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Abstract: We propose an image-based framework to evaluate the uncertainty in the estimation of the volume
fraction of specific microstructures based on the observation of a single section. These microstructures consist
of cubes organized on a cubic mesh, such as monocrystalline nickel base superalloys. The framework is twofold:
a model-based stereological analysis allows relating two-dimensional image observations to three-dimensional
microstructure features, and a spatial statistical analysis allows computing approximate confidence bounds
while assessing the representativeness of the image. The reliability of the method is assessed on synthetic
models. Volume fraction estimation variances and approximate confidence intervals are computed on real
superalloy images in the context of material characterization.
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INTRODUCTION

In quantitative microscopy, the stereological estimation of
the volume fraction of a material microstructure on the
basis of section images is a recurrent issue. To achieve such
an estimation, a common way is to use either multiple
random or systematic parallel sections ~Cruz-Orive & Myk-
ing, 1981!. However, in an industrial context with drastic
time and cost constraints, measurements must often be
done using a single section of a sample. The surface fraction
can be estimated by image analysis, using appropriate algo-
rithms for the segmentation of the phase of interest on the
image. Segmentation algorithms, as they depend on the
observed microstructure, on the sample preparation, but
also on the image acquisition protocol, will not be ad-
dressed here. However, even assuming that this segmenta-
tion is achieved without any error, it is crucial to tackle the
question of the uncertainty of the measures done on a
single image. Indeed, establishing confidence intervals for
the true volume fraction of a microstructure based on the
limited observation of a single section is not a trivial task.
This question can be divided into two distinct problems.

First, a careful stereological analysis is a prerequisite for
the interpretation of the two-dimensional ~2D! image in the
three-dimensional ~3D! context of the microstructure. In
particular, this analysis makes possible the detection and the
correction of an eventual stereological bias, which may
require a specific model of the microstructure ~Russ &
Dehoff, 2000!.

Second, the statistical aspects related to the representa-
tiveness of the available image sample must be tackled. This
involves the analysis of the spatial distribution of the phase
of interest and the evaluation of the statistical properties of
the phase fraction estimator ~Lantuéjoul, 1991; Blanc et al.,
2008!.

In this article, we focus on 3D microstructures showing
cubes on a cubic mesh. In particular, we detail the elabora-
tion of confidence intervals for the estimation of the g '

volume fraction in a monocrystalline g/g ' nickel base su-
peralloy, pointing out the general concepts.

In the Material and Methods section, we propose a
brief description of the g/g ' superalloy and address the
stereological and inference issues related to the observation
of a single section. Three-dimensional models of the mate-
rial are proposed, on the basis of which we investigate the
statistical properties of two estimators of the g ' surface
fraction. In particular, we focus on their reliability, on their
mathematical expectation and variance, and on the influ-
ence of the section angles. Finally, we propose a method to
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calculate the variance of the estimators based on a single
image. This method is based on spatial statistics and takes
advantage of the stationarity of the microstructure to com-
pute the estimation variance.

In the Results section, the method is first validated on
synthetic images generated from the 3D models. Second, it
is applied to scanning electron microscope ~SEM! images of
a g/g ' nickel base superalloy in the goal of material
characterization.

MATERIAL AND METHODS

The g/g ' Superalloy and the Phase Fraction
Estimators

The microstructure of the monocrystalline nickel base su-
peralloy consists of two phases: a g ' phase composed of
quasicubic particles organized on a cubic mesh and a g
phase consisting of thin walls separating the g ' particles.
The mean side of the g ' cubes is about 400 nm, while the g
walls are generally about 50 nm thick.

Prior to microscope imaging, a sample preparation is
performed that includes sectioning, polishing, and an appro-
priate chemical etching. Sectioning is performed approxi-
mately along the $100% axis. In practice, possible deviations
of up to 158 could occur. The thickness of the sample is
about 5 to 10 mm. The mechanical polishing is done using
abrasive papers and diamond. Chemical etching involves a
5 s electrochemical attack using a 1% fluorhydric acid
solution. Imaging is performed with a SEM in the second-
ary electron mode. The SEM was operated at 20 kV, and the
image magnification was 5,000�. Images such as the one in
Figure 1 are produced. The g ' phase appears as dark gray
rectangles, while the g phase appears in light gray. Large
shapes with intermediate gray levels also appear. They are
called hazy areas in the following.

The fractions of g and g ' phases are crucial parameters
directly related to the physical properties of the superalloy.
These parameters can be estimated by image analysis through
the segmentation of the image in two classes, corresponding
to each phase. Nonetheless, the hazy areas are difficult to
interpret. As stated in Germain et al. ~2005!, they are related
to quasi-longitudinal sections of g layers and are sometimes
considered as belonging to the g phase. However, as pointed
out in Georget and Peyroutou ~1990!, around these regions,

the altitude difference caused by the chemical etching be-
tween the g and g ' phases is low, inducing a low contrast
on SEM images. This makes the image segmentation into
two phases, and thus the fraction estimation, quite unreli-
able. Consequently, Georget and Peyroutou ~1990! pro-
posed to segment the images into three classes: two classes
for the g and g ' phases and a third class for the hazy areas
where the membership to one of the two classes is uncer-
tain. They proposed to estimate the phase fraction by ignor-
ing the pixels belonging to the hazy areas. Let the number
of pixels belonging to the g, g ' and hazy area classes be
noted, respectively, as Ng, Ng ' , and Nhz. The direct g '

phase fraction estimator [t2D and the estimator proposed by
Georget and Peyroutou ~1990! It2D can be expressed, respec-
tively, as

[t2D �
Ng '

Ng � Ng ' � Nhz

and It2D �
Ng '

Ng � Ng '
. ~1!

As these concurrent estimators are based on 2D mea-
surements, their relation to the target parameter, i.e., the
true volume fraction t3D, has to be investigated more
thoroughly.

Material Models and Stereological Considerations

An ideal model ~Germain et al., 2005! of the g/g ' super-
alloy consists of a regular arrangement of identical cubes of
side c organized on a cubic mesh and separated by walls of
thickness e, as described in Figure 2a. Let P be the section
under study. Its azimuth w and elevation u angles are
defined according to the directions of the cubes as shown in
Figure 2b. For symmetry reasons, we will only consider
~w, u! � @0; p/2 @2.

Though not giving a realistic representation of the
microstructure—which is stochastic by nature—this model
proved to bring valuable insights for the interpretation of

Figure 1. SEM images of nickel base superalloy sections ~details!.

Figure 2. ~a! Ideal model of the g/g ' superalloy and ~b! section
azimuth w and elevation u angles.
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the real material images in their 3D context. Indeed, based
on this simple model, Germain et al. ~2005! proposed to
interpret the hazy areas as longitudinal sections of the g
phase and validated this hypothesis using two independent
methods on real material images. In the following, for a 2D
observation with fixed size and resolution similar to Fig-
ure 3, we suppose that the main source of error in the
estimation of the volume fraction is related to the strong
periodicity of the cubic arrangement of the g ' phases and is
thus mainly a 2D/3D inference problem. As a consequence,
we propose to further investigate this geometric model in
order to build a more accurate and more robust estimator
of the true volume fraction that explicitly accounts for the
3D structure of the material. The influence of the image size
on the estimation is addressed in the Results section.

Under this model, let us consider an “infinite,” un-
bounded sample taken on a section parallel to one of the g '

cube faces ~e.g., u � 0, section $100%!. On such a section,
considering a uniform distribution of the section altitude,
the g ' surface fraction is either c 2/~c � e! 2 with probability
c/~c � e! or 0 with probability e/~c � e!, depending on the
relative altitude of the section. In the following, the particu-
lar value c 2/~c � e! 2 will be called t2D. The mathematical
expectation of the g ' surface fraction is thus clearly equal to
the true volume fraction t3D � c 3/~c � e! 3, as expected from
basic stereology. Nonetheless, no such single section will
provide the true volume fraction. This difficulty illustrates
the stereological rule that suggests avoiding sections parallel
to the characteristic directions of the microstructure ~Russ
& Dehoff, 2000!. Nevertheless, a stereological correction can
be applied on such sections as we clearly have:

t3D � t2D
3/2. ~2!

On the contrary, a single randomly oriented section, as
long as the observed surface is large enough, will almost
surely ensure the equivalence between the surface and vol-
ume fractions. Among all possible sections, the oblique
section $111%—investigated in another context in Blanc
et al. ~2006!—is of particular interest from a stereological
point of view. Indeed, such a section cuts the three main
orthogonal directions of the material with the same angle,
approximately 558, which allows better—i.e., low variance—
estimates of the volume fractions. Beyond statistical consid-

erations, the oblique section also prevents intersecting the g
walls between g ' cubes with a low angle, thus minimizing
the extent of regions with low g wall thickness that lead to
hazy areas after chemical etching ~see The g/g ' Superalloy
and the Phase Fraction Estimators subsection!.

In spite of these considerations, section elevation an-
gles around $100% are preferred because they enable more
robust morphological measurements on the g ' cubes includ-
ing cell width and wall thickness, which are also relevant for
characterizing the material properties.

To investigate the influence of the hazy areas on the
phase fraction estimators, we extended the 3D model de-
scribed in Germain et al. ~2005! by introducing random
shifts in the position, size, and orientation changes for the
g ' particles. The “horizontal” g layers were also marked
using a third label corresponding to the hazy areas, which
appear in gray on the images of model sections given in
Figure 4a,b.

Measurement Accuracy on a Single Section

In practice, because of industrial time and cost constraints,
only one single section of a material sample is available,
from which one single image is acquired. The estimation
It2D of the volume phase fraction and also its uncertainty
~i.e., its variance or confidence intervals! have thus to be
carried out on the basis of this single image, which is, by
nature, spatially limited. Though only one realization of It2D

is observed, the computation of the estimation variance is
possible by taking advantage of the assumed statistical prop-
erties of the microstructure.

Mathematically speaking, we will consider that the mi-
crostructure is analogous to a stationary ergodic random
process. An image sample is then a spatially bounded real-
ization of this random process. A random process is said to
be stationary if its statistical properties are invariant by
translation. A stationary random process is said to be ergo-
dic in mean if the estimation of the mean using a finite
sample converges to the mathematical expectation when the
sample size tends to infinity. These two properties mean
that the material phase fraction can be estimated using only
a single image provided that its size is sufficiently large.

Figure 3. Original SEM image of a nickel base superalloy.

Figure 4. Images of sections of the model with ~a! ~w � 08, u �
78! and ~b! ~w � 58, u �108!. The hazy areas are segmented in gray.
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The terms stationarity and ergodicity being related to
the random process, we prefer to employ the term “homo-
geneity” for characterizing images. An image is said to be
homogeneous if ~1! it can be considered as a realization of a
stationary ergodic random process and ~2! it is large enough
to represent its spatial dependence structure. An image can
be tested for homogeneity by means of the dispersion
variance introduced by Matheron ~1970, 1989! or of block
subsampling methods ~Sherman, 1996; Politis & Sherman,
2001!. Wavelet-based methods have also been employed for
such a purpose by Sharifi-Salamatian et al. ~2004!. As the
microstructure is composed of separate objects, other ap-
proaches based on marked point processes ~Ohser & Mück-
lich, 2000! or germ-grain processes ~Stoyan et al., 1995! are
also available.

Specifically, an image is said to be homogeneous for the
mean if the dispersion variance decreases asymptotically as
fast as or faster than the inverse of the image size ~Lantué-
joul, 1991; Blanc et al., 2008!. In this case, the image can be
considered as representative of its generating stochastic pro-
cess, and the corresponding estimator is consistent, i.e., with
a variance vanishing when the image size grows to infinity.

Briefly, if we denote S as the image observation win-
dow, and s as a smaller observation within S, the dispersion
variance is estimated by the sample variance of the mean
estimator on blocks of size s extracted from the image. If the
image homogeneity is confirmed, i.e., if the asymptotic
decrease appears to be as fast as s�1 or faster, the variance of
the mean estimator is estimated by extrapolating the disper-

sion variance curve up to window size S. The detailed
demonstration is out of the scope of this article, and we
direct the interested reader to Blanc et al. ~2008! and refer-
ences therein for more details.

In the case of images partially occulted by unreliable
areas, e.g., the hazy areas, it has been shown in Blanc ~2007!
that the dispersion variance estimation algorithm can be
adapted without introducing bias. This adaptation consists
in retaining only those blocks that exclusively cover interest-
ing parts of the image, i.e., without overlapping hazy areas.
This leads to the conclusion that the hazy areas do not
belong to the image or, in other words, that the image no
longer has a regular rectangular support. The interpretation
of the resulting dispersion variance function remains the
same. In particular, the homogeneity criterion and the esti-
mation variance computation are unchanged. Illustrations
are given in the following section.

RESULTS

Validation of the Stereological Properties
of the Estimators

Based on the proposed 3D model, random sections such as
those of Figure 4 were produced. On each section, both
estimators [t2D and It2D defined in Eq. ~1! were evaluated,
either considering the hazy areas as belonging to the g
phase, or ignoring them. In Figure 5, we plot the median

Figure 5. Surface phase fraction
estimation with ~lower plots! and
without ~upper plots! taking hazy
areas into account.
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and the 25% and 75% quartiles for both estimators, ob-
tained from 500 random sections for each of the specified
elevation angle u. For every section, the azimuth angle w
was drawn uniformly on @0;2p# .

As shown by these simulations, [t2D estimates the exact
volume fraction t3D without bias but with a large variance,
though decreasing with the elevation angle. In contrast,
while It2D is clearly biased as an estimator of t3D, it appears
to be unbiased for t2D. Compared to [t2D, It2D shows a
remarkably low variance that, in addition, seems to be
independent of the section elevation angle.

Now consider the corrected estimator It3D � It2D
3/2. The

histograms of the values obtained with [t2D and It3D are
given in Figure 6. Both estimators appear to have the same
mean value that corresponds to the exact volume fraction
t3D. However, as shown on Figure 6, [t2D presents a highly
irregular distribution with a large variance ~coefficient of
variation: 3.7%!, while It3D looks approximately Gaussian
with a small variance ~coefficient of variation: 0.4%!.

The robustness of the properties of It2D regarding the
hazy area model has been validated by dilating the hazy
areas on the section images. Using morphological dilations
~Serra, 1982! with structuring elements of various sizes, no
significant changes were found in the mean or the variance
of the resulting estimated ratios for nonnull elevation an-
gles. For the particular 08 section elevation angle, a larger
variance was observed, due to hazy areas covering wide
parts of some sections. Such a behavior never appears in
practice because the sample preparation does not allow
exactly 08 section angles, and the real microstructure does
not respect perfectly the cubic model.

Let m2D, s2D
2 , m3D, and s3D

2 denote the mean and
variance of the estimators It2D and It3D. Despite the nonlin-
ear relationship between them, the distributions of It2D and
It3D � It2D

3/2 were both found to be approximately Gaussian,
as can be seen on their quantile-quantile plots displayed on
Figure 7.

This is possible as long as the variance s2D
2 is small

relative to m2D, and m2D is not too close to 0. In particu-
lar, these conditions ensure that the probability of a “nega-
tive fraction” is almost surely zero under the Gaussian
assumption.

Using the Gaussian approximations, we obtain the fol-
lowing expression for the mathematical expectation m3D

and variance s3D
2 of the distribution of the g ' volume

fraction estimator:

m3D ��
�`

`

t 3/2

exp��
~t � m2D !2

2s2D
2 �

M2ps2D
2

dt � m2D
3/2

and

s3D
2 � m2D

3 � 3m2D s2D
2 � m3D

2 � 3m2D s2D
2 . ~3!

The exact expression of m3D, not reported here, is relatively
complex and implies modified Bessel functions of the sec-
ond kind. However, as m2D /s2D

2 is close to zero, it can be
approximated as indicated.

Figure 6. Histogram of the ~a! [t2D and ~b! It3D estimators.

Confidence Bounds of Alloy Volume Phase Fraction 277



On the example illustrated on Figure 6, this approxima-
tion introduces a numerical relative difference of about
10�4% for the mean and 0.1% for the variance.

Confidence Regions for the Synthetic Data

These theoretical results thus allow estimating approximate
confidence bounds for the true volume fraction, using the
usual confidence intervals of the normal distribution. How-
ever, to do so, m2D and s2D

2 need to be estimated, while the
image allows only a single realization of It2D.

From the theoretical consideration on spatial statistics
described previously, the image homogeneity can be assessed.
If the image fulfills the homogeneity criteria, then It2D is an
unbiased estimate of m2D, and an estimate Is2D

2 of the vari-
ance s2D

2 can be obtained from the dispersion variance.
The volume fraction is then estimated by It3D � It2D

3/2 ,
and its own estimation variance is estimated by replacing the
theoretical parameters by their estimations in equation ~3!:

Im3D � It2D
3/2 and Is3D

2 � 3 It2D Is2D
2 . ~4!

We consider images from the model first shown in the
Introduction. Image samples are given in Figure 4a,b, with
section angles of ~w � 08, u � 78! and ~w � 508, u � 108!,
respectively. For each of these images, the dispersion vari-
ance has been estimated with and without taking the hazy
areas into account. The results are shown in the log-log
plots of Figures 8a,b and 8c,d, respectively, where the disper-
sion variance is reported as a function of the block size s.
The homogeneity criterion, i.e., asymptotic decrease as s�1,
appears to be fulfilled only when the hazy areas are not
taken into account, i.e., when It2D is used ~the correspond-
ing curve envelope has an asymptotic behavior in s�1!.
Indeed, the image size is too small to reveal clearly the
spatial distribution of the hazy areas.

The fluctuations of the dispersion variance seen on
Figure 8c,d are typical of strongly periodic structures ~Blanc
et al., 2008! corresponding to the regular disposition of the
g ' particles and g channels. These fluctuations admit an
upper envelope that can be extrapolated to get the estimate
Is2D

2 of the variance s2D
2 of It2D. Supposing that It2D is

normally distributed, we deduce approximate confidence
bounds for the true volume fraction. The results are sum-
marized in Table 1. For both images, the true volume
fraction lies indeed within the estimated confidence interval
established from the observation of a single section. For
comparison, an estimate [s2D

2 of the variance of [t2D is also
provided. As it could not be obtained using the graph of the
dispersion variance, it was calculated by simulation, over a
sample of 500 synthetic image samples, for each angle
configuration.

Experimental Results

Let now consider real material images. Images such as
shown in Figure 3 have been acquired and segmented. The
dispersion variance for the g ' phase fraction has been
estimated with and without taking the hazy areas into
account. The corresponding results are given in Figure 9a–c.

The homogeneity criterion is fulfilled only when the
hazy areas are ignored. As explained in the Introduction,
though the proposed model is not realistic, it allows the
images to be interpreted in their 3D context. The approxi-
mations It3D � It2D

3/2 , Is3D
22 � 3 It2D Is2D

2 , and the Gaussian
assumption being acceptable, the confidence bounds have
been computed and reported in the first row of Table 2. The
other rows indicate the results obtained on various images
from different samples of the same material, with identical
preparation and acquisition parameters.

As can be seen from these results, the distribution of
the corrected estimator It3D is much less scattered than the

Figure 7. QQ-Plot of ~a! It2D and ~b! It3D.
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distribution of the direct estimator [t2D. Indeed, [t2D presents
a very high variability across those images, as indicated by
the slow decrease of the dispersion variance in Figure 9b,
indicating that the images are too small and cannot be
considered as homogeneous. On the contrary, the corrected
estimator It3D appears to be much less scattered. Moreover,
the average It3D, which represents the most precise estimate
of the true volume ratio given the available data, lies within
each 95% confidence interval estimated for each image.
This confirms that the estimated confidence interval esti-
mated from a single image is indeed approximately correct.

CONCLUSIONS

In this article, we have introduced a method for the estima-
tion of approximate confidence bounds for the volume
fraction of a material based on the observation of a single
image section. This method relies on a stereological correc-
tion of the phase fraction measured on selected regions of
the image. The key idea is that, because the basic estimator
has a very high variance, we rely on a biased estimator with
low variance. A model of the microstructure is then employed

Figure 8. Dispersion variance of the g ' fraction computed on the synthetic samples of Figure 4b: ~a, b! including the
hazy areas and ~c, d! without hazy areas. The plots are in log-log scales.

Table 1. Volume Fraction Estimates and Approximate Confidence Intervals Computed on the Synthetic Data of
Figure 4a,d.*

Image t3D t2D [t2D [s2D It2D Is2D It3D Is3D It3D 6 2 Is3D

Figure 4a
65.3% 75.2%

65.8% 1.6% 74.9% 0.48% 64.8% 0.72% @63.4%, 66.2%#
Figure 4d 68.0% 1.2% 75.2% 0.50% 65.2% 0.75% @63.7%, 66.7%#

*t3D is the true volume fraction. t2D � t3D
2/3 is the corresponding surface fraction. [t2D and It2D are the surface fraction estimates. [s2D

and Is2D are estimations of their standard deviations. [s2D is obtained by simulation ~over 500 repetitions!, whereas Is2D
2 is obtained by

subsampling ~see Fig, 4c,f!. It3D � It2D
3/2 is the volume fraction estimator; its standard deviation Is3D is estimated through equation ~4!.
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to correct the bias. The robustness of the method against
the section angles and the region selection has been verified
by simulations on synthetic 3D models. Confidence inter-
vals are estimated by analyzing the observed spatial distribu-
tion and taking advantage of the image homogeneity. A
generic method has been presented, which deals with par-
tially occluded images. Applied to real material images, the
method proved to proceed satisfactorily, providing confi-
dence bounds for the volume phase fractions.

The method proposed in this article can be adapted to
different kinds of microstructures. Though the stereological
relations developed here are dependent on the particular
spatial distribution, such relations between the 2D image
and the 3D structure can generally be deduced provided a
model can be developed. Then, the statistical analysis for
obtaining the estimation variance is readily applicable and
free of assumptions about the spatial distribution.
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