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Modeling of the Programming Window Distribution in 
Multinanocrystals Memories

Luca Perniola, Barbara De Salvo, Gérard Ghibaudo, Armando Foglio Para, G. Pananakakis, V. Vidal, Thierry Baron,
and Salvatore A. Lombardo

Abstract—In this paper, the impact of the Si nanocrystals 
technological fluctuations on the programming window dispersion of 
multi nanocrystals memory is thoroughly investigated. Techno-logical 
dispersions of different nanocrystals populations, directly measured 
by high-resolution transmission electron microscopy, are used as 
starting points for the modeling of the device charac-teristics. 
Numerical Monte Carlo simulations as well as an original compact 
modeling, based on the compound distributions (CD) statistics, are 
here presented. Exact analytical results (CD model), approximated 
analytical results (CD+Central Limit Theorem model) and numerical 
results (numerical convolution) are deeply discussed. Finally, the 
good agreement between our simulations and experimental data of 
ultrascaled nanocrystal devices, made by conventional UV 
lithography or by e-beam lithography, definitively confirms the 
validity of our theoretical approach.

Keywords—Compound distributions, multinanocrystal memories, 
programming window distribution.

I. INTRODUCTION

M
ULTINANOCRYSTAL memory devices are widely in-

voked as one of the possible solutions to the scaling lim-

itation of Flash memory devices [1]. In fact, the use of dis-

crete trap storage nodes in flash memories, instead of a con-

tinuum floating gate (FG), guarantees insensitivity to stress-

induced oxide defects, allowing for thinner tunnel oxides [2].

Moreover, these devices do not suffer of drain turn-on effect [3],

allowing for cell length scaling and high reading drain voltage.

In conventional FG devices, the intra-die variation of natural

threshold voltage, due to dopant fluctuations of the well doping,

has been ascribed as a major reliability concern as devices con-

tinue to scale [4].

In spite of the previously remembered advantages of

nanocrystals devices compared to conventional FG devices, in

nanocrystal memories an additional cause of fluctuations of

electrical characteristics will exist. In fact, fluctuations of dot

diameter and dot number from one sample to another will be

more and more critical for ultrascaled memory cells containing
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Fig. 1. The multinanocrystals memory device structure. The dot size and dot
number fluctuations in memory cell of different areas are illustrated.

a very little number of dots (Fig. 1). In particular, the dispersion

of the programming window will raise while scaling

the cell area. In order to control this new critical issue, a very

strict control of dot deposition parameters has to be assured.

The aim of this paper is to quantitatively evaluate the scaling

limit of this novel concept of memory based on randomly dis-

tributed storage sites. The statistical description of the dots pa-

rameter fluctuations and their impacts on device characteristics

will be here addressed both from a theoretical and an experi-

mental point of view.

II. TECHNOLOGICAL FLUCTUATIONS OF SILICON

NANOCRYSTALS: DOT DIAMETER AND DOT NUMBER

The storing properties of a nanocrystals memory cell depend

both on the total dot number, , and dot diameter, , on the

cell. Indeed, these two main parameters strictly depend on the

process conditions used for Silicon nanocrystals deposition.

Today, the low-pressure chemical vapor deposition [1], [5] is

one of the most promising fabrication method for integration

of nanocrystals technologies in industrial circuits. Based on

this approach, the total dot number, , and dot diameter,

, could be regarded as independent statistical variables as

the state-of-the-art low-pressure chemical vapor deposition

(LPCVD) knowledge does not allow deposition of a fixed dot

number nor an uniquely defined dot size.

A. Maxwell–Boltzmann Fit for Dot Diameter

Concerning the dot diameter , a phenomenological ap-

proach is taken. In particular, the probability density is obtained

1



Fig. 2. Dot diameter experimental distribution coming from the TEM image of
LPCVD Si-dots (inset, highest dot density ever reached in the literatureD =
2 � 10 cm , mean dot diameter �3 nm) and theoretical fitting (dashed
line) based on a Maxwell–Boltzmann distribution (� = 2:7 nm most probable

diameter, � � =� = 2=3).

by directly fitting the experimental dot size histograms (mea-

sured by high-resolution transmission electron microscopy)

of LPCVD nanocrystals successively integrated in memory

devices. Note, that this phenomenological approach is not

substantive for the smallest dot diameter values (less than

1 nm), as TEM imaging is not able to devise such small objects.

Two different populations of nanocrystals were considered.

Fig. 2 illustrates the statistics of silicon dots with a high areal

density, dots/cm , and a mean diameter of 3 nm [5].

Note, that at our knowledge, this is the highest Si-dot density

ever obtained by LPCVD technique on SiO substrates. This

populations can be fitted by a Maxwell–Boltzmann distribution

exp (1)

where denotes the most probable dot diameter present in the

statistical ensemble.

For the purposes of the following theoretical analysis, it

should be highlighted that the Maxwell–Boltzmann distribution

is a chi-squared function of three degrees of freedom [6].

Indeed, by putting , and introducing the identity

, we see

exp exp (2)

B. Shneidman Assumption for Dot Diameter

Fig. 3 illustrates the statistics of Silicon dots with a small areal

density, dots/cm , and a mean diameter 4.9 nm (in the

inset a Energy Filtered TEM image is shown) [3]. For this type

of statistics, another theoretical approach is more suitable: the

Shneidman model, based on the well-known capillarity model

[7].

In this, the free energy change due to the formation of a cluster

of size is the balance between the gain of volume free energy

due to condensation of the atoms in the new phase, and

the loss due to surface energies of the new formed interfaces,

Fig. 3. Dot diameter experimental distribution coming from the energy filtered
TEM image of LPCVD Si-dots (inset) and theoretical fitting (dashed line) based
on a Shneidman solution of the Frenkel–Zeldovich [7] (� � 0 is the critical
diameter, t (�) is the incubation time, � is the transient time, mean dot diameter
�4.9 nm).

proportional to . The presence of a surface energy for

the newly formed cluster produces a free energy barrier for the

nucleation at a critical size and the cluster free energy

will produce a tendency to growth or shrinkage depending on

whether or . Assuming this driving force, the

nucleation can be modeled by considering the balance equation

of Frenkel–Zeldovich. Recently an analytical solution to this

equation, for has been proposed by Shneidman for a

number of different nuclei growth kinetics [7]. For a growth

regime limited by the reaction rate at the surface, the Shneidman

solution is

exp exp (3)

In (3), is the critical diameter corresponding to the critical

size , is the deposition time, while is another characteristic

time function of dot diameter (i.e., incubation time).

Note that contrary to the previous case, this dot diameter

model states that going to smaller values, dot size probability

remains constant. Indeed, the results provided by the Shneidman

assumption for dot diameter distributions can be regarded as

complementary to the Maxwell–Boltzmann case.

C. Total Number of Dots in a Cell:

Concerning the total dot number in a cell , we make the

hypothesis that it is described by a Poisson law , with

, being the dot areal density and

the cell area. This assumption derives from the fact that these

statistics describes the behavior of random, rare events in space

or time: random events, in space, because the nucleation of one

dot does not influence the nucleation of another dot in the cell,

and rare events, in space, because we do not consider cells where

coalescence between dots shows up.

III. ANALYTICAL FORMULA OF MEMORY PROGRAMMING

WINDOW

In a previous experimental and theoretical works [2], [8],

[9], it has been demonstrated that the maximum programming
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threshold voltage shift of one memory cell is proportional

to the memory active area covered by the dots, , i.e.,

(4)

where is the current density charging every Si-dot (coming

from control gate and active canal), while is the current den-

sity discharging the Si-dots (going to control gate and active

canal), both expressed in A/cm . is the control oxide ca-

pacitance per unit area F/cm , is the local aerial density

of charge supposed to be in each nanocrystal C/cm , is the

tunnel oxide thickness, is the control oxide thickness.

As it can be deduced from this formula, the nanocrystal

trapped charge is therefore considered as uniformly distributed

all over the memory channel, as also reported by other authors

[12], for evaluating its impact on the MOSFET operations.

If only the fluctuations of technological parameters of the

Si-dots, as the dot size and dot number , are taken into ac-

count, it can be shown that , while

remains constant. Our attention, therefore, will be primarily fo-

cused on dot surface coverage ratio fluctuation. Note also that,

as a confirmation of hypothesis, Ishii et al. [9] found ex-

perimentally that the mean programming window and its rela-

tive dispersion depends on dot surface coverage ratio, and not

only on dot density.

Finally, it should be stated that in this model we have not

taken into account coulomb blockade or quantum effects in the

Si-dots. This assumption is coherent with our experimental re-

sults. In fact, our devices are based on Si nanocrystals highly

dispersed in diameter ( 30%) and with dot diameter higher than

3–4 nm [10]. Moreover, consider that further improvements of

our model should also take into account the electrostatic impact

of dot position on the channel, to be consistent with memory

devices with very narrow active channels ( 30 nm) [11].

IV. MODELING OF THE PROGRAMMING WINDOW DISTRIBUTION

A. Monte Carlo Approach

First, a Monte Carlo (MC) simulation has been performed.

The total number of dots for each cell is extracted, according

to the Poissonian law. Then, in an independent way, for each

dot in the cell, a different diameter is extracted, according to

the chosen experimental law for dot diameter. The following

expression is valid for the th sample in the analyzed ensemble:

(5)

B. Compound Distribution Theory

1) Analytical Exact Result of Distribution: CD

Model: From (5), it clearly appears that is a random

sum (i.e., depend on the cell) of random variables (i.e.,

over the same cell, depends on the dot). This statistical process

could be treated by means of the Compound Distributions (CD)

theory [6].

Fig. 4. Simulation of the �V histogram obtained with the MC method ((5),
using 2000 samples). The theoretical probability based on the CD model (7) is
also shown (parameters for simulation are: A = 1:5 � 10 cm , D =

2:1 � 10 cm , � = 2:7 nm, Q =C = 5 V , f is a chi-squared

distribution function with 3n degrees of freedom).

Indeed, this powerful theory allows us to give a complete de-

scription of the probability distribution of the program-

ming window

(6)

where is the probability condi-

tioned to a number of dots per cell equal to . In the case of the

dot diameter experimental distribution like the Maxwell–Boltz-

mann one [(1), Fig. 2], the exact calculation of is feasible

and the final analytical formula of the probability density

is

(7)

where the role of the conditioned probability of (6) is played by

a chi-squared function of degrees of freedom. To find out

the result in (7), the result of (2) and an additional theorem on

chi-squared distribution function has been used (i.e.,

[6]). In Fig. 4, a comparison between the CD and the MC

models is provided.

2) Analytical Approximated Result of Distribution:

CD CLT (Compound Distributions+Central Limit Theorem)

Model: In the case of not handy mathematical function for

dot diameter distributions, as in the Shneidman assumption,

an approximation could be employed, at least in the limit of a

“large” number of dots on cells.

In (6), we mentioned already the presence of

as conditioned probability to the number

of dots equal to . In the case that is rather high (i.e., more

than 30) we know that the probability density in (6) approaches
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Fig. 5. Comparison between �V probability distribution obtained by
means of the exact CD model [(7), with same parameters as Fig. 4] and of the
approximated CD + CLT model (8).

a sum of gauss distribution with mean value

and variance , (6) becomes

(8)

In this case, the analytical result of is approximated.

In Fig. 5, a comparison between the exact (CD model based)

probability and the approximated one (CD CLT model)

is shown. The excellent agreement between the two approaches

appears at least for probabilities higher than .

3) Numerical Result of Distribution: Again in the case

of not handy mathematical functions for dot diameter distribu-

tions, a numerical result on the programming window distribu-

tion could be provided. This method pushes the limit of the pre-

vious analysis to whatever value of dot number on cells.

In this case the conditioned probability

in (6) is calculated via a numerical convolution of dot diam-

eter distribution. Due to its numerical nature, this calculation

starts directly from dot diameter histograms, without the need of

an analytical fit (as in the Maxwell–Boltzmann or Shneidman

case). In Fig. 6, a comparison between the programming

window distribution starting from the Maxwell–Boltzmann

assumption and the Shneidman assumption (both initially

discretised) is provided, for a “low” number of dots on cells.

We see that the programming window distributions are

similar to each other: starting from the Shneidman assumption,

does not lead to substantially different result with respect to the

Maxwell–Boltzmann case.

4) Direct Calculation of Mean Value and

Relative Standard Deviation: Whenever

the overall distribution expressions for and are not

known, the CD theory also allows us to directly quantify the

mean value and the relative variance

Fig. 6. Threshold voltage distributions starting from the Maxwell–Boltzmann
assumption (solid line) or the Shneidman theory (dashed line) for dot diameter.
This plot is the result of the numerical convolution of 21 Maxwell–Boltzmann
or Shneidman simple probability densities, asN = 21 (A = 1�10 cm ,
D = 2:1� 10 cm ),Q =C = 5 V . The mean value of dot diameter
is �4.9 nm for both distributions (the Shneidman distribution used is the same
as Fig. 3, while � = 4:35 nm for Maxwell–Boltzmann distribution). We can
see that, even for a low number of dots on cells, the programming window
distributions do not differ much from each other.

of the programming window, starting from the equivalent

parameters for and , i.e.,

(9)

(10)

If the Poisson law is assumed for dot number on cell, (10) be-

comes

(11)

Note that (9) and (10) simply quantify the separate influence of

and characteristics on mean value and standard deviation

of , feature hardly accessible with the MC model.

It is worthwhile to note that Ishii et al. [9] found experimen-

tally that the relative variance of is equal to the relative

variance of .

(12)

This can be easily demonstrated, with the help of the CD theory,

rewriting (10) for .

Another feature is that in the Maxwell–Boltzmann case (1)

, whatever value of is considered, while

in the Shneidman case depends on the parameters

considered.

V. DISCUSSION AND EXTRAPOLATIONS

A. Comparison Between Monte Carlo and Compound

Distribution Model

Fig. 7 shows a comparison between the MC result and CD

model concerning the value of . Note that the
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Fig. 7. Simulations of the relative standard deviation of �V versus the cell
area A of memory cells. MC simulations (5) have been performed assuming 50
samples for each cell area. The Compound Distribution solid curve is based on

(11) (assuming D = 2:1� 10 cm and � � =� = 2=3).

Fig. 8. Relative standard deviation of�V , as obtained from CD model (11).
Two values of relative variance of dot size � are shown. In order to obtain
��V =�V = 10%, it must be assured N > 140, whatever combination
of dot density or cell area is.

small discrepancies appearing between the two models are

due to the fact that the MC method simulates results on a

finite statistical ensemble of cells (50 samples in Fig. 7), while

the CD model provides a theoretical result in the case of an

infinite ensemble. Obviously, going to smaller cell areas the

fluctuations of the MC simulations around the theoretical curve

will become bigger and bigger, except if a larger number of

cells is used for simulation.

In Fig. 8, a plot of the relative standard deviation of

versus the mean number of dots per cell is provided. If a

reliability criterion of is imposed, in order

to maintain a clear separation between the “1” and “0” memory

programmed states, we have to assure a certain range of

values ( 140) on our devices, for whatever combination of cell

area and dot density. This means that going toward smaller and

smaller cell areas, higher and higher dot density will be needed,

which assures both small dispersion (10) and clearly detached

memory states (9).

From (11), we can easily quantify the impact of dot number

or dot diameter fluctuations separately considered. It could be

interesting, for instance to quantify the influence of dot size

Fig. 9. Percentage impact of the relative dispersion of dot diameter on the
overall programming window dispersion, P (F ), versus the relative dispersion

of the dot diameter � � =� [as coming from (13)]. The dot number relative
variance assumes three values (F = 1 means Poisson distribution, F = 0:2
andF = 0:5 show possible future dot depositions toward “ordered” structures).
We see that, while lowering P (F ), thus diminishing dot number fluctuation,
dot size fluctuation plays a stronger and stronger role on ��V =�V . For a
dot number distribution equal to the Poisson law, it is highlighted the value of

� � =� which impacts at same percentage of � N =N .

Fig. 10. Threshold voltage shift cumulative probability density (solid line)
and probability density (dashed line) for the same parameters as in Fig. 4. The
cumulative probability distribution is important to quantify the number of cells
which show a threshold voltage shift below a certain limit (quantify the erratic
bits). As an example, it is highlighted the voltage limit shown by one cell over
a gigabit array.

fluctuation on the programming window dispersion, by letting

vary and calculate its impact on . Con-

cerning dot number, different distributions from the Poisson one

could be also considered. To this aim a parameter is intro-

duced, where stands for the Poisson dispersion. If

the dot number dispersion is less than the Poisson dispersion.

We could imagine that the lower is the value of , the higher

is the order of dots deposited on the cell surface. We could now

introduce a function which quantifies the percentage im-

pact of the term associated to the dot size fluctuation on the

overall relative fluctuation. Eventually is defined

as follows:

(13)
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(a) (b)

(c)

Fig. 11. (a) Comparison between experimental data of Device 1 (W = 10�m,L = 0:5�m) and CD+CLT model (8), using this set of parameters (1):� = 7 nm,

� � =� = 0:6,D = 1� 10 =cm with�1/4 of dots effectively charged). (b) Relative standard deviation of �V versus cell area. Experimental results
are evidenced by crosses (Device 1) and boxes (Device 2). Fits using the CD model (11) have been done using parameter set (1) for Device 2 and parameter set

(2) (i.e., � � =� = 1,D = 1� 10 =cm with�1/4 of dots effectively charged) for Device 1. (c) Comparison between data of Device 1, CD model (11)
with parameter set (2) and MC simulations [circles, (5)] using 20 samples per area, to simulate a real dispersion (due to a limited statistical ensemble) around the
theoretical curve.

In Fig. 9, the result of (13) is shown for three different values

of . The CVD deposition method assures, at the moment, a

typical Poisson dot number fluctuation (i.e., ), therefore it

is highlighted on its curve that impacts for 50%

on . Most of the techniques used nowadays for

Si-dot deposition assure typical values of , between

0.4 and 1. In this case the most important contribution to pro-

gramming window dispersion is due to dot number fluctuation.

B. Erratic Bits

It is possible to quantify the number of cells under a certain

limit of surface coverage ratio, i.e., the cells in an array which

will not show a sufficient programming window. These cells,

could be called erratic bits in the case of multi nanocrystal mem-

ories.

To know the amount of erratic cells, the cumulative proba-

bility density of the programming window must be com-

puted, thus, if we start, for instance, from the result of CD model

(7), we obtain

(14)

where is the cumulative probability function of . As

an example, in Fig. 10 the cumulative probability distribution is

shown, as coming from (14) and same parameters used for Fig. 4

or Fig. 5. It is highlighted the value which is at most sup-

posed to be shown by one cell in a gigabit array (probability of

). It is worthwhile to remark that (13) shows the diverse de-

pendences, i.e., , , A, , which could be arranged

to suit one’s reliability requirements.

Following the previous reasoning, a simple formula to quan-

tify the erratic bits with the CD CLT model could be provided,

as well. In this case is a sum of error functions

(15)

VI. COMPARISON WITH EXPERIMENTAL DATA

In Fig. 11, experimental evidence of the validity of the CD

model is given. Two different types of devices with several ac-

tive areas have been fabricated and tested.

Device 2 corresponds to Si-bulk memory transistors [8], de-

fined by ultraviolet lithography, with minimum area of

m and maximum area of
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m . In Device 2, the total dot number is on the order of

thousands cm . Device 1 corresponds to a

silicon-on-insulator memory transistor [12], defined by e-beam

lithography, with minimum area of nm and

maximum area of nm . In Device 1, the total

dot number is on the order of tens cm . Sil-

icon dots in large area cell (Device 2) were LPCVD deposited

with a low areal density, while silicon dots in nanoscaled cells

(Device 1) were fabricated via annealing of LPCVD SiO en-

riched layer. This last fabrication method of dots is believed to

develop islands with a high areal density but largely dispersed

in size. Both types of devices have been written and erased in

fully Fowler–Nordheim conditions. Each cell corresponds to a

different chip on the wafers.

Systematic tests were carried out on an ensemble of 50

cells, in the case of large devices, while on an ensemble of 20

devices in the case of nanoscaled devices. In Fig. 11(a), in par-

ticular, the comparison between the CD CLT model (8) and

experimental results is provided, in the case of Device 2. In

Fig. 11(b), (11) has been applied considering around one fourth

of dots effectively charged, and in the case of

Device 2, while in the case of Device 1.

In Fig. 11(c) is evidenced also the MC simulation on

nanoscaled cells. The spread around the theoretical curve is

due to the small number of samples considered (in simulations

20 samples per cell area are taken, as in the experimental data).

VII. CONCLUSIONS

A detailed model, tailored on multinanocrystal memory de-

vices, on programming window dispersion has been provided.

Both a Monte Carlo simulation and a theoretical approach based

on the compound distributions theory have been introduced to

fix quantitatively guidelines concerning dot density and dot size

requirements. The separated impact of dots diameter or dots

number fluctuations on the overall dispersion, ,

has also been quantified. The main issue of erratic bits (i.e., cells

with too low programming window) in an ensemble of multi-

nanocrystal memories has been addressed as well.

The validity of our approach has been confirmed by the very

good agreement between our simulations and a large set of ex-

perimental data.
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