
HAL Id: hal-00484853
https://hal.science/hal-00484853

Submitted on 19 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Resolution of Hierarchized Inverse Kinematics with
Inequality Constraints

Adrien Escande, Nicolas Mansard, Pierre-Brice Wieber

To cite this version:
Adrien Escande, Nicolas Mansard, Pierre-Brice Wieber. Fast Resolution of Hierarchized Inverse Kine-
matics with Inequality Constraints. ICRA 2010 - IEEE International Conference on Robotics and
Automation, May 2010, Anchorage, United States. pp.3733-3738, �10.1109/ROBOT.2010.5509953�.
�hal-00484853�

https://hal.science/hal-00484853
https://hal.archives-ouvertes.fr


Fast Resolution of Hierarchized Inverse Kinematics
with Inequality Constraints

Adrien Escande, Nicolas Mansard, Pierre-Brice Wieber

Abstract— Classically, the inverse kinematics is performed by
computing the singular value decomposition of the matrix to
invert. This enables a very simple writing of the algorithm.
However, the computation cost is high, especially when applied
to complex robots and complex sets of constraints (typically
around 5ms for 50 degrees of freedom – DOF). In this paper, we
propose a dedicated adaptation of quadratic programming that
enables fast computations of the hierarchical inverse kinematics
(around 0.1ms for 50 DOF). We then extend this algorithm
to deal with unilateral constraints, obtaining sufficiently high
performances for reactive control.

I. I NTRODUCTION

Inverse kinematics (IK) is a very classical solution to
design and control motions of robots. Instead of arbitrarily
choosing the joint trajectories, it allows to design the desired
motion in a well constructedtask space [16], where the
objectives or the links with sensors are easy to establish [5].
Moreover, the same inversion techniques can be applied to
the dynamical equations of the system [10], [12]. Addition-
ally, it is possible to combine by projection a secondary
objective with the first inversion [15], while ensuring a com-
plete decoupling [11]. This decoupling can be generalized
to several tasks [14], and a control law can be obtained by
stacking any number of tasks, ensuring a strict respect of
the tasks order [17]. The hierarchy orstack of tasks (SOT)
becomes more and more popular to build complex behaviors
on redundant robots such as humanoid robots [1].

The first limitation of IK is the computation cost. IK gen-
erally relies on singular-value-decomposition (SVD) based
pseudo-inverse, which is costly (typically 2 to 5 ms for a
humanoid robot with about 40 DOF, while for dynamic tasks
such as contact manipulation, the control loop should be
1ms). The second limitation is the formalization of inequality
constraints (joint limits, obstacles, etc.) inside IK. Themost
widely-used solution to consider such constraints is the
definition of a potential field [9], [13], whose gradient is
projected at the lowest priority. In [8], [4], it was proposed to
revisit the original link with optimization, by using quadratic
programming (QP)with inequalities for IK. A cascade of QP
then built a SOT with inequalities in any order of priority.
Such a cascade was too expensive for real time control
(typically 30ms).

A. Escande is with the CEA, LIST, Fontenay aux Roses, F-92265
France (adrien.escande@cea.fr). N. Mansard is with Université de
Toulouse, LAAS/CNRS, France (nicolas.mansard@laas.fr). P-B. Wieber
is with INRIA, Grenoble, France and with CNRS/AIST-JRL, Tsukuba,
Japan (pierre-brice.wieber@inria.fr). This research was supported by the
French Agence Nationale de la Recherche, grant reference ANR-08-JCJC-
0075-01, and by the FUI Romeo project.

The contribution of this paper is twofold.First , only
equality constraints are considered. The link between QP
and IK is revisited to propose a more efficient IK algorithm.
Compared to the typical 5ms performances of SVD-IK, we
demonstrate 0.1ms for the same problem. Moreover, we
prove that the algorithmic complexity of the algorithm does
not depend on the size of the stack but only on the number
of DOF of the robot.Second, we use this result to accelerate
the algorithm proposed in [8], leading to 3ms of computation
time on a HRP2 robot.

II. H IERARCHIZED INVERSE KINEMATICS

Task-based motion generation consists in defining the
motion of the robot in terms of a reference in a simple
task spacee. This space can be for example the position
of the hand, the gaze (i.e. the position of a point in the
visual plane) or the position of the center of mass (CoM).
A task k is completely defined by choosing the reference in
the proper sub-spaceek, and modeling explicitly the generic
link between the robot inputs and the task:

ek = Jku (1)

with u the robot input (typically the joint velocity) andJk

the differential link to the robot input (whenu = q̇, Jk is
usually the JacobianJk = ∂ek

∂q
and the referenceek is the

velocity in the task spacėe∗k).
When composing a set of tasks, the problem turns into

solving a set of such linear equations. In the case of complex
applications, some of these equations may be incompatible,
at least temporarily (task singularities). One classical solution
is then to introduce a hierarchy between the tasks. The
hierarchy can be enforced by solving each equation (1) only
in the null space of the previous ones. This solution is
obtained with the recursive formula [17]

uk = uk−1 + (JkPk−1)
+ (ek − Jkuk−1) (2)

whereA+ denotes the (Moore-Penrose) pseudo-inverse of a
matrix A [2], and

Pk = I − J̄+

k J̄k (3)

is a matrix projecting on the null space of the augmented
matrix:

J̄k =







J1

...
Jk






. (4)



When beginning withu0 = 0, J̄0 empty and therefore
P0 = I, this produces a sequence of solutions with minimum
norm [17].

III. E QUIVALENCE WITH A LEAST-SQUARES PROBLEM

The way the pseudo-inverse is used in (2) indicates that
this recursive formula solves in fact a least-squares problem
with equality constraints (LSE)

min
uk

1

2
‖Jkuk − ek‖

2 (5)

subject to J̄k−1uk = J̄k−1uk−1. (6)

When computing the solutionuk to this problem, the con-
straint (1) is solved in a least-squares sense by (5) while
ensuring by (6) that the solution to the previous constraints
J̄k−1 is left unchanged from the previous solutionuk−1.

Several classical solutions are available to solve this LSE,
among them the null-space method [3], which begins by
considering a general solution to the equality constraint (6)
of the form

uk = uk−1 + Pk−1zk (7)

wherePk−1 is a matrix projecting on the null space of the
augmented matrixJ̄k−1 as in (3). Replacing this general
solution in the minimization problem (5), we end up with
an unconstrained least-squares problem

min
zk

1

2
‖Jkuk−1 + JkPk−1zk − ek‖

2, (8)

The solution with minimum normzk is directly obtained
using a pseudo-inverse. Replacing it in (7), the solution to
the LSE (5)-(6) appears to be

uk = uk−1 + Pk−1(JkPk−1)
+ (ek − Jkuk−1) (9)

which is strictly equivalent to (2) sincePk−1(JkPk−1)
+ =

(JkPk−1)
+ [17].

IV. U SUAL MATRIX DECOMPOSITIONS

The numerical method of reference to compute the pseudo-
inverse in formula (2) is through a SVD:

JkPk−1 =
[

Uk Vk

]

[

Sk 0
0 0

] [

Y T
k

ZT
k

]

= UkSkY T
k (10)

where
[

Uk Vk

]

and
[

Yk Zk

]

are orthonormal square ma-
trices andSk is the diagonal matrix of singular values. With
this decomposition, the pseudo-inverse is obtained directly:

(JkPk−1)
+ =

[

Yk Zk

]

[

S−1

k 0
0 0

] [

UT
k

V T
k

]

= YkS−1

k UT
k .

(11)
This is the most precise numerical method for obtaining a
pseudo inverse [7], the most robust to the ill-conditioningof
JkPk−1 that can happen when the robot is close to a task
singularity. However, this solution is expensive to compute.

Another less frequent option is to use a Complete Orthog-
onal Decomposition (COD)

JkPk−1 =
[

Uk Vk

]

[

0 0
Lk 0

] [

Y T
k

ZT
k

]

= VkLkY T
k (12)

where
[

Uk Vk

]

and
[

Yk Zk

]

are once again orthonormal
square matrices butLk is an invertible lower triangular
matrix. The pseudo-inverse is also easily obtained:

(JkPk−1)
+ =

[

Yk Zk

]

[

0 0
Lk

−1 0

] [

UT
k

V T
k

]

= YkLk
−1V T

k .

(13)
Lk

−1 requiresn2/2 computations instead ofn for S−1.
On the other hand, this matrix decomposition is faster
to compute than a SVD. It is usually considered as safe
enough [7], even if more sensitive to ill-conditioning close
to task singularities.

Concerning the projection matrixPk, it is rarely computed
directly from the formula (3) since an incremental formula-
tion can be more efficient [1]:

Pk = Pk−1 − (JkPk−1)
+JkPk−1 (14)

The efficiency of the recurrence is even improved by the
matrix decompositions (10)-(11) or (12)-(13) which gives

Pk = Pk−1 − YkY T
k . (15)

V. THE HIERARCHIZED COMPLETE ORTHOGONAL

DECOMPOSITION

The derivations of the previous sections correspond to the
current state of the art in computing Hierarchized IK (HIK),
but it seems there is still room for improvements. Let us
begin by introducing an orthogonal decomposition

J̄k−1 = W̄k−1

[

L̄k−1 0
]

[

Ȳ T
k−1

Z̄T
k−1

]

(16)

of the augmented matrixJ̄k−1, where W̄k−1 and
[

Ȳk−1 Z̄k−1

]

are orthonormal square matrices andL̄k−1

is a matrix with full column rank. This decomposition is
not unique and depends on the specific structure imposed on
W̄k−1 and L̄k−1. Now, having in mind that

J̄k =

[

J̄k−1

Jk

]

, (17)

we augment this decomposition in the following way,

J̄k =

[

W̄k−1 0
0 I

] [

L̄k−1 0
JkȲk−1 JkZ̄k−1

] [

Ȳ T
k−1

Z̄T
k−1

]

. (18)

We can see in the lower right corner of the matrix in the
middle a projected matrixJkZ̄k−1. The COD of this matrix
is

JkZ̄k−1 =
[

Uk Vk

]

[

0 0
Lk 0

] [

Y T
k

ZT
k

]

, (19)

Inserting it in the decomposition (18) gives:

J̄k =

[

W̄k−1 0 0
0 Uk Vk

]





L̄k−1 0 0
Mk 0 0
Nk Lk 0









Ȳ T
k−1

Y T
k

ZT
k



 (20)

= W̄k

[

L̄k 0
]

[

Ȳ T
k

Z̄T
k

]

(21)

with
Mk = UT

k JkȲk−1, Nk = V T
k JkȲk−1 (22)



and
Ȳk =

[

Ȳk−1 Yk

]

, Z̄k = Zk. (23)

Going from the decomposition (16) of the matrix̄Jk−1 to
the decomposition (21) of the matrix̄Jk, it appears that this
sequence of decompositions can be computed incrementally,
involving a smaller COD (19) at each increment.

Doing so, the sequence of matricesL̄k presents a specific
structure which appears in (20): it is not a simple invertible
lower triangular matrix as in a classical COD, but something
similar which is going to be fundamental when dealing
with inequalities in further sections. We propose to call
this decomposition aHierarchized Complete Orthogonal
Decomposition (HCOD).

VI. A FASTER COMPUTATION SCHEME

With the help of the decomposition (16), the matrix
projecting on the null space of the augmented matrixJ̄k−1

appears to be directly

Pk−1 = Z̄k−1Z̄
T
k−1. (24)

We can revisit then the results of Section III, introducing

z′k = Z̄T
k−1zk. (25)

The general solution (7) can be written then

uk = uk−1 + Z̄k−1z
′

k, (26)

leading to the alternative unconstrained least-squares prob-
lem

min
z′

k

1

2
‖Jkuk−1 + JkZ̄k−1z

′

k − ek‖
2 (27)

The solution with minimum norm is

z′k = (JkZ̄k−1)
+ (ek − Jkuk−1) , (28)

leading finally to an alternative formulation of the solution

uk = uk−1 + Z̄k−1(JkZ̄k−1)
+ (ek − Jkuk−1) . (29)

This formulation can be further simplified thanks to the
second relation in (23):

uk = uk−1 + Zk−1(JkZk−1)
+ (ek − Jkuk−1) (30)

= uk−1 + Zk−1YkLk
−1V T

k (ek − Jkuk−1) , (31)

involving matricesJkZk−1 which are strictly equal to the
matricesJkZ̄k−1, but which are now obtained directly from
the COD (19) and not from the decomposition (16). This
way, it appears that only the sequence of COD of matrices
JkZk−1 are need, and not the whole decomposition (16).

This alternative formulation is faster to compute than the
original (2) since the size of the matricesZk−1 decreases
when advancing in the hierarchy of tasks (whenk increases),
while the original matricesPk−1 have a constant size. Thanks
to this property, the pseudo-inverses ofJkZk−1 are cheaper
with increasing k, and much cheaper in the end than the
pseudo-inverses of the original bigger matricesJkPk−1.

As an example, consider a robot withm DOF, havingN
compatible tasks of dimensionn to realize (so that they all

have full rank even when projected), withn significantly
smaller thanm. If considering the original recurrences (9)
and (15) based on SVD, the cost for each task is independent
from the range of the task in the SOT, and is approximately
2nm2 flops. If using the same scheme with a COD, the cost
for each task is similar since the main computation is due
to (15).

On the opposite, if using (30), the cost per task depends on
the number of unconstrained DOF, which arenf = n− km
for the task at rangek. The cost for thekth task is then
(2n + 3)kn(m − kn) flops (split inton(m2 − m2

f ) for the
projectionJkZ̄k−1, 2n2mf for the COD (19),3

2
(m−mf )2

for (30)).
For a robot withm = 36 DOF, constrained byN = 6 tasks

of dimensionn = 6, the SVD leads to 168Kflops, while
the COD leads to 124Kflops. For the same 36DOF-robot,
the total cost of our algorithm is 26.9 Kflops. As a matter
of comparison, solving theM tasks at once (by inverting
directly J̄M ) would cost 1213 Kflops with the SVD and
69.5 Kflops with the COD. This is because the recursive
formula (29) computes a block decomposition, what appears
to be much faster.

VII. I NTRODUCING INEQUALITY CONSTRAINTS

It has been proposed in [8] to consider also inequalities in
the tasks, for taking into account more effectively balance,
visibility, collision and self-collision avoidance, and other
safety goals. Compared to earlier methods such as [11], this
solution enables to consider inequalities with any priority,
from the lowest to the highest, enforcing them at all time
during the motion. The sequence of equations (1) becomes
therefore a sequence of inequalities

el
k ≤ Jku ≤ eu

k , (32)

where equations simply correspond to cases whereel
k = eu

k .
The algorithm proposed in [8] to solve this sequence

of inequalities in a hierarchy involves a sequence of least-
squares problems with inequality constraints (LSI)

min
uk,wk

1

2
‖wk‖

2 (33)

el
k ≤ Jkuk − wk ≤ eu

k (34)

ēl
k−1 ≤ J̄k−1uk ≤ ēu

k−1 (35)

with a structure similar to the sequence of LSE introduced
in (5)-(6). Here, in case of a conflict between the con-
straints, theslack variable vector wk introduced in the
constraints (34) allows to violate (34), giving therefore a
priority to the constraints (35). In that case, this slack variable
vector measures the amount of violation, which is minimized
as much as possible by (33). Once minimized, this violation
is frozen before considering the LSI at the next level of
priority, propagating the bounds

ēl
k =

[

ēl
k−1

el
k + wk

]

, ēu
k =

[

ēu
k−1

eu
k + wk

]

, (36)

which are equivalent to the propagation of the constraints
in (6).



As proposed in [8], any state of the art QP solver can be
used to solve this sequence of LSIs (33)-(35), one after the
other, for k = 1 . . . n. However with a close inspection of
the inner workings of standard QP solvers and with the help
of the HCOD, we propose in the following sections a solver
specifically designed for this particular sequence of LSIs in
order to deliver faster computations.

VIII. A CLASSICAL PRIMAL ACTIVE SET ALGORITHM

At the minimum of a LSI (33)-(35), only a subsetAk of
the inequality constraints (34)-(35) are active and hold as
equality constraints. This subset is called the active set.An
important observation is that considering only this subsetof
constraints and turning them into equalities, the minimum
of the corresponding LSE is equal to the minimum of the
original LSI. Solving the LSI consists then in finding the
active set and solving this associated LSE.

Active set algorithms are based on this observation and try
to guess iteratively the composition of the setAk, solving
at each iteration the corresponding LSE. Many variants
exist and we will consider here a classicalprimal active
set algorithm. This algorithm maintains at each iteration a
guessÂk of the active set and a solution candidate(uk, wk)
satisfying all the constraints (34)-(35) and lying exactlyon
the constraints included in̂Ak. At each iteration, it solves the
corresponding LSE and modifies the guessÂk if necessary,
by activating or deactivating a constraint. If a constraintis
violated when solving the LSE, this constraint is added to
Âk. On the other hand, if the minimum of the LSE can
be reached without violating any constraint, the algorithm
checks if all the constraints in̂Ak should really be active by
checking the sign of the corresponding Lagrange multipliers.

These Lagrange multipliers can be computed with the help
of the first order optimality conditions of the LSI (33)-(35),
taking into account the specific guesŝAk of the active set:











0 0 ˆ̄Jk−1

T

ĴT
k

0 I 0 −I
ˆ̄Jk−1 0 0 0

Ĵk −I 0 0



















uk

wk

λk

µk









=









0
0

ˆ̄ek−1

êk









, (37)

whereĴk, ˆ̄Jk, êk and ˆ̄ek correspond to the active constraints
and the Lagrange multipliersµk andλk correspond respec-
tively to the constraints (34) and (35). The second line shows
that the multiplierµk is simply equal to the slack variable
wk:

µk = wk = Jkuk − ek (38)

The other Lagrange multiplier is then computed from the
first line:

λk = −J̄+T
k−1

JT
k µk (39)

IX. SOME IMPORTANT IMPLEMENTATION DETAILS

At each iteration of the active set algorithm, we have a
new guessÂk and we need to solve the corresponding LSE

min
uk,wk

1

2
‖wk‖

2 (40)

Ĵkuk − wk = êk (41)
ˆ̄Jk−1uk = ˆ̄ek−1 (42)

which can be rewritten

min
uk

1

2
‖Ĵkuk − êk‖

2 (43)

ˆ̄Jk−1uk = ˆ̄ek−1 (44)

by getting rid of the slack variablewk.
Following the derivations of the previous sections, it

appears that this LSE can be efficiently solved by (30), with
the help of the orthogonal decompositions (16) and (19).
However, each new guesŝAk introduces modifications of the
active constraintsĴk and ˆ̄Jk−1, adding or removing a line
when a constraint is activated or deactivated: recomputing
these decompositions each time would be very inefficient.
Hopefully, one key property of orthogonal decompositions is
that they can be efficiently updated when the initial matrices
are modified in a structured way like here, what is not the
case of the SVD [3].

Focusing especially on the HCOD (20), which gathers both
decompositions (16) and (19) in a structured way, we have
been able to design efficient and numerically robust updates
corresponding to each case, when a constraint is activated
or deactivated either in̂Jk or ˆ̄Jk−1, in a comparable way to
what can be found in state of the art QP solvers [6]. This
allows reducing strongly the computation cost required by
each iteration of the active-set algorithm. Still, each iteration
remains costly, so the total number of iterations should be
reduced as much as possible. The main road to reducing this
total number of iterations goes through a proper initialization
of the algorithm and warm starting, what will be discussed
in the next sections.

X. I NITIALIZATION OF THE ALGORITHM

The primal active-set algorithm presented in the previous
sections requires for each LSI (33)-(35) an initial solution
candidate(ûk, ŵk) which satisfies all the constraints (34)-
(35). In the case of a generic LSI, finding such a point can
be as hard as solving the complete LSI afterward. However
two properties specific to our problem make this potential
difficulty trivial to solve.

First of all, given anyûk, it is straightforward to find a
ŵk such that the constraints (35) are satisfied. It is even very
easy to find aŵk that minimizes at the same time the cost
function (33), considering separately each coordinatej:

ŵkj
=











0 whenel
kj

≤ Jkj
ûk ≤ eu

kj
,

Jkj
uk − eu

kj
whenJkj

ûk > eu
kj

,

Jkj
uk − el

kj
whenel

kj
> Jkj

ûk.

(45)



The only remaining point is to find âuk that satisfies
the constraints (34). Through the definition (36) of these
constraints, it appears that the minimum of the LSI at level
k − 1 satisfies by definition the constraints (34) of the LSI
at level k. The previous minimum constitutes therefore a
perfect initial point. For the first LSI of the sequence, there
are simply no such constraints. It can be initialized then with
any û1 (typically 0).

Finally, we can observe that while reusing the minimum of
the previous LSI, we can also reuse the corresponding active
setAk−1 as an initial guess, what helps reducing drastically
the number of iterations necessary to find the active setAk of
the following LSI. This initial guess can be easily completed
with the constraints activated in (45).

XI. WARM START

Having solved an initial optimization problem, warm start
consists in using this optimal solution to help for the reso-
lution of a new problem whose data are slightly disturbed
from the original. This is typically the case when considering
a problem of motion generation: from one time of the
control to the next, the problem shape is similar, with small
modifications of the numerical values of (33)-(35).

Several different solutions can be considered as a warm
start. In this article, we only considered a warm start based
on the modification the active setAk. We said upper that the
initial active set candidateŝAk is set to be the active set of
the previous stage of the SOT. However, this straightforward
initialization does not account for the constraints (34), nor
for their impact on the activation of (35).

The active set at timet and for stagek is denotedAk,t. The
deltas of the active set that are due to the new constraints (34)
are denoted∆+Ak+1,t and ∆−Ak+1,t so thatAk+1,t =
(Ak,t \ ∆−Ak+1,t)∪∆+Ak+1,t. We simply propose to apply
these deltas recorded at timet to compute the initial guess
at time t + 1.

It is straightforward to apply∆−Ak,t at timet+1: simply
remove from the HCOD all the active constraints of the delta.
However, if applying similarly∆+Ak,t, there is a problem
to find the initial point(û, ŵk). It is theoretically possible
to compute numerically a initial point. However, we have
noticed empirically that this computation is very costly since
requiring several modifications of̂Ak.

To avoid these extra iterations, the delta of the variableu
is also stored:∆uk+1,t = uk+1,t −uk,t. The delta is applied
at timet on the optimum of the previous stage to modify the
initial point:

ûk+1,t+1 := uk,t+1 + τ∆uk+1,t (46)

where τ is the step length used to ensure that inactive
constraints are still respected. Thanks to continuity property,
ûk+1,t+1 is close to the solution of the LSI (33)-(35) at stage
k+1 and timet+1. For the same reasons, all the constraints
of ∆+Ak+1,t

H are close to be saturated at this point. From
this initial point, all the constraints∆+Ak+1,t

H are added to
the HCOD, and the corresponding initial point is computed
by a classical LSE resolution.

Experimentally, we checked first thatτ is close to1 and
that activating∆+Ak+1,t

H at the point ûk+1,t+1 is strait
forward (no violation of extra constraint, etc). Although
perhaps not theoretically perfect, this approach proved to
work in our experiments.

XII. E XPERIMENTS

A. Experiment settings

The experiments have been done in simulation, to homog-
enize the computation times and allow constraint violations.
We used a dynamical model of a humanoid robot HRP-2
(30 actuated joints plus 6 DOF on the free-floating root).
The typical experiment consists in (from the top priority to
the lowest one) maintaining balance (CoM control, 3DOF),
keeping both feet on the ground (6 DOF), reaching a desired
(6 DOF) using one hand of the robot and minimizing the
velocity input (30 DOF). All these constraints are equalities:
for each task, an exponential decrease of the error is imposed
by setting ė∗ = −λe, with λ the (user-tuned) gain. The
corresponding constraint can be written:

Ju = −λe (47)

The inequalities are introduced at the first level of the stack,
to guarantee the joint limits:

ql − q ≤ u∆t ≤ qu − q (48)

with ql, qu the lower and upper limits and∆t the period of
the control.

To validate the algorithm, the object to be handed is set
out of the reach of the robot. We check that the joint limits
are always respected, as well as the CoM and the feet on the
ground. Due to the out-of-reach desired position, the reaching
task does not converge to 0 but to the lowest possible value.
To validate the downgrade, the desired position is set back
in the robot range: all tasks have then to converge to 0.

B. Results

A typical execution is summed up in Figures 1 to 4. A
typical iteration is given on Fig. 1. Three time costs are
compared: the first one is without using any warm start
(this is typically what is done in [8] when classical QPs
are used to solve each stack level separately); the second
uses only the warm start from one stack level to the other;
the last uses time-based warm start as well. The global cost
using all warm starts is around 2ms to 3ms. Fig. 2 gives
the fluctuation of the computation cost over the time. The
solver cost is nearly constant, but on a small number of
peaks. These peaks correspond to the activation of a new
constraint: indeed, at these points, the new constraint will
not be activated by the warm-start, but has to be found in
several iterations (in general two) of the solver.

Finally, Fig. 3 gives the joint trajectories while Fig. 4 gives
the evolution of the errors. We can see that each error is a
perfect exponential decrease when the task is full rank. The
reaching task then converges to the lowest possible value.
When the desired position is set back inside the range of the
robot, the task converges to regulation. All the other tasks
(that have priority) are kept regulated at all time.



1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

Stack stages

T
im

e 
(m

s)

 

 

From scratch

Stage2Stage

Warm−start

Descent from warm−start

Fig. 1. Computation cost (in ms) for the set of five QPs alone (from
scratch), the five QPs using at each stage N+1 the result of stage N for
initialization (stage2stage), and using warm start (this last one being divided
in two cost, for warm start and for the QP itself).

0

0.5

1

1.5

2

2.5

3

0 2000 4000 6000 8000 10000 12000 14000

Solver
Warm start

Fig. 2. Computation cost (in ms) over time (in iteration number).The
warm-start cost increase with the number of saturated constraints, while the
solver cost stay more constant, with peaks at constraint activation.

XIII. C ONCLUSION

The contributions of this paper are twofold: first a new
QR-based algorithm was proposed to dramatically reduce the
computation cost of the HIK, allowing to reduce the typical
computation time from 5ms to 0.1ms. Second, this same
approach was applied to write a specialized QP solver, that
allows to compute a typical inverse-kinematics control law
while accounting for inequalities constraints having priority
in less than 5ms. Both algorithms were applied to control a
humanoid-robot model in real time.

REFERENCES

[1] P. Baerlocher and R. Boulic. An inverse kinematic architecture
enforcing an arbitrary number of strict priority levels.The Visual
Computer, 6(20):402–417, August 2004.

[2] A. Ben-Israel and T. Greville. Generalized inverses: theory and
applications. CMS Books in Mathematics. Springer, 2nd edition, 2003.

[3] Å Björck. Numerical methods for least squares problems. SIAM,
1996.

[4] W. Decré, R. Smits, H. Bruyninckx, and J. De Schutter. Extending
itasc to support inequality constraint and non-instantaneous task spec-
ification. In IEEE Int. Conf. on Robot.& Automation (ICRA’09), Kobe,
Japan, April 2009.

[5] B. Espiau, F. Chaumette, and P. Rives. A new approach to visual
servoing in robotics. IEEE Trans. on Robotics and Automation,
8(3):313–326, June 1992.

[6] P.E. Gill, W. Murray, M.A. Saunders, and M.H. Wright. Procedures
for optimization problems with a mixture of bounds and general linear
constraints. ACM Transactions on Mathematical Software, 10:282–
298, 1984.

-1

-0.5

0

0.5

1

0 2000 4000 6000 8000 10000 12000 14000

V
al

ue
s

Iterations

Fig. 3. Normalized joint trajectory of the hip, chest, and right arm. 1 and
-1 are the two limits.

0

0.5

1

1.5

2

0 2000 4000 6000 8000 10000 12000 14000

Reach
Com
Feet

Fig. 4. Task evolution over time: the reaching task cannot converge before
time 6000 since the desired position is out of reach. At time 6000, the
desired position is changed, and the task converges. The other two tasks
remains null since having priority.

[7] G. Golub and C. Van Loan.Matrix computations. John Hopkins
University Press, 1996.

[8] O. Kanoun, F. Lamiraux, F. Kanehiro, E. Yoshida, and Laumond J-P.
Prioritizing linear equality and inequality systems: application to local
motion planning for redundant robots. InIEEE Int. Conf. on Robot.&
Automation (ICRA’09), Kobe, may 2009.

[9] O. Khatib. Real-time obstacle avoidance for manipulatorsand mobile
robots. Int. Journal of Robotics Research, 5(1):90–98, Spring 1986.

[10] O. Khatib. A unified approach for motion and force controlof
robot manipulators: The operational space formulation.International
Journal of Robotics Research, 3(1):43–53, February 1987.

[11] A. Liégeois. Automatic supervisory control of the configuration and
behavior of multibody mechanisms.IEEE Trans. on Systems, Man
and Cybernetics, 7(12):868–871, December 1977.

[12] N. Mansard, O. Khatib, and A. Kheddar. Integrating unilateral
constraints inside the stack of tasks.IEEE Trans. on Robotics,
25(11):2493–2505, November 2009.

[13] E. Marchand and G. Hager. Dynamic sensor planning in visual
servoing. InIEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS’98), Leuven, Belgium, May 1998.

[14] Y. Nakamura and H. Hanafusa. Inverse kinematics solutions with
singularity robustness for robot manipulator control.ASME Journ of
Dyn. Sys., Measures and Control, 108:163–171, September 1986.

[15] J. Rosen. The gradient projection method for nonlinear programmimg,
part i, linear constraints. SIAM Journal of Applied Mathematics,
8(1):181–217, March 1960.

[16] C. Samson, M. Le Borgne, and B. Espiau.Robot Control: the Task
Function Approach. Clarendon Press, Oxford, United Kingdom, 1991.

[17] B. Siciliano and J-J. Slotine. A general framework for managing
multiple tasks in highly redundant robotic systems. InIEEE Int. Conf.
on Advanced Robot. (ICAR’91), Pisa, Italy, June 1991.


