
HAL Id: hal-00484871
https://hal.science/hal-00484871v2

Submitted on 29 Mar 2011 (v2), last revised 22 Sep 2011 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Tactic for Rewriting modulo AC in Coq
Thomas Braibant, Damien Pous

To cite this version:

Thomas Braibant, Damien Pous. A Tactic for Rewriting modulo AC in Coq. 2011. �hal-00484871v2�

https://hal.science/hal-00484871v2
https://hal.archives-ouvertes.fr

A Tactic for Rewriting modulo AC in Coq

Thomas Braibant and Damien Pous

LIG, UMR 5217, CNRS – INRIA

Abstract. We present a set of tools for rewriting modulo associativity
and commutativity in Coq, solving a long-standing practical problem.
We use two building blocks: first, an extensible reflexive decision proce-
dure for equality modulo AC; second, an OCaml Coq plug-in for pattern
matching modulo AC. Our decision procedure stems from Barendregt’s
two level approach, but allows to reason with several A/AC operations
at the same time, by working with an arbitrary signature.

Motivations

Typical hand-written mathematical proofs deal with commutativity and asso-
ciativity of operations in a liberal way. Unfortunately, formalising these proofs
in a proof assistant requires to explicit all steps, so that applying a theorem
or rewriting an hypothesis often requires boring term re-orderings to deal with
parentheses. In this paper, we solve this short-coming in the context of the
Coq proof-assistant [4]. We extend the usual rewriting tactic beyond syntactic
matching, to automatically exploit commutativity and associativity (AC), or
just associativity (A) of some operations.

This work stems from examples like the following one. One cannot use a
simple universally quantified equation like ∀x, x+−x = 0 to rewrite in a term like
a+b+c+−(c+a), because Coq’s standard rewrite tactic matches terms syntacti-
cally1. In this case, there are two options: first, one can reshape the goal using
the following commutativity and associativity lemmas:

Lemma plus_comm: ∀x y, x+y = y+x. Lemma plus_assoc: ∀x y z, x+(y+z) = (x+y)+z.

Second, one can make a transitivity step toward some term that matches the
hypothesis syntactically, e.g., b+((a+c)+−(a+c)), and use a tactic to solve the
resulting equation a+b+c+−(c+a) = b+((a+c)+−(a+c)).

These two solutions have drawbacks. The former is painful: one has to figure
out what is the proper sequence of rewrites to do. In this case, this could be:

rewrite (plus_comm a b), ← (plus_assoc b a c), (plus_comm a c), ← plus_assoc, H.

The latter assumes a tactic for deciding equality modulo A/AC and requires to
write down the target of the transitivity step. Both are doomed to break when
the proof-script is subject to modifications that make the goal evolve too much.
This is why we advocate a more systematic way to rewrite such universally
quantified hypotheses.

1 To be more precise, it works up to conversion, which is not enough here.

Trusted unification vs untrusted matching. There are two main approaches to
implement rewriting modulo AC in a proof-assistant. One can bake unification
modulo AC as part of the unification mechanism of the system. This means
working at the level of the meta-language in which the proof-assistant is written,
but adding a rule to the kernel may obfuscate its meta-theory: it requires a new
proof of strong normalisation and it increases the trusted code base. On the
contrary, one can use the core-system itself to explain why a rewriting step
modulo AC is indeed correct. In this paper, we propose such a solution, based
on a reflexive decision procedure for equality modulo AC, and an untrusted
algorithm for matching modulo AC.

Examples. We refine the method based on a transitivity step to alleviate its
main drawback: the user must prove the resulting equation. To this end, we
define a new tactic aac_reflexivity, to which we give an informal specification
by working out two examples.

We first consider a slight variation of the introductory example. In the proof
script below, one makes a transitivity step toward a term that matches syntac-
tically the left-hand side of the hypothesis, opening two sub-goals.

a, b, c: Z
H: ∀x, x + −x = 0
====================
−(b∗a) + (a∗b) = ...

Proof.
transitivity ((a∗b) + −(a∗b));
[aac_reflexivity | rewrite H; ...].
Qed.

One then uses aac_reflexivity to prove the validity of the transitivity step;
in parallel, one can make the desired rewrite step, and continue the proof. We
already know that our tactic shall handle the fact that ∗ and + are AC operations.

Now let us move to the slightly more involved setting of regular languages,
where · is language concatenation, + is union, and ? is iteration (Kleene star).
The equality is no longer standard Leibniz equality, but a user level equality on
languages (≡):

a, b, c: regex
H: ∀x y, x·(y·x)? ≡ (x·y)?·x
====================
(a·(b+a))·(c·((a+b)·ε))? ≡ ...

Proof.
transitivity (a·((b+a)·(c·(b+a))?));
[aac_reflexivity | rewrite H; ...].
Qed.

Here, · is an associative only binary operation, with a neutral element ε, and the
Kleene star is a morphism w.r.t. the relation ≡: it maps equal terms to equal
terms. The latter fact is of uttermost importance: this is required here to use
the axioms of associativity and commutativity in the argument of ?.

Scope of the decision procedure. These examples sketch the requirements for the
tactic aac_reflexivity. It shall work on any given equivalence relation equipped
with some binary AC or A operations (whose number depends on the setting).
Moreover, it shall handle free function symbols that are morphisms, like the
previous − or ? unary operations. For the sake of generality, it must also han-
dle morphisms of arbitrary arity. Last, it shall deal with the optional neutral
elements of binary operations, like 0 being the unit of +, or ε the unit of ·.

In the sequel, we use ≡AC to denote the theory solved by aac_reflexivity,
equality modulo A/AC, which we define more formally at the end of §1.

2

Methodology for rewriting modulo AC. While the tactic aac_reflexivity is at
the core of our tools, it is not sufficient by itself to alleviate the whole burden of
rewriting modulo AC: the transitivity steps from the previous examples should
be computed automatically.

Formalising the former examples, we proceed as follows to achieve a whole
automation of the process: to rewrite a universally quantified hypothesis of the
form H : ∀x̃, px̃ ≡ qx̃ in a goal t ≡ ..., we take the following steps, which
correspond to building the proof-tree below:

1. find a substitution σ such that pσ ≡AC t (this is matching modulo AC);
2. make a transitivity step toward pσ;
3. close this step using a dedicated decision procedure (aac_reflexivity);
4. use the standard rewrite;
5. let the user continue the proof.

3
t ≡AC pσ

H qσ ≡ ...
5

pσ ≡ ...
4

t ≡ ...
2

For the sake of efficiency, we implement the first step as an OCaml oracle, and we
check the results of this (untrusted) matching function in the third step using
the certified decision procedure aac_reflexivity. To implement this decision
procedure, we use the standard methodology of reflection [1]; for example, this is
how the ring tactic is defined [11]. Concretely, this means that we implement the
decision procedure as a Coq program, and that we prove its correctness within
the proof assistant. This allows us to use the untrusted matching function in a
safe way.

Outline. We sketch the user interface of our tools in §1. The underlying decision
procedure for equality modulo AC is described in §2. Then, §3 is devoted to the
matching modulo AC algorithm. We describe two improvements in §4, that are
omitted for the sake of clarity at the beginning of the paper. We conclude in §5
with related works and directions for future work.

1 User interface and notations

Type-classes. We use type-classes to express the properties of functions and
A/AC binary operations inside Coq’s core theory. This allows the user to extend
both the decision procedure and the matching algorithm with new A/AC oper-
ations, define new units, or express the fact that user-defined functions are mor-
phisms. Moreover, this will be the basis of our reification mechanism (see §2.2).

The classes corresponding to the various properties that can be declared
are given on Fig. 1: being associative, commutative, and having a neutral ele-
ment. Basically, a user only needs to provide instances of these classes in order

3

Class Associative (X: Type) (R: relation X) (op: X → X → X) :=
law_assoc: ∀x y z, R (op x (op y z)) (op (op x y) z).

Class Commutative (X: Type) (R: relation X) (op: X → X → X) :=
law_comm: ∀x y, R (op x y) (op y x).

Class Unit (X: Type) (R: relation X) (op: X → X → X) (unit: X) := {
law_neutral_left: ∀x, R (op unit x) x;
law_neutral_right: ∀x, R (op x unit) x }.

Fig. 1. Classes for declaring properties of operations.

to use our tactics in a setting with new A or AC operations. These classes are
parametrised by a relation, R, so that one can work with an arbitrary equivalence
relation. We use the standard Proper type-class to declare functions being mor-
phisms. (When the underlying relation is Leibniz equality, these instances are
automatically inferred.) To settle the ideas, we can define the following instances:

Instance plus_A: Associative eq plus.
Instance plus_C: Commutative eq plus.
Instance plus_U: Unit eq plus O.

Instance and_A: Associative iff and.
Instance and_C: Commutative iff and.
Instance and_U: Unit iff and True.
Instance and_P: Proper (iff ⇒iff ⇒iff) and.

Instance max_A: Associative eq max.
Instance max_C: Commutative eq max.
Instance max_U: Unit eq max O.

Instance app_A X: Associative eq (List.app X).
Instance app_U X: Unit eq (List.app X) (nil X).

Instance not_P: Proper (iff ⇒iff) not.

As explained above, we need to prove that the and and not connectives are
morphisms w.r.t. equivalence of propositions (iff). Also notice that using type-
classes allows us to transparently handle polymorphic types and functions. While
we provide such standard instances, more can be defined by the user, extending
the power of our tactics.

Example. We continue this walk-through with an example of actual usage, in
which our rewriting and decision tactics lift the burden of reasoning modulo AC.

a, b, c: nat
H : ∀x y z, max (x+y) (x+z) = x + max y z
H’: ∀x y, max x (x+y) = x + y
========================
max (a + c) (max c (b+c)) = (max a b) + c

Proof.
aac_rewrite H; (** max (c+max a b) c = ... **)
aac_rewrite H’; (** c + max a b = ... **)
aac_reflexivity.
Qed.

Listing instances. Finally, the user is sometimes facing many ways of rewriting
a given equation, and the situation is worse when rewriting modulo AC. To
tame this complexity, we wrote an additional tactic, aac_instances, to list the
matching subterms (see §4.2), and for each subterm, the associated possible
instantiations (unlike with syntactical matching, there might be several ways to
match a given subterm modulo AC). The user can then pick the right one, and
use the tactic aac_rewrite with the appropriate options to select the desired
subterm and substitution.

4

Notations and terminology. We assume a signature Σ and we let f, g, h, . . . range
over function symbols, reserving letters a, b, c, . . . for constants (function symbols
of arity 0). We denote the set of terms by T (Σ). Given a set V of variables, we
let x, y, z, . . . range over (universally quantified) variables; a pattern is a term
with variables, i.e., an element of T (Σ + V). A substitution (σ) is a partial
function that maps variables to terms, which we extend into a partial function
from patterns to terms, as expected.

Some binary function symbols (written with an infix symbol, �) can be as-
sociative (axiom A) and optionally commutative (axiom C); these symbols may
be equipped with a left and right unit u (axiom Uu,�):

A�: x � (y � z) ≡ (x � y) � z
C�: x � y ≡ y � x

Uu,�: x � u ≡ x ∧ u � x ≡ x

We use +i (or +) for associative-commutative symbols (AC), and ∗i (or ∗) for
associative only symbols (A). We denote by ≡AC the equational theory gener-
ated by these axioms on T (Σ). For instance, in a non-commutative semi-ring
(+, ∗, 0, 1), ≡AC is generated by A+, C+, A∗ and U1,∗, U0,+.

2 Deciding equality modulo AC

In this section, we describe the stand-alone aac_reflexivity tactic, that fulfils
the requirements we described above: it decides equality modulo AC, is extensible
through the definition of new type-class instances, and deals with morphisms of
arbitrary arity. While we could explain the decision procedure and the matching
algorithm in their full-extent, we chose to restrict ourselves to the case where
binary operations do not have units. We come back to this simplification in §4.1.

2.1 The algorithm and its proof

A two-level approach. We use Barendregt’s so called 2-level approach [3]: we
define an inductive type for terms, T, and a function eval: T → X that maps reified
terms to user-level terms, in some type X equipped with an equivalence relation
R, which we sometimes denote by ≡. This allows us to reason and compute on
the syntactic representation of terms, whatever the user-level model.

In the case of a decision procedure for an equational theory, an usual practice
is to reduce equational reasoning to the computation and comparison of normal
forms. It then suffices to prove that the normalisation function is correct to get
a sound decision procedure.

Definition compare: T → T → comparison := ...
Definition norm: T → T := ...
Lemma eval_norm: ∀u, eval (norm u) ≡ eval u.
Theorem decide: ∀a b, compare (norm a) (norm b) = Eq → eval a ≡ eval b.

This is what is called the autarkic way : the verification is performed inside the
proof-assistant, using the conversion rule. To prove eval a ≡ eval b, it suffices to
apply the theorem decide and to let the proof-assistant check by computation
that the premise holds by reflexivity.

5

(** type of n-ary homogeneous functions **)
Fixpoint type_of (X: Type) (n: nat): Type :=

match n with O ⇒ X | S n ⇒ X → type_of X n end.

(** relation to be preserved by n-ary functions **)
Fixpoint rel_of (X: Type) (R: relation X) n: relation (type_of X n) :=

match n with O ⇒ R | S n ⇒ respectful R (rel_of n) end.

Module Bin.
Record pack X R := {
value:> X → X → X;
compat: Proper (R ⇒R ⇒R) value;
assoc: Associative R value;
comm: option (Commutative R value)
}.

End Bin.

Module Sym.
Record pack X R := {
arity: nat;
value:> type_of X arity;
compat: Proper (rel_of X R arity) value
}.

End Sym.

Fig. 2. Types for symbols.

Implementation constraints. Our algorithm needs to meet two objectives. First,
the normalisation function (norm) must be efficient, and this will dictate some
choices for the representation of terms. Second, the evaluation function (eval)
must be simple, in order to keep the proofs tractable, and it must be total:
ill-formed terms shall be rejected syntactically.

We use an environment to store the values and properties of function symbols
and binary operations occurring in the terms. For the sake of simplicity, it is
easier to use two different maps, so that some obvious constraints are enforced
statically, like the fact that a A/AC symbols have arity two. Hence, we settle for
the following environments, whose types are explained in the next paragraph.
We use positive numbers as indexes for efficiency (idx is an alias for positive).

Context {X} {R: relation X}.
Variable e_sym: idx → Sym.pack X R.
Variable e_bin: idx → Bin.pack X R.

Packaging symbols. The Coq types we use internally to package informations
about binary operations and free function symbols are given on Fig 2. We build
handy functions to express the fact that n-ary functions are proper morphisms,
and we use the aforementioned type-classes for A/AC symbols. We use modules
to tame the name-space, and dependent records to group related properties
together. The latter point is crucial, it allows to build homogeneous maps: the
above environment e_sym is a plain, non-dependent function; this is possible
because the arity of a symbol does not appear in the type Sym.pack.

Choosing the representation of terms. We now turn to the concrete representa-
tion of terms. The first difficulty is to choose an appropriate representation for
AC and A symbols, to avoid manipulating binary trees. As it is usually done, we
flatten these binary nodes using variadic nodes. We use non-empty lists (resp.
non-empty multi-sets) to reflect the fact that A operations (resp. AC operations)
must have at least one argument. The second difficulty is to prevent ill-formed

6

(** non-empty lists **)
Inductive nelist A :=
| nil: A → nelist A
| cons: A → nelist A → nelist A.

(** non-empty multi-sets **)
Definition nemset A := nelist (A∗positive).

(** reified terms **)
Inductive T: Type :=
| bin_ac: idx → nemset T → T
| bin_a : idx → nelist T → T
| sym: ∀i, vector T (Sym.arity (e_sym i)) → T.

Fixpoint eval (u: T): X :=
match u with
| bin_ac i l ⇒ let o := Bin.value (e_bin i) in

nefold_map o (λ(u,n) ⇒ copy o n (eval u)) l
| bin_a i l ⇒ let o := Bin.value (e_bin i) in

nefold_map o eval l
| sym i v ⇒ eval_aux v (Sym.value (e_sym i))

end
with eval_aux i (v: vector T i): Sym.type_of i→ X :=
match v with
| vnil ⇒λf ⇒ f
| vcons _ u v ⇒λf ⇒ eval_aux v (f (eval u))

end.

Fig. 3. Data-type for terms, and related evaluation function.

terms, like (succ 1 (6+6) 4), where an unary function is applied to more than
one argument. One could define a predicate stating that terms are well-formed
[9], and use this extra hypothesis in later reasonings. However, it is much easier
to use dependent types to enforce that symbols are applied to the right num-
ber of arguments, according to their declared arity. It suffices to use vectors of
arguments rather than lists.

The inductive data-type we chose for reified terms is given on Fig. 3; we use
non-empty lists (nelist) and non-empty multi-sets (nemset – non-empty lists
with multiplicities). This definition allows for a simple and total implementation
of eval, given on the right-hand side. We give an example to fix the ideas; suppose
that we have the following environment:

e_sym e_bin

1 ⇒ L arity := 1; value := S; compat := _ M
2 ⇒ L arity := 0; value := a; compat := _ M
3 ⇒ L arity := 0; value := b; compat := _ M
_ ⇒ L arity := 2; value := minus; compat := _ M

1 ⇒ L value := plus; compat := _ ;
assoc := _ ; comm := Some _ M

_ ⇒ L value := mult; compat := _ ;
assoc := _ ; comm := None M

Then, we can reify user-level terms as follows:

eval (bin_ac 1 [(sym 2 JK, 2); (sym 1 Jsym 3 JKK,1)]) = (a+a) + S b
eval (sym 4 Jbin_a 2 [(sym 2 JK); (sym 1 Jsym 3 JKK)]; sym 3 JKK) = (a∗S b) − b

There is only one way in which reified terms can be ill-formed: in the above
example, one could build the node bin_ac 2, even if the second binary symbol,
mult, was not declared as commutative in the environment. Nonetheless, the
evaluation function remains total: eval does not use the properties stored in
e_bin; we discuss the case of normalisation in the next but one paragraph.

Pushing Barendregt’s 2-level approach further. The environments e_sym and
e_bin improve on the usual two-level approach: they allow to parametrise the
decision procedure by an arbitrary signature. The function norm exploits these
parameters to perform a fine-grain analysis of the terms: it builds normal forms
with respect to the declared properties.

These normal forms are computed as follows: terms are recursively flattened
under A/AC nodes, and arguments of AC nodes are sorted with respect to a

7

lexicographic path ordering [13]. We focus on the normalisation of AC opera-
tions in the code snippet below: bin_ac’ is a smart constructor that prevents
from building unary AC nodes, and norm_msets normalises and sorts a multi-set,
ensuring that none of its children starts with the AC symbol i.

Definition bin_ac’ i (u: nemset T): T := match u with nil (u,1) ⇒ u | _ ⇒ bin_ac i u end.
Definition extract_ac i (s: T): nemset T := match s with bin_ac j m when i = j ⇒ m | _ ⇒ [s,1] end.
Definition norm_msets norm i (u: nemset T): nemset T :=

nefold_map merge_sort (λ(x,n) ⇒ copy_mset n (extract_ac i (norm x))) u
...
Fixpoint norm (u: T): T :=
match u with
| bin_ac i l ⇒ if is_commutative e_bin i then bin_ac’ i (norm_msets norm i l) else u
| bin_a i l ⇒ bin_a’ i (norm_lists norm i l)
| sym i l ⇒ sym i (vector_map norm l)

end.

Correctness and completeness. We prove that the normalisation function is
sound. This proof relies on the defensive test against ill-formed terms, the look-
up made by norm before going through an AC node. Since ill-formed AC nodes
are leaved intact, we do not need the missing commutativity hypothesis when
proving the correctness of norm.

However, we did not prove completeness, for several reasons. First, this is
not required to get a sound tactic. Second, formally defining equality modulo
AC at the reified level would be quite verbose. Third, we would not be able to
prove the completeness of aac_reflexivity completely, since there is no way to
reason about the reification function in the proof-assistant [11,6]. Hence, we can
be liberal in the implementation of norm, as long as we are able to prove it correct
with respect to the evaluation function and the underlying equality.

Efficiency. Even if we chose a dependently typed representation of terms in order
to simplify proofs, it still allows for efficient computations. The complexity of
the normalisation is dominated by the merging of sorted multi-sets, which relies
on the linear comparison function (which is always applied to terms in normal
form). We did not put this decision procedure through an extensive testing to
assess its empirical complexity; however, we claim that it returns instantaneously
in practice. Moreover, the size of the generated proof is linear with respect to
the size of the starting terms.

2.2 Reification

It is possible to solve an equation modulo AC of the form s ≡ t, by applying the
theorem decide. To do so, we still need to provide the two environments e_bin

and e_sym, and two terms u and v such that the evaluation of u (resp. v) in the
environments is convertible to s (resp. t). This process is called reification.

Type-class based reification. We do not want to rely on annotations (like pro-
jections of type-classes fields or canonical structures) to infer how to reify the
terms. Indeed, this would force the users to use our definitions and notations
from the beginning.

8

Instead, we let the user work with his own definitions, and we exploit type-
classes to perform reification. The idea is to query the type-class resolution mech-
anism to decide whether a given subterm should be reified as an AC operation,
an A operation, or a free function symbol.

The inference of binary A or AC operations takes place first, by querying for
instances of the classes Commutative and Associative on all binary applications.
The remaining difficulty is to discriminate whether other applications should be
considered as a function symbol applied to several arguments, or as a constant.
On an example, considering the application f a (b+c) c, it suffices to query for
Proper instances in the following order:

Proper (R ⇒ R ⇒ R ⇒ R) (f) ?
Proper (R ⇒ R ⇒ R) (f a) ?
Proper (R ⇒ R) (f a (b+c)) ?
Proper (R) (f a (b+c) c) ?

The first query that succeeds tells which partial application is a proper mor-
phism, and with which arity. Hence, the inference of constants – symbols of
arity 0 – is the catch-all case of reification.

Reification language. We use OCaml to reify the terms and build the envi-
ronments (e_bin,e_sym,u,v). Using the meta-language OCaml rather than the
meta-language of tactics Ltac is a matter of convenience: it allows to use more
involved data-structure, and to be more efficient. For instance, we use hash-tables
to memoise the queries to type-class inference during the reification, which would
have been difficult to mimic in Ltac or using canonical structures.

Wrap-up. Using Coq’s plug-in mechanism, we wrap up the previous ideas in
a tactic, aac_reflexivity, which automates this process, and solves equations
modulo AC. The next section addresses the second point of our work: the guess
of possible transitivity steps using a matching algorithm.

3 Matching modulo AC

A matching problem is, given a pattern p and a term t, to find a substitution
σ such that pσ ≡AC t. There are many algorithms to solve matching modulo
AC [9,10,12,15]. We present here an algorithm based on inference rules, that
makes heavy use of non-determinism; this algorithm is later refined into more
efficient versions.

3.1 Naive algorithm

Inference rules. This algorithm stems from the following idea: the pattern drives
the matching. For instance, to match a sum p1 + p2 against a term t, we first
decompose t non-deterministically into a sum t1 + t2. Then, we match p1 against

9

t ≡AC t1 +i t2 σ1 : p1 C t1 : σ2 σ2 : p2 C t2 : σ3

σ1 : p1 +i p2 C t : σ3

t ≡AC t1 ∗i t2 σ1 : p1 C t1 : σ2 σ2 : p2 C t2 : σ3

σ1 : p1 ∗i p2 C t : σ3

t = f(ti) σi : pi C ti : σi+1

σ0 : f(pi) C t : σn

σ(x) = v v ≡AC t

σ : xC t : σ

σ#x

σ : xC t : σ ∪ {x 7→ t}

Fig. 4. Matching algorithm.

t1, which yields a possible solution, if any. We finally take this substitution as
the initial state to match p2 against t2, yielding a more precise solution, if any.

To match a variable x against a term t, there are two cases depending on
whether or not the variable has already been affected in the current substitu-
tion (σ). If the variable has already been affected to a value v, we check that
v ≡AC t. If this is not the case, then this particular substitution must be dis-
carded since x must take incompatible values. Otherwise, if the variable is fresh
(σ#x), we add a mapping from x to v to the substitution.

We write σ : p C t : ρ to state that, starting with a substitution σ, it is
possible to match p against t, yielding the substitution ρ. The non-deterministic
matching algorithm is described on Fig. 4, using inference rules. It must be
emphasised that this presentation naturally allows for non-determinism: some
rules can be applied in different ways, e.g., by choosing different decompositions
for t ≡AC t1 +i t2. However, only one rule may apply for a given pattern. The
termination of this algorithm is straightforward: the size of the pattern decreases
strictly in each rule, and there are finitely many pairs such that t ≡AC t1 +i t2
or t ≡AC t1 ∗i t2.

Matching machine. The rules of Fig. 4 bear a heavy similitude with big-step
operational semantics. Thus, an intuitive way to understand this algorithm is to
see the pattern as a program that throttle the execution of a virtual machine,
and these inference rules as a big-step semantics. This matching machine keeps
a state: the set of variables that have already been affected, i.e., a substitution.
Conflicts can arise when a variable has been set to a value that is incompatible
with the remaining term, or when the head-symbols of the term and the pattern
are different.

3.2 Tackling the non-determinism

Search monad. We implemented in OCaml a monad for non-deterministic com-
putations, along the lines of [16]. The main idea is to gather collections of results
inside the monad, replacing non-deterministic computations with a single compu-
tation that operates on collection of possible states. In this setting, it is possible

10

val (�): α m → (α → β m) → β m
val (�|): α m → α m → α m
val return: α → α m
val fail: unit → α m

Fig. 5. Search monad primitives.

val split_ac: idx → term → (term ∗ term) m
val split_a : idx → term → (term ∗ term) m

Fig. 6. Search-monad derived functions.

match (p1+p2) t σ = split_ac t � (λ (t1,t2) → match p1 t1 σ � match p2 t2)
match (p1∗p2) t σ = split_a t � (λ (t1,t2) → match p1 t1 σ � match p2 t2)
match (f(pi)) (f(ti)) σ = fold_2 (λ acc p t → acc � match p t) (return σ) pi ti

match x t σ when Subst.find σ x = None = return (Subst.add σ x t)
match x t σ when Subst.find σ x = Some v = if v ≡AC t then return σ else fail()

Fig. 7. Deterministic reduction semantics for the matching machine.

to express the fact that a computation may return one, several or no values.
Therefore, it allows for expressing programs in a concise and elegant fashion:
the monad threads computations between functions that take one argument and
return collections of results. All the non-deterministic choices, the backtrack-
ing, and the failures are handled by the monad. Fig. 5 presents the primitive
functions offered by this monad: � is the usual bind operation, while �| is the
non-deterministic choice.

Splitting terms. We have an OCaml type for terms similar to the inductive
type we defined for Coq reified terms: A/AC symbols are represented using
their flattened normal forms. From the primitives of the monad, we derive func-
tions operating on terms on Fig. 6: the function split_ac i implements the non-
deterministic split of a term t into pairs (t1, t2) such that t ≡AC t1 +i t2. If
the head-symbol of t is +i, then it suffices to split syntactically the multi-set
of arguments; otherwise, split_ac i returns an empty collection. The function
split_a i implements the corresponding operation on associative only symbols.

Implementing the machine. The big-step semantics of Fig. 4 allows for non-
determinism in a precise way: rules can be applied in different manners, but
only one rule may apply for a given pattern. Indeed, it suffices to look at the
head symbol of the pattern. This yields to the deterministic reduction semantics
depicted on Fig. 7 in terms of equations (presented using an informal ML-like
syntax). The machine deals with collections to handle all its possible states, and
updates these states deterministically along the computations.

3.3 Look-ahead

While the machine of Fig. 7 can be implemented as it is, there is room for
improvement. Indeed, representing terms and patterns using normal forms enable
for some low-level optimisations. For instance, we introduce optimisations that
consider not only the head-symbol of the pattern, but also a few more symbols
before engaging into a costly operation.

11

The most striking limitation of the previous implementation is that the non-
deterministic splits of A/AC nodes are blind: if the pattern has the form x+ p,
and if x is not fresh in the current substitution σ, it is obviously a poor solution
to try all decompositions of the term: a better solution is to remove the factor
σ(x) from the term (modulo AC or A).

Similarly, if the pattern has the form f(pi)+p, it is cost-effective to look into
the term to find the subterms whose head-symbol is f , rather than making blind
splittings that are bounded to fail. Hence, we decompose the term as f(ti) + t
(failing if not possible) and recursively match the pairs (pi, ti) and (p, t).

3.4 Correctness.

Following [9], we could have attempted to prove the correctness of this matching
algorithm. While this could be an interesting formalisation work per se, it is not
necessary for our purpose, and could even be considered an impediment. Indeed,
we implement the matching algorithm as an oracle, in an arbitrary language –
that happens in our case to be the metalanguage in which the proof assistant is
written. Thus, we are given the choice to use a free range of optimisations, and
the ability to exploit all features of the implementation language. Anyway, the
prophecies of this oracle, a set of solutions to the matching problem, are verified
by the reflexive decision procedure we implemented in §2.

4 Bridging the gaps

Combining both the decision procedure for equality modulo AC and the algo-
rithm for matching modulo AC, we get a usable plug-in for rewriting modulo
AC in Coq. We now turn to lifting some simplifying assumptions that we made
in the beginning.

4.1 Adding neutral elements

A practical need. Adding support for neutral elements is of practical impor-
tance: it allows the stand-alone decision procedure to decide more equations
(like a+ max (0, b ∗ 1) = a+ b), so that more rewriting steps can be automa-
tised. However, matching modulo AC with units does not boil down to matching
a pattern against a simplified term: in some cases, a formal variable must be
instantiated with a unit to solve a given matching problem (like a ∗x ∗ bC a ∗ b).

Extending the decision procedure. The obvious solution to handle neutral ele-
ments is to replace non-empty multi-sets by multi-sets and non-empty lists by
lists in the definition of terms (Fig. 3). However, this has two consequences: first,
every A/AC symbol must then be associated with a unit (which precludes, e.g.,
min and max to be defined as AC operations on relative numbers). Second, two
symbols cannot share a common unit, like 0 being the unit of both max and plus

12

Variable e_sym: idx → Sym.pack X R.
Variable e_bin: idx → Bin.pack X R

Record unit_of (u: X) := {
uf_idx: idx;
uf_desc: Unit R (Bin.value (e_bin uf_idx)) u }.

Record unit_pack := {
u_value:> X;
u_desc: list (unit_of u_value) }.

Variable e_unit: idx → unit_pack.
Inductive T: Type := ... | unit: idx → T.

Fig. 8. Enriched syntax and environments for terms with units.

on natural numbers; indeed, we would have to know at reification time how to
reify 0: is it an empty AC node for max or for plus?

Therefore, we choose to add an extra constructor to the data-type of terms,
to represent units, and to extend the environments to record the relationships
between units and binary operations. The actual definition of this third part
of the environment requires a more clever crafting than the others ones. The
starting point is that a unit is nothing by itself, it is a unit for some binary
operations. Thus, the type of the environment for units has to depend on the
environment for binary operations.

Figure 8 shows the updated syntax of the abstract terms and the enriched
environments. The record unif_of u records the connection between a binary
operation (pointed to by its index uf_idx) and the constant u. Then, each unit
is bundled with the list of operations it is a unit for (unit_pack): like for the
two other environments, using such a dependent record allows us to use plain,
non-dependent maps.

The extension of the normalisation function and of the matching algorithm
to the case with units is rather simple but slightly verbose. For normalisation,
it boils down to tracking how units can interact with other terms, and to cancel
them as soon as possible. In the matching algorithm, it suffices to let the non-
deterministic split functions (Fig. 6) use the associated neutral element. However,
the reification becomes more complicated. We have to infer all A/AC operations
first, in order to be able to distinguish units from regular constants.

4.2 Subterms

Another point of high practical importance is the ability to rewrite in subterms.
Indeed, the above methodology does not allow to match x + x in terms like
f(a+ a) or a+ (b+ a), where the occurrence appears under some context.

As shown with the latter term, it is not sufficient to explore all syntactic
subterms: the instance a + a of the pattern x + x is not a syntactic subterm of
a+ (b+a). A possible solution to this problem is to enrich the rewritten pattern
with an extension, a universally quantified variable used to collect the trailing
terms: in the previous case, we can extend the pattern into y + x + x, where y
will be instantiated with b. Then, it suffices to explore syntactic subterms: when
we try to solve the problem x+xC (a+ c) ∗ (a+ (b+ a)), we extend the pattern
into y + x + x and we use the previous matching algorithm on the whole term
and the subterms a+ c and a+ (b+ a) (only the last call succeeds).

13

However, this approach does not scale in presence of units. Consider for ex-
ample the matching problem x+xCa∗ (b∗c); the variable x can be instantiated
with the neutral element 0, so that the previous idea gives five solutions, corre-
sponding to the following contexts (where [] denotes the hole):

a ∗ b ∗ c+ [] (a+ []) ∗ b ∗ c a ∗ (b ∗ c+ []) a ∗ (b+ []) ∗ c a ∗ b ∗ (c+ [])

Unfortunately, there are other solutions. First one can use associativity of ∗ to
get a sixth one: (a∗b+[])∗c. Second, one can also introduce the neutral element
for multiplication at arbitrary places, to get solutions like a∗(1+[])∗b∗c. Third,
there are even more complex solutions, like a ∗ b ∗ c + 0 ∗ (1 + []). (Note that
all these solutions are distinct modulo AC: they collapse to the same term only
when we instantiate the hole with 0.) In fact, there are infinitely many solutions:
as soon as we have two symbols with units, if a pattern can be instantiated to
be equal to a unit, say 0, and if the context C[] corresponds to a solution, then
C[0 ∗ (1 + [])] is also a solution.

We chose a pragmatic solution to handle such situations: the solutions where
neutral elements are artificially introduced seem really peculiar and of little
practical interest, so that we simply ignore them. In the previous example, this
means that we propose only the first six solutions.

As explained above, the algorithm based on extensions is not sufficient to get
the sixth solution ((a∗ b+ [])∗ c). Instead, we implemented a function to explore
subterms modulo AC, using the primitives defined for matching modulo AC. For
instance, if the head-symbol of the term is AC, we can use the aforementioned
function split_ac to decompose the term into a collection of pairs: for each of
these pairs, we take the first component as part of a potential context, while we
proceed recursively with the second component.

5 Conclusions

The Coq library corresponding to the tools we presented is available from [7].
We do not use any axiom; the code consists in about 1400 lines of Coq and 3600
lines of OCaml. We conclude with related works and directions for future work.

5.1 Related Works

Contejean [9] implemented in Coq an algorithm for matching modulo AC, and
proved it to be sound and complete. The emphasis is put on the proof of the
matching algorithm, which corresponds to a concrete implementation in the
CiME system. Although decidability of equality modulo AC is also proved, this
development was not designed to obtain the kind of tactics we propose here, so
that we could not reuse it to this end. Finally, symbols can be free, commutative,
or associative and commutative, but neither associative only symbols nor units
are handled.

14

Nguyen et al. [14] used the external rewriting tool ELAN to add support
for rewriting modulo AC in Coq. They perform term rewriting in the efficient
ELAN environment, and check the resulting traces in Coq. This allows to obtain
a powerful normalisation tactic out of any set of rewriting rules which is confluent
and terminating modulo AC. Our objectives are slightly different: we want to
easily perform small rewriting steps in an arbitrarily complex proof, rather than
to decide a proposition by computing and comparing normal forms.

The ELAN trace is replayed using elementary Coq tactics, and equalities
modulo AC are proved by applying the associativity and commutativity lemmas
in a smart way. On the contrary, we use the high-level (but slightly inefficient)
rewrite tactic to perform the rewriting step, and we rely on an efficient reflexive
decision procedure for proving equalities modulo AC. (Alvarado and Nguyen
first proposed a version where the rewriting trace was replayed using reflection,
but without support for modulo AC [2].)

From the user interface point of view, leaving out the fact that the support for
this tool has been discontinued, and that associative only symbols and neutral
elements are not handled, our work improves on several points: thanks to the
recent plug-in and type-class mechanisms of Coq, it suffices for a user to declare
instances of the appropriate classes to get the ability to rewrite modulo AC.
Even more importantly, there is no need to declare explicitly all free function
symbols, and we transparently support polymorphic operations (like List.app)
and arbitrary equivalence relations (like Qeq on rational numbers, or iff on
propositions).

It would therefore be interesting to revive this ELAN tool using the new
mechanisms available in Coq, so as to get a nicer and more powerful interface.

Although this is not a general purpose interactive proof assistant, the Maude
system [8], which is based on equational and rewriting logic, also provides an
efficient algorithm for rewriting modulo AC [10]. Like ELAN, Maude could be
used as an oracle to replace our OCaml matching algorithm. This would require
some non-trivial interfacing work, however. Moreover, it is unclear to us how to
use these tools to get all matching occurrences of a pattern in a given term.

To the best of our knowledge, even if HOL-light provides some tactics to
prove that two terms are equal using associativity and commutativity of a single
given operation, it seems that tactics comparable to the ones we describe here
do not currently exist in the HOL family of theorem provers.

5.2 Directions for Future works.

Heterogeneous terms. Our decision procedure cannot deal with functions whose
range and domain are distinct sets, each equipped with AC or A symbols. We
could extend the tactic to deal with such objects, and allow to rewrite equations
like ∀uv, ‖u+v‖ ≤ ‖u‖+‖v‖, where ‖·‖ would be a norm in a vector space. This
would require a more involved definition of reified terms and environments to
keep track of type informations, and the corresponding reification process seems
quite challenging.

15

Heterogeneous operations. We could also attempt to handle heterogeneous as-
sociative operations, like multiplication of non-square matrices, or composition
of morphisms in a category. For example, with matrices, multiplication has type
∀n m p, X n m → X m p → X n p (where X n m is the type of matrices with size n,m).
Again, the first difficulty is to adapt the definition of reified terms; for instance,
this would certainly require dependently typed non-empty lists.

Other decidable theories. While we focused on rewriting modulo AC, we could
consider other theories whose matching problem is decidable. Such theories in-
clude, for example, the Abelian groups and the boolean rings [5].

References

1. S. F. Allen, R. L. Constable, D. J. Howe, and W. E. Aitken. The Semantics of
Reflected Proof. In LICS, pages 95–105. IEEE Computer Society, 1990.

2. C. Alvarado and Q-H. Nguyen. ELAN for Equational Reasoning in Coq. In J.
Despeyroux, editors, Proc. of LFM’00. INRIA, 2000.

3. G. Barthe, M. Ruys, and H. Barendregt. A Two-Level Approach Towards Lean
Proof-Checking. In TYPES, LNCS, pages 16–35. Springer, 1995.

4. Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Develop-
ment. Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical
Computer Science. Springer, 2004.

5. A. Boudet, J.-P. Jouannaud, and M. Schmidt-Schauß. Unification in Boolean Rings
and Abelian groups. J. Symb. Comput., 8(5):449–477, 1989.

6. S. Boutin. Using Reflection to Build Efficient and Certified Decision Procedures.
In TACS, volume 1281 of LNCS, pages 515–529. Springer, 1997.

7. T. Braibant and D. Pous. Tactics for working modulo AC in Coq. Available at
http://sardes.inrialpes.fr/~braibant/aac_tactics/, June 2010.

8. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. The Maude 2.0 System. In RTA, volume 2706 of LNCS, pages 76–87. Springer,
2003.

9. E. Contejean. A Certified AC Matching Algorithm. In RTA, volume 3091 of LNCS,
pages 70–84. Springer, 2004.

10. S. Eker. Single Elementary Associative-Commutative Matching. J. Autom. Rea-
soning, 28(1):35–51, 2002.

11. B. Grégoire and A. Mahboubi. Proving Equalities in a Commutative Ring Done
Right in Coq. In TPHOLs, volume 3603 of LNCS, pages 98–113. Springer, 2005.

12. J. M. Hullot. Associative commutative pattern matching. In IJCAI, pages 406–412,
San Francisco, CA, USA, 1979. Morgan Kaufmann Publishers Inc.

13. U. Martin and T. Nipkow. Ordered Rewriting and Confluence. In CADE, volume
449 of LNCS, pages 366–380. Springer, 1990.

14. Q. H. Nguyen, C. Kirchner, and H. Kirchner. External Rewriting for Skeptical
Proof Assistants. J. Autom. Reasoning, 29(3-4):309–336, 2002.

15. T. Nipkow. Proof transformations for equational theories. In LICS, pages 278–288.
IEEE Computer Society, 1990.

16. J. Michael Spivey. Algebras for combinatorial search. J. Funct. Program., 19(3-
4):469–487, 2009.

16

http://sardes.inrialpes.fr/~braibant/aac_tactics/

