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Abstract

In this paper we address the problem of estimating the

motion of fluids in 3D image sequences. We present a 3D

extension of the second order div-curl regularization 2D op-

tical flow equation first introduced by Corpetti et al. In ad-

dition, we propose a multigrid and Message Passing Inter-

face (MPI) parallelized implementation of the algorithm to

handle the huge amount of data encountered in our appli-

cations. The performance of the resulting fluid flow esti-

mator is demonstrated on a well representative motion syn-

thetic pattern called Hill’s spherical vortex. The suggested

method should be a good alternative or complement to the

well established techniques based on 3D cross correlation.

1. Introduction

In the area of fluid mechanics, the majority of flows

which have significant interests for academic research and

are representative of industrial situations, reveals the exis-

tence of unsteady three-dimensional flow structures. Even

if numerical modelling has done substantial progress in

fluid mechanics during the last two decades, experimen-

tal approaches of these complex phenomena remain essen-

tial to understand the physics of the mechanisms of fluid

motion and to investigate the industrial problems. In the

early 1985’s, the advent of two-dimensional optical diag-

nostics such as Particle Image Velocimetry (PIV) has given

access to instantaneous velocity measurements in a slice of

the flow [1]. That new flow visualization has significantly

modified our description of turbulent flows and in particular

has clearly shown the essential role of unsteady structures

in the organization of turbulence. It is now established that

PIV measurement has a great interest and is considered as a

mature optical diagnostic tool for fluid mechanics research.

The next challenging issue in the development of optical

diagnostics concerns the instantaneous three-dimensional

velocity measurements. Very recently, novel approaches

based on photogrammetric technique, called tomographic

PIV, have been proposed [10, 11]. As a result of this tech-

nique the deep details of the flow of fluids become accessi-

ble to the researchers, that exhibit a significant contribution

in understanding the physics of fluid motion. There are two

basic ideas in the corresponding literature concerning the

tomographic PIV technique. Each of them uses the same

principle of introducing tracer particles that can follow the

motion of fluid and of highlighting the flow with a laser. The

first idea is to illuminate a portion of the volume of interest

by a large laser-sheet and multiple cameras are recording

the particles position from different views (cf. Figure. 1).

This method leads to an ill posed determination of the lo-

cation of particles, i.e. one particle can be determined at

ambiguous locations. These ambiguous particles are usu-

ally referred to as ’ghost particles’ and their motion is not

consistent with the motion of the fluid [10]. The other idea

is the scanning of the volume by a fast moving thin laser

sheet. In this case only one camera is recording the posi-

tion of the particles [11]. The location of particles is in this

case correct and non-ambiguous. It should be noted, that

the resolution of the cameras is high and should increase in

the future. Then, at each time t, each set of projected im-

ages is provided to a tomography algorithm to reconstruct a

volume of particles. The size of the obtained volume is ap-

proximately today 2000×1440×160 voxels. Finally, from



Figure 1. Tomography PIV principle.

two consecutive reconstructed volumes a three-dimensional

correlation technique is used to extract the 3D velocity vec-

tor field.

In this work the purpose is to determine the displacement

field from a sequence of three-dimensional images origi-

nating from tomographic PIV experiments and representing

the motion of fluid, by means of the optical flow method.

The most extensively applied principle for the determina-

tion of the field of the displacement vectors in PIV is the

conservation of the gray level I of the moving objects in

the images during motion. The two basic formulations of

the conservation of the gray level are the method of corre-

lation [1] which is its integral formulation, and the optical

flow method, also called as Optical Flow Constraint (OFC)

[13], which is its differential formulation. One major differ-

ence between the integral and the differential formulation

is that the integral formulation leads to a so called region-

based solution, where each displacement vector belongs to

a certain sub-region of the total domain, while the differen-

tial formulation provides a possibility for obtaining a vector

for the smallest entity of the domain, practically for each

pixel/voxel of an image/volume-image. In this paper the

differential formulation of the gray level conservation, i.e.

the optical flow method is discussed and used. The opti-

cal flow method is based on a scalar differential equation

(Eq.(1)) and contains the optical flow velocity vector, which

is defined in three-dimensional space as u = [u v w].

∇I · u + It = 0, (1)

where the subscript indicates partial differentiation in

terms of the variable indicated in the subscript, ∇ indicates

the gradient operator, t denotes time. This equation is es-

sentially ill posed for determining vector quantities and this

disadvantageous character is usually referred to as the aper-

ture problem [13],[3], [5]. To overcome this ill posed char-

acter of the optical flow constraint, additional assumptions

are needed. The basic ways of making the OFC well posed

are:

1. assumption of integrity of motion in a close vicinity of

the current location [3], [5] ;

2. assumption of smoothness of some order of derivatives

of the displacement field [13];

3. utilization of some governing equations that describe

the displacement field theoretically [17], [16], [4]

Similarly to the correlation method, the assumption 1 pro-

vides also a region based approach, because a region is

needed to compute the local value of displacement. The

most popular optical flow method that is based on this as-

sumption is the method of Lucas and Kanade [3]. The other

two assumptions are local and no sub-region is needed for

the computation. The proposal of [13] belongs to the group

indicated by the assumption 2 above. The basic principle to

add the so called regularization term to the OFC and form an

error functionalE that can be minimized by using an appro-

priate penalty function. In our code quadratic penalty func-

tion as well, as robust functions were implemented. The

robust functions were formulated according to the proposal

of Corpetti et al. [7] and in [5] that leads to a simply im-

plementable algorithm. In the following the equations are

demonstrated by using the quadratic penalty function for

the sake of simplicity. For a two-dimensional case, using

quadratic penalty function, the first order regularization has

the form as shown in Eq.(2)).

E =

∫

Ω

[

(∇I · u + It)
2

+ α2 ·
(

|∇u|2 + |∇v|2
)

]

dx,

(2)

where Ω denotes the domain of the image, α indicates

the relative importance of the regularization term over the

observation term. The first order regularization leads to the

‘penalization’ of the derivatives of the optical flow velocity

field as a side-effect of making the Eq.(1) well posed. This

proposal was refined by [19] to change the first derivatives

to second derivatives, thus penalizing only the latter ones

and computing accurately the first ones which fits much

more to fluid mechanics applications where gradients are
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essentially important. The error functional with the second

order regularization term reads as shown in Eq.(3).

E =

∫

Ω

(∇I · u + It)
2
dx+

∫

Ω

α2 ·
(

|∇div (u) |2 + |∇curl (u) |2
)

dx,

(3)

where div (u) is the divergence and curl (u) is the curl

of the optical flow velocity vector. It can be seen in Eq.(3)

that it is valid for arbitrary number of dimensions in this

form.

When first- or second order regularization is used for

making the OFC well posed, then the error functional

E is minimized with the aid of the corresponding Euler-

Lagrange equations. The Euler-Lagrange equations corre-

sponding to the second order regularized error functional

lead to a set of fourth order differential equations to be

solved. The solution of these equations introduce severe

numerical problems, so Corpetti et al. [7] has proposed to

substitute the regularization term in Eq.(3) by the one shown

in Eq.(4).

E =

∫

Ω

(∇I · u + It)
2
dx+

∫

Ω

α2 ·
(

|div (u) − ξ|2 + λ|∇ξ|2
)

dx+

∫

Ω

α2 ·
(

|curl (u) − ζ|2 + λ|∇ζ|2
)

dx

(4)

where ξ and ζ are auxiliary variables for which it is valid

that during the iterative minimization of Eq.(4) ξ → div (u)
and ζ → curl (u), thus the regularization term in Eq.(4)

transforms to be the same as in Eq.(3) when the iterations

converged to the solution displacement field. Of course, ad-

ditional Euler-Lagrange equations are needed for ξ and ζ
that increases the computational cost but provides a stable

numerical solution.

In all cases it has to be noted that due to its differential

nature, the optical flow constraint can be applied only to a

sequence of images which contain very small displacements

of the objects. Theoretically the displacements should be in-

finitesimal, but practically it was found that displacements

more than 2 pixels/voxels magnitude cannot be resolved ac-

curately by this method. The optimal displacement value

was found to be between 1 and 2 pixels/voxels based on

preliminary investigations.

Originally, the optical flow was applied on 2-

dimensional images and the first order regularization meth-

ods were used also in 3-dimensional volume-images. In this

paper the authors show the extension of a 2nd order regu-

larized optical flow method to 3-dimensional applications.

The paper is organized as follows: in section 2 the ex-

tension of the optical flow method, especially the 2nd order

regularized functional to 3D is discussed, in section 3 de-

tails of the implementation of the algorithm are given, in

section 4 results based on the use of synthetic images are

shown and discussed, in section 5 the conclusions and per-

spectives are provided.

2. Extension of optical flow to three dimensions

The aim of this paper is the utilization of the well known

optical flow method for detecting motion based on a se-

quence of three-dimensional images. The method of Lucas

and Kanade [3], as well, as the method of Horn and Schunck

[13] have already been extended to three dimensional case

and are readily applicable [2].

2.1. First order regularization

The first order regularized functional has the form shown

in Eq.(5) in 3D [2].

E =

∫

Ω

(∇I · u + It)
2
dx+

∫

Ω

α2 ·
(

|∇u|2 + |∇v|2 + |∇w|2
)

dx

(5)

The first order regularized error functional leads to the

set of Euler-Lagrange equations in 3D shown in Eq.(6).

Ix (Ixu+ Iyv + Izw + It) = α2 · ∆u

Iy (Ixu+ Iyv + Izw + It) = α2 · ∆v

Iz (Ixu+ Iyv + Izw + It) = α2 · ∆w

(6)

In Eq.(6) the subscripts indicate derivatives, f.e. Ix =
∂I/∂x, t denotes time, ∆ is the Laplace operator.

2.2. Second order regularization

For a second order regularized error functional, there is

no readily available algorithm in three dimensions in the

corresponding literature. The authors of this paper have

taken the idea proposed by Corpetti et al. [7] as a basis

due to its simplicity, robustness and reliability. Contrary

to the algorithm used in [7] we have chosen a single resolu-

tion concept based on the application of the Euler-Lagrange

equations to formulate the minimization problem and ex-

tended it to 3D. In this case the resulting equations had

similar structure to those for the first order regularization
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approach. The other difference with respect to the 2D for-

mulation given in [7] is that in 3D, the auxiliary variable ζ
becomes to be a vector ζ = [ζx ζy ζz]. The second order

regularized functional has the form shown in Eq.(7).

E =

∫

Ω

[(Ixu+ Iyv + Izw + It)
2
+

+α2 · ((divu − ξ)
2

+ λ
(

|∇ξ|2
)

+

+ (curlu|x − ζx)
2

+ (curlu|y − ζy)
2
+

+ (curlu|z − ζz)
2
+

λ
(

|∇ζx|2 + |∇ζy|2 + |∇ζz|2
)

)]dx

(7)

In Eq.(7) superscipts x, y, z indicate the corresponding

component of the vector quantities. The corresponding

Euler-Lagrange equations are shown in Eq.(8). It can be

seen that Eq.(6) and Eq.(8) are very similar in structure,

they both have a Laplacian character. Theoretically the sec-

ond order regularization does not include the Laplacian but

the simplification proposed by Corpetti et al. [7] leads to the

inheritance of this Laplacian character from the first order

regularization method.

Ix (Ixu+ Iyv + Izw + It) = α2
(

∆u+
(

ζz
y − ζy

z − ξx
))

Iy (Ixu+ Iyv + Izw + It) = α2 (∆v + (ζx
z − ζz

x − ξy))

Iz (Ixu+ Iyv + Izw + It) = α2
(

∆w +
(

ζy
x − ζx

y − ξz
))

(8)

The additional terms that include purely the derivatives

of the auxiliary variables have a strong influence on the

equations that lead to a second order type regularization

in the end of the computations. The Euler-Lagrange equa-

tions corresponding to the auxiliary variables are shown in

Eq.(9).

− (ux + vy + wz − ξ) = λ · ∆ξ

− (wy − vz − ζx) = λ · ∆ζx

− (uz − wx − ζy) = λ · ∆ζy

− (vx − uy − ζz) = λ · ∆ζz

(9)

The Euler-Lagrange equations of the auxiliary variables

also have a Laplacian character so this formulation of the

second order regularization remains diffusive similarly to

the first order regularization proposed by Horn and Shunck

[13].

3. Implementation

3.1. Computing the derivatives and the Laplacian

It can be seen in the equations reported in this paper so

far that derivatives of both the gray level field and the optical

flow velocity field are needed. In case of second order regu-

larization, there is also a need for computing the derivatives

of the auxiliary variables. The variables can be sorted into

two groups: the first group contains those variables which

will be constant throughout the iterative solution of the opti-

cal flow equations; the other group contains those variables

that change during the iterative solution. The gray levels I
are contained by the first group as their differentiation has

to be done only once, at the beginning of the process of op-

tical flow solution. It also means that different differencing

schemes can be applied for computing the image gray level

derivatives than for the optical flow velocity derivatives. To

obtain good quality derivatives of the gray levels, the best

choice is the application of derivative filters [8],[15], [18]

as these filters are robust against noise and provide a high

order scheme.

The temporal derivative of the gray level field provided

multiple possibilities to test: first, the four-point scheme

proposed by Horn and Schunck [13] was modified to a nine-

point scheme to provide symmetric information treatment

around the current location.

The derivative filters are, however, not appropriate for

discretizing a system of linear equations, thus for this pur-

pose the central and fourth order schemes were used.

The Laplacian operator was approximated based on the

proposal of Horn and Schunck [13], using ∆u ≈ κ (ū− u),
where u is the value of the variable at the current loca-

tion, ū is the average of the neighboring values. Here

only the neighbor average has to be extended to 3D conse-

quently, thus one can derive a 27-point scheme represented

in Eq.(10).

ū = 3
44 (uE + uW + uN + uS + uRC + uFC) +

+ 3
88 (uNE + uNW + uSE + uSW + uRN + uRS+

+uRE + uRW + uFN + uFS + uFE + uFW )+

+ 1
44 (uRNW + uRNE + uRSW + uRSE+

+uFNW + uFNE + uFSW + uFSE),
(10)

where the subscripts stand for directions from the current

location as N-North, E-East, S-South, W-West, NE-North-

East, NW-North-West, SE-South-East, SW-South-West, the

subscript R stands for ’rear’ (third coordinate is zi−1), F
stands for ’front’ (third coordinate is zi+1) slice, RC - rear

center, FC - front center. Higher order approximations of

the Laplacian were found to lead to the appearance of spu-

rious oscillations in the velocity field, thus the authors de-

cided to apply the second order accurate one that was de-

scribed above.
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3.2. Issues on geometric multigrid solver

The solution of the system of equations resulting from

the regularized optical flow constraint is usually realized by

means of an iterative method. The most frequently used

tool for relaxing the equations is the Gauss-Seidel method,

which is also the case in the present implementation. Analo-

gously to the reasoning of Horn and Schunck [13], the main

problem is the size of the images to be processed. The cam-

era resolution recently is in the order of magnitude of 106

pixels, and in case of a volume image it is multiplied by the

resolution in the third dimension that results in an order of

magnitude of 109 voxels. This number of data would lead to

a coefficient matrix of order of 1018 elements which is dif-

ficult to manage. For this reason the iteration stencils were

implemented directly instead of applying a general matrix

formulation. A detailed description of this technique is dis-

cussed in the basic paper of Horn and Schunck [13].

Since the equations have a Laplacian character, it was

straightforward that a multigrid approach can be used to ac-

celerate convergence. The multigrid method implemented

in the present framework is a geometric multigrid based on

the error correction scheme, about which detailed descrip-

tion can be found in [6]. Based on the idea of Horn and

Schunck [13] one can evaluate the linear system of equa-

tions of the structure of Au = b, with A coefficient matrix,

u the unknown vector to be computed, b force vector, into

a local formulation (located at position i, j, k) as shown in

Eq.(11).

ui,j,k + Bu = bi,j,k, (11)

where Bu denotes all the operations which have to be

carried out on the neighbour space of the location i, j, k.

It can be seen that the local value of the unknown vec-

tor is separated explicitly from its neighbour space. The

well known error correction scheme that is the basis for the

multigrid method can be reformulated using the formulation

in Eq.(11). Using v as the approximate solution, u as the

exact solution of the equation and r as the residual of the

equation one obtains Eq.(12) in the location i, j, k.

vi,j,k + Bv = bi,j,k + ri,j,k (12)

The error-correction equation can be obtained by sub-

tracting Eq.(12) from Eq.(11) and by introducing the error

vector itself as ei,j,k = vi,j,k − ui,j,k one obtains Eq.(13).

ei,j,k + Be = ri,j,k, (13)

where, ei,j,k =
[

eu
i,j,k e

v
i,j,k e

w
i,j,k

]

denotes the local er-

ror vector and e = [eu ev ew] is the neighbour average

of the error vectors in the vicinity of the current location

i, j, k. Eq.(13) is equivalent to the well known matrix form

of Ae = r as denoted in every textbook on numerical

methods. For prolongation and restriction, the full weighted

method was applied which were consistently extended to 3-

dimensional space. The algorithm of the multigrid method

is the same as reported in [6], thus it is not detailed here.

The time for obtaining full convergence of the iterations is

accelerated approximately by a factor of 5.

3.3. Parallelization concept with MPI

Due to the large size of the volume images it was needed

to create a concept for a feasible treatment, so both the

first order- and the second order regularization based solvers

were parallelized. Parallel solution of systems of equations

is already well established and it is mainly used to shorten

the computational time. However it has not been used yet

for optical flow problems, where more aspects arise. In the

present case the main goal of parallelizing the optical flow

solver was two fold: obviously the first aim was to accel-

erate the calculation, but the second, even the most impor-

tant aspect was to provide appropriate environment for the

treatment of large images. According to preliminary estima-

tions, in case of an image of 10243 resolution with number

type of ’double’, the memory requirement of a second order

regularized optical flow solution based on our three dimen-

sional extension of the concept of Corpetti et al. [7] would

be in the order of 100 GByte RAM, which is not suited for

shared memory architectures. The code was parallelized

on the way which is frequently applied for Laplacian type

equations. The partitioning structure is represented in Fig-

ure.2.

The partitions are organized along one principle axis as

shown in Figure.2a. This structure is valid also for the 3D

case. The concept of the communication is outlined in Fig-

ure.2b. It can be seen that the partitions were divided into

active and passive zones. The active zones participate and

change their values during the computations, while the pas-

sive zones act as boundary conditions. The first and the last

partition are bounded by boundary conditions on their ’free’

sides. The computation procedure is as follows: after ini-

tialization each partition makes one single relaxation loop

on the equations from the first element to the last element

of their active zones. After each partition reached its end,

the passive zones (or also called ’ghost layers’) are updated

by using the neighbour’s first, or last corresponding active

column. The next loop starts and uses the updated values in

the ghost layers and the procedure is repeated until conver-

gence is reached.

The multigrid solver necessitated further development

of the parallelization, thus the restriction and prolongation,

as well as the relaxation of the equations for the error-

correction were parallelized using the same concept as dis-

cussed here above.

This structure of parallelization made it possible to use

the units of a computational cluster as distributed memory

stores. The parallelized version of the code thus starts with a
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a)

b)
Figure 2. Partitioning concept for parallelization (a) and commu-

nication procedure (b)

distribution procedure, through which the large image is cut

into small blocks and these blocks are sent to the individ-

ual units of the cluster. Each computational unit processes

its own block and thus none of them has to treat an enor-

mous amount of data. This way the maximum size of the

image that can be treated, is exclusively limited by the size

of the computational cluster. The results are then collected

into a file that can be post-processed by an appropriate data

visualizer software.

4. Results

4.1. Synthetic volume image generator

To avoid spurious effects originating from unexpected

illumination-related noise sources that might influence the

results, the algorithm was tested first on synthetic volume

images. As the method discussed above is planned to be

applied for the images originating from Particle Image Ve-

locimetry, the synthetic images mimic the structure of these

images. The observed volume is seeded by small particles

which are supposed to follow the motion of the fluid. These

particles usually appear on the images as light spots char-

acterized by a Gaussian-like gray level distribution. In 3D

the particles appear as spheres with varying gray level along

their radius. A typical volume image and a slice along its

center is shown in Figure.3.

a)

b)
Figure 3. A typical volume image with the particles indicated by

spheres (a) and a slice of the volume indicating the gray level dis-

tribution (b)

The motion was imitated by displacing the position of

the particles with a known displacement vector field. Al-

though several motion patterns were investigated during the

validation period of the optical flow software, here only the

so called Hill’s spherical vortex is presented due to the lim-

ited space of this paper. Indeed Hill’s vortex was found to be

a good representative of most of the critical motion features

that are expected to occur for fluid mechanics applications.

4.2. Hill’s spherical vortex

The pattern of this motion is a vortex which is located in-

side a sphere of radius R. The motion is axisymmetric with

an arbitrarily oriented axis. Let x denote the distance along

the axis, d the distance normal to the axis and U the veloc-

ity in the free stream, far away from the vortex. In this case

the field of motion can be described by two Stokes stream

functions, out of which, one describes the velocity field in-
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side the sphere, the other describes that of the exterior field

[14]. The two stream functions are represented in Eq.(14).

ψinterior = 3
4U · d2

(

1 − d2+x2

R2

)

ψexterior = − 1
2U · d2

(

1 − R3

(x2+d2)3/2

)

(14)

The axial and the radial components of the velocity vec-

tor can be obtained by differentiating the Stokes stream

function. The axial component of the velocity is uax =
(1/d) ∂ψ/∂x, and the radial component of the velocity is

urad = − (1/d) ∂ψ/∂d. The axial and radial compo-

nents of the velocity vector were transformed into a general

Descartes coordinate system with orthogonal axes x, y, z.

4.3. Velocity field obtained by using second order
regularized optical flow constraint

The exact field and the optical flow solution can be seen

in Figure.4. The flow field is represented by means of

streamlines and a contour plot in the y-normal central plane.

The axis of the flow is now oriented towards the positive x-

direction. The radius of the vortex is 25 voxels, the size of

the domain is 1003 voxels, the free stream velocity is 1.5
voxels/frame. The derivatives of the gray level fields were

computed by the Deriche derivative filter [9], the temporal

derivative was computed with a 9-point single slice scheme.

The velocity derivatives were approximated by a fourth or-

der scheme. It can be seen that there is a good agreement

between the exact and the optical flow solution. The major

visible difference is the shape of the streamlines inside the

vortex. The exact solution shows that the streamlines are

closed curves, while the optical flow solution resembles a

spiralling trajectory. This error is due to the relatively low

resolution of the motion by means of particles. It can be

seen in Figure.3b, that in the region of the vortex there are

only few particles that cannot provide an exact pattern. In-

creasing the resolution improves the shape of streamlines

here. The difference in the magnitude of velocity vectors

between the two fields related to the exact solution is shown

in percentage in Figure.5. One can observe that in the ma-

jority of the domain the difference is below 10% of the exact

solution. Higher errors can be seen in the region of high ve-

locity gradients, i.e. in the vortex core and in the stagnation

points.

5. Conclusions

In this paper a concept of the extension of the well known

optical flow method from 2D images to 3D volume images

was discussed. The extension of the Lucas and Kanade

method and the method of Horn and Schunck has been

a)

b)
Figure 4. Velocity field of Hill’s vortex (a) and the solution of a

second order regularized optical flow (b). Contours represent the

velocity component in the axial direction

Figure 5. Difference magnitude field between the exact and opti-

cal flow solution represented in percentages related to the exact

solution

previously done and available in the corresponding litera-

ture, but for the second order regularized optical flow con-

straint there was no information for 3D applications. The

second order regularization, presented here in detail, was

based on the idea of Corpetti et al. [7] but by using different

minimization concept. This concept provided the possibil-

ity for the extension of this formulation to 3D. Due to the

7



large size of the volume images the numerical implemen-

tation of the solution of the corresponding equations was

based on locally evaluated stencil formulation and not in

the more general matrix form. To accelerate convergence,

the error-correction based geometric multigrid method was

implemented. To accelerate the iterative Gauss-Seidel re-

laxation of the equations, as well, as for providing a flexible

distributed memory structure, the program was parallelized

by means of MPI. The distributed memory architecture pro-

vides a good basis for treating images that are characterized

by a size that can not be stored in a single, shared memory

structured computer. The performance of the second or-

der regularized optical flow method was demonstrated by

means of a synthetic volume image containing particles.

The particles were displaced by a known vector field which

was the velocity field of the axisymmetric Hill’s vortex. The

optical flow solution showed a good agreement with the ex-

act solution.

It was discussed that the optical flow method is restricted

only to small displacements, whereas in case of the flow of

a fluid several different displacements can occur. To over-

come this problem the correlation method is planned to be

used to determine a coarse vector field for the large dis-

placements, and an interpolation will be applied to generate

the fine resolved vector field. The images will then be mod-

ified by using the interpolated vector field to remove the

large displacements and thus to enable the optimal condi-

tions for the optical flow solver. This way the optical flow

method can complement the correlation method by increas-

ing the resolution of the results as well, as their accuracy. It

has been mentioned that the optical flow constraint can be

solved within acceptable accuracy only if the displacements

are ’infinitesimal’, practically smaller than 2 pixels/voxels.

Similarly to the 2D solution proposed in the work of Heitz

et al. [12] the authors of this paper will use the cross correla-

tion method to determine the flow field with large displace-

ments. Concerning validation on real data, experiments are

being carried out at the moment.
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