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ABSTRACT

Current sonar and radar applications use interferometry to estimate the arrival angles of backscattered signals at
time-sampling rate. This direction-finding method is based on a phase-difference measurement between two close
receivers. To quantify the associated bathymetric measurement quality, it is necessary to model the statistical
properties of the interferometric-phase estimator. Thus, this paper investigates the received signal structure,
decomposing it into three different terms: a part correlated on the two receivers, an uncorrelated part and an
ambient noise term.

This paper shows that the uncorrelated part and the noise term can be merged into a unique, random term
damaging the measurement performance. Concerning the correlated part, its modulus can be modeled either as
a random or a constant variable according to the type of underwater acoustic application. The existence of these
two statistical behaviors is verified on real data collected from different underwater scenarios such as a horizontal
emitter-receiver communication and a bathymetric seafloor survey. The physical understood of the resulting
phase distributions makes it possible to model and simulate the interferometric-signal variance (associated with
the measurement accuracy) according to the underwater applications through simple hypotheses.

Keywords: multilook fusion, interferometry, phase statistics, signal decomposition, bathymetric measurement.

1. INTRODUCTION

Several acoustic applications such as hydrography, mine detection or pipeline tracking require bathymetric mea-
surements to estimate the seafloor local depths from the sonar depth, and thus, to retrieve accurately the seabed
topography. Interferometry is an angle estimation method widely used today in both sonar' and radar? applica-
tions, providing very accurate measurements® of seabed or earth-surface relief. The principle of interferometric
bathymetry lies on the spacing between two close receivers causing a phase difference between received signals.
The direct relationship between the phase difference and the direction of arrival® makes it possible to transform
each phase sample into an angular sample, allowing a continuous description of a target.

Interferometry is unfortunately affected by two main phenomena complicating the phase-delay estimation.
The first one concerns the 27 phase ambiguity:* the phase difference is measured 27 modulo as soon as the
inter-sensor spacing is larger than \/2. Consequently, an interferometric-phase ambiguity removal turns out to
be crucial in order to estimate the target elevation angle; otherwise, the averaged phase may be biased.® Several
techniques for removing the interferometric phase ambiguity can be found in the literature for both radar and
sonar systems.G’9

The second issue of interferometry lies on the existing noise. The main causes for phase degradation can be
categorized into intrinsic noise, corresponding to phenomena responsible for the signal decorrelation, and external
noise, additive to the actual backscattered echoes and directly affecting the bathymetry estimation without being
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Figure 1. Geometry configuration of an interferometric measurement.

related to the phase-estimation processing in itself. These two types of noise may damage the interferometry
processing and degrade the estimated bathymetry. In this paper, only the intrinsic phenomenal 1% (such as
the angular and spatial decorrelation, ambient noise or multipath interferences) are addressed, and the extrinsic
phenomena (such as roll effects or water velocity fluctuations) are not considered.

The study of the decorrelation existing between two receivers is crucial for interferometric applications. Its
importance is enhanced by the interferometric probability density function (PDF) and the resulting variance
equation'! since their shapes are completely characterized by the correlation coefficient as discussed later in
Section 2.3. This coefficient relates the energy common to the two interferometric receivers to the whole energy,
which can be split into a correlated part, an uncorrelated part and an ambient noise. We show in Section 2
that both the uncorrelated energy and the ambient noise are random processes; conversely, according to the
underwater applications, the correlated part of the received energy can be considered either constant or random.
This decomposition makes it possible to create two types of signals: random-modulus and constant-modulus
partially-correlated signals. According to the assumption, the resulting phase-difference estimation will be more
or less fluctuating, leading to a better or worse bathymetry. The analysis of the nature of interferometric signals
is carried out in Section 2 where these two types of signals are confronted to real data collected in different
underwater applications.

With the statement of these two types of signals, the following goal is to find a signal (or noise) model that
simulates the reality. The classical additive model'?!? consisting in a signal perturbed by an additive noise
is a very useful mathematical approach, widely used in most seafloor mapping applications, but it may lack a
physical meaning. Indeed, it can be quite difficult to draw conclusions about the backscattering process from
this model. We present in Section 3, a more physical approach based upon a multiplicative-noise model that
allows us to draw conclusions about the possible existence of a constant-modulus partially-correlated signal.

2. NATURE OF INTERFEROMETRIC SIGNALS
2.1 Signal recording

A bathymetric sonar signal ensonifies instantaneous resolution cells, geometrically defined by the beam width,
steering angle and signal duration. The echo signal is sent back by elementary scatterers inside the resolution
cell. The notion of multilook in radar applications arises when a given resolution cell is scanned several times
at various observation dates. Thus, each time the resolution cell is illuminated, local scatterers with the same
statistical properties randomly contribute to the wavefront backscattering process. Hence, N independent looks
or snapshots are taken into account for measuring one elevation angle. The single-look case corresponds to a
unique realization of a given observation.
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Figure 2. Definition of the parameters used to evaluate the spatial (left) and angular (right) decorrelation. It includes the
two-way propagation distance r(z¢), the arrival angle (xo), the resolution cell of center xo and size D, and the sliding
footprint A,.

Practically, for bathymetric sonar systems, the usual strategy of coverage precludes to survey the same
area several times for cost and efficiency reasons. Therefore, the multilook concept is slightly different: N
interferometric samples are assumed to be close enough to a given sample under consideration for having the
same properties in terms of statistics, radiation pattern, backscattering strength or topography; this amounts to
saying, from a statistical point of view, that the same sample is seen several times.

In addition to the backscatter processes, other types of signals can be regarded. For instance, in underwater
positioning applications'® or in underwater acoustic communications,'® the direct path between emitter and
receiver (ideally without any reflection phenomenon) makes the received signal be more stable, or at least far
less fluctuating, than backscattered signals. This is due to the fact that backscattered signals used in sonars
arise from the contributions of an arbitrary number of scatterers, causing the fluctuating behavior. Conversely,
signals in underwater positioning applications are received from one transmission path, yielding a more stable
behavior. In practice, these two types of signals share some common degrading phenomena such as transmission
loss, additive noise or multipath interferences that affect the phase-estimation variance.

2.2 Signal degradation

Several phenomena' 1916 such as the angular or spatial decorrelation, multipath fading, or ambient noise may
affect an interferometric measurement. The decorrelation phenomenon, depicted in Fig. 2, occurs when two
close receivers do not see exactly the same cell resolution (spatial decorrelation aka sliding footprint!), or do not
see it exactly under the same angle (angular decorrelation). Multipath fading is caused by interfering signals
damaging the wavefront of the main signal. Finally, the ambient noise features several contributions such as the
surface agitation, living organisms, ship traffic noise, and intrinsic noises of sonar systems (either acoustical or
electrical). The more penalizing phenomena are decorrelation and ambient noise, respectively at the center and
at the ends of the swath.

Thus, a classical additive model of a signal s received (in baseband) by the k-th sensor, composed of the
contributions of p scatterers inside a resolution cell of size D, plus an additive noise ny, can be written as'®13

o = / o () exp {J i (@)} d + 1 (1)

where the phase ¢ (z) depends on the position z of the scatterers inside the resolution cell. Thus, for a large
number p of scatterers, the sum of independent, identically distributed scatterers satisfies the central limit



theorem, and the resulting summation is complex Gaussian distributed. Moreover, ny is assumed to be a white
Gaussian noise inside the signal bandwidth.

Since the two interferometer receivers do not see the resolution cell under the same angle, the phases ¢y ()
are different for each receiver. Furthermore, the two receivers do not ensonify exactly the same resolution cell at
the same time due to spatial decorrelation,'® so the phase difference has to be measured over a common region
(namely over D, — A, as depicted in Fig. 2). Therefore, the integration term in (1) can be split into two terms,
each one corresponding to the correlated and uncorrelated part between the two receivers. Thus, the signal
model (1) can be decomposed as

Sk = §corr + §W + ng (2)

where the term &z incorporates the whole multiplicative degradation due to both angular and spatial decor-
relations as well as the path attenuation. Then, this uncorrelated part e (without any useful information)
and the electrical noise nj; can be merged into a unique term gathering the signal degradation. Thus, since ny is
assumed to be a white Gaussian noise and a large number of scatterers contribute to the signal backscattering,
the global noise term, i.e. &rr + 1, is assumed to be white Gaussian distributed.

Conversely, the modulus of the correlated part &, can be regarded as either a random or a constant variable.
Finally, two signal models arise:

1) Random-Modulus Partially-Correlated (RMPC) signal:

S1=v+n1 (33)
S2 =V +n2 (3b)
where
v~ N(0,0) (4a)
ni ~ N(0,02) (4b)
Srmpc; "~ N(Oa 012) (4C)

with A/(m,0?) denoting a Gaussian process of mean value m and variance o2. Linking (3) to the signal
model (2), v stands for the correlated part &.orr, common to signals s; and sg, whereas ny and ng are two
uncorrelated, complex random processes including the contribution of the uncorrelated part & and the
additive noise, being different for each signal.

2) Constant-Modulus Partially-Correlated (CMPC) signal

s1=1u+m (5a)
S9 = 1+ Ny (5b)
where
u ~ (- edU(=m.+m) (6a)
ni ~ N(0,07%) (6b)
Scmpe; ™Y N(Cu 01'2) (GC)

In this case, u represents the measured, useful signal whose amplitude ( is constant, and phase is uniformly
distributed within the interval | — 7, +7|. We assume a uniform phase distribution so that the signal scypc;,
is zero-mean distributed.

In conclusion, the signal received by two sensors can be generally decomposed into a useful part behaving as
either a random or a constant variable, and a noisy, random part. This theoretical modeling is now confronted
to the existing interferometric statistical models and to real data collected in different underwater applications
in order to verify its actual existence.
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Figure 3. Prediction of the interferometric standard deviation obtained from the RMPC-signal model (3) (**’ line) compared
to the theoretical interferometric variance (solid line) for N = {1, 3,5,7,11,21}.

2.3 Phenomenological analysis

The interferometric statistics derived for both electromagnetic and acoustic emitted waves have been widely
studied, existing a wide literature such as Ref. 11,13,17,18. Thus, signals received by the two interferometric
sensors are modeled based upon a zero-mean, circular, complex Gaussian hypothesis:!!

Sensor 1 : si1=x1+jyr =r1exp(j 1) (7a)
Sensor 2 : So =T+ JY2 =172 exp(j ®2) (7b)

where sj, is the complex envelope issued from the analytical signal, xj and y are zero-mean Gaussian distributed;
amplitude 7 follows a Rayleigh distribution of parameter o2, and phase ¢y is a uniform random variable
distributed on the interval |— m, +7]. The interferometric phase-difference estimator A,

Ap =arg{si1s5} (8)

applied to backscattered signals is unbiased, consistent and asymptotically efficient!! as the number of indepen-
dent realizations increases. The resulting interferometric-phase PDF takes the following form:'8

O Ve 7 AT S ¢ 1

f(Ap) = ) o/m (1 B2)2N+1/2 o

2F1(N71;1/2762) (9)

where N is the number of looks, o F1 (N, 1;1/2, %) is a Gauss hypergeometric function,'® and

= |ul cos(Ap —¢) (10)

with |u| and ¢ being the modulus and phase of the correlation coefficient 7, computed in the single-look case as
E{s1s5 .

v= B ep o) ()

VE{s15]}E{s2s5}

It is interesting to remind the relationship!? between the coherence |u| and the SNR:

SNR — ||

=T 12)

This widely-used theoretical interferometric model was compared to the RMPC- and CMPC-signal models
stated in (3) and (5), respectively. Three different zero-mean Gaussian signals required in (3) were generated,
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Figure 4. Experimental data phase distributions (‘*’ lines) checked against theoretical models (solid and dashed-dotted
lines). Upper plot: evidence of RMPC behavior on interferometric sidescan sonar data sets. Lower plot: verification of the
existence of CMPC signals in underwater acoustic communication applications.

their variances being tuned by the desired SNR level, in order to reproduce circular, complex, Gaussian random
variables in accordance to the interferometric PDF. The standard deviation of the phase-difference estimator was
computed and displayed in Fig. 3. Note the good agreement between the theoretical standard deviation (solid
line) obtained through the numerical evaluation of the interferometric variance and the RMPC-signal simulation
(3) (‘*’ line) based on a Monte Carlo method for N looks from 1 to 21. This agreement could already be expected
due to the nature of the backscattered signals, namely the contribution of arbitrary number of scatterers inside
the resolution cell.

The next step was to test the statistics of the two proposed types of signals to real interferometric data
sets. To this end, a 455-kHz interferometric sidescan sonar was used to collect data from a 19.4-m deep flat,
homogenous seafloor. The result® was that 84% out of 1800 range samples times 400 consecutive pings verified
the RMPC-signal PDF checked on a Y?-test. An example of PDF agreement is displayed in the upper plot of
Fig. 4: the solid line corresponds to the RMPC-signal PDF, the dashed-dotted line displays the cMPC-signal PDF
obtained from a Monte-Carlo simulation of signal model (5), and the ‘*’ line depicts the PDF of 400 independent
realizations of interferometric sidescan sonar data.® The three PDFs correspond to the same variance level, fixed
by the experimental data.

In other scenarios such as underwater mobile positioning'# or data transmission, the received signal is more
stable due to the very low number of scatterer contributions, likely behaving as a ¢MPC signal. To verify this
hypothesis, data sets were collected from a continuous-flow data transmission in an acoustic communication
application between one emitter and four vertically-aligned receivers, five wavelength apart. The analysis of
different blocks of the recorded signal suggests that when the reception is barely perturbed by multipath inter-
ferences, leading to a (relatively) easy equalization of the channel, the resulting interferometric signal matches
the phase PDF of CMPC interferometric signals (see example in the lower plot of Fig. 4). Conversely, in a channel
with an important multipath propagation, the interferometric signal behaves more like the RMPC signal model.

It is important to note that these data sets were collected for a horizontal emitter-receiver communication.
In other applications such as underwater positioning, the communication is usually nearly vertical, limiting the
multipath propagation from the seafloor and surface. The result is then a more stable received signal, essentially
cMPC-type. Note that interferometry is not performed for itself in underwater acoustic communications; however
since phase processing is currently used, the above results about phase fluctuations due to noise may be of interest
for this domain.

In conclusion, both RMPC and CMPC signals are to be met in underwater interferometric applications, hence
the importance of their signal-origin analysis. RMPC signals are mainly met in backscatter applications due
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Figure 5. Nature of a single- and multiple-scatterer reflection scene under the single-look and multilook cases.

to the multiple-scatterer nature of the received signal. Conversely, the unique ray-path in applications such
as underwater acoustic communications or positioning leads to a cMPcC-signal behavior. These conclusions are
drawn from the experimental results, but not from the addition-noise model (1). Indeed, the additive model does
not take into account the number of scatterers and its distribution inside the resolution cell. It just assumed that
a large number of scatterers contribute to the formation of the received signal. Conversely, in the next section,
we propose a more physical noise model in order to investigate the existence of CMPC signals.

3. PHYSICAL SIMULATION MODEL

As pointed out in Section 2, the more penalizing phenomena in terms of signal degradation are the angular and
spatial decorrelations, and the ambient noise. These three phenomena are merged into the following multiplicative
model:

sp = 1y, FPRE) (i) (13)

where z allows us to model a mobile target inside a resolution cell. Thus, ¢ (z) is the phase related to the
position x of the scatterers inside the resolution cell, and dp(x) represents a possible decorrelation sketched in
Fig. 1.

The statistics of this model depends on how the three variables in (13), namely r, ¢ and d¢p, are considered.
Four cases, shown in Fig. 5, are possible: there is either a single scatterer or multiple scatterers inside the
resolution cell in single- or multiple looks. When a large number of scatterers reach the two sensors (independently
of the number of looks), the resulting statistical distribution of sy tends to a Gaussian process as the central
limit theorem states. Therefore, the multiplicative-noise model (13) in a multiple-scatterer reflection case is in
statistical agreement with the circular, complex, Gaussian model (7), and the resulting signal leads to the same
performance as the RMPC-signal model (3). This means that if the cMPC-signal model (5) exists, it can only be in
a single-scatterer reflection scene. Let us, then, analyze this case in a multilook scene. Thus, the single-scatterer,
multilook simulation model is given by

sll = il (14)
g e (15)
1N .y i
=z = stﬁ shF = NZ|T1|26W (16)
i=1

where z represents parameter x of sensor k at look 7, and
U= Ap' -5y (17)

Compared to the additive noise model (1), the phase v integrates the decorrelation degradation due to the
different position of the scatterer at different looks, and also the ambient noise.
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tributed. Moreover, the numerical phase standard deviation of a cMPC signal (solid line) for N = {5, 10,20}, and of a
RMPC signal (dashed line) for N =1 of the additive-noise model of Section 2.

An important issue comes up when the model (16) is aimed to be simulated: the statistical behavior of z
is unknown. Nonetheless, since we analyze the single-scatterer case inside the resolution cell, 7 can be assumed
constant and the same for any look i. As far as the phase v is concerned, a unimodal distribution such as a
zero-mean Gaussian distribution makes it position to model the dispersion of the scatterer location inside the
resolution cell through the increase or decrease of its variance. Indeed, a narrow sharp distribution leads to a
scatterer position close to the interferometer axis, yielding a low variance, whereas a flat-shaped distribution
spreads out the scatterer location. Therefore, the interferometric phase Ay issued from a single scatterer in the
multilook case is numerically generated as:

N

Ap = arg {Z ejwl} (18)
i=1

where v is zero-mean Gaussian distributed.

_ ! ¥
o= el ) .

A new issue comes up with the Gaussian assumption: no prior relation exists between the Gaussian dispersion
012/} and the resulting phase-quality loss in terms of SNR. The link is found by roughly estimating the correlation

coefficient in the multilook case as: N
1 4
- Vi

i=1

(20)

Havix =

where MLK stands for “multilook”. In order to link this estimation iy with the single-look correlation coefficient
given in (11) which is bijectively related to the SNR from (12), the true multilook pyk is determined from the
analytical statistics given in (7). Finally, from a given Gaussian dispersion ai, its connection with the resulting
SNR is obtained as follows:

0'12/, > flyik < faik € Psix < SNR (21)

where SLK stands for “single-look”.

In order to verify the right modeling of the interferometric phase (18) and the Gaussian assumption, Fig.
6 displays the RMPC- and cMPC-signal standard deviation of the additive model (in solid and dashed-dotted



lines, respectively) confronted to the standard deviation obtained with multiplicative model (in ‘*’ lines) for
N = {5,10,20}. This figure shows that the multiplicative noise model presents a similar standard deviation as
the cMPcC-signal model, but we need twice the number of looks to get this similarity:

varyLp&ssel APk ’ oN = VaTap&empe {Apux} ’ N (22)

where MLP and AD stand for the “multiplicative”’-noise and “additive”-noise models, and SSC denotes “single
scatterer”. Therefore, this modeling presents promising results, proving that a widely-used Gaussian distribution
can be used to generate constant-modulus signals, their existence coming up in scenarios such as Ultra-Short
Baseline applications?’ where the received signal is very stable, behaving as a CMPC signal even in the single-look
case as discussed in Section 2.3.

4. CONCLUSION

The understanding of the signal nature is fundamental to evaluate its statistical behavior in detection. The
presence of an arbitrary number of scatterers determines the resulting fluctuation in detection. In scenarios
including backscattering/reflection processes over a resolution cell, the resulting signal fluctuates according to a
known distribution. These random behaviors were checked and verified in this paper through collected sidescan
data.

Conversely, a direct path between transmitter and receiver reduces possible multipath effect, yielding more
stable signals. This paper showed that this behavior matches quite well the proposed constant-modulus partially-
correlated signal model. Furthermore, this kind of signal can also come up in applications with a single scatterer
randomly moving inside a resolution cell. For this configuration, the multiplicative model presents promising
results: a single Gaussian-distributed parameter achieves to integrate the phase degradation due to the random
scatterer position inside the resolution cell and the additive ambient noise.
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