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Abstract We consider a variant of the sequential prediction of arbitrary sequences
based on experts advice, called prediction with specialized experts. We design ag-
gregation rules, that sequentially combine the forecasts provided by the experts;
the latter are specialized and need not output a prediction at all time instances
while the aggregation rules have to. We provide first a review of the literature on
specialized experts and take a new look at some aggregation rules (obtained as
adaptations or extensions of earlier rules). We then consider an application to the
sequential short-term (one-day-ahead) forecasting of electricity consumption; to
do so, we consider two data sets, a Slovakian one and a French one, respectively
concerned with hourly and half-hourly predictions. We introduce and develop a
general methodology to perform the stated empirical studies. The introduced ag-
gregation rules demonstrate an improved accuracy on the data sets at hand; the
improvements lie in a reduced mean squared error but also in a more robust be-
havior with respect to large occasional errors.
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1 Introduction and motivation

We consider the sequential prediction of arbitrary sequences based on experts
advice, the topic of a large literature summarized in the monography of Cesa-
Bianchi and Lugosi [2006]. At each round of a repeated game of prediction, experts
output forecasts, which are to be combined by an aggregation rule (usually based
on their past performance); the true outcome is then revealed and losses, which
correspond to prediction errors, are suffered by the aggregation rules and the
experts. We are interested in aggregation rules that perform almost as well as the
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best constant convex combination of the experts; more precisely, we will control the
difference between the average errors encountered by the sequential aggregation
rules and by the best constant convex combination of the base forecasters –a
quantity called regret. The considered aggregation rules come thus with strong
theoretical guarantees on their performance. In our setting, these guarantees are
not linked in any sense to a stochastic model: in fact, they hold for all sequences of
consumptions, in a worst-case sense. This is why guarantees are said to be given
for all individual sequences. (However, as is indicated below, the experts might rely
on some stochastic modeling.) The high-level principle of the studied aggregation
rules is to output convex combinations of the predictions formed by the experts,
where the values of the convex weights chosen over time vary according to the past
performance of the experts.

A variant of the general problem of prediction with experts advice: Specialized experts

The application we have in mind –the sequential short-term (one-day-ahead) fore-
casting of electricity consumption– will take place in a variant of the basic problem
of prediction with experts advice, called prediction with specialized (or sleeping)
experts: at each round only some of the experts output a prediction while the other
ones are inactive. This more difficult setting does not arise from experts being lazy
but rather from them being specialized. Indeed, each expert is expected to provide
accurate forecasts mostly in given external conditions, that can be known before-
hand; it is designed to refrain from forming a prediction when these conditions
are not met. For instance, in the case of the prediction of electricity consumption,
experts can be specialized to winter or to summer, to working days or to public
holidays, etc.

The specialization is usually a fortunate and desirable property of an expert,
as the latter is likely to be more accurate on the prediction instances when it is
active (and as, symmetrically, it gets inactive when poor performance is expected).

The literature on specialized experts is –to the best of our knowledge– rather
sparse. The first references are Blum [1997] and Freund et al. [1997]; they respec-
tively introduce and formalize the framework of specialized experts. They were
followed only by few other ones: two papers mention some results for the context
of specialized experts only in passing ([Blum and Mansour, 2007, Sections 6–8]
and [Cesa-Bianchi and Lugosi, 2003, Section 6.2]) while another one considers a
somewhat different notion of regret, namely, Kleinberg et al. [2008].

Previous applications of the sequential prediction of individual sequences to real data

In the applications the terminology of ensemble methods is often used; similarly,
experts can also be called base forecasters (since the methodology at hand is to use
several possibly independent base forecasters and design meta-forecasters which
sequentially combine the base predictions that are output by them). As far as the
forecasting of electricity consumption is concerned, a preliminary study of some
aggregation rules for individual sequences was already performed for the daily
prediction of the French electricity load in Goude [2008a,b]. But the aggregation
rules at hand apply in theory to various other settings –actually, to virtually all
settings where sequential prediction is to be performed with the help of experts.
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However there has been only a small number of empirical studies on real data.
The most famous line of experiments was in the direction of on-line investment in
the stock market, that is, on-line aggregation of portfolios. This trend was initiated
by the seminal paper of Cover [1991], with corresponding data set formed by the
performance of 36 assets of the New-York stock exchange in the period 1963–
1985; the experts here are identified with the base assets. A second line of work
considers the predictions of outcomes of sports games, see Dani et al. [2006] or
Vovk and Zhdanov [2008]. The experts therein are given by odds formed either
by bookmakers or by individual participants outputting their bets on a web site.
Finally, Mallet et al. [2009] focused on the sequential prediction of ozone peaks
with the help of 48 experts given by different physical, chemical, and numerical
methods, as well as different sets of input parameters.

We are aware of no other context of application on real data of the techniques
provided by the theory of prediction with experts advice and believe that the
present paper contributes to making these techniques more popular –a notoriety
that they deserve.

Construction of the experts for the forecasting of short-term electricity consumption

The base forecasters to be used in our empirical studies can be given by various
methods combining some side information, some stochastic estimation, as well as,
possibly, some numerical simulation. The design of such forecasters is the focus
of a large literature as the short-term (one-day ahead) forecasting of electricity
demand stands for a central point in power system scheduling; it is the core work
of R&D departments of electricity providers like the French largest such company,
EDF (“Electricité de France”).

The side information used consists of all the features that were shown to have
a strong effect on electricity load; see, e.g., Bunn and Farmer [1985]. Among oth-
ers, one can cite seasonal effects (most importantly, the seasonal variations of day
lengths), calendar events like vacation periods or public holidays, weather condi-
tions (temperature, cloud cover, wind), and weekly patterns of days. It is difficult
to provide an exhaustive list of all forecasting methods for the electricity load
and we only highlight some popular statistical approaches. Seasonal ARIMA and
state space models were introduced by Campo and Ruiz [1987] and are still in use
nowadays (see, e.g., Harvey and Koopman [1993] or Dordonnat et al. [2008]). Then
come multivariate regression techniques; they are popular in industry as they lead
to a convenient interpretation of the different effects driving the load consump-
tion process. They are used in the extensive regression model by hour of the day
built by Ramanathan et al. [1997] or in the nonlinear regression model developed
by EDF R&D; a presentation can be found in Bruhns et al. [2005]. The latter
nonlinear regression model will indeed be used in this paper to provide some ex-
perts. Semi-parametric Bayesian regressions with independent or correlated errors
are applied to short-term electricity load forecasting in Smith [2000] and Cottet
and Smith [2003], allowing not only to output point forecasts but also probabil-
ity distribution functions over the set of possible forecasts. For highly short-term
forecasting (less than one-day ahead), univariate methods, without weather vari-
ables, are also popular. Among them, exponential smoothing seems to be a good
choice as shown by Taylor et al. [2006] on two data sets (Rio de Janeiro; England
and Wales) or in Taylor [2008] on minute-by-minute load data. Another univariate
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approach relying on nonparametric regression based on functional kernels models
the observed load demand as discrete recordings of an underlying stochastic curve;
see Antoniadis et al. [2006] and Antoniadis et al. [2010]. Another expert used in the
present paper is indeed produced with this method. At the same time that these
statistical methods were applied to the load consumption, new opportunities came
from other multivariate methods based on artificial intelligence and machine learn-
ing techniques; for example, several papers reported successful experiments about
the use of neural networks to forecast the electricity load. We refer to Hippert
et al. [2001] or Taylor et al. [2006] for an extended description.

The methodology followed in this paper can be rephrased as follows. We con-
sider a bunch of base forecasters constructed with the methods reviewed above
and study aggregation rules (meta-forecasters) that use them as sub-routines and
combine their predictions; their goal is to perform as well as, or even outperform,
the best base forecaster (or the best constant convex combination of the base fore-
casters). For instance, a way to construct these base forecasters is to instantiate
a prediction method based on several parameters with different sets of such pa-
rameters (one then obtains a base forecaster per set of parameters); this avoids
having to fully tune the parameters of the method, which is usually a delicate and
critical issue. The difficulty and the underlying reason of considering several base
forecasters thus constructed is that it is often not clear in advance which set of
parameters will lead to the most accurate predictions.

Comparison to stochastic prediction methods

In this paper we only resort to techniques stemming from the theory of sequential
prediction with expert advice, a subfield of machine learning. Other techniques are
considered in the statistical literature to combine such experts forecasts. We briefly
mention them here but point out that the present paper –in view of its current
length– cannot perform a detailed comparison of the respective theoretical and
empirical merits of these stochastic methods versus our approach; this is deferred to
future work (to be published in the applied statistics community). In particular, the
goal of the present paper is to construct efficient and fully adaptive strategies based
on individual sequences techniques to be used in this future paper as outsiders to
existing statistical techniques.

The statistical literature on combining forecasts is vast; one of the founding
papers was Bates and Granger [1969], in which the instantaneous errors of each
experts were essentially assumed to be independent and identically distributed,
so that optimal combinations could be derived based on the variances of errors of
each expert. An early application of techniques of this flavor to electricity demand
forecasting was proposed by Smith [1989].

The closest, maybe, to our setting of prediction with expert advice would be
the use of so-called Bayesian model averaging (BMA); it was introduced in Leamer
[1978], Kass and Raftery [1995], Hoeting et al. [1999] and applied, e.g., to ensemble
weather forecasting in Raftery et al. [2005]. This technique has a Bayesian flavor
as its name indicates. Each experts is associated with a probability distribution
function over the possible observations and BMA combines these distributions,
by computing the weights as some posterior probabilities. Doing so, not only pre-
dictions but also uncertainties can be provided. This is one advantage over our
techniques based on individual sequences. However, BMA is computationally more
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involved (the computation of the weights is based on EM algorithms) and is not
sequential by nature; in turn, its performance bounds are rather for stochastic pro-
cesses and are not comparable to the theoretical bounds developed in the context
of individual sequences.

Lastly, virtually all other stochastic methods –like CART, random forests, etc.–
are based on contextual data and should rather be used as experts. Our approach
is therefore absolutely not incompatible with the use of such stochastic methods,
it simply appears as a second layer of prediction, via aggregation.

Contributions and outline of the paper

We review in Section 2 the framework of sequential prediction with specialized
experts, by defining the notion of sequential aggregation rules (Section 2.1), by
commenting on the chosen assessment criterion formed by the regret (Section 2.2),
and by exhibiting three such families of aggregation rules (Section 2.3). These rules
are obtained by taking a new look at existing strategies; this new look corresponds
to (slight or more important) adaptations of these existing strategies and/or to
simpler and/or more general analyses of their theoretical performance bounds.

We then study, respectively in Sections 4 and 5, the performance obtained by
the developed aggregation rules on two data sets. The first one was provided by the
Slovakian subbranch of EDF and represents its local market; the second one deals
with the French market for which EDF is still the overwhelming provider. These
empirical studies are organized according to the same standardized methodological
scheme (described in Section 3), which consists of four steps:

– presentation of the data sets and of the experts, in Sections 4.1 and 5.1;
– performance of some benchmark prediction methods, in Sections 4.2 and 5.2;
– results obtained by the sequential aggregation rules with parameters optimally

tuned in hindsight, in Sections 4.3 and 5.3;
– stability of the previous results when the tuning is performed sequentially (as

it should be, leading to fully operational rules), in Sections 4.4 and 5.4.

The section on French data is also followed by a note (Section 5.5) on the individual
performance of the aggregation rules, i.e., an indication that their behavior is not
only good on average but also that the large prediction errors occur less frequently
for the aggregation rules than for any base expert.

Section 6 concludes the paper, by summarizing the empirical evidence and
by providing some research perspectives, while an appendix (Section 7) contains
some proofs omitted from the main text because they correspond to immediate
(but sometimes lengthy) adaptations of well-known techniques.

2 Sequential aggregation of specialized experts: A survey with some new

results

A sequence of observations (e.g., hourly or half-hourly electricity consumptions)
y1, y2, . . . , yT is to be predicted element by element at time instances t = 1, 2, . . . , T .
For the sake of concreteness, we assume that the observations are all bounded by
some constant B, so that the yt lie in [0, B].
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A finite number N of base forecasting methods, henceforth referred to as ex-
perts, are available; they are indexed by j = 1, . . . , N . Before each time instance
t, some experts provide a forecast and the other ones do not. The first ones are
said active and their forecasts are denoted by fj,t ∈ R+, where j is the index of
the considered active expert; the experts of the second group are said inactive. We
assume that the experts know the bound B so that they only produce forecasts
fj,t ∈ [0, B].

Finally, we denote by Et ⊂ {1, . . . , N} the set of active experts at a given time
instance t and assume that it is always non empty.

2.1 Definition of a sequential convex aggregation rule

At each time instance t > 1, a sequential convex aggregation rule produces a convex
weight vector pt = (p1,t, . . . , pN,t) based on the past observations y1, . . . , yt−1 and
the past and present forecasts fj,s, for all s = 1, . . . , t and j ∈ Es. By convex
weight vector, we mean a vector pt ∈ RN such that pj,t > 0 for all j = 1, . . . , N
and p1,t+ . . .+ pN,t = 1; we denote by X the set of all these convex weight vectors
over N elements.

The final prediction at t is then obtained by linearly combining the predictions
of the experts in Et according to the weights given by the components of the vector
pt. More precisely, the aggregated prediction at time instance t equals

ŷt =
∑
j∈Et

pj,tfj,t .

The observation yt is then revealed and instance t+ 1 then starts.

2.2 Assessment of the quality of a sequential convex aggregation rule

To measure the accuracy of the prediction ŷt proposed at round t for the obser-
vation yt we consider a loss function ` : R × R → R. At each time instance t, the
convex combination pt output by the rule is thus evaluated by the loss function
`t : X → R defined by

`t(p) = `

∑
j∈Et

pjfj,t, yt


for all p ∈ X . The subscript t in the notation `t encompasses the dependencies in
the experts forecasts fj,t and in the outcome yt. Our goal is to design sequential
convex aggregation rules A with a small mean error

err(A) =
1

T

T∑
t=1

`t(pt) .

In our experiments we used the square loss, defined as `(x, y) = (x− y)2 for all
x, y ∈ R+, since a popular criterion to assess the quality of a sequential aggregation
rule A is given by its root mean square error (rmse), defined as

rmse(A) =

√√√√ 1

T

T∑
t=1

(
ŷt − yt

)2
.
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We have that rmse(A)2 = err(A) when ` is the square loss.

Actually, the only features of the square loss that we will need below are
that it is such that all loss functions `t are convex and bounded on [0, B]2, with a
subgradient that is also bounded on this region. The absolute error `(x, y) = |x−y|
and the absolute percentage of error `(x, y) = |x− y|/y would thus be suitable loss
functions in the sequel as well. This is why we will formulate all the algorithms
below and their regret bounds first in terms of general loss functions `t : X → R
and then indicate how they can be instantiated to the case of the square loss.

We start in this respect with the definition of the regret. The regret compares
the performance of the aggregation rules to the one of the experts or to the one of
some simple rules based on the experts. The first two notions of regret recalled be-
low were introduced in Freund et al. [1997] while the third one is a straightforward
extension of a definition provided by Herbster and Warmuth [1998].

2.2.1 Comparison to a fixed expert

A difficulty in the setting of specialized experts is that the mean error of an expert
is not necessarily well defined; e.g., the rmse of the j–th expert cannot be defined
in general as the rmse of the aggregation rule that would predict at each time
instance as the j–th expert, simply because the latter is not defined at a given
time instance when the expert is inactive.

We therefore only consider the instances t where j is active, a fact denoted by
j ∈ Et, and define the rmse of the j–th expert as

rmse(j) =

√√√√ 1∑T
t=1 I{j∈Et}

T∑
t=1

(fj,t − yt)2 I{j∈Et} .

A general definition (i.e., for general loss functions) of the mean error of an expert
would be

err(j) =
1∑T

t=1 I{j∈Et}

T∑
t=1

`t(δj) I{j∈Et} , (1)

where δj ∈ X is the convex weight vector that puts a mass 1 on the j–th component.

The methodology here is to ensure that the mean error suffered by a rule A is
not much larger than the one of any expert j. However, to provide a fair comparison
between the rule A and the expert j, we compare their performance only on time
instances when j was active, that is, we compare err(j) to

err(A, j) =
1∑T

t=1 I{j∈Et}

T∑
t=1

`t(pt) I{j∈Et} .

To do so, we will consider a quantity called the regret; formally, the (cumulative)
regret of A with respect to expert j up to T equals

RT (A, j) =
T∑
t=1

(
`t(pt)− `t(δj)

)
I{j∈Et} . (2)
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Our methodology, which is to ensure that the performance of A is almost as good
as any expert j, can then be rephrased as guaranteeing that the regrets RT (A, j)
are small (i.e., o(T )) for all experts j.

Of course, this implies that err(A) is small as well as soon as there are experts
j that both exhibit a good performance and are active often enough. Indeed, by
crudely bounding the loss of the rule A on the rounds when the comparison expert
is inactive, we get

err(A) 6 min
j=1,...,N

{∑T
t=1 I{j∈Et}

T
err(j) +

RT (A, j)
T

+ L

(
1−

∑T
t=1 I{j∈Et}

T

)}
, (3)

where L is a bound on |`t|; for instance, L = B2 in the case of the square loss
`(x, y) = (x− y)2 under the assumption that the experts forecasts and the obser-
vations all lie in some bounded interval [0, B].

2.2.2 Comparison to a fixed convex combination of experts

The regret methodology can be extended by now allowing comparison to rules
based on fixed convex combinations of the experts. The latter are each parameter-
ized by a convex weight vector q ∈ X and they sequentially aggregate the forecasts
of the experts based on a normalization of q to the set of active experts.

Formally, for a set E ⊂ {1, . . . , N}, we define

q(E) =
∑
j∈E

qj

and denote by qE = (qE1 , . . . , q
E
N ) the following convex weight vector, which can

be interpreted as the convex weight vector obtained by “conditioning” q to E:

qE =


(0, . . . , 0) if q(E) = 0;(
q1I{1∈E}
q(E)

, . . . ,
qN I{N∈E}

q(E)

)
if q(E) > 0.

Now, the definition (1) can be generalized as follows,

err(q) =
1∑T

t=1 q(Et)

T∑
t=1

`
(
qEt
)
q(Et) .

Indeed, when q = δj we recover err(δj) = err(j).
The notion of cumulative regret of a sequential aggregation rule A with respect

to some fixed weight vector q up to T can be generalized from (2) as

RT (A, q) =
T∑
t=1

(
`t(pt)− `t

(
qEt
))

q(Et) . (4)

Here also, we have RT (A, δj) = RT (A, j).
An argument similar to (3) shows that if the regrets RT (A, q) can all be guar-

anteed to be small, then the performance of A, as measured by err(A), is good
as well. Of course, ensuring that all quantities RT (A, q) are small is more difficult
than simply controlling the regrets RT (A, j) with respect to the experts.
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2.2.3 Comparison to sequences of (convex combinations of) experts with few shifts

This third and last definition of regret was introduced by Herbster and Warmuth
[1998] and compares the performance of a rule not to the performance of a fixed
expert or a fixed convex combination of the experts, but to sequences of experts
or of convex combinations of experts. The comparison can be made for all time
instances provided that the sequences of (convex combinations of) experts are well
chosen. To the best of our knowledge, this approach of considering sequences of
experts had not been used before to deal with specialized experts.

Formally, we denote by L the set of all legal sequences of expert instances
jT1 = (j1, . . . , jT ), where legality means that for all time instances t, the considered
expert jt is active (i.e., is in Et). We call compound experts the elements of L.
Similarly, we denote by C the set of all legal sequences of convex weight vectors
qT1 = (q1, . . . , qT ), where legality means that for all time instances t, the considered
convex weight vector qt puts positive masses only on elements in Et. We call
compound convex weight vectors the elements of C.

For such compound experts jT1 or compound convex weight vectors qT1 , we
denote by

size
(
jT1
)

=
T∑
t=2

I{jt−1 6=jt} and size
(
qT1
)

=
T∑
t=2

I{qt−1 6=qt}

their numbers of switches (the number minus one of elements in the partition of
{1, . . . , T} into integer subintervals corresponding to the use of the same expert or
convex weight vector). For 0 6 m 6 T − 1, we then respectively define Lm and
Cm as the subsets of L and of C containing the compound experts and compound
convex weight vectors with at most m shifts. When m is too small, the subsets Lm
and Cm might be empty.

The definition of the mean error of a compound expert jT1 ∈ L,

err
(
jT1
)

=
1

T

T∑
t=1

`t
(
δjt
)
,

and of the regret of a rule A with respect to jT1 ∈ L,

RT
(
A, jT1

)
=

T∑
t=1

(
`t(pt)− `t

(
δjt
))
, (5)

are immediate in this setting.

The relationship between the mean error of a given rule and the ones of the
elements of the comparison class formed by Lm, for some m, is simpler than in (3).
Indeed,

err(A) 6 min
jT1 ∈Lm

{
err

(
jT1
)

+
RT
(
A, jT1

)
T

}
;

here, we fixed a number m of switches because, as we will see below, the regret
can only be guaranteed to be small if m itself is not too large.
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The definitions of the mean error and of the regret, as well as the above in-
equality, can be extended in a straightforward manner to compound convex weight
vectors, as follows; for all qT1 ∈ C,

err
(
qT1
)

=
1

T

T∑
t=1

`t(qt)

and

RT
(
A, qT1

)
=

T∑
t=1

(
`t(pt)− `t(qt)

)
. (6)

Since Lm ⊆ Cm (up to the identification of expert indexes j to convex weight
vectors δj), it is more difficult to control the regret with respect to all elements of
Cm than the one with respect to simply Lm.

2.2.4 Bounds on the regret obtained by considering (sub)gradients

Most of the algorithms discussed below will have two forms: a basic version (using
the losses `t) and a gradient version, based on the following remark, which exploits
a fundamental result in convex analysis. When the loss function ` : R2 → R is
convex in its first argument –as is the case for all specific loss functions mentioned
above–, then the functions `t are convex and admit a least one subgradient at
all points p ∈ X ; we denote by ∇`t(p) such a subgradient. By denoting by · the
inner product in RN (and viewing X as a subset of RN ) we thus get the following
inequality: for all t, for all q ∈ X ,

`t(pt)− `t(q) 6 ∇`t(pt) ·
(
pt − q

)
= ˜̀t(pt)− ˜̀t(q) ,

where we denoted by ˜̀t(q) = ∇`t(pt) · q the pseudo-loss function associated with
time instance t. It is linear over X .

The above inequality shows that the cumulative regrets defined in (2), (4),
and (5)–(6) can be upper bounded by quantities of the same form where the
functions `t are simply replaced by the pseudo-losses ˜̀t. The so-called gradient
versions of the algorithms defined below minimize the upper bounds on the regrets
defined in terms of the ˜̀t, and which we denote respectively by

R̃T (A, j) , R̃T (A, q) , R̃T
(
A, jT1

)
, and R̃T

(
A, qT1

)
.

Example 1 In the case of the square loss, we have

`t(q) =

∑
j∈Et

qjfj,t − yt

2

,

so that

˜̀t(q) = 2

∑
j∈Et

pj,tfj,t − yt

 ∑
j∈Et

qjfj,t .
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Parameter : learning rate η > 0

Initialization: (w1,0, . . . , wN,0) = (1, . . . , 1)

For each round t = 1, 2, . . . , T ,

(1) predict ŷt =
∑
j∈Et

pj,t fj,t, where

pt =
1∑

k∈Et wk,t−1

(
w1,t−1I{1∈Et}, . . . , wN,t−1I{N∈Et}

)
;

(2) observe yt and perform the update, for each j = 1, . . . , N ,

wj,t =

{
wj,t−1 e

η
(
`t(pt)−`t(δj)

)
if j ∈ Et,

wj,t−1 if j /∈ Et.

Fig. 1 The exponentially weighted average aggregation rules Eη and Egradη ; the first rule
corresponds to the choice in (2) of the loss function `t and the second rule, to the replacement

in (2) of the two occurrences of `t by the pseudo-loss ˜̀t defined in Section 2.2.4.

2.3 Three families of aggregation rules minimizing the regret

We now recall or show how to ensure that the various notions of regret introduced
above can be made uniformly small thanks to some explicit aggregation rules; by
uniformity, we mean bounds that hold uniformly over all sequences of observa-
tions y1, . . . , yT and of experts forecasts. In some sense, the presented bounds are
deterministic as they do not rely on any stochastic model that would generate the
observations y1, . . . , yT .

2.3.1 Exponentially weighted average aggregation rules

Basic version The exponentially weighted average aggregation rule relies on a pa-
rameter η > 0 and will thus be denoted by Eη. It uses at time instance t the convex
weight vector pt given by

pj,t =
eηRt−1(Eη,j) I{j∈Et}∑
k∈Et e

ηRt−1(Eη,k)
, (7)

that is, it only puts mass on the experts j active at round t and does so by
performing an exponentially weighted average of their past performance, measured
by the regrets Rt−1(Eη, j). When t = 1, the latter quantity equals 0 by convention,
so that p1 is simply the uniform distribution over E1. Its implementation is recalled
in Figure 1.

The following performance bound was almost stated in Cesa-Bianchi and Lu-
gosi [2003]; in any case it is a straightforward consequence of the results presented
therein (Corollary 2 and the methodology followed in Sections 3 and 6.2).

Proposition 1 We assume that the loss functions `t are convex and uniformly bounded;

we denote by L a uniform bound on the quantities |`t(p) − `t(q)| when p and q vary

in X and t varies from 1 to T . The regret of Eη is bounded over all such sequences of
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experts forecasts and of observations as

max
j=1,...,N

RT (Eη, j) 6
lnN

η
+
η

2
L2T . (8)

The (theoretically) optimal choice η? =
√

(2 lnN)/(L2T ) leads to the uniform

bound L
√

2T lnN on the regret of Eη? . This choice depends on the horizon T and
of the bound L, which are not always known in advance; standard techniques, like
the doubling trick or time-varying learning rates ηt can be used to cope with these
limitations, see Auer et al. [2002], Cesa-Bianchi et al. [2007].

Proof The cited performance bound is exactly the result stated in [Cesa-Bianchi
and Lugosi, 2003, Corollary 2]; we therefore only need to check that its assumption
is satisfied, that is, that for all t > 2, the combined forecast

ŷt =
∑
j∈Et

pj,tfj,t

is such that for all fj,t and yt,

N∑
j=1

eηRt−1(Eη,j)
((
`t(pt)− `t(δj)

)
I{j∈Et}

)
6 0 .

This is immediate by the definition (7) of pt and the convexity of `t.

Remark 1 We also studied another aggregation rule based on exponentially weighted
averages, called H (which stands for Hedge). In [Blum and Mansour, 2007, Sec-
tion 6] it was originally stated in the setting of randomized prediction, which
corresponds to loss functions linear in the convex weight vectors p. It can how-
ever be extended in a straightforward manner to convex losses (while preserving
the regret bound); see, e.g., [Devaine et al., 2009, Section 2.1] for the details.
We checked in the mentioned reference that the practical performance of both
rules were equal. This is because the rules are almost identical: the rule H simply
replaces the update in step (2) of Figure 1 by

wj,t−1 e
ηj
(
e−ηj `t(pt)−`t(δj)

)
,

where the learning rates ηj now depend on the experts j = 1, . . . , N . By carefully
setting these rates, uniform regret bounds of the form

RT (H, j) = O

L
√√√√ T∑
t=1

I{j∈Et} lnN + L lnN


can be obtained. They are more precise than the bound of Proposition 1, which
yields a bound of order L

√
T lnN that is uniform over experts and does not take

into account how many times each expert was active. However, first, the rule stated
in Figure 1 seems more natural in practice since it gives the same weight to the
losses encountered by the experts and by itself; and second, in view of the goal (3),
the uniform bound of order

√
T is enough for our purpose.
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Gradient version The gradient version of the previous aggregation rule relies also
on a parameter η > 0, is denoted by Egrad

η , and aims at minimizing R̃T
(
Egrad
η , j

)
.

To do so, it uses

pj,t =
eηR̃t−1(Egradη ,j) I{j∈Et}∑
k∈Et e

ηR̃t−1(Egradη ,k)
. (9)

By Section 2.2.4, the following result is almost a corollary of Proposition 1;
note that the obtained regret bound is however with respect to all convex weight
vectors.

Corollary 1 We assume that the loss functions `t have subgradients at all points of

X , uniformly bounded in the supremum norm (as t varies) by G. The regret of Egrad
η is

bounded over all such sequences of experts forecasts and of observations as

max
q∈X

RT
(
Egrad
η , q

)
6

lnN

η
+ 2ηG2T .

The (theoretically) optimal choice η? =
√

(lnN)/(2G2T ) leads to the uniform

bound 2G2
√

2T lnN on the regret of Egrad

η? . The same comments as above on the
calibration of η apply.

Proof First, we recall that by Section 2.2.4,

max
q∈X

RT
(
Egrad
η , q

)
6 max

q∈X
R̃T
(
Egrad
η , q

)
= max

q∈X

T∑
t=1

(˜̀t(pt)− ˜̀t(qEt)) q(Et) .

Since the ˜̀t are linear over X and by definition of the qEt , the last expression
simplifies to

max
q∈X

R̃T
(
Egrad
η , q

)
= max

q∈X

N∑
j=1

qj

T∑
t=1

(˜̀t(pt)− ˜̀t(δj)) I{j∈Et} .
The proof is concluded by noting that Proposition 1 ensures that the rule Egrad

η is
such that

max
j=1,...,N

T∑
t=1

(˜̀t(pt)− ˜̀t(δj)) I{j∈Et} 6 lnN

η
+
η

2
(2G)2T .

Instantiation to the square loss The loss functions `t and ˜̀t were indicated in Ex-
ample 1; the constants appearing in Proposition 1 and Corollary 1 equal in this
case L = B2 and G = 2B2.
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Parameters: learning rate η > 0

Initialization: w1 is the uniform convex weight vector, wi,1 = 1/N for i = 1, . . . , N

For each time instance t = 1, 2, . . . , T ,

(1) predict ŷt =
∑
j∈Et

wEtj,t fj,t, that is, resort to the convex weight vector pt = wEt
t ;

(2) observe yt and compute wt+1 as

wi,t+1 =

 wi,t e
−η ˜̀t(δi) ∑

j∈Et wj,t∑
k∈Et wk,t e

−η ˜̀t(δk) if i ∈ Et,

pi,t if i 6∈ Et.

Fig. 2 The specialist aggregation rule Sη ; it uses the pseudo-loss ˜̀t defined in Section 2.2.4
and based on the loss functions `t.

2.3.2 The specialist aggregation rule

Gradient version The content of this paragraph provides a new look at the results
of [Freund et al., 1997, Sections 3.2–3.4]. In the latter reference, a general rule was
introduced but it had to be instantiated to each specific loss function; in particular,
its analysis and its regret bound heavily depended on the specific loss function at
hand and possibly on the learning rate η.

We show how the algorithm SEG described therein for the case of the square
loss can be generalized to any convex loss function, via the subgradient trick
explained in Section 2.2.4. To achieve this, we replace the ad hoc inequalities
needed therein1 by a new general bound, provided by Lemma 1 below and based on
Hoeffding’s lemma. The rest of the structure of the proof is borrowed from Freund
et al. [1997].

The specialist aggregation rule is described in Figure 2; it relies on a parameter
η > 0 and will be denoted by Sη. It is close to but different from the rule Egrad

η :
as we will see below, the two rules have comparable theoretical guarantees, their
statements might be found to exhibit some similarity as well, but we noted that in
practice the output convex weight vectors pt had nothing in common (even though
their achieved performance were almost equal).

The performance guarantees of the rule Sη are, like the ones of Egrad
η , with

respect to all fixed convex combinations of the experts; the regret bound that we
could prove for Sη is however slightly smaller than the one exhibited for Egrad

η .

Theorem 1 We assume that the loss functions `t have subgradients at all points of

X , uniformly bounded in the supremum norm (as t varies) by G. The regret of Sη is

bounded over all such sequences of experts forecasts and of observations as

max
q∈X

RT
(
Sη, q

)
6

lnN

η
+
ηG2T

2
.

The (theoretically) optimal choice η? =
√

(2 lnN)/(G2T ) leads to the uniform

bound G
√

2T lnN on the regret of Sη? . The same comments on the calibration of
η as in the previous section apply.

1 See equation (6) in Freund et al. [1997] and the comments after its statement: “Here, a
and b are positive constants which depend on the specific on-line learning problem [...].”
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In the course of the proof of the theorem above, we will need the following
lemma, which is the key to a general analysis independent of the specific loss
functions at hand.

Lemma 1 Let d > 2 be an integer. Fix two convex weight vectors u and v over d

elements and a vector γ ∈ Rd; we assume that vi > 0 for all i = 1, . . . , d but do

not constrain u. Denote by G a positive real number such that −G 6 γi 6 G for all

i = 1, . . . , d. Consider the convex weight vector v′ defined as follows: for all i = 1, . . . , d,

v′i =
vi e
−ηγi∑d

k=1 vk e
−ηγk

.

Then

η

d∑
i=1

(vi − ui)γi 6
η2G2

2
+K(u,v)−K(u,v′) .

Proof By direct calculations and since vi, v
′
i > 0 for all i = 1, . . . , d,

K(u,v)−K(u,v′) =
d∑
i=1

ui ln
v′i
vi

=
d∑
i=1

ui ln
e−ηγi∑d

k=1 vk e
−ηγk

= − ln

(
d∑
k=1

vk e
−ηγk

)
− η

d∑
i=1

uiγi .

The first term in the last expression can be bounded by Hoeffding’s lemma (see,
e.g., [Cesa-Bianchi and Lugosi, 2006, Lemma A.1]),

ln

(
d∑
k=1

vk e
−ηγk

)
6 −η

d∑
k=1

vkγk + η2
(2G)2

8
,

and this concludes the proof.

Proof (of Theorem 1) We first note that by induction, wj,t > 0 for all j and t, and
we recall that by Section 2.2.4,

max
q∈X

RT (Sη, q) 6 max
q∈X

R̃T (Sη, q) = max
q∈X

T∑
t=1

(˜̀t(wEt
t

)
− ˜̀t(qEt)) q(Et) ,

where we used the notation of Figure 2. Now, for all instances t > 1, by definition
of the rule Sη, we have wt+1(Et) = wt(Et) and thus, for all j ∈ Et,

wEtj,t+1 =
wEtj,t e

−η˜̀t(δj)∑
k∈Et w

Et
k,t e

−η˜̀t(δk) ,
so that Lemma 1 shows that

˜̀t(wEt
t

)
− ˜̀t(qEt) 6 ηG2

2
+

1

η

(
K
(
qEt ,wEt

t

)
−K

(
qEt ,wEt

t+1

))
.
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Substituting this inequality in the first upper bound on the regret, we get

max
q∈X

RT (Sη, q) 6 max
q∈X

ηG2T

2
+

1

η

T∑
t=1

q(Et)
(
K
(
qEt ,wEt

t

)
−K

(
qEt ,wEt

t+1

))
.

Using again, for the second equality below, that wt+1(Et) = wt(Et), we rewrite
the summands as

q(Et)
(
K
(
qEt ,wEt

t

)
−K

(
qEt ,wEt

t+1

))
= q(Et)

∑
j∈Et

qEtj ln
wEtj,t+1

wEtj,t

=
∑
j∈Et

qj ln
wj,t+1

wj,t
=

N∑
j=1

qj ln
wj,t+1

wj,t
= K(q,wt)−K(q,wt+1) ,

where the third equality follows from the fact that, by definition of the rule,
wj,t+1 = wj,t whenever j 6∈ Et. After substitution, a telescoping sum appears
and we are thus left with

max
q∈X

RT (Sη, q) 6
ηG2T

2
+

1

η
max
q∈X

{
K(q,w1)−K(q,wT+1)

}
6
ηG2T

2
+

lnN

η
,

where the last inequality is by nonnegativity of the Kullback-Leibler divergence
and by the fact that w1 is the uniform convex weight vector, hence K(q,w1) 6 lnN
for all q ∈ X .

Instantiation to the square loss The loss functions `t and ˜̀t were indicated in Ex-
ample 1; the constant appearing in Theorem 1 equals in this case G = 2B2.

2.3.3 Fixed-share aggregation rules

Here, as in Section 2.3.1, we will present two versions of the rule, the first one
being based on plain expert losses and the second one resorting to a gradient
upper bound.

Basic version The rule presented in Figure 3 (when used directly on the losses) is
actually nothing but an efficient computation of the rule that would consider all
compound experts and perform exponentially weighted averages on them in the
spirit of the rule Eη but with a non-uniform prior distribution. We will call it the
fixed-share rule for specialized experts; we denote it by Fη,α as it depends on two
parameters, η > 0 and 0 6 α 6 1. This rule is a straightforward adaptation to the
setting of specialized experts of the original fixed-share forecaster of Herbster and
Warmuth [1998], see also [Cesa-Bianchi and Lugosi, 2006, Section 5.2].

Its performance bound is stated below; it follows from a straightforward but
lengthy adaptation of the techniques used in Herbster and Warmuth [1998] and [Cesa-
Bianchi and Lugosi, 2006, Section 5.2]. We thus provide it in the appendix of this
paper (Section 7), for the sake of completeness and to show how the share update
of Figure 3 was obtained.
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Parameters: learning rate η > 0 and mixing rate 0 6 α 6 1

Initialization: (w1,0, . . . , wN,0) =
1

|E1|
(
I{1∈E1}, . . . , I{N∈E1}

)
For each round t = 1, 2, . . . , T ,

(1) predict ŷt =
1∑N

k=1 wk,t−1

N∑
j=1

wj,t−1 fj,t ;

(2) [loss update] observe yt and define for each i = 1, . . . , N ,

vi,t =

{
wi,t−1 e

−η`t(δi) if i ∈ Et,
undefined if i /∈ Et;

(3) [share update] let wj,t = 0 if j 6∈ Et+1 and

wj,t =
1

|Et+1|
∑

i∈Et\Et+1

vi,t +
α

|Et+1|
∑

i∈Et∩Et+1

vi,t + (1− α) I{j∈Et∩Et+1} vj,t

if j ∈ Et+1, with the convention that an empty sum is null and denoting by |Et+1| the
cardinality of Et+1.

Fig. 3 The fixed-share aggregation rules Fη,α (basic version, when implemented as defined

above) and Fgrad
η,α (gradient version, when the loss `t in the loss update is replaced by the

pseudo-losses ˜̀t defined in Section 2.2.4).

Proposition 2 We assume that the loss functions `t are convex and uniformly bounded;

we denote by L a uniform bound on the quantities |`t(p)− `t(q)| when p and q vary in

X and t varies from 1 to T . For all m ∈ {0, . . . , T −1}, the regret of Fη,α is uniformly

bounded over all such sequences of observations and of experts forecasts as

max
jT1 ∈Lm

RT
(
Fη,α, jT1

)
6
m+ 1

η
lnN +

1

η
ln

1

αm (1− α)T−m−1
+
η

8
L2T . (10)

The (theoretically almost) optimal bound in the proposition above can be
obtained by defining the binary entropy H as H(x) = x lnx+ (1− x) ln(1− x) for
x ∈ [0, 1], by fixing a value of m, and by choosing α? = m/(T − 1) and

η? =
1

L

√
8

T

(
(m+ 1) lnN + (T − 1)H

(
m/(T − 1)

))
;

it is given by

max
jT1 ∈Lm

RT
(
Fη?,α? , jT1

)
6 L

√
T

2

(
(m+ 1) lnN + (T − 1)H

(
m/(T − 1)

))
.

This optimal upper bound is o(T ) as desired as soon as m = o(T ); of course,
the theoretical optimal choices depend on T and m, so that here also sequential
adaptive choices are necessary.

Gradient version We proceed here as in Section 2.3.1 and consider a variant of the
previous forecaster that is based on the (sub)gradients of the losses rather than on
the losses themselves. This variant has the same form as Fη,α and will be denoted
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by Fgrad
η,α . The only modification to be performed in Figure 3 to define this gradient

version is to replace the update in step (2) by

vi,t = wi,t−1 e
−˜̀

t(δi)

when i ∈ Et. The following performance bound is almost a corollary of Proposi-
tion 2; here again, for the sake of completeness, a proof is provided in appendix
(in Section 7).

Corollary 2 We assume that the loss functions `t have subgradients at all points of X ,

uniformly bounded in the supremum norm (as t varies) by G. For all m ∈ {0, . . . , T−1},
the regret of Fgrad

η,α is uniformly bounded over all such sequences of observations and of

experts forecasts as

max
qT1 ∈Cm

RT
(
Fgrad
η,α , q

T
1

)
6
m+ 1

η
lnN +

1

η
ln

1

αm (1− α)T−m−1
+
η

2
G2T . (11)

The above bound can here also be (almost) optimized as before, via suitable
choices η? and α? for η and α,

max
qT1 ∈Cm

RT
(
Fgrad

η?,α? , q
T
1

)
6 G

√
2T
(

(m+ 1) lnN + (T − 1)H
(
m/(T − 1)

))
.

Comments The fixed-share aggregation rules update the convex combinations they
use in two steps, a loss update and a share update, as indicated in Figure 3. The
loss update follows the logic behind the exponentially weighted average aggregation
rules, where experts are weighted according to their past performance through an
exponential reweighting. The share update redistributes the weights over the active
experts and ensures that each of them is played with a sufficient probability; this
is the key for the rule to be competitive with respect to compound experts or
compound weight vectors.

Note also that compound experts in our non-stochastic setting can be related
to breaks in a sequence of stochastic observations in a more classical statistical
framework where the observations are the realizations of some underlying stochas-
tic process whose parameters can change over time.

Instantiation to the square loss The loss functions `t and ˜̀t were indicated in Ex-
ample 1; the constants appearing in Proposition 1 and Corollary 1 equal in this
case L = B2 and G = 2B2.

3 Methodology followed in the empirical studies

We provide a standardized outline of the treatment of the two data sets discussed
in the next sections.
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3.1 A methodology in four steps

The aggregation rules discussed above are only semi-automatic strategies, as they
rely on fixed-in-advance parameters that are not tuned on data. Our ultimate aim
in this article is to design operational (i.e., fully sequential) aggregation rules,
which set these parameters online, as is explained below.

To evaluate the experts used and the performance of the semi-automatic and
fully automatic strategies, we of course use data sets with all observations avail-
able for the period of interest but proceed as if we had to do so sequentially. In
particular, the experts are constructed independently of the data sets used for the
assessment of the strategies.

We now state and describe in details our methodology, which takes place in
four steps.

Outline of the empirical studies of performance of the sequential aggregation rules

1. Describe the data set and design some experts.

2. Choose a loss function and evaluate the performance of the experts.

3. For each family of strategies compute the performance corresponding to
the best constant choices of the parameters in hindsight.

4. Measure the cost of some automatic and sequential tuning and assess the
quality of the operational performance.

1. Design some experts The guideline is to design them so that –as much as
possible– they exhibit varied enough behaviors (for the aggregation strategies to
have a sufficient flexibility in the output aggregated forecasts). Constructing the
experts is usually the responsibility of the partner of the learning theorist because
of his knowledge of the field of application and of the methods –classical and more
modern ones– that are likely to exhibit a good performance. These methods can
rely on some tuning parameters that were set on data sets anterior to the data set
at hand (see, for instance, the construction of the experts in Section 5.1.1).

2. Choose a loss function and evaluate the performance of the experts By evaluation of
the performance of the experts we mean the assessment of the accuracy obtained
by some simple strategies like the uniform average of the forecasts of the active
experts (which is a strategy that is easy to implement online) or by some oracles;
this assessment is given by their cumulative losses. By oracles we mean strategies
that cannot be defined online and that require the beforehand knowledge of the
whole data set: e.g., the best single expert and the best constant convex combi-
nation of the experts. Finally, the so-called prescient strategy is the strategy that
picks at each time instance the best experts forecast; it indicates a bound on the
performance that no aggregation strategy can improve given the data set (given
the experts forecasts and the observations). It corresponds to the best element in
LT−1.
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3. For each family of strategies compute the performance corresponding to the best con-

stant choices of the parameters in hindsight The aggregation strategies described in
Section 2 require the tuning of a small number (one or two) of user parameters.
What we do here is to tabulate the performance on a thin grid of possible pa-
rameters and compare the best accuracy obtained in this way to the performance
of the reference strategies and oracles discussed above –with the hope that the
aggregation strategies will perform almost as well as or even better than these
oracles in addition of being implementable online.

4. Measure the cost of the automatic tuning and assess the quality of the operational

performance We then implement the meta-rule discussed in the next section and
which is based on the families considered in the previous step: instead of consid-
ering fixed-in-advance parameters, it tunes them sequentially. We measure how
different is its performance with respect to the best member of the underlying
family. This is the most crucial step of the empirical study since it indicates the
performance that would have been achieved for real by outputting sequentially
aggregated forecasts based on the experts constructed in the first step –hence the
notion of operational performance.

3.2 Sequential automatic tuning of the parameters on data

We explain in this section how fully sequential aggregation rules can be designed;
we describe first the method in a general framework. Let Aλ be a sequential aggre-
gation rule relying on some parameter λ (possibly vector-valued) taking its values
in some set Λ. Given the past observations and the past and present forecasts
of the experts, it prescribes at time instance t a convex weight vector which we
denote by pt

(
Aλ
)
. A crucial issue is to find a suitable value of λ. Since no obvious

a priori choice is available (the optimal values to minimize the theoretical bounds
on the regret tend to show poor practical performance), we will resort in practice
to the following method, due to Vivien Mallet and proposed in the technical re-
port Gerchinovitz et al. [2008] (but never published elsewhere to the best of our
knowledge).

The weights used by the fully sequential aggregation rule based on the family
of rules Aλ, where λ ∈ Λ, will be denoted by p̂t. We assume that the considered
family is such that p1

(
Aλ
)

is independent of λ, so that p̂1 equals this common
value. Then, at time instances t > 2,

p̂t = pt

(
A
λ̂t−1

)
where λ̂t−1 ∈ argmin

λ∈Λ

t−1∑
s=1

`s

(
ps
(
Aλ
))

; (12)

that is, we consider, for the prediction of the next time instance, the aggregated
forecast proposed by the best so far member of the family of aggregation rules.
Because of this formulation, we will speak of a meta-rule in the sequel. For the time
being, we can offer no theoretical guarantee for the performance of the meta-rule
in terms of the performance of the underlying family (this is a work in progress).

Computationally speaking, we need to run in parallel all the instances of Aλ,
together with the meta-rule. This of course is impossible as soon as Λ is not finite;
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for the families considered above we had Λ = (0,+∞) (exponentially weighted
average aggregation rules and the specialist aggregation rule) and Λ = (0,+∞)×
[0, 1] (fixed-share type rules). This is why, in practice, we only consider a finite
grid Λ̃ over Λ and perform the minimization of (12) only on the elements of Λ̃
instead of performing it on the whole set Λ.

Of course, some choices are still left to the user, namely, how to design this
finite grid Λ̃ and thus, the proposed procedure is not fully automatic yet. We
however checked (see [Devaine et al., 2009, Section 3.1] for the details) that in
practice the performance was not too sensitive to the design of Λ̃, as soon as the
latter covers a range large enough. Since the optimal value λ? prescribed by theory
is usually too conservative in practice, a reasonable procedure is, e.g., to start the
grid around some small value likely to be close to λ? and then take logarithmically
evenly spaced points till a given upper bound. Below, in the case of the tuning of
the parameter η of the exponentially weighted average rules, we take the upper
bound 1. A way to set adaptively these lower and upper bounds is explained in
Section 5.4; for the reader to appreciate it we however need first to illustrate several
times the on-line calibration of the parameters with fixed finite grids and this is
why we will consider some seemingly arbitrary grids in the first empirical studies.

4 A first data set: Slovakian consumption data

The study is divided in four subsections, following the methodology in four steps
described above.

4.1 Presentation and characteristics of the data set

The data set concerns the consumption encountered by the Slovakian subbranch
of the French provider EDF. It is formed by the hourly predictions of 35 experts
and the corresponding observations (formed by hourly mean consumptions) on
the period from January 1, 2005 to December 31, 2007. That is, there are 24
series (one for each hour) of 1 095 hourly mean consumptions and of at most
35 × 1 095 = 38 325 expert predictions. Actually, there are fewer such predictions
since some of the experts are specialized and were not able to deliver a prediction
at all time instances. In this part and unlike for the French data set of the next
part, we have absolutely no information on how the experts were built and we
merely consider them as black boxes.

The reason why we parsed the data set into 24 subsets (one per hour interval
of the day) is that first, for this data set we have enough observations to do so
(we have 1 095 observations per given hour frame, that is, we spit the data set into
24 data subsets of size 1 095); and second, the behavior of electricity consumption
depends heavily on the hour (much more than on the given day in the week); for
instance, the consumption is low at nights and some peaks can be observed during
the day, e.g., around 19:00.

We therefore ran 24 parallel aggregation rules, one for each fixed hour interval;
we mostly report in this section and in the next ones the results obtained for one-
day-ahead prediction on a given (somewhat arbitrarily chosen) hour interval: the
interval 11:00–12:00. The characteristics of the observations yt of this hour frame
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Fig. 4 The observed hourly electricity consumptions encountered by the Slovakian subbranch
between January 1, 2005 and December 31, 2007.

Table 1 Some characteristics of the observations yt (hourly mean consumptions) of the
Slovakian data set for the time intervals 11:00–12:00.

Number of days D 1 095

Time intervals Only 11:00–12:00

Number of instances T 1 095 (= 1 095× 1)

Number of experts N 35

Unit MW

Median of the yt 702.6

Bound B on the yt 1020.0

are described in Table 1 while all observations (for all hour frames) are plotted in
Figure 4.

In this section, we will omit the unit MW (megawatt) of the observations and
predictions of the electricity consumption, as well as the one of their corresponding
rmse. The loss function used is the square loss and we will mostly report root mean
square errors (rmse), whose definition was given in Section 2.2.
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Fig. 5 Graphical representations of the performance of the experts of the Slovakian data set:
sorted rmse (left) and rmse–frequency of activity pairs (right).

4.2 Benchmark values: performance of the experts and of some oracles

We consider here only the observations and predictions that correspond to the hour
frame 11:00–12:00. The characteristics of the experts are depicted in Figure 5. The
bar plot represents the values of the rmse of the 35 available experts; we computed
the 35 values of rmse(j), one for each expert j, and ordered them. The scatter plot
relates the rmse of each of the expert to its frequency of activity, that is, it plots
the pairs (

rmse(j),

∑T
t=1 I{j∈Et}

T

)
(13)

for all experts j.

We present in Table 2 the values2 of the rmse of several procedures, some of
them being off-line procedures using the whole data set (i.e., observations and
predictions) in hindsight. Actually, except the use of the uniform convex weight
vector in X and the uniform sequential aggregation rule U , none of these procedures
can be implemented sequentially, and this is why they are called oracles.

The rule U simply chooses, at each time instance t, the uniform convex weight
vector on Et. Its rmse differs from the one of the uniform convex weight vector
(1/35, . . . , 1/35), as the general definitions instantiate here as

rmse(U) =

√√√√ 1

T

T∑
t=1

(∑
j∈Et fj,t

|Et|
− yt

)2

and rmse
(
(1/35, . . . , 1/35)

)
=

√√√√ 1∑T
t=1 |Et|

T∑
t=1

|Et|

(∑
j∈Et fj,t

|Et|
− yt

)2

.

2 All of them have been computed exactly, except the ones that involve minimizations over
simplexes of convex weights, for which a Monte-Carlo stochastic approximation method was
used.
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Table 2 Definition and performance of several (possibly off-line) benchmark procedures on
the Slovakian data set; they serve as comparison points for on-line procedures.

Name of the benchmark procedure Formula Value

Uniform sequential aggregation rule rmse(U) = 31.1

Uniform convex weight vector rmse
(
(1/35, . . . , 1/35)

)
= 30.7

Best single expert min
j=1,...,35

rmse(j) = 30.4

Best convex weight vector min
q∈X

rmse(q) = 29.2

Best compound expert

Size at most m = 10 min
jT1 ∈L10

rmse
(
jT1
)

= 32.1

Size at most m = 50 min
jT1 ∈L50

rmse
(
jT1
)

= 23.1

Size at most m = 200 min
jT1 ∈L200

rmse
(
jT1
)

= 15.2

Size at most m = T − 1 = 1 094 min
jT1 ∈E1×E2×...×ET

rmse
(
jT1
)

= 9.4

On the K = 74 elements of a partition of time
according to the values of the active sets Et

Best expert on each element See (14) = 29.1

Best convex weight vector on each element See (15) = 24.5

The oracle with the least error is the one that can pick at each time instance
the expert that will perform best. This oracle corresponds to the choice of the
best compound expert with size at most T − 1; it suffers a non-zero rmse of 9.4
since typically, none of the fj,t is exactly equal to the observation yt to come. This
oracle indicates a lower bound on the best performance that can be achieved by
a sequential aggregation rule using the experts predictions. Of course, this lower
bound is very optimistic.

More reasonable comparison points are given, on the one hand, by best com-
pound experts of smaller3 size m, and on the other hand, by the individual perfor-
mance of some fixed convex weight vectors (not necessarily evaluated on all time
instances): the uniform weight vector, which is the best a priori constant choice of
a weight vector, and two oracle weight vectors, the best single expert in hindsight
and the best fixed convex weight vector in hindsight.

Remark 2 The fact that the rmse of the best compound expert with size at most
10 is larger than the rmse of the best single expert is explained by the fact that

3 m = 1 would have been a suitable value since two experts are active at all time instances;
it however leads to a bad performance, which explains why we considered the minimal value
of m = 10.
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some overall good experts refrain from predicting at some time instances when all
active experts perform poorly, while compound experts are required to output a
prediction at each time instance even when an accurate prediction is likely to be
difficult to perform. The fact that such good experts tend not to form predictions
at instances that are more difficult to cope with can also be seen from the fact
that rmse(U) is larger than rmse

(
(1/35, . . . , 1/35)

)
, since the second average puts

unequal weights to the time instances, with more weight to time instances when
more experts are active.

We also wanted to assess whether gains in performance could be hoped for by
partitioning time into subsets of instances with constant sets of active experts;
that is, by defining {

E(1), . . . , E(K)} =
{
Et, t ∈ {1, . . . , T}

}
and by partitioning time according to the values E(k) taken by the sets of active
experts Et. The corresponding natural oracles are

min


√√√√ 1

T

K∑
k=1

∑
t:Et=E(k)

(
fjk,t − yt

)2
, with jk ∈ E(k) for all k = 1, . . . ,K

 ,

(14)
which corresponds to the choice of the best expert on each element of the partition,
and

min


√√√√√ 1

T

K∑
k=1

∑
t:Et=E(k)

 ∑
j∈E(k)

q
(k)
j fj,t − yt

2

,

with q(k) a convex weight vector on E(k) for all k = 1, . . . ,K

}
, (15)

which corresponds to the choice of the best convex weight vector on each element of
the partition. Even if there are relatively many elements in this partition, namely,
K = 74, the gain with respect to constant choices throughout time exists (rmse of
29.1 versus 30.4 and 24.5 versus 29.2) but is less significant than the one achieved
with compound experts (which achieve a smaller rmse of 23.1 already with a size
m = 50).

4.3 Results obtained by the considered sequential aggregation rules: With
constant values of the parameters

We now detail the practical performance of the sequential aggregation rules in-
troduced in Section 2 and compare it to the one of the oracles. As indicated in
Section 3, we will proceed in two steps. First, we report in this subsection the
results obtained for fixed values of the parameters η and α of the rules; to do
so, we considered a grid of their possible values and computed the rmse for each
value of the parameters. We report for each rule the best performance obtained;
the corresponding parameters are said the best constant choices in hindsight. This
assesses the potential performance of the rules but does not lead to fully sequential
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Table 3 Performance obtained by the sequential aggregation rules Eη , Egradη , and Sη for
various choices of η; the smallest rmse obtained for each rule is underlined.

Value of η 10−8 10−7 10−6 4× 10−6 10−5 10−4 10−3

rmse of Eη 31.3 31.2 30.8 30.5 30.9 32.7

Egradη 31.3 30.9 29.8 28.2 33.5

Sη 31.3 30.9 29.8 28.2 34.7

Table 4 Performance obtained by the sequential aggregation rules Fη,α and Fgrad
η,α for various

choices of η and α; the smallest rmse obtained for each rule is underlined.

Value η 10−4 10−4 10−3 10−3 10−2 10−2 2× 10−4 2× 10−3

of α 0.05 0.2 0.1 0.2 0.05 0.2 0.07 0.2

rmse Fη,α 29.3 29.5 27.5 27.2 28.0 27.8 27.0

of Fgrad
η,α 28.0 28.9 29.3 29.2 28.7 28.5 27.2

procedures yet. We will study the fully sequential procedures in the next subsec-
tion.

The performance of the families Eη, Egrad
η , and Sη are summarized in Table 3. As

indicated in Section 2.3, they should be compared, respectively, to the performance
of the best single expert (for Eη) and to the one of the best convex weight vector
(for Egrad

η and Sη). We recall that these are indicated in Table 2. We note that
Egrad
η and Sη, when tuned with the best parameter η in hindsight, outperform their

comparison oracle, the best convex weight vector (with a relative improvement of
3 % in terms of the rmse), while the performance of the best Eη comes very close
to the one of the best single expert (rmse of 30.4 versus 30.5).

Here, as in Mallet et al. [2009], the best constant choices in hindsight are far
away from the theoretically optimal ones, given by η? ≈ 8 × 10−8 for Eη and
η? ≈ 4 × 10−8 for Egrad

η and Sη. The computation of these values of η? however
served us to set the grid used in Table 3; we started basically at η? and then
performed logarithmic increments.

The performance of the fixed-share type rules Fη,α and Fgrad
η,α is reported in

Table 4. Here, it is trickier to speak of a specific comparison class and to compute
the values of theoretically almost optimal parameters (the choice of m is crucial
for these issues). The most important remark is thus probably that these rules,
when tuned properly (in hindsight), improve on the already good results of the
previously cited rules. Of course, this might be because these methods are a bit
more flexible, since they rely on two parameters instead of one.

We close this preliminary review of performance by showing in Figure 6 that
the considered rules fully exploit the whole set of experts and do not concentrate
on a limited subset of the experts. They carefully adapt their convex weights as
time evolves and remain reactive to changes of performance; in particular, the
sequences of weights do not converge to a limit vector.
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Fig. 6 Graphical representations of the convex weights associated at each time instance with
the 35 experts by the rules Egrad

10−4 (left) and F2×10−3,0.2 (right).

Table 5 Performance obtained by the rules Eη and Egradη for the best constant choice of η in
hindsight (left) and when used as keystones of a meta-rule selecting sequentially the values of
η on the chosen grids (middle and right).

Best constant η Grid Λ̃s Grid Λ̃`

rmse of Eη 30.5 31.1 30.7

Egradη 28.2 28.2 28.4

4.4 Results obtained with an on-line calibration of the parameters

We show in this section that the fully sequential aggregation rules (the meta-rules)
constructed in Section 3.2 can get performance close to the one of the rules studied
in the previous section and which were based on the choices of the best constant
parameters in hindsight.

Application to the exponentially weighted average rules Eη and Egrad
η Following the

methodology described above and the order of magnitude of the optimal values η?

being around 10−8, we considered two finite grids for the tuning of η, both with
endpoints 10−8 and 1: a smaller grid, with 9 logarithmically evenly spaced points,

Λ̃s =
{

10−k, for k ∈ {0, 1, . . . , 8}
}
,

and a larger grid, with 25 logarithmically evenly spaced points,

Λ̃` =
{
m× 10−k, for k ∈ {1, . . . , 8} and m ∈ {1, 2.5, 5}

}
∪ {1} .

The performance on these grids with respect to the best constant choice of
η in hindsight (as discussed in Table 3) is summarized in Table 5. We note that
the good performance obtained for the best choices of the parameters in hindsight
is preserved by the adaptive meta-rules resorting to the grids. The sequences of
choices of η on the largest grid Λ̃` are depicted in Figure 7.



Forecasting the electricity consumption by aggregating specialized experts 29

0 200 400 600 800 1000

−
5

−
4

−
3

−
2

−
1

Days

lo
g
(e
ta
)

0 200 400 600 800 1000

−
8

−
7

−
6

−
5

−
4

−
3

Days

lo
g
(e
ta
)

Fig. 7 Graphical representations of the sequences of tuning parameters η chosen by the

meta-rule selecting sequentially the values on the grid Λ̃`; the base rules are Egradη (left) and
Eη (right).

Table 6 Performance obtained by the rules Fη,α and Fgrad
η,α for the best constant choices of

η and α in hindsight (left) and when used as keystones of a meta-rule selecting sequentially

the values of η and α on the grid Λ̃FS (right).

Best constant pair (η, α) Grid Λ̃FS

rmse of Fη,α 27.0 27.8

Fgrad
η,α 27.2 28.5

Application to the fixed-share type rules Fη,α and Fgrad
η,α Two parameters have to

be tuned here; we take a finite grid in Λ = (0,+∞) × [0, 1], e.g., following the
methodology above,

Λ̃FS =
{

(10−k, α), for k ∈ {0, 1, . . . , 8} and α ∈ {0.01, 0.05, 0.1, 0.2, 0.3, 0.4}
}
.

The performance on this grid with respect to the best constant choices of η
and α in hindsight (as discussed in Table 4) is summarized in Table 6. Here also,
we note that the good performance obtained for the best choices of the parameters
in hindsight is preserved by the adaptive meta-rules resorting to the grids. The
sequences of choices of η and α on the grid Λ̃FS for the meta-rule based on Fgrad

η,α

are depicted in Figure 8.

5 A second data set: Operational forecasting on French data

We use again the methodology in four steps described in Section 3, whose results
are reported in Sections 5.1–5.4. We also provide a robustness study in Section 5.5.
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Fig. 8 Graphical representations of the sequences of tuning parameters η (left) and α (right)

chosen by the meta-rule selecting sequentially the values on the grid Λ̃FS; the base rule is
Fgrad
η,α .

5.1 Presentation and characteristics of the data set; design of the experts

5.1.1 Characteristics of the data set

The data set used in this part is the standard data set used for the calibration
of the EDF short-term models for the French electricity load. It includes half-
hourly electricity data and meteorological observations (temperature and cloud
cover) throughout the French territory. Load data are built by EDF based on the
French load data measured and provided by the French national grid company,
RTE (“Réseau de transport d’électricité”). Meteorological data is issued by the
French weather-forecasting institution Météo-France.

This data set is divided into two parts: the first part ranges from September 1,
2002 to August 31, 2007 –we call it the estimation set; the second part covers the
period from September 1, 2007 to August 31, 2008 –we call it the validation set.
The experts we consider in this part are trained over the estimation set and then
provide base forecasts throughout the period corresponding to the validation set,
which we aggregate. Actually, we exclude some special days from the validation
set. Out of the 366 days between September 1, 2007 and August 31, 2008, we
keep 320 days. The excluded days correspond to public holidays (the day itself,
as well as the days before and after it), daylight saving days and winter holidays
(that is, the period between December 21, 2007 and January 4, 2008); however,
we include the summer break (August 2008) in our analysis as we have access to
experts that are able to produce forecasts for this period. Other particular days
exist and correspond to temporary changes of the fare prices in order to reduce
expected high consumption (mainly due to low temperature); they are included in
the validation set whenever a preprocessing based on EDF commercial data was
available. For a more detailed description of this data set we refer the interested
reader to Dordonnat et al. [2008].

The characteristics of the observations (formed by half-hourly mean consump-
tions) on the validation set yt are described in Table 7. In this part as well, we
omit the unit GW (gigawatt) of the observations and predictions of the electricity
consumption, as well as the one of their corresponding rmse. Note that this time
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Table 7 Some characteristics of the observations yt (half-hourly mean consumptions) of the
French data set of operational forecasting.

Number of days D 320

Time intervals Every 30 minutes

Time instances T 15 360 (= 320× 48)

Number of experts N 24 (= 15 + 8 + 1)

Unit GW

Median of the yt 56.33

Bound B on the yt 92.76

we do not split anymore the data set into subsets; this is explained in details below
and comes from two facts: the data set is smaller (and thus the data subsets would
be too small) and we need to abide by an operational constraint.

5.1.2 Design of the experts

The experts we consider here come from three main categories of statistical mod-
els: parametric, semi-parametric, and non-parametric models. The reason for this
choice is two-fold: first, we believe that combining base forecasters is particularly
useful when they are heterogenous and exhibit varied enough behaviors; and sec-
ond, EDF could provide these three types of models. We report below a short
description of the experts of each category but refer the reader to Devaine et al.
[2009] for more details.

The parametric model used to generate the first group of experts is described
in Bruhns et al. [2005] and is implemented in an EDF software called “Eventail.”
We mention briefly that this model is based on a nonlinear regression approach that
consists of decomposing the electricity load into a main component including all the
seasonality effects of the process together with a weather-dependant component.
To this nonlinear regression model is added an autoregressive correction of the
error of the short-term forecasts of the last seven days. Changing the parameters
(the gradient of the temperature, the short-term correction) of this model, we
derive 15 experts. For conciseness we refer to them as the Eventail experts.

The second group of experts comes from a generalized additive model (hence-
forth referred to as the GAM model) implemented in the software R by the mgcv

package developed by Wood [2006]. This model is presented in Pierrot et al. [2009]
and imports the idea of the parametric modeling presented above into a semi-
parametric modeling. One of the key advantages of this model is its ability to
adapt to changes in consumption habits while parametric models like Eventail
need some a priori knowledge on customers behaviors. Here again, we derive dif-
ferent experts from the GAM model by changing the trend extrapolation effect
(which accounts for the yearly economic growth) or the short-term effects like the
one-day-lag effect; these changes affect the reactivity to changes along the run.
Doing so, we obtained 8 experts, which we call the GAM experts.

The last expert is drastically different from the two previous groups of experts
as it relies on a univariate method (i.e., a method not requiring any exogenous
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Fig. 9 Graphical representations of the performance of the experts of the French data set
of operational forecasting: sorted rmse (left) and rmse–frequency of activity pairs (right);
Eventail experts are depicted by the symbols •, GAM experts are represented by 4 while ?
stands for the similarity expert.

factor like weather conditions); this method is presented in Antoniadis et al. [2006]
and Antoniadis et al. [2010]. Its key idea is to assume that the load is driven by
an underlying stochastic curve and to view each day as a discrete recording of this
functional process. Forecasts are then performed according to a similarity measure
between days. We call this expert the similarity expert.

The characteristics of the experts presented above are depicted in Figure 9.
Similarly to the study of Slovakian data, the bar plot represents the (sorted)
values of the rmse of the 24 available experts. The scatter plot relates the rmse of
each of the expert to its frequency of activity, that is, it plots the pairs indicated
in (13).

Out of the 15 Eventail experts, 3 are active all the time; they correspond to the
operational model actually used at the R&D center of EDF and to two variants
of it based on different short-term corrections. The other 12 Eventail experts are
inactive during the summer as their predictions are redundant with the 3 main
Eventail experts (they were obtained by changing the gradient of the temperature
for the heating part of the load consumption, which generates differences to the
operational model in winter only). GAM expert are active on an overwhelming
fraction of the time and are sleeping only during periods when R&D practitioners
know beforehand that they will perform poorly (e.g., in time periods close to public
holidays); the lengths of these periods depend on the parameters of the expert.
Finally, the similarity expert is always active.

5.1.3 Addition of an operational constraint

We still consider one-day-ahead prediction, with an operational constraint in this
part: it consists of producing half-hourly forecasts every day at 12:00 for the next
24 hours (as required by the R&D services of EDF); that is, of forecasting simul-
taneously the next 48 time instances. The experts presented above abide by this
constraint.

Of course, we could still mimic the methodology indicated in Section 4.1 and
decompose the French data set into 48 smaller data sets of equal size. However,
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Table 8 Definition and performance of several (possibly off-line) benchmark procedures on
the French data set of operational forecasting; they serve as comparison points for on-line
procedures.

Name of the benchmark procedure Formula Value

Uniform sequential aggregation rule rmse(U) = 0.724

Uniform convex weight vector rmse
(
(1/24, . . . , 1/24)

)
= 0.748

Best single expert min
j=1,...,24

rmse(j) = 0.782

Best convex weight vector min
q∈X

rmse(q) = 0.683

Best compound expert

Size at most m = 50 min
jT1 ∈L50

rmse
(
jT1
)

= 0.534

Size at most m = 100 min
jT1 ∈L100

rmse
(
jT1
)

= 0.474

Size at most m = T − 1 = 15 359 min
jT1 ∈E1×E2×...×ET

rmse
(
jT1
)

= 0.223

Table 7 indicates that doing so, this common size would be of 320 observations,
which is rather small. Hence, we are not willing this time to decompose the fore-
casting problem into parallel sub-forecasting procedures; we require instead that
the proposed aggregation rules only output predictions (i.e., weight vectors) every
48 steps and that when doing so, they provide 48 such predictions. Section 5.3.1 ex-
plains the (slight) modifications that need to be performed for the rules described
in Section 2.3 to abide by this constraint.

Note that the 48 weight vectors simultaneously output can be different; they
even must be different when some experts get inactive or active during the set of
48 time instances for which predictions are to be performed.

5.2 Benchmark values: performance of the experts and of some oracles

Before doing so, we report in Table 8 the performance obtained by most of the
oracles already discussed in Section 4.2. We do not report here the performance
obtained by considering partitions of the time in terms of the values of the active
sets Et, as, on the one hand, the study of Section 4.2 showed that even when the
number of elements K in the partition was large, the compound experts had better
performance, and on the other hand, the value of K is small here (K = 7); these
two facts explain that the performance of the oracles based on partitions is to be
poor on this data set.

We note the disappointing performance of the best single expert with respect
to the naive rule U . Unlike in Section 4.2, this comes from our experts being
more active in challenging situations. Indeed, the rule U also performs better than
the uniform convex weight vector, which induces at each time instance the same
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forecast as the rule U but for which the loss incurred at a given time instance
is more weighted as more experts are active. All in all, the poor performance of
the best single expert or of the uniform convex weight vector are caused by the
considered specialized experts being more active and more helpful when needed.

From Table 8 we mostly conclude the following. The true benchmark values
from the first part of the table are the rmse of the rule U –that all fancy rules
have to outperform to be considered worth the trouble– and the rmse of the best
convex weight vector. The second part of the table indicates that important gains
in accuracy are obtained with compound experts (and therefore, fixed-share type
rules are expected to perform well).

5.3 Results obtained by the sequential aggregation rules: With constant
parameters

5.3.1 Extension of the previous rules to operational forecasting

Before describing the detailed performance of the sequential aggregation rules
(among which we consider only in this section the families of exponentially weighted
average and fixed-share type rules), we need to describe how we extended them so
as to deal with the constraint that predictions need to be output for the next 24
hours, i.e., for the next 48 time instances. (In the setting of Slovakian data, fore-
casts also needed to be made 24 hours ahead of time but this constraint could be
somewhat discarded by running in parallel an aggregation rule per time interval.)

The high-level idea is to run the original rules on the data (called below the
base rules), access to the proposed convex weight vectors only at time instances
of the form tk = 48k + 1, and use these vectors for the next 48 time instances, by
adapting them via a renormalization or a mixing to the values of the active sets
Etk+1, . . . , Etk+48.

We do so to be able to provide theoretical bounds on the regret. Indeed, as will
be clear from the algorithmic statements of the extensions, the weights output by
the base rules are, for all t, not too far from the adaptations that have to be made
(and of course, coincide with them at the time instances tk). This is because in
the studied rules a fixed number of losses, namely the ones between the last tk and
the current instance t, count much less than the past losses (the ones encountered
between the instances 1 and tk − 1).

We also propose another extension, which is related to the structure of the set
of experts. The latter are of three different types and experts of the same type are
obtained as variants of a given prediction method (GAM, Eventail, or functional
similarity estimation). It would be fair to allocate an initial weight of 1/3 to the
group of GAM experts, which turns into an initial weight of 1/24 to each of the
8 GAM experts; a weight of 1/3 to the group formed by the 15 Eventail experts,
that is, an initial weight of 1/45 to each of them; and an initial weight of 1/3 to
the similarity expert.

We denote by pj,0 the initial weight of an expert j. We will call fair initial
weights the convex weight vector described above (with components equal to 1/3,
1/24, or 1/45) and uniform initial weights the vector defined by pj,0 = 1/24 for
all experts j. The effect of this on the regret bounds, e.g., (8) or (10), is the
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replacement of lnN by maxj ln 1/pj,0. This does not change the order of magnitude
in T of the regret bounds but only increases them by a multiplicative factor.

Adaptations of the exponentially weighted average rules We will denote the opera-
tional adaptations of the rules of Section 2.3.1 by Wη and Wgrad

η to distinguish
them from the base versions Eη and Egrad

η .
For instance, Wη uses, at time t = 1, 2, . . . , T , the weight vector pt defined by

pj,t =
pj,0 e

ηR48b(t−1)/48c(Eη,j) I{j∈Et}∑
k∈Et pk,0 e

ηR48bt/48c(Eη,k)
, (16)

for all experts j, with the usual convention that empty sums equal 0.
In particular, the only difference between the definitions (7) and (16) in the

case of uniform initial weights pj,0 = 1/24 is that not all past losses are used at
time instance t, but only the ones that were available at the time instance when
the forecast of the observation at round t was to be output, that is, after round
48b(t− 1)/48c and before round 48b(t− 1)/48c+ 1. (The notation bxc denotes the
lower integer part of a real number x.) This ensures that the weights pt(Wη) output
by the adaptation are not too far from the weights pt(Eη) of the base version, thus
preserving a sublinear bound on the regret of Wη, as desired. We quantity this
fact in the proof below.

A similar adaptation is considered for the gradient version of the exponentially
weighted average rule; it suffices to consider in (9) the values of the regrets at
rounds 48b(t− 1)/48c instead of the values at rounds t− 1.

Proof (of a regret bound on Wη; sketched) We provide a proof by approximation
and show that the regret of Wη is bounded by the regret of Eη plus some small
term. To do so, we compare the definitions (7) and (16), e.g., in the case when
pj,0 = 1/24 for all experts j. Since R48b(t−1)/48c(Eη, j) and Rt−1(Eη, j) differ by at

most 47 instantaneous regrets, each of which is bounded between −B2 and B2,
the ratio between the numerators of (7) and (16), as well as the one between their

denominators, lie in the interval
[
e−47ηB2

, e47ηB
2]

. Therefore, the ratios of the

weights defined in (7) and (16) are in the interval
[
e−94ηB2

, e94ηB
2]

. Thus, using
a subgradient bound, the difference between the regrets of interest can be bounded
as

RT (Wη, j)−RT (Eη, j) 6 2B2 max
{
eη94B

2

− 1, 1− e−η94B
2
}
T ,

which, for η small enough, is of the order of B4ηT . Taking η of the the order of
1/
√
T , which is also the optimal order of magnitude for the bound on RT (Eη, j)

stated in Proposition 1, entails that RT (Wη, j) = O
(√
T
)

= o(T ), as asserted
above.

Adaptations of the fixed-share type rules We only describe in detail the extension
Gη,α of the (basic) fixed-share aggregation rule Fη,α to operational forecasting; the
methodology is the same for the gradient versions Ggrad

η,α and Fgrad
η,α .

As is illustrated in its statement in Figure 10, Gη,α basically needs to run an
instance of Fη,α and to access to its proposed weight vector every 48 rounds. We
stated the extension in this way to highlight that it gets synchronized with the base
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Parameters: η > 0 and 0 6 α 6 1, as well as an initial convex weight vector
(
p1,0, . . . , pN,0

)
Initialization: (w1,0, . . . , wN,0) =

(
p1,0 I{1∈E1}, . . . , pN,0 I{N∈E1}

)
For each round t = 1, 2, . . . , T ,

(1) ŷt =
1∑N

k=1 wk,t−1

N∑
j=1

wj,t−1 fj,t ;

(2) [loss and share updates]
if t = 48k for some k, observe yt−47, . . . , yt and takea (w1,t, . . . , wN,t) = pt+1(Fη,α);

(3) [share update]
otherwise (when t is not a multiple of 48), let wj,t = 0 if j 6∈ Et+1 and

wj,t =
1

|Et+1|
∑

i∈Et\Et+1

wi,t−1 +
α

|Et+1|
∑

i∈Et∩Et+1

wi,t−1 + (1− α) I{j∈Et∩Et+1} wj,t−1

if j ∈ Et+1 (with the convention that an empty sum is null).

a pt+1(Fη,α) is the convex weight vector chosen by the rule Fη,α after seeing the sequence
of observations y1, . . . , yt and the corresponding experts predictions; we use here the same
notation as in Section 3.2, where we indicated in parentheses the name of the rule whenever
it was needed. Here, the rule Gη,α thus synchronizes again with Fη,α at steps t of the form
t = 48k for some k.

Fig. 10 The extension Gη,α of the (basic) fixed-share aggregation rule Fη,α to operational
forecasting.

rule Fη,α every 48 time instances, but of course more efficient implementations of
Gη,α could exist.

The interesting and crucial point is the behavior of the rule Gη,α between two
such synchronizations. In Figure 3, the base rule was performing, at each time
instance, a loss update in step (2) and a share update in step (3); the latter
update was used to deal with the setting of specialized experts, i.e., with the fact
that some experts become inactive at the next time instance and some others
become active again, while the former update was to set the weights in accordance
to the performance of each of the experts. Of course, in operational forecasting,
the adjustments with respect to the individual performance of the experts can
only be performed every 48 time instances but the share updates still need to be
performed at each time instance, since the values of the sets of active experts Et
may (and do) vary within a day (i.e., within a round of 48 time instances). When
losses become available, the loss and share updates are done as they should have
been done without the operational constraint: this is the meaning of the call to
Fη,α in step (2) of Figure 10.

Finally, we note that a proof by approximation totally similar to the one pro-
vided above shows that the regrets of Gη,α and Fη,α do not differ by much, at least
when η is small.

5.3.2 Performance of exponentially weighted average rules: With constant parameters

The performance of the extensions Wη and Wgrad
η described above is summarized

in Table 9. As indicated in Section 2.3, it should be compared, respectively, to the
performance of the best single expert (for Wη) and to the one of the best convex
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Table 9 Performance obtained by the sequential aggregation rules Wη and Wgrad
η based on

exponentially weighted averages for various choices of η; the smallest value for each rule is
underlined.

Values of η 10−6 10−5 10−4 2× 10−4 10−3 5× 10−3 10−2

rmse Wη (unf.) 0.724 0.722 0.718 0.731 0.788

Wη (fair) 0.736 0.731 0.695 0.683 0.722 0.789

Wgrad
η (unf.) 0.724 0.722 0.712 0.683 0.650 0.668

Wgrad
η (fair) 0.737 0.733 0.711 0.674 0.651 0.670

weight vector (for Wgrad
η ). We recall that these two values are reported in Table 8

but we indicated in the comments to it that the only interesting benchmark value
among the oracles of the first part of the table was the rmse of the best convex
weight vector, equal to 0.696.

We note that Wη and Wgrad
η , when run with a fair initial allocation of weights

rather than a uniform one and when tuned with the best parameter η in hindsight,
outperform this comparison point. It is also worth noting that the performance of
the gradient version Wgrad

η is not sensitive to the initial allocation of weights and
that in all cases a relative improvement of about 6 % is obtained with respect to
the performance of the best convex weight vector.

Here again, as already mentioned for the Slovakian data set in Section 4.3,
the best constant choices in hindsight are far away from the theoretically optimal
ones, given by values η? of the order of 10−6 on the present data set. For such
small values of η, the rules are basically equivalent to the uniform aggregation rule
U , as is indicated by the performance reported in Table 9.

5.3.3 Performance of fixed-share type rules: With constant parameters

For both off-line and on-line performance, we considered uniform and fair initial
allocations of the weights and resorted to the grid

Λ̃FS-France =
{(
m× 10k, α

)
, for m ∈ {1, 5}, k ∈ {−6, . . . , 0, . . . , 4},

and α ∈ {0, 0.001, 0.01, 0.05, 0.1, 0.2}
}
.

(Section 5.4 will explain how to construct this grid in some adaptive way; we take
it as given for the time being.) Actually, it turned out that the performance of
the algorithms did not depend on whether the initial weight allocation was fair or
uniform so that we report only the results obtained by the latter in the sequel.

The performance of the extensions Gη,α and Ggrad
η,α to operational forecasting de-

scribed above in Section 5.3.1 is summarized in Table 10. The comparison points
are given by the best compound experts studied in Table 8; the best compound ex-
pert with 50 (unconstrained) shifts is already an excellent competitor with respect
to our forecasters.

From Table 8 we expect a significant gain of performance when resorting to
forecasters tracking the performance of the compound experts and this is what
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Table 10 Performance obtained by the sequential aggregation rules Gη,α and Ggrad
η,α run with

an initial uniform allocation of the weights for various choices of η and α on the grid Λ̃FS-France;
the smallest value for each rule is underlined.

Values of η 0.01 0.01 0.01 1 1 1 500 500 500

of α 0.001 0.01 0.05 0.001 0.01 0.05 0.001 0.01 0.05

rmse Gη,α 0.678 0.683 0.704 0.711 0.659 0.652 0.674 0.633 0.632

Ggrad
η,α 0.646 0.669 0.700 0.622 0.598 0.637 0.683 0.675 0.671

Table 11 Performance obtained by the rulesWη andWgrad
η for the best constant choice of η

in hindsight (left) and when used as keystones of a meta-rule selecting sequentially the values

of η on the grid Λ̃W (right).

Best constant η Grid Λ̃W

rmse of Wη (unf.) 0.718 0.723

Wη (fair) 0.683 0.696

Wgrad
η (unf.) 0.650 0.654

Wgrad
η (fair) 0.651 0.662

we read in Table 10, where the rmse can get slightly better than 0.6; the relative
improvement in the performance with respect to the results of Table 11 is almost
10 %.

5.4 Construction and performance of fully adaptive aggregation rules

5.4.1 Performance of adaptive aggregation rules using given grids

Exponentially weighted average rules Like for the previous data set, to set the grid
used in Table 9, we started around the theoretical optimal value and then per-
formed logarithmic increments. Following the methodology of Section 3.2 we use
it also to set the grid Λ̃W of on-line tuning of the η as

Λ̃W =
{
m× 10−k, for k ∈ {1, . . . , 6} and m ∈ {1, 2.5, 5}

}
∪ {1} ,

which contains 19 logarithmically evenly spaced points. The choice of the upper
bound 1 considered here will be explained and made automatic in Section 5.4. The
performance on this grid with respect to the best constant choice of η in hindsight
(as discussed in Table 9) is summarized in Table 11. Again, the fully sequential
character of the meta-rule comes almost at no cost in the performance.

The sequence of weights chosen by the meta-rule based on theWgrad
η run with a

fair initial allocation of the weights, as well as the sequence of η chosen at each step,
are depicted in Figure 11. Again, the sequence of the weights exhibits absolutely
no convergence; large changes in the allocated weights occur over time.
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Fig. 11 Graphical representations of the sequences of weights (left) and tuning parameters
η (right) chosen by the meta-rule based on theWgrad

η run with an initial fair weight allocation

and selecting sequentially the values on the grid Λ̃W .

Table 12 Performance obtained by the rules Gη,α and Ggrad
η,α run with an initial uniform

weight allocation for the best constant choices of η and α in hindsight (left) and when used

as keystones of a meta-rule selecting sequentially the values of η and α on the grid Λ̃FS-France

(right).

Best constant pair (η, α) Grid Λ̃FS-France

rmse of Gη,α 0.632 0.644

Ggrad
η,α 0.598 0.599

Fixed-share-type rules The excellent performance for the best-in-hindsight param-
eters is almost unaffected when the adaptive version based on the grid Λ̃FS-France

is considered; see Table 12. A graphical representation of the weights and of the
tuning parameters chosen by the meta-rule based on the Gη,α is provided in Fig-
ure 12.

5.4.2 Adaptive constructions of the grids

In Sections 3.2, 5.3.2, and 5.3.3 we did not clarify how to choose the maximal (and
also the minimal) possible value(s) of η in the considered grids; the minimal values
were defined in some intrinsic way (at a value close to η?) but it is true that in
practice, the order of magnitude of η? may be unknown. We however indicated
therein that our simulations showed that the step of the grid was not a crucial
parameter and that the results were not too sensitive to it. Therefore, the most
critical issue that remains to be dealt with is the choice of the two endpoint values
of η. In Sections 3.2 and 5.3.2 we stopped the grid somewhat arbitrary at the
value 1; Section 5.3.3 showed however that values of η larger than 1 could yield
some improvements. We propose the following procedure to perform automatic
and efficient choices of the upper bound of the grid (and also, when needed, of the
lower bound).
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Fig. 12 Graphical representations of the sequences of weights (top) and tuning parameters η
(bottom, left) and α (bottom, right) chosen by the meta-rule selecting sequentially the values

on the grid Λ̃FS-France; the base rule is Gη,α run with an initial uniform weight allocation.

The procedure is based on the observation that in Figures 7, 8, 11, and 12 the
sequences of values chosen on-line for the parameters using the method described in
Section 3.2 are asymptotically (essentially) constant; that is, provided that the grid
is large enough and the best constant choice in hindsight of the parameter lies in the
grid, it was always the case in our experiments that a highly-performing constant
choice was found after a period of time and the measured average performance
was close to the one of this final parameter.

It thus seems that it suffices to ensure that the grid is large enough, i.e., that
it covers a large enough spectrum. This can be implemented by extending on-
line the grid considered originally as follows. We let the user fix a finite starting
grid (with logarithmically evenly spaced points) and check at each time instance
whether the next increment of the maximal value –or the previous increment of
the minimal value– of the parameter of the current grid would have obtained a
better performance when being used as a constant choice than any other point in
the current grid; if this is the case, this increment is added to the current grid for
the remaining time instances. The upper, respectively, lower bounds, of the grids
can therefore only increase, respectively, decrease, over time but in practice, once
the stationarity level of the sequences of on-line calibrated parameters is reached
no further addition is made to the grid.
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For example, in the setting of Section 5.3.3, if the initial grid had been set to

Λ̃FS-small =
{(
m× 10k, α

)
, for m ∈ {1, 5}, k ∈ {−6, . . . , 0, 1},

and α ∈ {0, 0.001, 0.01, 0.05, 0.1, 0.2}
}
,

the above method would quickly have added (some of the values) 100, 500, 1 000,
5 000, 10 000 to the grid of the η; it would then have achieved almost the same
performance as the one discussed in Section 5.3.3, where the initial grid already
contained all these values. Note that Figure 12 (bottom, left) shows that no larger
values than 10 000 were considered in Section 5.3.3 despite the fact that the grid
contained one larger such value (50 000).

5.5 Robustness study of the considered aggregation rules

In this section we move from the study of global average behaviors of the aggrega-
tion rules (as measured by their rmse) to a more individual analysis, based on the
scattering of the prediction residuals ŷt− yt. The rmse is indeed a global criterion
and we want to check that the overall good performance does not come at the
cost of local disasters in the accuracy of the aggregated forecasts. To that end we
split the data set by the half hours into 48 sub-data sets; for each of these subsets
we compute the rmses of some of the benchmarks and aggregation rules discussed
above and study also the scattering of the (absolute values of the) prediction resid-
uals. This is to see whether the good average behavior exhibited comes or not at
the cost of some disastrous forecasts from time to time.

To do so we consider the respective best fully sequential aggregation rules of
Sections 5.3.2 and 5.3.3, that is, the meta-forecasters using the families of Wgrad

η

and Ggrad
η,α run with initial uniform weight allocations and calibrating their param-

eters on a grid. We use as benchmarks the (overall) best single expert and the
(overall) best convex weight vector, whose performance was reported in Table 8.

Figure 13 plots the half-hourly rmse of these two aggregation rules and of these
two benchmarks. It shows that the performance of the rule based on exponential
weighted averages is, uniformly over the 48 elements of the partition of days in
half hours, at least as good as the one of the best constant convex combination of
the experts forecasts. The performance of the rule based on fixed-share aggrega-
tion rules is intriguing: its accuracy is significantly improved with respect to the
one of the latter benchmark between 12:00 and 21:00 but is also slightly worse
than the latter between 6:00 and 12:00. It thus seems that this rules has excellent
performance on very short-term horizon and would strongly benefit from an inter-
mediate update around midnight (that goes however, as it stands now, against the
operational constraint). We can provide no reason for this behavior yet; a further
study of this behavior and its benefits is left to future research.

As a measure of robustness, we plot in Figures 14 and 15 quantities related
to the distribution of the residuals of the forecasts, that is, the difference between
the actual consumptions yt and the forecasts output by the rules and benchmarks
described above. Here again, we grouped the residuals by half hours. Figure 14
represents the medians, the third quartiles, and the 90 % quantiles of the absolute
values of the residuals. The graphs of Figure 15 are concerned with the behavior
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Fig. 13 Half-hourly rmse of the meta-rules based on the rules Wgrad
η (symbol: �) and Ggrad

η,α

(symbol: •) and calibrating them respectively on the grids Λ̃G and Λ̃FS-France; as well as the
ones of the best overall single expert (solide line) and of the best overall convex weight vector
(dashed line).

of the signed residuals, with the medians and the first and third quartiles on the
top graph and the interquartile distances on the bottom graph. They all confirm
the story stated above based on the study of the average half-hourly rmse. In
addition, we see that the distributions of the errors of the aggregation rules are
more concentrated than the ones of the best benchmarks, which indicates that
their good overall performance does not come at the cost of some local disasters
in the quality of the predictions.

All in all, we conclude that the best aggregation rules never encounter large
prediction errors in comparison to the best expert or to the best convex combina-
tion of experts and often encounter much smaller such errors. This is strongly in
favor of their use in an industrial context where large errors can be highly prejudi-
cious (potential issues range from financial penalties to black outs). In a nutshell,
aggregation rules can reduce the risk of prediction, which is one important pro for
operational forecasting.

6 Conclusions and open questions

6.1 Theoretical achievements and open questions

Achievements We reviewed and extended known aggregation rules for the case of
sleeping experts. First, we provided a general analysis of the specialist aggregation
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Fig. 14 Using the same rules and benchmarks as in Figure 13, with the same legend: 50 %
(black), 75 % (grey), and 90 % (black) quantiles of the absolute values of the residuals, grouped
per half hours.

rules of Freund et al. [1997] for all convex loss functions, while the original reference
needed an ad hoc analysis for each loss function of interest. Second, we showed how
the fixed-share rules of Herbster and Warmuth [1998] can accommodate specialized
experts: they form a natural and efficient alternative to the specialist aggregation
rules. Finally, for all these rules, as well as the exponentially weighted average
ones, we indicated how to extend them so as to take into account some operational
constraint of outputting simultaneous forecasts for a fixed number of future time
instances.

Open questions All studied rules perform convex aggregation while in practice (see,
e.g., Mallet et al. [2009]) linear combinations of the experts forecasts can lead to
significant improvements in the accuracy of the aggregated forecasts. For instance,
a useful set of aggregation rules in the context of non-specialized experts is given
by regularized least-square aggregation rules (like the sequential ridge regression);
but –to the best of our knowledge– no extension of them to the case of special-
ized experts is known. In the technical report Devaine et al. [2009] we reported
some preliminary attempts towards such an extension but largely failed achieving
reasonable rules with satisfactory performance.

In addition –as is possible with the Bayesian model averaging techniques dis-
cussed in the introduction– the aggregated forecasts should come with a measure of
their uncertainties; the latter would be provided either by the aggregation of some
measures of uncertainties related to the base forecasts provided by the experts or
by a mere inspection of the dispersion of the base forecasts themselves. Indeed,
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Fig. 15 Using the same rules and benchmarks as in Figure 13, with the same legend: 25 %
(black), 50 % (grey), and 75 % (black) quantiles (top graph) and interquartile distances (bottom
graph) of the signed values of the residuals, grouped per half hours. For the sake of readability,
the values for the best constant convex combination are not displayed on the top graph.
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the more concentrated are the latter around a given value, the more confident a
strategy should be about its own aggregated forecast. Getting a quantification of
these uncertainties in the framework of prediction of individual sequences will be
our next move in this line of research.

6.2 Methodological contributions to the applications of prediction with experts
advice to real data

We introduced a general methodology (in four steps, see Section 3) to apply the
aggregation rules to real data sets. Previous empirical studies (like the ones men-
tioned in the introduction) often followed its first three steps and did not devote
enough energy to the fourth and most important step, in which the true opera-
tional performance is studied.

This fourth step consists, indeed, of a general way of efficiently tuning on-line
the few (one or two) parameters needed for each aggregation rule, based on the
past performance of all members of the family of rules at hand. Good practical
performance was demonstrated but a theoretical guarantee of performance (with
respect to the best member of the family in hindsight) would be appreciated, as
indicated in Section 3.2; this does not seem to be a trivial task and is the subject
of an on-going work.

6.3 Empirical conclusions

In this paper we showed the interest of ensemble methods in the prediction of
electricity consumption; the sequential aggregation rules we discussed are black-
box ways to improve on a set of base forecasting methods. In particular, for the
two data sets studied the best rules, given by fixed-share type rules, improve on
the best constant convex combination of the experts by about 5 % (Slovakian data
set) to about 15 % (French data set). In addition, we noted that resorting to the
gradient trick described in Section 2.2.4 always improved the performance of the
underlying aggregation rule.

All in all, the line of research developed in this paper comes as a complement
to the design of good base forecasters; if benefits from the consideration of sev-
eral as different as possible base forecasters. It is not in opposition but on top
of the more classical problem of constructing the latter. Note that it suffices to
design specialized forecasters; they only output forecasts in the contexts when the
methods they rely on are known to be efficient.

The raw improvement in terms of the global performance, as measured by the
rmse, of the sequential aggregation rules over the experts, also comes together
with a reduction of the risk of large errors: the studied aggregation rules are more
robust than the base forecasters they are using. (As far as robustness is concerned,
we recall that we raised an open question on the empirical performance of the
fixed-share type rules in Section 5.5.)
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7 Omitted proofs

7.1 Proof of Proposition 2

The following proof is a straightforward adaptation of the techniques presented
in [Cesa-Bianchi and Lugosi, 2006, Section 5.2]. Its only merit is to show how the
share update was obtained in Figure 3.

Proof (of Proposition 2) We first note that by convexity of the `t,

max
jT1 ∈Lm

RT
(
Fη,α, jT1

)
6

T∑
t=1

∑
i∈Et

pi,t`t(δi)− `t
(
δjt
) . (17)

We now use the same proof scheme as in [Cesa-Bianchi and Lugosi, 2006, Sec-
tion 5.2] and show that the rule Fη,α is simply an efficient implementation of the
rule that would, at each round t, choose a convex weight vector p′t with components
proportional to

p′j,t ∝ w′j,t−1 =


0 if j 6∈ Et,∑
jT1 ∈L

ν
(
jT1
)
e−η

∑t−1
s=1 `s(js) I{jt=j} if j ∈ Et,
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where ν is some prior probability distribution over L, to be defined below. It then
follows from [Cesa-Bianchi and Lugosi, 2006, Lemma 5.1] that for all jT1 ∈ L,

T∑
t=1

∑
i∈Et

p′i,t`t(δi)− `t
(
δjt
) 6 1

η
ln

1

ν
(
jT1
) +

ηL2T

8
. (18)

To get the stated bound, we thus need, one the one hand, to define the distri-
bution ν, and on the other hand, to show that Fη,α indeed performs the efficient
implementation indicated above.

[First part: Definition of ν] In the sequel we denote by |E| the cardinality of a
subset E of {1, . . . , N}. We fix a real number α ∈ [0, 1] and consider the following
probability distribution ν over the sequences of (legal and illegal) experts, i.e.,
over {1, . . . , N}T . For each element jT1 ∈ L, we denote by m its size, by t1, . . . , tm
the instances 1 6 t 6 T − 1 such that jt 6= jt+1, and by T the set of instances
1 6 t 6 T − 1 such that jt = jt+1; we then set

ν
(
jT1
)

=
1

|E1|
∏
t∈T

(
1− α+

α

|Et+1|

) m∏
s=1

(
α

|Ets+1|
I{jts∈Ets+1} +

1

|Ets+1|
I{jts 6∈Ets+1}

)
;

for jT1 6∈ L, we set ν
(
jT1
)

= 0. This application ν indeed defines a probability
distribution as can be seen by introducing the uniform distribution µ1 over E1

and the following transition functions Trt : {1, . . . , N}2 → [0, 1]; for all i, j,

Trt(i→ j) =


0 if j 6∈ Et+1; (19)

(1− α) + α
/
|Et+1| j ∈ Et+1 and i = j; (20)

α
/
|Et+1| j ∈ Et+1, i ∈ Et+1, and i 6= j; (21)

1
/
|Et+1| j ∈ Et+1 and i 6∈ Et+1. (22)

Its interpretation is as follows. We never switch to an inactive expert, as is ensured
by (19). If we can stay on the same expert (if the current expert remains active),
then we do so with a probability slightly larger than 1−α, see (20). If we could have
stayed on the same expert, then (19) indicates that we switch with probability
α/|Et+1| to a different expert in Et+1. Finally, (22) controls the case when the
current expert becomes inactive and we need to switch to a new expert for the
compound expert to be legal.

Now, we note that for all i and t, by distinguishing whether i ∈ Et+1 or i 6∈ Et+1,

N∑
j=1

Trt(i→ j) = 1

and that, for all jT1 ∈ {1, . . . , N}T (all of them–the legal and the illegal ones),

ν
(
jT1
)

= µ1(j1)
T−1∏
t=1

Trt
(
jt → jt+1

)
. (23)

To prove the stated bound, assuming we have proven as well that pt = p′t for
all t (which we do below, in the second part of the proof), it suffices to combine
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(17) and (18) with the following immediate lower bound on the ν
(
jT1
)
,

ν
(
jT1
)
>

1

N

(∏
t∈T

(1− α)

)(
m∏
s=1

α

N

)
=

1

N
(1− α)T−m−1

(
α

N

)m
,

which we obtained by upper bounding all cardinalities |Et| by N in the definition
of ν and by using 0 6 α 6 1. (The obtained bound is actually exactly the one
of [Cesa-Bianchi and Lugosi, 2006, Theorem 5.2], due to the loose way we lower
bounded ν.)

[Second part: Proof of the efficient implementation] The proof goes by induction
and mimics exactly the one of [Cesa-Bianchi and Lugosi, 2006, Theorem 5.1]. It
suffices to show that for all j ∈ {1, . . . , N} and t ∈ {0, . . . , T−1}, one has wj,t = w′j,t.
To do so, we first note that thanks to (23), the distribution ν can be interpreted
as the distribution of an inhomogeneous Markov process, hence (23) indicates the
distribution that ν induces over {1, . . . , N}s, for all 1 6 s 6 T ; the latter is given
by simply replacing T by s in (23). We can therefore rewrite w′j,t as

w′j,t =
∑

j1,...,jt+1

ν
(
jt+1
1

)
e−η

∑t
s=1 `s(js) I{jt+1=j} , (24)

where the first sum is (indifferently) taken over {1, . . . , N}t+1 or E1 × . . .× Et+1.
For t = 0, we get

w′j,0 =
N∑
j1=1

ν(j1) I{j1=j} = µ1(j) = wj,0 ,

by definition of ν and of the wj,0 (we recall that µ1 denotes the uniform distribution
over E1). Now, we assume that for some t > 1, we have proved that wi,t−1 = w′i,t−1

for all i ∈ {1, . . . , N}. For j ∈ Et+1, by the share update in Figure 3 and by the
induction hypothesis,

wj,t =
1

|Et+1|
∑

i∈Et\Et+1

w′i,t−1 e
−η`t(δi) +

α

|Et+1|
∑

i∈Et∩Et+1

w′i,t−1 e
−η`t(δi)

+ (1− α) I{j∈Et∩Et+1} w
′
j,t−1 e

−η`t(δj) .

By definition of the transition functions (19)–(22), this equality can be rewritten
as

wj,t =
∑
i∈Et

w′i,t−1 e
−η`t(δi) Trt(i→ j) .

Substituting (24) in this equality, we get

wj,t =
∑

j1,...,jt

∑
i∈Et

ν
(
jt1
)
I{jt=i}Trt(i→ j) e−η

∑t−1
s=1 `s(js)e−η`t(δi)

=
∑

j1,...,jt

ν
(
jt1
)
Trt(jt → j) e−η

∑t
s=1 `s(js)

=
∑

j1,...,jt,jt+1

ν
(
jt+1
1

)
I{jt+1=j} e

−η
∑t
s=1 `s(js) = w′j,t ,

where the last but one equality follows from (23). For j 6∈ Et+1, by definitions,
wj,t = 0 and w′j,t = 0. This concludes this proof.
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7.2 Proof of Corollary 2

This proof uses the same methodology as the one of Corollary 1.

Proof (of Corollary 2) We fix a compound weight vector qT1 ∈ Cm and denote by
L
(
qT1
)
⊆ Lm the set of compound experts jT1 that are compatible with qT1 in the

following sense: denoting by t1, . . . , tm the time instances 1 6 s 6 T − 1 such that
qs 6= qs+1, the elements jT1 in L

(
qT1
)

are characterized by the fact that js 6= js+1

only if s = tk for some k ∈ {1, . . . ,m}. We insist on the fact that this is a “only
if” statement and not an “if and only if” statement; this means that the switches
in the sequences jT1 ∈ L

(
qT1
)

can only occur (but are not bound to occur) at the

indexes of the switches in qT1 .
Now, we recall that by Section 2.2.4,

RT
(
Fgrad
η,α , q

T
1

)
6 R̃T

(
Fgrad
η,α , q

T
1

)
=

T∑
t=1

(˜̀t(pt)− ˜̀t(qt)) .
Since the ˜̀t are linear over X , the last expression can be upper bounded by

T∑
t=1

(˜̀t(pt)− ˜̀t(qt)) 6 max
jT1 ∈L

(
qT1

) T∑
t=1

(˜̀t(pt)− ˜̀t(δjt)) ,
which shows that in particular,

T∑
t=1

(˜̀t(pt)− ˜̀t(qt)) 6 max
jT1 ∈Lm

T∑
t=1

(˜̀t(pt)− ˜̀t(δjt)) = max
jT1 ∈Lm

R̃T
(
Fgrad
η,α , j

T
1

)
.

The proof is concluded by noting that Proposition 2 exactly ensures that the rule
Fgrad
η,α is such that

max
jT1 ∈Lm

R̃T
(
Fgrad
η,α , j

T
1

)
6
m+ 1

η
lnN +

1

η
ln

1

αm (1− α)T−m−1
+
η

8
(2G)2T .
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