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Abstract. We give here a simple proof of weighted logarithmic Sobolev inequality, for
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Ledoux [12]. Some consequences are also discussed.
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1. Introduction

In a recent paper, Bobkov and Ledoux [12, Th. 3.4] proved that for a generalized Cauchy
measure on R

n, i.e.

dνβ(x) =
1

Z
(1 + |x|2)−βdx

for β > n/2, the following weighted logarithmic Sobolev inequality holds, provided β ≥
(n+ 1)/2: for any smooth bounded f

Entνβ(f
2) = νβ

(

f2 log

(

f2

νβ(f2)

))

≤ 1

β − 1

∫

|∇f(x)|2(1 + |x|2)2dνβ(x).

Simple test functions however indicate that the weight (1 + |x|2)2 is not optimal: one hopes
(1+ |x|2) log(e+ |x|2) and that is what we will recover (with somewhat less precise constants).

It will be thus our purpose to prove inequalities of the type

Entµ(f
2) ≤ c

∫

|∇f |2ωdµ

for some weight ω ≥ 1, and more generally weighted F -Sobolev inequalities with more general
F ’s replacing the logarithm.

The (in a particular sense) case of weighted Poincaré inequalities is studied in [12] for Cauchy
type measures and in [15] in more general situations. Consequences in terms of concentration
of measure or isoperimetry are described in details in the latter reference.
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It should also be interesting to look at weights that go to 0 at infinity (instead of weights
bounded by 1 from below). Part of the results in [15] and in the present paper extend to this
situation.

Our strategy will be the following:

(1) consider a dual form of the weighted logarithmic Sobolev inequality (or more generally
F -Sobolev inequality): the Super weighted Poincaré inequality;

(2) use Lyapunov condition to prove these Super weighted Poincaré inequalities;
(3) show that these Super weighted Poincaré inequalities are equivalent to weighted F-

Sobolev inequality (and in particular weighted logarithmic Sobolev inequality).

Let us then introduce the so called Super weighted Poincaré inequality for a probability
measure µ, in a simple context, namely when the underlying Carré du champ is in fact the
square length of the gradient. It is inspired from the pioneering works on Super Poincaré
inequality by Wang [41]. Given a weight ω larger than 1, we say that µ satisfies a Super
weighted Poincaré inequality if for all f smooth and bounded, there exists a non-increasing
function βω such that for all s > 0

SwPISwPI (1.1)

∫

f2dµ ≤ s

∫

|∇f |2ωdµ + βω(s)(µ(|f |))2 .

When ω = 1, it is the usual Super Poincaré inequality which describes properties of the
measure stronger than the usual Poincaré inequality. If we add some additional weight ω
(tending to infinity as |x| → ∞ for example) we will be able to give an inequality adapted to
measures “above” and “below” Poincaré, being even able to play between the weight and β.

Weighted Poincaré inequalities have been recently investigated by Bobkov-Ledoux [12] in
particular for their interest in deviation inequalities, and by Cattiaux and al [15] showing
their link with weak Poincaré inequalities and isoperimetric inequalities. They have been also
intensively studied, in a converse form, in PDE theory to establish exponential convergence
to equilibrium for fast diffusion equations (see [21, 8]). In parallel, Cattiaux and al [18]
have studied Super Poincaré inequalities using Lyapunov conditions (see also [2, 3]). We will
combine here these two approaches to study these Super weighted Poincaré inequalities.

2. Results and examples

2.1. A Lyapunov condition for Super weighted Poincaré inequality. Lyapunov con-
ditions appeared a long time ago in relation with the problem of convergence to equilibrium
for Markov processes, see [36, 37, 38, 24] and references therein. They also have been used
to study large and moderate deviations for empirical functionals of Markov processes (see
Donsker-Varadhan [22, 23], Kontoyaniis-Meyn [34, 35], Wu [43], Guillin [31, 30],...) Their
use to provide functional inequalities has been very recently deeply investigated with some
success: Lyapunov-Poincaré inequalities [3], Poincaré inequalities [2], transportation inequal-
ities [19], Super Poincaré inequalities [18], weighted and weak Poincaré inequalities [15] (also
see the recent survey [17]). We will take advantage of the approach of these last two papers
to build our main results, but let us first describe our framework.

Let E be some Polish state space, µ a probability measure and a µ-symmetric diffusion semi-
group Pt with generator L on L2(E,µ). The main assumption on L is that there exists some
algebra A of bounded and uniformly continuous functions, containing constant functions,
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which is in the domain of L in the graph norm of L on L2(µ). It enables us to define a “carré
du champ” Γ, i.e. for f, g ∈ A, L(fg) = fLg + gLf + 2Γ(f, g). We will also assume that Γ
is a derivation (in each component), i.e. Γ(fg, h) = fΓ(g, h) + gΓ(f, h), i.e. we are in the
standard “diffusion” case in [1] and we refer to the introduction of [13] for more details. For
simplicity we set Γ(f) = Γ(f, f). Also, since L generates a diffusion, we have the following
chain rule formula Γ(Ψ(f),Φ(g)) = Ψ′(f)Φ′(g)Γ(f, g).

In particular if E = R
n, µ(dx) = p(x)dx and L = ∆ + ∇ log p · ∇, we may consider the

algebra generated by C∞ functions with compact support and the constant functions, as the
interesting subalgebra A, and then Γ(f, g) = ∇f · ∇g.

Now we define the notion of φ-Lyapunov function. Let W ≥ 1 be a smooth enough function
on E and φ be a C1 positive increasing function defined on R

+. We say that W is a φ-
Lyapunov function if there is a family of increasing sets (Ar)r≥0 ⊂ E such that

⋃

r Ar = E
(we say that the family Ar is exhausting) and some b ≥ 0 such that for some r0 > 0

lyaplyap (2.1) LW ≤ −φ(W ) + b 1IAr0
.

This latter condition is sometimes called a “drift condition” but we prefer to call it Lyapunov
condition. One has very different behavior depending on φ: if φ is linear then a Poincaré
inequality is valid, whereas when φ is super-linear (or more generally in the form φ×W where
φ tends to infinity ) we have stronger inequalities (Super Poincaré, ultracontractivity...), and
finally if φ is sub-linear we are in the regime of weak Poincaré inequalities. We will cover
setting in both weak and super Poincaré inequalities playing with the weight function.

We are now in position to state our main theorem:

mainTH Theorem 2.1. Assume that L satisfies a Lyapunov condition (2.1), that µ satisfies some
local Super Poincaré inequality, i.e. there exists βloc decreasing in s (for all r) such that
∀s > 0

SPlocSPloc (2.2)

∫

Ar

f2dµ ≤ s

∫

Γ(f)dµ+ βloc(r, s)

(
∫

Ar

|f |dµ
)2

.

We also introduce some ψ : [1,∞[→ [1,∞[ which is increasing and such that

0 < (φ/ψ)′(W ) ≤ 1 .

We finally assume that G(r) := 1/(infAc
r
ψ(W )) goes to 0 as r goes to infinity.

Then µ satisfies a Super weighted Poincaré inequality, i.e. for all s > 0

resultresult (2.3)

∫

f2dµ ≤ 2s

∫

Γ(f)
(

φ
ψ

)′
(W )

dµ+ β̃(s)

(
∫

|f |dµ
)2

where

β̃(s) = cr0 βloc(G
−1(s), s/cr0)

G−1(s) = inf{t > 0;G(t) > s} is the right inverse of G and

cr0 = 1 + b
supAr0

(ψ/φ)(W )

infAc
r0
ψ(W )

.
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Remark 2.2. In fact it is of course sufficient to verify some local Super weighted Poincaré
inequality, but as the weight is usually bounded on the subset Ar considered, they are equiv-
alent (up to the constants involved). And even, playing with r, as the weight is supposed to
be greater than 1 they are implied by the local Super Poincaré inequalities as used here.

Remark 2.3. In the particular case where Γ(f, g) = ∇f · ∇g one can take more general
Lyapunov condition, namely φ(W ) may be replaced by φ×W for some functional φ and the
same for ψ appearing in the theorem. The modifications are straightforward but give hard
to read result, and we let then the details for people needing such a framework.

Remark 2.4. In practice, Ar will often be level sets of the Lyapunov function W or balls of
radius r. The local Super Poincaré inequality will then be obtained by perturbation of the
Super weighted Poincaré inequality on balls for the underlying (Lebesgue) measure.

Proof. Let us begin with quite easy estimates: for r ≥ r0
∫

f2dµ =

∫

Ar

f2dµ+

∫

Ac
r

f2dµ

=

∫

Ar

f2dµ+

∫

Ac
r

ψ(W )φ(W )

ψ(W )φ(W )
f2dµ

≤
∫

Ar

f2dµ+
1

infAc
r
ψ(W )

∫

f2
ψ(W )

φ(W )
φ(W ) dµ

≤
∫

Ar

f2dµ+ b
supAr0

(

ψ
φ (W )

)

infAc
r
ψ(W )

∫

Ar0

f2dµ

+
1

infAc
r
ψ(W )

∫ −LW
φ
ψ (W )

f2 dµ

≤



1 + b
supAr0

(

ψ
φ (W )

)

infAc
r
ψ(W )





∫

Ar

f2dµ+
1

infAc
r
ψ(W )

∫ −LW
φ
ψ (W )

f2 dµ .

Applying Lemma 2.5 below to the second term, the local Super Poincaré inequality and the
fact that (φ/ψ)′(W ) ≤ 1 to the first, we get

∫

f2dµ ≤
(

s

(

1 + b
supAr0

(ψ/φ)(W )

infAc
r
ψ(W )

)

+
1

infAc
r
ψ(W )

)

∫

Γ(f)
(

φ
ψ

)′
(W )

dµ

+βloc(r, s)

(

1 + b
supAr0

(ψ/φ)(W )

infAc
r
ψ(W )

)

(∫

|f |dµ
)2

.

Recall now

cr0 = 1 + b
supAr0

(ψ/φ)(W )

infAc
r0
ψ(W )

and s̃ = scr0 so that, since Acr is decreasing in r, the last inequality furnishes
∫

f2dµ ≤ (s̃+G(r))

∫

Γ(f)
(

φ
ψ

)′
(W )

dµ+ βloc(r, s̃/cr0)cr0

(∫

|f |dµ
)2

.
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Choose now r = G−1(s̃) to conclude. �

One crucial element of the proof above was the following lemma borrowed from [15] whose
proof is reproduced here for completeness (showing also the necessity for L to be a diffusion)

lem:philyapounov Lemma 2.5. Let ψ : R+ → R
+ be a C1 increasing function. Then, for any f ∈ A and any

positive h ∈ D(E),
∫ −Lh

ψ(h)
f2 dµ ≤

∫

Γ(f)

ψ′(h)
dµ

Proof. Since L is µ-symmetric, using that Γ is a derivation and the chain rule formula, we
have

∫ −Lh
ψ(h)

f2 dµ =

∫

Γ

(

h,
f2

ψ(h)

)

dµ =

∫ (

2 f Γ(f, h)

ψ(h)
− f2ψ′(h)Γ(h)

ψ2(h)

)

dµ .

Since ψ is increasing and according to Cauchy-Schwarz inequality we get

f Γ(f, h)

ψ(h)
≤ f

√

Γ(f)Γ(h)

ψ(h)
=

√

Γ(f)
√

ψ′(h)
· f
√

ψ′(h)Γ(h)

ψ(h)

≤ 1

2

Γ(f)

ψ′(h)
+

1

2

f2ψ′(h) Γ(h)

ψ2(h)
.

The result follows. �

2.2. Equivalence with weighted F -Sobolev inequality. Let F be a continuous function,
such that sup0<r<1 |rF (r)| < ∞, F (1) = 0 and limx→+∞ F (x) = +∞. We will say that the
probability measure µ satisfies a defective weighted F -Sobolev inequality, with constants C1

and C2, and weight ω, if for all smooth and bounded f with µ(f2) = 1
∫

f2F (f2)dµ ≤ C1

∫

Γ(f)ωdµ+ C2.

Notice that, modifying if necessary the constant C2 we may replace F by F+. This inequality
will be called tight, or simply a weighted F -Sobolev inequality if C2 = 0.

When ω = 1, it is known that if µ satisfies a defective F -Sobolev inequality and a Poincaré
inequality, and with some (slight) additional assumptions on F , then µ satisfies a (tight) F -
Sobolev inequality. The case F = log is known as Rothaus lemma, and the previous general
result is obtained in [4] lemma 9 and Theorem 10.

The reader will easily check that the proofs in [4] extend to the weighted case, i.e. a weighted
Poincaré inequality (with weight ω) and a weighted defective F -Sobolev inequality (with
the same ω) imply a tight weighted F -Sobolev inequality, under the same assumptions than
in [4] lemma 9. These assumptions are satisfied when F (x) = log+(x) (see remark 15 in
[4]). We thus have that a weighted log-Sobolev inequality implies a weighted log+-Sobolev
inequality, and together with a weighted Poincaré inequality implies a tight weighted log+-
Sobolev inequality, hence a tight weighted log-Sobolev inequality.

We shall use this line of reasoning in various situations below, without mentioning it explicitly.

Now let us make a simple remark: if in the Super weighted Poincaré inequality, we assume
moreover that βω tends to a constant smaller than 1 as s → ∞ (which is quite a very weak
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hypothesis), the Super weighted Poincaré inequality implies a weighted Poincaré inequality.
Indeed applying (1.1) with f = g − µ(g) we get

(1− βω(s))Varµ(g) ≤ s

∫

Γ(g)ω dµ ,

thanks to Cauchy-Schwarz inequality, and the result follows taking a large enough s for the
left hand side to be positive.

The next proposition is adapted from the works of Wang [41] and Theorems 3.3.1 and 3.3.3
in [42]. We include its proof for the sake of completeness.

eqFsob Proposition 2.6. (1) If µ satisfies a defective weighted F -Sobolev inequality with con-
stants C1, C2, then there exist c1, c2 such that for all smooth bounded functions f and
∀s > 0

∫

f2dµ ≤ s

∫

Γ(f)ωdµ+ c1F
−1(c2(1 + 1/s))µ(|f |)2

where F−1(s) = inf{r ≥ 0; F (r) ≥ s}.
(2) If µ satisfies a Super weighted Poincaré inequality

∫

f2dµ ≤ s

∫

Γ(f)ωdµ+ βω(s)µ(|f |)2

then µ satisfies a defective weighted F -Sobolev inequality with

F (r) =
c1(ǫ)

r

∫ r

0
ξ(ǫt)dt− c2(ǫ)

for all 0 < ǫ < 1, where c1(ǫ) and c2(ǫ) are some constants, and

ξ(t) = sup
r>0

(

1

r
− βω(r)

rt

)

,

where β−1
ω (t) = inf{r ≥ 0;βω(r) ≤ t}.

Proof. (1). As said before we may assume that F ≥ 0, enlarging C2 if necessary. Pick f with
µ(|f |) = 1. For all r, t, a > 0, it holds

rt ≤ rF (r2/a) + t
√

aF−1(t) .

We choose a = µ(f2), r = |f | and multiply the previous inequality by |f |, i.e.

t f2 ≤ f2 F (f2/µ(f2)) + |f |t
√

µ(f2)F−1(t) .

Integrating this inequality with respect to µ yields

µ(f2F (f2/π(f2))) ≥ tµ(f2)− t
√

µ(f2)F−1(t)

and using the defective weighted F -Sobolev inequality :

(t− C2)µ(f
2)− t

√

µ(f2)F−1(t)− C1

∫

Γ(f)ωdµ ≤ 0 .

Hence, for t > C2,

µ(f2) ≤ 2C1

t− C2

∫

Γ(f)ωdµ+
t2F−1(t)

(t− C2)2
,
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and we write r = 2C1/(t− C2) to conclude.
(2). The second part of the proof is inspired by capacity/measure criteria.
Pick f with µ(f2) = 1 and δ > 1, consider An = {δn+1 > f2 ≥ δn} and

fn = (|f | − δn/2)+ ∧ (δ(n+1)/2 − δn/2).

Apply now the Super weighted Poincaré inequality to fn,

µ(f2n) ≤ rµ(Γ(f)ω1IAn) + β(r)µ(fn)
2 ≤ rµ(Γ(f)ω1IAn) + βω(r)µ(f

2 ≥ δn)µ(f2n)

and since µ(f2 ≥ δn) ≤ 1/δn, we get

µ(Γ(f)ω) ≥
∑

n≥0

µ(Γ(f)ω1IAn)

≥
∑

n≥0

ξ(δn)µ(f2n)

≥
∑

n≥0

ξ(δn)µ(f2 ≥ δn+1)(δ(n+1)/2 − δn/2)2

≥ (
√
δ − 1)2

1− δ−1

∑

n≥0

∫ δn

δn−1

ξ(t)µ(f2 ≥ δ2t)dt

≥ c1

∫ ∞

0
ξ(t))µ(f2 ≥ δ2t)dt− c2

≥ c3π(f
2F (f2))− c2

which is what is needed. �

Using this result one sees that if a Super weighted (with weight ω) Poincaré inequality is
valid with βω(s) = s−N ec(1+1/s) then a (ω) weighted logarithmic Sobolev inequality is valid.
In the preceding subsection we have presented conditions to verify Super weighted Poincaré
inequalities, we only have now to validate them through examples. It will be the purpose of
the next subsection.

2.3. Examples. We consider here the R
n situation with dµ(x) = p(x)dx and L = ∆ +

∇ log p · ∇, where p is smooth enough and positive, and · is the euclidean inner product.
Recall the following elementary lemma whose proof can be found in [2]. This lemma will be
helpful to deal with κ-concave measures.

lemfranck Lemma 2.7. If V is convex and
∫

e−V (x) dx < +∞, then

(1) for all x, x · ∇V (x) ≥ V (x)− V (0),
(2) there exist δ > 0 and R > 0 such that for |x| ≥ R, V (x)− V (0) ≥ δ |x|.

Another helpful result is the following result concerning the validity of a Super Poincaré
inequality for Lebesgue measures on balls: for all r > 0 denote by B(0, r) the euclidean ball
in R

n. Then there exists cn such that for all smooth f and all s > 0,

SPIballsSPIballs (2.4)

∫

B(0,r)
f2dx ≤ s

∫

B(0,r)
|∇f |2dx+ cn(1 + s−n/2)

(

∫

B(0,r)
|f |dx

)2

.
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Such an inequality will be particularly efficient when dealing with radial type measures, as
perturbation argument to get the local Super Poincaré inequality will be easy to do.

Indeed we immediately obtain
∫

B(0,r)
f2dµ ≤ s

∫

B(0,r)
|∇f |2dµmuSPIballs (2.5)

+ cn



1 +

(

s infB(0,r) p

supB(0,r) p

)−n/2




(

supB(0,r) p

inf2B(0,r) p

) (

∫

B(0,r)
|f |dµ

)2

.

For more general type of measures, it is not so difficult to get local inequalities for level sets
of the potential, see [18, Prop. 3.6].

2.3.1. Cauchy type measures. Let dµ(x) = (V (x))−(n+α) dx for some positive convex function
V and some α > 0. Let us begin by establishing a Lyapunov condition:

lem:convex Lemma 2.8. Let L = ∆ − (n + α)(∇V/V )∇ with V convex and α > 0. Then, there exists
k ∈ (2, α + 2), b,R > 0 and function W ≥ 1 such that

LW ≤ −φ(W ) + b1IB(0,R)

with φ(u) = cu(k−2)/k for some constant c > 0. Furthermore, one can choose W (x) = |x|k
for x large.

Proof. Let L = ∆− (n+α)(∇V/V )∇ and choose W ≥ 1 smooth, satisfying W (x) = |x|k for
|x| large enough and k > 2 that will be chosen later. For |x| large enough we have

LW (x) = k (W (x))
k−2
k

(

n+ k − 2− (n+ α)x.∇V (x)

V (x)

)

.

Using (1) in Lemma 2.7 (since V −(n+α) is integrable, e−V is also integrable) we have

n+ k − 2− (n+ α)x.∇V (x)

V (x)
≤ k − 2− α+ (n + α)

V (0)

V (x)
.

Using (2) in Lemma 2.7 we see that we can choose |x| large enough for V (0)
V (x) to be less than

ε, say |x| > Rε. It remains to choose k > 2 and ε > 0 such that

k + nε− 2− α(1 − ε) ≤ −γ

for some γ > 0. We have shown that, for |x| > Rε,

LW ≤ −kγφ(W ),

with φ(u) = u
k−2
k (which is increasing since k > 2). A compactness argument achieves the

proof. �

Consider now the case studied in [12] of the (generalized) Cauchy measure:

p(x) = Z−1
β (1 + |x|2)−β, β > n/2.
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Lemma 2.8 gives us a Lyapunov conditions. Using (2.5) we get local Super Poincaré inequal-
ities

∫

B(0,R)
f2dµ ≤ s

∫

B(0,R)
|∇f |2dµ

+ cn

(

1 + s−n/2 (1 +R2)β n/2
)

(1 +R2)2β Zβ

(

∫

B(0,R)
|f |dµ

)2

.

Choose now ψ(v) = log(v) for large v (and ψ smooth), Theorem 2.1 together with Proposition
2.6 thus furnishes (up to local modifications i.e for large |x|’s for example)

φ(u) = uk−2/k , ψ(u) = log(u) , W (x) = |x|k , (ψ(W ))(x) = k log |x|
hence

G(r) =
1

k log r
, G−1(s) = e1/ks

so that
(

φ

ψ

)′

(u) ∼ c

u2/k log u
, ω(x) ∼

(

1

(φ/ψ)′(W )

)

(x) ∼ c |x|2 log |x|

and finally for small s

βω(s) ∼ s−n/2 ec/s .

We have thus obtained

corcauchy Corollary 2.9. Cauchy measures µ(dx) = Z−1
β (1 + |x|2)−β for β > n/2 verify the following

weighted logarithmic Sobolev inequality: there exists C = C(β, n) such that for all smooth
bounded function f

Entµ(f
2) ≤ C

∫

|∇f(x)|2 (1 + |x|2) log(e+ |x|2)dµ(x) .

We then obtain the correct order of magnitude of the weight in this inequality, compared
to [12, Th.3.4]. However it has to be noted that we are loosing the pretty expression of
the constant in front of the weighted energy. Note that in dimension 1, Barthe-Zhang [7]
obtained the same weight.

2.3.2. Exponential measure. We will look at the exponential measure

ν(dx) = Z−1
n e−|x|dx.

It is well known that the exponential measure satisfies a Poincaré inequality. It is also easy
to see that considering W (x) = ea|x| for |x| ≥ R, we get if a < 1 for R large enough

LW (x) = a

(

n− 1

|x| + a− 1

)

W (x) ≤ −λW + b1IB(0,R)

and thus the Lyapunov condition.

Using (2.5) with the choice ψ(v) = log(v) for large v (and ψ smooth), we get

Corollary 2.10. The exponential measure ν satisfied the following weighted logarithmic
Sobolev inequality: there exists C = C(β, n) such that for all smooth bounded function f ,

Entµ(f
2) ≤ C

∫

|∇f(x)|2 (1 + |x|) dµ(x).
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As a comparison, let us recall a result of Bobkov-Ledoux [11, Eq. (1.6)] which states that for
the one sided exponential ν̃ (in dimension one)

Entν̃(f
2) ≤ 4

∫

x(f ′(x))2dν̃.

We then recover in any dimension their result directly (they can only use tensorization to
get n-dimensional version of this inequality) and may extend it to other potential.

Remark 2.11. Actually the proof above covers a very large class of measures satisfying a
Poincaré inequality, namely measures µ(dx) = e−V dx such that V → +∞ as |x| → +∞ and
satisfying the following condition

there exists 0 < a < 1 such that lim inf
|x|→+∞

(

a|∇V |2 −∆V
)

= B > 0 .

Indeed in this case we have φ(u) = λu (for some λ > 0) and W = eAV for some well chosen
positive constant A.

Choosing again ψ(u) = log u for large u’s we obtain the weight ω(x) = |x| for large |x|’s. If
we assume in addition that there exists some constant c > 0 such that for all R and all x
such that |x| = R,

c sup
|y|=R

V (y) ≤ V (x) ≤ 1

c
inf

|y|≥R
V (y) ,

it is not difficult to see that G−1(s) ∼ (V̄ )−1(1/s) where V̄ (R) = inf |y|≥R V (y) is increasing.
Using (2.5) again we obtain that βω(s) ∼ exp(C/s) hence the same weighted logarithmic
Sobolev inequality as in the previous corollary.

We do not know whether this is true for any measure satisfying the Poincaré inequality.
Indeed we know that there exists some Lyapunov function W yielding a linear φ, but we do
not know in full generality how to compare W and the potential V , so that we cannot give
an explicit formula for βω. ♦

3. Properties and Applications

3.1. Concentration of measure. We will present here two different approaches to get
concentration inequalities. The first one, due to Bobkov-Ledoux [12] uses controls on the
growth of moments. As we obtain optimal weight by our approach, we will compare on some
examples what are the implications of these better controls. The other one is based on the
derivation of a suitable transportation cost information inequality following the approach of
[9] based on Hamilton-Jacobi equation.

3.1.1. Growth of moments and Deviation inequality. We briefly recall here the main results
concerning concentration inequality obtained by Bobkov-Ledoux [12, Th. 4.1,Cor. 4.2] and
present their main result

Theorem 3.1 (Bobkov-Ledoux [12]). Assume that the following weighted logarithmic Sobolev
inequality is satisfied

Entµ(f
2) ≤ 2

∫

|∇f |2ωdµ.
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Assume also that ω has a finite moment of order p ≥ 2, then for any µ-centered 1-Lipshitz
function f , one has

‖f‖p ≤
√

p− 1‖ω‖p.
It implies that if ‖ ω ‖p≤ C,

(3.1) µ(|f | ≥ t) ≤











2e−t
2/2c2e if 0 ≤ t ≤ C

√
ep

2e−t/Ce if C
√
ep ≤ t ≤ Cep

2
(

Cp
t

)p
if Cep ≤ t

Remark now that the weight obtained by Bobkov-Ledoux for Cauchy measures νβ is ω =
(β−1)−1(1+ |x|2)2 whereas ours is ω = C(1+ |x|2) log(1+ |x|2) which thus allows integration
for Lp(µ) for a larger p. In addition Corollary 2.9 is obtained for β > n/2 instead of
β ≥ (n+1)/2. Thus our result furnishes in principle a larger strip of Gaussian concentration.
However the evaluation of C is quite bad here (due mainly to the local inequality). It thus
raises the question of the optimal constant with our weight. In dimension 1, one may use the
generalized Hardy inequality.

3.1.2. Transportation inequality. We give here another way to derive concentration inequality,
based on transportation inequality, as derived from logarithmic Sobolev type inequality by
Bobkov-Gentil-Ledoux [9] using Hamilton-Jacobi equation (see also [39] for a proof based on
PDE and optimal transport, or [16] for a refined argument). Let us give quickly the argument
adapted to our setting. First, let dω be the new Riemanian distance associated to ω, i.e. Cxy
is the set of all absolutely continuous paths γ : [0, 1] → R

d such that γ(0) = x and γ(1) = y
and

dω(x, y) := inf
γ∈Cx,y

∫ 1

0

√

ω(γ(s))−1γ′(s)2ds.

Thanks to results of Cutri-DaLio [20] or Dragoni [25] (in a more general setting, like possibly
degenerate weight), the inf-convolution Qωt f(x) := inf{f(y) + 1

t dω(x, y)} is the viscosity
solution of the weighted Hamilton-Jacobi equation

(3.2)

{

∂tv +
1
2ω|∇v|2 = 0 ∀(x, t) ∈ R

d×]0,∞[,
v = f ∀(x, t) ∈ R

d × {0}.
Suppose now that µ satisfies a weighted logarithmic Sobolev inequality with weight 2ω ≥ 1
(the factor 2 is only for a nice formulation of the result), we apply it to the function f2 = etQ

ω
t g

and denote G(t) = µ(f2) so that we get, using that

tQtg = t∂t(tQtg) +
1

2
|∇(tQtg)|2

the differential inequality

tG′(t) ≤ G(t) log(G(t)), G′(0) = ρµ(g).

It is now immediate to obtain that

µ(eQ1g) ≤ eµ(g)

which is, by Bobkov-Goetze’s result [10] an equivalent formulation for a T2 inequality. Sum-
marizing this argument, we get
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Theorem 3.2. Suppose that µ satisfies a weighted logarithmic Sobolev inequality with weight
2ω, i.e. for all nice f

Entµ(f
2) ≤ 2

∫

|∇f |2 ωdµ,

then µ satisfies the following weighted Transportation-Information inequality (ωT2): for all
probability measure ν with dν = fdµ

wTIwTI (3.3) W 2
2,ω(ν, µ) ≤ Entµ(f).

Here Wp,ω(ν, µ) is the L
p-Wasserstein distance between two probability measures ν, µ on E.

Note that as usual, such a (ωT2) inequality implies a (ωT1) inequality: for all probability
measure ν

W1,ω(ν, µ) := sup
‖f‖Lip(ω)≤1

(∫

fdν −
∫

fdµ

)

≤
√

Entµ

(

dν

dµ

)

where ‖f‖Lip(ω) ≤ 1 means that |f(x)− f(y)| ≤ dω(x, y).

The last inequality is equivalent to the fact that for all µ-centered function with ‖f‖Lip(ω) ≤ 1,
∀r > 0,

µ(|f | ≥ r) ≤ 2e−r
2/2.

3.2. Entropic convergence.

3.2.1. The natural diffusion associated to the weighted energy. As is well known, logarithmic
Sobolev inequality are equivalent to the exponential decay in L logL of the diffusion semi
group-associated to the Dirichlet form present in the inequality. We then get that a weighted
logarithmic Sobolev inequality for the measure dµ = e−V (x)dx

Entµ(f
2) ≤

∫

|∇f |2ωdµ

implies that the semi-group (Pωt ) with generator

Lω = ω∆+ (∇ω − ω∇V ).∇
satisfies

Entµ(P
ω
t f) ≤ e−t/4Entµ(f).

As this semigroup is reversible with respect to µ, it is certainly possible to use the results
of [18], via also Lyapunov conditions, to get this convergence but it is far easier to get a
Lyapunov condition on the generator L than on Lω. Note that it may also be useful when
one desires to sample from µ via a Langevin tempered diffusions type algorithm (see [24]):
we provide here an easy way to find a diffusion coefficient leading to an exponential entropic
convergence. It has to be noted that the approach is quite different than in Hwang&al [33] or
Franke&al [26] where they add a divergence free drift to accelerate the diffusion. Moreover
they are limited to cases where the initial measure µ satisfies a Poincaré inequality. One may
also get deviation inequality for integral functional of this Markov process, once remarked
that assuming weighted logarithmic Sobolev inequality implies a transportation cost (ωT2)
inequality, then we have using once again the weighted logarithmic Sobolev inequality: for
all probability measure ν with dν = fdµ

W 2
2,ω(ν, µ) ≤ 2

∫ |∇f |2
f

ωdµ
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which implies, by [32] that for all µ-centered function f with ‖f‖Lip(ω) ≤ 1 and for (Xω
t )t≥0

the Markov process with generator LΩ: for all positive r

Pν

(

1

t

∫ t

0
f(Xω

s )ds ≥ r

)

≤ e−r
2/4,

which may be useful in Monte-Carlo simulation.

3.2.2. Link with weak logarithmic Sobolev inequality. Two of the authors with I. Gentil in-
troduced in [14] the weak logarithmic Sobolev inequalities, i.e. µ satisfies (WLSI) for some
non increasing function β if for all bounded smooth function, ∀s > 0

WLSIWLSI (3.4) Entµ(f
2) ≤ β(s)

∫

|∇f |2dµ + sOsc(f)2 .

This is the weak counterpart of the classical Gross logarithmic Sobolev inequalities as weak
Poincaré inequalities of [40] were for the usual Poincaré inequalities. These weak logarith-
mic Sobolev inequalities are particularly useful to assert the speed of convergence towards
equilibrium (for the natural Markov process associated to µ) in entropy when dealing with
particular initial measure (such as Dirac mass, not suitable to an L2 analysis).
It was shown in [14] that weak logarithmic Sobolev inequalities are equivalent to some ca-
pacity/measure conditions. If in dimension one, these capacity/measure conditions can be
translated into verifiable conditions, it is no more the case in larger dimensions and only
a comparison, under some additional conditions, with Beckner inequalities (stronger than
Poincaré) or weak Poincaré inequalities gave multidimensional examples. We will show here
that weighted logarithmic Sobolev inequalities together with some concentration estimates,
enable us to obtain weak logarithmic Sobolev inequalities, so that Lyapunov type conditions
plus concentration give a new set of conditions for weak logarithmic Sobolev inequalities.

Theorem 3.3. Assume that µ satisfies the following weighted logarithmic Sobolev inequality

Entµ(f
2) ≤

∫

ω|∇f |2dµ

then µ satisfies a (WLSI) with function β(s) = g−1(s) where

(3.5) g(r) = µ(Bc
r)

[

2c+ log

(

1 +
e2

µ(Bc
r)

)]

with Br = {x; ω ≤ r} and c > 0 explicit.

Proof. Let us first recall the result of Theorem 2.2 of [14] (taking advantage of Remark 2.3),
that is a capacity measure condition for weak logarithmic Sobolev inequality.

To this end, let us recall the definition of the capacity of a given measurable set A ⊂ Ω:

Capµ(A,Ω) := inf

{
∫

|∇f |2dµ; 1A ≤ f ≤ 1Ω

}

where the infimum is taken over all Lipschitz functions. Finally if A is such that µ(A) < 1/2
then

Capµ(A) := inf{Capµ(A,Ω); A ⊂ Ω, µ(Ω) ≤ 1/2}.
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A sufficient condition for (3.4) to hold is then: for every A with µ(A) < 1/2,

capwlsicapwlsi (3.6) ∀s > 0,
µ(A) log

(

1 + e2

µ(A)

)

β(s)
≤ Capµ(A).

We cannot use directly our weighted logarithmic Sobolev inequality with this notion of ca-
pacity so that we introduce the natural weighted capacity

Capµ(A,Ω) := inf

{∫

|∇f |2ωdµ; 1A ≤ f ≤ 1Ω

}

Capµ(A) := inf{Capµ(A,Ω); A ⊂ Ω, µ(Ω) ≤ 1/2}

= inf

{∫

|∇f |2ωdµ; f : Rd → [0, 1], f1A = 1, µ(f = 0) ≥ 1/2

}

Using Bobkov-Goetze’s seminal work [10] or its refined version by Barthe-Roberto [6], the
weighted logarithmic Sobolev inequality implies that for all A such that µ(A) < 1/2 there
exists c such that

µ(A) log

(

1 +
e2

µ(A)

)

≤ cCapµ(A).

Consider now the set Br = {x; ω ≤ r}, by a simple adaptation of the proof of Gozlan [29, ],
we get that if A ⊂ Br

Capµ(A) ≤ 2rCapµ(A) + 2µ(Bc
r).

Remark now that the mapping t→ t log(1 + e2/t) is concave increasing for small values of t,
so that for all A such that µ(A) ≤ 1/2

µ(A) log

(

1 +
e2

µ(A)

)

≤ µ(A ∩Br) log
(

1 +
e2

µ(A ∩Br)

)

+ µ(A ∩Bc
r) log

(

1 +
e2

µ(A ∩Bc
r)

)

≤ cCapµ(A ∩Br) + µ(Bc
r) log

(

1 +
e2

µ(Bc
r)

)

≤ 2cr Capµ(A) + µ(Bc
r)

[

2c+ log

(

1 +
e2

µ(Bc
r)

)]

.

Setting s = µ(Bc
r)
[

2c+ log
(

1 + e2

µ(Bc
r)

)]

, we conclude the proof. �

If r is large enough, concentration result of the previous section will give upper bounds for
the second term of the left hand side.

3.3. Modified logarithmic Sobolev inequalities. We will prove here that weighted loga-
rithmic Sobolev inequalities imply modified logarithmic Sobolev inequalities (i.e. the energy
is modified). These inequalities were initially introduced by Bobkov-Ledoux [11], where they
show that a Poincaré inequality implies a logarithmic Sobolev inequality for a particular class
of functions (|∇f/f | ≤ c < CcSG

where cSG is the spectral gap constant). These results were
later extended to measures between exponential and Gaussian by Gentil and al [27, 28]. For
recent results, giving nice conditions we will discuss later, see also [5].
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Theorem 3.4. Let H and Hy be a pair of dual convex Young functions, such that H(|x|)/|x| ≥
a > 0 for large |x| and H∗(ǫ|x|) ≤ b(ǫ)Hy(|x|) with b(ǫ) → 0 as ǫ→ 0.
Suppose now that the following weighted logarithmic Sobolev inequality holds

Entµ(f
2) ≤

∫

|∇f |2 ωdµ

for some weight ω ≥ 1, that a Poincaré inequality holds and that for some α > 0

integcondintegcond (3.7) K :=

∫

eαH
y(ω)dµ <∞.

Then the following modified logarithmic Sobolev inequality holds

mlsimlsi (3.8) Entµ(f
2) ≤ C

∫

(

H

(

ǫ−1

∣

∣

∣

∣

∇f
f

∣

∣

∣

∣

2
)

f2 + |∇f |2
)

dµ

for sufficiently small ǫ and some constant C (explicit in the proof).

Proof. Actually, it is sufficient to get a defective modified logarithmic Sobolev inequality,
since a Poincaré inequality allows us to tighten a defective inequality thanks to [5, Th. 2.4].
We then have

Entµ(f
2) ≤

∫

|∇f |2 ωdµ

=

∫

ǫ−1

∣

∣

∣

∣

∇f
f

∣

∣

∣

∣

2

ǫωf2dµ

≤
∫

H

(

ǫ−1

∣

∣

∣

∣

∇f
f

∣

∣

∣

∣

2
)

f2dµ+

∫

Hy(ǫω)f2dµ.

Choose now ǫ sufficiently small so that b(ǫ) ≤ α/2 so that
∫

H∗(ǫω)f2dµ ≤ 1

2

∫

αHy(ω)f2dµ

≤ 1

2

∫

(αHy(ω)− logK)f2dµ+
1

2
logK

∫

f2dµ

≤ 1

2
Entµ(f

2) +
1

2
logK

∫

f2dµ

where we have used the variational formula for the entropy in the last line. Plugging the
latter inequality in the preceding one, we obtain the defective modified logarithmic Sobolev
inequality:

Entµ(f
2) ≤ 2

∫

H

(

ǫ−1

∣

∣

∣

∣

∇f
f

∣

∣

∣

∣

2
)

f2dµ+ log(K)

∫

f2dµ

which ends the proof. �

One may then use the Lyapunov conditions used to derive a weighted logarithmic Sobolev
inequality to get a generalization of Barthe-Kolesnikov [5, Th. 5.27,5.28].

Examples:

Consider the usual (for modified LSI) examples: dµ = Zαe
−|x|β for 1 < α ≤ 2 so that the
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Poincaré inequality is valid. Using Lyapunov function W (x) = ea|x|
β

for a less than one, one
may easily derive the following Lyapunov condition:

LW ≤ −c|x|2(β−1)W + b1B(0,R)

from which one deduces using ψ(w) = log(w) and Theorem 2.1 (and Prop. 2.6):

Entµ(f
2) ≤ C

∫

|∇f |2 (1 + |x|2−β)dµ.

Consider now the Young functions Hβ(x) = |x|
β

2(β−1) and Hy
β(x) = cβ |x|

β

2−β so that Hy
β(ǫω) =

cβω
β

2−β |x|β which is easily seen to be integrable wrt µ for ǫ sufficiently small. We then get

Entµ(f
2) ≤ C

∫

(

∣

∣

∣

∣

∇f
f

∣

∣

∣

∣

β

β−1

f2 + |∇f |2
)

dµ

for some constant C, which is a generalization in the multidimensional case of [27].
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gozlan2 [29] N. Gozlan. Poincaré inequalities for non euclidean metrics and transportation inequalities. Preprint.
Available on Math ArXiv 0707.2834[ps], 2007.

G2 [30] A. Guillin. Averaging principle of SDE with small diffusion: moderate deviations. Ann. Probab.,
31(1):413–443, 2003.

G1 [31] Arnaud Guillin. Moderate deviations of inhomogeneous functionals of Markov processes and application
to averaging. Stochastic Process. Appl., 92(2):287–313, 2001.

GLWY [32] A. Guillin, C. Léonard, L. Wu, and N. Yao. Transportation-information inequalities for Markov processes.
Probab. Theory Related Fields, 144(3-4):669–695, 2009.

HHS [33] C.R. Hwang, S.Y. Hwang-Ma, and S.J Sheu. Accelerating diffusions. Ann. Appl. Prob., 15:1433–1444,
2005/

KM1 [34] I. Kontoyiannis and S. P. Meyn. Spectral theory and limit theorems for geometrically ergodic Markov
processes. Ann. Appl. Probab., 13(1):304–362, 2003.

KM2 [35] I. Kontoyiannis and S. P. Meyn. Large deviations asymptotics and the spectral theory of multiplicatively
regular Markov processes. Electron. J. Probab., 10:no. 3, 61–123 (electronic), 2005.

MT [36] S. P. Meyn and R. L. Tweedie. Markov chains and stochastic stability. Communications and Control
Engineering Series. Springer-Verlag London Ltd., London, 1993.

MT2 [37] S. P. Meyn and R. L. Tweedie. Stability of markovian processes II: continuous-time processes and sampled
chains. Adv. Appl. Proba., 25:487–517, 1993.

MT3 [38] S. P. Meyn and R. L. Tweedie. Stability of markovian processes III: Foster-Lyapunov criteria for
continuous-time processes. Adv. Appl. Proba., 25:518–548, 1993.

OV [39] F. Otto and C. Villani. Generalization of an inequality by Talagrand and links with the logarithmic
Sobolev inequality. J. Funct. Anal., 173(2):361–400, 2000.
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