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Abstract. We present a novel approach for the automatic generation of model-to-model transformations
given a description of the operational semantics of the source language in the form of graph transformation
rules. The approach is geared to the generation of transformations from Domain-Specific Visual Languages
(DSVLs) into semantic domains with an explicit notion of transition, like for example Petri nets. The
generated transformation is expressed in the form of operational triple graph grammar rules that transform
the static information (initial model) and the dynamics (source rules and their execution control structure).
We illustrate these techniques with a DSVL in the domain of production systems, for which we generate
a transformation into Petri nets. We also tackle the description of timing aspects in graph transformation
rules, and its analysis through their automatic translation into Time Petri nets.

Keywords: Domain Specific Visual Languages, Graph Transformation, Model-to-Model Transformation,
Time, Petri Nets, Time Petri Nets.

1. Introduction

Domain-Specific Visual Languages (DSVLs) are becoming increasingly popular in order to facilitate mod-
elling in specialized application areas. Their use in software engineering is promoted by recent development
paradigms such as Model Driven Development (MDD) [KeT08]. Using DSVLs, designers are provided with
high-level intuitive notations which allow building models with concepts of the domain and not of the solu-
tion space or target platform (often a low-level programming language). This makes the construction process
easier, having the potential to increase quality and productivity.

Usually, the DSVL is specified by means of a meta-model with the abstract syntax concepts. Additionally,
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the concrete syntax can be given by assigning visual representations to the different elements in the meta-
model. For the semantics, several possibilities are available. For example, it is possible to specify semantics
by using visual rules [EEP06, LaV04], which describe the pre-conditions for a certain action to be triggered,
as well as the effects of such action. The pre- and post- conditions are given visually as models that use the
concrete syntax of the DSVL. This technique has the advantage of being intuitive, as it uses concepts of the
domain for describing the rules, thus facilitating the specification of simulators for the given DSVL.

Graph transformation [EEK99] is one such rule-based technique. One of the most commonly used formal-
izations of graph transformation is based on category theory [EEP06] and supports a number of interesting
analysis techniques, such as detecting rule dependencies and conflicts [AGG09, EEP06, HKT02]. However,
graph transformation lacks advanced analysis capabilities that have been developed for other formalisms
for expressing semantics, such as Place/Transition Petri nets (P/T nets) [Mur89, Pet81]. In this case, the
high-power analysis is thanks to the fact that P/T nets are less expressive than graph transformation.

For DSVLs in certain application areas, like in the real-time, embedded, or network domains, adding
timing information in the language semantics becomes crucial. Timing aspects, like durations and delays,
are needed in order to evaluate performance, calculate end-to-end execution delays, and throughput. However,
modelling in these areas usually resorts to low-level notations, like Petri nets with time [ABC95, CeM99,
Mer74, Ram74] or timed automata [BeY04, UPP09]. Even though analysis techniques and tools are available
for these notations, they require expertise and their low-level nature lacks the intuitive concepts of the
application domain. However, very few attempts are found trying to add timing aspects to higher-level,
more intuitive notations for expressing semantics [AMP07, GHV02, Hec05, UML07, UML05].

To address the lack of analysis capabilities of high-level notations, a common technique for expressing the
semantics of a DSVL is to specify a mapping from the source DSVL into a semantic domain [HKT02, LaV04]
and then back-annotate the analysis results to the source notation. This possibility allows one to use the
techniques specific to the semantic domain for analyzing the source models. However, this approach is
sometimes complicated and requires from the DSVL designer deep knowledge of the semantic domain target
language in order to specify the transformation.

To reap the benefits of both approaches, we have developed a technique for deriving a transformation from
the source DSVL into a semantic domain, starting from a rule-based specification of the DSVL semantics
using graph transformation [EEK99]. Such a specification uses domain-specific concepts only and is hence
domain specific in its own right. In addition, such behavioural specification may include control structures
for rule execution (such as layers [AGG09] or priorities [LaV04]), as well as timing information in the form
of delay intervals. The main idea of this paper is to automatically generate triple graph grammar (TGG)
rules [Sch94] to first transform the static information (i.e., the initial model) and then the dynamics (i.e., the
rules expressing the behaviour and the rule control structure). We exemplify this technique by using P/T
nets and Time Petri nets [Mer74] as the target language, but other formalisms with an explicit representation
of a “simulation step” or transition (such as Constraint Multiset Grammars [MMW98] and process algebras)
could also be used. This explicit representation of a transition allows encoding the rule dynamics in the
target model by creating a transition for each possible execution (i.e., match) of the original rule.

Thus, the contribution of this paper is twofold: (i) the automatic generation of model-to-model transfor-
mations from rule-based specifications of operational semantics; and (ii) the extension of graph transforma-
tion rules with time intervals, and subsequent analysis using Time Petri nets. A preliminary version of some
parts of this work appeared in [LaV08].

Paper organization. Section 2 presents the rule-based approach for specification of behaviour by means
of a DSVL for production systems. Section 3 gives a brief introduction to Petri nets. Section 4 shows how
the initial model (i.e., the static information) is transformed. Section 5 presents the approach for translating
the rules and the control structure. The algorithms used for the translation in the previous two sections
are shown in the appendix, together with a correctness proof sketch. Section 6 shows how to use Petri
net techniques for the analysis of the original rules. Section 7 presents our approach to add time to graph
transformation rules, and how to use the previous techniques for its analysis using Time Petri nets. Section 8
presents related research and finally, Section 9 ends with the conclusions.

2. Rule-Based Specification of Operational Semantics

In this section we provide a description of a DSVL for production systems using meta-modelling, and its
operational semantics using graph transformation. Fig. 1 shows a meta-model for the example language. It
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Fig. 1. Meta-Model for the Example Language.

Fig. 2. Production Plant Example Model.

contains different kinds of machines (all concrete subclasses of Machine), which can be connected through
conveyors. Human operators are needed to operate the machines, which consume and produce different types
of pieces from/to conveyors. The latter can be inter-connected.

Fig. 2 shows a production model example using a visual concrete syntax. It contains six machines (one
of each type), two operators, six conveyors and four pieces. Machines are represented as boxes, except
generators, which are depicted as semi-circles with the kind of piece they generate inside. Operators are
shown as circles, conveyors as lattice boxes, and each kind of piece has its own shape. In the model, the two
operators are currently operating an assembler and a packaging machine respectively.

Fig. 3 shows some of the graph transformation rules that describe the DSVL’s operational semantics. Rule
“assemble” specifies the behaviour of an assembler machine, which converts one cylinder and a bar into an
assembled piece. The rule can be applied if every specified element (except those marked as “{new}”) can be
found in the model. When such an occurrence is found (called a match), then the elements marked as “{del}”
are deleted, and the elements marked as “{new}” are created. This step is called a direct derivation. Note that
even if we depict rules using this compact notation, we use the Double Pushout (DPO) formalization [EEP06]
in our graph transformation rules. In practice, this means that a rule cannot be applied if it deletes a node
but not all its adjacent edges. In addition, we consider only injective matches. As an example, Fig. 4 shows
the result of applying the rule to the model in Fig. 2. In the resulting model, the derivation created an
Assembled piece and deleted a Cylinder and a Bar.

Rule “move” describes the movement of pieces through conveyors. The rule has a negative application
condition (NAC) that forbids the movement of the piece if the source conveyor is also connected to any
kind of machine having an operator. In this rule we use abstract objects (i.e., piece and machine are abstract
classes). Of course, no object with an abstract typing can be found in the models, but the abstract object
in the rule can get instantiated to objects of any concrete subclass [LBE07]. In this way, rules become much
more compact. The rule in the example is equivalent to 24 concrete rules, resulting from the substitution of
Piece and Machine by their children concrete classes.

Finally, rule “change” models the fact that an operator may move from one machine (of any kind) to
another one when the target machine is unattended and it has at least one incoming piece (of any kind). The
NAC forbids its application if the target machine is already being controlled by an operator. This rule is also

Fig. 3. Some Rules for the Production Systems DSVL.
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Fig. 4. Resulting Model After Applying Rule “assemble”.

abstract and equivalent to 144 concrete rules. Note that this rule creates an element (the operator) together
with an association which has an upper bound of 1. Here the NAC ensures that, after rule application,
such bound is not violated. Similar to [TaR05], in this paper we assume that the meta-model cardinality
constraints generate implicit rule post-conditions so that, should the rule application violate some of such
constraints, then the rule execution is forbidden. Thus, with this assumption, the NAC in rule “change”
would not be necessary, but however explicitly shows the interaction of the cardinality constraints and the
rule actions (i.e., adding a bounded element induces an implicit negative post-condition). Additional rules,
not shown in the paper, model the behaviour of the other types of machine.

By default, graph grammars use a non-deterministic execution model. In this way, in order to perform
a direct derivation (i.e., a simulation step), a rule is chosen at random, and is applied if its pre-condition
holds in some area of the model. There is a second source of non-determinism, as a rule may be applicable
in different parts of the model, and then one match is chosen at random. The grammar execution ends when
no more rules are applicable. Different rule control structures can be imposed on grammars to reduce the
first source of non-determinism, and to make them more usable for practical applications. We present two
of them (layers and priorities) later in Section 5.2.

Note that the presented rules model the behaviour of machines, conveyors and operators in an untimed
way. That is, if a certain rule is applied, the exact time when the direct derivation took place is not known.
Only the order of application is considered at this level of abstraction. In Section 7 we present an extension
of graph transformation rules to explicit handle timing information in the form of intervals.

As the example has shown, graph transformation is an intuitive means to describe the operational se-
mantics of a DSVL. Its analysis techniques are limited however, as it is for example difficult to determine
termination and confluence (which for the general case are non-decidable), state reachability, reversibil-
ity, conservation and invariants. For these purposes, in this paper we show how to automatically obtain a
transformation into P/T nets starting from the previous rule-based specification if that specification is some-
how “Petri net-like”. P/T nets have a rich body of theoretical results and tools to analyze the previously
mentioned properties. The next section presents a brief introduction to the relevant concepts of Petri nets.

3. Petri Nets

Petri nets [Mur89, Pet81] are a popular modelling language, broadly used to describe systems whose dynamics
exhibit properties of distributed environments, like concurrency, synchronization, mutual exclusion, conflict
and non-determinism. They incorporate a notion of distributed state, as well as a rule for state change, thus
capturing both the structure and the dynamic behaviour of the real system [ABC95]. Their popularity is
due to their graphical representation – nets can be visualized as a bipartite graph – as well as its solid body
of theoretical results and tools enabling their analysis.

A Petri net is made up of places and transitions. The former contain tokens, and can be connected
to transitions, and these to places. Intuitively, the number of tokens in places represent the system state.
Transitions are the dynamic elements, and their firing represent a state change. Formally, a Petri net can
be defined [Mur89] as a tuple PN = (P, T, W+,W−,M0) consisting of a finite set P of places; a finite
set T of transitions; the incidence functions W+ : T × P → N0 and W− : P × T → N0 that represent the
connection between transitions and places, and places and transitions (a zero indicates no connection, and a
value greater than zero the connection weight); and an initial marking M0 : P → N0. The set of transitions
and places should be disjoint, P ∩ T = ∅ and the empty net is not allowed, P ∪ T 6= ∅. We use the notation
•t for the set of pre-places connected to t: •t = {p ∈ P |W−(p, t) > 0}, and t• for the set of post-places to
which t is connected: t• = {p ∈ P |W+(t, p) > 0}.

As an example, the left diagram in Fig. 5 shows the graphical representation of a Petri net modelling
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Fig. 5. A Petri Net Example (left). Firing a Transition (center). The Reachability Graph (right).

a production system. Places are represented as circles, transitions as solid rectangles and tokens as black
dots inside places. The net is made of four places, P = {cyl, bar, assembler, pack}, three transitions T =
{assemble, good, wrong} and eight connections, all with a weight equal to one, except (cyl, assemble) and
(wrong, cyl) which have a weight of two. The initial marking assigns two tokens to place cyl, one to bar and
zero to the rest. Intuitively, the net represents an assembler machine that takes as input two cylinders and
one bar. The net models that the machine can finish correctly and produce one pack element, or go wrong
and return the cylinders and the bar to the input.

The state (i.e., the marking) of the net changes according to the following rule. A transition is enabled if
and only if all its input places have at least as many tokens as the weight of their connection to the transition.
Formally, iff ∀p ∈ •t,M(p) ≥ W−(p, t). In the example of Fig. 5 transition assemble is enabled, while wrong
and good are disabled. An enabled transition can fire, changing the marking (from M to M ′) according to
the following rule, ∀p ∈ •t ∪ t• : M ′(p) = M(p) + W+(t, p) −W−(p, t). That is, from the input places are
removed as many tokens as the weight and to the output places are added as many tokens as the weight.
We use the notation M

t⇒ M ′ to denote that firing t changes the marking from M to M ′, and M
σ⇒∗ M ′

(where σ is a sequence t1; t2; ...; tn of transition firings) to denote the marking state changes produced by
the firing sequence σ. We may omit σ and write M ⇒∗ M ′, which simply means that there is some sequence
able to produce M ′ from M (hence M ′ is reachable from M). Finally, we also use a function called enabled
that, given a marking, returns the set of enabled transitions.

The center of Fig. 5 shows the net after firing transition assemble. Notice that two tokens are removed
from cyl, one from bar and one is added to assembler, so that in general the firing of a transition does not
preserve the number of tokens. Note also that, after firing assemble both good and wrong become enabled.
Thus, one has to be chosen to be fired, and firing one disables the other, which is called a conflict.

In addition to simulation, Petri nets can be analyzed [Mur89], for example regarding reachability (whether
the net can reach a certain marking), boundedness (whether the number of tokens in each place does not
exceed a number k in each reachable marking), deadlocks (whether there are markings with no enabled tran-
sitions), liveness of transitions (the degree to which each transition can be fired), place invariants (whether
some equations regarding the number of tokens in each place hold for any reachable marking), transition in-
variants (whether there is some sequence of firings that leave the marking unchanged), reversibility (whether
the net can come back to the initial marking from any reachable one) and persistence (if firing transitions
do not disable other enabled ones). We will review some of these properties later on in section 6.

There are several methods for analyzing these properties [Mur89]. One of them consists of generating
the so called reachability graph, which is a representation in the form of graph of the reachable markings.
The nodes in the graph represent markings, while edges correspond to firing of transitions. The right of
Fig. 5 shows the reachability graph for the example net. We represent the marking as a list with the name
of the places containing at least one token (if they have more than one, the number of tokens is shown in
parenthesis). This way, we can observe that only three different states are possible. The net can enter in
a cycle (a transition invariant) by repeatedly firing assemble and wrong. The net may deadlock, because,
after firing good, no transition remains enabled. Finally, good and wrong are in conflict, firing either of them
disables the other.

Note that, in general, the size of the reachability graph is exponential on the number of places, and
moreover, it can only be constructed if the net is bounded. If this is not the case, it is possible to give an
approximation of it by building the coverability tree [Pet81]. Other analysis techniques, like the structural
and the algebraic ones [Mur89] allow certain analyses of the net without generating the reachability graph.
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Fig. 6. Meta-Model Triple for the Transformation.

Altogether, Petri nets offer powerful analysis techniques, able to verify many interesting properties of the
system. However, they lack the intuitive representation and customization degree of DSVLs. Our aim is to
retain the best aspects of both approaches, so that modellers can work with the customized, domain specific
notations they are proficient with, while the analysis is performed in the Petri nets domain. For this purpose,
we propose a method to automatically generate a transformation from the DSVL to Petri nets, which we
describe in the following sections.

4. Transforming the Static Information

In this and the next sections, we explain how, starting from the previous definition of the DSVL syntax and
semantics, a transformation into P/T nets can be automatically derived. We illustrate the techniques by
example. The details of the constructions, together with a dicussion sketching the proof of its correctness
are left to the appendix (Section 10).

In a first step, the static information of the source model is transformed. For this purpose, the designer
has to select the roles that the elements of the source DSVL will play in the target language. This is specified
with a meta-model triple [GuL07], a structure declaring the allowed relations between two meta-models. A
meta-model triple for the example is shown in Fig. 6. The Petri nets meta-model is in the lower component,
the meta-model of the source DSVL is placed in the upper component, while the correspondence meta-
model in the middle is used to relate elements of both meta-models. The references (dotted arrows) depict
the allowed relations for the elements in the other two meta-models. These references are inherited, thus, for
example a Repair object can be related to a Place object through a mapping object of type MachPl.

This process of identifying roles for source elements is a kind of model marking [MSU04], i.e., annotating
the model before the transformation actually takes place. In the example, we state that machines and
conveyors play the roles of places in Petri nets (i.e., they are holder-like or place-like elements), whereas
operators and pieces are token-like entities (i.e., they can “move around”, being associated with machines
and conveyors respectively). For this particular transformation into P/T nets, the meta-model triple provides
two standard mappings: ToPlace and ToToken, which allow relating source elements to places and tokens
respectively, by subclassing either of these classes. As we are translating the static information, no element
can play the role of a Petri net transition. As the next section will show, the role of transition is reserved for
the dynamic elements in the source specification: the rules modelling the operational semantics.

In order to be able to correctly express the semantics of the source DSVL with Petri nets, we need to
ensure certain restrictions on the mapping (i.e., on the meta-model triple). Thus, we require each token-like
entity to be connected to exactly one place-like entity, and have no more associations. This is needed to
ensure that when the token-like element is deleted by some rule, the rule cannot fail due to the dangling
edge condition. This restriction is shown in Fig. 7 as a pattern, similar to a graph constraint [EEP06], which
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Fig. 7. Forbidden Connections from Token-like Entities in the Meta-Model Triple.

can be interpreted as an if...then construction. This way, if an occurrence of the left hand part is found,
then such occurence has to be extended to the right hand pattern, and no occurrence of the NAC should
be found. In our example, the Piece token-like element is connected to exactly one place-like entity (the
Conveyor class), and the Operator to the Machine class.

Notice that we demand the relation between token-like and place-like entities to be explicitly represented
with an association. In general, this could be relaxed to allow a conceptual one without explicit representation,
or even using a composite relation (made of several intermediate classes and associations). Although these
extensions could be possible, for simplicity, we keep the simple, explicit representation. Similarly, place-
like and token-like entities could be composite elements, made of several classes and relations. Again for
simplicity, we demand token-like and place-like entities to be represented by just one class. We allow the
source DSVL to have elements which are neither token-like nor place-like elements, and moreover, a place-like
element can receive connections from more than one token-like element.

From the meta-model triple of Fig. 6, our procedure generates a number of operational TGG rules [Sch94],
which manipulate structures (triple models) made of source and target models, and their interrelations.
They specify how the target model (a Petri net in our case) should be modified taking into consideration
the structure of the source model. Thus, TGG rules manipulate triple models conforming to a meta-model
triple (such as the one in Fig. 6).

The TGG rules we automatically generate associate with each place-like entity (in the source language)
as many places as different types of token-like entities are connected to it in the meta-model. In the example,
class Machine (place-like) is connected to class Operator, a token-like entity. Thus, we have to create one
place for each machine in the model. Conveyors are also place-like, and are connected to pieces (token-like).
Thus, we have to create four different places for each conveyor (to store each different kind of piece). This
is necessary as tokens are indistinguishable in P/T nets. Distinguishing them is done by placing them in
distinct places. We give the details of this construction in Section 10, here we only give some insight through
examples.

Fig. 8 shows some of the resulting TGG rules. Rule “add 1-Op-Machine” associates a place to each
machine in the source model (because operators can be connected to machines according to the DSVL meta-
model). The place in the target model, together with the mapping to the source element is marked as new
(so it is created), and also as NAC, so that it is created only once for each source machine. Attribute type
of the mapping object stores the type (and all supertypes) of the token-like entity associated with the place.
Rule “init 1-Op-Machine” creates the initial marking of the places associated to machines. It adds one token
in the place associated to each machine for every operator connected to it. We represent tokens as black
dots connected to places. Rule “add 1-Cyl-Conv” associates one place (of type “cylinder”) to every conveyor
in the source model. Similar rules associate additional places for each concrete type of piece in the source
meta-model.

In addition, as the number of operators in each machine is bounded (there is a “0..1” cardinality in the
source meta-model), an additional place (which we call zero-testing place) is associated to machines to denote
the absence of operators in the given machine. This is performed by the automatically generated rule “add
0-Op-Machine”. Distinguishing between normal places and zero-testing ones is done through the modifier
attribute of the mapping object. The initialization of the zero-testing place for operators is done by rule
“init 0-Op-Machine”, which adds a token in the place if no operator is connected to the machine. We use
this kind of places to test negative conditions on token-like entities (e.g., NACs as well as non-applicability
of rules). We cannot generate such kinds of places for conveyors, as the number of pieces that can be stored
in a conveyor is not bounded. As will be shown later, this restricts the kind of negative tests that can be
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Fig. 8. Some TGG Rules for Transforming the Model.

Fig. 9. First Step in the Transformation.

done for conveyors. The zero-testing places are not needed if the target language has built-in primitives for
this kind of testing, like Petri nets with inhibitor arcs [Mur89, Pet81]. These kinds of nets, though more
expressive, have fewer analysis capabilities. Reachability for example is not decidable in a net with at least
two inhibitor arcs.

Fig. 9 shows the first step in the transformation of a simple production system made of two parallel
assembler machines. The triple graph shows how each place-like entity has been linked to a place for each
associated concrete token-like class. As the association between operators and machines is bounded, the
latter are also linked to a zero-testing place. Finally, places are appropriately initialized with tokens, and the
latter (except tokens in zero-testing places) are linked to token-like entities. Note that the correspondence
graph helps not only in building the Petri net, but will also be used later to back-annotate the analysis
results from the Petri net to the DSVL.

The next section shows how the translation of the dynamics is performed.

5. Transforming the Dynamic Behaviour

In order to translate the rules implementing the operational semantics (shown in Fig. 3) into the target
language, a number of additional TGG rules are needed. These rules embed each operational rule in the
target language in each possible way (i.e., for each possible match of the original rules in the initial model).
Thus, in our case, we make explicit in the Petri net – by means of transitions – all allowed movement of
token-like entities: pieces and operators. This reflects the fact that rules for the movement of pieces and
operators in the source language can be applied non-deterministically at each possible match.

Fig. 10 shows some of the generated rules. Rule “create assemble” is generated from rule “assemble” in
Fig. 3. It creates a Petri net transition that takes two pieces (a cylinder and a bar), checks that an operator is
present, and then generates an assembled piece. The triple rule uses the source model to identify all relevant
place-like elements in the pre- and post- conditions of the operational rule. This TGG rule will be applied at
each possible occurrence of two conveyors connected by an assembler machine, producing a corresponding
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Fig. 10. Some TGG Rules for Translating the Operational Rules.

Fig. 11. Additional TGG Rules for Translating the Operational Rules.

Petri net transition in the target model. Thus, we are identifying a priori (by adding Petri net transitions)
all possible instantiations of the rules implementing the operational semantics. This can be done because
the TGG rules contain as pre-conditions the place-like entities present in the pre-conditions of the original
rules.

Rule “create change” is generated from rule “change” in Fig. 3, and adds a Petri net transition to model
the movement of operators between any two machines. The NAC in rule “change” has been translated by
using the zero-testing place associated with the target machine (to ensure that it is currently unattended).
Note, however, that the original rule “change” cannot have NACs involving pieces, as we may have an un-
bounded number of them in conveyors, and thus we have not created zero-testing places for them. Moreover,
we allow an arbitrary number of NACs in the original rules, but each one of them is restricted to have at most
one token-like element, as otherwise we cannot test such a condition in the Petri net in one step. Note that
the “change” rule has indeed two negative conditions: the first is explicitly given by the NAC (forbidding
the presence of operators at the target machine), the second is implied by the fact that a bounded token-like
entity is added, and hence at most k− 1 (where k is the upper bound) elements are allowed to be connected
to the place-like element. In our case, the upper bound is one, and hence this implicit condition and the
explicit NAC are indeed the same restriction.

Fig. 11 shows the rules generated from rule “move” in Fig. 3. Note that the original rule has a NAC
involving both token-like and place-like entities. TGG rule “create move-1” assumes that the place-like
entities exist, and therefore the token-like entities must not exist. The latter condition is tested by means of
the zero-testing place associated with the machine. TGG rule “create move-2” assumes that the place-like
entities do not exist. As can be seen in the rules, the handling of abstract objects in the original rule depends
on their role. On the one hand, the abstract place-like entities are copied in the TGG rule (e.g., machine in
the rule). On the other hand, abstract token-like elements (e.g., piece element in the rule) are handled by
inspecting the attribute “type” of the mapping object (this also occurred in rule change).

As we have seen, some restrictions apply to the rules of the source DSVL in order to be map-able onto
Petri net transitions. We can summarize them in the following four restrictions:

(R1) Rules can only create or delete token-like elements. This is necessary, because in Petri nets, places
are static elements. Otherwise we would need a different target formalism such as reconfigurable Petri
nets [LlO04].
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Fig. 12. Second Step in the Transformation.

(R2) Each token-like element in rules (untagged, or marked as del, NAC or new) should be connected to a
place-like entity. In the case of deletion, this is to ensure that the rule cannot fail due to the dangling
edge condition. In the other cases, this is needed to know which place-like element the token is associated
with.

(R3) All token-like elements appearing in NACs should have a connection to a place-like element with bounded
cardinality (that is, a “*” on the association end in the meta-model is forbidden). For example, in rules
“change” and “move”, operators appear in NACs, but they have bounded connections.

(R4) All NACs should have at most one type of token-like element.

Fig. 12 shows the result of applying the generated triple rules to the model in Fig. 9. For clarity, we have
omitted the mappings from the Petri net places to the original model. Note that two transitions “assemble”
are created as there are two different matches for triple rule “create assemble” in the triple graph of Fig. 9.
They correspond to the two assemble machines. Moreover, eight “change” transitions are created, because
the “create change” TGG rule seeks for any kind of piece connected to the source conveyor. As there are
four types of pieces, four different matches are found to move an operator from one machine to the other
one. Note that transitions created from the same rule receive the same name1. This is done in order to make
indistinguishable transitions firings corresponding to direct derivations of the same rule but at different
matches. A different label could have been chosen should we want to distinguish the match at which each
rule is applied.

5.1. Optimizing the Petri Net

As a final step, the resulting Petri net can be optimized. For example, we can delete unconnected places,
and places with no tokens and only a self-loop connection to a transition. Such transition can be deleted as
well, as it will never be able to fire.

We have implemented such optimization rules as standard graph transformation rules (i.e., no triple
graph grammar rules). The reason is that they are the same for any source DSVL, so there is no need to
generate them for each different DSVL. As they are applied once the TGG transformation ends, we only
consider the target Petri net model. Fig. 13 shows the rules for optimization. Rule “del place” deletes a place.
As we use the DPO approach for graph transformation, the rule cannot be applied if the place has adjacent
arcs or tokens. Rule “del token” removes tokens of isolated places. This way, once such tokens are deleted
the place can be deleted by the previous rule. Rule “mark transition” erases a place if it is only connected to
a transition with a self-loop, and the place does not have tokens. The rule creates a marking node connected
to the transition that has to be deleted. The next three rules delete adjacent arcs of marked transitions, as

1 Here we are abusing the Petri net definition given in Section 3. In fact, we are adding a transition labelling function λ : T →
Label (which can be non-injective). In the following, if no confusion arises, we use λ(t) (instead of t) to refer to transitions.
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Fig. 13. Optimization Rules.

Fig. 14. Final Optimized Petri Net.

well as the transition itself. Note that the use of the marking node for the transitions to be deleted requires
an expansion of the Petri net meta-model with a new auxiliary class.

Finally, Fig. 14 shows the resulting Petri net after the optimization. The rules in Fig. 13 deleted three
unconnected places, as well as two places with self-loop arcs and four “change” transitions, which could never
be fired.

5.2. Transforming the Rules Execution Control

Up to now, we have not assumed any control structure for rule execution. That is, rules are tried at random,
and the execution finishes when no more rules are applicable. With this control scheme, no further trans-
formations are needed, and in the example, the resulting Petri net is the one in Fig. 14. However, it is also
possible to translate rule control structures. For example, one can assign priorities to rules [LaV04], such
that rules with higher priorities are tried first. If more than one rule has the same priority, one is executed at
random. After each rule execution, the control goes back to rule with the highest priority. When no rule in
a given priority class can be executed, the control goes to the next lower priority. The execution ends when
none of the rules with the lowest priority can be executed.

This execution policy can be embedded in the resulting Petri net as well, and we illustrate the translation
with the scheme shown in Fig. 15. The figure assumes two rules (r1 and r2) with the highest priority (priority
one). These transitions, in addition, would be connected to the pre- and post- condition places, resulting
from the previous step in the transformation. The idea is that in priority 1, modelled by the prio-1 place,
rules r1 and r2 are tried. Both cannot be executed, because place p1+ makes them mutually exclusive and
hence a non-deterministic choice is made. Transitions ¬r1 and ¬r2 are constructed from the operational rule
specifications in such a way that they can be fired whenever r1 and r2 cannot be fired, respectively (details
are shown later). Thus, if both ¬r1 and ¬r2 are fired, the control goes to the next priority (as this means
that r1 nor r2 can be executed), represented by place prio-2. If either r1 or r2 can be fired, then the control
remains in priority one. The transitions that move the priority take care of removing the intermediate tokens
from p1+, r1, r2, ¬r1ex and ¬r2ex. Of course, a rule for the original DSVL can be transformed into many
Petri net transitions, one for each possible match. The resulting transitions are given the same priority as
the original rule.

Thus, an important issue in this transformation is that we need to check when rules are not applicable (as
transitions ¬r1 and ¬r2 did in the previous figure). This in general is possible only if the places associated
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Fig. 15. Scheme for Transforming a Control Structure Based on Priorities.

Fig. 16. Generation of Rules for Testing Non-Applicability.

with the rule are bounded. Thus, in the case of the example of previous sections, we cannot test whether rules
“assemble”, “move” or “change” cannot be fired, since the number of pieces in conveyors is not bounded.

Fig. 16 shows examples of the construction of the transitions for testing non-executability of a rule. Rule
“rest” deletes an operator, while rule “work” models the creation of a new operator in an unattended machine.
As these rules contain place-like entities and bounded token-like entities only, testing non-executability is
feasible. Triple rule “create ¬rest” generates a Petri net transition that tests if the machine is not attended.
If this is the case, transition “¬rest” can fire, which means that “rest” cannot (i.e., the rule cannot be applied
at that match). Note that the “¬rest” transition makes use of the zero-testing place. Rule “rest” may also
fail to be applicable if no machine is present. As the place-like elements are static, this means that this
rule would never be applicable. One may think that a TGG rule like “create ¬rest-1” is needed (creating
a transition with empty input places, and hence always enabled). However this is not necessary, as if no
machine exists, then no transition associated to the execution of work was created, and therefore we do not
need to test if it is not applicable at that match.

Notice that rule “work” creates a bounded element (machines can have at most one operator), and that
it explicitly checks that it should be absent. The TGG rule “create ¬work” creates a transition that is
enabled when the machine has an operator, and therefore rule “work” cannot be fired. Notice that indeed,
two restrictions are being checked here: first, the NAC demands that no operator should be connected to
the machine. Second, the creation of an operator (which is bounded) requires that at least one operator can
be created for that machine. That is, we cannot have n operators already connected to the machine, where
n is the maximum cardinality. As in our case n=1, both restrictions are indeed the same and hence the loop
from the place associated to the machine and the operator is able to test both conditions. Altogether, the
generated transitions can only be fired if the original rule cannot, and the firing does not produce any other
effect.

Note that for these negative-testing transitions to be produced, we need to add further restrictions to
the DSVL rules (in addition to the four restrictions R1-R4 mentioned in section 5):
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(R5) All token-like elements in the LHS of the rule must have an association to a place-like element with
bounded cardinality.

(R6) The rule cannot have more than one NAC involving token-like elements.
(R7) If a token-like element appears in the LHS, then no NAC can have token-like elements.
(R8) At most one type of token-like element may appear in the LHS.
(R9) If some bounded token-like element is added, then a token-like element of the same type connected to

the same place-like element may appear in some NAC, but no other token-like element can be present in
the LHS or NACs.

Restriction R5 is necessary as we need the zero-testing place to check the non-existence of the token-like
element. The reason for restrictions R6-R9 is that if they fail, then we cannot test the non-executability
of the rule in just one step, we need more than one transition to test each possible case of failure. This is
feasible using several transition firings, but a more sophisticated scheme than the one in Fig. 15 is needed,
which we leave for future work.

Typical control structures in graph transformation, such as layers [AGG09, EEP06], can be transformed
in a similar way as priorities. For layers, the only difference is that when a rule in a layer is executed, the
control remains in the current layer and does not go back to the first layer. Note that the transformation of
the control structure can be kept independent of the two previous transformation steps, thus we are in effect
weaving two transformations.

6. Analyzing the Petri Net

Once the system is transformed into a Petri net, it can be analyzed using standard Petri net techniques
and tools [Mur89, Pet81]. We next discuss some of the properties that can be verified, using the net in
Fig. 14 as an example. Most properties can be analyzed using the reachability graph (or coverability tree).
Properties 2 and 3 can be analyzed using algebraic techniques, while the algebraic techniques also give
necessary conditions for reachability.

To make the analysis useful for DSVL users, the verification results are not presented to the user in terms
of Petri nets, but can be easily translated back to the DSVL domain [GLM09]. In general, there are three
types of answers to a property analysis: (i) a yes/no answer, (ii) a sequence of transitions, and (iii) a marking.
The first can be trivially back-annotated. In the second case, the transitions keep the name of the rules they
were derived from. Moreover, by using distinguishing labels (see details below), it is possible to know the
match (of the place-like elements) to which the rule has to be applied. Finally, for the third case, given a
marking it is possible to recover a graph. First, note that the place-like elements do not change. Then, we
can inspect the tokens in the net and create the corresponding token-like elements associated to place-like
elements just by following the correspondence graph node mappings. The properties to be analyzed are the
following:

1. Reachability and Coverability of States. If the net is bounded, we can investigate whether a certain
state is reachable from the initial marking or not. Formally, a marking M is reachable from M0 iff ∃σ
s.t. M0

σ⇒∗ M , where σ is a sequence of transition firings.
This property can be checked by building a reachability graph [Pet81], although a necessary condition for
reachability is also obtained by using algebraic techniques. Fig. 17 shows the reachability graph for the
net in Fig. 14. Using this graph, we can for example answer the question whether the system will reach
a state where a piece of type Assembled is produced (i.e., a token in 1-As-Conv is produced). In the
example, this is the case, but not all possible execution paths lead to such a configuration, as the system
may enter a cycle caused by the repeated firing of the change transitions. Note that we can immediately
use the reachability graph to answer questions about the original graph transformation system, as a
production system model can be uniquely recovered from each reachability graph state. Moreover, we
have labelled with the same name, the Petri net transitions derived from a single rule, so that we abstract
the particular match at which the rule was executed (but note that we could have chosen to distinguish
them).
If the net is not bounded (i.e., the number of tokens in a certain place can grow unbounded) we can
approximate the reachability graph by the coverability tree [Pet81]. This structure abstracts information
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Fig. 17. Reachability Graph of the Net in Fig. 14.

by making indistinguishable two states if the possible number of tokens of one is a subset of the possible
number of tokens of the other.

2. Place invariants. These are invariants on relations over the number of tokens of each place. They are
either specified by the designer (and then checked on the reachability graph), or derived by algebraic
techniques or by inspecting the reachability graph. Formally, a net with n places in initial marking M0

is conservative with respect to the vector (γ1, ..., γn) iff
∑n

i=1 γiM(pi) = c for each reachable marking M
(where c is a constant).
For the example, we find that 1-Op-Mac+1-Op-Mac-1= 1 (i.e., there is always one operator in the
system), and that 1-Bar-Conv+1-Cyl -Conv+2×1-As-Conv = 2 (i.e., either we have one bar and one
cylinder, or an assembled piece). Again, these invariants are easily translated back to the original graph
transformation system – using the nodes in the correspondence graph – but note that they are relative
to the initial marking (initial graph of the grammar).

3. Transition Invariants. These are sequences of transition firings that leave the marking unchanged (i.e.,
cycles). Formally, a transition invariant is a firing sequence σ such that M

σ⇒∗ M for some M . They can
be derived by algebraic techniques or by inspecting the reachability graph.
In the example, we find one invariant: change; change. The sequence moves the operator from one
assembler machine to the other and back, thus reaching the same state.

4. Reversibility. This property, related to the previous one, checks whether the net can always reach the
initial marking. If this is not the case, the system has a non-reversible process. Formally, the net is
revesible if ∀M s.t. M0 ⇒∗ M , then ∃σ s.t. M

σ⇒∗ M0.
In our case, the system is non-reversible, because as soon as assemble is executed the net cannot reach
the initial state. Again, this property is easily translated back to the original graph transformation system
(this is a yes/no verification problem).

5. Termination. We can check whether for the initial marking the net always (sometimes) reaches a
terminal state (a deadlock). Formally, there is a deadlock if ∃M s.t. M0 ⇒ M and enabled(M) = ∅
(where function enabled returns the set of enabled transitions in a marking, see Section 3).
For the example, the net finishes in some paths, as soon as assemble is fired. Note that this termination
result is valid only for the given initial graph.

6. Confluence. This is an interesting property for graph grammars, as a grammar exhibiting termination
and confluence observes a functional behaviour. Formally, a net is confluent if ∀M, M ′ s.t. M0 ⇒∗ M
and enabled(M) = ∅ and M0 ⇒∗ M ′ and enabled(M ′) = ∅ then M = M ′. That is, if there is a unique
terminal marking.
Confluence (for the initial state) can be assessed by checking in the reachability graph whether we obtain
more than two terminal states. For the example we may reach two possible terminal configurations,
differing in the position of the operator, thus the grammar is not confluent.

7. Transition persistence. This property checks whether firing one transition disables some enabled one.
Interestingly, this is related to rule conflicts and critical pair analysis in graph transformation [EEP06,
HKT02, LEO06]. Two graph transformation rules are in conflict if firing one disables the other. Similarly,
two Petri net transitions t and t′ are in conflict if ∀M s.t. M0 ⇒∗ M and {t, t′} ⊆ enabled(M), then

t′ /∈ enabled(M ′) where M
t⇒ M ′ or t /∈ enabled(M ′′) where M

t′⇒ M ′′.
Using the reachability graph, we can make the analysis at two levels. The more abstract one uses a
reachability graph like the one in Fig. 17, where we have used a non-injective labelling of transitions. In
this graph we see that firing change does not disable assemble for the given initial configuration of the
system, while firing assemble prevents change to be fired. A more detailed analysis can be done if we
label each transition differently, even if they are generated from the same graph transformation rule. This
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Fig. 18. Reachability Graph With Match Information.

Fig. 19. Analyzing Conflicts Types and Dependencies.

way, we distinguish the match at which the rule is executed. Fig. 18 shows a detailed reachability graph,
where we can see that all rules are in conflict, as not all rules in all matches remain available when one
transition is fired.
The reasons for conflict can also be analyzed by inspecting: (i) places that are input to two transitions,
which are not output of some of the two; (ii) zero-testing places that are input only (i.e., no output) to
some transition, and which are tested with a self-loop by another one. The first kind of conflict is called
delete-use in the graph transformation terminology, while the second one is a produce-forbid [LEO06].
The former arises when a rule deletes an element that another one needs, while the second is produced
when a rule adds an element which is in the NAC of another one. These conflicts are represented as
patterns in Fig. 19. Any occurrence of the patterns in the resulting triple graph of the transformation
means a conflict. In addition, the right-most pattern is able to detect a sequential dependency between
rules: one produces an element which is needed by another one.
For the example Petri net in Fig. 14, all change transitions have a delete-use conflict (due to places
“1-Op-Mac.”), as each rule moves the operator that the others need. A similar situation happens with
the assemble transitions: they have delete-use conflicts due to places “1-Bar-Conv.” and “1-Cyl-Conv.”,
as both transitions remove tokens that the other one needs. Transitions change and assemble are also in
delete-use conflict, as assemble deletes tokens from “1-Cyl-Conv.” and “1-Bar-Conv.”, and the change
transitions need one of the two tokens. Finally, rule assemble is sequentially dependent with change as
the transitions created from the latter add a token to places “1-Op-Mac.”, which are then tested by the
assemble transitions.
Again, note that with this technique we can analyze conflicts and dependencies arising in the initial
model, but not all possible conflicts. It could be possible however, like in critical pair analysis [EEP06],
to generate all minimal graphs from which there is a jointly surjective match from the LHS of each two
rules. Then, we can use the transformation procedure we propose to analyze conflicts with our technique.

7. Adding Time

The rules describing the operational semantics of the DSVL are untimed. That is, the execution of a certain
rule sequence is ordered, but no information is given on the exact time at which the firing of each rule is
performed. For some DSVLs (e.g., in the real-time domain), such information is essential. Therefore, for
more realistic modelling of the behaviour of the systems, timing information is needed.

Several approaches have been proposed to add time to Petri nets. Time can be added to places, tokens,
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Fig. 20. A TPN Example (left). State Classes (right).

arcs and transitions [CeM99]. In the latter case, the firing of a transition is given a duration, which is a
real number in Ramchandani’s Timed Petri nets [Ram74], an interval in Merlin’s Time Petri nets [Mer74],
and a probability distribution in Stochastic Petri nets [ABC95]. Taking this analogy with Petri nets, in the
original DSVL, we can add time in place-like entities, token-like entities or in the rules. The two former cases
imply modelling timing as data inside the model [GHV02], while in the latter case the time is added to the
formalism itself [Hec05]. Similar to Time Petri nets, here we take the approach of adding a time interval to
graph transformation rules, however we could also use any of the other approaches. The advantage of using
intervals is that they are a natural means to model imprecise clocks, time outs and acceptable variability of
timing constraints.

We start by first briefly reviewing Time Petri Nets, then we describe how to add time to graph trans-
formation rules, and finally we show how to use the previously presented translation procedure to map the
timed rule specification into a Time Petri net for analysis.

7.1. Time Petri Nets

Time Petri nets (TPNs) [Bed91, CeM99, Mer74, WaX00] associate an interval [a, b] (with 0 ≤ a ≤ b, and b
possibly unbounded) with each transition t ∈ T (where T is the set of transitions). The lower limit is called the
Static Earliest Firing Time (Static EFT), while the upper one is the Static Latest Firing Time (Static LFT).
This interval is modelled by a function SIM : T → Q∗ × (Q∗ ∪∞) [Bed91], where Q∗ is the set of positive
rational numbers2. Function SIM is constrained such that for each transition ti, SIM(ti) = (αS

i , βS
i ), with

αS
i and βS

i rational values such that 0 ≤ αS
i ≤ ∞, 0 ≤ βS

i ≤ ∞, αS
i ≤ βS

i if βS
i 6= ∞ or αS

i < βS
i if βS

i = ∞.
Thus, the simulation of a TPN takes into consideration the time. This way, assuming that a transition ti

becomes enabled at an absolute time τAbs, it cannot fire, while being continuously enabled, before τAbs +αS
i ,

and must fire before or at the latest time τAbs +βS
i . Note that in this model, firing a transition takes no time

to complete. Moreover, untimed Petri nets can be seen as a special case of TPNs, where each transition tj
is assigned an interval (αi = 0, β = ∞). Thus, TPN models are timed restrictions of the untimed net.

The left of Fig. 20 shows a TPN example modelling a simple production plant (the timed version of the
one in Fig. 5). Transition assemble, once enabled, cannot fire before 30 time units, and should fire before
or at 50 time units. Thus, this interval models the processing delay of an assemble machine. Transitions
good and wrong are in conflict, firing the former yields to a deadlock, while the latter puts the tokens in
their original places. A possible firing schedule is for example (assemble, 35)(good, 50), but note that there
are infinite firing sequences of length two leading to a state with one token in pack.

A TPN state S = (M, I) is made of a marking M (i.e., the number of tokens in each place) and a partial
function I that gives the dynamic EFT and LFT for each enabled transition. We use the notation (αi, βi)
for the dynamic interval I(ti) of transition ti. Note that, except for the initial state, the dynamic EFT and
LFT of each transition will in general not be equal to its static intervals. This is because when a transition is
fired, the dynamic intervals of all enabled transitions which are not in conflict are decreased. Thus, at time
τ in a given state S = (M, I), a transition ti can fire at time τ + θi iff:

2 We take the approach of [Bed91], where rationals are used instead of reals. In practice, this does not impose any limitation,
and theoretically is needed in order to ensure boundedness of the state classes of the TPN when the untimed net is bounded
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• it is enabled at time τ (as in the untimed case), and
• if αi ≤ θi ≤ min{LFT of tk}, where k ranges over the set of enabled transitions in M .

The latter condition indicates that the relative firing time of ti, given by θi, must lie between the dynamic
EFT of the transition and the minimum dynamic LFT of each enabled transition (otherwise it would prevent
some other transition to fire).

In the example of Fig. 20, after firing transition assemble at time τ , both transitions good and wrong
become enabled. Any of the two transitions must fire before or at τ + 20, which is the LFT of transition
good. Transition good cannot fire before τ + 10, while wrong cannot fire before τ + 15.

If, in state S = (M, I) transition ti is fired at time τ +θi, the net state changes to S′ = (M ′, I ′). The new
marking M ′ is calculated as in untimed Petri nets: ∀p ∈ •ti ∪ ti• : M ′(p) = M(p) + W+(ti, p) −W−(p, ti).
The dynamic interval I ′ for each transition tj ∈ T is calculated as follows:

• If tj is not enabled in M ′, then tj is not present in the domain of I ′.
• If tj is was enabled in M and is still enabled in M ′, then I ′(tj) = (max(0, αj − θi), βj − θi). That is, the

dynamic interval of tj is shifted θi to the origin. Note that the upper limit of the interval is greater than
or equal to zero as θi ≤ βj .

• If tj is enabled in M ′ but was not enabled in M , then I ′(tj) = (αS
j , βS

j ). That is, the dynamic interval is
initialized with the static interval.

In a different view, there are two aspects that modify the net state: the passing of time (which decreases
the dynamic intervals of enabled transitions) and the firing of transitions.

In the example of Fig. 20, the initial state is given by S0 = (M0 = {(cyl, 2), (bar, 1), (assem, 0), (pack, 0)},
I0 = {(assemble, (30, 50))}). This way, transition assemble is allowed to fire at any time in the interval
0 + [30, 50] and its actual firing time is allowed a potentially infinite number of values in the interval. Firing
assemble leads to state S1 = (M1 = {(cyl, 0), (bar, 0), (assem, 1), (pack, 0)}, I1 = {(good, (10, 20)), (wrong,
(15, 25))}), where the dynamic interval function I1 does not contain assemble in its domain as it is not
enabled, but transitions good and wrong.

The set of reachable states of a TPN is a subset of the untimed net. Interestingly, adding intervals to
transitions may prohibit certain execution paths and transition conflicts that were possible in the untimed
net.

There are several analysis techniques for TPNs. For example, in [Bed91], so called state classes are
derived. A state class is defined as the union of all firing values that are possible for a given marking, and
is defined by a pair C = (M,D), a marking M and a domain D. The latter is the set of solutions to the
system of inequalities capturing the global timed behaviour of the TPN [Bed91]. The number of state classes
is bounded iff the underlying untimed Petri net is bounded. The classes for the example TPN are shown to
the right of Fig. 20. The class of the initial marking is given by C0 = (M0, {30 ≤ θassemble ≤ 50}), which
describes all valid firing times for assemble. When assemble is fired, the net goes to class C1 = (M1, {10 ≤
θgood ≤ 20; 15 ≤ θwrong ≤ 25; θgood − θwrong ≤ 5; θwrong − θgood ≤ 15}). The first two inequalities account
for the static intervals of transitions good and wrong, the third and fourth express the constraints of firing
wrong and good first respectively. If wrong is fired first, we have that θwrong − θgood ≤ 0 and we reach class
C0, while if good is fired first, we reach class C2 = (M0 = {(cyl, 0), (bar, 0), (assem, 0), (pack, 1)}, D2 = ∅)
and have θgood − θwrong ≤ 0.

The clock-stamp method of [WaX00] allows calculating the end-to-end time delay for task execution,
which is useful for the verification of timing constraints in real-time systems. The technique consists on
adding global time stamps to each reachable state, so as to account for the time interval in which such state
can be reached. In the example of Fig. 20, the net can reach state C1 at [30, 50], C2 at [40, 70], and come
back to C0 at [75, 125].

7.2. Timed Rule-Based Specification

As previously stated, we do not want to resort to low-level notations like TPNs for modelling the timed
behaviour of a DSVL, but we want to provide the designer a means to incorporate the timing information
already in the rule-based specification. Then, using the translation we have presented in previous sections,
the rule-based specification will be transformed into a TPN for analysis.

Using an analogy with TPNs, we provide each rule ri with a static time interval (αS
i , βS

i ). This means that
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Fig. 21. One Step in a Timed Rule-Based Simulation.

a rule r1 for which a match m1 is found at time τAbs, and for which such match is continuously maintained,
cannot be executed before time τAbs + αS

i and should be executed no later than or at time τAbs + βS
i . Thus,

a time graph grammar is defined as a tuple GT = (G0, R = {ri}i∈I , SIM : R → Q∗ × (Q∗ ∪∞)), where G0

is the initial graph, R is the set of rules, and SIM is the function assigning to each rule ri its static time
interval (αS

i , βS
i ).

In our DSVL example, the time intervals allow modelling timing constraints of the actions represented by
each rule. For example, assigning interval [10, 15] to rule assemble in Fig. 3 means that, when an occurrence
is found for such rule, a delay of at least 10 and no more than 15 should elapse before it can be executed.
Thus, the interval models the execution time of machine assemble. Similarly, assigning interval [2, 4] to rule
move accounts for the time it takes a piece to move between conveyors, and interval [5, 20] models the time
interval for an operator to move between machines.

Note that the semantics of graph transformation with time is similar to TPNs, but the dynamic intervals
are assigned to matches (i.e., occurrences of the rule’s LHS in the host graph) and not to rules themselves.
This way a graph transformation state Sj = (Gj , Ij = {(mik : Li → Gj , (αik, βik))}) is made of a graph Gj

and a set of pairs where the first element mik : Li → Gj is a valid match of rule ri in graph Gj (Li is the LHS
of rule ri), and the second the dynamic interval assigned to match mik. The set Ij contains one element for
each valid match from each rule ri ∈ R in Gj . As an example, Fig. 21 shows to the left the initial state S0 of
a simulation. There are two matches of rule assemble (mas,1 and mas,2, indicated by node identifiers), and
three of rule change (as the abstract node piece in the rule can get matched to any of the three pieces in
the model). The matches are annotated with their dynamic interval. As this is the initial state, the dynamic
interval of each match is equal to the static one.

In state Sj at time τj , a rule ri can be executed at a certain match mik at time τj + θik iff αik ≤ θik ≤
min{LFT of mr}, where αik is the lower bound of the dynamic interval of match mik, and mr ranges on all
current matches in the set Ij . When the rule is applied at time τj +θik, the graph Gj is modified according to
the normal (untimed) direct derivation semantics, yielding Gj+1, and the dynamic interval Ij+1 is obtained
as follows:

• If a match mr is not present anymore in Gj+1, then it is removed from Ij+1.
• If a match mr is preserved by the direct derivation, then Ij+1(mr) = (max(0, αr − θik), βr − θik).
• For every new match mhq of any rule rh ∈ R in the grammar, Ij+1(mhq) = (αS

h , βS
h ), where (αS

h , βS
h ) is

the static interval of rule rh.

As an example, Fig. 21 shows the firing of rule assemble at time 12 starting from state S0. Only the
match mch,2 of rule change is preserved, so its dynamic interval is decreased in 12 units. In the resulting
state S1, the rule change must be fired at match mch,2 before or at 8 time units.

Similar to TPNs, the set of reachable states of a time graph grammar is a subset of the reachable states
of the untimed grammar.

7.3. Translation into TPNs and Analysis

We can use the procedure described in sections 4 and 5 for the translation from a timed rule specification
into TPNs. The only difference is that, in the timed case, the intervals assigned to the rules are copied to
the Petri net transitions by the TGG rules described in Section 10.2. Additional optimization rules can be
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Fig. 22. Resulting TPN.

Fig. 23. State Classes of the TPN of Fig. 22.

derived, though. For example, if two transitions ti and tj are in conflict, and the static EFT of ti is bigger
than the static LFT of tj , then we can remove ti (and all its adjacent arcs) as tj will always be fired first,
disabling tj , which will never be able to fire.

Fig. 22 shows the resulting TPN obtained from the production system of Fig. 9. The structure of the net
is the same as the resulting net from the untimed graph transformation rules, but time intervals have been
added to the transitions according to the rule intervals.

Fig. 23 shows the state classes corresponding to the generated TPN. It can be observed that the number
of classes corresponds to the number of states of the untimed reachability graph, as no transition remains
enabled after firing any transition, and the time intervals do not prevent any transition to fire. For clarity,
we have differentiated the transition labels, like in Fig. 18, but similar to the untimed case, a more abstract
graph can be obtained which does not distinguish the matches. From the firing domains of the classes, we
can observe that in classes C0 and C1 firing change has to occur before or at 15 time units, as otherwise
assemble has to be fired. That is, a change will never happen at interval (15, 20]. Note that this analysis
is automatically supported by the Romeo tool [GLM05], which also performs on-the-fly model-checking of
reachability properties, as well as translation of the net into a timed automata [BeY04, UPP09].

We can also use the clock-stamp method of [WaX00] to calculate end-to-end delays for task executions.
For example, the interval for two operator changes is [10, 30], and for producing a piece in the currently
unattended machine [15, 30].

8. Discussion and Comparison with Related Work

Many contributions in the field of model-to-model transformation have concentrated on devising high-level
means to express them. On the more formal side, we can find the seminal work on TGGs [Sch94], which
proposed an algorithm to generate operational rules (deriving for example source-to-target or target-to-source
translations) from declarative ones. Recent work tries to provide even higher-level means to express the
transformations, for example using triple patterns [LaG08] from which operational TGG rules are generated.



20 J. de Lara and H. Vangheluwe

This is closely related to the notion of “model transformation by example” [Var06], where transformation
rules are derived starting from a mapping between two meta-models, and transformation models [BBG06],
which express transformations as a MOF model relating source and target elements, and OCL constraints.

However, our work is very different from these, as we express the semantics of the graph grammar rules
(which express the operational semantics of the source model) with Petri nets. Petri nets can be seen as a
restricted kind of graph grammar, as the token game can be considered as a graph transformation step on
discrete graphs. Some work has tried to encode graph transformation rules in Petri nets, and then use the
analysis techniques of the latter to investigate the former. For example, in [VVE06] a graph transformation
system is abstracted into a Petri net to study termination. However, there are several fundamental differences
with our work. First, they only consider rules, while we consider rules and an initial graph. Therefore we
are able to consider all possible instantiations (occurrences) of the source rules. Second, they end up with
an abstraction of the original semantics, as, when the transformation is done, the topology of the source
model is lost (i.e., tokens represent instances of the original types, but their connections are lost). However,
the fact that we consider an initial model and that we use TGGs that create mappings to the Petri net
model allows us to retain the source model topology, thus the transformation does not lose information (the
obtained Petri net perfectly reflects the semantics of the original language). This is thanks to the fact that
a Petri net transition is constructed for each possible application of the original rule. Finally, we consider
control structures for the rules, as well as abstract rules.

In [KKR08], model-to-model transformations are expressed using a mapping language, whose semantics
rely on Coloured Petri nets. The mapping is done at the meta-model level using operators, whose low-
level implementation is a coloured Petri net. This means, that if no suitable operator is available for the
transformation purpose, one has to build a new one by directly using Coloured Petri nets, a low-level
task which requires specialized knowledge and expertise. On the contrary, our specification language, graph
grammars, is higher-level, and we provide an automatic means for its translation into a P/T net for analysis.

In [ErE07], graph grammars are defined for transforming DSVL models into Petri nets, without explicitly
considering the original DSVL rules. Then, the transformations are applied to the DSVL rules themselves,
resulting in grammar rules simulating the Petri net. Our approach is different as we translate the DSVL rules
into transitions, accurately reflecting the source DSVL semantics. The same authors in [EhE08] provide the
first steps towards a method to verify whether behaviour is preserved by model-to-model transformations
into semantic domains. A transformation is semantically correct if for each simulation run of the source
DSVL there is a corresponding run in the target system. Conversely, semantical completeness is obtained if
for each simulation run on the target system, there is an equivalent one in the source model. This verification
approach is interesting, as it can be done at the rule level, as rules simulating the target language are derived.
In our case, the simulation of the resulting net is not performed by rules, but using the normal semantics of
Petri nets. In the appendix, we show that if a rule of the original DSVL is applicable at some match, then
the transition generated for that match is enabled and vice versa.

With respect to adding time to graph transformation rules, only a few attempts are found. In [GHV02],
time is represented as a distinguished attribute chronos in the graph nodes. This is similar to the Petri
net approaches where time is added to the tokens, in particular to time ER nets [GMM91]. In [Hec05],
an exponentially distributed application delay is associated with each rule. This approach is inspired by
stochastic Petri nets [ABC95]. Interestingly, the set of reachable graphs of a certain stochastic graph grammar
is the same as in the untimed grammar, as the adding of time only amounts to labeling the resulting transition
system with probabilities. In our case, the adding of time has a stronger semantics, as it may suppress certain
execution paths. Finally, in [SyV08] time is added to the rule execution control language, based on a discrete-
event simulation formalism.

Altogether our work is original, as we are able to automatically generate a model-to-model transforma-
tion starting from rules expressing the operational semantics of the source DSVL. Moreover, we take into
consideration possible control execution structures for the source grammar. Note however that we cannot
translate arbitrary behavioural specifications. The source DSVL and its semantics are constrained by the
following:

• The DSVL has to include elements that can be mapped to places and tokens.
• For the case of P/T nets as the target language, rules cannot create or delete place-like entities (restriction

R1 in Section 5), as this would change the topology of the target model. We would need reconfigurable
Petri nets [LlO04], for example.

• Moving token-like entities (i.e., deleting and creating the edge connecting the token-like entity to the
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place-like entity instead of deleting and creating the edge and the entity) is possible if the target notation
is P/T nets (as we have shown when moving the operator). However care should be taken if tokens have
distinct identities such as in Coloured Petri nets.

• Token-like entities are usually required to be bounded. If rules have NACs, then all token-like elements
in the NAC should be bounded (restriction R3 in Section 5). Boundedness is also necessary if we are
translating control structures like layers or priorities (see restrictions R5-R9 in Section 5.2).

• NACs may have at most one token-like element (restriction R4). Restrictions with respect to the number
of NACs (involving token-like elements) a rule may have, and the number of token-like elements in the
pre-conditions also apply for generating negative tests. However, rules may have arbitrary NACs involving
place-like elements only, as they are translated into NACs for the TGG rules and do not involve checking
for tokens at run-time.

With respect to portability, we believe that this approach can be used with different target languages (in
addition to different kinds of Petri nets) having an explicit notion of transition. The steps to follow are the
following: (i) produce a meta-model of the target language, (ii) define mappings to the relevant entities in
the target language (similar to the ToPlaces and ToToken mappings in Fig. 1), (iii) study how to map the
static elements of the source DSVL models into static information of the target language, and define TGG
rules for this purpose, and (iv) study how to map DSVL rules into the transition elements of the target
language, and define TGG rules for this task. We are currently working on identifying further appropriate
target languages (possibly some types of process algebras, or multiset rewriting formalisms) and using this
method to automate the translation.

Concerning the time semantics, we have made two decisions. First, when a transition gets disabled and
then enabled again, its dynamic interval is initialized with the static one (this semantics is called enabling
memory [ABC95]). That is, we are not taking into account the “work done” when the transition was enabled
the previous time. Taking into account this time is called age memory [ABC95]. While both options are
possible in principle for TPNs, age memory is difficult to emulate in time graph transformation for the
general case. This is so because, when a match is disabled, it may be because of deleted elements, and thus
it is problematic to decide if a new match can be considered the same match as a previously existing one.
Note that we could take this decision at the rule level: if a rule gets disabled and then enabled again, we
take into account the time it remained enabled the last time. However, this would not be a sensible decision,
as it neglects the place in the graph where the rule gets enabled. Thus, matches in graph transformation
are much more dynamic than transitions in Petri nets. However, for restricted cases of grammars, like the
ones we can map to Petri nets, age memory semantics is possible, as matches can be related to place-like
elements, which are not created or deleted. This way, place-like elements are the means to decide whether a
match is the same as a previously existent one.

Second, the pre-places of a transition may have enough tokens to enable the transition more than once.
This is related to the server semantics [ABC95, BoD01]. In the single server semantics, as soon as a transition
is enabled, its timer starts to count. When the transition fires, if it is still enabled, a new timer is set. Thus,
in this way, there is only one timer per transition, and tokens are processed serially. In the infinite server
semantics, a timer is set for each set of tokens that enable a transition. There is no bound on the number
of timers each transition may have, and the tokens are processed in parallel. It is possible to restrict the
parallelism up to a maximum, arbitrary degree of k, which is called the k-multiple server semantics. In TPNs,
any of these possibilities can be chosen [BoD01]. For time graph transformation the natural choice seems to
be the infinite server semantics: as soon as a new match for a rule becomes available, a new timer is set.
However, a single server semantics is also possible, and accounts to scheduling just one match per rule, and
process each match sequentially.

9. Conclusions

We have presented a new technique for the automatic generation of transformations into a semantic domain
given a rule-based specification of the operational semantics of the source DSVL. The presented technique
has the advantage that the language designer has to work mainly with the concepts of the source DSVL,
and does not have to provide directly the model-to-model transformation (which can become a complex
task) or have deep knowledge of the target notation. We have also shown how to handle time in rule-based
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specifications of DSVL semantics, and we have been able to analyze such specifications by using a mapping
into TPNs.

We have illustrated this technique by transforming a production system into a Petri net. The designer
has to specify the simulation rules for the source language, and the roles of the source language elements.
From this information, TGG rules are generated to perform the transformation. Once the transformation is
executed, the Petri net can be simulated or analyzed, for example to check for deadlock or state reachability.
Thus, by using Petri net techniques, we can answer difficult questions about the original operational rules,
such as termination or confluence, which for the case of general graph grammars are undecidable.

We are working on full tool support for this transformation generation, as well as studying other source
and target languages. Moreover, we believe that for P/T nets the roles played by the source DSVL elements
can be inferred by analyzing the source rules (checking the static and the dynamic elements). We are also
working in handling more complex kinds of NACs, trying to relax the restrictions R1-R9 for the source DSVL,
and porting this approach to other target languages to remove the need for some of these restrictions. With
respect to the timing extensions to graph grammars, we are working on tool support for different semantics,
and on developing additional useful concepts for performance evaluation. For example, it is possible to
identify resource elements at the meta-model level, and then calculate resource utilization metrics taking
into account the time intervals assigned to the rules.
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[Sch94] Schürr, A. 1994. Specification of Graph Translators with Triple Graph Grammars. Proc. WG’94. LNCS 903, pp.:

151 - 163. Springer.
[SyV08] Syriani, E., Vangheluwe, H. 2008. Programmed Graph Rewriting with Time for Simulation-Based Design. Proc.

ICMT 2008. LNCS 5063, pp.: 91-106. Springer.
[TaR05] Taentzer, G., Rensink, A. 2005. Ensuring Structural Constraints in Graph-Based Models with Type Inheritance.

Proc. FASE 2005, LNCS 3442, pp.: 64-79.
[UML07] UML 2.1.2 infrastructure and superstructure specification (2007): http://www.omg.org/spec/UML/2.1.2/
[UML05] UML Profile for Schedulability, Performance, and Time Specification v 1.1(2005):

http://www.omg.org/technology/documents/formal/schedulability.htm
[UPP09] Home page of UPPAAL: http://www.uppaal.com
[Var06] Varro, D. 2006. Model Transformation by Example. Proc. MoDELS’06, LNCS 4199, pp.: 410-424, Springer.
[VVE06] Varro, D., Varro - Gyapay, S., Ehrig, H., Prange, U., Taentzer, G. 2006. Termination Analysis of Model Transfor-

mations by Petri Nets. Proc. ICGT’06, LNCS 4178, pp.: 260-274, Springer.
[WaX00] Wang, J., Xu, G. 2000. Reachability Analysis of Real-Time Systems Using Time Petri Nets. IEEE Transactions

on Systems, Man, and Cybernetics-Part B: Cybernetics, Vol 30(5). pp.: 725-736.

10. Appendix: Algorithms for the Construction of the TGG Rules

This appendix provides the details for the construction of the TGG rules, and an informal proof sketch that
shows that firing a Petri net transition is only possible if the DSVL rule it was derived from is applicable
and the other way round.

10.1. TGG Rules for the Static Information

In order to construct the TGG rules to transform the static information (like those in Fig. 8), we first
explicitly copy the reference edges through the inheritance hierarchies in the meta-model triple. Thus, in the
meta-model triple of Fig. 6, we add references from “MachPl” to each subclass of “Machine”, from “PTok”
to each subclass of “Piece”, from “Place” to each subclass of “ToPlace” and from “Token” to each subclass
of “ToToken”. A similar closure is performed for the normal associations in the upper part of the meta-model
triple (the meta-model corresponding to the DSVL).

Fig. 24 shows the approach for the generation of two of the TGG rules. We seek all possible instantiations
(injective matches) of the pattern to the left in the meta-model triple (where node Z depicts a concrete class),
and we generate the two rules to the right for each occurrence. The first rule adds one place for each instance
of each place-like entity in the meta-model. Function supers returns all the superclasses of a given class. The
second rule sets the initial marking of the place related to each place-like instance connected with a token-like
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Fig. 24. Constructing the Rules for Translating the Static Information.

Fig. 25. Constructing the Rules for Translating the Static Information: “0..1” multiplicity.

instance. The condition checks that the name of the type of the token-like entity is included in attribute
“type”. For simplicity, we do not use the abstract syntax of class diagrams in the meta-model triple.

Additional rules (similar to “add 0-op-machine” and “init 0-op-machine” in Fig. 8) are constructed for
creating a zero-testing place for the bounded token-like entities. The pattern is similar to the one in the
figure, but looks for a “0..1” multiplicity in the association connecting the token-like entity to the place-like
entity (to the side of the former). The approach for their generation is shown in Fig. 25.

In general, the previous procedure can be generalized for a “0..n” multiplicity, with n some natural
number. The meta-model pattern and some of the generated rules are shown in Fig. 26. The idea is that, if
the Y object is not connected to any Z object, then n tokens are created in the zero-testing place. If exactly
one Z object is connected, then n − 1 tokens are created and so on. This way, n TGG rules are created,
checking the existence of {0, 1, .., n − 1} connected Z objects. The NACs in each TGG rule ensure that no
more than x objects are found. Note that, when testing for 0 objects of type Z, the transitions use the zero
testing place with a self loop in which each arc has a weight of n.

Finally, if the multiplicity is “m..n” instead of “0..n”, the procedure is similar to the one in Fig. 26, but
the rules testing for less than m connected Z objects are not generated.

10.2. TGG Rules for the Dynamic Behaviour

In addition, a TGG rule is constructed for each rule of the source DSVL. As stated before, rules should
satisfy conditions R1-R4, in particular rules may have an arbitrary number of NACs, but each with at most
one kind of token-like element. The construction algorithm proceeds as follows:

Fig. 26. Constructing the Rules for Translating the Static Information: “0..n” multiplicity.
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Fig. 27. Steps for Deriving the TGG rule from Rule “work”.

1. Initialize the upper part (i.e., corresponding to the source DSVL) of the TGG rule with all the place-like
elements (and the connections between them) of the source DSVL rule that are tagged NAC or untagged.
Fig. 27 shows this first step for rule “work” (shown in Fig. 16).

2. For each element in the upper part of the TGG rule which was associated with a token-like element
in the original rule (with tags new, del or untagged), add a mapping and a place in the middle and
lower sections. Add an attribute condition stating that the type of the token-like entity is included in
the attribute “type” of the corresponding mapping object. For each bounded token-like entity marked
NAC, del or new, add an additional mapping identifying the associated zero-testing place. Do not add a
mapping twice to the same place. In Fig. 27 we do not add place “1-op-machine” or the mapping twice,
even when the operator appears twice in the original rule (tagged new and NAC).

3. Add a Petri net transition in the lower part of the TGG rule. Connect it to each place added due to
a token-like entity marked as new in the original rule. Conversely, connect each place added due to a
token-like element marked as del in the original rule to the transition. Connect the transition with a
loop to each zero-testing place coming from a token-like element tagged NAC in the original rule. Add
a weight equal to k − n + 1 to both arcs in the loop, where k is the upper bound in the meta-model
and n the number of token-like elements of the given type in the NAC. Moreover, for each connection
starting or departing from the place associated with a bounded element, add the reverse connection to
the associated zero-testing place. Add a loop to the transition for each place added due to an untagged
token-like entity in the original rule. Tag the Petri net transition and the created connections in the TGG
rule as new and NAC.
In Fig. 27, we create a connection to place “1-op-machine” as the operator is tagged new. We create
a loop to the zero-testing place, as the operator is marked NAC. The weight of these two arcs is one,
which is the upper bound of the cardinality in the meta-model. Finally, we add the connection from the
zero-testing place because the operator is bounded, and we added the reverse edge to the other place.
The arc from the zero-testing place serves two purposes: it checks that there is room for one operator,
and then removes one token, because one operator is added.

4. Simplify connections to/from the Petri net transition to zero-testing places. An incoming edge can be
cancelled with an outgoing one, but the testing arcs from zero-testing places arising from the NACs
cannot be eliminated. That is, if a NAC states that n elements have to be tested in a zero-testing place,
we cannot simplify to obtain a weight smaller than n in the arc from the place to the transition. This
is to allow rewriting of token-like entities by a single rule (or just test their presence), but to retain the
semantics of NACs. In the example we can cancel one outgoing and one incoming edge.

5. NACs of the original rule involving only place-like elements are copied into the TGG rule.
6. If the original rule has NACs involving both place-like and token-like elements, create an additional TGG

rule following the previous steps, but ignoring the token-like elements connected to the place-like elements
in the NACs and copy the NAC of the place-like elements in the TGG rules (see rule “create move-2” in
Fig. 11).

10.3. Preservation of Semantics

In this section, we show that the obtained Petri net reflects the semantics of the original DSVL, in the sense
that a rule of the source DSVL is applicable iff some of its associated Petri net transitions are applicable.

Let’s first consider the case of a rule without NACs, and later consider the case with NACs. In the
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Fig. 28. Structure of a Rule without NACs (left). Generated Transition (right).

general case, a rule can have the structure shown to the left of Fig. 28. We use the notation A/Token to
denote a token-like element A, /Place to denote a place-like element and Other-i to denote an element with
no role (i.e., that is neither place or token-like element). We have decorated with a B the edges with bounded
cardinality. For simplicity we assume an upper cardinality of one, but the reasoning holds for any cardinality.
The rule can have arbitrary edges between the place-like elements and the elements with no role, but they
are omitted in the rule scheme. Note that by restriction (R1) of the DSVL rules (see section 5), these can
only add or delete token-like elements (together with their edges to place-like elements). For such a rule, a
transition with the structure shown to the right of Fig. 28 is created for each occurrence of the place-like
elements and elements with no role in the original host graph.

Now we show that (i) if the rule r is applicable at some match, then the generated transition tr for that
match is applicable, and both have the same effects and (ii) if some tr is applicable, then its associated rule
is applicable to the corresponding match and both have the same effects.

(i) Assume that r is applicable at some match in the original graph. Then, as the place-like elements and
elements with no role are static (by restriction R1 no rule can add or delete them), there is some transition
tr connected to the associated places of such elements. If the rule is applicable, it means that the token-
like elements A, ..., B, E, ..., F are present in the graph, and that (by the implicit post-conditions of the
meta-model cardinality constraints) we can create the bounded token-like element C. But note that we
translated the existing token-like elements in the original graph to tokens in the corresponding places, and
added tokens in the zero-testing places of bounded elements. Hence, if C can be created, this is because
there is at least one token in the zero-testing place of C. If applied, the rule creates elements C, ...,D
associated to the corresponding place-like elements, deletes E, .., F and preserves A, ..., B. Similarly, the
transition puts tokens in the places associated to the types of C, ..., D, preserves the tokens in A, ..., B
and deletes the tokens in E, ..., F , and the zero-testing place associated with C. Note that this correctness
relation holds for the initial graph, and hence it holds for subsequent graphs derived by rule applications,
as the rule and the transition effects are equivalent.

(ii) Assume that some tr is enabled in the initial marking. This means that its in-places contain enough
tokens. Hence, the DSVL rule r (from which tr was derived from) is applicable to a match made of: (i)
the place-like elements that tr connects and (ii) the token-like elements associated to the places. This is so,
because the place-like elements and the elements with no role are never modified, and because initially,
we generated one token in the initial marking for each token-like element in the original host graph.
Moreover, the rule cannot fail to be applicable due to the dangling condition, because the restriction R2
ensures that token-like elements are deleted together with their respective connections. Also, there is one
token in the zero-testing place of C, which means that there is room for another C, and hence the rule
cannot fail due to the implicit cardinality constraint post-conditions. Finally, by the same reasons stated
in the previous item, the effects of firing the transition are the same as applying the rule. Again, this
correctness relation holds for the initial marking, and hence holds for subsequent markings obtained by
transition firings, as the transition and the rule effects are equivalent.

Now let’s consider a rule with NACs. The general scheme of such rule is shown to the left of Fig. 29.
Note that, according to constraints R3 and R4 in section 5, our translation can only handle restricted kinds
of NACs. In particular, R3 demands that, if a token-like element is present in a NAC, then its association
with a place-like element should be bounded. This ensures that a zero-testing place can be created. In the
reasoning we assume an upper bound of one, but it is clear that the reasoning is general enough for other
bounded cardinalities. R4 forbids NACs with two or more types of token-like elements. Again, a rule can
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Fig. 29. Structure of a Rule with NACs (left). Generated Transition (right).

have arbitrary edges between the place-like elements and the elements with no role, but they are omitted in
the rule scheme.

The right of Fig. 29 shows the structure of the generated transitions. As before, one such transition is
created for each occurrence in the initial host graph of the place-like elements and the elements with no
role appearing in the rule’s LHS. Moreover, as NACs may contain both place-like and one type of token-like
element, different transitions are generated. If all the place-like elements in a NAC are found in the graph,
we add a loop connection from the zero testing place to check that the token-like element is not present.
On the contrary, if there is no match for the place-like elements in the NAC, the zero testing place is not
needed, as the NAC will be satisfied at that match.

As in the previous case, we now show that (i) If the rule r is applicable at some match, then the generated
transition tr for that match is applicable, and both have the same effects and (ii) If some tr is applicable,
then its associated rule is applicable to the corresponding match and both have the same effects.

(i) Assume that r is applicable at some match in the original graph. Then, the argumentation about the
elements in the rule’s LHS is the same as in the case without NACs. Thus, we only need to show that
if each NAC is satisfied, then some of the generated transitions are enabled. A NAC is satisfied either
because no match for the place-like elements is found or because it is found, but the token-like elements
are not. In the former case, no zero-testing place is connected to the transition, and hence the transition
is enabled. In the latter case, the corresponding zero-testing place is linked with the transition. If the
token-like element is absent, then the zero-testing place contains one token, as it was added by the TGGs
form the original graph, and hence the transition is applicable. Note that as each NAC has at most one
token-like element, one token in the zero-testing place is the unique condition to make the NAC satisfied.
As in the case without NACs, it can be seen that both the rule and the transition have equivalent
effects. Moreover, as each input arc of a place has a correspondence with an output arc of its associated
zero-testing place and vice-versa (following the well-known procedure for ensuring capacity constraints
in Petri nets [Pet81]), then we can conclude that this correctness relation holds for the initial graph, and
therefore for subsequent graphs derived by rule derivations.

(ii) Assume that some tr is enabled in the initial marking. The reasoning about the places which are not
zero-testing is as in the previous case. Here we show that if the transition is enabled, then the NACs
of the rule are satisfied. This is so because, if the zero-testing places that are present in the transition
have one token each, the corresponding NACs are satisfied, because the token-like element in each NAC
is absent (and each NAC has at most one type of token-like element). If the rule has more NACs, but no
zero-testing place is present in the transition, this means that the NAC is satisfied, because there is no
match for the place-like elements in the NAC. Again, it is easy to see that the effects of the rule and the
transition are equivalent. As before, we can conclude that this correctness relation holds for the initial
marking, and therefore for each reachable marking.

Finally, we have to show that the simplification of arcs for the zero-testing places is correct. Fig. 30 shows
the structure of a rule without NACs. The rule adds and deletes elements of the same kind attached to the
same place-like element, which is the situation that may give rise to simplification of arcs. There are three
possibilities. If more elements are added than deleted, then elements should be deleted from the zero-testing
places, as less room is available for new A elements. Note that we need to simplify, otherwise we would be
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Fig. 30. Simplification of Weight for Zero-Testing Places.

Fig. 31. Generation of Rules for Testing Non-Applicability.

testing the existence of n tokens in the zero-testing place (by taking n tokens, and then putting m back)
which is not correct, as we would be demanding n free spaces for for A elements (instead of n −m). As in
total n −m new elements are added, these are removed from zero − A. The second situation arises when
more elements are deleted than added. In this case, we have to put tokens in the zero-testing places, as more
room is available for new A elements. Finally, if we remove and add the same number of elements, no change
is made to the zero-testing place.

If the rule has a NAC, then the simplification works as in the previous cases, but we cannot simplify the
weight of the zero-testing place to the transition to become smaller than k − n + 1, where k is the upper
bound and n is the number of token-like elements in the NAC. This is to make sure that less than n elements
are attached to the place-like element (so the NAC is satisfied), but to allow adding and removing elements
of the same type as the elements in the NAC.

10.4. TGG Rules for Testing Non-Executability

These rules generate transitions that are enabled if the original rule is not applicable at some match. As
an example we use the rule “rest-no input” shown to the left of Fig. 31. The rule is applicable if there
is an operated machine without input conveyors. Hence, it is not applicable if some of the following three
conditions hold: (i) there is no machine, (ii) the machine is not operated, (iii) the machine has an input
conveyor. The procedure for the construction is similar to the one shown in section 10.2 and goes as follows:

1. The first step is the same as the one in section 10.2. In the example, we add the machine and the conveyor,
as the former is untagged and the latter belongs to a NAC.

2. This step is like the one in section 10.2, but considering token-like elements labelled NAC, del or untagged,
and then adding the correspondig places and zero-testing places. The former are added for NAC token-
like elements and the latter for untagged or deleted elements. In the example, the only token-like entity
is the operator, which is deleted, and thus we add the zero-testing place associated to the machine.

3. Now, we neglect each unbounded element tagged new. For each bounded element tagged new, we create a
self-loop to its corresponding place with weight k−n+1, where k is the upper bound, and n is the number
of token-like elements (of the same type) added. This will enable the transition if there is no room to
add the n elements. Then, for each element tagged del or not marked, we create a self-loop (with weight
the number of token-like elements) from its associated zero-testing place to the Petri net transition. This
enables the transition if the elements are not present. Finally, for each element marked NAC, we create
a self-loop (with the number of token-like elements as weight) from its related place to the transition (to
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Fig. 32. Structure of Rules for Negative Test and Generated Transitions.

enable the transition if the NAC is not satisfied). In the example, as the operator is deleted, then a loop
is created from its zero-testing place. As the transition has self-loops only, it is effect-free.

4. No simplification of arcs is necessary, but if elements of the same type are marked new and NAC, we take
the minimum weight in the self-loop (see the right of Fig. 33).

5. We copy the NACs of place-like elements from the DSVL rule to the TGG. In the example, the conveyor
and the arc are labelled as NAC.

The synthesized TGG rule creates the transition only if there is a machine not connected to a conveyor
(hence it only checks condition (ii)). This is so, because if this happens, a transition executing “rest” was
created at that match. Hence, the “¬rest” transition is enabled if “rest” is not enabled at that match. A
TGG rule like “create ¬rest-2” is not needed (creating a transition testing condition (iii)), because, if the
machine has no conveyor, then no “rest” transition was generated at that match. Similarly, a transition
checking condition (i) (that there is no machine) is not needed either.

Now, we informally show the correctness of the semantics by checking that: (i) the original rule is not
applicable at some match iff the generated transition for the given match is enabled and (ii) the transition
generated at a match is enabled iff the original rule is not applicable at that match. Recall that the rules we
can handle are more restrictive, and in particular they should fulfill the restrictions R5-R8 in section 5.2.

Fig. 32 shows to the left the structure of a rule where n token-like elements are deleted. This rule is
applicable at a match if (i) all place-like elements and elements with no roles in the LHS are found, (ii) the
NACs are satisfied, and (iii) the n token-like elements are found. The TGG rule creates the transition shown
in Fig. 32 at each occurrence of the place-like elements of the LHS and where the NACs are satisfied. The
transition checks the existence of k−n+1 tokens in zero-C, which exist only if less than n token-like entities
of type C are present. Hence, if the rule is applicable at that match, the transition is not enabled, and if the
rule is not applicable at that match, the transition is enabled (thus (i) holds). Conversely, if the transition
is enabled, then the rule is not applicable at that match and vice versa, hence (ii) holds.

The right of the same figure shows another possible rule, where the token-like elements are in a NAC
instead of in the LHS. It is easy to see that the rule is applicable at a match where all place-like elements
are found and the NACs involving place-like elements are satisfied if there are less than n token-like entities
of type C. Hence, the generated transition has to check the existence of n C entities.

Finally, Fig. 33 shows the case of rules creating bounded token-like elements. In the rule to the left, n
elements of type A are created, where the maximum bound is K ≥ n. In such case, the rule fails to be
applicable if there are already k − n + 1 elements of type A connected to the place-like element. This is
exactly what the transition that is generated tests. The rule to the right shows the case where some bounded
elements are created, and are also part of a NAC. In this case, the rule fails either because there is no room
to create n elements, or because m or more elements already exists. Both conditions can be tested with a
self-loop, which checks the most restrictive case.
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Fig. 33. Structure of Rules for Negative Test and Generated Transitions.


