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1 Introduction

Parameter identification is a fundamental problem in structural mechanics. Identifica-

tion techniques can be based on the modal parameters through the dynamic responses

of the structure and are then qualified as indirect, or on the general matrix equation

of dynamic equilibrium and are then qualified as direct.

In direct approches, orthogonal functions are frequently used because of their inte-

gration property, based on a square matrix with constant elements. This property allow

to transform the set of differential equations which governs the dynamical behaviour of

the system into a set of algebraic equations. Pacheco and Steffen (2002) compare this

technique with different kinds of orthogonal functions, such as Fourier series, Legendre

polynomials, Jacobi polynomials, Chebyshev polynomials, Block-Pulse functions and

Walsh functions. Rémond et al (2008) develop this method, using the Chebyshev poly-

nomials and dissociating signal expansions and parameter estimation. They proposed

indeed to identify parameters by using only a few points from the acquired data.

Wavelet analysis can also be used for modal identification. Staszewski (1997) apply

the coutinous wavelet transform to the free vibratory response of a mechanical system

to estimate its damping, considering the Morlet wavelet function. Slavic et al (2003)

proposed a closely related method, using the Gabor wavelet function. A complete pro-

cedure for modal identification from free responses based on the continuous wavelet

transform is presented by Le and Argoul (2004), comparing characteristics of Mor-

let wavelet, Cauchy wavelet and harmonic wavelet. These techniques have also been
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applied to free responses of linear non-proportionally damped systems (Erlicher and

Argoul, 2007) and to weakly non-linear systems Staszewski (1998).

The aim of this paper is to propose a direct method of identification, transform-

ing a set of differential equations into a set of algebraic equations, based on either

orthogonal polynomials or wavelet analysis. Whereas classical identification methods

using wavelet analysis applied to free responses, forced systems are here considered.

The general scheme of the proposed technique is presented in §2. The case of identi-

fication using orthogonal polynomials is studied in §3, the chosen basis being the one

of Chebyshev, and the case of identification using wavelet analysis is studied in §4, the

chosen wavelet mother being the Cauchy wavelet. In §5, both methods are tested on

numerical simulations of a three degrees of freedom system.

2 Description of the unified identification method

The expression of the equation of motion for a multi Degrees of Freedom (DoF) linear

system can be written in the form

M ẍ (t) + C ẋ (t) +K x (t) = f (t) , (1)

where x (resp. ẋ, ẍ) refers to the vector of size k of the mass displacements (resp.

velocity, acceleration), f refers to the vector of size k of forces applied on the system,

and M (resp. C, K) refers to the k× k mass (resp. viscous damping, stiffness) matrix,

k being the number of DoF.

For j ∈ J1, qK, let Fj : u 7→ Fj(u), be q linear forms which associate a scalar to a

time function u. For a vector u = {u1, u2, . . . , uk}t, let note F (u) the k× q matrix the

(i, j) coefficient of which is Fj (ui) :

F (u) =

0

B

B

B

@

F1 (u1) F2 (u1) · · · Fq (u1)

F1 (u2) F2 (u2) · · · Fq (u2)
...

...
. . .

...

F1 (uk) F2 (uk) · · · Fq (uk)

1

C

C

C

A

.

Applying the q forms Fj to the Eq. (1), we obtain the algebraic equations system

M F (ẍ) + C F (ẋ) +K F (x) = F
`

f
´

. (2)

Let us note the vector X built from the coefficients of matrices M , K and C. Rear-

ranging the terms of Eq. (2), the problem can be written in the form

AX = B , (3)

where A is a rectangular matrix. When the square matrix AtA is invertible, inverting

this system in the sense of least squares leads to the normal equation

X =
“

AtA
”

−1
AtB , (4)

and permits then to identify the coefficients of M , K and C. Eq. (3) will be proposed

in an explicit form in the particular case of a 3 DoF system in §5.

In the case of complex linear forms Fj (like CCWT, see §4), the matrices A and

B are replaced by (ℜ(A),ℑ(A))t and (ℜ(B),ℑ(B))t respectively where ℜ and ℑ are
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the real and imaginary part respectively. The size of the system to invert depend to

the hypothesis made on the matrix to identify. Assuming M diagonal and K and C

symetrical, the number of terms to identify is (k2 + 2k). The size of the system is thus

q × (k2 + 2k) (2q × (k2 + 2k) in the case of complex linear forms).

In the two following paragraphs, the Fj applications will be defined as projection

on a polynomial basis and as continuous wavelet transform in order to compare both

approaches in term of performance and robustness to noise.

3 Identification procedure with Chebyshev polynomials

3.1 Chebyshev polynomials

For s ∈ N, let Ts be the Chebyshev polynomials of the first kind

Ts(τ) = cos (s arccos τ) , ∀τ ∈ [−1, 1] .

The set {T0, T1, . . . , Tp} forms an orthogonal basis for the set of all polynomials of

degree lower or equal to p with respect to the scalar product

〈f, g〉 =

Z 1

−1

f(τ)g(τ)√
1 − τ2

dτ .

The derivative of each polynomial can be expressed as a sum of polynomials of lower

order, that allows to write
dT

dτ
= DT , (5)

where T = (T0, T1, . . . , Tp)
t and dT/dτ = (dT0/dτ, dT1/dτ, . . . , dTp/dτ)

t. The expres-

sion of the matrix D is given in the appendix A.1.

3.2 Expansion of a function on a Chebyshev basis

Let u : t 7→ u(t) be a function defined on the interval [tmin, tmax] and let ǔ : τ 7→ ǔ(τ)

be the associated function defined for τ ∈ [−1, 1] by

ǔ(τ(t)) = u(t) ,

where τ(t) = (2t− tmax − tmin)/(tmax − tmin). In this paragraph we are interested in

the expansion Pp[u] of u on the basis {T0, T1, . . . , Tp}

Pp[u](t) =

p
X

s=0

〈ǔ, Ts〉
〈Ts, Ts〉

Ts(τ(t)) = αT (τ(t)) , (6)

where the notation α = (α0, α1, . . . , αp), with αs = 〈ǔ, Ts〉 / 〈Ts, Ts〉 has been intro-

duced. The values of u are supposed to be known in a finite number of sampled instants.

To estimate the coefficients of the expansion Pp[u] on the Chebychev basis, it is as-

sumed that the function u is piecewise affine between these instants. The coefficients

of the expansion of u are then given by

〈ǔ, Ts〉 =

Z 1

−1

ǔ(τ) cos (s arccos τ)√
1 − τ2

dτ ,
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which the calculation is given in the appendix A.2.

For example, the 1000 first coefficients of the projection of the sum of exponentially

damped harmonic signals at 5 Hz, 10 Hz and 20 Hz

v(t) = 0.8 e−2t sin(10πt) + 0.4 e−t sin(20πt) + 0.5 e−3t sin(40πt) , (7)

plotted on Fig. 1, discretized on a period of 4 s with a sample frequency of 1000 Hz,

are represented on Fig. 2.
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Fig. 1 Signal v, defined by Eq. (7)
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Fig. 2 Coefficients on the Chebyshev basis of signal v

Assuming that the expansion of the derivative of a signal u on the basis is close to

the derivative of the expansion of u, that is

Pp[u̇](t) ≃
d

dt
Pp[u](t) =

2

tmax − tmin
αDT (τ(t)) , (8)
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the coefficients of the expansion of u̇ can be calculated from those of the expansion of

u. In the same way, we have

Pp[ü](t) ≃
„

2

tmax − tmin

«2

αD2 T (τ(t)) . (9)

Note that to obtain the expansion of ü on polynomials of degrees 0 to p, the expansion

of u has to be calculated on polynomials of degrees 0 to p+2 (the degree of the derivative

of a polynomial is the degree of the polynomial −1, which explain the column of zeros

in the matrix D).

For the signal of Fig. 1, analytically known, let observe the error then made on

the coefficients of Pp[ü]. The distance between the coefficients directly computed and

those estimated with Eq. (9) is plotted versus the size p of the basis on the Fig. 3. We
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Fig. 3 Distance between Pp[ü](t) and d2

dt2
Pp[u](t), versus the size of the Chebychev basis

observe that this error is large when the signal is expanded on a number of polynomials

insufficient to describe it correctly (p < 300 in our case). But when the signal is

expanded on a wide basis, the coefficients of Pp[ü] are not correctly estimated using

Eq. (9). This is due to small coefficients of the expansion of u for polynomials of large

degrees s (see Fig. 2) which are amplified when multiply by the terms of matrix D.

This coefficients are unuseful for the description of the signal u, and conducts to bad

estimation of its derivatives. We decide thus to choose the size p of the basis as the

smallest integer such that all coefficients for s > p are smaller than a threshold, defined

as the larger computed coefficient ×10−4.

In previous work (Rémond et al, 2008), the coefficients of the expansion of a signal

was calculated in the sens of root mean square : for a given integer p, the signal was

estimated by the sum of Chebychev polynomial of degrees ≤ p which is the nearest as

possible to the signal at each instants ti. This conducted to ill estimation of signals

if the size of the basis was badly chosen, in particular in the case of a to large basis.

With the definition of the expansion used here, the larger is the basis, the better is
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the estimation of signals. Nevertheless, the size of the basis has to be limited because

of the effect of large coefficients of the matrix D when the expansion is derived : the

choice of the size of the basis is linked to the estimation of the derivatives of the signal,

not to the estimation of the signal itself. On Fig. 4, it can be seen that the proposed

criterion for this size leads to good estimation of acceleration in the major part of the

time window, but it persists edge effect, where the estimation is not good.
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3

Fig. 4 Edge effect on the estimation of the acceleration

3.3 Identification procedure

Let us now see how expansion of signals under Chebyshev basis can be used to apply

the identification method described in §2. Two definitions can be used for the linear

forms applied to the equation of motion. Each application Fj can be defined as the

coefficient of the expansion of u on the jth Chebyshev polynomial

Fj(u) =
˙

ǔ, Tj
¸

/
˙

Tj , Tj
¸

, (10)

or as the projection of the signal u, computed at a given instant tj

Fj (u) = Pp[u]
`

tj
´

. (11)

Note that defining Fj with Eq. (11) lead to invert a system made of linear combinations

of the system obtain when defining Fj with Eq. (10), coefficients of these combinations

being the values of the Chebyschev polynomials at tj . Both definitions have been tested,

and it has been observed that the second one conducts to better results of identification.

Indeed, it has been shown in the previous paragraph that, at instants near the edges of

the time window, signals, especially second derivatives, are not well estimated by their

expansions. Using Eq. (11) for the identification permits to choose values of instants

tj far from the edges, and thus reduce the error made on the results of identification.

The values of Fj (u̇) and Fj (ü) are deduced from those of Fj (u) by applying

Eq. (8) and (9).

anonyme
Barrer
leads
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4 Identification procedure with Cauchy wavelet analysis

4.1 Continuous Cauchy wavelet transform

The Cauchy Continuous Wavelet Transform (CCWT) of a real signal u(t) of finite

energy is defined by

Tψn
[u](b, a) =

1

a

Z +∞

−∞

u(t)ψn

„

t− b

a

«

dt , (12)

where the mother wavelet is chosen as the standard Cauchy wavelet with order n :

ψn(t) =

„

i

t+ i

«n+1

,

and ψn(·) is its complex conjugate. The real parameters a > 0 and b introduce scale-

dilatation and time-translation, respectively. An alternative expression of the CCWT

can be obtained by applying Parseval’s theorem to Eq. (12)

Tψn
[u](b, a) =

1

2π

Z +∞

−∞

û(ω)ψ̂n(aω)eiωb dω , (13)

where ψ̂n(ω) is the Fourier transform of the mother wavelet :

ψ̂n(ω) =

Z +∞

−∞

ψn(t)e−iωt dt =
2πωne−ω

n!
H(ω) , (14)

where H(·) is the Heaviside function.

The scale parameter a plays the role of the inverse of frequency. To visualize the

CCWT in the time-frequency plane rather than in the time-scale plane for more read-

ability, we have thus to define a correspondence between the scale a and the angular

frequency ξ. We choose it so that the absolute value of the CCWT of an harmonic

signal w(t) = A cos(ω0t), where A is a positive constant, exhibits maxima for ξ = ω0,

that is

a =
n

ξ
. (15)

Indeed, the CCWT of w is deduced from Eq. (13)

Tψn
[w](b, a) =

A

2
ψ̂n(aω0)e

iω0b , (16)

and the absolute value of the Fourier transform of the Cauchy wavelet |ψ̂n(·)| is peaked

at the value of the angular frequency equal to n (see Eq. (14)), and thus the absolute

value of the CCWT of w(t) is maximum when aω0 = n.

The local resolution of the CCWT in time and frequency can be estimated by

introducing the duration ∆t and bandwidth ∆ω of the translated and scaled mother

wavelet ψn ((· − b)/a). Defined in terms of root mean squares, they are given, for the

Cauchy wavelet, by

∆t =
a√

2n− 1
, ∆ω =

√
2n+ 1

2a
, (17)

(Le and Argoul, 2004). The Q factor can be also introduced to characterise the resolu-

tion of the mother wavelet and then of the CCWT. It is defined as the center-frequency
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and the frequency bandwidth of the mother wavelet, and is equal, for the Cauchy

wavelet, to

Q =
1

2

√
2n+ 1 .

The choice of the parameter n of the Cauchy wavelet is thus important to optimize the

parameter identification procedure, as it will be seen in the following paragraphs.

4.2 Adaptative continuous Cauchy wavelet transform

For a given Cauchy mother wavelet, i.e. a given parameter n, the resolution of the

CCWT depends on the scale a, as we can see on Eq. (17). The resolution is thus

not uniform in the time-frequency plane. It could be interesting to have an uniform

resolution, and that is why an adaptative CCWT is defined hereafter.

Assuming n >> 1, so that 2n+ 1 ≃ 2n− 1 ≃ 2n, the duration ∆t and bandwidth

∆ω of the translated and scaled mother wavelet are given by

∆t ≃ 1

ξ

r

n

2
, ∆ω ≃ ξ√

2n
, (18)

and the product

∆t∆ω =
1

2

r

1 +
2

2n− 1
≃ 1

2
(19)

is almost a constant independent of n. To have an uniform resolution in the time-

frequency plane, we decide to make the order n of the Cauchy wavelet dependent on

the frequency ξ. So, ∆ω is fixed and n is defined as

n∆ω(ξ) =
1

2

„

ξ

∆ω

«2

. (20)

According to Eq (18), the resolution in frequency is thus the same everywhere in

the time-frequency plane, and the product ∆t∆ω being independent of n, so is the

resolution in time.

schema du plan temps-freq avec des rectangles

The absolute value of the CCWT of the harmonic signal w(t) = A cos(ω0t), where

A is a positive constant, taken at ξ = ω0, is given by

˛

˛

˛

˛

Tψn
[w]

„

b, a =
n

ω0

«˛

˛

˛

˛

=
A

2

˛

˛

˛ψ̂n(n)
˛

˛

˛ = A
πnne−n

n!
,

(see Eq. (16)). Thus, we propose to normalize the value of the CCWT by πnne−n/n!,

so that the values obtained at ξ = ω0 for an harmonic signal of angular frequency ω0

will correspond to the amplitude of the signal.

So, the adaptative CCWT of a real signal of finite energy u(t) is defined, for a given

bandwidth ∆ω, by

S∆ω[u](b, ξ) =
n∆ω(ξ)!

πn∆ω(ξ)n∆ω(ξ)e−n∆ω(ξ)
Tψn∆ω(ξ)

[u]

„

b,
n∆ω(ξ)

ξ

«

, (21)

where b and ξ represent the time and the angular frequency respectively, and n(ξ) is

defined by Eq (20).
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Examine now the edge effects. According to Erlicher and Argoul (2007), for a given

(b, a) time-scale point, the computation of Tψn
[u](b, a) depends mainly on the signal

values u(t) occuring for t belonging to the interval [b − ct∆t, b + ct∆t] where ct ≃ 5.

The points (b, a) where edge effects are negligible, verify therefore

tmin + ct∆t ≤ b ≤ tmax − ct∆t .

Introducing Eq. (19) in the latest inequality, we obtain

tmin +
ct

2∆ω
≤ b ≤ tmax − ct

2∆ω
.

In the case of a modulated amplitude and phase signal

w(t) =
k

X

i=1

Ai(t) cos(αi(t))

where each amplitude Ai(t) varies slowly compared to the corresponding phase αi(t),

the energy of the CCWT of the signal tends to localize around a set of points in the

time-scale plane called ridges which are defined as

Ri[w] = {(b, ξ) | ξ = α̇i(b)} ∀i ∈ J1, kK .

As an example, the absolute value of the adaptative CCWT of the signal v defined

by Eq. (7) is represented on Fig. 5, with different values of ∆ω. We can see that there

is a compromise to do on the choice of ∆ω : when its value is small, the characteristic

frequencies of the signal are clearly separated, while they are not with a large value,

but edge effect may become important in this case.

4.3 Identification procedure

For a given bandwidth ∆ω and a given time-frequency point (bj , ξj), the application

Fj is defined as the adaptative CCWT, computed at (bj , ξj) :

Fj (u) = S∆ω[u](bj , ξj) .

The CCWT of the derivative and the second derivative of a signal can be derived from

the one of the signal by using mother wavelets ψ̇n and ψ̈n

Tψn
[u̇] (b, a) = −1

a
T
ψ̇n

[u] (b, a) =
i (n+ 1)

a
Tψn+1

[u] (b, a) ,

Tψn
[ü] (b, a) =

1

a2
T
ψ̈n

[u] (b, a) = − (n+ 1) (n+ 2)

a2
Tψn+2

[u] (b, a) .

The values of Fj (u̇) and Fj (ü) are then given by

Fj (u̇) =
nj !

πnjnj e−nj

i
`

nj + 1
´

ξj

nj
Tψnj+1

[u]

„

bj ,
nj
ξj

«

,

Fj (ü) = − nj !

πnjnj e−nj

`

nj + 1
´ `

nj + 2
´

ξ2j

n2
j

Tψnj+2
[u]

„

b,
nj
ξj

«

,

where the notation nj = n∆ω(ξj) has been introduced.

In order to derive benefit from the information present within the CCWT of the

signals, the points (bj , ξj) of the time-frequency plane have to be chosen on the ridges.
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Fig. 5 Absolute value of adaptative CCWT of v with (a) ∆ω/2π = 0.2Hz, (b) ∆ω/2π =
0.6Hz, and (c) ∆ω/2π = 1Hz
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Fig. 6 Absolute value of CCWT of v with n = 500

5 Validation by numerical simulations

5.1 The case of a three degrees of freedom system

To illustrate the proposed identification method, the case of a 3 DoF of freedom linear

system where M is diagonal and C and K are symetrical is considered. These matrices

can be written as

M =

0

@

m11 0 0

0 m22 0

0 0 m33

1

A , C =

0

@

c11 c12 c13
c12 c22 c23
c13 c23 c33

1

A , K

0

@

k11 k12 k13
k12 k22 k23
k13 k23 k33

1

A ,

and the vector of the 15 coefficients to be identified can be expressed as

X = (m11,m22,m33, c11, c12, c13, c22, c23, c33, k11, k12, k13, k22, k23, k33)
t .



11

In this specific case, the matrix A =
“

A
1
, A

2
, A

3

”

and B of the Eq. (3) are then given

by

A
1

=

0

B

@

F (ẍ1)
t 0 0

0 F (ẍ2)
t 0

0 0 F (ẍ3)
t

1

C

A
,

A
2

=

0

B

@

F (ẋ1)
t F (ẋ2)

t F (ẋ3)
t 0 0 0

0 F (ẋ1)
t 0 F (ẋ2)

t F (ẋ3)
t 0

0 0 F (ẋ1)
t 0 F (ẋ2)

t F (ẋ3)
t

1

C

A
,

A
3

=

0

B

@

F (x1)
t F (x2)

t F (x3)
t 0 0 0

0 F (x1)
t 0 F (x2)

t F (x3)
t 0

0 0 F (x1)
t 0 F (x2)

t F (x3)
t

1

C

A
,

B =

0

B

@

F (f1)
t

F (f2)
t

F (f3)
t

1

C

A
,

where the notation F (u) = (F1 (u) ,F2 (u) , . . . ,Fq (u)) has been introduced.

5.2 Definition of the system

Two different systems are used for the numerical simulations. They have both the

same architecture, illustrated on Fig. 7, and the same values of mass and stiffness,

but the damping are modify in order to test the method on systems with more or less

proportional damping. The mechanical parameters are collected in Tab. 1.

k1

c1

k2

c2

k3

c3

k4

c4

x1 x2 x3

m1 m2 m3

f1

Fig. 7 Architecture of the 3 DoF systems used for numerical simulations

Systems 1 and 2 Systems 1 and 2 System 1 System 2
Mass kg Stiffness N/m Damping Ns/m Ns/m
m1 1 k1 1000 c1 5 0.1
m2 2 k2 4000 c2 4 0.2
m3 1 k3 3000 c3 3 2

k4 5000 c4 2 20

Table 1 Parameter values of the 3 DoF systems used for simulations
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The coefficients of the matrices M , C, and K representing these systems are given

in the Tab. 4 and 5. The modal properties (natural frequencies, damping ratios and

modes shapes) of these systems are given in the Tab. 2 and 3. The index of the non-

Mode Eigen frequency Damping ratio Shape Index of non
(Hz) (%) proportionality

1 4.8018 3.25

0

@

1
1.0224 + 0.0223i
0.4323 + 0.0169i

1

A 0.0130

2 12.7390 5.02

0

@

1
−0.3502 + 0.0475i
−0.6496 − 0.0619i

1

A 0.0609

3 15.2438 3.92

0

@

1
−1.0358 + 0.1353i
2.5640 − 0.6208i

1

A 0.0779

Table 2 Modal characteristics of system 1

Mode Eigen frequency Damping ratio Shape Index of non
(Hz) (%) proportionality

1 4.8051 2.29

0

@

1
1.0223 − 0.0097i
0.4305 − 0.0333i

1

A 0.0205

2 12.9021 3.04

0

@

1
−0.3905 − 0.0923i
−0.5401 + 0.2936i

1

A 0.2430

3 15.0408 9.04

0

@

1
−0.9492 − 0.3906i
1.7756 + 2.2255i

1

A 0.2941

Table 3 Modal characteristics of system 2

proportionality of the jth complex mode φj , belonging to the interval [0, 1], is defined

(Adhikari, 2004) by

Ij =

v

u

u

t1 −
˛

˛ϕj .φj
˛

˛

2

˛

˛

˛

˛ϕj
˛

˛

˛

˛

2 ˛

˛

˛

˛φj
˛

˛

˛

˛

2
,

where ϕj is the corresponding real normal mode of the associated undamped system.

5.3 Results of the identification

Three case of excitation are studied, the force being always applied on the mass 1.

The two first cases are pure harmonic excitations of 20 Hz and 14 Hz respectively.

This frequencies are chosen to be located respectively close and far from the natural

frequencies of the studied systems. The third case is a white noise excitation.

The responses in displacements of the system 1 to these excitations are represented

on the Fig. 8, 11 and 14. Simulated signals are recorded during 4 s at a sampling

anonyme
Barrer
cases

anonyme
Barrer
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frequency of 1000 Hz. The coefficients of the expansions of these signals on the Cheby-

chev polynomials basis are represented on the Fig. 9, 12 and 15, and their adaptative

CCWT, computed with ∆ω/2π = 0.3 Hz, are shown on the Fig. 10, 13 and 16.

−0.2

−0.1

0.0

0.1

0.2

−0.2

−0.1

0.0

0.1

0.2

0 1 2 3 4

−0.2

−0.1

0.0

0.1

0.2

time (s)

x
1

x
2

x
3

(a)
(b)
(
)

Fig. 8 Response of system 1 when mass 1 exciting by a pure harmonic force at 20 Hz (a) dis-
placement of mass 1 (b) displacement of mass 2 (c) displacement of mass 3

Results of the identification of the system 1 (resp. system 2) with both methods

are presented in Tab. 4 (resp. Tab. 5). For the method using Chebyshev basis, the

Exact 20 Hz 14 Hz BB
Ch. W. Ch. W. Ch. W.

m11 1 0.999986 1.000628 0.999997 1.001621 1.019296 1.000453
m22 2 1.999917 2.003621 1.999987 2.005292 2.031357 2.001023
m33 1 0.999951 1.001586 0.999988 1.001569 1.018734 1.001063
c11 9 9.000056 8.998741 9.000077 9.003639 8.923262 8.997397
c12 -4 -3.999902 -4.007103 -4.000015 -4.020535 -3.958718 -4.002256
c13 0 -0.000001 -0.000600 -0.000017 0.022314 -0.072171 -0.045979
c22 7 6.999477 7.017934 7.000059 7.032804 7.027887 6.965176
c23 -3 -2.999798 -3.007923 -3.000070 -3.018458 -2.978610 -2.919912
c33 5 4.999725 5.015449 5.000046 5.040925 5.015940 4.907940
k11 5000 4999.81 5008.71 4999.98 5012.97 5083.74 5001.91
k12 -4000 -3999.83 -4007.40 -3999.98 -4010.54 -4065.28 -4001.23
k13 0 -0.00 0.14 0.01 1.26 -2.47 -1.66
k22 7000 6999.70 7012.20 6999.95 7018.09 7115.27 7001.98
k23 -3000 -2999.86 -3004.45 -2999.98 -3007.50 -3054.01 -2999.52
k33 8000 7999.63 8011.73 7999.90 8013.35 8149.78 8003.71

Table 4 Results of the identification of the system 1 with both methods

anonyme
Barrer
with excitation of mass 1

anonyme
Barrer
WN
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Fig. 9 Coefficients of the expansions of the displacements on the Chebychev basis when
mass 1 exciting by a pure harmonic force at 20 Hz (a) expansion of x1 (b) expansion of x2

(c) expansion of x3

Exact 20 Hz 14 Hz BB
Ch. W. Ch. W. Ch. W.

m11 1 0.999992 1.000172 0.999982 0.998917 1.018417 1.007453
m22 2 1.999954 2.000890 1.999925 1.997579 2.034522 2.012270
m33 1 0.999972 0.999597 0.999977 0.996854 1.018806 1.014040
c11 0.3 0.299985 0.300452 0.300538 0.302464 0.176170 0.254454
c12 -0.2 -0.200053 -0.200980 -0.199369 -0.218914 -0.123997 -0.152525
c13 0 -0.000014 0.000029 -0.000150 0.000946 -0.073870 0.011959
c22 2.2 2.199751 2.204207 2.200905 2.224686 2.146662 2.154692
c23 -2 -1.999905 -1.998600 -2.000056 -1.990790 -1.995649 -2.020780
c33 22 21.999395 21.990246 21.999206 21.947288 22.471849 22.247741
k11 5000 4999.89 5002.39 4999.88 4993.87 5086.55 5035.14
k12 -4000 -3999.91 -4002.04 -3999.87 -3994.55 -4071.49 -4028.16
k13 0 -0.00 -0.02 -0.01 0.49 5.10 -2.98
k22 7000 6999.83 7002.27 6999.78 6988.57 7131.15 7053.83
k23 -3000 -2999.92 -2998.85 -2999.94 -2991.60 -3070.52 -3035.55
k33 8000 7999.79 7996.99 7999.82 7975.47 8171.89 8103.90

Table 5 Results of the identification of the system 2 with both methods

expansions of the signals are considered at all the instants where original signals are

sampled (of the number of 4001), except the ten first instants and the ten last instants,

in order to free from edge effects. For the method using CCWT, in each case of ex-

citation, the ridges of the time-frequency plane are detected with the crazy climbers

algorithm, and five points
`

bj , ξj
´

per ridge is considered for the identification. These

points are shown on the Fig. 10, 13 and 16.

anonyme
Barrer

anonyme
Barrer
release ?
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Fig. 10 Absolute value of adaptative CCWT of the displacements when mass 1 exciting by
a pure harmonic force at 20 Hz, computed with ∆ω/2π = 0.3 Hz (a) adaptative CCWT of x1

(b) adaptative CCWT of x2 (c) adaptative CCWT of x3
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Fig. 11 Response of system 1 when mass 1 exciting by a pure harmonic force at 14 Hz
(a) displacement of mass 1 (b) displacement of mass 2 (c) displacement of mass 3
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Fig. 12 Coefficients of the expansions of the displacements on the Chebychev basis when
mass 1 exciting by a pure harmonic force at 14 Hz (a) expansion of x1 (b) expansion of x2

(c) expansion of x3

Both methods give rather good results...

5.4 Noise effect

Noise is then added to the simulated signals. It is modeled by the centered normal

distribution of variance Vb. To compare the level of the signal to the level of noise, we

use the signal-to-noise ratio SNR, expressed in terms of the logarithmic decibel scale,

and defined as

SNR = 10 log10
Vs
Vb

,

where Vs (resp. Vb) is the variance of the signal (resp. the noise).

Erreur identification definie par (sur Fig. 17)

3
(m11 − m̃11)

2 + (m22 − m̃22)
2 + (m33 − m̃33)

2

(|m11| + |m22| + |m33|)2

+6
(c11 − c̃11)

2 + (c12 − c̃12)
2 + (c13 − c̃13)

2 + (c22 − c̃22)
2 + (c23 − c̃23)

2 + (c33 − c̃33)
2

(|c11| + |c12| + |c13| + |c22| + |c23| + |c33|)2

+6
(k11 − k̃11)

2 + (k12 − k̃12)
2 + (k13 − k̃13)

2 + (k22 − k̃22)
2 + (k23 − k̃23)

2 + (k33 − k̃33)
2

(|k11| + |k12| + |k13| + |k22| + |k23| + |k33|)2

anonyme
Barrer

anonyme
Barrer
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Fig. 13 Absolute value of adaptative CCWT of the displacements when mass 1 exciting by
a pure harmonic force at 14 Hz, computed with ∆ω/2π = 0.3 Hz (a) adaptative CCWT of x1

(b) adaptative CCWT of x2 (c) adaptative CCWT of x3
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Fig. 14 Response of system 1 when mass 1 exciting by a white noise (a) displacement of
mass 1 (b) displacement of mass 2 (c) displacement of mass 3
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Fig. 15 Coefficients of the expansions of the displacements on the Chebychev basis when
mass 1 exciting by a white noise (a) expansion of x1 (b) expansion of x2 (c) expansion of x3
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Fig. 16 Absolute value of adaptative CCWT of the displacements when mass 1 exciting by
a white noise, computed with ∆ω/2π = 0.3 Hz (a) adaptative CCWT of x1 (b) adaptative
CCWT of x2 (c) adaptative CCWT of x3
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Fig. 17 Absolute value of adaptative CCWT of the displacements when mass 1 exciting by
a white noise, computed with ∆ω/2π = 0.3 Hz (a) 20 Hz (b) 14 Hz (c) white noise

6 Conclusions

A On the Chebyshev polynomials

A.1 Expression of the matrix of derivation

The matrix D, introduced in Eq. (5) to express the derivative of Chebyshev polynomials is
given, in the case of even p, by

D =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 0 0 0 0 · · · 0 0
1 0 0 0 0 0 · · · 0 0
0 4 0 0 0 0 · · · 0 0
3 0 6 0 0 0 · · · 0 0
0 8 0 8 0 0 · · · 0 0
5 0 10 0 10 0 · · · 0 0
.
..

.

..
.
..

.

..
.
..

.

..
. . .

.

..
.
..

p − 1 0 2(p − 1) 0 2(p − 1) 0 · · · 0 0
0 2p 0 2p 0 2p · · · 2p 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,
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and in the case of odd p, by

D =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 0 0 0 0 · · · 0 0
1 0 0 0 0 0 · · · 0 0
0 4 0 0 0 0 · · · 0 0
3 0 6 0 0 0 · · · 0 0
0 8 0 8 0 0 · · · 0 0
5 0 10 0 10 0 · · · 0 0
.
..

.

..
.
..

.

..
.
..

.

..
. . .

.

..
.
..

0 2(p − 1) 0 2(p − 1) 0 2(p − 1) · · · 0 0
p 0 2p 0 2p 0 · · · 2p 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

A.2 Coefficients of the expansion of a signal

Let ǔ be a function defined for τ ∈ [−1, 1], which the values are known at (m + 1) points
−1 = τ0 < τ1 < · · · < τm = 1. To estimate the coefficients of the expansion of ǔ on the
Chebychev basis, this function is supposed to be piecewise affine :

∀i ∈ J0, m − 1K ∀τ ∈ [τi, τi+1] ǔ(τ) = ǔ(τi) +
ǔ(τi+1) − u(τi)

τi+1 − τi

(τ − τi) .

The coefficients of the expansion are then given by 〈ǔ, Ts〉 / 〈Ts, Ts〉, where

〈ǔ, Ts〉 =

Z

1

−1

ǔ(τ) cos (s arccos τ)√
1 − τ2

dτ ,

=

m−1
X

i=0

„

ǔ(τi) −
ǔ(τi+1) − ǔ(τi)

τi+1 − τi

τi

« Z τi+1

τi

cos (s arccos τ)√
1 − τ2

dτ

+

m−1
X

i=0

ǔ(τi+1) − ǔ(τi)

τi+1 − τi

Z τi+1

τi

τ cos (s arccos τ)√
1 − τ2

dτ . (22)

The integrals of this expression are given by

Z τi+1

τi

cos (s arccos τ)√
1 − τ2

dτ =
ˆ

arcsin τ
˜τi+1

τi
if s = 0 ,

− 1

s

ˆ

sin(s arccos τ)
˜τi+1

τi
∀s ≥ 1 ,

Z τi+1

τi

τ cos (s arccos τ)√
1 − τ2

dτ = −
ˆ

sin(arccos τ)
˜τi+1

τi
if s = 0 ,

− 1

4

ˆ

2 arccos τ + sin(2 arccos τ)
˜τi+1

τi
if s = 1 ,

1

s2 − 1

ˆ

sin(arccos τ) cos(s arccos τ)

− sτ sin(s arccos τ)
˜τi+1

τi
∀s ≥ 2 .

References

Adhikari S (2004) Optimal complex modes and index of damping non-proportionality. Me-
chanical systems and signal processing 18(1):1–27

Erlicher S, Argoul P (2007) Modal identification of linear non-proportionally damped systems
by wavelet transform. Mechanical systems and signal processing 21(3):1386–1421



21

Le TP, Argoul P (2004) Continuous wavelet transform for modal identification using free decay
response. Journal of sound and vibration 277(1-2):73–100

Pacheco RP, Steffen VJ (2002) Using orthogonal functions for identification and sensitivity
analysis of mechanical systems. Journal of Vibration and Control 8(7):993–1021
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