
HAL Id: hal-00484871
https://hal.science/hal-00484871v4

Submitted on 22 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tactics for Reasoning modulo AC in Coq
Thomas Braibant, Damien Pous

To cite this version:
Thomas Braibant, Damien Pous. Tactics for Reasoning modulo AC in Coq. Certified Proofs and
Programs, 2011, Taiwan. pp167-182, �10.1007/978-3-642-25379-9_14�. �hal-00484871v4�

https://hal.science/hal-00484871v4
https://hal.archives-ouvertes.fr


Tactics for Reasoning modulo AC in Coq ⋆

Thomas Braibant and Damien Pous

LIG, UMR 5217, CNRS, INRIA, Grenoble

Abstract. We present a set of tools for rewriting modulo associativity
and commutativity (AC) in Coq, solving a long-standing practical prob-
lem. We use two building blocks: first, an extensible reflexive decision
procedure for equality modulo AC; second, an OCaml plug-in for pattern
matching modulo AC. We handle associative only operations, neutral
elements, uninterpreted function symbols, and user-defined equivalence
relations. By relying on type-classes for the reification phase, we can infer
these properties automatically, so that end-users do not need to specify
which operation is A or AC, or which constant is a neutral element.

1 Introduction

Motivations. Typical hand-written mathematical proofs deal with commuta-
tivity and associativity of operations in a liberal way. Unfortunately, a proof
assistant requires a formal justification of all reasoning steps, so that the user
often needs to make boring term re-orderings before applying a theorem or using
a hypothesis. Suppose for example that one wants to rewrite using a simple hy-
pothesis like H: ∀x, x+−x = 0 in a term like a+b+c+−(c+a). Since Coq standard
rewrite tactic matches terms syntactically, this is not possible directly. Instead,
one has to reshape the goal using the commutativity and associativity lemmas:

rewrite (add_comm a b), ← (add_assoc b a c).
rewrite (add_comm c a), ← add_assoc.
rewrite H.

(* ⊢ ((a+b)+c)+-(c+a) = ... *)
(* ⊢ (b+(a+c))+-(c+a) = ... *)
(* ⊢ b+((a+c)+-(a+c)) = ... *)
(* ⊢ b+0 = ... *)

This is not satisfactory for several reasons. First, the proof script is too verbose
for such a simple reasoning step. Second, while reading such a proof script is
easy, writing it can be painful: there are several sequences of rewrites yielding
to the desired term, and finding a reasonably short one is difficult. Third, we
need to copy-paste parts of the goal to select which occurrence to rewrite using
the associativity or commutativity lemmas; this is not a good practice since the
resulting script breaks when the goal is subject to small modifications. (Note
that one could also select occurrences by their positions, but this is at least as
difficult for the user which then has to count the number of occurrences to skip,
and even more fragile since these numbers cannot be used to understand the
proof when the script breaks after some modification of the goal.)

In this paper, we propose a solution to this short-coming for the Coq proof-
assistant: we extend the usual rewriting tactic to automatically exploit associa-
tivity and commutativity (AC), or just associativity (A) of some operations.

⋆ To appear in Proc. CPP, LNCS, Springer, 2011.



Trusted unification vs untrusted matching. There are two main approaches to
implementing rewriting modulo AC in a proof-assistant. First, one can extend
the unification mechanism of the system to work modulo AC [20]. This option is
quite powerful, since most existing tactics would then work modulo AC. It how-
ever requires non-trivial modifications of the kernel of the proof assistant (e.g.,
unification modulo AC does not always yield finite complete sets of unifiers). As
a consequence, this obfuscates the meta-theory: we need a new proof of strong
normalisation and we increase the trusted code base. On the contrary, we can
restrict ourselves to pattern matching modulo AC and use the core-system itself
to validate all rewriting steps [8]. We chose this option.

Contributions, scope of the library. Besides the facts that such tools did not
exist in Coq before and that they apparently no longer exist in Isabelle/HOL
(see §6.1 for a more thorough discussion), the main contributions of this work lie
in the way standard algorithms and ideas are combined together to get tactics
that are efficient, easy to use, and covering a large range of situations:

– We can have any number of associative and possibly commutative opera-
tions, each possibly having a neutral element. For instance, we can have the
operations min, max, +, and ∗ on natural numbers, where max and + share the
neutral element 0, ∗ has neutral element 1, and min has no neutral element.

– We deal with arbitrary user-defined equivalence relations. This is important
for rational numbers or propositions, for example, where addition and sub-
traction (resp. conjunction and disjunction) are not AC for Leibniz equality,
but for rational equality, Qeq (resp. propositional equivalence, iff).

– We handle “uninterpreted” function symbols: n-ary functions for which the
only assumption is that they preserve the appropriate equivalence relation—
they are sometimes called “proper morphisms”. For example, subtraction on
rational numbers is a proper morphism for Qeq, while pointwise addition of
numerators and denominators is not. (Note that any function is a proper
morphism for Leibniz equality.)

– The interface we provide is straightforward to use: it suffices to declare in-
stances of the appropriate type-classes [22] for the operations of interest, and
our tactics will exploit this information automatically. Since the type-class
implementation is first-class, this gives the ability to work with polymorphic
operations in a transparent way (e.g., concatenation of lists is declared as
associative once and for all.)

Methodology. Recalling the example from the beginning, an alternative to ex-
plicit sequences of rewrites consists in making a transitivity step through a term
that matches the hypothesis’ left-hand side syntactically:

transitivity (b+((a+c)+−(a+c))).
ring. (* aac_reflexivity *)

rewrite H.

(* ⊢ ((a+b)+c)+-(c+a) = ... *)
(* ⊢ ((a+b)+c)+-(c+a) = b+((a+c)+-(a+c)) *)
(* ⊢ b+((a+c)+-(a+c)) = ... *)
(* ⊢ b+0 = ... *)

Although the ring tactic [14] solves the first sub-goal here, this is not always the
case (e.g., there are AC operations that are not part of a ring structure). There-
fore, we have to build a new tactic for equality modulo A/AC: aac_reflexivity.



Another drawback is that we also have to copy-paste and modify the term man-
ually, so that the script can break if the goal evolves. This can be a good practice
in some cases: the transitivity step can be considered as a robust and readable
documentation point; in other situations we want this step to be inferred by the
system, by pattern matching modulo A/AC [15].

All in all, we proceed as follows to define our aac_rewrite rewriting tactic.
Let ≡AC denote equality modulo A/AC; to rewrite using a universally quantified
hypothesis of the form H : ∀x̃, px̃ = qx̃ in a goal G, we take the following steps,
which correspond to building the proof-tree on the right-hand side:

1. choose a context C and a substitution σ

such that G ≡AC C[pσ] (pattern match-
ing modulo AC);

2. make a transitivity step through C[pσ];
3. close this step using a dedicated decision

procedure (aac_reflexivity);
4. use the standard rewrite;
5. let the user continue the proof.

G ≡AC C[pσ]
3

H

...

C[qσ]
5

C[pσ]
4

G
2

For the sake of efficiency, we implement the first step as an OCaml oracle, and we
check the results of this (untrusted) matching function in the third step, using
the certified decision procedure aac_reflexivity. To implement this tactic, we
use the standard methodology of reflection [8,1,14]. Concretely, this means that
we implement the decision procedure as a Coq function over “reified” terms,
which we prove correct inside the proof assistant. This step was actually quite
challenging: to our knowledge, aac_reflexivity is the first reflexive Coq tactic
that handles uninterpreted function symbols. In addition to the non-trivial reifi-
cation process, a particular difficulty comes from the (arbitrary) arity of these
symbols. To overcome this problem in an elegant way, our solution relies on a
dependently typed syntax for reified terms.

Outline. We sketch the user interface (§2) before describing the decision proce-
dure (§3) and the algorithm for pattern matching modulo AC (§4). We detail our
handling of neutral elements and subterms separately (§5). We conclude with
related works and directions for future work (§6).

2 User interface, notation

Declaring A/AC operations. We rely on type-classes [22] to declare the properties
of functions and A/AC binary operations. This allows the user to extend both
the decision procedure and the matching algorithm with new A/AC operations
or units in a very natural way. Moreover, this is the basis of our reification
mechanism (see §3.2).

The classes corresponding to the various properties that can be declared are
given in Fig. 1: being associative, commutative, and having a neutral element.
Basically, a user only needs to provide instances of these classes in order to



Variables (X: Type) (R: relation X) (op: X → X → X).
Class Associative := law_assoc: ∀x y z, R (op x (op y z)) (op (op x y) z).
Class Commutative := law_comm: ∀x y, R (op x y) (op y x).
Class Unit (e: X) := { law_id_left: ∀x, R (op e x) x; law_id_right: ∀x, R (op x e) x }.

Instance plus_A: Associative eq plus.
Instance plus_C: Commutative eq plus.
Instance plus_U: Unit eq plus O.

Instance app_A X: Associative eq (app X).
Instance app_U X: Unit eq (app X) (nil X).

Instance and_A: Associative iff and.
Instance and_C: Commutative iff and.
Instance and_U: Unit iff and True.
Instance and_P: Proper (iff ⇒iff ⇒iff) and.
Instance not_P: Proper (iff ⇒iff) not.

Fig. 1. Classes for declaring properties of operations, example instances.

use our tactics in a setting with new A or AC operations. These classes are
parameterised by a relation (R): one can use an arbitrary equivalence relation.

Fig. 1 also contains examples of instances. Polymorphic values (app, nil) are
declared in a straightforward way. For propositional connectives (and, not), we
also need to show that they preserve equivalence of propositions (iff), since this
is not Leibniz equality; we use for that the standard Proper type-class—when
the relation R is Leibniz equality, these instances are inferred automatically. Of
course, while we provide these instances, more can be defined by the user.

Example usage. The main tactics we provide are aac_rewrite, to rewrite modulo
A/AC, and aac_reflexivity to decide an equality modulo A/AC. Here is a
simple example where we use both of them:
H1: ∀x y z, x∩y ∪ x∩z = x∩(y∪z)
H2: ∀x y, x∩x = x
a, b, c, d: set
=====================
(a∩c ∪ b∩c∩d) ∩ c = (a ∪ d∩b) ∩ c

Proof.
aac_rewrite H1; (* c ∩ (a ∪ b∩d) ∩ c = ... *)
aac_rewrite H2; (* c ∩ (a ∪ b∩d) = ... *)
aac_reflexivity.
Qed.

As expected, we provide variations to rewrite using the hypothesis from right to
left, or in the right-hand side of the goal.

Listing instances. There might be several ways of rewriting a given equation:
several subterms may match, so that the user might need to select which oc-
currences to rewrite. The situation can be even worse when rewriting modulo
AC: unlike with syntactical matching, there might be several ways of instan-
tiating the pattern so that it matches a given occurrence. (E.g., matching the
pattern x+ y + y at the root of the term a+ a+ b+ b yields two substitutions:
{x 7→ a + a; y 7→ b} and the symmetrical one—assuming there is no neutral
element.) To help the user, we provide an additional tactic, aac_instances, to
display the possible occurrences together with the corresponding instantiations.
The user can then use the tactic aac_rewrite with the appropriate options.

Notation and terminology. We assume a signature Σ and we let f, g, h, . . . range
over function symbols, reserving letters a, b, c, . . . for constants (function symbols
of arity 0). We denote the set of terms by T (Σ). Given a set V of variables, we let
x, y, z, . . . range over (universally quantified) variables; a pattern is a term with



variables, i.e., an element of T (Σ + V ). A substitution (σ) is a partial function
that maps variables to terms, which we extend into a partial function from
patterns to terms, as expected. Binary function symbols (written with an infix
symbol, ⋄) can be associative (axiom A) and optionally commutative (axiom C);
these symbols may be equipped with a left and right unit u (axiom Uu,⋄):

A⋄ : x ⋄ (y ⋄ z) ≡ (x ⋄ y) ⋄ z C⋄ : x ⋄ y ≡ y ⋄ x Uu,⋄ : x ⋄ u ≡ x ∧ u ⋄ x ≡ x

We use +i (or +) for associative-commutative symbols (AC), and ∗i (or ∗) for
associative only symbols (A). We denote by ≡AC the equational theory gener-
ated by these axioms on T (Σ). For instance, in a non-commutative semi-ring
(+, ∗, 0, 1), ≡AC is generated by A+, C+, A∗ and U1,∗, U0,+.

3 Deciding equality modulo AC

In this section, we describe the aac_reflexivity tactic, which decides equality
modulo AC, is extensible through the definition of new type-class instances, and
deals with uninterpreted function symbols of arbitrary arity. For the sake of
clarity, we defer the case where binary operations have units to §5.1.

3.1 The algorithm and its proof

A two-level approach. We use the so called 2-level approach [4]: we define an
inductive type T for terms and a function eval: T → X that maps reified terms to
user-level terms living in some type X equipped with an equivalence relation R,
which we sometimes denote by ≡. This allows us to reason and compute on the
syntactic representation of terms, whatever the user-level model.

We follow the usual practice which consists in reducing equational reasoning
to the computation and comparison of normal forms: it then suffices to prove
that the normalisation function is correct to get a sound decision procedure.
Definition norm: T → T := ...
Lemma eval_norm: ∀u, eval (norm u) ≡ eval u.
Theorem decide: ∀u v, compare (norm u) (norm v) = Eq → eval u ≡ eval v.

This is what is called the autarkic way: the verification is performed inside the
proof-assistant, using the conversion rule. To prove eval u ≡ eval v, it suffices to
apply the theorem decide and to let the proof-assistant check by computation
that the premise holds. The algorithm needs to meet two objectives. First, the
normalisation function (norm) must be efficient, and this dictates some choices
for the representation of terms. Second, the evaluation function (eval) must be
simple (in order to keep the proofs tractable) and total: ill-formed terms shall
be rejected syntactically.

Packaging the reification environment. We need Coq types to package infor-
mation about binary operations and uninterpreted function symbols. They are
given in Fig. 2, where respectful is the definition from Coq standard library for
declaring proper morphisms. We first define functions to express the fact that



(* type of n-ary homogeneous functions *)
Fixpoint type_of (X: Type) (n: nat): Type :=
match n with O ⇒ X | S n ⇒ X → type_of X n end.

(* relation to be preserved by n-ary functions *)
Fixpoint rel_of (X: Type) (R: relation X) (n: nat): relation (type_of X n) :=
match n with O ⇒ R | S n ⇒ respectful R (rel_of n) end.

Module Bin.
Record pack X R := {
value: X → X → X;
compat: Proper (R ⇒R ⇒R) value;
assoc: Associative R value;
comm: option (Commutative R value) }.

End Bin.

Module Sym.
Record pack X R := {
ar: nat;
value: type_of X ar;
compat: Proper (rel_of X R ar) value }.

End Sym.

Fig. 2. Types for symbols.

n-ary functions are proper morphisms. A “binary package” contains a binary op-
eration together with the proofs that it is a proper morphism, associative, and
possibly commutative (we use the type-classes from Fig. 1). An “uninterpreted
symbol package” contains the arity of the symbol, the corresponding function,
and the proof that this is a proper morphism.

The fact that symbols arity is stored in the package is crucial: by doing so, we
can use standard finite maps to store all function symbols, irrespective of their
arity. More precisely, we use two environments, one for uninterpreted symbols
and one for binary operations; both of them are represented as non-dependent
functions from a set of indices to the corresponding package types:

Variables (X: Type) (R: relation X).
Variable e_sym: idx → Sym.pack X R.
Variable e_bin: idx → Bin.pack X R.

(The type idx is an alias for positive, the set of binary positive numbers; this
allows us to define the above functions efficiently, using binary trees).

Syntax of reified terms. We now turn to the concrete representation of terms.
The first difficulty is to choose an appropriate representation for AC and A
nodes, to avoid manipulating binary trees. As it is usually done, we flatten these
binary nodes using variadic nodes. Since binary operations do not necessarily
come with a neutral element, we use non-empty lists (resp. non-empty multi-
sets) to reflect the fact that A operations (resp. AC operations) must have at
least one argument. (We could even require A/AC operations to have at least
two arguments but this would slightly obfuscate the code and prevent some
sharing for multi-sets.) The second difficulty is to prevent ill-formed terms, like
“log 1 2 3”, where a unary function is applied to more than one argument. One
could define a predicate stating that terms are well-formed [11], and use this
extra hypothesis in later reasonings. We found it nicer to use dependent types
to enforce the constraint that symbols are applied to the right number of ar-
guments: it suffices to use vectors of arguments rather than lists. The resulting
data-type for reified terms is given in Fig. 3; it depends on the environment for



(* non-empty lists/multisets *)
Inductive nelist A :=
| nil: A → nelist A
| cons: A → nelist A → nelist A.

Definition nemset A :=
nelist (A∗positive).

(* reified terms *)
Inductive T: Type :=
| bin_ac: idx → nemset T → T
| bin_a : idx → nelist T → T
| sym: ∀i, vect T (Sym.ar (e_sym i)) → T.

Fixpoint eval (u: T): X :=
match u with
| bin_ac i l ⇒ let o:=Bin.value (e_bin i) in

nefold_map o (fun(u,n)⇒copy o n (eval u)) l
| bin_a i l ⇒ let o:=Bin.value (e_bin i) in

nefold_map o eval l
| sym i v ⇒ xeval v (Sym.value (e_sym i))
end
with xeval i (v: vect T i): Sym.type_of i→ X :=
match v with
| vnil ⇒(fun f ⇒ f)
| vcons u v ⇒(fun f ⇒ xeval v (f (eval u)))
end.

Fig. 3. Data-type for terms, and related evaluation function.

uninterpreted symbols (e_bin). This definition allows for a simple implementa-
tion of eval, given on the right-hand side. For uninterpreted symbols, the trick
consists in using an accumulator to store the successive partial applications.

As expected, this syntax allows us to reify arbitrary user-level terms. For
instance, take (a∗S(b+b))−b. We first construct the following environments where
we store information about all atoms:

e_sym e_bin

1 ⇒ L ar := 1; value := S; compat := ... M
2 ⇒ L ar := 0; value := a; compat := ... M
3 ⇒ L ar := 0; value := b; compat := ... M
_ ⇒ L ar := 2; value := minus; compat := ... M

1 ⇒ L value := plus; compat := ... ;
assoc := _ ; comm := Some ... M

_ ⇒ L value := mult; compat := ... ;
assoc := _ ; comm := None M

These environment functions are total: they associate a semantic value to indices
that might be considered as “out-of-the-bounds”. This requires environments to
contain at least one value, but this makes the evaluation function total and
easier to reason about: there is no need to return an option or a default value in
case undefined symbols are encountered. We can then build a reified term whose
evaluation in the above environments reduces to the starting user-level terms:

Let t := sym 4 Jbin_a 2 [(sym 2 JK); (sym 1 Jbin_ac 1 [(sym 3 JK,1);(sym 3 JK,1)K)]; sym 3 JKK.
Goal eval e_sym e_bin t = (a∗S(b+b))−b. reflexivity. Qed.

Note that we cannot split the environment e_bin into two environments e_bin_a
and e_bin_ac: since they would contain at least one binary operation with the
proof that it is A or AC, it would not be possible to reify terms in a setting
with only A or only AC operations. Moreover, having a single environment for
all binary operations makes it easier to handle neutral elements (see §5.1).

Normalisation of reified terms in Coq. Normal forms are computed as follows:
terms are recursively flattened under A/AC nodes and arguments of AC nodes
are sorted. We give excerpts of this Coq function below, focusing on AC nodes:
bin_ac’ is a smart constructor that prevents building unary AC nodes, and
norm_msets norm i normalises and sorts a multi-set, ensuring that none of its
children starts with an AC node with index i.



Definition bin_ac’ i (u: nemset T): T := match u with nil (u,1) ⇒ u | _ ⇒ bin_ac i u end.
Definition extract_ac i (s: T): nemset T :=
match s with bin_ac j m when i = j ⇒ m | _ ⇒ [s,1] end.

Definition norm_msets norm i (u: nemset T): nemset T :=
nefold_map merge_sort (fun (x,n) ⇒ copy_mset n (extract_ac i (norm x))) u

...
Fixpoint norm (u: T): T := match u with
| bin_ac i l ⇒ if is_commutative e_bin i then bin_ac’ i (norm_msets norm i l) else u
| bin_a i l ⇒ bin_a’ i (norm_lists norm i l)
| sym i l ⇒ sym i (vector_map norm l)
end.

Note that norm depends on the information contained in the environments:
the look-up is_commutative s_bin i in the definition of norm is required to make
sure that the binary operation i is actually commutative (remember that we
need to store A and AC symbols in the same environment, so that we might
have AC nodes whose corresponding operation is not commutative). Similarly,
to handle neutral elements (§5.1), we will rely on the environment to detect
whether some value is a unit for a given binary operation.

Correctness and completeness. We prove that the normalisation function is
sound. This proof relies on the above defensive test against ill-formed terms:
since invalid AC nodes are left intact, we do not need the missing commutativity
hypothesis when proving the correctness of norm. We did not prove completeness.
First, this is not needed to get a sound tactic. Second, this proof would be quite
verbose (in particular, it requires a formal definition of equality modulo AC on
reified terms). Third, we would not be able to completely prove the complete-
ness of the resulting tactic anyway, since one cannot reason about the OCaml
reification and normalisation functions in the proof-assistant [14,7].

3.2 Reification

Following the reflexive approach to solve an equality modulo AC, it suffices to
apply the above theorem decide (§3.1) and to let Coq compute. To do so, we
still need to provide two environments e_bin and e_sym and two terms u and v,
whose evaluation is convertible to the starting user-level terms.

Type-class based reification. We do not want to rely on annotations (like pro-
jections of type-classes fields or canonical structures) to guess how to reify the
terms: this would force the users to use our definitions and notations from the
beginning. Instead, we let the users work with their own definitions, and we
exploit type-classes to perform reification. The idea is to query the type-class
resolution mechanism to decide whether a given subterm should be reified as an
AC operation, an A operation, or an uninterpreted function symbol.

The inference of binary A or AC operations takes place first, by querying for
instances of the classes Associative and Commutative on all binary applications.
The remaining difficulty is to discriminate whether other applications should be
considered as a function symbol applied to several arguments, or as a constant.
For instance, considering the application f (a+b) (b+c) c, it suffices to query for
Proper instances in the following order:



1. Proper (R ⇒ R ⇒ R ⇒ R) (f) ?
2. Proper (R ⇒ R ⇒ R) (f (a+b)) ?
3. Proper (R ⇒ R) (f (a+b)(b+c)) ?
4. Proper (R) (f (a+b)(b+c) c) ?

The first query that succeeds tells which partial application is a proper mor-
phism, and with which arity. Since the relation R is reflexive, and any element is
proper for a reflexive relation, the inference of constants—symbols of arity 0—is
the catch-all case of reification. We then proceed recursively on the remaining
arguments; in the example, if the second call is the first to succeed, we do not
try to reify the first argument (a+b): the partial application f(a+b) is considered
as an atom.

Reification language. We use OCaml to perform this reification step. Using the
meta-language OCaml rather than the meta-language of tactics Ltac is a matter
of convenience: it allows us to use more efficient data-structures. For instance,
we use hash-tables to memoise queries to type-class resolution, which would have
been difficult to mimic in Ltac or using canonical structures. The resulting code
is non-trivial, but too technical to be presented here. Most of the difficulties come
from the fact that we reify uninterpreted functions symbols using a dependently
typed syntax, and that our reification environments contain dependent records:
producing such Coq values from OCaml can be tricky. Finally, using Coq’s plug-
in mechanism, we wrap up the previous ideas in a tactic, aac_reflexivity, which
automates this process, and solves equations modulo AC.

Efficiency. The dependently typed representation of terms we chose in order to
simplify proofs does not preclude efficient computations. The complexity of the
procedure is dominated by the merging of sorted multi-sets, which relies on a
linear comparison function. We did not put this decision procedure through an
extensive testing; however, we claim that it returns instantaneously in practice.
Moreover, the size of the generated proof is linear with respect to the size of the
starting terms. By contrast, using the tactic language to build a proof out of
associativity and commutativity lemmas would usually yield a quadratic proof.

4 Matching modulo AC

Solving a matching problem modulo AC consists in, given a pattern p and a
term t, finding a substitution σ such that pσ ≡AC t. There are many known
algorithms [11,12,15,18]; we present here a simple one.

Naive algorithm. Matching modulo AC can easily be implemented non-determi-
nistically. For example, to match a sum p1 + p2 against a term t, it suffices
to consider all possible decompositions of t into a sum t1 + t2. If matching p1
against t1 yields a solution (a substitution), it can be used as an initial state
to match p2 against t2, yielding a more precise solution, if any. To match a
variable x against a term t, there are two cases depending on whether or not the



val (≫=): α m → (α → β m) → β m
val (≫|): α m → α m → α m
val return: α → α m
val fail: unit → α m

Fig. 4. Search monad primitives.

val split_ac: idx → term → (term ∗ term) m
val split_a : idx → term → (term ∗ term) m

Fig. 5. Search monad derived functions.

mtch (p1 +i p2) t σ = split_ac i t ≫= (fun (t1,t2) → mtch p1 t1 σ ≫= mtch p2 t2)
mtch (p1 ∗i p2) t σ = split_a i t ≫= (fun (t1,t2) → mtch p1 t1 σ ≫= mtch p2 t2)
mtch (f(p)) (f(u)) σ = fold_2 (fun acc p t → acc ≫= mtch p t) (return σ) p u

mtch (var x) t σ when Subst.find σ x = None = return (Subst.add σ x t)
mtch (var x) t σ when Subst.find σ x = Some v = if v ≡AC t then return σ else fail()

Fig. 6. Backtracking pattern matching, using monads.

variable has already been assigned in the current substitution. If the variable
has already been assigned to a value v, we check that v ≡AC t. If this is not the
case, the substitution must be discarded since x must take incompatible values.
Otherwise, i.e., if the variable is fresh, we add a mapping from x to v to the
substitution. To match an uninterpreted node f(q) against a term t, it must be
the case that t is headed by the same symbol f , with arguments u; we just match
q and u pointwise.

Monadic implementation. We use a monad for non-deterministic and backtrack-
ing computations. Fig. 4 presents the primitive functions offered by this monad:
≫= is a backtracking bind operation, while ≫| is non-deterministic choice. We
have an OCaml type for terms similar to the inductive type we defined for Coq
reified terms: applications of A/AC symbols are represented using their flattened
normal forms. From the primitives of the monad, we derive functions operating
on terms (Fig. 5): the function split_ac i implements the non-deterministic split
of a term t into pairs (t1, t2) such that t ≡AC t1 +i t2. If the head-symbol of t is
+i, then it suffices to split syntactically the multi-set of arguments; otherwise, we
return an empty collection. The function split_a i implements the correspond-
ing operation on associative only symbols. The matching algorithm proceeds by
structural recursion on the pattern, which yields the code presented in Fig. 6
(using an informal ML-like syntax). A nice property of this algorithm is that it
does not produce redundant solutions, so that we do not need to reduce the set
of solutions before proposing them to the user.

Correctness. Following [11], we could have attempted to prove the correctness of
this matching algorithm. While this could be an interesting formalisation work
per se, it is not necessary for our purpose, and could even be considered an
impediment. Indeed, we implement the matching algorithm as an oracle, in an
arbitrary language. Thus, we are given the choice to use a free range of optimi-
sations, and the ability to exploit all features of the implementation language.
In any case, the prophecies of this oracle, a set of solutions to the matching
problem, are verified by the reflexive decision procedure we implemented in §3.



Variable e_bin: idx → Bin.pack X R

Record binary_for (u: X) := {
bf_idx: idx;
bf_desc: Unit R (Bin.value (e_bin bf_idx)) u }.

Record unit_pack := {
u_value: X;
u_desc: list (binary_for u_value) }.

Variable e_unit: idx → unit_pack.

Fig. 7. Additional environment for terms with units.

5 Bridging the gaps

Combining the decision procedure for equality modulo AC and the algorithm for
matching modulo AC, we get the tactic for rewriting modulo AC. We now turn
to lifting the simplifying assumptions we made in the previous sections.

5.1 Neutral elements

Adding support for neutral elements (or “units”) is of practical importance:

– to let aac_reflexivity decide more equations (e.g., max 0 (b∗1)+a = a+b);
– to avoid requiring the user to normalise terms manually before performing

rewriting steps (e.g., to rewrite using ∀x, x∪x = x in the term a∩b∪∅∪b∩a);
– to propose more solutions to pattern matching problems (consider rewriting

∀xy, x · y ·x⊥ = y in a · (b · (a · b)⊥), where · is associative only with a neutral
element: the variable y should be instantiated with the neutral element).

Extending the pattern matching algorithm. Matching modulo AC with units
does not boil down to pattern matching modulo AC against a normalised term:
a ·b ·(a ·b)⊥ is a normal form and the algorithm of Fig. 6 would not give solutions
with the pattern x · y · x⊥. The patch is however straightforward: it suffices to
let the non-deterministic splitting functions (Fig. 5) use the neutral element
possibly associated with the given binary symbol. For instance, calling split_a

on the previous term would return the four pairs 〈1, a · b · (a · b)⊥〉, 〈a, b · (a · b)⊥〉,
〈a · b, (a · b)⊥〉, and 〈a · b · (a · b)⊥, 1〉, where 1 is the neutral element.

Extending the syntax of reified terms. An obvious idea is to replace non-empty
lists (resp. multi-sets) by lists (resp. multi-sets) in the definition of terms—Fig. 3.
This has two drawbacks. First, unless the evaluation function (Fig. 3) becomes a
partial function, every A/AC symbol must then be associated with a unit (which
precludes, e.g., min and max to be defined as AC operations on relative numbers).
Second, two symbols cannot share a common unit, like 0 being the unit of both
max and plus on natural numbers: we would have to know at reification time
how to reify 0, is it an empty AC node for max or for plus? Instead, we add an
extra constructor for units to the data-type of terms, and a third environment to
store all units together with their relationship to binary operations. The actual
definition of this third environment requires a more clever crafting than the other
ones. The starting point is that a unit is nothing by itself, it is a unit for some
binary operations. Thus, the type of the environment for units has to depend



on the e_bin environment. This type is given in Fig. 7. The record binary_for

stores a binary operation (pointed to by its index bf_idx) and a proof that the
parameter u is a neutral element for this operation. Then, each unit is bundled
with a list of operations it is a unit for (unit_pack): like for the environment e_sym
, these dependent records allow us to use plain, non-dependent maps. In the end,
the syntax of reified terms depends only on the environment for uninterpreted
symbols (e_sym), to ensure that arities are respected, while the environment for
units (e_unit) depends on that for binary operations (e_bin).

Extending the decision tactic. Updating the Coq normalisation function to deal
with units is fairly simple but slightly verbose. Like we used the e_bin environ-
ment to check that bin_ac nodes actually correspond to commutative operations,
we exploit the information contained in e_unit to detect whether a unit is a neu-
tral element for a given binary operation. On the contrary, the OCaml reification
code, which is quite technical, becomes even more complicated. Calling type-class
resolution on all constants of the goal to get the list of binary operations they
are a unit for would be too costly. Instead, we perform a first pass on the goal,
where we infer all A/AC operations and for each of these, whether it has a neu-
tral element. We construct the reified terms in a second pass, using the previous
information to distinguish units from regular constants.

5.2 Subterms

Another point of high practical importance is the ability to rewrite in subterms
rather than at the root. Indeed, the algorithm of Fig. 6 does not allow to match
the pattern x+x against the terms f(a+a) or a+b+a, where the occurrence ap-
pears under some context. Technically, it suffices to extend the (OCaml) pattern
matching function and to write some boilerplate to accommodate contexts; the
(Coq) decision procedure is not affected by this modification. Formally, subterm-
matching a pattern p in a term t results in a set of solutions which are pairs
〈C, σ〉, where C is a context and σ is a substitution such that C[pσ] ≡AC t.

Variable extensions. It is not sufficient to call the (root) matching function on
all syntactic subterms: the instance a+ a of the pattern x+ x is not a syntactic
subterm of a+ b+ a. The standard trick consists in enriching the pattern using
a variable extension [19,21], a variable used to collect the trailing terms. In
the previous case, we can extend the pattern into y + x + x, where y will be
instantiated with b. It then suffices to explore syntactic subterms: when we try
to subterm-match x+ x against (a+ c) ∗ (a+ b+ a), we extend the pattern into
y+x+x and we call the matching algorithm (Fig. 6) on the whole term and the
subterms a, b, c, a+ c and a+ b+ a. In this example, only the last call succeeds.

The problem with subterms and units. However, this approach is not complete in
the presence of units. Suppose for instance that we try to match the pattern x+x

against a∗b, where ∗ is associative only. If the variable x can be instantiated with
a neutral element 0 for +, then the variable extension trick gives four solutions:



a ∗ b+ [] (a+ []) ∗ b a ∗ (b + [])

(These are the returned contexts, in which [] denotes the hole; the substitution
is always {x 7→ 0}.) Unfortunately, if ∗ also has a neutral element 1, there are
infinitely many other solutions:

a ∗ b ∗ (1 + []) a ∗ b+0 ∗ (1+ []) a ∗ b+0 ∗ (1 + 0 ∗ (1+ [])) . . .

(Note that these solutions are distinct modulo AC, they collapse to the same term
only when we replace the hole with 0.) The latter solutions only appear when the
pattern can be instantiated to be equal to a neutral element (modulo A/AC).
We opted for a pragmatic solution in this case: we reject these peculiar solutions,
displaying a warning message. The user can still instantiate the rewriting lemma
explicitly, or make the appropriate transitivity step using aac_reflexivity.

6 Conclusions

The Coq library corresponding to the tools we presented is available from [9].
We do not use any axiom; the code consists of about 1400 lines of Coq and 3600
lines of OCaml. We conclude with related works and directions for future work.

6.1 Related Works

Boyer and Moore [8] are precursors to our work in two ways. First, their paper
is the earliest reference to reflection we are aware of, under the name “Meta-
functions”. Second, they use this methodology to prove correct a simplification
function for cancellation modulo A. By contrast, we proved correct a decision
procedure for equality modulo A/AC with units which can deal with arbitrary
function symbols, and we used it to devise a tactic for rewriting modulo A/AC.

Ring. While there is some similarity in their goals, our decision procedure is
incomparable with the Coq ring tactic [14]. On the one hand, ring can make
use of distributivity and opposite laws to prove goals like x2−y2= (x−y)∗(x+y),
holding in any ring structure. On the other hand, aac_reflexivity can deal with
an arbitrary number of AC or A operations with their units, and more impor-
tantly, with uninterpreted function symbols. For instance, it proves equations
like f(x∩y) ∪ g(∅∪z) = g z ∪ f(y∩x), where f, g are arbitrary functions on sets.
Like with ring, we also have a tactic to normalise terms modulo AC.

Rewriting modulo AC in HOL and Isabelle. Nipkow [17] used the Isabelle system
to implement matching, unification and rewriting for various theories including
AC. He presents algorithms as proof rules, relying on the Isabelle machinery
and tactic language to build actual tools for equational reasoning. While this
approach leads to elegant and short implementations, what is gained in concise-
ness and genericity is lost in efficiency, and the algorithms need not terminate.
The rewriting modulo AC tools he defines are geared toward automatic term nor-
malisation; by contrast, our approach focuses on providing the user with tools
to select and make one rewriting step efficiently.



Slind [21] implemented an AC-unification algorithm and incorporated it in
the hol90 system, as an external and efficient oracle. It is then used to build
tactics for AC rewriting, cancellation, and modus-ponens. While these tools ex-
ploit pattern matching only, an application of unification is in solving existential
goals. Apart from some refinements like dealing with neutral elements and A
symbols, the most salient differences with our work are that we use a reflexive
decision procedure to check equality modulo A/AC rather than a tactic imple-
mented in the meta-language, and that we use type-classes to infer and reify
automatically the A/AC symbols and their units.

Support for the former tool [17] has been discontinued, and it seems to be
also the case for the latter [21]. To our knowledge, even though HOL-light and
HOL provide some tactics to prove that two terms are equal using associativity
and commutativity of a single given operation, tactics comparable to the ones
we describe here no longer exist in the Isabelle/HOL family of proof assistants.

Rewriting modulo AC in Coq. Contejean [11] implemented in Coq an algorithm
for matching modulo AC, which she proved sound and complete. The emphasis
is put on the proof of the matching algorithm, which corresponds to a concrete
implementation in the CiME system. Although decidability of equality modulo
AC is also derived, this development was not designed to obtain the kind of
tactics we propose here (in particular, we could not reuse it to this end). Finally,
symbols can be uninterpreted, commutative, or associative and commutative,
but neither associative only symbols nor units are handled.

Gonthier et al. [13] have recently shown how to exploit a feature of Coq’s
unification algorithm to provide “less ad hoc automation”. In particular, they
automate reasoning modulo AC in a particular scenario, by diverting the unifica-
tion algorithm in a complex but really neat way. Using their trick to provide the
generic tactics we discuss here might be possible, but it would be difficult. Our
reification process is much more complex: we have uninterpreted function sym-
bols, we do not know in advance which operations are AC, and the handling of
units requires a dependent environment. Moreover, we would have to implement
matching modulo AC (which is not required in their example) using the same
methodology; doing it in a sufficiently efficient way seems really challenging.

Nguyen et al. [16] used the external rewriting tool ELAN to add support
for rewriting modulo AC in Coq. They perform term rewriting in the efficient
ELAN environment, and check the resulting traces in Coq. This allows one to
obtain a powerful normalisation tactic out of any set of rewriting rules which
is confluent and terminating modulo AC. Our objectives are slightly different:
we want to easily perform small rewriting steps in an arbitrarily complex proof,
rather than to decide a proposition by computing and comparing normal forms.

The ELAN trace is replayed using elementary Coq tactics, and equalities
modulo AC are proved by applying the associativity and commutativity lemmas
in a clever way. On the contrary, we use the high-level (but slightly inefficient)
rewrite tactic to perform the rewriting step, and we rely on an efficient reflexive
decision procedure for proving equalities modulo AC. (Alvarado and Nguyen



first proposed a version where the rewriting trace was replayed using reflection,
but without support for modulo AC [2].)

From the user interface point of view, leaving out the fact that the support
for this tool has been discontinued, our work improves on several points: thanks
to the recent plug-in and type-class mechanisms of Coq, it suffices for a user to
declare instances of the appropriate classes to get the ability to rewrite modulo
AC. Even more importantly, there is no need to declare explicitly all uninter-
preted function symbols, and we transparently support polymorphic operations
(like List.app) and arbitrary equivalence relations (like Qeq on rational numbers,
or iff on propositions). It would therefore be interesting to revive this tool using
the new mechanisms available in Coq, to get a nicer and more powerful interface.

Although this is not a general purpose interactive proof assistant, the Maude
system [10], which is based on equational and rewriting logic, also provides an
efficient algorithm for rewriting modulo AC [12]. Like ELAN, Maude could be
used as an oracle to replace our OCaml matching algorithm. This would require
some non-trivial interfacing work, however. Moreover, it is unclear to us how to
use these tools to get all matching occurrences of a pattern in a given term.

6.2 Directions for Future works.

Heterogeneous terms and operations. Our decision procedure cannot deal with
functions whose range and domain are distinct sets. We could extend the tactic
to deal with such symbols, to make it possible to rewrite using equations like
∀uv, ‖u+ v‖ ≤ ‖u‖+ ‖v‖, where ‖ · ‖ is a norm in a vector space. This requires a
more involved definition of reified terms and environments to keep track of type
information; the corresponding reification process seems quite challenging.

We could also handle heterogeneous associative operations, like multiplica-
tion of non-square matrices, or composition of morphisms in a category. For
example, matrix multiplication has type ∀ n m p, X n m → X m p → X n p (X n m be-
ing the type of matrices with size n,m). This would be helpful for proofs in
category theory. Again, the first difficulty is to adapt the definition of reified
terms, which would certainly require dependently typed non-empty lists.

Other decidable theories. While we focused on rewriting modulo AC, we could
consider other theories whose matching problem is decidable. Such theories in-
clude, for example, the Abelian groups and the Boolean rings [6] (the latter
naturally appears in proofs of hardware circuits).

Integration with other tools. Recently, tactics have been designed to exploit
external SAT/SMT solvers inside Coq [3]. These tactics rely on a reflexive proof
checker, used to certify the traces generated by the external solver. However,
in the SMT case, these traces do not contain proofs for the steps related to
the considered theories, so that one needs dedicated Coq decision procedures to
validate these steps. Currently, mostly linear integer arithmetic is supported [3],
using the lia tactic [5]; our tactic aac_reflexivity could be plugged into this
framework to add support for theories including arbitrary A or AC symbols.



Acknowledgements

We would like to thank Matthieu Sozeau for his precious help in understanding
Coq’s internal API.

References

1. S. F. Allen, R. L. Constable, D. J. Howe, and W. E. Aitken. The Semantics of
Reflected Proof. In Proc. LICS, pages 95–105. IEEE Computer Society, 1990.

2. C. Alvarado and Q.-H. Nguyen. ELAN for Equational Reasoning in Coq. In Proc.

LFM’00. INRIA, 2000. ISBN 2-7261-1166-1.
3. M. Armand, G. Faure, B. Grégoire, C. Keller, L. Théry, and B. Werner. A modular

integration of SAT/SMT solvers to Coq through proof witnesses. In Proc. CPP,
LNCS. Springer, 2011. To appear in this volume.

4. G. Barthe, M. Ruys, and H. Barendregt. A Two-Level Approach Towards Lean
Proof-Checking. In Proc. TYPES, LNCS, pages 16–35. Springer, 1995.

5. F. Besson. Fast reflexive arithmetic tactics the linear case and beyond. In Selected

papers of TYPES’06, volume 4502 of LNCS, pages 48–62. Springer, 2007.
6. A. Boudet, J.-P. Jouannaud, and M. Schmidt-Schauß. Unification in Boolean Rings

and Abelian groups. J. Symb. Comput., 8(5):449–477, 1989.
7. S. Boutin. Using Reflection to Build Efficient and Certified Decision Procedures.

In Proc. TACS, volume 1281 of LNCS, pages 515–529. Springer, 1997.
8. R. S. Boyer and J. S. Moore, editors. The Correctness Problem in Computer

Science. Academic Press, 1981.
9. T. Braibant and D. Pous. Tactics for working modulo AC in Coq. Coq library

available at http://sardes.inrialpes.fr/~braibant/aac_tactics/, June 2010.
10. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-

cott. The Maude 2.0 system. In Proc RTA, volume 2706 of LNCS. Springer, 2003.
11. E. Contejean. A Certified AC Matching Algorithm. In Proc. RTA, volume 3091

of LNCS, pages 70–84. Springer, 2004.
12. S. Eker. Single Elementary Associative-Commutative Matching. J. Autom. Rea-

soning, 28(1):35–51, 2002.
13. G. Gonthier, B. Ziliani, A. Nanevski, and D. Dreyer. How to make ad hoc proof

automation less ad hoc. In Proc. ICFP. ACM, 2011. To appear.
14. B. Grégoire and A. Mahboubi. Proving equalities in a commutative ring done right

in Coq. In Proc. TPHOLs, volume 3603 of LNCS, pages 98–113. Springer, 2005.
15. J. M. Hullot. Associative Commutative pattern matching. In Proc. IJCAI, pages

406–412. Morgan Kaufmann Publishers Inc., 1979.
16. Q. H. Nguyen, C. Kirchner, and H. Kirchner. External Rewriting for Skeptical

Proof Assistants. J. Autom. Reasoning, 29(3-4):309–336, 2002.
17. T. Nipkow. Equational reasoning in Isabelle. Sci. Comp. Prg., 12(2):123–149, 1989.
18. T. Nipkow. Proof transformations for equational theories. In Proc. LICS, pages

278–288. IEEE Computer Society, 1990.
19. G. Peterson and M. Stickel. Complete sets of reductions for some equational

theories. J. ACM, 28(2):233–264, 1981.
20. G. Plotkin. Building in equational theories. Machine Intelligence 7, 1972.
21. K. Slind. AC Unification in HOL90. In Proc. HUG, volume 780 of LNCS, pages

436–449. Springer, 1993.
22. M. Sozeau and N. Oury. First-class type classes. In Proc. TPHOL, volume 4732

of LNCS, pages 278–293. Springer, 2008.

http://sardes.inrialpes.fr/~braibant/aac_tactics/

	Tactics for Reasoning modulo AC in Coq 

