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Continuous time vertex reinforced jump processes on
Galton-Watson trees

ANNE-LAURE BASDEVANT* and ARVIND SINGHT

Abstract

We consider a continuous time vertex reinforced jump process on a supercritical Galton-
Watson tree. This process takes values in the set of vertices of the tree and jumps to a
neighbouring vertex with rate proportional to the local time at that vertex plus a constant.
In this paper, we complete results previously obtained by Davis and Volkov (2002,2004) and
Collevecchio (2006,2009) by providing a characterization for the recurrence/transience of the
walk.
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1 Introduction

The model of the continuous time vertex reinforced jump process (VRJP) introduced by Davis
and Volkov [ may be described in the following way: let G be a locally finite graph and pick
¢ > 0. Call VRJP(c) a continuous time process (X (t),t > 0) on the vertices of G, starting
at time 0 at some vertex vg € G and such that, if X is at a vertex v € G at time ¢, then,
conditionally on (X(s),s < t), the process X jumps to a neighbour u of v with rate:

t
L.(t,u) e —|—/ 1ix(s)=u}ds. (1)
0

Equivalently, the walk stays at site v an exponential time of parameter ), . L.(t,u) and then
jumps to a neighbour u with a probability proportional to L.(t, ).

The case G = Z was investigated by Davis and Volkov [[j who proved that, for any ¢ > 0,
the VRJP(c) is recurrent and the proportion of time spent at each site converges jointly to some
non-degenerate distribution. In a subsequent article [f], the same authors studied the VRJP on
more general graphs. They showed that when the G is a tree the walk can either be recurrent
or transient. For a regular b-ary tree (more generally, a tree satisfying a so-called L-property),
they proved the existence of two constants

0 < ¢r(b) < () (2)
such that:
e For ¢ < ¢, the VRJP(c) visits every vertex infinitely often a.s.

e For ¢ > ¢;, the VRJP(c) visits every vertex only a finite number of time a.s.
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Although they did not prove that ¢, = ¢;, the computation of the bound ¢; obtained in [f]
already implies that the VRJP(1) is transient on a 4-ary tree. More recently, Collevecchio [f, fi]
showed that the VRJP(1) on a 3-ary tree is also transient with positive speed (and a C.L.T.
holds) and asked whether this result also holds for a VRJP(1) on a binary tree.

The main result of this paper states that, for almost every realization of an infinite su-
per critical Galton-Watson tree with mean offspring distribution b, one has ¢;(b) = ¢,(b) and
recurrence occurs at the critical value. In fact, recalling Lyons-Pemantle’s criterion for recur-
rence/transience of a random walk in random environment (RWRE) on a Galton-Watson tree
(see Theorem 3 of [[L0]), Theorem [L1] states that the phase transition of a VRJP(c) is exactly
the same as that of a discrete time random walk in an i.i.d. random environment where the law
of the environment is given by the random variable m.(oco) defined below.

Concerning the discrete time model of the linearly edge reinforced random walk (LERRW),
de Finetti’s theorem implies, that any LERRW on an acyclic graph may be seen as a RWRE in
a Dirichlet environment. However, the non-exchangeability of the increments of a VRJP forbids
a direct interpretation of the process in terms of a time change of a RWRE and we do not have
a convincing argument why the VRJP should have the same phase transition as a RWRE. For
example, using Theorem 1.5 of [B], one can check that, on a regular tree, the random walk in the
random environment defined by m.(co) always has a positive speed when it is transient. Does
this result somehow imply that a transient VRJP always has positive speed?

Theorem 1.1. For ¢ > 0, let m.(c0) denote a random variable on (0,00) with density:

cexp <—7(c(12;1))2> p

P{m.(c<) € da} & Nores

x. (3)

Define

c o clx —1))2
p(c) d:d(iglgE[mc(OO)a] = \/%/0 z exp <—%> dx. (4)

Let T denote a Galton-Watson tree with mean 1 < b < oo. On the event that T is infinite, we
have, for almost every realization of T:

o Ifbu(c) <1, the VRJIP(c) on T wisits every vertex infinitely often a.s.

e Ifbu(c) > 1, the VRJIP(c) on T wisits every vertex only finitely many times a.s.

For ¢ = 1, we have 1/pu(1) ~ 1.095. Therefore the VRJP(1) is transient on any regular b-ary
tree with b > 2. Making a change of variable (see Appendix of [H]), the function x may be
rewritten in the form

1 i ev*/2
p(c) = ———
V21 J oo /1 4+ y?/(4c?)
Thus, p is continuous, strictly increasing on [0, 00) with limg u = 0 and lim, = 1 (see Figure
). Denoting by p~! its inverse, we get

Corollary 1.2. For any supercritical Galton-Watson tree with mean 1 < b < oo, with the
notation (B), we have, for almost every realization where the tree is infinite,

cr(b) = cr(b) = p~ 1 (1/b).

In particular, the recurrence/transience phase transition for VRJP on the class of Galton-
Watson tree is monotonic w.r.t. the reinforcement parameter c, i.e. if the VRJP(c) is transient
for some ¢ > 0, then the VRJP(¢) is transient for any ¢ > c.
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Figure 1: Graph of the function u.

Let us note that, although this monotonicity result w.r.t. the parameter ¢ seems quite
natural, we do not know how to prove it without using the explicit computation of y to assert
that this function is monotonic. More generally, we do not know how to prove a similar result
for an infinite graph which contains loops.

2 Preliminary results

In this section, we recall some important results concerning VRJP obtained by Davis and Volkov
in [d, §] which will play a key role in the proof of Theorem [L.1. We start with the so-called
restriction principle for VRJP which follows from the lack of memory of the exponential law.

Proposition 2.1 (Restriction principle, Davis, Volkov [}]). Let G be a connected graph and
let Gy be a connected subgraph with the property that for any path starting in any v € G\G1
and ending in G, the first "port of entry” into Gy is uniquely determined. Assume moreover
that on each connected component of G\G1, the VRJP(c) is recurrent. Then the VRJP(c) on
G starting at v € Gy restricted to Gy has the same law as the VRJP(c) on the subgraph Gy
starting from the same point.

We shall make intensive use of this result in the case where (G is a rooted tree and G is a
subtree of G (for instance, the ball of radius N centered at the root).

2.1 VRJP on the graph {0,1}

In view of the restriction principle stated above, many properties of the VRJP on an acyclic
def

graph can be derived from the study of the VRJP on the simpler graph Gy = {0,1}. A detailed
analysis of the VRJP on Gy is undertaken in []. Consider a VRJP(c) on Gy, starting at 0. For
t > ¢, define the stopping time

£(t) = inf{s > 0, Lo(s,0) = t}

and



The quantity A.(t) — ¢ corresponds to the time spent at site 1 before spending time ¢ — ¢ at site
0. The variable A.(t) takes values in [c,00) and has an atom at c¢. More precisely, denoting by
&(c) an exponential random variable with parameter ¢, we have

P{A.(t) =c} = P{the VRJP(c¢) does not jump before time ¢t — ¢}
P{&(c) >t —c}
e~eli=e). (6)
For t > ¢, the law of A.(t) conditioned on {A.(t) > c} is absolutely continuous w.r.t. the

Lebesgue measure, with strictly positive density on (¢, 00). Considering only the time spent at
site 1 before the first return to site 0, we get the lower bound:

P{A(t) > a | Ac(t) > ¢} > P{E(t) > a— ¢} = e~ (@791, (7)
For t > ¢, define

o Ac(t
me(t) £ Ct( ),
It is proved in [ff] that the process (me(t),t > ¢) is a positive martingale which converges a.s.
toward the random variable m(co) defined in Theorem [[.1 The moments of m.(co) can be
computed explicitly using (). For 6 € R, we get

E[m(c0)"] = \/%CGC2K9—1/2(02) <00

where K, (r) denotes the modified Bessel function of the second kind of order v (c.f. [ for
details on this class of special functions). Using K, = K_, and K, < K, for 0 < a < «/, it
follows that

min B[m.(s0)’] = B|y/me()) (8)

which entails the second equality of ([]).

2.2 VRJP on trees

Let T be a deterministic locally bounded tree rooted at some vertex o. According to Theorem
3 of [{], any VRJP on T is either recurrent (every vertex is visited infinitely often a.s.) or
transient (every vertex is visited only finitely many times a.s.). Moreover, we have the following
characterization of recurrence and transience in terms of the local time of the walk at the root:

The VRJP(c) on T is recurrent < tlim L.(t,0) = occ. 9)
—00

Define, for t > c,
£(t) = inf{s > 0, L(s,0) = t},

and let (vg = o0,v1,...,v,) be a nearest neighbour self-avoiding path starting from the root of
T and ending at v,. For 0 < k < n, set
Z = Le(€(t), 0p)- (10)
If T is a finite tree, then the VRJP(c) on T is recurrent. Applying the restriction principle to the
subgraph (vg = 0,v1,...,vy), it follows that the process (Zy)o<k<n is a Markov chain starting
from Zy =t with transition probabilities
P{Zyy1 € E| Zy,....Zy = 2} = P{Ac(z) € E} (11)

where A, is the random variable defined in (f). Let us note that Z takes values in [c, 00) and
that ¢ is an absorbing point. Moreover, since (A.(t)/t)i>c is a martingale starting from 1, the
process Z is also a (positive) martingale. Therefore, Z,, converges a.s. as n tend to infinity and
the limit is necessarily equal to ¢ a.s.



3 Proof of Theorem [I.]]

We first set some notation. Let 7 be the set of all locally finite rooted trees. Given a tree T' € T,
we denote its root by o. For v € T', we use the notation ¥ for the father of v and 71, 72, ... for
the sons of v. We also denote by |v| the height of the vertex v in the tree (i.e. its graph distance
from the root). For n > 0, T,, will stand for the subtree of T' of vertices of height smaller or
equal to n.

In the following, v will always denote a probability measure on the non-negative integers with
finite mean b > 1 and Q, will denote the probability measure on 7 under which the canonical
r.v. T is a Galton-Watson tree with offspring distribution v.

For ¢ > 0, we consider on the same (possibly enlarged) probability space a process X =
(X(t),t > 0) and a collection of probability measures (Pr., T' € T) called quenched laws such
that X under Pr. is a VRJP(c) on T with X (0) = o. The annealed probability is defined by

def

]P)y,c = P’If,c & Qu-

We say that X under P, . is a VRJP(c) on a Galton-Watson tree with reproduction law v. In
the following, we shall omit the subscripts ¢, v when it does not lead to confusion.

3.1 Restriction to trees without leaves

The Harris decomposition of a super-critical Galton-Watson tree states that conditionally on
non extinction, T under @, can be generated in the following way:

e Generate a Galton-Watson tree T, with no leaf called the backbone.
e Attach at each vertex v of T, a random number N, of i.i.d. subcritical trees T}, e ,TlN v,

See for instance [{] for a precise description of the laws of N,, Ty and T;. Let us simply note that
the expected number of children per vertex of Ty is also equal to b. Consider now a VRJP(c)
on T on the event that T is infinite. The restriction principle applied with G = T and G; = T,
implies that the VRJP(c) on T is transient if and only if the VRJP(c) on T, is transient. Since
the criterion for the transience/recurrence of the walk of Theorem [[]] only depends on b, it
suffices to prove the result for trees without leaves. In the sequel, we will always assume that
this is the case, that is:
v(0) = 0.

3.2 Proof of recurrence when bu(c) <1

In [§], Davis and Volkov prove that a VRJP(1) is recurrent when b < 1.04. In fact, their
argument shows recurrence whenever bu(c) < 1 by simply fine-tuning some parameters. We
provide below a sketch of the proof and we refer the reader to [ for further details.

Consider a VRJP(1) on the non-negative integers {0, 1,...} and denote by o, the first time
the walk reaches level n. It is proved in the appendix of [§] that, for any a > 1,

P{Li(0,,0) < a"} < (E[\/m1(c0)]a'/?)". (12)

Adapting the proof for any ¢ > 0, it is immediate to check that, for any VRJP(c) on the
non-negative integers,

P{Lc(04,0) < a"} < (E[y/me(o0)]a'/?)" = (u(c)a'/?)". (13)



We now copy the argument of the proof of Theorem 5 of [f] using the bound ([) in place of
([). Let T € T be an infinite tree. Let V;, denote the number of vertices of T' of height n and
set

Gy = Lc(inf{t > 0, | X¢| = n},0)

so that G,, — c is the total time spent by X at the root before reaching a vertex of height n.
Conditioning on the position of the VRJP(¢) when it reaches level n and applying the restriction
principle to the path connecting this vertex to the root, we find, using ([[J),

Pr{G, < a"} < (u(c)a'’?)"V,. (14)
Assume now that the tree T satisfies

lim inf V,1/™ < p(c) ™!

n— o0

then ([[4) yields, taking a sufficiently close to 1,
Pr{Gp, <a™} < (1—¢g)"
for some subsequence (ny) and some € > 0. Letting k& go to infinity, we conclude that

lim L.(t,0) = c0. Pr-a.s.
t—o00
Thus, the VRJP(c) on T is recurrent according to (). We conclude the proof for the VRJP(c)
on the Galton-Watson tree T noticing that, when bu(c) < 1, we have for Q,-almost any tree
TeT,
lim VY™ =b < p(e)™t.

n—oo

3.3 The branching Markov Chain F

Recall that we assume v(0) = 0 so the tree T is infinite Q,-a.s. We introduce a branching
Markov chain F' indexed by the vertices of T and taking values in [¢, o),

FE(fw)veT) e | Jleoo

TeT

More precisely, the population at time n is indexed by {v € T, |v| = n} and the set of positions
of the particles of F' at time n is

Fy = (f(v), Jv] = n).

Thus, the genealogy of this branching Markov chain is chosen to be exactly the Galton-Watson
tree T. In particular, under the annealed probablhty P, each particle v splits, after a unit of
time, into a random number B of particles v . where B is distributed as v. In order to
characterize I, it remains to specify the law of the pOSlthD f(v) of the particles. We choose the
dynamics of F', conditionally on its genealogy T in the following way:

(a) For any n > 0, conditionally on (f(u), |u| < n), the random variables (f(v),|v| = n) are
independent.

(b) For any v # o, conditionally on (f(u), |u| < |v|), the random variable f(v) is distributed
as Ac(f(g)) where A, is defined by (f).



We use the notation P, for the annealed law where F' starts with the initial particle o being
located at f(o) = xo. Note that, since the tree is infinite, the Markov chain F' never becomes
extinct. However, recalling that ¢ is an absorbing point for A., it follows that if a particle v is
located at f(v) = ¢, then all its descendants are also located at c¢. Thus, we will say that the
process I dies out if there exists a time n such that all the particle at time n are at position c.
Otherwise, we say that the process survives.

Proposition 3.1. For any ¢ < y, the process F under P, is stochastically dominated by F
under P,,.

Proof. Recalling (), it is clear that A.(z) < A.(y) for any ¢ < x <y and the result follows by
induction. O

Proposition 3.2. Let g > 0 and N > 0 and let (X™(t),t > 0) denote a VRJP(c) on the finite
subtree Ty = {v € T, |v] < N}, with XV (0) = 0. Set

§N(ac0) d:efinf{s > O,Lév(s,o) =20},

where LN is defined as in () for XN. Then, the random variables (LY (&N (x0),v), v € Ty)
under P and (f(v), v € Tn) under Py, have the same law.

Proof. Simply notice that since the Ty is finite, X* is recurrent and £V is finite a.s. and apply
the restriction principle for VRJP. U

The VRJPs X on T and X® on Ty coincide up to the first time they reach a site of height
N, therefore,

P{X reaches level N before spending time xy — ¢ at the origin}
= P{X?" reaches level N before spending time x¢ — c at the origin}
= P,,{the process F' does not die out before time N}.

Letting N and then z( tend to infinity, and using (ff), we get

P{X visits every vertex of T finitely many times} = lim{ P, {F survives}. (15)

To—r00

The next proposition extends the 0—1 law proved in [J] for deterministic trees to Galton-Watson
trees.

Proposition 3.3 (0 —1 law for VRJP on Galton-Watson trees). Let T be a Galton-
Watson tree T without leaves and with mean b > 1. Then, for any ¢ > 0, the VRJP(c) X on T
is either recurrent or transient under the annealed law:

P{X wisits every vertex of T finitely many times}
=1 — P{X vwisits every vertex of T infinitely often} € {0,1}.

Proof. Since the 0 — 1 law holds for any deterministic tree, we just need to show that the r.h.s.
limit of ([[§) is either 0 or 1. Suppose that this limit is non-zero. We can find 2o > ¢ and o > 0
such that

P, {F survives} > a.



Given an interval I, let V. ,g denote the number of particles in F' located inside I at time k i.e.
NI < 4fv e T, |v| = k and f(v) € I}. (16)

Since the particles in F' evolve independently, conditionally on (f(v),|v] < k), the process
(f(v),|v] > k) has the same law as the union of #{v € T, |v| = k} independent branching
Markov chains F' starting from the positions F, = (f(v), |v| = k). Making use of the stochastic
monotonicity of F w.r.t. to the position of the initial particle (Proposition B.1]), we deduce that,
for any € > 0, we can find m large enough such that, for any k£ and any z,

P,{F survives} > P,{N, lgxo’oo) > m and F survives}
> IP’JC{NECO’OO) >m} (1 — Py, {F dies out}™)
> PN > m}(1- (1))
> P ANFO > m)(1 - ). (17)

On the one hand, we have, for any y > ¢,
P, {f(v) >y for every v of height 1} = Z v(b)P{Ac(z)/z > y/z}°.
b=1

Since the sequence A.(x)/x converges as © — oo towards a random variable which has no atom
at 0 (c.f. Section P.1), the previous equality implies

ILm P, {f(v) >y for every v of height 1} = 1.

Using again the stochastic monotonicity of F' w.r.t. its starting point, it follows by induction
that, for any fixed k,

lim P, {f(v) >z for every v € T s.t. |v| =k} = 1. (18)
T—r00

On the other hand, the tree T grows exponentially so that, for any m,
lim P{#{v e T, |v| =k} >m}=1. (19)
k—o0

Combining ([§) and ([9), we deduce that, for any m, we can find k£ and x large enough such
that
P AN > my>1—c. (20)

which yields, using ([L7),
P,{F survives} > (1 —¢)2.

3.4 Proof of Transience when bu(c) > 1

Let (Z,)n>0 be a Markov chain on [c, 00) with transition probabilities given by ([LI]) and denote
by P, the probability under which Z starts from Zy = x. Let T' € T and fix v € T. It follows
from the definition of the branching Markov chain F' that

P.{f(v) € E|T =T} =P,{Z, € E}.



Let us for the time being admit that, for some xg > ¢, we have

liminf Py, {Z, > zo}'/™ > u(c). (21)

n—o0

Recalling that N,on’oo) denotes the number of particles of F' located above level x( at time k,
we find, when p(c)b > 1, that for kg large enough,

Ezo[Nigg;O’oo)] = Ewo[ Z 1{f(v)2930}]

[v]=ko

E[#{U €T, ’U’ - kO}]Paro{Zko > 1‘0}

ki
- (bPi’fo{Zko 2 xO}l/lm) 0
> 2.

Just as in the proof of Proposition B.3, making use of the branching property of I and keeping
only the particles located above zg at times kgn, n > 0, it follows by induction that, under

P,,, the process (N,Lﬁfl’oo))nzo stochastically dominates a classical Galton-Watson process with
reproduction law IV, ,L‘zo’oo). Since E,, [N,Lﬁo’oo)] > 2, this Galton-Watson process has probability

« > 0 of non extinction, which implies
P, {F survives} > a.
We conclude using ([[f) and Proposition B.J that
P{X visits each vertex of T finitely many times} = 1.

It remains to prove (RI)) which is a consequence of

Lemma 3.4. Let (S(z),z € R) be a collection of real-valued random variables. Assume that the
following holds.

(a) For any x <y, the random variable x + S(x) is stochastically dominated by y + S(y).

(b) S(x) converges in law, as x tend to +oo, towards a random variable S(oo0) whose law is
absolutely continuous w.r.t. the Lebesgue measure and P{S(c0) > 0} > 0.

(¢c) The Laplace transform ¢(X) d:efE[eAS(Oo)] reaches its minimum at some point p > 0 which
belongs to the non-empty interior of the its definition domain D = {AeR, (N < o0}

LetY = (Y, n > 0) denote a real valued Markov chain with transition kernel P{Y,+1 € E'| Y, =
y} =P{S(y) +y € E} and let T, be the first time Y enters the interval (—oo,x). Denoting by
P, the law of Y starting from x, we have, for all x large enough,

lim P {r; > n}m > (). (22)
We apply the lemma to the Markov chain Y defined by
Y, & log Z,,.
According to ([L1]), we have

P{Y,y1 € B Y, =y} =P{S(y) +y € E}



def def

with S(y) = log m.(exp(y)) and S(oo) = log m,(co) where m, is the martingale of Section R.1.
On the one hand, Assumption (a) holds since A.(x) < A.(y) for all z < y. On the other hand,
the results of Davis and Volkov [, ] recalled in Section P.J imply that Assumptions (b),(c) also
hold and

inf E —AS(00)] )

inf Efe ] = n(e)

Thus, we conclude that, for z( large enough,

1/n
.. 1 . .
liminf Py {Z, > 20}'/" > lim Progeo{ min ¥i>logzo} > p(c).

Proof of Lemma [f.]. Assumption (a) implies that for # < y, the Markov chain Y under P, is
stochastically dominated by ¥ under P,. Thus, using the Markov property, we get that, for any
n,m,

P.{m. >n+m}>P,{r. >n}P, {1, >m}.

The superadditivity of the sequence log P, {7, > n} now implies that the limit in () exists. Tt
remains to prove the lower bound for = large enough.
def def

Set g, (t) = P{S(x) >t} and g(t) = P{S(c0) > t}. In view of Assumption (b), as x goes to
400, g, converges uniformly towards g. Define

def

92(1) = Inf g, (t).
For each z, the function g, is cadlag, non increasing, with lim;_, o §,(¢) = 1 and limy_, 4 o G (t) =
0. Thus, for each x, we can consider a random variable S(x) such that P{S(z) > t} = g,(t). By
construction the sequence of random variables S (z) is stochastically monotonic and converges
in law toward the random variable S(cc). Let Y? denote a random walk with step S(z) i.e.
Vi =Y = S().

By construction, the random variable S(z) is stochastically dominated by S(y) for any y > .
Combining this fact and the stochastic monotonicity of the Markov chain Y w.r.t. its starting
point, it follows by induction that the random walk Y started from z and killed when it enters
the interval (—oo, x) is stochastically dominated by Y under P,. In particular, denoting by 7§
the first time Y enters the interval (—00,0), it follows that 7§ under Py (i.e. the walk ye
started from 0), is stochastically dominated by 7, under P,. Hence,

lim P,{r > n}'/" > liminf Po{7% > n}'/™. (23)
n—o0 n—o0
Let ¢ (\) & E[eAg(m)] with definition domain D, = {A € R,¢,(\) < oo}. Since, S(z) is
stochastically dominated by S(c0), we have DN [0, 00) C D, N[0,00). According to Assumption
(c), we can choose a > 0 such that I, & [p — a,p+a] € DN[0,00). On I, as x goes to +o0,

the functions ¢, converge uniformly toward ¢. Making use of the strict convexity of a Laplace
transform, it follows that, for all x large enough, the function ¢, verifies Assumption (c) i.e. ¢,
reaches its minimum on D, at some point p, € I,. Moveover, we have:

lim (ix(px) = ¢(P) (24)

T—00

Applying now Theorem 1 of [ to the random walk Y with step distribution S () gives

A~

lim inf Po {7 > " = . (ps). (25)
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Combining (PJ) and (RJ), we get that
lim P {r; > n} " > du(pe). (26)

Assumption (b) also implies that, for some €, > 0 small enough, there exists zy such that, for
all z > xg, we have P{S(z) > ¢} > n, thus P{Y,,;1 > e+Y, | Y, = 2} > n. In particular,
for x > y > xg, the event £(z,y) = {Y enters [z, 00) before entering (—oo,y)} has a strictly
positive probability under P,. Therefore, using again the Markov property and the stochastic
monotonicity of Y w.r.t. its starting point, we get

Py {7, >n} > Py{E(z,y)}Pe{m: > n}

which yields

Tim Py{7, > n}t/m > lim Py{r, > n}t/m, (27)
Combining (P4), (B4) and (B7), we conclude that, for y > o,
. 1/n > 1 2 —
Jm Py{7, >n} " > lim u(ps) = ¢(p)- (28)

Remark 3.5. Suppose that the VRJP(c) is recurrent on T. Recall that £(t) denotes the time
where the local time of the walk at the origin reaches t — c. We can express £(t) in terms of the
branching Markov chain F and we get, using that Ey[Z,] =t for all n,

> (flv) - C)] =Y V'EiZy—d =) b"(t—c) =00 (29)
n=0 n=0

veT

E[£(t)] = E

for any t > c¢. In particular, denoting by (, the first time the walk returns to the root of the
tree, it easily follows from (29), by conditioning on the time the walk makes its first jump and
applying the restriction principle that any recurrent VRJP on T is "null” recurrent in the sense
that E[(,] = oo.

3.5 The critical case bu(c) = 1.

The following proposition directly implies that the VRJP(c) on a Galton-Watson tree is recurrent
in the critical case bu(c) = 1 since we already know that recurrence occurs when bu(c) < 1.

Proposition 3.6. Assume that the VRJP(c) is transient on some Galton- Watson tree T without
leaves and with mean b > 1. Then, there exists a Galton-Watson tree T (with leaves) with mean
1 < b < b such that the VRJP(c) on T is also transient on the event that T is infinite.

The proof of Proposition B.6 uses again the characterization of transience in terms of the
positive probability of survival of the associated branching Markov chain F'. Roughly speaking,
we show that, conditionally on survival, the number of particles of F' not located at ¢ grows
exponentially with time. This implies that the branching Markov chain on a small percolation
of the original tree still survives with positive probability. Hence the VRJP on this percolated
tree is also transient.

In the following, we assume as before that the Galton-Watson tree T with reproduction law
v has no leaves and has mean b > 1 so that it is infinite and grows exponentially. Recall the
definition of the branching Markov chain F = (f(v), v € T) constructed in Section B.3 We
denote by (F,) the natural filtration of F:

Fn d:efJ(Tm (f(v), veETy)).
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Lemma 3.7. Recall the definition of N! given in [I84). Let £(x,k) be the event
E(x, k) Z {There exist infinitely many n such that N > }.
For any starting point xg > ¢, we have,
E(x0,2) = {F survives} Py -a.s.

Proof. The inclusion &(xg,2) C {F survives} is trivial. Let € > 0 and set, for k£ < n,

def (¢,00)
Bkﬂ'l = EJBO Nn l{NILc+5,m):O,ngc_':kls,oo):o,“.’NT[Lcjls,oo)ZO} .
Recall that each particle v of F' evolves independently and gives birth to jlrandom g%mber B
(with mean b) of children. Moreover, conditionally on F,,, the positions f(v ),..., f(v ) of the
children of a particle v at time n (i.e. |v| =n) are i.i.d. and distributed as A.(f(v)). Thus, in

view of (f), it follows that

E[Nécflo) | Fnl < b(1 - e_ce)Nr(f’oo) on the event {N,(LHE’OO) =0}.

Choosing € small enough such that b(1 —e™%) < 1/2, we get

_ (c;00)
Bk,n+1 - Exo |:E[Nn+1 ’ fn]l{Nl[cc-Fs,oo):O,ngc:-f,oo):0,.__7N[C+15,0°):0}

n—

1 (,00)

S §E1'O |:Nn 1{N1£c+s,oo):07NI£c_rls,oo):0’.“7N7[Lcj1£,oo):0}
1

< —Bpn,.

) k.n

which yields,

B, | (S ves )1 <3 Bru<oc
0 (g n ) {Ni[c+€,00):0foralli2k?} _,; o=

Therefore, the process F' dies out P, -a.s. on the event {N}Hem) =0 for all i > k} Taking

the limit as k goes to infinity, we obtain
E(c+e,1) D{F survives} P, -as. (30)

Let now U, & 1 (N0 5y Using the stochastic monotonicity of Proposition B.] and the facts
that [2,00) > 0 (since b > 1) and ([), we find that

E[Un+1 ‘ .Fn] 2 E[Un—’—ll{NLc-’_E’oo)Zl} ‘ .Fn]

2 1{N7[Lc+6,oo)21}Ec+a[U1]

v

1 P the initial particle o has at least two children
+e,
{NT[LC - 00)21} ote with f(_OH) > xg and f(?Z) > o

1{N7[’LC+6’00)21}V|:27 OO)P{AC(C + 5) > x0}2
= (1

{N7[1c+5,oo)21} (31)
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for some constant C' > 0. Combining (B0) and (B1]), we get
o0
Z E[Up+1 | Fn] = o0 on the event {F survives}.
n=1
A direct application of the conditional Borel-Cantelli Lemma (c.f. [{d]) yields
oo
Z U, =00 on the event {F survives}.
n=1

which exactly means that £(xg,2) D {F survives}. O

Proof of Proposition [3.4. Assume that the VRJP(c) X on the Galton-Watson tree T with re-
production law v is transient. According to Proposition B.d and ([[§]), we have

lim P, {F survives} = 1.
T—00
Define the (possibly infinite) F,,-stopping time
op Linf{k > 1, N> > 2},
Using the result of the previous lemma, we get

lim lim Py{o, <~} = lim P,{F survives} = 1. (32)
T—r00

T—00 Y—+00

Let now T be the tree obtained from T be removing each vertex (and its descendants) with
probability n > 0. The tree T is again a Galton-Watson tree with mean b = b(l —n) <b. We
denote by F' the restriction of F' to T,

F¥ (f(), veT).

The restriction principle states that F is the branching Markov chain associated with the
VRJP(c) on T. Let M be the number of particles in F' located above z at time oy,

M= #{v €T, o] = 04, f(v) >z}

(with the convention M = 0 when o, = 00). We have,

E.[M] > E;[M1lg, <yl 4]
> 2P,{0, <vand T, =T,}
> 2(Pfo <9} +QAT, = T4} - 1)
> 2(Pufor <7+ Q#T, <631 -0)"" - 1). (33)

Recalling that the distribution of offsprings v has mean b, we get
i <V} =1.
lim Q{#T, <} =1 (34)
Combining (B2),[BJ) and (B4), we can choose z,7 large enough and 1 > 0 small enough such

that
E,[M] > 1.
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Finally, using again the branching structure of F and the stochastic monotonicity of the process
w.r.t. the position of the initial particle, it follows by induction that the random variable
#{veT, f(v) >z} under P, is stochastically larger than the total progeny of a Galton-Watson

process with reproduction law M. Since E[M] > 1, this process is supercritical hence
P, {F survives} > P {#{v € T, f(v) > 2} = 00} > 0

which in turn implies that the VRJP(c) on the percolated tree T is transient on the event that

T is infinite. ]
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