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Identification of Lamination Stack Properties:

Application to High-Speed Induction Motors
Guillaume Mogenier, Régis Dufour, Guy Ferraris-Besso, Lionel Durantay, and Nicolas Barras

Abstract—In order to predict the lateral rotordynamics of a
high-speed induction motor, an optimization procedure is used
for identifying the dynamic behavior of the magnetic core made
of a lamination stack, tie rods, and short-circuit rods. Modal
parameters predicted by a finite-element model based on beam
elements and measured on induction motors are included in modal
error functions contained in a functional. The minimization of this
functional by using the Levenberg–Marquardt algorithm permits
extracting the equivalent constitutive properties of the lamination
stack for several rotors of different sizes. Finally, the size effect on
the constitutive properties identified is discussed.

Index Terms—Finite-element (FE) methods, parameter
identification, squirrel-cage motors, vibrations.

I. INTRODUCTION

THIS PAPER focuses on the squirrel-cage induction motor

known as the Moteur Grande Vitesse (MGV) in the 3

to 30 MW range from 6000 to 18 000 r/min, used for critical

applications, particularly motocompressors, in the oil and gas

industry. This paper continues from an International Confer-

ence on Electronic Materials 2008 conference paper dealing

with other experiments performed on several MGVs to evaluate

a possible relation between identified parameters and rotor

sizes, i.e., magnetic core length Lfer (Fig. 1) and diameter Dfer

(Fig. 2). As shown in Fig. 1, an MGV is mainly composed of

two steel shaft ends and full-depth laminations held together

by steel tie rods. The squirrel cage consists of copper short-

circuit rods distributed at the periphery of the core (Fig. 2) and

linked to two bronze alloy rings placed at both ends of the

stack. The stack and the rings are tightened by the tie rods,

also distributed at the periphery of the core and screwed into

the shaft ends. This configuration is proposed as full-depth

laminations considerably reduce the eddy-current circulation

along the longitudinal axis in the core of the magnetic part and

thus eliminate flux saturation. Consequently, the MGV is more
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Fig. 1. Diagram of a squirrel-cage induction motor.

Fig. 2. Cross section of the magnetic core of a squirrel-cage induction motor.

compact and efficient than widely used solid rotors with shrink

fitted laminations. It also prevents problems such as electrical

loss, heat dissipation, and loss of adhesion between the compo-

nents although it is difficult to predict its dynamic behavior. The

problem of modeling the magnetic core and the stacks of full-

depth laminations has been given little attention in scientific

papers. References [1] and [2] suggested homogenized bending

rigidity for the entire magnetic core cross section by adding the

bending rigidity of each cross section component. McClurg [3]

deals with a stiff shaft design for a squirrel-cage rotor, but

the bending rigidity of the magnetic core is not described.

However, many authors have attempted to predict the dynamic

behavior of induction machine rotors with a laminated core

mounted on a solid shaft, i.e., laminations around central

hole. The stiffening effects of the laminated core are not easy

to assess and often require identification via modal testing.

Ede et al. [4] assess the influence of leading design parameters,

such as stack length, on the natural frequencies of a high-speed

permanent magnet brushless machine by using a 3-D finite-

element (FE) model. Garvey et al. [5] present the advantages

of a branched model for a laminated rotor. The laminations
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are considered as several annular ring subsets linked together

by elastic connections. Moreover, the subsets are elastically

connected to the shaft. Chen et al. [6] consider an equiva-

lent Young modulus for the stack and use a branched beam

model for the magnetic core. The authors of many papers

have dealt with a coefficient known as stacking factor that

modifies the value of the mass of the lamination stack. In

addition, its weak Young modulus is due to resin or var-

nish layers on the interfaces between consecutive laminations.

Garvey et al. [5] consider the lamination stack as an orthotropic

material whose elastic strain–stress relation takes into account

the lamination material and the mean flexibilities (shear and

compressive) of the lamination interfaces. Kim and Kim [7]

show that the lamination pressure has considerable influence on

the lateral natural frequencies of a rotor. An equivalent diameter

and lumped masses are considered for modeling the entire

magnetic core.

In identification procedures, an optimization algorithm is

used so that the optimization parameters of an FE model make

predicted data tend toward target values, i.e., measured data.

Such algorithms can use modal data for updating and then

identifying the FE model parameters. Modal error functions are

defined to quantify the difference between predicted and mea-

sured natural frequencies and mode shapes. Lee and Kam [8]

use a common modal error function based on natural frequen-

cies in order to identify the properties of laminated composite

plates. Cugnoni [9] proposes two original modal error functions

based on the diagonal and extra-diagonal terms of the modal

assurance criterion matrix. Feng et al. [10] use a more classical

modal error function, based on the difference between the

components of predicted and measured mode shapes, to iden-

tify the material parameters of concrete dams. These functions

are combined in a functional whose minimization requires its

derivatives, with respect to the optimization parameters, that

depend on eigenelement derivatives. Eigenvalue derivatives are

obtained from the relation given by [11] whereas eigenvector

derivatives can be computed by using approximate or exact

methods [12]. Min et al. [13] compare different algorithms

designed to achieve this.

In this paper, an FE model of an induction rotor is presented

with particular attention given to modeling the magnetic core.

It is based on the structural dynamics theory described in

[14] and therefore uses beam FE in order to limit the degrees

of freedom (DOF). Under certain assumptions, tie and short-

circuit rods can also be modeled with beam FE. Even if a

beam-based model is used, the constitutive properties of the

stack are defined such that the shear and the Young moduli

are independent in order to take into account its orthotropic

properties [5]. The lateral dynamic behavior of the stack is

then identified by performing experimental modal analyses

on several rotors of different sizes. The identification strategy

presented in [15] consists in minimizing the difference be-

tween the measured and the predicted modal data provided by

the FE model, by using the Levenberg–Marquardt algorithm

[16], [17]. Identification results are discussed to evaluate a

possible relation between the equivalent constitutive properties

of the lamination stack and the magnetic core length and

diameter.

Fig. 3. Short-circuit rod in bending—kinematic assumption.

II. FE MODEL

The predicted modal data emanate from the eigenvalue equa-

tion of the undamped FE model based on the structural dynamic

theory, described in [14], for each mode k = 1, . . . , m

(
K − ω̃2

kM
)
ϕ̃k = 0, with K = KS + KP (1)

where ω̃k, ϕ̃k are the kth angular frequency and associated

mode shape, respectively. KS is the structural stiffness matrix,

KP is the stress stiffening matrix if a possible axial prestressing

force acts on the beam FE [18]. M is the mass matrix due to

the translation and rotatory inertia, the latter being classically

neglected for slender structures. Shear strain and rotatory inertia

are taken into account in the Timoshenko in-plane beam FE

containing 2 DOF per node: one translation and one rotation.

Thus, a shear correction factor dependent on the shape of the

cross section is used as in [19].

Free–free boundary conditions are taken into account by

adding low-stiffness springs (10 N/m) at each boundary node.

Disks and landing rings are considered as lumped masses.

To identify the stiffness parameters of the lamination stack,

specific assumptions must be considered to model the tie and

the short-circuit rods. The latter can be modeled as beams of

diameter DCC (Fig. 2) whose neutral axes coincide with the

neutral axis of the magnetic core. These rods are fastened at

middle of the magnetic core by screws and their ends can slide

in the short-circuit rings, as shown in Fig. 3. Thus, each FE of

the discretized magnetic core is connected to two consecutive

nodes its elementary matrices being the sum of those of the

short-circuit rods and the lamination stack. Furthermore, the

tie rods are modeled as a one FE equivalent hollow cylinder

clamped at nodes A0 and B0 (see Fig. 2). Let DTI
Out and

DTI
In be its outer and inner diameters, respectively, and simply

calculated by considering surface STI and second moment of

area ITI of the tie rods

DTI
Out =

(
8ITI

STI

+
2STI

π

) 1

2

, DTI
In =

(
8ITI

STI

−
2STI

π

) 1

2

.

(2)

The screwing torque ensures the stress stiffening in the tie

rods and the prestressing in the lamination stack. The stress

stiffening effect is taken into account by the KP matrix (1)

only for the hollow cylinder. The measurement is performed
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on the assembled structure; therefore, the identified parameters

implicitly take into account the prestressing which is of the

same magnitude for each rotor presented in Section III. Since

the short-circuit rings, the lamination stack and the shaft ends

connected to each ring are drilled at their periphery for the

short-circuit rods and tie rods, (2) is also used to model the

cross section of these elements.

III. OPTIMIZATION STRATEGY

The equivalent constitutive properties of the lamination stack

are denoted x ∈ R
n so that {x}p=1,...,n. The optimization

parameters, stemming from the following doublet:

{E,G} (3)

where E and G are the Young and the shear moduli, re-

spectively, and they are also independent for modeling the

anisotropy of the lamination stack, as described in [5]. The

optimization parameter number is therefore equal to two, i.e.,

(n = 2). The identification strategy consists in minimizing the

difference between the predicted and measured modal data.

A. Modal Error Functions

An optimization algorithm is used so that the optimization

parameters of an FE model make the predicted data tend toward

target values, i.e., measured data. Let xi be the vector of

optimization parameters x at iteration i. Let us assume that all

the variables of the FE model depend on xi. Let ω̃i
k and ωk be

the predicted and measured natural frequencies, respectively.

Let ϕ̃i
k and ϕk be their associated mode shapes projected on

the same spatial basis. The first modal error function is based

on the difference between measured natural frequencies ωk and

predicted natural frequencies ω̃i
k for each mode shape k (k =

1, 2, . . . ,m) [8]

Fω
k (xi) =

ω̃i
k

ωk

− 1. (4)

When performing modal tests, the MAC method is that

most commonly used for estimating the correlation of mea-

sured mode shapes. It provides a matrix Mjl = MAC(ϕ̃j , ϕl)
of scalar products between two sets of mode shapes ϕl(l =
1, 2, . . . ,m) and ϕ̃j(j = 1, 2, . . . ,m), denoted as follows:

MAC(ϕ̃j , ϕl) =
(ϕ̃j · ϕl)

2

(ϕ̃j · ϕ̃j)(ϕl · ϕl)
. (5)

Usually, two mode shapes ϕl and ϕ̃j are considered identical

if Mjl is higher than 0.9, close together if Mjl > 0.7 or 0.8

depending on measurement accuracy. For each pair of measured

and predicted modes k = 1, 2, . . . ,m, let a second modal error

function be defined as follows:

FϕD

k (xi) = 1 − MAC
(
ϕ̃i

k, ϕk

)
. (6)

On the strength of the orthogonality property of the mode

shapes, a perfect correlation between two sets of mode shapes

requires that all the extra-diagonal terms of the MAC matrix

vanish. Thus, a third modal error function can be defined [9]

FϕED

k (xi) =

m∑

j=1,j �=k

∣∣MAC
(
ϕ̃i

j , ϕk

)
− MAC(ϕj , ϕk)

∣∣ .

(7)

A fourth modal error function can be defined by estimating

the difference between two sets of mode shapes by simply cal-

culating the sum of the absolute values of differences between

the modal vector components. However, it is essential that the

pair of measured and predicted mode shapes are normalized

equally and signed so that the larger component is equal to unity

FϕEC

k (xi) =
1

r

r∑

j=1

∣∣∣∣∣∣

(
ϕ̃i

k

)
j

max
l

((
ϕ̃i

k

)
l

) −
(ϕk)j

max
l

((ϕk)l)

∣∣∣∣∣∣
(8)

where j stands for the jth vector component whereas r is the

number of vector components. The identification method is then

reduced to the minimization of a global error functional f(xi)
with respect to optimization parameters vector xi including n
parameters. The global error functional can be expressed as a

function of the previous four modal error functions

f(xi)=
1

2

∥∥FTot(xi)
∥∥2

=
1

2

q∑

k=1

[
FTot

k (xi)
]2

, q=4 × m

(9)

with

FTot(xi) = [αωFω, αϕDFϕD , αϕHDFϕHD , αϕEcFϕEc ]T.
(10)

Weight coefficients α (10) permit controlling the order of

each function as they are very different from each other. Thus,

a weighting coefficient linked to a modal error function is

defined as the inverse of the mean value of this modal error

function components calculated at the first iteration, i.e., i = 0.

We propose defining each weight coefficient α (10) as follows:

α = 1/F (x0). (11)

To avoid numerical conditioning problems (a 1012 ratio

between the Young modulus and the Poisson ratio), particularly

for the Jacobian matrix J(xi) (12), the xi are defined relative

to reference values such as the initial values of optimization

parameters x0. This functional is minimized by using the

Levenberg–Marquardt algorithm, which is generally acknowl-

edged as being very robust and highly efficient in a wide range

of problems
∣∣∣∣∣∣

x0, λ0 given

di = −(Hi + λiI)−1∇f
xi+1 = xi + ρidi

,

∣∣∣∣
∇f = J(xi)TFTot

Hi ≈ J(xi)TJ(xi)
(12)

where I and Hi are, respectively, the identity and the ap-

proximate Hessian matrices of size [n × n]. If λi → +∞, the

method tends toward the steepest descent method, whereas

if λi → 0, the method tends toward to the Gauss–Newton

method. Updating damping parameter λi is done by calculating
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a “gain factor,” i.e., the ratio of the f(xi) decrease over the

FTot decrease, as vector FTot is expanded by a Taylor series.

Descent step ρi can be obtained by a “Line Search” algorithm.

The method proposed by [16] is used here by setting ρi = 1 and

frequently updating λi. This results in smoother performance

and faster convergence than that achieved by Marquardt’s up-

dating strategy.

B. Eigenderivatives

The Jacobian matrix J(xi) (of size [q × n]) of the total error

vector FTot implicitly depends on eigenelements λk and ϕ̃k

defined in (1), λk being equal to the square of the kth angular

frequency ωk. Assuming that the eigenvectors are normalized

with respect to the mass matrix M

ϕ̃T
k Mϕ̃k = 1, k = 1, . . . , m. (13)

Taking partial derivatives of (1) and (13) with respect to

an optimization parameter xp yields the following governing

equations for eigenvector derivatives [11]:

Ak

∂ϕ̃k

∂xp

= Pk (14)

ϕ̃T
k M

∂ϕ̃k

∂xp

= Qk with Qk = −
1

2
ϕ̃T

k

∂M

∂xp

ϕ̃k (15)

where

Ak =(K − λkM), Pk =−

(
∂K

∂xp

−
∂λk

∂xp

M − λk

∂M

∂xp

)
ϕ̃k.

(16)

By premultiplying (14) by ϕ̃T
k and substituting (1) and (13),

the eigenvalue derivative with respect to xp is obtained from the

relationship

∂λk

∂xp

= ϕ̃T
k

(
∂K

∂xp

− λk

∂M

∂xp

)
ϕ̃k. (17)

The partial derivatives of global mass and stiffness matrices

with respect to xp are easily obtained by differentiating elemen-

tary mass and stiffness matrices (1). Concerning the eigenvector

derivatives, the problem is that (14) is not invertible since the

Ak matrix is of rank (m − 1). The complete modal method

assumes that the kth eigenvector derivative with respect to xp

can be expressed as follows:

∂ϕ̃k

∂xp

=
m∑

j=1

cjϕ̃j . (18)

Substituting (18) and (14) and premultiplying by ϕ̃T
k gives

cj =
ϕ̃T

j · Pk

λj − λk

, j �= k. (19)

Equation (19) shows that the eigenvector derivative has a

unique expression (Linear combination) in terms of all the

system’s eigenvectors, excluding the kth one

∂ϕ̃k

∂xp

=

m∑

j=1

j �=k

cjϕ̃j + ckϕ̃k ≡ Vk + ckϕ̃k. (20)

TABLE I
SIZE AND INERTIAL CHARACTERISTICS OF THE TESTED ROTORS

By substituting (20) and (15), ck can be obtained by

ck = Qk − ϕ̃kMVk. (21)

This method is costly in terms of computation time because

it requires knowing all the eigenvectors of the system. Thus, by

substituting (20) in (14), [12] proposes removing the singularity

of Ak by cancelling a component of Vk, (14) becomes invertible

and part of the solution Vk is obtained. The complete solution

is then given by (20) and (21). This method requires as many

inversions of matrix Ak of size [m × m] as eigenvector deriva-

tives needed. However, MGV rotors are considered as medium

systems and the inversion of such matrices is not costly in terms

of CPU time.

IV. INDUSTRIAL APPLICATIONS

Experimental modal analyses were conducted on five MGV

rotors denoted as Rotor#1 through Rotor#5 whose total lengths

and weights are presented in Table I. Rotor#1 is the rotor

presented in [15]. Length Lfer and diameter Dfer (Figs. 1 and

2) of the core vary from rotor to rotor, as shown in Table I. The

rotors were hung from a crane via a flexible sling and a swivel

hoist ring to achieve free–free boundary conditions at best.

The hanging rotors were radially excited along a meridian line

with an impulse force hammer (KISTLER Type 9726A20000

of mass 0.5 kg), with the transmitted force being measured

by a load cell. A steel impact tip was used to observe a large

frequency spectrum. Meridian lines were discretized in fine

experimental meshes to establish accurate mode shapes. Sets

of 62, 81, 73, 68, and 89 measurement points were defined

for Rotor#1 through #5, respectively. The successive acceler-

ances obtained with a dynamic analyzer permit evaluating the

measured natural frequencies. The mode shapes are plotted by

exploring the imaginary part of the accelerances.

Identification procedures were performed by updating the

FE models of each rotor, as described in Sections II and III.

A minimum of four modes were retained to ensure sufficient

measured modal data to preserve the dynamics of the rotors

studied. Poisson ratio was fixed at 0.28, as in [6]. Thus, for

each rotor, the optimization problem contains two unknowns

{E,G}, the Young and shear moduli, respectively. Five sets of

constitutive properties have been identified and are presented

in Table II. The normalized values are reported and defined as

follows:

E∗ =
E

Ē
, G∗ =

G

Ḡ
, L∗ =

Lfer

L̄fer

, D∗ =
Dfer

D̄fer

(22)

where Ē and Ḡ are the mean values of the identified Young

and shear moduli, respectively. Consequently, L̄fer and D̄fer are

4



TABLE II
IDENTIFIED DIMENSIONLESS EQUIVALENT CONSTITUTIVE PROPERTIES

Fig. 4. Evolution of the β parameter versus the σ the parameter.

the mean values of the magnetic core lengths and diameters in

order to obtain dimensionless variables.

To evaluate a correlation between the identified constitutive

properties and the rotor sizes, the first step is achieved by using

coefficient a (23) which characterized the shear effect in the

FE model, as defined in [18]. It can be seen as the ratio of the

bending and the shearing rigidities and tends to a low value for

slender structures and to a high value for monolithic structures.

Let β and σ be the numerator and the denominator, respectively,

of coefficient a. They are defined as follows:

a =
12EI

GSrL2
∼

E∗D∗2

G∗L∗2
=

β

σ
(23)

where L, Sr, I are the characteristic length, reduced area, and

second moment of inertia of the magnetic core, respectively.

Fig. 4 shows the evolution of parameter β versus parameter σ.

This representation shows that the identified bending rigidity of

the magnetic core increases with the associated identified shear

rigidity. Moreover, the identified bending rigidity seems to be

very sensitive to low values of the identified shear rigidity while

it tends to increase slowly for high values of the identified shear

rigidity.

The second step is carried out by plotting the normalized

identified Young modulus E∗ weighted by L∗2 as a function of

D∗2L∗, a classical parameter used in electromagnetic design.

Fig. 5 shows that E∗/L∗2 decreases quasi-linearly with the

D∗2L∗ parameter. This behavior probably signifies an exponen-

tial decrease, since the normalized identified Young modulus

E∗ cannot be negative for a high value of D∗2L∗. This means

that for a given parameter D∗2L∗, a Young modulus can be

found for the lamination stack. Therefore, a shear modulus can

be associated, by using the curve shown in Fig. 4.

The first four predicted and measured natural frequencies

are given in Table III while the predicted and measured lateral

Fig. 5. Evolution of the normalized identified Young modulus weighted by
L∗2 versus the D∗2L∗ parameter.

TABLE III
FIRST FOUR PREDICTED AND MEASURED NATURAL FREQUENCIES

mode shapes are shown in Figs. 6–10. The relative errors

between the predicted and measured frequencies vary from

0.2% to 10% with a mean value equal to 3.1%. Figs. 6–10

show a good correlation between the predicted and measured

mode shapes. Therefore, the identification method presented

is more accurate than classical identification methods when

considering restrictive assumptions on the mechanical behavior

of a lamination stack mode of isotropic material. It shows that

the FE model presented here is an efficient means of prediction

the dynamics of this kind of real assembled structure.

V. CONCLUSION

The proposed optimization procedure was tested on several

industrial induction motors with complex designs. An FE model
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Fig. 6. First four (solid line) predicted and (dashed line) measured lateral
mode shapes of the Rotor#1.

Fig. 7. First four (solid line) predicted and (dashed line) measured lateral
mode shapes of the Rotor#2.

Fig. 8. First four (solid line) predicted and (dashed line) measured lateral
mode shapes of the Rotor#3.

was presented taking into account that MGV are assemblies

made of different components including in particular a mag-

netic core. The prestressed tie rods were also modeled. It was

Fig. 9. First four (solid line) predicted and (dashed line) measured lateral
mode shapes of the Rotor#4.

Fig. 10. First four (solid line) predicted and (dashed line) measured lateral
mode shapes of the Rotor#5.

shown that the identified equivalent constitutive properties of

the lamination stack, i.e., its stiffness, depend on the rotor sizes.

This procedure is very useful for formulating an FE model

mainly based on beam elements containing few DOF, which is

a great advantage for rotordynamics prediction, i.e., unbalanced

and transient responses. The reliability of such a procedure

will allow predicting the dynamic behavior of an MGV under

development, operating at 6000 r/min in the 30-MW range. This

will permit the manufacturer to increase the reliability of this

range of products.
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