; © = ;101 P1 07 -0101010; -Pi+1P1 P1 01 -T1P1010;-

-1 _—1 -1 _ 31 -1 . p—1 -1
ooy .010; —/\i+1171. Niv1AiB; &,
1 -1,_—1 -1_—1
1 =0. P1+1pl Pz+1Pz . —(71P1+1P1 (71 L01010; 07 . 010i4101 04
-1 -1 -1 —1p-1
01p1pic71 LO10; .0 (71 =9i+1Ki K,-+19iocl. B:

1 =01p1. P1+1P1 Pz+1Pz P1 f71 = f71P1/\;117;117141/\1-[31-_10&;1()1_1(71_1

1+19 91+1K17 ’)’1
-1

. 1,1, pgo-lp=1.-1 —
1 =010101. Pl+1pl Pz+1Pz 01 P1 01 = 01010, 1% Kip1bi; B oy 0y

_7714_1/\ 1/\1+1771’)’1

1

Finally we come to the surface relator oy - - - 03,10y —1 - - - 0107 2. We deal with the cases
n even and odd separately.
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(a) n even. We have:

1=0y--0p_10—1-- -alpl_z = 01(72.03(71_1 e 0103—2. an_lal_l. 01031 an_zal_l e
0103. (72(71_1.(712.pl_lal_lpl_lal_l.alplalpl_l
:,320‘3 s ',Bn—Z‘Xn—l,Bn—lan—Z s ',330‘2,31/\1_1771_1
1=0qy.090- 0101 - -alpl_z.al_l = 12.02(71_1.(7103 . -Un_zal_l.alan_l.an_lal_l.
T10p_2 0307 L. 0102. 01 207+ = Brata -+ - y_oBu—10n_1Bn—2 - - - a3B20]
1=mp1.00-- 091091 -- -01p1_2.p1_101_1
=0101. Bot3 * ** Br—2ftn—1Bu—10n—2 - - BaraP1AT L py oy
=T0Y3 " Tue2Yn-1Tn—1Vn—2 " B3Y2T0; "
1=mp101.01---04_109—1-- -(71,01_2. Ul_lpl_lUl_
=0101. P12 -+ Wp—2Pu_10n—1Bu—2 - - 23207 . p7 oy

141
=772 Yn-2Tu1VYn-1Tn—2"""Y3T2l] AL -

1

1

1

(b) n odd. We have:

-2 -1 -1 -1
1 =01 0p-10y—1 """ 0101~ = 0102.0307 ~ - -0Op207 ".010y—1.0y—107 . 0102 " -~
-1 2 -1_-1 -1_-1 -1
-1,_-1
=Btz &y 2Bn_18n—1Bn—2- - B3n2P1A] 13

-2 —1 2 -1 -1
1 =01.01""0y-10p—1---0101 .07 = 07.0207 ".0103 - -010y—2.0y—107 ~.010p—1-

1 1 2 1 1
C 0307 .0102.0107 707 = B1ao - Bu2&py_1Pu—10n—2 - &3620]
2 1 1
1 =0101.01 - 04101+ 0107 7. p1 0}
1,1 -1
=0101- B2z - - - 0y _2Bu—1&n—1Pn—2 - Paa2f1A] 1{ .01 07

1y p-1
=173 Yn—2Tn-1Tn-1Tn—2 "+ T3Y2TA] A0}
1

Opn—207

1

2 1 -1~
1 =mp101.01 -0y 1041 - -01p1 ". 0y P 07
1 11
=0101.- B1&2 - - - Bp—2&n—1Bn—10n—2---a3P20] .07 07
1451
=T1Y2 " Tn2Yn-1Tn—1Yn—2" " Y3T2l; A] -

This completes the proof of the proposition. O
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