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Fast Resolution of Hierarchized Inverse Kinematics
with Inequality Constraints

Adrien Escande, Nicolas Mansard, Pierre-Brice Wieber

Abstract— Classically, the inverse kinematics is performed by The contribution of this paper is twofoldirst, only
computing the singular value decomposition of the matrix to  equality constraints are considered. The link between QP
invert. This enables a very simple writing of the algorithm. 54 |K'js revisited to propose a more efficient IK algorithm.

However, the computation cost is high, especially when applied h
to complex robots and complex sets of constraints (typically Compared to the typical Sms performances of SVD-IK, we

around 5ms for 50 degrees of freedom — DOF). In this paper, we demonstrate 0.1lms for the same problem. Moreover, we
propose a dedicated adaptation of quadratic programming that prove that the algorithmic complexity of the algorithm does

enables fast computations of the hierarchical inverse kinematics not depend on the size of the stack but only on the number
(around 0.1ms for 50 DOF). We then extend this algorithm ¢ hoF of the robotSecond we use this result to accelerate

to deal with unilateral constraints, obtaining sufficiently high . . . .
performances for reactive control. the algorithm proposed in [8], leading to 3ms of computation
time on a HRP2 robot.

. INTRODUCTION
Inverse kinematics (IK) is a very classical solution to Il. HIERARCHIZED INVERSE KINEMATICS

design and control motions of robots. Instead of arbiyaril 145k -pased motion generation consists in defining the
chopsmg the joint trajectories, it allows to design thei&s ,otion of the robot in terms of a reference in a simple
motion in a well constructedask space [16], where the (55K space. This space can be for example the position
objectives or the Ilnks_ with Sensors are easy to establljs_h B¢ the hand, the gazei.é the position of a point in the

Moreover, _the same inversion techniques can be app_ll_ed Wual plane) or the position of the center of mass (CoM).
the dynamical equations of the system [10], [12]. Additiony a5k £ is completely defined by choosing the reference in

ally, it. is p_ossible.to _comb@ne by proj<_action a.secondaryhe proper sub-spaee, and modeling explicitly the generic
objective with the first inversion [15], while ensuring a com |iyk petween the robot inputs and the task:

plete decoupling [11]. This decoupling can be generalized
to several tasks [14], and a control law can be obtained by er = Jru Q)
stacking any number of tasks, ensuring a strict respect of _ ) o )
the tasks order [17]. The hierarchy stack of tasks (SOT) With u the robot input (typically the joint velocity) and
becomes more and more popular to build complex behaviofe differential link to the arobot input (when = ¢, J; is
on redundant robots such as humanoid robots [1]. usually the Jacobiar,, = 7~ and the reference; is the

The first limitation of IK is the computation cost. IK gen- Velocity in the task spacé;).
erally relies on singular-value-decomposition (SVD) lshse When composing a set of tasks, the problem turns into
pseudo-inverse, which is costly (typically 2 to 5 ms for asolving a set of such linear equations. In the case of complex
humanoid robot with about 40 DOF, while for dynamic task@pPplications, some of these equations may be incompatible,
such as contact manipulation, the control loop should Ll leasttemporarily (task singularities). One classioalton
1ms). The second limitation is the formalization of inedyal 1S then to introduce a hierarchy between the tasks. The
constraints (joint limits, obstacles, etc.) inside IK. Tinest hierarchy can be enforced by solving each equation (1) only
widely-used solution to consider such constraints is th@® the null space of the previous ones. This solution is
definition of a potential field [9], [13], whose gradient isObtained with the recursive formula [17]
projected at the lowest priority. In [8], [4], it was propaoisi
revisit the original link with optimization, by using quaic up = w1+ (JePron)™ (en = Jiup—) )
programming (QPith inequalities for IK. A cascade of QP \yhere A+ denotes the (Moore-Penrose) pseudo-inverse of a
then built a SOT with inequalities in any order of priority. matrix A4 [2], and
Such a cascade was too expensive for real time control o
(typically 30ms). Po=1-JfJk 3)
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When beginning withuy = 0, J, empty and therefore where[U, V;] and[Y, Z;] are once again orthonormal
Py = I, this produces a sequence of solutions with minimursquare matrices buf;, is an invertible lower triangular

norm [17]. matrix. The pseudo-inverse is also easily obtained:
IIl. EQUIVALENCE WITH A LEAST-SQUARES PROBLEM 0 0| [UF _
The way the pseudo-inverse is used in (2) indicates that k

(13)
requiresn?/2 computations instead of for S—1.
On the other hand, this matrix decomposition is faster
(5) to compute than a SVD. It is usually considered as safe
- - enough [7], even if more sensitive to ill-conditioning aos
subjectto  Jyp_jur = Jr—1uk—1. (6) to task singularities.
Concerning the projection matrik, it is rarely computed
ifﬁgrectly from the formula (3) since an incremental formula-
1on can be more efficient [1]:

this recursive formula solves in fact a least-squares prabl 1.1
with equality constraints (LSE)

o1
min f||Jkuk —€k||2
up 2

When computing the solution;, to this problem, the con-
straint (1) is solved in a least-squares sense by (5) wh
ensuring by (6) that the solution to the previous constsain
Ji—1 is left unchanged fr_om the prev_ious solutiag_l._ Py = Py_y — (JuPro1)t JuPrs (14)
Several classical solutions are available to solve this,LSE o . .
among them the null-space method [3], which begins bgphe .eﬁ‘lmency of. Fhe recurrence is even |mprqved .by the
considering a general solution to the equality constragyt ( Matrix decompositions (10)-(11) or (12)-(13) which gives
of the form T
P, =P — VYL (15)
Up = Up—1 + Pr_12 (7) i
V. THE HIERARCHIZED COMPLETE ORTHOGONAL

where P;,_; is a matrix projecting on the null space of the DECOMPOSITION

augmented matrix/,_; as in (3). Replacing this general o ] )
solution in the minimization problem (5), we end up with The derivations of the previous sections correspond to the

an unconstrained least-squares problem current state of the art in computing Hierarchized IK (HIK),
1 but it seems there is still room for improvements. Let us
min §||Jkuk_1 + JpPe_12i — e, (8) begin by introducing an orthogonal decomposition
E7%
T
Th_e solution With minimum nor_mzk_is_ directly obtain_ed Je1 = Wi_1 [Ek—l 0] [2%1] (16)
using a pseudo-inverse. Replacing it in (7), the solution to k—1
the LSE (5)-(6) appears to be of the augmented matrix.J,_;, where Wj,_; and

W = g1 + Poo1 (JePoo)* (e — Jour_1) (9 .[Yk_l Z{C_l].are orthonormal square matrices aﬁg_l .
is a matrix with full column rank. This decomposition is

which is strictly equivalent to (2) sinc&,_(JxP:—1)* = not unique and depends on the specific structure imposed on
(JiPe—1)T [17]. Wi—1 and Li_;. Now, having in mind that
IV. USUAL MATRIX DECOMPOSITIONS Jo— {jkl] ’ 17)
The numerical method of reference to compute the pseudo- I
inverse in formula (2) is through a SVD: we augment this decomposition in the following way,
JePey = [Ux Vi [%’“ 8] [?;] —U.S.YT  (10) j = {Wm 0} { Ly 0 } Fk,T—l}. (18)
i ’ 0 I |[JYier JuZiea] |ZF

where [Uy, V3] and[Y;  Zj] are orthonormal square ma- we can see in the lower right corner of the matrix in the

trices andS, is the diagonal matrix of singular values. Withmiddle a projected matrix Zj,_1. The COD of this matrix
this decomposition, the pseudo-inverse is obtained dyrect g

_ _ 0 0] [vr
1 ur _ JeZiw_1 = U k 19
(riayt = 2] 5% ] V| = s o Za=e vl o [E] w9

(11) Inserting it in the decomposition (18) gives:
This is the most precise numerical method for obtaining a
pseudo inverse [7], the most robust to the ill-conditiondrig - Viei 0 0 T
JxPy_1 that can happen when the robot is close to a task “* — [ 0 U V;j My 00 YkT (20)
singularity. However, this solution is expensive to congput o Np  Lp 0 Z;
Another less frf-:-quent option is to use a Complete Orthog-  _ W [ Li 0] [XJfT } (21)
onal Decomposition (COD) Zy

Ly.1 0 0] [VE,

0o o] [yr with
JiPe1 = [Up Vi { ] [ k ] = VLY, (12)

Ly 0| |z} My, = UF Y1, Np = ViED Yy (22)



and have full rank even when projected), with significantly
Y, = [Yk,l Yk] s Ty = 2. (23) smaller thanm. If considering the original recurrences (9)
and (15) based on SVD, the cost for each task is independent

Going from the decomposition (16) of the matrix_1 ©0 41 the range of the task in the SOT, and is approximately
the decomposition (21) of the matrik, it appears that this ,, . flops. If using the same scheme with a COD, the cost

sequence of decompositions can be computed incrementapgr each task is similar since the main computation is due

involving a smaller COD (19) at each increment. to (15).

Doing so, the sequence of matrickg presents a specific o, the opnosite, if using (30), the cost per task depends on
structure which appears in (20): it is not a simple inveetibl o .\ mber of unconstrained DOE. which arp=n— km
lower triangular matrix as in a classical COD, but something, . o task at rangé. The cost fc')r thekt" task is then
similar which is going to be fundamental when dealin _ ' o 2 _ 2
with inequalities in further sections. We propose to ca?ﬁzj;ﬁ()ﬁg(rg kr;)nl;lgi)sfésrpil;:eng%gzzlg) ;ZTJ; )_fOT;tr;ge
this decomposition aHierarchized Complete Orthogonal for (30)) WEh—L J 2 !
Decomposition (HCOD). For a robot withm = 36 DOF, constrained byv = 6 tasks

VI. A FASTER COMPUTATION SCHEME of dimensionn = 6, the SVD leads to 168Kﬂ0p$, while

With the help of the decomposition (16), the matrixthe COD leads to 124Kflops. For the same 36DOF-robot,

S = the total cost of our algorithm is 26.9 Kflops. As a matter
projecting on the null space of the augmented ma#fiix; . . : .
. of comparison, solving thé/ tasks at once (by inverting
appears to be directly

directly J;) would cost1213 Kflops with the SVD and
Po1= 2,12} . (24) 69.5 Kflops with the COD. This is because the recursive

. . _ . formula (29) computes a block decomposition, what appears
We can revisit then the results of Section Ill, introducing iy pe much faster.

! __ 7T
R = Zkflzk' (25) VII. I NTRODUCING INEQUALITY CONSTRAINTS

The general solution (7) can be written then It has been proposed in [8] to consider also inequalities in
the tasks, for taking into account more effectively balance
visibility, collision and self-collision avoidance, andher
leading to the alternative unconstrained least-squarels- pr Safety goals. Compared to earlier methods such as [11], this
lem solution enables to consider inequalities with any prorit
from the lowest to the highest, enforcing them at all time
during the motion. The sequence of equations (1) becomes
therefore a sequence of inequalities

Up = Up—1 + Zp—125, (26)

.1 5
min §||Jkuk_1 + JpZyp—12, — ekHQ 27)
%k

The solution with minimum norm is

l u
Zl/v = (Jka_1)+ (Ek — Jkuk_l) 5 (28) k S Jku S k> (32)
where equations simply correspond to cases whgre V.
The algorithm proposed in [8] to solve this sequence
up = up—1 + Zp-1(JuZi_1)" (ex — Jrur—1).  (29) of inequalities in a hierarchy involves a sequence of least-

i . o squares problems with inequality constraints (LSI)
This formulation can be further simplified thanks to the

leading finally to an alternative formulation of the solutio

second relation in (23): min %Hwk”2 (33)
Uk, Wk

up = up—1 + Zy—1(JeZr—1)" (e — Jpup—1) (30) ek < Jpup —wy, < €l (34)

= Up_1 + Zk_1YkLk_1VkT (er — Jruk—1), (31) 6271 < Jp_qup < ey (35)

involving matrices.J; Z—1 which are strictly equal to the with a structure similar to the sequence of LSE introduced
matriCESJka_l, but which are now obtained direCtly from in (5)_(6) Here, in case of a conflict between the con-
the COD (19) and not from the decomposition (16). Thistraints, theslack variable vector wj, introduced in the
way, it appears that only the sequence of COD of matricegnstraints (34) allows to violate (34), giving therefore a
JkZr—1 are need, and not the whole decomposition (16). priority to the constraints (35). In that case, this slackalzle
This alternative formulation is faster to compute than thgector measures the amount of violation, which is minimized
original (2) since the size of the matrice,_; decreases as much as possible by (33). Once minimized, this violation

when advancing in the hierarchy of tasks (wieincreases), is frozen before considering the LS| at the next level of
while the original matrice$’,_, have a constant size. Thankspriority, propagating the bounds

to this property, the pseudo-inverses.pfZ;_, are cheaper 4 .
with increasing k, and much cheaper in the end than the égf = [ lek—l } , e = [ uek—l } ; (36)
pseudo-inverses of the original bigger matrice®,_1. €l T Wk ek T Wk

As an example, consider a robot with DOF, havingN  which are equivalent to the propagation of the constraints
compatible tasks of dimensiom to realize (so that they all in (6).



As proposed in [8], any state of the art QP solver can be [X. SOME IMPORTANT IMPLEMENTATION DETAILS
used to solve this sequence of LSIs (33)-(35), one after theAt each iteration of the active set algorithm, we have a

other, fork = 1...n. However with a close inspection of
new guessd, and we need to solve the corresponding LSE
the inner Workmgs of standard QP solvers and with the help g ¥ P g

of the HCOD, we propose in the following sections a solver min 7||wk||2 (40)
specifically designed for this particular sequence of L8Is i Uk, W
order to deliver faster computations. Jeu, — wi = €k 41
J_k_luk = ék_1 (42)
VIIl. A CLASSICAL PRIMAL ACTIVE SET ALGORITHM which can be rewritten
. 1 z ~ 2
At the minimum of a LSI (33)-(35), only a subsgt;, of min o || Jeur — éx| (43)

the inequality constraints (34)-(35) are active and hold as i . (44)
equality constraints. This subset is called the active Aet. Fo1Uk = Gkl
important observation is that considering only this sulofet by getting rid of the slack variable.

constraints and turning them into equalities, the minimum Following the derivations of the previous sections, it
of the corresponding LSE is equal to the minimum of theyppears that this LSE can be efficiently solved by (30), with
original LSI. Solving the LSI consists then in finding theine help of the orthogonal decompositions (16) and (19).
active set and solving this associated LSE. However, each new guesh, introduces modifications of the

Active set algorithms are based on this observation and tettive constraints/, and J, 1, adding or removing a line
to guess iteratively the composition of the sét, solving when a constraint is activated or deactivated: recomputing
at each iteration the corresponding LSE. Many varianthese decompositions each time would be very inefficient.
exist and we will consider here a classiqaimal active Hopefully, one key property of orthogonal decompositiosis i
set algorithm. This algorithm maintains at each iteration ghat they can be efficiently updated when the initial magrice
guessAy, of the active set and a solution candidéig, w;)  are modified in a structured way like here, what is not the
satisfying all the constraints (34)-(35) and lying exadally case of the SVD [3].
the constraints included id;,. At each iteratjon, it solves the Focusing especially on the HCOD (20), which gathers both
corresponding LSE and modifies the guetsif necessary, decompositions (16) and (19) in a structured way, we have
by activating or deactivating a constraint. If a constrait been able to design efficient and numerically robust updates
violated when solving the LSE, this constraint is added teorresponding to each case, when a constraint is activated
Aj. On the other hand, if the minimum of the LSE canor deactivated either iy, or Jy_1, in a comparable way to
be reached without violating any constraint, the algorithfyhat can be found in state of the art QP solvers [6]. This
checks if all the constraints i, should really be active by allows reducing strongly the computation cost required by
checking the sign of the corresponding Lagrange multiplier each iteration of the active-set algorithm. Still, eachaitien

These Lagrange multipliers can be computed with the helemains costly, so the total number of iterations should be
of the first order optimality conditions of the LSI (33)-(35) reduced as much as possible. The main road to reducing this
taking into account the specific gueds of the active set:  total number of iterations goes through a proper initidicra

of the algorithm and warm starting, what will be discussed

0 0 T JT Tus 0 in the next sections.
k—1 k
o I 0o -1 l;k _ 1.0 37) X. INITIALIZATION OF THE ALGORITHM
_ A
Jt’f]il OI 8 8 ’u]’: ]ékl The primal active-set algorithm presented in the previous
A

sections requires for each LSI (33)-(35) an initial solatio

candidate(iyg, wy) which satisfies all the constraints (34)-

whereJy,, Ji, éx andé;, correspond to the active constraints(35)- In the case of a generic LS|, finding such a point can

and the Lagrange multipliers, and \, correspond respec- be as hard as solving the complete LSI afterward. However

tively to the constraints (34) and (35). The second line showwo properties specific to our problem make this potential

that the multipliery, is simply equal to the slack variable difficulty trivial to solve.

W' First of all, given anyiy, it is straightforward to find a
wy, such that the constraints (35) are satisfied. It is even very

p = wg = Jpup — ex (38) easy to find aiy, that minimizes at the same time the cost

function (33), considering separately each coordipate

The other Lagrange multiplier is then computed from the

l ~ u
first line: 0 whenej, < Ji ik < €f,

Je,ur —€p whenJy ay, > e (45)
T J J
A = —J+ Jk M (39) kauk — eij Wheneﬁﬁ_ > kaﬂk.



The only remaining point is to find 4 that satisfies Experimentally, we checked first thatis close tol and
the constraints (34). Through the definition (36) of theséhat activatingA*Aﬁ,“’t at the pointdy41,41 IS strait
constraints, it appears that the minimum of the LSI at levébrward (no violation of extra constraint, etc). Although
k — 1 satisfies by definition the constraints (34) of the LSperhaps not theoretically perfect, this approach proved to
at level k. The previous minimum constitutes therefore awork in our experiments.
perfect initial point. For the first LSI of the sequence, ther X
are simply no such constraints. It can be initialized thethwi . .
any i, (typically 0). A. Experiment settings
Finally, we can observe that while reusing the minimum of The experiments have been done in simulation, to homog-
the previous LSI, we can also reuse the corresponding acti¢8ize the computation times and allow constraint violation
setA;_; as an initial guess, what helps reducing drasticallyve used a dynamical model of a humanoid robot HRP-2
the number of iterations necessary to find the activedgesf (30 actuated joints plus 6 DOF on the free-floating root).
the following LSI. This initial guess can be easily compéete The typical experiment consists in (from the top priority to

. EXPERIMENTS

with the constraints activated in (45). the lowest one) maintaining balance (CoM control, 3DOF),
keeping both feet on the ground (6 DOF), reaching a desired
X1. WARM START (6 DOF) using one hand of the robot and minimizing the

Having solved an initial optimization problem, warm startvelocity input (30 DOF). All these constraints are equetiti
consists in using this optimal solution to help for the resofor each task, an exponential decrease of the error is indpose

lution of a new problem whose data are slightly disturbethy settingé* = —Xe, with A the (user-tuned) gain. The
from the original. This is typically the case when considgri corresponding constraint can be written:
a problem of motion generation: from one time of the _
R . Ju = —Xe (47)

control to the next, the problem shape is similar, with small
modifications of the numerical values of (33)-(35). The inequalities are introduced at the first level of thelstac

Several different solutions can be considered as a wari® guarantee the joint limits:
start. In this article, we only considered a warm start based ¢ —qg<uAt<q“—gq (48)

on the modification the active set,. We said upper that the Lo . .
initial active set candidated,, is set to be the active set of With ¢’ ¢* the lower and upper limits and the period of

the previous stage of the SOT. However, this straightfouiwarthe contr_ol. . . .
initialization does not account for the constraints (34)r n To validate the algorithm, the object to be har)d-ed IS S et
for their impact on the activation of (35). out of the reach of the robot. We check that the joint limits

The active set at timeand for stagé: is denotedd,, ;. The &€ always respected, as well as the CoM and the feet on the

deltas of the active set that are due to the new constraif}s (éground. Due to the out-of-reach desired position, th? fiegch
are denotedAt Ay, and A~ Ap,1; SO that Ay, — task does not converge to 0 but to the lowest possible value.

(At \ A~ A1 )UAT Ajs1 .. We simply propose to apply To validate the downgrade, the desired position is set back

these deltas recorded at timéo compute the initial guess in the robot range: all tasks have then to converge to 0.
at timet + 1. B. Results

Itis straightforward to apphA~ Ay, at timet+1: simply A typical execution is summed up in Figures 1 to 4. A
remove from the HCOD all the active constraints of the dE|top|Ca| iteration is given on F|g 1. Three time costs are
However, if applying similarlyA™ Ay ;, there is a problem compared: the first one is without using any warm start
to find the initial point(a,y). It is theoretically possible (this is typically what is done in [8] when classical QPs
to compute numerically a initial point. However, we havegre used to solve each stack level separately); the second
noticed empirically that this computation is very costlic® yses only the warm start from one stack level to the other;
requiring several modifications od}. the last uses time-based warm start as well. The global cost

To avoid these extra iterations, the delta of the variable using all warm starts is around 2ms to 3ms. Fig. 2 gives
is also storedAuy1,+ = uk+1,e — uk,e- The deltais applied the fluctuation of the computation cost over the time. The
at timet on the optimum of the previous stage to modify thesplver cost is nearly constant, but on a small number of
initial point: peaks. These peaks correspond to the activation of a new
(46) constraint: indeed, at these points, the new constrairt wil

not be activated by the warm-start, but has to be found in

where 7 is the step length used to ensure that inactivgeveral iterations (in general two) of the solver.
constraints are still respected. Thanks to continuity progp Finally, Fig. 3 gives the joint trajectories while Fig. 4 gi
Ur+1.¢+1 IS close to the solution of the LSI (33)-(35) at stagaehe evolution of the errors. We can see that each error is a
k+1 and timet+1. For the same reasons, all the constraintperfect exponential decrease when the task is full rank. The
of A+A’}{+1’t are close to be saturated at this point. Fromeaching task then converges to the lowest possible value.
this initial point, all the constraintﬁﬂél’}f1"1t are added to When the desired position is set back inside the range of the
the HCOD, and the corresponding initial point is computedobot, the task converges to regulation. All the other tasks
by a classical LSE resolution. (that have priority) are kept regulated at all time.

Ukt 1,641 = Uk,t41 + TAUK11 ¢
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(7]

The contributions of this paper are twofold: first a new
QR-based algorithm was proposed to dramatically reduce thé!
computation cost of the HIK, allowing to reduce the typical
computation time from 5ms to 0.1ms. Second, this same
approach was applied to write a specialized QP solver, thaf!
allows to compute a typical inverse-kinematics control law )
while accounting for inequalities constraints having ptjo
in less than 5ms. Both algorithms were applied to control 31]
humanoid-robot model in real time.
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