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In this paper, the impact of the Si nanocrystals technological fluctuations on the programming window dispersion of multi nanocrystals memory is thoroughly investigated. Techno-logical dispersions of different nanocrystals populations, directly measured by high-resolution transmission electron microscopy, are used as starting points for the modeling of the device charac-teristics. Numerical Monte Carlo simulations as well as an original compact modeling, based on the compound distributions (CD) statistics, are here presented. Exact analytical results (CD model), approximated analytical results (CD+Central Limit Theorem model) and numerical results (numerical convolution) are deeply discussed. Finally, the good agreement between our simulations and experimental data of ultrascaled nanocrystal devices, made by conventional UV lithography or by e-beam lithography, definitively confirms the validity of our theoretical approach.

I. INTRODUCTION

M ULTINANOCRYSTAL memory devices are widely in- voked as one of the possible solutions to the scaling limitation of Flash memory devices [START_REF] Deblauwe | Nanocrystal nonvolatile memory devices[END_REF]. In fact, the use of discrete trap storage nodes in flash memories, instead of a continuum floating gate (FG), guarantees insensitivity to stressinduced oxide defects, allowing for thinner tunnel oxides [START_REF] Compagnoni | Study of nanocrystal memory reliability by CAST structures[END_REF]. Moreover, these devices do not suffer of drain turn-on effect [START_REF] Lombardo | Effects of the distributed charge storage in nanocrystal memory cell[END_REF], allowing for cell length scaling and high reading drain voltage. In conventional FG devices, the intra-die variation of natural threshold voltage, due to dopant fluctuations of the well doping, has been ascribed as a major reliability concern as devices continue to scale [START_REF] Burnett | Variation in natural threshold voltage of NVM circuits due to dopant fluctuations and its impact on reliability[END_REF].

In spite of the previously remembered advantages of nanocrystals devices compared to conventional FG devices, in nanocrystal memories an additional cause of fluctuations of electrical characteristics will exist. In fact, fluctuations of dot diameter and dot number from one sample to another will be more and more critical for ultrascaled memory cells containing a very little number of dots (Fig. 1). In particular, the dispersion of the programming window will raise while scaling the cell area. In order to control this new critical issue, a very strict control of dot deposition parameters has to be assured.

The aim of this paper is to quantitatively evaluate the scaling limit of this novel concept of memory based on randomly distributed storage sites. The statistical description of the dots parameter fluctuations and their impacts on device characteristics will be here addressed both from a theoretical and an experimental point of view.

II. TECHNOLOGICAL FLUCTUATIONS OF SILICON NANOCRYSTALS:DOT DIAMETER AND DOT NUMBER

The storing properties of a nanocrystals memory cell depend both on the total dot number, , and dot diameter, , on the cell. Indeed, these two main parameters strictly depend on the process conditions used for Silicon nanocrystals deposition. Today, the low-pressure chemical vapor deposition [START_REF] Deblauwe | Nanocrystal nonvolatile memory devices[END_REF], [START_REF] Mazen | Influence of chemical properties of the substrate on silicon quantum dot nucleation[END_REF] is one of the most promising fabrication method for integration of nanocrystals technologies in industrial circuits. Based on this approach, the total dot number, , and dot diameter, , could be regarded as independent statistical variables as the state-of-the-art low-pressure chemical vapor deposition (LPCVD) knowledge does not allow deposition of a fixed dot number nor an uniquely defined dot size.

A. Maxwell-Boltzmann Fit for Dot Diameter

Concerning the dot diameter , a phenomenological approach is taken. In particular, the probability density is obtained by directly fitting the experimental dot size histograms (measured by high-resolution transmission electron microscopy) of LPCVD nanocrystals successively integrated in memory devices. Note, that this phenomenological approach is not substantive for the smallest dot diameter values (less than 1 nm), as TEM imaging is not able to devise such small objects.

Two different populations of nanocrystals were considered. Fig. 2 illustrates the statistics of silicon dots with a high areal density, dots/cm , and a mean diameter of 3 nm [START_REF] Mazen | Influence of chemical properties of the substrate on silicon quantum dot nucleation[END_REF]. Note, that at our knowledge, this is the highest Si-dot density ever obtained by LPCVD technique on SiO substrates. This populations can be fitted by a Maxwell-Boltzmann distribution exp [START_REF] Deblauwe | Nanocrystal nonvolatile memory devices[END_REF] where denotes the most probable dot diameter present in the statistical ensemble.

For the purposes of the following theoretical analysis, it should be highlighted that the Maxwell-Boltzmann distribution is a chi-squared function of three degrees of freedom [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF]. Indeed, by putting , and introducing the identity , we see exp exp (2)

B. Shneidman Assumption for Dot Diameter

Fig. 3 illustrates the statistics of Silicon dots with a small areal density, dots/cm , and a mean diameter 4.9 nm (in the inset a Energy Filtered TEM image is shown) [START_REF] Lombardo | Effects of the distributed charge storage in nanocrystal memory cell[END_REF]. For this type of statistics, another theoretical approach is more suitable: the Shneidman model, based on the well-known capillarity model [START_REF] Shneidman | Size distribution of new-phase particles during transient condensation of a supercooled gas[END_REF].

In this, the free energy change due to the formation of a cluster of size is the balance between the gain of volume free energy due to condensation of the atoms in the new phase, and the loss due to surface energies of the new formed interfaces, proportional to

. The presence of a surface energy for the newly formed cluster produces a free energy barrier for the nucleation at a critical size and the cluster free energy will produce a tendency to growth or shrinkage depending on whether or . Assuming this driving force, the nucleation can be modeled by considering the balance equation of Frenkel-Zeldovich. Recently an analytical solution to this equation, for has been proposed by Shneidman for a number of different nuclei growth kinetics [START_REF] Shneidman | Size distribution of new-phase particles during transient condensation of a supercooled gas[END_REF]. For a growth regime limited by the reaction rate at the surface, the Shneidman solution is

exp exp (3) 
In ( 3), is the critical diameter corresponding to the critical size , is the deposition time, while is another characteristic time function of dot diameter (i.e., incubation time).

Note that contrary to the previous case, this dot diameter model states that going to smaller values, dot size probability remains constant. Indeed, the results provided by the Shneidman assumption for dot diameter distributions can be regarded as complementary to the Maxwell-Boltzmann case.

C. Total Number of Dots in a Cell:

Concerning the total dot number in a cell , we make the hypothesis that it is described by a Poisson law , with , being the dot areal density and the cell area. This assumption derives from the fact that these statistics describes the behavior of random, rare events in space or time: random events, in space, because the nucleation of one dot does not influence the nucleation of another dot in the cell, and rare events, in space, because we do not consider cells where coalescence between dots shows up.

III. ANALYTICAL FORMULA OF MEMORY PROGRAMMING WINDOW

In a previous experimental and theoretical works [START_REF] Compagnoni | Study of nanocrystal memory reliability by CAST structures[END_REF], [START_REF] Salvo | Experimental and theoretical investigation of nano-crystal and nitride-trap memory devices[END_REF], [START_REF] Ishii | Engineering variations: toward practical single-electron (few-electron) memory[END_REF], it has been demonstrated that the maximum programming threshold voltage shift of one memory cell is proportional to the memory active area covered by the dots, , i.e.,

where is the current density charging every Si-dot (coming from control gate and active canal), while is the current density discharging the Si-dots (going to control gate and active canal), both expressed in A/cm .

is the control oxide capacitance per unit area F/cm , is the local aerial density of charge supposed to be in each nanocrystal C/cm , is the tunnel oxide thickness, is the control oxide thickness.

As it can be deduced from this formula, the nanocrystal trapped charge is therefore considered as uniformly distributed all over the memory channel, as also reported by other authors [START_REF] Molas | Investigation of few electron storage phenomena in an ultrascaled Si-nanocrystal memory[END_REF], for evaluating its impact on the MOSFET operations.

If only the fluctuations of technological parameters of the Si-dots, as the dot size and dot number , are taken count, it can be shown that , while remains constant. Our attention, therefore, will be primarily focused on dot surface coverage ratio fluctuation. Note also that, as a confirmation of hypothesis, Ishii et al. [START_REF] Ishii | Engineering variations: toward practical single-electron (few-electron) memory[END_REF] found experimentally that the mean programming window and its relative dispersion depends on dot surface coverage ratio, and not only on dot density.

Finally, it should be stated that in this model we have not taken into account coulomb blockade or quantum effects in the Si-dots. This assumption is coherent with our experimental results. In fact, our devices are based on Si nanocrystals highly dispersed in diameter ( 30%) and with dot diameter higher than 3-4 nm [START_REF] Wang | Effects of dot size and its distribution on electron number control in metal-oxide-semiconductor field-effect-transistor memories based on silicon nanocrystal floating gate[END_REF]. Moreover, consider that further improvements of our model should also take into account the electrostatic impact of dot position on the channel, to be consistent with memory devices with very narrow active channels ( 30 nm) [START_REF] Saitoh | Effects of ultra-narrow channel on characteristics of MOSFET memory with silicon nanocrystal floating gate[END_REF].

IV. MODELING OF THE PROGRAMMING WINDOW DISTRIBUTION

A. Monte Carlo Approach

First, a Monte Carlo (MC) simulation has been performed. The total number of dots for each cell is extracted, according to the Poissonian law. Then, in an independent way, for each dot in the cell, a different diameter is extracted, according to the chosen experimental law for dot diameter. The following expression is valid for the th sample in the analyzed ensemble:

(5)

B. Compound Distribution Theory 1) Analytical Exact Result of

Distribution: CD Model: From (5), it clearly appears that is a random sum (i.e., depend on the cell) of random variables (i.e., over the same cell, depends on the dot). This statistical process could be treated by means of the Compound Distributions (CD) theory [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF]. Indeed, this powerful theory allows us to give a complete description of the probability distribution of the programming window [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF] where is the probability conditioned to a number of dots per cell equal to . In the case of the dot diameter experimental distribution like the Maxwell-Boltzmann one [(1), Fig. 2], the exact calculation of is feasible and the final analytical formula of the probability density is [START_REF] Shneidman | Size distribution of new-phase particles during transient condensation of a supercooled gas[END_REF] where the role of the conditioned probability of ( 6) is played by a chi-squared function of degrees of freedom. To find out the result in [START_REF] Shneidman | Size distribution of new-phase particles during transient condensation of a supercooled gas[END_REF], the result of ( 2) and an additional theorem on chi-squared distribution function has been used (i.e., [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF]). In Fig. 4, a comparison between the CD and the MC models is provided.

2) Analytical Approximated Result of Distribution: CD CLT (Compound Distributions+Central Limit Theorem) Model: In the case of not handy mathematical function for dot diameter distributions, as in the Shneidman assumption, an approximation could be employed, at least in the limit of a "large" number of dots on cells.

In [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF], we mentioned already the presence of as conditioned probability to the number of dots equal to . In the case that is rather high (i.e., more than 30) we know that the probability density in (6) approaches 

In this case, the analytical result of is approximated. In Fig. 5, a comparison between the exact (CD model based)

probability and the approximated one (CD CLT model) is shown. The excellent agreement between the two approaches appears at least for probabilities higher than .

3) Numerical Result of

Distribution: Again in the case of not handy mathematical functions for dot diameter distributions, a numerical result on the programming window distribution could be provided. This method pushes the limit of the previous analysis to whatever value of dot number on cells.

In this case the conditioned probability in ( 6) is calculated via a convolution of dot diameter Due to its numerical nature, this calculation starts directly from dot diameter histograms, without the need of an analytical fit (as in the Maxwell-Boltzmann or Shneidman case). In Fig. 6, a comparison between the programming window distribution starting from the Maxwell-Boltzmann assumption and the Shneidman assumption (both initially discretised) is provided, for a "low" number of dots on cells.

We see that the programming window distributions are similar to each other: starting from the Shneidman assumption, does not lead to substantially different result with respect to the Maxwell-Boltzmann case.

4) Direct Calculation of Mean Value and Relative Standard Deviation:

Whenever the overall distribution expressions for and are not known, the CD theory also allows us to directly quantify the mean value and the relative variance =2:1210 cm ), Q =C =5V . The mean value of dot diameter is 4.9 nm for both distributions (the Shneidman distribution used is the same as Fig. 3, while 8 =4:35 nm for Maxwell-Boltzmann distribution). We can see that, even for a low number of dots on cells, the programming window distributions do not differ much from each other. of the programming window, starting from the equivalent parameters for and , i.e.,

(10)

If the Poisson law is assumed for dot number on cell, (10) becomes [START_REF] Saitoh | Effects of ultra-narrow channel on characteristics of MOSFET memory with silicon nanocrystal floating gate[END_REF] Note that ( 9) and ( 10) simply quantify the separate influence of and characteristics on mean value and standard deviation of , feature hardly accessible with the MC model. It is worthwhile to note that Ishii et al. [START_REF] Ishii | Engineering variations: toward practical single-electron (few-electron) memory[END_REF] found experimentally that the relative variance of is equal to the relative variance of .

(

) 12 
This can be easily demonstrated, with the help of the CD theory, rewriting [START_REF] Wang | Effects of dot size and its distribution on electron number control in metal-oxide-semiconductor field-effect-transistor memories based on silicon nanocrystal floating gate[END_REF] for . Another feature is that in the Maxwell-Boltzmann case [START_REF] Deblauwe | Nanocrystal nonvolatile memory devices[END_REF] , whatever value of is considered, while in the Shneidman case depends on the parameters considered. small discrepancies appearing between the two models are due to the fact that the MC method simulates results on a finite statistical ensemble of cells (50 samples in Fig. 7), while the CD model provides a theoretical result in the case of an infinite ensemble. Obviously, going to smaller cell areas the fluctuations of the MC simulations around the theoretical curve will become bigger and bigger, except if a larger number of cells is used In Fig. 8, a plot of the relative standard deviation of versus the mean number of dots per cell is provided. If a reliability criterion of is imposed, in order to maintain a clear separation between the "1" and "0" memory programmed states, we have to assure a certain range of values ( 140) on our devices, for whatever combination of cell area and dot density. This means that going toward smaller and smaller cell areas, higher and higher dot density will be needed, which assures both small dispersion [START_REF] Wang | Effects of dot size and its distribution on electron number control in metal-oxide-semiconductor field-effect-transistor memories based on silicon nanocrystal floating gate[END_REF] and clearly detached memory states [START_REF] Ishii | Engineering variations: toward practical single-electron (few-electron) memory[END_REF].

V. D ISCUSSION AND EXTRAPOLATIONS

A. Comparison Between Monte Carlo and Compound Distribution Model

From [START_REF] Saitoh | Effects of ultra-narrow channel on characteristics of MOSFET memory with silicon nanocrystal floating gate[END_REF], we can easily quantify the impact of dot number or dot diameter fluctuations separately considered. It could be interesting, for instance to quantify the influence of dot size Fig. 9. Percentage impact of the relative dispersion of dot diameter on the overall programming window dispersion, P (F), versus the relative dispersion of the dot diameter 8 =8 [as coming from ( 13)]. The dot number relative variance assumes three values (F =1means Poisson distribution, F =0:2 and F =0:5 show possible future dot depositions toward "ordered" structures). We see that, while lowering P (F), thus diminishing dot number fluctuation, dot size fluctuation plays a stronger and stronger role on 1V =1V . For a dot number distribution equal to the Poisson law, it is highlighted the value of 8 =8 which impacts at same percentage of N =N . Fig. 10. Threshold voltage shift cumulative probability density (solid line) and probability density (dashed line) for the same parameters as in Fig. 4. The cumulative probability distribution is important to quantify the number of cells which show a threshold voltage shift below a certain limit (quantify the erratic bits). As an example, it is highlighted the voltage limit shown by one cell over a gigabit array. fluctuation on the programming window dispersion, by letting vary and calculate its impact on . Concerning dot number, different distributions from the Poisson one could be also considered. To this aim a parameter is introduced, where stands for the Poisson dispersion. If the dot number dispersion is less than the Poisson dispersion. We could imagine that the lower is the value of , the higher is the order of dots deposited on the cell surface. We could now introduce a function which quantifies the percentage impact of the term associated to the dot size fluctuation on the overall relative fluctuation. Eventually is defined as follows:

(13) In Fig. 9, the result of ( 13) is shown for three different values of . The CVD deposition at the moment, a typical Poisson dot number fluctuation (i.e.,

), therefore it is highlighted on its curve that impacts for 50% on . Most of the techniques used nowadays for Si-dot deposition assure typical values of , between 0.4 and 1. In this case the most important contribution to programming window dispersion is due to dot number fluctuation.

B. Erratic Bits

It is possible to quantify the number of cells under a certain limit of surface coverage ratio, i.e., the cells in an array which will not show a sufficient programming window. These cells, could be called erratic bits in the case of multi nanocrystal memories.

To know the amount of erratic cells, the cumulative probability density of the programming window must be computed, thus, if we start, for instance, from the result of CD model [START_REF] Shneidman | Size distribution of new-phase particles during transient condensation of a supercooled gas[END_REF], we obtain (14) where is the cumulative probability function of .A s an example, in Fig. 10 the cumulative probability distribution is shown, as coming from (14) and same parameters used for Fig. 4 or Fig. 5. It is highlighted the value which is at most supposed to be shown by one cell in a gigabit array (probability of ). It is worthwhile to remark that (13) shows the diverse dependences, i.e., , ,A, , which could be arranged to suit one's reliability requirements.

Following the previous reasoning, a simple formula to quantify the erratic bits with the CD CLT model could be provided, as well. In this case is a sum of error functions Device 2 corresponds to Si-bulk memory transistors [START_REF] Salvo | Experimental and theoretical investigation of nano-crystal and nitride-trap memory devices[END_REF], defined by ultraviolet lithography, with minimum area of m and maximum area of m . In Device 2, the total dot number is on the order of thousands cm . Device 1 corresponds to a silicon-on-insulator memory transistor [START_REF] Molas | Investigation of few electron storage phenomena in an ultrascaled Si-nanocrystal memory[END_REF], defined by e-beam lithography, with minimum area of nm and maximum area of nm . In Device 1, the total dot number is on the order of tens cm . Silicon dots in large area cell (Device 2) were LPCVD deposited with a low areal density, while silicon dots in nanoscaled cells (Device 1) were fabricated via annealing of LPCVD SiO enriched layer. This last fabrication method of dots is believed to develop islands with a high areal density but largely dispersed in size. Both types of devices have been written and erased in fully Fowler-Nordheim conditions. Each cell corresponds a different chip on the wafers. Systematic tests were carried out on an ensemble of 50 cells, in the case of large devices, while on an ensemble of 20 devices in the case of nanoscaled devices. In Fig. 11(a), in particular, the comparison between the CD CLT model ( 8) and experimental results is provided, in the case of Device 2. In Fig. 11(b), [START_REF] Saitoh | Effects of ultra-narrow channel on characteristics of MOSFET memory with silicon nanocrystal floating gate[END_REF] has been applied considering around one fourth of dots effectively charged, and in the case of Device 2, while in the case of Device 1. In Fig. 11(c) is evidenced also the MC simulation on nanoscaled cells. The spread around the theoretical curve is due to the small number of samples considered (in simulations 20 samples per cell area are taken, as in the experimental data).

VII. CONCLUSIONS

A detailed model, tailored on multinanocrystal memory devices, on programming window dispersion has been provided. Both a Monte Carlo simulation and a theoretical approach based on the compound distributions theory have been introduced to fix quantitatively guidelines concerning dot density and dot size requirements. The separated impact of dots diameter or dots number fluctuations on the overall dispersion, , has also been quantified. The main issue of erratic bits (i.e., cells with too low programming window) in an ensemble of multinanocrystal memories has been addressed as well.

The validity of our approach has been confirmed by the very good agreement between our simulations and a large set of experimental data.
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 1 Fig. 1. The multinanocrystals memory device structure. The dot size and dot number fluctuations in memory cell of different areas are illustrated.

Fig. 2 .

 2 Fig. 2. Dot diameter experimental distribution coming from the TEM image of LPCVD Si-dots (inset, highest dot density ever reached in the literature D = 2 2 10 cm , mean dot diameter 3 nm) and theoretical fitting (dashed line) based on a Maxwell-Boltzmann distribution (8 =2:7 nm most probable diameter, 8 =8 =2=3).

Fig. 3 .

 3 Fig. 3. Dot diameter experimental distribution coming from the energy filtered TEM image of LPCVD Si-dots (inset) and theoretical fitting (dashed line) based on a Shneidman solution of the Frenkel-Zeldovich [7] (8 0 is the critical diameter, t (8) is the incubation time, is the transient time, mean dot diameter 4.9 nm).

Fig. 4 .

 4 Fig. 4. Simulation of the 1V histogram obtained with the MC method ((5), using 2000 samples). The theoretical probability based on the CD model (7) is also shown (parameters for simulation are: A =1:5 2 10 cm , D = 2:1 2 10 cm , 8 =2:7 nm, Q =C =5V , f is a chi-squared distribution function with 3n degrees of freedom).

Fig. 5 .

 5 Fig. 5. Comparison between 1V probability distribution obtained by means of the exact CD model [(7), with same parameters as Fig. 4] and of the approximated CD + CLT model (8).

Fig. 6 .

 6 Fig. 6. Threshold voltage distributions starting from the Maxwell-Boltzmann assumption (solid line) or the Shneidman theory (dashed line) for dot diameter. This plot is the result of the numerical convolution of 21 Maxwell-Boltzmann or Shneidman simple probability densities, as N =21(A =1210 cm , D

Fig. 7 Fig. 7 .

 77 Fig.7shows a comparison between the MC result and CD model concerning the value of . Note that the

Fig. 8 .

 8 Fig.8. Relative standard deviation of 1V , as obtained from CD model[START_REF] Saitoh | Effects of ultra-narrow channel on characteristics of MOSFET memory with silicon nanocrystal floating gate[END_REF]. Two values of relative variance of dot size 8 are shown. In order to obtain 1V =1V =10%, it must be assured N > 140, whatever combination of dot density or cell area is.

Fig. 11 .

 11 Fig. 11. (a) Comparison between experimental data of Device 1 (W =10m,L =0:5m)and CD+CLT model (8), using this set of parameters (1): 8 =7nm, 8 =8 =0:6, D =12 10 =cm with 1/4 of dots effectively charged). (b) Relative standard deviation of 1V versus cell area. Experimental results are evidenced by crosses (Device 1) and boxes (Device 2). Fits using the CD model (11) have been done using parameter set (1) for Device 2 and parameter set (2) (i.e., 8 =8 =1, D =12 10 =cm with 1/4 of dots effectively charged) for Device 1. (c) Comparison between data of Device 1, CD model (11)with parameter set (2) and MC simulations [circles,[START_REF] Mazen | Influence of chemical properties of the substrate on silicon quantum dot nucleation[END_REF]] using 20 samples per area, to simulate a real dispersion (due to a limited statistical ensemble) around the theoretical curve.

  . COMPARISON WITH EXPERIMENTAL DATA In Fig. 11, experimental evidence of the validity of the CD model is given. Two different types of devices with several active areas have been fabricated and tested.
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