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We present a set of tools for rewriting modulo associativity and commutativity (AC) in Coq, solving a long-standing practical problem. We use two building blocks: first, an extensible reflexive decision procedure for equality modulo AC; second, an OCaml plug-in for pattern matching modulo AC. We handle associative only operations, neutral elements, uninterpreted function symbols, and user-defined equivalence relations. By relying on type-classes for the reification phase, we can infer these properties automatically, so that end-users do not need to specify which operation is A or AC, or which constant is a neutral element. rewrite (add_comm a b), ← (add_assoc b a c). rewrite (add_comm c a), ← add_assoc. rewrite H. (* ⊢ ((a+b)+c)+-(c+a) = ... *) (* ⊢ (b+(a+c))+-(c+a) = ... *) (* ⊢ b+((a+c)+-(a+c)) = ... *) (* ⊢ b+0 = ...

Introduction

Motivations. Typical hand-written mathematical proofs deal with commutativity and associativity of operations in a liberal way. Unfortunately, a proof assistant requires a formal justification of all reasoning steps, so that the user often needs to make boring term re-orderings before applying a theorem or using a hypothesis. Suppose for example that one wants to rewrite using a simple hypothesis like H: ∀x, x+-x = 0 in a term like a+b+c+-(c+a). Since Coq standard rewrite tactic matches terms syntactically, this is not possible directly. Instead, one has to reshape the goal using the commutativity and associativity lemmas: This is not satisfactory for several reasons. First, the proof script is too verbose for such a simple reasoning step. Second, while reading such a proof script is easy, writing it can be painful: there are several sequences of rewrites yielding to the desired term, and finding a reasonably short one is difficult. Third, we need to copy-paste parts of the goal to select which occurrence to rewrite using the associativity or commutativity lemmas; this is not a good practice since the resulting script breaks when the goal is subject to small modifications. (Note that one could also select occurrences by their positions, but this is at least as difficult for the user which then has to count the number of occurrences to skip, and even more fragile since these numbers cannot be used to understand the proof when the script breaks after some modification of the goal.)

In this paper, we propose a solution to this short-coming for the Coq proofassistant: we extend the usual rewriting tactic to automatically exploit associativity and commutativity (AC), or just associativity (A) of some operations.

Trusted unification vs untrusted matching. There are two main approaches to implementing rewriting modulo AC in a proof-assistant. First, one can extend the unification mechanism of the system to work modulo AC [START_REF] Plotkin | Building in equational theories[END_REF]. This option is quite powerful, since most existing tactics would then work modulo AC. It however requires non-trivial modifications of the kernel of the proof assistant (e.g., unification modulo AC does not always yield finite complete sets of unifiers). As a consequence, this obfuscates the meta-theory: we need a new proof of strong normalisation and we increase the trusted code base. On the contrary, we can restrict ourselves to pattern matching modulo AC and use the core-system itself to validate all rewriting steps [START_REF] Boyer | The Correctness Problem in Computer Science[END_REF]. We chose this option.

Contributions, scope of the library. Besides the facts that such tools did not exist in Coq before and that they apparently no longer exist in Isabelle/HOL (see §6.1 for a more thorough discussion), the main contributions of this work lie in the way standard algorithms and ideas are combined together to get tactics that are efficient, easy to use, and covering a large range of situations:

-We can have any number of associative and possibly commutative operations, each possibly having a neutral element. For instance, we can have the operations min, max, +, and * on natural numbers, where max and + share the neutral element 0, * has neutral element 1, and min has no neutral element. -We deal with arbitrary user-defined equivalence relations. This is important for rational numbers or propositions, for example, where addition and subtraction (resp. conjunction and disjunction) are not AC for Leibniz equality, but for rational equality, Qeq (resp. propositional equivalence, iff). -We handle "uninterpreted" function symbols: n-ary functions for which the only assumption is that they preserve the appropriate equivalence relationthey are sometimes called "proper morphisms". For example, subtraction on rational numbers is a proper morphism for Qeq, while pointwise addition of numerators and denominators is not. (Note that any function is a proper morphism for Leibniz equality.) -The interface we provide is straightforward to use: it suffices to declare instances of the appropriate type-classes [START_REF] Sozeau | First-class type classes[END_REF] for the operations of interest, and our tactics will exploit this information automatically. Since the type-class implementation is first-class, this gives the ability to work with polymorphic operations in a transparent way (e.g., concatenation of lists is declared as associative once and for all.) Methodology. Recalling the example from the beginning, an alternative to explicit sequences of rewrites consists in making a transitivity step through a term that matches the hypothesis' left-hand side syntactically: Although the ring tactic [START_REF] Grégoire | Proving equalities in a commutative ring done right in Coq[END_REF] solves the first sub-goal here, this is not always the case (e.g., there are AC operations that are not part of a ring structure). Therefore, we have to build a new tactic for equality modulo A/AC: aac_reflexivity.

Another drawback is that we also have to copy-paste and modify the term manually, so that the script can break if the goal evolves. This can be a good practice in some cases: the transitivity step can be considered as a robust and readable documentation point; in other situations we want this step to be inferred by the system, by pattern matching modulo A/AC [START_REF] Hullot | Associative Commutative pattern matching[END_REF].

All in all, we proceed as follows to define our aac_rewrite rewriting tactic. Let ≡ AC denote equality modulo A/AC; to rewrite using a universally quantified hypothesis of the form H : ∀x, px = qx in a goal G, we take the following steps, which correspond to building the proof-tree on the right-hand side:

1. choose a context C and a substitution σ such that G ≡ AC C[pσ] (pattern matching modulo AC); 2. make a transitivity step through C[pσ]; 3. close this step using a dedicated decision procedure (aac_reflexivity); 4. use the standard rewrite; 5. let the user continue the proof.

G ≡ AC C[pσ] 3 H . . . C[qσ] 5 C[pσ] 4 G 2
For the sake of efficiency, we implement the first step as an OCaml oracle, and we check the results of this (untrusted) matching function in the third step, using the certified decision procedure aac_reflexivity. To implement this tactic, we use the standard methodology of reflection [START_REF] Boyer | The Correctness Problem in Computer Science[END_REF][START_REF] Allen | The Semantics of Reflected Proof[END_REF][START_REF] Grégoire | Proving equalities in a commutative ring done right in Coq[END_REF]. Concretely, this means that we implement the decision procedure as a Coq function over "reified" terms, which we prove correct inside the proof assistant. This step was actually quite challenging: to our knowledge, aac_reflexivity is the first reflexive Coq tactic that handles uninterpreted function symbols. In addition to the non-trivial reification process, a particular difficulty comes from the (arbitrary) arity of these symbols. To overcome this problem in an elegant way, our solution relies on a dependently typed syntax for reified terms.

Outline. We sketch the user interface ( §2) before describing the decision procedure ( §3) and the algorithm for pattern matching modulo AC ( §4). We detail our handling of neutral elements and subterms separately ( §5). We conclude with related works and directions for future work ( §6).

User interface, notation

Declaring A/AC operations. We rely on type-classes [START_REF] Sozeau | First-class type classes[END_REF] to declare the properties of functions and A/AC binary operations. This allows the user to extend both the decision procedure and the matching algorithm with new A/AC operations or units in a very natural way. Moreover, this is the basis of our reification mechanism (see §3.2).

The classes corresponding to the various properties that can be declared are given in Fig. 1: being associative, commutative, and having a neutral element. Basically, a user only needs to provide instances of these classes in order to Polymorphic values (app, nil) are declared in a straightforward way. For propositional connectives (and, not), we also need to show that they preserve equivalence of propositions (iff), since this is not Leibniz equality; we use for that the standard Proper type-class-when the relation R is Leibniz equality, these instances are inferred automatically. Of course, while we provide these instances, more can be defined by the user.

Example usage. The main tactics we provide are aac_rewrite, to rewrite modulo A/AC, and aac_reflexivity to decide an equality modulo A/AC. Here is a simple example where we use both of them: As expected, we provide variations to rewrite using the hypothesis from right to left, or in the right-hand side of the goal.

Listing instances. There might be several ways of rewriting a given equation: several subterms may match, so that the user might need to select which occurrences to rewrite. The situation can be even worse when rewriting modulo AC: unlike with syntactical matching, there might be several ways of instantiating the pattern so that it matches a given occurrence. (E.g., matching the pattern x + y + y at the root of the term a + a + b + b yields two substitutions: {x → a + a; y → b} and the symmetrical one-assuming there is no neutral element.) To help the user, we provide an additional tactic, aac_instances, to display the possible occurrences together with the corresponding instantiations. The user can then use the tactic aac_rewrite with the appropriate options.

Notation and terminology. We assume a signature Σ and we let f, g, h, . . . range over function symbols, reserving letters a, b, c, . . . for constants (function symbols of arity 0). We denote the set of terms by T (Σ). Given a set V of variables, we let x, y, z, . . . range over (universally quantified) variables; a pattern is a term with variables, i.e., an element of T (Σ + V ). A substitution (σ) is a partial function that maps variables to terms, which we extend into a partial function from patterns to terms, as expected. Binary function symbols (written with an infix symbol, ⋄) can be associative (axiom A) and optionally commutative (axiom C); these symbols may be equipped with a left and right unit u (axiom U u,⋄ ):

A ⋄ : x ⋄ (y ⋄ z) ≡ (x ⋄ y) ⋄ z C ⋄ : x ⋄ y ≡ y ⋄ x U u,⋄ : x ⋄ u ≡ x ∧ u ⋄ x ≡ x
We use + i (or +) for associative-commutative symbols (AC), and * i (or * ) for associative only symbols (A). We denote by ≡ AC the equational theory generated by these axioms on T (Σ). For instance, in a non-commutative semi-ring (+, * , 0, 1), ≡ AC is generated by A + , C + , A * and U 1, * , U 0,+ .

Deciding equality modulo AC

In this section, we describe the aac_reflexivity tactic, which decides equality modulo AC, is extensible through the definition of new type-class instances, and deals with uninterpreted function symbols of arbitrary arity. For the sake of clarity, we defer the case where binary operations have units to §5.1.

The algorithm and its proof

A two-level approach. We use the so called 2-level approach [START_REF] Barthe | A Two-Level Approach Towards Lean Proof-Checking[END_REF]: we define an inductive type T for terms and a function eval: T → X that maps reified terms to user-level terms living in some type X equipped with an equivalence relation R, which we sometimes denote by ≡. This allows us to reason and compute on the syntactic representation of terms, whatever the user-level model.

We follow the usual practice which consists in reducing equational reasoning to the computation and comparison of normal forms: it then suffices to prove that the normalisation function is correct to get a sound decision procedure.

Definition norm: T → T := ... Lemma eval_norm: ∀u, eval (norm u) ≡ eval u. Theorem decide: ∀u v, compare (norm u) (norm v) = Eq → eval u ≡ eval v.
This is what is called the autarkic way: the verification is performed inside the proof-assistant, using the conversion rule. To prove eval u ≡ eval v, it suffices to apply the theorem decide and to let the proof-assistant check by computation that the premise holds. The algorithm needs to meet two objectives. First, the normalisation function (norm) must be efficient, and this dictates some choices for the representation of terms. Second, the evaluation function (eval) must be simple (in order to keep the proofs tractable) and total: ill-formed terms shall be rejected syntactically.

Packaging the reification environment. We need Coq types to package information about binary operations and uninterpreted function symbols. They are given in Fig. 2, where respectful is the definition from Coq standard library for declaring proper morphisms. We first define functions to express the fact that (* type of n-ary homogeneous functions *) Fixpoint type_of (X: Type) (n: nat):

Type := match n with O ⇒ X | S n ⇒ X → type_of X n end.
(* relation to be preserved by n-ary functions *) Fixpoint rel_of (X: n-ary functions are proper morphisms. A "binary package" contains a binary operation together with the proofs that it is a proper morphism, associative, and possibly commutative (we use the type-classes from Fig. 1). An "uninterpreted symbol package" contains the arity of the symbol, the corresponding function, and the proof that this is a proper morphism. The fact that symbols arity is stored in the package is crucial: by doing so, we can use standard finite maps to store all function symbols, irrespective of their arity. More precisely, we use two environments, one for uninterpreted symbols and one for binary operations; both of them are represented as non-dependent functions from a set of indices to the corresponding package types:

Type) (R: relation X) (n: nat): relation (type_of X n) := match n with O ⇒ R | S n ⇒ respectful R (rel_of n) end. Module Bin. Record pack X R := { value: X → X → X; compat: Proper (R
Variables (X: Type) (R: relation X). Variable e_sym: idx → Sym.pack X R. Variable e_bin: idx → Bin.pack X R.

(The type idx is an alias for positive, the set of binary positive numbers; this allows us to define the above functions efficiently, using binary trees).

Syntax of reified terms. We now turn to the concrete representation of terms. The first difficulty is to choose an appropriate representation for AC and A nodes, to avoid manipulating binary trees. As it is usually done, we flatten these binary nodes using variadic nodes. Since binary operations do not necessarily come with a neutral element, we use non-empty lists (resp. non-empty multisets) to reflect the fact that A operations (resp. AC operations) must have at least one argument. (We could even require A/AC operations to have at least two arguments but this would slightly obfuscate the code and prevent some sharing for multi-sets.) The second difficulty is to prevent ill-formed terms, like "log 1 2 3", where a unary function is applied to more than one argument. One could define a predicate stating that terms are well-formed [START_REF] Contejean | A Certified AC Matching Algorithm[END_REF], and use this extra hypothesis in later reasonings. We found it nicer to use dependent types to enforce the constraint that symbols are applied to the right number of arguments: it suffices to use vectors of arguments rather than lists. The resulting data-type for reified terms is given in Fig. 3; it depends on the environment for (* reified terms *) Inductive T:

Type := | bin_ac: idx → nemset T → T | bin_a : idx → nelist T → T | sym: ∀i, vect T (Sym.ar (e_sym i)) → T.
Fixpoint eval (u: T): X := match u with

| bin_ac i l ⇒ let o:=Bin.value (e_bin i) in nefold_map o (fun(u,n)⇒copy o n (eval u)) l | bin_a i l ⇒ let o:=Bin.value (e_bin i) in nefold_map o eval l | sym i v ⇒ xeval v (Sym.value (e_sym i)) end with xeval i (v: vect T i): Sym.type_of i→ X := match v with | vnil ⇒(fun f ⇒ f) | vcons u v ⇒(fun f ⇒ xeval v (f (eval u))) end.
Fig. 3. Data-type for terms, and related evaluation function.

uninterpreted symbols (e_bin). This definition allows for a simple implementation of eval, given on the right-hand side. For uninterpreted symbols, the trick consists in using an accumulator to store the successive partial applications.

As expected, this syntax allows us to reify arbitrary user-level terms. For instance, take (a * S(b+b))-b. We first construct the following environments where we store information about all atoms: These environment functions are total: they associate a semantic value to indices that might be considered as "out-of-the-bounds". This requires environments to contain at least one value, but this makes the evaluation function total and easier to reason about: there is no need to return an option or a default value in case undefined symbols are encountered. We can then build a reified term whose evaluation in the above environments reduces to the starting user-level terms: Note that we cannot split the environment e_bin into two environments e_bin_a and e_bin_ac: since they would contain at least one binary operation with the proof that it is A or AC, it would not be possible to reify terms in a setting with only A or only AC operations. Moreover, having a single environment for all binary operations makes it easier to handle neutral elements (see §5.1).

Normalisation of reified terms in Coq. Normal forms are computed as follows: terms are recursively flattened under A/AC nodes and arguments of AC nodes are sorted. We give excerpts of this Coq function below, focusing on AC nodes: bin_ac' is a smart constructor that prevents building unary AC nodes, and norm_msets norm i normalises and sorts a multi-set, ensuring that none of its children starts with an AC node with index i. 

| bin_ac i l ⇒ if is_commutative e_bin i then bin_ac' i (norm_msets norm i l) else u | bin_a i l ⇒ bin_a' i (norm_lists norm i l) | sym i l ⇒ sym i (vector_map norm l) end.
Note that norm depends on the information contained in the environments: the look-up is_commutative s_bin i in the definition of norm is required to make sure that the binary operation i is actually commutative (remember that we need to store A and AC symbols in the same environment, so that we might have AC nodes whose corresponding operation is not commutative). Similarly, to handle neutral elements ( §5.1), we will rely on the environment to detect whether some value is a unit for a given binary operation.

Correctness and completeness. We prove that the normalisation function is sound. This proof relies on the above defensive test against ill-formed terms: since invalid AC nodes are left intact, we do not need the missing commutativity hypothesis when proving the correctness of norm. We did not prove completeness. First, this is not needed to get a sound tactic. Second, this proof would be quite verbose (in particular, it requires a formal definition of equality modulo AC on reified terms). Third, we would not be able to completely prove the completeness of the resulting tactic anyway, since one cannot reason about the OCaml reification and normalisation functions in the proof-assistant [START_REF] Grégoire | Proving equalities in a commutative ring done right in Coq[END_REF][START_REF] Boutin | Using Reflection to Build Efficient and Certified Decision Procedures[END_REF].

Reification

Following the reflexive approach to solve an equality modulo AC, it suffices to apply the above theorem decide ( §3.1) and to let Coq compute. To do so, we still need to provide two environments e_bin and e_sym and two terms u and v, whose evaluation is convertible to the starting user-level terms.

Type-class based reification. We do not want to rely on annotations (like projections of type-classes fields or canonical structures) to guess how to reify the terms: this would force the users to use our definitions and notations from the beginning. Instead, we let the users work with their own definitions, and we exploit type-classes to perform reification. The idea is to query the type-class resolution mechanism to decide whether a given subterm should be reified as an AC operation, an A operation, or an uninterpreted function symbol.

The inference of binary A or AC operations takes place first, by querying for instances of the classes Associative and Commutative on all binary applications. The remaining difficulty is to discriminate whether other applications should be considered as a function symbol applied to several arguments, or as a constant. For instance, considering the application f (a+b) (b+c) c, it suffices to query for Proper instances in the following order:

1.

Proper (R ⇒ R ⇒ R ⇒ R) (f) ? 2. Proper (R ⇒ R ⇒ R) (f (a+b)) ? 3. Proper (R ⇒ R) (f (a+b)(b+c)) ? 4. Proper (R) (f (a+b)(b+c) c) ?
The first query that succeeds tells which partial application is a proper morphism, and with which arity. Since the relation R is reflexive, and any element is proper for a reflexive relation, the inference of constants-symbols of arity 0-is the catch-all case of reification. We then proceed recursively on the remaining arguments; in the example, if the second call is the first to succeed, we do not try to reify the first argument (a+b): the partial application f(a+b) is considered as an atom.

Reification language. We use OCaml to perform this reification step. Using the meta-language OCaml rather than the meta-language of tactics Ltac is a matter of convenience: it allows us to use more efficient data-structures. For instance, we use hash-tables to memoise queries to type-class resolution, which would have been difficult to mimic in Ltac or using canonical structures. The resulting code is non-trivial, but too technical to be presented here. Most of the difficulties come from the fact that we reify uninterpreted functions symbols using a dependently typed syntax, and that our reification environments contain dependent records: producing such Coq values from OCaml can be tricky. Finally, using Coq's plugin mechanism, we wrap up the previous ideas in a tactic, aac_reflexivity, which automates this process, and solves equations modulo AC.

Efficiency. The dependently typed representation of terms we chose in order to simplify proofs does not preclude efficient computations. The complexity of the procedure is dominated by the merging of sorted multi-sets, which relies on a linear comparison function. We did not put this decision procedure through an extensive testing; however, we claim that it returns instantaneously in practice. Moreover, the size of the generated proof is linear with respect to the size of the starting terms. By contrast, using the tactic language to build a proof out of associativity and commutativity lemmas would usually yield a quadratic proof.

Matching modulo AC

Solving a matching problem modulo AC consists in, given a pattern p and a term t, finding a substitution σ such that pσ ≡ AC t. There are many known algorithms [START_REF] Contejean | A Certified AC Matching Algorithm[END_REF][START_REF] Eker | Single Elementary Associative-Commutative Matching[END_REF][START_REF] Hullot | Associative Commutative pattern matching[END_REF][START_REF] Nipkow | Proof transformations for equational theories[END_REF]; we present here a simple one.

Naive algorithm. Matching modulo AC can easily be implemented non-deterministically. For example, to match a sum p 1 + p 2 against a term t, it suffices to consider all possible decompositions of t into a sum t 1 + t 2 . If matching p 1 against t 1 yields a solution (a substitution), it can be used as an initial state to match p 2 against t 2 , yielding a more precise solution, if any. To match a variable x against a term t, there are two cases depending on whether or not the 

(p 1 +i p 2 ) t σ = split_ac i t ≫= (fun (t 1 ,t 2 ) → mtch p 1 t 1 σ ≫= mtch p 2 t 2 ) mtch (p 1 * i p 2 ) t σ = split_a i t ≫= (fun (t 1 ,t 2 ) → mtch p 1 t 1 σ ≫= mtch p 2 t 2 ) mtch (f(p)) (f(u)) σ = fold_2 (
fun acc p t → acc ≫= mtch p t) (return σ) p u mtch (var x) t σ when Subst.find σ x = None = return (Subst.add σ x t) mtch (var x) t σ when Subst.find σ x = Some v = if v ≡ AC t then return σ else fail() Fig. 6. Backtracking pattern matching, using monads.

variable has already been assigned in the current substitution. If the variable has already been assigned to a value v, we check that v ≡ AC t. If this is not the case, the substitution must be discarded since x must take incompatible values. Otherwise, i.e., if the variable is fresh, we add a mapping from x to v to the substitution. To match an uninterpreted node f (q) against a term t, it must be the case that t is headed by the same symbol f , with arguments u; we just match q and u pointwise.

Monadic implementation. We use a monad for non-deterministic and backtracking computations. Fig. 4 presents the primitive functions offered by this monad: ≫= is a backtracking bind operation, while ≫| is non-deterministic choice. We have an OCaml type for terms similar to the inductive type we defined for Coq reified terms: applications of A/AC symbols are represented using their flattened normal forms. From the primitives of the monad, we derive functions operating on terms (Fig. 5): the function split_ac i implements the non-deterministic split of a term t into pairs (t 1 , t 2 ) such that t ≡ AC t 1 + i t 2 . If the head-symbol of t is + i , then it suffices to split syntactically the multi-set of arguments; otherwise, we return an empty collection. The function split_a i implements the corresponding operation on associative only symbols. The matching algorithm proceeds by structural recursion on the pattern, which yields the code presented in Fig. 6 (using an informal ML-like syntax). A nice property of this algorithm is that it does not produce redundant solutions, so that we do not need to reduce the set of solutions before proposing them to the user.

Correctness. Following [START_REF] Contejean | A Certified AC Matching Algorithm[END_REF], we could have attempted to prove the correctness of this matching algorithm. While this could be an interesting formalisation work per se, it is not necessary for our purpose, and could even be considered an impediment. Indeed, we implement the matching algorithm as an oracle, in an arbitrary language. Thus, we are given the choice to use a free range of optimisations, and the ability to exploit all features of the implementation language. In any case, the prophecies of this oracle, a set of solutions to the matching problem, are verified by the reflexive decision procedure we implemented in §3.

Variable e_bin: idx → Bin.pack X R Record binary_for (u: X) := { bf_idx: idx; bf_desc: Unit R (Bin.value (e_bin bf_idx)) u }.

Record unit_pack := { u_value: X; u_desc: list (binary_for u_value) }.

Variable e_unit: idx → unit_pack. Fig. 7. Additional environment for terms with units.

Bridging the gaps

Combining the decision procedure for equality modulo AC and the algorithm for matching modulo AC, we get the tactic for rewriting modulo AC. We now turn to lifting the simplifying assumptions we made in the previous sections.

Neutral elements

Adding support for neutral elements (or "units") is of practical importance:

to let aac_reflexivity decide more equations (e.g., max 0 (b * 1)+a = a+b); -to avoid requiring the user to normalise terms manually before performing rewriting steps (e.g., to rewrite using ∀x, x∪x = x in the term a∩b∪∅∪b∩a); -to propose more solutions to pattern matching problems (consider rewriting ∀xy,

x • y • x ⊥ = y in a • (b • (a • b) ⊥ )
, where • is associative only with a neutral element: the variable y should be instantiated with the neutral element).

Extending the pattern matching algorithm. Matching modulo AC with units does not boil down to pattern matching modulo AC against a normalised term: a•b •(a•b) ⊥ is a normal form and the algorithm of Fig. 6 would not give solutions with the pattern x • y • x ⊥ . The patch is however straightforward: it suffices to let the non-deterministic splitting functions (Fig. 5) use the neutral element possibly associated with the given binary symbol. For instance, calling split_a on the previous term would return the four pairs 1, a

• b • (a • b) ⊥ , a, b • (a • b) ⊥ , a • b, (a • b) ⊥ , and a • b • (a • b) ⊥ , 1
, where 1 is the neutral element.

Extending the syntax of reified terms. An obvious idea is to replace non-empty lists (resp. multi-sets) by lists (resp. multi-sets) in the definition of terms-Fig. 3. This has two drawbacks. First, unless the evaluation function (Fig. 3) becomes a partial function, every A/AC symbol must then be associated with a unit (which precludes, e.g., min and max to be defined as AC operations on relative numbers). Second, two symbols cannot share a common unit, like 0 being the unit of both max and plus on natural numbers: we would have to know at reification time how to reify 0, is it an empty AC node for max or for plus? Instead, we add an extra constructor for units to the data-type of terms, and a third environment to store all units together with their relationship to binary operations. The actual definition of this third environment requires a more clever crafting than the other ones. The starting point is that a unit is nothing by itself, it is a unit for some binary operations. Thus, the type of the environment for units has to depend on the e_bin environment. This type is given in Fig. 7. The record binary_for stores a binary operation (pointed to by its index bf_idx) and a proof that the parameter u is a neutral element for this operation. Then, each unit is bundled with a list of operations it is a unit for (unit_pack): like for the environment e_sym , these dependent records allow us to use plain, non-dependent maps. In the end, the syntax of reified terms depends only on the environment for uninterpreted symbols (e_sym), to ensure that arities are respected, while the environment for units (e_unit) depends on that for binary operations (e_bin).

Extending the decision tactic. Updating the Coq normalisation function to deal with units is fairly simple but slightly verbose. Like we used the e_bin environment to check that bin_ac nodes actually correspond to commutative operations, we exploit the information contained in e_unit to detect whether a unit is a neutral element for a given binary operation. On the contrary, the OCaml reification code, which is quite technical, becomes even more complicated. Calling type-class resolution on all constants of the goal to get the list of binary operations they are a unit for would be too costly. Instead, we perform a first pass on the goal, where we infer all A/AC operations and for each of these, whether it has a neutral element. We construct the reified terms in a second pass, using the previous information to distinguish units from regular constants.

Subterms

Another point of high practical importance is the ability to rewrite in subterms rather than at the root. Indeed, the algorithm of Fig. 6 does not allow to match the pattern x+x against the terms f (a+a) or a+b+a, where the occurrence appears under some context. Technically, it suffices to extend the (OCaml) pattern matching function and to write some boilerplate to accommodate contexts; the (Coq) decision procedure is not affected by this modification. Formally, subtermmatching a pattern p in a term t results in a set of solutions which are pairs C, σ , where C is a context and σ is a substitution such that C[pσ] ≡ AC t.

Variable extensions. It is not sufficient to call the (root) matching function on all syntactic subterms: the instance a + a of the pattern x + x is not a syntactic subterm of a + b + a. The standard trick consists in enriching the pattern using a variable extension [START_REF] Peterson | Complete sets of reductions for some equational theories[END_REF][START_REF] Slind | AC Unification in HOL90[END_REF], a variable used to collect the trailing terms. In the previous case, we can extend the pattern into y + x + x, where y will be instantiated with b. It then suffices to explore syntactic subterms: when we try to subterm-match x + x against (a + c) * (a + b + a), we extend the pattern into y + x + x and we call the matching algorithm (Fig. 6) on the whole term and the subterms a, b, c, a + c and a + b + a. In this example, only the last call succeeds.

The problem with subterms and units. However, this approach is not complete in the presence of units. Suppose for instance that we try to match the pattern x+x against a * b, where * is associative only. If the variable x can be instantiated with a neutral element 0 for +, then the variable extension trick gives four solutions: . . . (Note that these solutions are distinct modulo AC, they collapse to the same term only when we replace the hole with 0.) The latter solutions only appear when the pattern can be instantiated to be equal to a neutral element (modulo A/AC). We opted for a pragmatic solution in this case: we reject these peculiar solutions, displaying a warning message. The user can still instantiate the rewriting lemma explicitly, or make the appropriate transitivity step using aac_reflexivity.

Conclusions

The Coq library corresponding to the tools we presented is available from [START_REF] Braibant | Tactics for working modulo AC in Coq[END_REF]. We do not use any axiom; the code consists of about 1400 lines of Coq and 3600 lines of OCaml. We conclude with related works and directions for future work.

Related Works

Boyer and Moore [START_REF] Boyer | The Correctness Problem in Computer Science[END_REF] are precursors to our work in two ways. First, their paper is the earliest reference to reflection we are aware of, under the name "Metafunctions". Second, they use this methodology to prove correct a simplification function for cancellation modulo A. By contrast, we proved correct a decision procedure for equality modulo A/AC with units which can deal with arbitrary function symbols, and we used it to devise a tactic for rewriting modulo A/AC.

Ring. While there is some similarity in their goals, our decision procedure is incomparable with the Coq ring tactic [START_REF] Grégoire | Proving equalities in a commutative ring done right in Coq[END_REF]. On the one hand, ring can make use of distributivity and opposite laws to prove goals like x 2 -y 2 = (x-y) * (x+y), holding in any ring structure. On the other hand, aac_reflexivity can deal with an arbitrary number of AC or A operations with their units, and more importantly, with uninterpreted function symbols. For instance, it proves equations like f(x∩y) ∪ g(∅∪z) = g z ∪ f(y∩x), where f, g are arbitrary functions on sets. Like with ring, we also have a tactic to normalise terms modulo AC.

Rewriting modulo AC in HOL and Isabelle. Nipkow [START_REF] Nipkow | Equational reasoning in Isabelle[END_REF] used the Isabelle system to implement matching, unification and rewriting for various theories including AC. He presents algorithms as proof rules, relying on the Isabelle machinery and tactic language to build actual tools for equational reasoning. While this approach leads to elegant and short implementations, what is gained in conciseness and genericity is lost in efficiency, and the algorithms need not terminate. The rewriting modulo AC tools he defines are geared toward automatic term normalisation; by contrast, our approach focuses on providing the user with tools to select and make one rewriting step efficiently.

Slind [START_REF] Slind | AC Unification in HOL90[END_REF] implemented an AC-unification algorithm and incorporated it in the hol90 system, as an external and efficient oracle. It is then used to build tactics for AC rewriting, cancellation, and modus-ponens. While these tools exploit pattern matching only, an application of unification is in solving existential goals. Apart from some refinements like dealing with neutral elements and A symbols, the most salient differences with our work are that we use a reflexive decision procedure to check equality modulo A/AC rather than a tactic implemented in the meta-language, and that we use type-classes to infer and reify automatically the A/AC symbols and their units.

Support for the former tool [START_REF] Nipkow | Equational reasoning in Isabelle[END_REF] has been discontinued, and it seems to be also the case for the latter [START_REF] Slind | AC Unification in HOL90[END_REF]. To our knowledge, even though HOL-light and HOL provide some tactics to prove that two terms are equal using associativity and commutativity of a single given operation, tactics comparable to the ones we describe here no longer exist in the Isabelle/HOL family of proof assistants.

Rewriting modulo AC in Coq. Contejean [START_REF] Contejean | A Certified AC Matching Algorithm[END_REF] implemented in Coq an algorithm for matching modulo AC, which she proved sound and complete. The emphasis is put on the proof of the matching algorithm, which corresponds to a concrete implementation in the CiME system. Although decidability of equality modulo AC is also derived, this development was not designed to obtain the kind of tactics we propose here (in particular, we could not reuse it to this end). Finally, symbols can be uninterpreted, commutative, or associative and commutative, but neither associative only symbols nor units are handled.

Gonthier et al. [START_REF] Gonthier | How to make ad hoc proof automation less ad hoc[END_REF] have recently shown how to exploit a feature of Coq's unification algorithm to provide "less ad hoc automation". In particular, they automate reasoning modulo AC in a particular scenario, by diverting the unification algorithm in a complex but really neat way. Using their trick to provide the generic tactics we discuss here might be possible, but it would be difficult. Our reification process is much more complex: we have uninterpreted function symbols, we do not know in advance which operations are AC, and the handling of units requires a dependent environment. Moreover, we would have to implement matching modulo AC (which is not required in their example) using the same methodology; doing it in a sufficiently efficient way seems really challenging.

Nguyen et al. [START_REF] Nguyen | External Rewriting for Skeptical Proof Assistants[END_REF] used the external rewriting tool ELAN to add support for rewriting modulo AC in Coq. They perform term rewriting in the efficient ELAN environment, and check the resulting traces in Coq. This allows one to obtain a powerful normalisation tactic out of any set of rewriting rules which is confluent and terminating modulo AC. Our objectives are slightly different: we want to easily perform small rewriting steps in an arbitrarily complex proof, rather than to decide a proposition by computing and comparing normal forms.

The ELAN trace is replayed using elementary Coq tactics, and equalities modulo AC are proved by applying the associativity and commutativity lemmas in a clever way. On the contrary, we use the high-level (but slightly inefficient) rewrite tactic to perform the rewriting step, and we rely on an efficient reflexive decision procedure for proving equalities modulo AC. (Alvarado and Nguyen first proposed a version where the rewriting trace was replayed using reflection, but without support for modulo AC [START_REF] Alvarado | ELAN for Equational Reasoning in Coq[END_REF].)

From the user interface point of view, leaving out the fact that the support for this tool has been discontinued, our work improves on several points: thanks to the recent plug-in and type-class mechanisms of Coq, it suffices for a user to declare instances of the appropriate classes to get the ability to rewrite modulo AC. Even more importantly, there is no need to declare explicitly all uninterpreted function symbols, and we transparently support polymorphic operations (like List.app) and arbitrary equivalence relations (like Qeq on rational numbers, or iff on propositions). It would therefore be interesting to revive this tool using the new mechanisms available in Coq, to get a nicer and more powerful interface.

Although this is not a general purpose interactive proof assistant, the Maude system [START_REF] Clavel | The Maude 2.0 system[END_REF], which is based on equational and rewriting logic, also provides an efficient algorithm for rewriting modulo AC [START_REF] Eker | Single Elementary Associative-Commutative Matching[END_REF]. Like ELAN, Maude could be used as an oracle to replace our OCaml matching algorithm. This would require some non-trivial interfacing work, however. Moreover, it is unclear to us how to use these tools to get all matching occurrences of a pattern in a given term.

Directions for Future works.

Heterogeneous terms and operations. Our decision procedure cannot deal with functions whose range and domain are distinct sets. We could extend the tactic to deal with such symbols, to make it possible to rewrite using equations like ∀uv, u + v ≤ u + v , where • is a norm in a vector space. This requires a more involved definition of reified terms and environments to keep track of type information; the corresponding reification process seems quite challenging.

We could also handle heterogeneous associative operations, like multiplication of non-square matrices, or composition of morphisms in a category. For example, matrix multiplication has type ∀ n m p, X n m → X m p → X n p (X n m being the type of matrices with size n, m). This would be helpful for proofs in category theory. Again, the first difficulty is to adapt the definition of reified terms, which would certainly require dependently typed non-empty lists.

Other decidable theories. While we focused on rewriting modulo AC, we could consider other theories whose matching problem is decidable. Such theories include, for example, the Abelian groups and the Boolean rings [START_REF] Boudet | Unification in Boolean Rings and Abelian groups[END_REF] (the latter naturally appears in proofs of hardware circuits).

Integration with other tools. Recently, tactics have been designed to exploit external SAT/SMT solvers inside Coq [START_REF] Armand | A modular integration of SAT/SMT solvers to Coq through proof witnesses[END_REF]. These tactics rely on a reflexive proof checker, used to certify the traces generated by the external solver. However, in the SMT case, these traces do not contain proofs for the steps related to the considered theories, so that one needs dedicated Coq decision procedures to validate these steps. Currently, mostly linear integer arithmetic is supported [START_REF] Armand | A modular integration of SAT/SMT solvers to Coq through proof witnesses[END_REF], using the lia tactic [START_REF] Besson | Fast reflexive arithmetic tactics the linear case and beyond[END_REF]; our tactic aac_reflexivity could be plugged into this framework to add support for theories including arbitrary A or AC symbols.
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 1 Fig. 1. Classes for declaring properties of operations, example instances.

H1:

  ∀x y z, x∩y ∪ x∩z = x∩(y∪z) H2: ∀x y, x∩x = x a, b, c, d: set ===================== (a∩c ∪ b∩c∩d) ∩ c = (a ∪ d∩b) ∩ c Proof. aac_rewrite H1; (* c ∩ (a ∪ b∩d) ∩ c = ... *) aac_rewrite H2; (* c ∩ (a ∪ b∩d) = ... *) aac_reflexivity. Qed.

Fig. 2 .

 2 Fig. 2. Types for symbols.

(

  * non-empty lists/multisets *) Inductive nelist A := | nil: A → nelist A | cons: A → nelist A → nelist A. Definition nemset A := nelist (A * positive).

e_sym e_bin 1 ⇒

 1 ar := 1; value := S; compat := ... 2 ⇒ ar := 0; value := a; compat := ... 3 ⇒ ar := 0; value := b; compat := ... _ ⇒ ar := 2; value := minus; compat := ... 1 ⇒ value := plus; compat := ... ; assoc := _ ; comm := Some ... _ ⇒ value := mult; compat := ... ; assoc := _ ; comm := None

  Let t := sym 4 bin_a 2 [(sym 2 ); (sym 1 bin_ac 1 [(sym 3 ,1);(sym 3 ,1) )]; sym 3 . Goal eval e_sym e_bin t = (a * S(b+b))-b. reflexivity. Qed.

  Definition bin_ac' i (u: nemset T): T := match u with nil (u,1) ⇒ u | _ ⇒ bin_ac i u end. Definition extract_ac i (s: T): nemset T := match s with bin_ac j m when i = j ⇒ m | _ ⇒ [s,1] end. Definition norm_msets norm i (u: nemset T): nemset T := nefold_map merge_sort (fun (x,n) ⇒ copy_mset n (extract_ac i (norm x))) u ... Fixpoint norm (u: T): T := match u with

Fig. 4 .

 4 Fig. 4. Search monad primitives.

Fig. 5 .

 5 Fig. 5. Search monad derived functions.

  mtch

a

  * b + [] (a + []) * b a * (b + []) (These are the returned contexts, in which [] denotes the hole; the substitution is always {x → 0}.) Unfortunately, if * also has a neutral element 1, there are infinitely many other solutions: a * b * (1 + []) a * b + 0 * (1 + []) a * b + 0 * (1 + 0 * (1 + []))
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