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On The Decidability Of MELL: Reachability In Petri Nets With Split/Join
Transitions✩

Paulin Jacobé de Naurois

Laboratoire d’Informatique de l’Université Paris Nord (LIPN), UMR CNRS 7030, Institut Galilée - Université Paris 13, 99,
avenue Jean-Baptiste Clément, 93430 Villetaneuse, France

Abstract

We define Petri nets with split and join transitions, a new model that extends Petri nets. We prove that
reachability in this model without join transitions is equivalent to the decidability of MELL. We define a
suitable notion of covering graph for the model, and prove its finiteness and effective constructibility.

Introduction

Introduction

1. Petri Nets with Split/Join Transitions

1.1. Definition

Definition 1.1. Petri Nets with Split/Join Transitions.

A Petri net with split/join transitions (PNSJT) is a 4-tuple N = (P, T,W−, W+), where

• P is a finite set of places

• T is a finite set of transitions

• W− : P × T → N ∪ N
2 is a pre-incidence function

• W+ : P × T → N ∪ N
2 is a post-incidence function,

such that:

1. ∀t ∈ T, ∀p, p′ ∈ P : arity(W−(p, t)) = arity(W−(p′, t)). This defines the pre-arity of t,

2. ∀t ∈ T, ∀p, p′ ∈ P : arity(W+(p, t)) = arity(W+(p′, t)). This defines the post-arity of t,

3. no transition t has both pre and post-arities equal to 2.

A transition t with pre-arity 2 is called a join transition, a transition t with post-arity 2 is called a split
transition. A transition with pre and post -arity 1 is called a regular transition.
A PNSJT with only regular and split transitions is called a Petri Nets with Split transitions (PNST), and
a PNSJT with only regular and join transitions is called a Petri Nets with Join transitions (PNJT).
A single marking of N is a mapping M : P → N. We say the single marking assigns to each place a number
of tokens. A marking of N is a finite multiset M of single markings.
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(COMPLICE project)
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For any t ∈ T , we will write W−(t) (respectively W−
1 (t), W−

2 (t)) for the single marking p → W−(p, t) (resp.
p → W−

1 (p, t), p → W−
2 (p, t)), and W+(t) (resp. W+

1 (t), W+
2 (t)) for the single marking p → W+(p, t) (resp.

p → W+
1 (p, t), p → W+

2 (p, t)).
A marked PNSJT is a 5-tuple ((P, T,W−, W+,M), where

• N = (P, T,W−, W+) is a PNSJT,

• M is a marking of N .

1.2. Execution Semantics of a PNSJT

Definition 1.2. Enabling of a transition.

Let (N,M) be a marked PNSJT. Let t be a transition of N . t is enabled in (N,M) if and only if

• t is a regular transition and there exists M ∈ M such that, for all p ∈ P , M(p) ≥ W−(p, t). In this
case we say that t is enabled in M , or

• t is a split transition and there exists M ∈ M such that, for all p ∈ P , M(p) ≥ W−(p, t). In this case
we say that t is enabled in M , or

• t is a join transition and there exist M1, M2 ∈ M such that, for all p ∈ P , M1(p) ≥ W−(p, t)1 and
M2(p) ≥ W−(p, t)2. In this case we say that t is enabled in M1 and M2.

Definition 1.3. Firing of a transition.

Let (N,M) be a marked PNSJT, and t be a transition of N enabled in (N,M). The firing of t in (N,M)
is the relation

(N,M) →t (N,M′),

where

• if t is a regular transition enabled for one M ∈ M, M ′ = p → M(p) − W−(p, t) + W+(p, t), and
M′ = M\ {M} ⊎ {M ′}.

• if t is a split transition enabled for one M ∈ M, let M1 and M2 be two single markings of N

such that , for all p ∈ P , M1(p) − W+(p, t)1 ≥ 0, M2(p) − W+(p, t)2 ≥ 0, and M1(p) + M2(p) =
M(p) − W−(p, t) + W+(p, t)1 + W+(p, t)2. Then, M′ = M\ {M} ⊎ {M1} ⊎ {M2}.

• if t is a join transition enabled for M1 and M2, let M ′ = p → M1(p)−W−
1 (p, t) + M2(p)−W−

2 (p, t) +
W+(p, t) and M′ = M\ {M1} \ {M2} ⊎ {M ′}.

In words,

• firing a regular transition t in a single marking M consumes W−(p, t) tokens from each of its input
places p, and produces W+(p, t) tokens in each of its output places p,

• firing a split transition t in a single marking M consumes W−(p, t) tokens from each of its input places
p, splits the marking M in two new markings M1 and M2, and produces W+(p, t)1 tokens in each of
its output places p in M1 and W+(p, t)2 tokens in each of its output places p in M2, and

• firing a join transition t in a couple (M1, M2) of single markings consumes W−(p, t)1 tokens in each
of its input places p in M1 and W−(p, t)2 tokens in each of its input places p in M2, sums the two
markings into a new marking M ′, and produces W+(p, t) tokens in each of its output places p.

Remark 1.4. The execution semantics of a PNSJT with only regular transitions is exactly that of a classical
petri net.
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Definition 1.5. Promenade.

Let N be a PNSJT. A promenade on N is a labelled acyclic directed finite graph with in and out-degree at
most two such that:

• each vertex is labelled with a single marking on N ,

• each edge is labelled with a transition of N ,

• for any vertex, the (possibly two) ingoing edges have the same label, as well as the (possibly two)
outgoing edges,

• for any vertex v labelled with M , any outgoing edge e labelled with t, t is enabled in M ,

• for any vertex v labelled with M , with indegree two, with parent nodes v1 labelled with M1 and v2

labelled with M2, the ingoing edges are labelled with a join transition t, and we have:

(N, {M1} ⊎ {M2}) →t (N, {M}),

• for any vertex v′ labelled with M ′, with indegree one, with parent node v labelled with M with
outdegree one, the ingoing edge is labelled with a regular transition t, and we have:

(N, {M}) →t (N, {M ′}),

• for any vertex v labelled with M , with outdegree two, with child nodes v1 labelled with M1 and v2

labelled with M2, the outgoing edges are labelled with a split transition t, and we have:

(N, {M}) →t (N, {M1} ⊎ {M2}).

Definition 1.6. Reachability Problem.

Let N be a PNSJT, M0, M1 be two sets of single markings on N . The reachability problem for N , M0,
M1 is the following:
Does there exists a promenade P on N such that:

1. the set of labels of vertices of indegree 0 is M0, and

2. the set of labels of vertices of outdegree 0 is M1?

The reachability problem for N , M0, M1 can easily be reformulated as follows:
Does there exist two markings M′

0, M
′
1 such that:

1. the underlying set of M′
0 is M0,

2. the underlying set of M′
1 is M1, and

3. there exists a finite sequence of transitions t0, · · · , tk of N such that

(N,M′
0) →t0 · · · →tk

(N,M′
1).

1.3. Correspondence between MELL and the PNST Reachability Problem

Roman capitals A, B stand for MELL formulas, which are given by the following grammar, where � and
O are duals, ! and ? are duals, and the neutral elements 1 and ⊥ are duals for the negation ⊥ accordingly
to De Morgan laws:

MELL: F::=A | A⊥ | F � F | FOF | !F | ?F | 1 | ⊥
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Greek capitals Γ,∆ stand for sequents, which are multiset of formulas, so that exchange is implicit. The
MELL (cut free) sequent calculus is given by the following rules:

⊢ A, A⊥
(ax)

⊢ Γ, A,B

⊢ Γ, AOB
O

⊢ Γ, A ⊢ ∆, B

⊢ Γ,∆, A � B
�

⊢ Γ
⊢ Γ, ?A

?W
⊢ Γ, ?A, ?A

⊢ Γ, ?A
?C

⊢ Γ, A

⊢ Γ, ?A
?D

⊢?Γ, A

⊢?Γ, !A
!P

⊢ Γ
⊢ Γ,⊥

⊥
⊢ 1

1

The MELL decision problem is to decide, given a MELL sequent Γ, wether there exists a sequent calculus
proof with conclusion ⊢ Γ. We will simply write ⊢ Γ for Γ satisfies the MELL problem.

Lemma 1.7. For any of the O, ?W, ?C, ?D,⊥ MELL sequent calculus rules (R) applied on a formula f with
conclusion Γ0 and premise Γ1, any MELL formula A, (R) can be applied on f with conclusion Γ0 ∪ A and
premise Γ1 ∪ A.
For any � sequent calculus rules (R) applied on a formula f with conclusion Γ0 and premises Γ1 and Γ2,
any MELL formula A, (R) can be applied on f with conclusion Γ0 ∪ A and premises Γ1 ∪ A and Γ2, or on
f with conclusion Γ0 ∪ A and premises Γ1 and Γ2 ∪ A.

Lemma 1.8. Let Γ be a MELL sequent with ⊢ Γ, let F (Γ) be the set of sub-formulas of the formulas of Γ,
and P(F (Γ)) be the set of subsets of F (Γ).
There exists a MELL proof Π with conclusion ⊢ Γ such that:

1. for any !P sequent calculus rule (R) applied with conclusion ζ in Π, ζ equals its underlying set ∆,

2. for any !P sequent calculus rule (R1) applied with conclusion ζ in Π, any !P sequent calculus rule (R2)
applied with conclusion ζ ′ in Π below (R1) , ζ 6= ζ ′, and

3. in any path of Π, the number of !P rules is bounded by |P(F (Γ))|.

Proof. Assume ⊢ Γ, and let Π be a MELL proof Π with conclusion ⊢ Γ.

1. Let (R) be a !P sequent calculus rule applied with conclusion ζ in Π. Then, it suffices to apply as
many ?W rules as necessary under (R), and as many ?C rules as necessary above (R).

2. Let (R1) and (R2) be two !P rules applied in Π with the same conclusion ζ, (R2) below (R1). Then,
one can remove in Π the tree above (R2) and replace it by the tree above (R1): the tree Π′ obtained
is still a MELL proof with conclusion ⊢ Γ. Doing so for all such pairs of !P rules (R1) and (R2) yields
the result.

3. follows directly from 1) and 2) above.

Theorem 1.9. The PNST Reachability Problems and MELL reduce one to the other via many-one reduc-
tions.

Proof. Let us first prove that PNST Reachability �1 MELL.
Let N = (P, T,W−, W+) be a PNST, M0, M1 be two sets of single markings on N . Since N is a PNST, i.e.
has no join transition, we can without loss of generality assume that M0 contains only one single marking
M0, and assume M1 = {M1, . . . Mk}. Let us now define the sequent Γ as follows:

1. let P = {p1 · · · pn}. To each place pi ∈ P , we associate a linear variable pi,

2. to a single marking M on N , we associate the formula F (M) =
(

⊗M(p1)
1 p1

)

� · · · �
(

⊗M(pn)
1 pn

)

,

where
⊗k

1 a denotes a � · · · � a k times if k ≥ 1, and 1 if k = 0,
4



3. to a regular transition ri of N , we associate the following formula Ri = (F (W−(ri)))� (F (W+(ri)))
⊥

,

4. to a split transition sj of N , we associate the following formula

Sj = (F (W−(sj))) �

(

(

F (W+
1 (sj))

)⊥
�

(

F (W+
2 (sj))

)⊥
)

, and finally

5. Γ = {?Ri} ∪ {?Sj} ∪ F (M0)
⊥ ∪ F (M1) ∪ · · · ∪ F (Mk)∪?F (M1) ∪ · · · ∪?F (Mk).

Then, ⊢ Γ if and only if N , M0, M1 satisfy the PNST reachability problem.

Let us now prove that MELL �1 PNST Reachability.
Let Γ = F1 ∪ · · · ∪ Fk be a MELL sequent. Let F (Γ) be the set of sub-formulas of the formulas of Γ, and
P(F (Γ)) be the set of subsets of F (Γ).
Let ξ be a sequent with underlying set Ξ ∈ P(F (Γ)), such that a !P rule can be applied on a formula !A
of ξ. Then, by Lemma 1.8, ⊢ ξ if and only if ⊢ Ξ. Let n(Γ) ≤ |P(F (Γ))| be the bound of Lemma 1.8,
3), and assume the possible !P rule applications in a proof of ⊢ Γ are numbered from 1 to n(Γ), and their
conclusion sequents Ξ1, · · ·Ξn(Γ). Let also P = P({1 · · ·n(Γ)}). A set π ∈ P will be denoted as an index set
(of sequents conclusions of !P rule applications).
We define the PNST N(Γ) = (P, T,W−, W+) as follows:

1. to every ∆ ∈ P(F (Γ)), every π ∈ P, we associate a place p∆,π in P . To every f ∈ ∆, we associate

a place p
f
∆,π in P . The sets of places {p∆,π, p

fi

∆,π; fi ∈ ∆} encodes the underlying set of formulas of
any occurrence of a sequent ζ that might occur in a proof with conclusion ⊢ Γ, where π represents
the index set of the conclusion sequents of all !P rules already present in the proof under the given
occurrence of ζ. The multiplicity of a formula in such a sequent will be encoded by the number of
tokens that will be present in the corresponding place. For any sequent ζ with underlying set ∆, any
π ∈ P, denote by M(ζ, π) the single marking encoding ζ, where:

• M(ζ, π)(p∆,π) = 1,

• M(ζ, π)(pfi

∆,π) is the multiplicity of fi in ζ, and

• M(ζ, π)(p) = 0 for any other place p.

2. Let ∆ ∈ P(F (Γ)), ζ a MELL sequent with underlying set ∆, π ∈ P, fi ∈ ζ such that a sequent calculus
rule (Ri) can be applied on fi with conclusion ⊢ ζ.

• Assume (Ri) = (ax). To (Ri),∆, π, we associate a place q(Ri,∆,π), and

(a) a regular transition which takes one token in p∆,π, one token in p
fi

∆,π, one token in p
f⊥

i

∆,π,
places one token in q(Ri,∆,π), and leaves all other places untouched (lock), and

(b) a regular transition which takes one token in q(Ri,∆,π), and leaves all other places untouched
(unlock).

• Assume (Ri) = 1. To (Ri),∆, π, we associate a place q(Ri,∆,π), and

(a) a regular transition which takes one token in p∆,π, one token in p1
∆,π, places one token in

q(Ri,∆,π), and leaves all other places untouched (lock), and
(b) a regular transition which takes one token in q(Ri,∆,π), and leaves all other places untouched

(unlock).

• Assume (Ri) =O, fi = AOB, and let ζ1 be the premise of (Ri) with underlying set ∆1. To
(Ri),∆,∆1, π, we associate a place q(Ri,∆,∆1,π), and

(a) a regular transition which takes one token from p∆,π, one token from pAOB
∆,π , places one token

in q(Ri,∆,∆1,π), one token in pA
∆1,π, one token in pB

∆1,π, and leaves all other places untouched
(lock),

(b) for all fj ∈ ∆ ∩ ∆1, a regular transition which takes one token from q(Ri,∆,∆1,π), one token

from p
fj

∆,π, places one token in q(Ri,∆,∆1,π), one token in p
fj

∆1,π, and leaves all other places
untouched. This transition is called a transfer, and

(c) a regular transition which takes one token from q(Ri,∆,∆1,π), places one token in p∆1,π, and
leaves all other places untouched (unlock).
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• Assume (Ri) =?W , fi =?A, and let ζ1 be the premise of (Ri) with underlying set ∆1. To
(Ri),∆,∆1, π, we associate a place q(Ri,∆,∆1,π), and

(a) a regular transition which takes one token from p∆,π, one token from p?A
∆,π, places one token

in q(Ri,∆,∆1,π), and leaves all other places untouched (lock),
(b) for all fj ∈ ∆ ∩ ∆1, a regular transition which takes one token from q(Ri,∆,∆1,π), one token

from p
fj

∆,π, places one token in q(Ri,∆,∆1,π), one token in p
fj

∆1,π, and leaves all other places
untouched (transfer), and

(c) a regular transition which takes one token from q(Ri,∆,∆1,π), places one token in p∆1,π, and
leaves all other places untouched (unlock).

• Assume (Ri) =?C, fi =?A, and let ζ1 be the premise of (Ri) with underlying set ∆1. To
(Ri),∆,∆1, π, we associate a place q(Ri,∆,∆1,π), and

(a) a regular transition which takes one token from p∆,π, one token from p?A
∆,π, places one token

in q(Ri,∆,∆1,π), two tokens in p?A
∆1,π, and leaves all other places untouched (lock),

(b) for all fj ∈ ∆ ∩ ∆1, a regular transition which takes one token from q(Ri,∆,∆1,π), one token

from p
fj

∆,π, places one token in q(Ri,∆,∆1,π), one token in p
fj

∆1,π, and leaves all other places
untouched (transfer), and

(c) a regular transition which takes one token from q(Ri,∆,∆1,π), places one token in p∆1,π, and
leaves all other places untouched (unlock).

• Assume (Ri) =?D, fi =?A, and let ζ1 be the premise of (Ri) with underlying set ∆1. To
(Ri),∆,∆1, π, we associate a place q(Ri,∆,∆1,π), and

(a) a regular transition which takes one token from p∆,π, one token from p?A
∆,π, places one token

in q(Ri,∆,∆1,π), one token in pA
∆1,π, and leaves all other places untouched (lock),

(b) for all fj ∈ ∆ ∩ ∆1, a regular transition which takes one token from q(Ri,∆,∆1,π), one token

from p
fj

∆,π, places one token in q(Ri,∆,∆1,π), one token in p
fj

∆1,π, and leaves all other places
untouched (transfer), and

(c) a regular transition which takes one token from q(Ri,∆,∆1,π), places one token in p∆1,π, and
leaves all other places untouched (unlock).

• Assume (Ri) = ⊥, fi = ⊥, and let ζ1 be the premise of (Ri) with underlying set ∆1. To
(Ri),∆,∆1, π, we associate a place q(Ri,∆,∆1,π), and

(a) a regular transition which takes one token from p∆,π, one token from p⊥∆,π, places one token
in q(Ri,∆,∆1,π), and leaves all other places untouched (lock),

(b) for all fj ∈ ∆ ∩ ∆1, a regular transition which takes one token from q(Ri,∆,∆1,π), one token

from p
fj

∆,π, places one token in q(Ri,∆,∆1,π), one token in p
fj

∆1,π, and leaves all other places
untouched (transfer), and

(c) a regular transition which takes one token from q(Ri,∆,∆1,π), places one token in p∆1,π, and
leaves all other places untouched (unlock).

• Assume (Ri) = �, fi = A�B, and let ζ1, ζ2 be the two premises of (Ri) with underlying sets ∆1

and ∆2. To (Ri),∆,∆1,∆2, π, we associate a place q(Ri,∆,∆1,π) and a place q(Ri,∆,∆2,π), and

(a) a split transition which takes one token from p∆,π, one token from pA�B
∆,π , places on its first

projection one token in q(Ri,∆,∆1,π), one token in pA
∆1,π, and on its second projection one

token in q(Ri,∆,∆2,π), one token in pB
∆2,π, and leaves all other places untouched (lock),

(b) for all fj ∈ ∆ ∩ ∆1, a regular transition which takes one token from q(Ri,∆,∆1,π), one token

from p
fj

∆,π, places one token in q(Ri,∆,∆1,π), one token in p
fj

∆1,π, and leaves all other places
untouched (transfer),

(c) for all fj ∈ ∆ ∩ ∆2, a regular transition which takes one token from q(Ri,∆,∆2,π), one token

from p
fj

∆,π, places one token in q(Ri,∆,∆2,π), one token in p
fj

∆2,π, and leaves all other places
untouched (transfer),
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(d) a regular transition which takes one token from q(Ri,∆,∆1,π), places one token in p∆1,π, and
leaves all other places untouched (unlock), and

(e) a regular transition which takes one token from q(Ri,∆,∆2,π), places one token in p∆2,π, and
leaves all other places untouched (unlock).

• Assume (Ri) =!P , fi =!A, and let ζ1 be the premise of (Ri) with underlying set ∆1. Then,
∆ = Ξj for some j. To (Ri),∆,∆1, π with j 6∈ π, we associate a place q(Ri,∆,∆1,π), and
(a) a regular transition which takes one token from p∆,π, one token from p!A

∆,π, one token from

p
fi

∆,π for each of the fi ∈ ∆∩∆1, places one token in q(Ri,∆,∆1,π), one token in pA
∆1,π⊎{j}, one

token in p
fi

∆,π⊎{j} for each of the fi ∈ ∆ ∩ ∆1, and leaves all other places untouched (lock),
(b) for all fj ∈ ∆ ∩ ∆1, a regular transition which takes one token from q(Ri,∆,∆1,π), one token

from p
fj

∆,π, places one token in q(Ri,∆,∆1,π), and leaves all other places untouched (transfer),
and

(c) a regular transition which takes one token from q(Ri,∆,∆1,π), places one token in p(∆1,π⊎{j}),
and leaves all other places untouched (unlock).

To (Ri),∆,∆1, π with j ∈ π, we associate a place q(sink), and
(a) a regular transition which takes one token from p∆,π, places one token in q(sink),, and leaves

all other places untouched (sink).

3. For each of the cases (Ri) = (ax), 1,O, ?W, ?C, ?D,⊥,�, !P above, the places and transitions associated
only depend on fi,∆, π and on the underlying sets of the (possibly two) premises of the rule, ∆1 and
∆2. The construction above is repeated for any possible combination of possible sets ∆, ∆1, ∆2, π

and formula fi, where the number of such possible combinations is exponentially bounded.

Let ∅ be the empty single marking. Let us show that ⊢ Γ if and only if N(Γ), {M(Γ, ∅)}, {∅} satisfies the
PNST reachability problem.
Firstly, assume ⊢ Γ. Then, there exists a MELL sequent calculus proof Π with conclusion ⊢ Γ. Assume Π
satisfies the conditions of Lemma 1.8. Then,

1. for any rule application (Ri) in Π, with conclusion Γ0 and zero premise, if π denotes the index set
of conclusion sequents of the !P rules occurring in Π below (Ri), N(Γ), {M(Γ0, π)}, {∅} satisfies the
PNST reachability problem by the construction above.

2. For any rule application (Ri) other than !P in Π, with conclusion Γ0 and one premise Γ1, if π denotes
the index set of conclusion sequents of the !P rules occurring in Π below (Ri), N(Γ), {M(Γ0, π)},
{M(Γ1, π)} satisfies the PNST reachability problem by the construction above.

3. For any rule application (Ri) in Π, with conclusion Γ0 and two premises Γ1, Γ2, if π denotes the index
set of conclusion sequents of the !P rules occurring in Π below (Ri), N(Γ), {M(Γ0, π)}, {M(Γ1, π), M(Γ2, π)}
satisfies the PNST reachability problem by the construction above.

4. For any rule application (Ri) = !P in Π, with conclusion Γ0 = Ξj and one premise Γ1, if π denotes
the index set of conclusion sequents of the !P rules occurring in Π below (Ri), by hypothesis j 6∈ π,
and N(Γ), {M(Γ0, π)}, {M(Γ1, π ⊎ {j})} satisfies the PNST reachability problem by the construction
above.

The composition of these reachability results along the depth of Π yields a promenade with initial marking
M(Γ, ∅) and all final markings ∅, thus, N(Γ), {M(Γ, ∅)}, {∅} satisfies the PNST reachability problem.

Secondly, assume N(Γ), {M(Γ, ∅)}, {∅} satisfies the PNST reachability problem. Then, there exists a
promenade P on N(Γ), where vertices of indegree 0 are labelled with M(Γ, ∅) and vertices of outdegree 0
are labelled with ∅. Since N(Γ) is a PNST, i.e. has no join transition, we can assume without loss of generality
that P has only one node of indegree 0, i.e. P is a tree. it is easy to see that any path in the tree P can be
decomposed in sequences (N(Γ), Mi) →tlock

· · · →tunlock
(N(Γ), Mj), where only transfer transitions occur

between the lock and the unlock transitions. All the transitions in such a sequence involve the same rule (Ri)
applied on the same formula fi. We say that such a sequence s = (N(Γ), Mi) →tlock

· · · →tunlock
(N(Γ), Mj)

is faithful if the firing of the intermediate transfer (if applicable) transitions remove all tokens from Mi.
Then, two cases arise:

7



1. In any path of P , any sequence s = (N(Γ), Mi) →tlock
· · · →tunlock

(N(Γ), Mj) is faithful. In that case,
the MELL sequents encoded by the markings Mi and the rules (Ri) induce naturally a proof Π of Γ,
and ⊢ Γ.

2. There exists a path c in P and an unfaithful sequence si = (N(Γ), Mi) →tlock
· · · →tunlock

(N(Γ), Mi+1)
in this path. Assume without loss of generality that si is the first unfaithful sequence in c, and denote
by (Ri), ∆i, π the corresponding rule, conclusion sequent underlying set and index set. Since si is

the first unfaithful sequence in c, there exists f ∈ ∆ such that Mi(p
f
∆,π) > 0 and Mi+1(p

f
∆,π) > 0.

Since all paths reach the empty single marking by hypothesis, there exists a path c′ = s1 · · · sk such
that the sequence si is in c ∩ c′, and the place p

f
∆,π is emptied by some transition in the sequence

sj = (N(Γ), Mj) →tlock
· · · →tunlock

(N(Γ), Mj+1), with j > i, in c′. Then, the conclusion sequent
underlying set and index set corresponding to sj are ∆j = ∆i and π, while the rule (Rj) may differ
from (Ri). In other words, a token corresponding to a formula f is left behind during the simulation
of the application of (Ri) on ζi with underlying set ∆i and index set π, and inherited later on when
simulating a rule (Rj) on ζj with the same underlying set ∆j = ∆i and the same index set π.
Consider the subpath si · · · sj of c′, with the corresponding sequence of rules (Ri) · · · (Rj) and underly-
ing sets ∆i · · ·∆j . Note that for i ≤ k < j, the index set corresponding to sk is also π, by construction.
Therefore, none of the rules (Rk) for i ≤ k < j may be a !P rule, and, by Lemma 1.7, there exist
sequences s′1 · · · s

′
j with s′k = (N(Γ), M ′

k) →tlock
· · · →tunlock

(N(Γ), M ′
k+1) such that:

(a) for any i ≤ k < j, the rule corresponding to s′k is (Rk),
(b) for any i ≤ k < j, the conclusion sequent underlying set corresponding to s′k is ∆k ∪ {f},
(c) for any i ≤ k < j, s′k is derived from sk by changing the necessary indexes of places and transitions,

and adding the necessary transfer transitions such that

• M ′
k+1(p

f

∆k∪{f},π
) = 0 if ∆k+1 ∪ {f} 6= ∆k ∪ {f}, and M ′

k+1(p
f

∆k+1∪{f},π
) > 0 (i.e. no token

of p
f

∆k∪{f},π
is left behind).

• for any i ≤ k ≤ j, for any g 6= f , M ′
k(pg

∆k∪{f},π
) = Mk(pg

∆k,π).

• for any lock transition t being a split transition (i.e. corresponding to a � rule), the single
marking produced by the firing of t which is not in c′ remains unchanged.

In words, the sequences s′1 · · · s
′
j simulate the same rules as the sequences s1 · · · sj , the same way, with

the additional feature that they transfer inductively f from the conclusion sequent to the premise
sequent.
The conditions above ensure that replacing the sequences si · · · sj by the sequences s′i · · · s

′
j in P yield

a graph P ′ that is also a promenade on N(Γ), with (unique) vertex of indegree 0 labelled with M(Γ, ∅)
and vertices of outdegree labelled with ∅. Moreover, P ′ has strictly less unfaithful sequences than P .
Therefore, by induction on the number of unfaithful sequences in P , we can conclude that there exists
a promenade P ′′ on N(Γ), with only faithful sequences and with (unique) vertex of indegree 0 labelled
with M(Γ, ∅) and vertices of outdegree labelled with ∅. Thus, ⊢ Γ.

2. Vector Addition Systems with States and Split/Join Transitions

2.1. Definition

Definition 2.1. Vector Addition Systems with States and Split/Join Transitions.

A Vector Addition Systems with States and Split/Join Transitions (VASSSJT) is a 4-tuple S = (G, T, m, v),
where:

• G = (Q, A) is a finite directed graph,

• T ⊆ A ∪ A2 is a set of transitions,

• m ≥ 1 is a natural number,
8



• v : T → Z ∪ {s} ∪ {j} is a function, such that

1. v(t) ∈ Z
m if and only if t ∈ A,

2. v(t) = s if and only if t = (a1, a2) and a1 and a2 share the same origin,

3. v(t) = j if and only if t = (a1, a2) and a1 and a2 share the same destination,

The vertices of G are called its states. A transition t with v(t) ∈ Z
m is called a regular transition, a transition

t with v(t) = s is called a split transition, and a transition t with v(t) = j is called a join transition.
A VASSSJT with only regular and split transitions is called a Vector Addition Systems with States and Split
Transitions (VASSST), and a VASSSJT with only regular and join transitions is called a Vector Addition
Systems with States and Join Transitions (VASSJT).

Definition 2.2. Configuration of a VASSSJT.

Let S = (G, m, v) be a VASSSJT. A single configuration of G is a 2-tuple c = (q, x), where q ∈ Q is a state
and x ∈ N

m is a value. A single configuration c is positive if and only if, for all 0 ≤ i ≤ m, ci ≥ 0. A
configuration of S is a multiset C of single configurations of S. A configuration is positive if and only if all
its single configurations are positive.

2.2. Execution Semantics of a VASSSJT

Definition 2.3. Firing of a Transition.

Let S = (G, T, m, v) be a VASSSJT, and C be a configuration of S. Let t be a transition of S. The firing of
t in (S, C) is the relation:

(S, C) →t (S, C′),

where

• if v(t) ∈ Z
m, t = (q0, q1), there exists c = (q0, x0) ∈ C, and C′ = C \ {c} ⊎ {(q1, x0 + v(t))}.

• if v(t) = s, t = ((q0, q1), (q0, q
′
1)), there exists c0 = (q0, x0) ∈ C, and C′ = C\{c}⊎{(q1, x1)}⊎{(q′1, x

′
1)},

with x0 = x1 + x′
1. Moreover, for any 1 ≤ i ≤ m, |(x0)i| = |(x1)i| + |(x′

1)i|.

• if v(t) = j, t = ((q0, q1), (q
′
0, q1)), there exist c0 = (q0, x0) ∈ C and c′0 = (q′0, x

′
0) ∈ C, and C′ =

C \ {c0} \ {c
′
0} ⊎ {(q1, x0 + x′

0)}.

Definition 2.4. Promenade.

Let S = (G, T, m, v) be a VASSSJT. A promenade on S is a labelled acyclic directed finite graph with in
and out-degree at most two such that:

• each vertex is labelled with a single configuration on S,

• each edge is labelled with a transition of S,

• for any vertex, the (possibly two) ingoing edges have the same label, as well as the (possibly two)
outgoing edges,

• for any vertex v labelled with c, with indegree two, with parent nodes v1 labelled with c1 and v2

labelled with c2, the ingoing edges are labelled with a join transition t, and we have:

(S, {c1} ⊎ {c2}) →t (S, {c}),

• for any vertex v′ labelled with c′, with indegree one, with parent node v labelled with c with outdegree
one, the ingoing edge is labelled with a regular transition t, and we have:

(S, {c}) →t (S, {c′}),

9



• for any vertex v labelled with c, with outdegree two, with child nodes v1 labelled with c1 and v2

labelled with c2, the outgoing edges are labelled with a split transition t, and we have:

(S, {c}) →t (S, {c1} ⊎ {c2}).

A promenade P on S is positive if and only if all vertices are labelled with positive configurations.

Definition 2.5. (Positive) Reachability Problem.

Let S be a VASSSJT, C0, C1 be two sets of single configurations on S. The reachability problem for S, C0,
C1 is the following:
Does there exists a promenade P on S such that:

1. the set of labels of vertices of indegree 0 is C0, and

2. the set of labels of vertices of outdegree 0 is C1?

The positive reachability problem for S, C0, C1 is the following:
Does there exists a positive promenade P on S satisfying the same conditions as above?

The reachability problem for S, C0, C1 can easily be reformulated as follows:
Does there exist two configurations C′

0, C
′
1 such that:

1. the underlying set of C′
0 is C0,

2. the underlying set of C′
1 is C1, and

3. there exists a finite sequence of transitions t0, · · · , tk of N such that

(S, C′
0) →t0 · · · →tk

(S, C′
1).

The positive reachability problem can also be reformulated as above, with the condition that all configura-
tions along the chain (S, C′

0) →t0 · · · →tk
(S, C′

1) are positive.

2.3. VASSSJT and PNSJT simulate each other

Proposition 2.6. 1. The PNSJT reachability problem and the positive VASSSJT reachability problem
reduce one to the other (via many-one reductions),

2. The PNST reachability problem and the positive VASSST reachability problem reduce one to the other
(via many-one reductions),

3. The PNJT reachability problem and the positive VASSJT reachability problem reduce one to the other
(via many-one reductions).

Proof. Let us first prove PNSJT reachability �1 positive VASSSJT reachability.
Let N = (P, T,W−, W+) be a PNSJT, M0, M1 be two sets of single markings on N . Let us define the
VASSSJT S = (G, T ′, m, v), with G = (Q, A), as follows:

1. m = |P |, and we identify P with [1 · · ·m],

2. to every regular transition ri in T , we associate

• a state qi in Q,

• a regular transition (q, qi) with v(q, qi) = −W−(ri) (where we identify the function W−(ti) :
[1 · · ·m] → N with its vector in Z

m), and

• a regular transition (qi, q) with v(qi, q) = W+(ri) in T ′.

3. to every split transition sj in T , we associate

• three states oj , t1j and t2j in Q,

• a regular transition (q, oj) with v(q, oj) = −W−(sj) in T ′,

• a split transition ((oj , t1j), (oj , t2j)) in T ′,
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• a regular transition (t1j , q) with v(t1j , q) = W+
1 (sj), and

• a regular transition (t2j , q) with v(t2j , q) = W+
2 (sj) in T ′.

4. to every join transition jk in T , we associate

• three states o1k and o2k and tk in Q,

• a regular transition (q, o1k) with v(q, o1k) = −W−
1 (jk),

• a regular transition (q, o2k) with v(q, o2k) = −W−
2 (jk) in T ′,

• a join transition ((o1k, tk), (o2k, tk)) in T ′, and

• a regular transition (tk, q) with v(tk, q) = W+(jk) in T ′.

5. Q is the disjoint union of {q}, and of the {qi}, {oj}, {t1j}, {t2j}, {o1k}, {o2k} and {tk},defined above.

Let M be a single marking on N . To M , we associate the single configuration c(M) = (q, (M(1) · · ·M(m)))
of S. Then, N , M0, M1 satisfy the PNSJT reachability problem if and only if S, c(M0), c(M1) satisfy the
positive VASSSJT reachability problem.
Let us now prove positive VASSSJT reachability �1 PNSJT reachability.
Let S = (G, T, m, v), with G = (Q, A) be a VASSSJT, C0, C1 be two sets of single configurations on S. Let
us define the PNSJT N = (P, T ′, W−, W+) as follows:

1. P = Q ⊎ {1 · · ·m},

2. to every regular transition ri = (oi, ti) in T , we associate a regular transition ri in T ′, with

• W−(q, ri) = 0 for q ∈ Q \ {oi},

• W−(oi, ri) = 1,

• W−(k, ri) = −v(ri)k for k ∈ [1 · · ·m] and v(ri)k < 0, W−(k, ri) = 0 otherwise,

• W+(q, ri) = 0 for q ∈ Q \ {ti},

• W+(ti, ri) = 1, and

• W+(k, ri) = v(ri)k for k ∈ [1 · · ·m] and v(ri)k ≥ 0, W+(k, ri) = 0 otherwise.

3. to every split transition si = ((oi, t1i), (oi, t2i)) in T , we associate a split transition si in T ′, with

• W−(q, ri) = 0 for q ∈ Q \ {oi},

• W−(oi, ri) = 1,

• W−(k, ri) = 0 for k ∈ [1 · · ·m],

• W+
1 (q, ri) = 0 for q ∈ Q \ {t1i},

• W+
1 (t1i, ri) = 1,

• W+
1 (k, ri) = 0 for k ∈ [1 · · ·m],

• W+
2 (q, ri) = 0 for q ∈ Q \ {t2i},

• W+
2 (t2i, ri) = 1, and

• W+
2 (k, ri) = 0 for k ∈ [1 · · ·m].

4. to every join transition ji = ((o1i, ti), (o2i, ti)) in T , we associate a join transition ji in T ′, with

• W−
1 (q, ri) = 0 for q ∈ Q \ {o1i},

• W−
1 (o1i, ri) = 1,

• W−
1 (k, ri) = 0 for k ∈ [1 · · ·m],

• W−
2 (q, ri) = 0 for q ∈ Q \ {o2i},

• W−
2 (o2i, ri) = 1,

• W−
2 (k, ri) = 0 for k ∈ [1 · · ·m],

• W+(q, ji) = 0 for q ∈ Q \ {ti},
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• W+(ti, ji) = 1,

• and W+(k, ji) = 0 for k ∈ [1 · · ·m].

Let c = (q, x) be a single configuration of S. To c, we associate the single marking M(c) of S, where
M(c)(q′) = 0 if q′ ∈ Q \ {q}, M(c)(q) = 1, and M(c)(k) = xk for 1 ≤ k ≤ m. Then, S, C0, C1 satisfy
the positive VASSSJT reachability problem if and only if N , M(C0), M(C1) satisfy the PNSJT reachability
problem.
The same reductions apply for proving the other parts of the proposition.

3. Karp and Miller Graph

3.1. Definitions

Definition 3.1. Generalized configurations.

For m ≥ 1, we consider the order relation ≤ on (N ∪∞)m defined as follows:

• for m = 1, x ≤ y if and only if x ≤ y ∈ N, or y = ∞, and

• for m ≥ 1, x ≤ y if and only if, for all i = 1 · · ·m, xi ≤ yi.

Given a VASSSJT S = (G, T, m, v), with G = (Q, A), a generalized single configuration of S is a 2-tuple
g = (q, x), where q ∈ Q is a state and x ∈ (N ∪∞)m is a generalized value. A generalized configuration is a
finite set G of generalized single configurations of S, together with a multiplicity function MG : G → N∪∞,
i.e. a finite multiset whose elements may have finite or infinite multiplicity. For a generalized configuration
G and g ∈ C, we write G \ g for the generalized configuration G′ such that:

1. for all g′ 6= g, g′ ∈ G′ if and only if g′ ∈ G. In that case MG(g′) = MG′(g′), and
2. if MG(g) > 1, g ∈ G′ with MG′(g) = MG(g) − 1 (where, of course, ∞− 1 = ∞),
3. if MG(g) = 1, g 6∈ G′.

For a generalized configuration G, k ∈ N ⊎∞, and a generalized single configuration g, we write G ⊎k c for
the generalized configuration G′ such that:

1. for all g′ 6= g, g′ ∈ G′ if and only if g′ ∈ G. In that case MG(g′) = MG′(g′), and
2. if g ∈ G, g ∈ G′ with MG′(g) = MG(g) + k,
3. if g 6∈ G, g ∈ G′ with MG′(g) = k.

And, for two generalized configurations G,G′, with G′ = {g′1, · · · , g
′
k},

G ⊎ G′ = G ⊎MG′ (g′
1) g′1 · · · ⊎

MG′ (g′
k) g′k, and

G ⊆ G′ iff ∀g ∈ G, g ∈ G′ with MG(g) ≤ MG′(g).

For a set D of generalized single configurations, we write also D for the generalized configuration with
underlying set D, where all elements have multiplicity 1.
We consider the order relation � on generalized configurations defined as follows: G � G′ if and only if G′

can be derived in a finite number of steps from G by:

• increasing some coordinate of an element g ∈ G (while keeping other coordinates invariant), or

• performing some union G ⊎k g for some generalized single configuration g, with k ∈ N ⊎∞.

Moreover, we assume for the sake of simplicity that the reduction steps consisting in increasing some coordi-
nate are not redundant (i.e. the same coordinate of the same single configuration is increased at most once
in the derivation), that the reduction steps consisting in adding some single configuration are not redundant
either (i.e. a single configuration is added at most once in the derivation), and that the former steps occur
before the latter in the derivation. Note that this assumption does not change the definition, but allows to
simplify the presentation of the liftings below.
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Definition 3.2. Liftings.

Let S = (G, T, m, v), with G = (Q, A) be a VASSSJT. Let T be a connected, directed acyclic graph with
vertices labelled with generalized configurations on S. Let dn be a vertex in T labelled with Gn. Let Gi be
a generalized configuration on S. We write Gi ≪ Gn if and only if Gi ≺ Gn and there exits a path di, · · · , dn

in T , where di 6= dn is labelled with Gi. Assume Gi ≪dn
Gn and let Gi = G′

1 → · · · → G′
m = Gn be one

corresponding finite non-empty derivation.
The single lifting of (dn, di) in T , denoted as #(dn, di) is the following operation. For all k = 1 · · ·m − 1,

• If, in the derivation step G′
k → G′

k+1, the coordinate xj of some g = (l, (p, x)) ∈ G′
k has strictly

increased by a value a, replace it by ∞ in G′
k+1, · · · ,G

′
m. The coordinate xj is denoted as an aug-

mentation coordinate of the lifting, and a is its augmentation gap.

• If, in the derivation step G′
k → G′

k+1, a generalized single configuration g has been added, with
multiplicity a ∈ N, give it multiplicity ∞ in G′

k+1, · · · ,G
′
m. The configuration g is denoted as an

augmentation configuration of the lifting, and a is its augmentation gap.

• Label dn with the resulting generalized configuration Gn.

The augmentation gap of the lifting is the minimal non-zero augmentation gap of the augmentation coordi-
nates and of the augmentation configurations of the lifting.
Note that two single liftings commute: ∀i, j ≤ n, #(#(dn, di), dj) = #(#(dn, dj), di). Now, let J = {j =
j1, · · · , jk such that Gj ≪ Gn}, let D0 = dn and for l = 1 · · · k, Dl = #(Dl−1, djl

). Then, the lifting of dn,
is #(dn) = Dk. Note that, when J = ∅, k = 0 and #(dn) = dn.

Definition 3.3. Karp and Miller Graph.

Let S = (G, T, m, v), with G = (Q, A) be a VASSSJT and D be a set of single configurations. The Karp
and Miller graph T = (V,E) on (S,D) is a labelled directed graph constructed inductively as follows, where
vertices are labelled with generalized configurations, and edges with transitions of S or (null).

1. T has exactly one vertex σ0 of indegree 0, labelled with ∅

2. For every c ∈ D, let σc be a new vertex labelled with {c}, where c has multiplicity 1. Let (σ0, σc) be
a new edge, labelled with (null).

3. Let σi labelled with Gi be a vertex of T . If there exists a path σ0, · · · , σi i T and σj 6= σi labelled with
the same Gi in this path, σi has outdegree 0. Otherwise,

4. Let σi labelled with Gi be a vertex of T . Let (pi, xi) ∈ Gi, t = (pi, pi+1) ∈ T be a regular transition
such that xi+1 = xi +v(t) ≥ 0. Then, let σi+1 be a new vertex in V labelled with Gi+1 = Gi \(pi, xi)⊎

1

(pi+1, xi+1), and (σi, σi+1) be a new edge in E labelled with t. Mark one occurrence of (pi, xi) ∈ Gi

as the origin of (σi, σi+1), one occurrence of (pi+1, xi+1) in Gi+1 as the destination of (σi, σi+1), and
perform the lifting #(σi+1) in (V ⊎ σi+1, E ⊎ (σi, σi+1)) (where we assume that the lifting preserves
the marking).

5. Let σi labelled with Gi be a vertex of T . Let (pi, xi) ∈ Gi, t = ((pi, pi+1), (pi, p
′
i+1)) ∈ T be a

split transition. Let xi+1 + x′
i+1 = xi, such that, for j = 1 · · ·m, xij = ∞ ⇒ xi+1j , x

′
i+1j

= ∞

x′
i+1j

∈ {0,∞} ?. Then, let σi+1 be a new vertex in V labelled with Gi+1 = Gi\(pi, xi)⊎
1(pi+1, xi+1)⊎

1

(p′i+1, x
′
i+1), (σi, σi+1) be a new edge in E labelled with t. Mark one occurrence of (pi, xi) ∈ Gi

as the origin of (σi, σi+1), one occurrence of (pi+1, xi+1) in Gi+1 as a destination of (σi, σi+1), one
occurrence of (p′i+1, x

′
i+1) in Gi+1 as a destination of (σi, σi+1), and perform the lifting #(σi+1) in

(V ⊎ σi+1, E ⊎ (σi, σi+1)) (where we assume that the lifting preserves the marking).

6. Let σi labelled with Gi be a vertex of T . Let (pi, xi) ∈ Gi, (p′i, x
′
i) ∈ Gi, t = ((pi, pi+1), (p

′
i, pi+1)) ∈ T

be a join transition. Let xi+1 = xi + x′
i. Then, let σi+1 be a new vertex in V labelled with Gi+1 =

Gi \ (pi, xi)\ (p′i, x
′
i)⊎

1 (pi+1, xi+1), (σi, σi+1) be a new edge in E labelled with t. Mark one occurrence
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of (pi, xi) ∈ Gi as an origin of (σi, σi+1), one occurrence of (p′i, x
′
i) ∈ Gi as an origin of (σi, σi+1), one

occurrence of (pi+1, xi+1) in Gi+1 as the destination of (σi, σi+1), and perform the lifting #(σi+1) in
(V ⊎ σi+1, E ⊎ (σi, σi+1)) (where we assume that the lifting preserves the marking).

7. Let σi labelled with Gi, σj labelled with Gj be two vertices of T . Let (pi, xi) ∈ Gi, (pj , xj) ∈ Gj ,
t = ((pi, pi+1), (pj , pi+1)) ∈ T be a join transition. Let xi+1 = xi + xj . Then, let σi+1 be a new vertex
in V labelled with Gi+1 = (Gi \ (pi, xi)) ⊎ (Gj \ (pj , xj)) ⊎

1 (pi+1, xi+1), (σi, σi+1) and (σj , σi+1) be
two new edges in E labelled with t. Mark one occurrence of (pi, xi) ∈ Gi as an origin of (σi, σi+1),
one occurrence of (pj , xj) ∈ Gj as an origin of (σj , σi+1), one occurrence of (pi+1, xi+1) in Gi+1 as the
destination of (σi, σi+1) and of (σj , σi+1), and perform the lifting #(σi+1) in (V ⊎σi+1, E ⊎ (σi, σi+1))
(where we assume that the lifting preserves the marking).

The inductive construction above halts when no new vertex can be added with these rules. Note that, by
construction, T is connected and acyclic.

3.2. First results

Proposition 3.4. The following statements are true:

1. Let un ∈ (N⊎∞)m, n ∈ N, be an infinite sequence of m-tuples for some m ∈ N. Then, there exists an
infinite sub-sequence u′

n, n ∈ N of un that is increasing for the order relation ≤.

2. Let Gn, n ∈ N, be an infinite sequence of generalized configurations. Then, there exists an infinite
sub-sequence G′

n, n ∈ N of Gn that is increasing for the order relation �.

Proof.

1. Let un ∈ (N⊎∞)m, n ∈ N, be an infinite sequence of m-tuples for some m ∈ N. Then, two cases arise:

• The sequence un is bounded by some u ∈ N
m. In that case, there exists u′ ≤ u such that u′

has infinitely many occurrences in un. The restriction of un to these occurrences is an infinite
sequence that is (non-strictly) increasing.

• The sequence un is unbounded. By induction on m:
(a) if m = 1, if ∞ has infinitely many occurrences in un: the restriction of un to these occurrences

is an infinite sequence that is (non-strictly) increasing. if ∞ has only finitely many occurrences
in un: there exists an infinite unbounded sub-sequence u′

n ∈ N, n ∈ N with values in N. Then,
i. if the sequence u′

n is bounded by some u ∈ N
m, it admits as above an infinite sequence

that is (non-strictly) increasing, and
ii. if the sequence u′

n is unbounded, it admits an infinite sub-sequence that is (strictly)
increasing.

(b) Assume the result holds for m− 1. Consider by induction an infinite subsequence u′
n, n ∈ N

of un such that its projection on the first m−1 coordinates is increasing, and apply the result
for m = 1 on the last coordinate of u′

n.

2. Let now Gn, n ∈ N, be an infinite sequence of generalized configurations. Let G′
n, n ∈ N, be an

infinite sub-sequence of Gn, such that the size of the underlying sets of G′
n, is an infinite sequence

of integer values that is increasing. Let us show that, for any G′
i in the sequence G′

n, there exists
G′

j , i < j such that G′
i � G′

j . For q ∈ Q, let v(q) ∈ N
|Q| be the unary encoding of q. Let

G′
i = {(qi

1, x
i
1), · · · , (q

i
l , x

i
l)} in the sequence, and, for j ≥ i, let G′

j = {(qj
1, x

j
1), · · · , (q

j
l′ , x

j
l′)} with,

since the size of the sets increase, l′ ≥ l. Consider now only the l first elements of G′
j in v(G′

j) =

(v(qj
1), x

j
1, M(G′

j)(q
j
1, x

j
1), · · · , v(qj

l ), x
j
l , M(G′

j)(q
j
l , x

j
l )) ∈ (N ⊎∞)l.(|Q|+m+1).

Consider now the sequence v(G′
j), j ≥ i. Then, by Proposition 3.4, 1), there exists an infinite sub-

sequence v(G′′
j), j ≥ i that is increasing for the order relation ≤ on (N ⊎∞)l.(|Q|+m+1), and let G′′

n,
n ∈ N be the corresponding sequence of generalized configurations. Then, by construction of v(G′′

j),
G′

i � G′′ for any G′′ = G′′
j in the sequence G′′

n. It follows that, for any G′
i in the sequence G′

n, there
exists G′

j , i < j such that G′
i � G′

j . Therefore, there exists an infinite sub-sequence of G′
n, n ∈ N

that is increasing for the order relation �.

14



Theorem 3.5. Let S = (G, T, m, v), with G = (Q, A) be a VASSSJT and D be a finite set of single
configurations. The Karp and Miller graph T on (S,D) is finite, and can be effectively constructed.

Proof. Since T is a connected, directed acyclic graph, it is finite if and only if its depth-first search tree is
finite. By construction, every node in T has a finite number of sons. Assume T is infinite: then, by Koenig’s
Lemma, its depth-first search tree has an infinite branch. Denote by D = Gn, n ∈ N the corresponding
infinite derivation sequence of generalized configurations. By Proposition 3.4, 2), let G′

n, n ∈ N be an
infinite sub-sequence of Gn that is increasing for the order relation �.
Let G′

i be one element in the sequence G′
n, and define G′

i = I(G′
i) ⊎ F (G′

i), where:

• I(G′
i) = {g ∈ G′

i : MG′
i
(g) = ∞}, with MI(G′

i) = MG′
i
(g) for all g, and

• F (G′
i) = {g ∈ G′

i : MG′
i
(g) ∈ N}, with MI(G′

i) = MG′
i
(g) for all g.

Let Q = {q1, · · · , q|Q|}, let G′
i = {(qi

1, x
i
1), · · · , (q

i
l , x

i
l)}, l ∈ N, and define now:

• for j = 1, · · · , m, for q ∈ Q, vj,q(G
′
i) = (

∑

(q,x)∈I(G′
i): xj 6=∞ xj ,

∑

(q,x)∈F (G′
i): xj 6=∞ xj .MG′

i
(q, x)) ∈ N

2,
and

• v(G′
i) =

(

v1,q1
(G′

i), v2,q1
(G′

i), · · · , vm,q1
(G′

i), v1,q2
(G′

i), · · · , vm,q2
(G′

i), · · · , vm,q|Q|
(G′

i)
)

∈ N
2.m.|Q|:

Consider now the infinite sequence v(G′
n), n ∈ N. Then, by Proposition 3.4, 1), let v(G′′

n), n ∈ N be an
infinite sub-sequence of v(G′

n) that is increasing for the order relation ≤ on N
2.m.|Q|, and let G′′

n, n ∈ N be
the corresponding infinite sequence of generalized configurations.
Two cases arise:

1. v(G′′
n) is bounded: there exists i ∈ N such that, for all j > i, v(G′′

i) = v(G′′
j). Since the number

of possible generalized configurations G′′ with v(G′′) = v(G′′
i) is bounded, it follows that there exists

an infinite sub-sequence of G′′
n of identical generalized configurations, which is contradictory with the

construction of the Karp and Miller tree (case 3) of the construction in Definition 3.3).

2. v(G′′
n) is not bounded: there exists yet again an infinite subsequence v(G

(3)
n ), n ∈ N, which is strictly

increasing for the order relation ≤ on N
2.m.|Q|. Consider the corresponding infinite sequence G

(3)
n ,

n ∈ N of generalized configurations. For any i < j ∈ N, v(G
(3)
i ) < v(G

(3)
j ), and G

(3)
i � G

(3)
j . Then,

F (G
(3)
i ) = F (G

(3)
j ), otherwise, by construction, a single lifting needs to be performed on the finite

part of G
(3)
j , which would make v(G

(3)
j ) strictly decrease on its coordinates corresponding to F (G

(3)
j ).

Similarly, any derivation of G
(3)
i � G

(3)
j consists in adding at least one single configuration with infinite

multiplicity (otherwise, any derivation consisting only in increasing values would trigger a lifting that
would make v strictly decrease). Consider now the infinite sequence of single configuration with infinite
multiplicity added in each of the derivations G(3)

n � G(3)
n+1 for n ∈ N. By Proposition 3.4, 1), it

has an infinite sub-sequence that is increasing for the order ≤ on (N ⊎ ∞)m. If this infinite sub-
sequence is bounded, it contains yet one more infinite sub-sequence of identical single configurations,
which contradicts the construction of the graph (case 3) of the construction in Definition 3.3); if it is
unbounded, it contains yet one more infinite sub-sequence that is strictly increasing, which contradicts
the fact that the Gi are lifted at each step in the derivation sequence (case 4), 5), 6) and 7) of the
construction in Definition 3.3).

It follows by contradiction that the depth-first search tree of the Karp and Miller graph has no infinite
branch, hence it is finite. The constructibility follows from its inductive definition.

Theorem 3.6. Let S = (G, T, m, v), with G = (Q, A) be a VASSSJT and D be a finite set of single
configurations. Let σ be a node of the Karp and Miller graph T on (S,D) labelled with Gσ.
Let Dσ ⊆ D such that, for all c ∈ Dσ, there exists a path σc, · · · , σ in T .
Then, for any N ∈ N, there exists a promenade PN

σ of S such that:
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• the set of labels of the vertices of PN
σ of in-arity 0 is Dσ,

• for all g = (q, x) ∈ Gσ of multiplicity MGσ (g) = k ∈ N, there exists a set V (g) = {v1, . . . , vk} of vertices
of PN

σ of out-arity 0, where, for any vi ∈ V (g), vi is labelled with (q, ti) where, for all j = 1, · · · , m:

1. tij ≥ N if xj = ∞, and

2. tij = xj otherwise,

• for all g = (q, x) ∈ Gσ of multiplicity MGσ (g) = ∞, there exists a set V (g) = {v1, . . . , vk}, k ≥ N ,
of vertices of PN

σ of out-arity 0, where, for any vi ∈ V (g), vi is labelled with (q, ti) where, for all
j = 1, · · · , m:

1. tij ≥ N if xj = ∞, and

2. tij = xj otherwise,

• and the union of the sets V (g) above is the set of vertices of PN
σ of out-arity 0.

Proof. For the sake of simplicity, we assume in the proof that all directed acyclic graphs are oriented from
top to bottom.

Let Σ(σ) = {σ1, · · · , σt} be the set of vertices in T \ σ0 (recall Definition 3.3: σ0 is the only vertex of T of
in-degree 0) above σ (i.e, such that, for j = 1, · · · , t, there exists a path from σj to σ in T ). Assume also
that, for j = 1, · · · , t, σj is labelled with Gj . Let Tσ be the restriction of T to Σ(σ), as given in Figure 2 for
the VASSSJT S of Figure 1.

(1, 0) (−2, 1)

(join)

(split)

a b

c

d

Figure 1: An example of VASSSJT S, with only one state, two regular transitions a with v(a) = (1, 0) and b with v(b) = (−2, 1),
a join transition c and a split transition d.

Splitting generalized configurations into single ones:

Denote now by T ′
σ the directed acyclic graph defined inductively as follows, as in figure 3:

1. To σ, we associate a set v(σ) of nodes of out-degree 0, where, for any g ∈ Gσ, v(σ, g) ∈ v(σ) is labelled
with gMGσ (g).

2. Let v(σk) ∈ T ′
σ, where σk ∈ Tσ has only one parent vertex σi ∈ Tσ. Assume (σi, σk) is labelled with

a transition t. Then, we let v(σi) be a new set of nodes in T ′
σ, where, for gi ∈ Gi,

16



(2, 2)1

(0, 3)1 (2, 1)1, (0, 1)1

(∞, 3)1 (0,∞)1

(∞,∞)1 (2, 1)1, (0,∞)1

(∞,∞)1, (0,∞)1

a

b

c

d

b

c

c

c

c c

Figure 2: The graph Tσ for (S, {(2, 2)}, with one vertex σ labelled with (∞,∞)1, (0,∞)1.

• If gi is not marked in Gi as the origin of (σi, σk), gi yields gk ∈ Gk by the (possibly empty) lifting

of σk. Then, v(σi, gi) is a new node in v(σi) labelled with g
MGi (gi)

i , and (v(σi, gi), v(σk, gk)) is a
new edge labelled with (id), with v(σk, gk) ∈ v(σk).

• if gi is marked in Gi as the origin of (σi, σk), v(σi, gi) is a new node in v(σi) labelled with

g
MGi (gi)

i . Let gk ∈ Gk marked as the destination of (σi, σk). Then, (v(σi, gi), v(σk, gk)) is a new
edge labelled with t, with v(σk, gk) ∈ v(σk).

3. Let v(σk) ∈ T ′
σ, where σk ∈ Tσ has only two parent vertices σi ∈ Tσ and σj ∈ Tσ. Assume (σi, σk)

and (σj , σk) are labelled with the same transition t. Then, we let v(σi) and v(σj) be two new sets of
nodes in T ′

σ, where, for gi ∈ Gi (respectively gj ∈ Gj),

• If gi is not marked in Gi as the origin of (σi, σk), gi yields gk ∈ Gk by the (possibly empty) lifting

of σk. Then, v(σi, gi) is a new node in v(σi) labelled with g
MGi (gi)

i , and (v(σi, gi), v(σk, gk)) is a
new edge labelled with (id), with v(σk, gk) ∈ v(σk).

• if gi is marked in Gi as the origin of (σi, σk), v(σi, gi) is a new node in v(σi) labelled with

g
MGi (gi)

i . Let gk ∈ Gk marked as the destination of (σi, σk). Then, (v(σi, gi), v(σk, gk)) is a new
edge labelled with t, with v(σk, gk) ∈ v(σk).

(respectively,

• If gj is not marked in Gj as the origin of (σj , σk), gj yields gk ∈ Gk by the (possibly empty) lifting

of σk. Then, v(σj , gj) is a new node in v(σj) labelled with g
MGj (gj)

j , and (v(σj , gj), v(σk, gk)) is
a new edge labelled with (id), with v(σk, gk) ∈ v(σk).

• if gj is marked in Gj as the origin of (σj , σk), v(σj , gj) is a new node in v(σj) labelled with

g
MGj (gj)

j . Let gk ∈ Gk marked as the destination of (σj , σk). Then, (v(σj , gj), v(σk, gk)) is a new
edge labelled with t, with v(σk, gk) ∈ v(σk).)

Note that, to a node σi ∈ Tσ, we associate several sets v(σi) ∈ T ′
σ. The sets v(σi) ∈ T ′

σ are a partition of
T ′

σ, denoted as Vσ. Note also that the graph T ′′
σ obtained from T ′

σ by merging all nodes of all sets v(σi)
is a tree, whose root is the node obtained by merging all nodes of v(σ).

The promenade Pσ:
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(2, 2)1

(0, 3)1

(0, 1)1(∞, 3)1 (0,∞)1

(∞,∞)1 (0,∞)1

a

b

c

d

b

c

cc

c c(id)

(id)

(2, 1)1

(2, 2)1

(0, 3)1 (0, 3)1

b b

(2, 2)1(2, 2)1

d

(2, 1)1

(∞,∞)1 (0,∞)1

Figure 3: The graph T ′
σ obtained from Tσ . The dotted boxes are the sets v(σi) of cardinality more than 2.

From now on, assume in first step that no generalized single configuration appears in T ′
σ with multiplicity

∞. The case where ∞ multiplicities occur will be treated in a second step.
Under this aussmption, the graph T ′

σ induces naturally a (non-necessarily positive) promenade Pσ of S as
in Figure 4 (where, without loss of generality, we extend the notion of promenade with (id) transitions),
together with a partition V ′

σ of its nodes, by inductively firing from top to bottom the transitions labeling
the edges of T ′

σ, starting from the sets v(σi) with no in-going edge, corresponding to single configurations
in D. The only ambiguous case is when firing a split transition on a single configuration in Pσ corresponding
to a single generalized configuration in T ′

σ with ∞ coordinates. In this case, by convention, the corre-
sponding finite coordinates zi of the single configuration in Pσ are split into z′i and z′′i with |z′i − z′′i | ≤ 1.
For a set v ∈ Vσ, denote by P (v) its image in Pσ by the construction above. Then, the image P (Vσ) of Vσ

by the inductive construction above is a partition of the vertices of Pσ. Note that, as for T ′
σ, the graph

obtained from Pσ by merging all nodes that belong to the same set P (v) ∈ P (Vσ) into a single node is a tree.

(2, 2)1

(0, 3)1

(0, 1)1(1, 3)1 (0, 6)1

(−1, 4)1 (0, 7)1

a

b

c

d

b

c

cc

c c(id)

(2, 1)1

(id)

(2, 2)1

(0, 3)1 (0, 3)1

b b

(2, 2)1(2, 2)1

d

(0, 7)1(1, 5)1

(2, 1)1

Figure 4: The promenade Pσ corresponding to the graph T ′
σ .

Tree property:
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Let P be a promenade of S, Let V be a partition of the vertices of P . We say that (P, V ) satisfies the
tree property if and only if the graph obtained from P by contracting all nodes that belong to a same set
v ∈ V into a single node is a tree. Now, from Pσ and P (Vσ), we will construct inductively a promenade that
satisfies the theorem, together with a partition of its node, that satisfies the tree property.

Repeating loops:

Let P be a promenade of S, V be a partition of the vertices of P such that (P, V ) satisfies the tree property.
Let vi above vj ∈ V . Denote by ci the configuration of S labeling vi (i.e, ci is the multiset of the labels of
the nodes in vi), and by cj the configuration of S labeling vj , and assume that cj can be obtained from ci

by only modifying the values at some coordinates of some single configurations.
Then, the k-repetition of the chain vi · · · vj in P , for k > 1 is the promenade P k

i,j obtained from P by:

1. isolating the subgraph Pi,j of P that is above vj , and not above vi. This is well defined since (P, V )
satisfies the tree property. Let P 1

i,j , · · ·P
k
i,j be k copies of Pi,j . Denote by vt

i the vertices of P t
i,j

corresponding to vi ∈ Pi,j , and, similarly by vt
j the vertices of P t

i,j corresponding to vj ∈ Pi,j , for
t = 1, · · · , k.

2. identifying v1
i with vi, vt

j with vt+1
i for t = 1, · · · , k − 1, and vk

j with vj .

3. updating the labeling of the vertices from the top to the bottom, accordingly to the firing of the
transitions.

Note that P k
i,j admits a partition V k

i,j of its vertices, which is the image of V by the construction above.

Note also that (P k
i,j , V

k
i,j) satisfies the tree property. For an illustration, see Figure 5.

(2, 2)1

(0, 3)1

(1, 3)1 (0, 6)1

(−1, 4)1

a

b

c

d

b

c

cc

c c(id)

(id)

(2, 2)1

(0, 3)1 (0, 3)1

b b

(2, 2)1(2, 2)1

d

(0, 7)1(0, 6)1

cc

cc

c(id)

(2, 1)1

(id)

(0, 3)1 (0, 3)1

b b

(2, 2)1(2, 2)1

(2, 1)1

(0, 7)1

(0, 3)1

(1, 3)1

(−1, 4)1

a

b

b

c

(2, 2)1

(0, 7)1(1, 5)1

(1, 5)1(0, 13)1

(0, 13)1(0, 9)1

Figure 5: A 2-repetition on the promenade Pσ .

Now, Consider the promenade Pσ, and let P (vi), P (vj) ∈ P (Vσ), such that

1. P (vi) is above P (vj) in Pσ, and
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2. vi ∈ T ′
σ is labelled with the generalized configuration gi, vj ∈ T ′

σ is labelled with the generalized
configuration gj , with gi ≪ gj .

Since no ∞ multiplicity occurs in T ′
σ, gj is necessarily obtained from gi only by augmenting values for some

coordinates. By construction, these augmentation coordinates are labelled with ∞ in gj , and not in gi (i.e.
a lifting has been performed). Let a be the augmentation gap of this lifting. Assume P (vi) is labelled with
the configuration ci, and P (vj) by cj . Then, remark the following:

• To any ∞ value for some coordinate in gi corresponds a finite value ti for the same coordinate in ci.
This ∞ value in gi is inherited by construction on the same coordinate in gj , and a finite value tj
corresponds to it in cj . It may happen that tj < ti. It may even happen that tj < 0. We denote ti
and tj as finite coordinates of infinite heredity. See Figure 5 for an example.

• To any ∞ augmentation coordinate in gj corresponds a finite value tj for the same coordinate in cj .
Since it is an augmentation coordinate of the lifting, this coordinate has a finite value ti in gi and in
ci, and ti < tj . See also Figure 5.

Now, in order to raise the augmentation coordinates of this lifting to an arbitrary level N ∈ N, it suffices
to perform the k-repetition of the chain P (vi) · · ·P (vj) in Pσ, for k = ⌈N

a
⌉. Of course, this k-repetition

may decrease the values of the finite coordinates of infinite heredity, even to negative levels; it is therefore
necessary to ensure that these finite values are high enough when performing this k-repetition, i.e have been
already leveled up by another k′-repetition above.
This yields the following inductive construction of a promenade of S, starting from Pσ:

The algorithm building the promenade:

Consider the promenade P returned by the following algorithm A:

input Pσ, N ∈ N

P ← Pσ

Nlocal ← N

For all v(σj) ∈ T
′

σ, from bottom to top, do
For all v(σi) ∈ T

′

σ above v(σj), from bottom to top, do
Let gi be the label of σi

Let gj be the label of σj

If gi ≪ gj , let ai,j be the augmentation gap of the lifting

P ← the k-repetition of the chain P (v(σi)) · · ·P (v(σj)) in P , with k = ⌈Nlocal

ai,j
⌉

Nlocal ← Nlocal + Di,j , where Di,j is the maximal decrease of finite coordinates
of infinite heredity induced by the k-repetition of the step above

end if
end for

end for
return P .

Then, clearly, P satisfies Theorem 3.6.

Introducing ∞ multiplicities

Augmentation multiplicities in T ′
σ can be leveled up to an arbitrary level in a promenade P exactly the same

way as augmentation coordinates, i.e. by performing as many k-repetition as needed. however, the situation
for ∞ multiplicities in T ′

σ, and their respective counterparts in the promenade Pσ is more complicated than
that of ∞ coordinates: as noted above, it may happen that coordinates of ∞ heredity in Pσ are decreased in
a k-repetition, and reach negative values. The same applies for multiplicities of ∞ heredity, yet it is for now
unclear how to deal with ”negative multiplicities”, for what that means. Another complication comes from
the fact that, to a single generalized configuration in T ′

σ of multiplicity greater than 1, several different
single configurations (with different values for coordinates of ∞ heredity) can correspond in the promenade.
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One way to circumvent these difficulties is to merge all different configurations of the promenade correspond-
ing to the same generalized configuration in T ′

σ into only one, by arbitrarily decreasing coordinates of ∞
heredity to their minimal values among these different configurations. The one single configuration obtained
can then be equipped with a ”pseudo” multiplicity that we allow to take negative values. Such ”pseudo”
promenades with negative multiplicities will be used as intermediate steps in the inductive algorithm A,
with the proviso that the resulting pseudo promenade has only positive multiplicities. Then, from this
pseudo promenade, we will derive a promenade satisfying the theorem by undoing the merging of different
configurations.
The definition of the ”pseudo”-promenade Qσ follows:

1. Let z ∈ v(σk) ∈ T ′
σ of indegree 0, labelled with the single configuration cz. Then, v(σk) = {z}. To z,

we associate Q(z) ∈ Qσ labelled with cz.

2. Let z ∈ v(σk) ∈ T ′
σ of indegree greater than 1. Then, to z in T ′

σ, we associate Q(z) in Qσ, labelled
with cz, defined below.

• If there exists x ∈ v(σi) ∈ T ′
σ, and an edge (x, z) in T ′

σ, labelled with t 6= (join), there
exists an edge (Q(x), Q(z)) labelled with t in Qσ. Assume Q(x) is labelled with cx and let
cx,z = (q, tx,z

1 , · · · , tx,z
m ) such that cx →t cx,z.

• If there exist x ∈ v(σi) ∈ T ′
σ, y ∈ v(σj) ∈ T ′

σ and edges (x, z) and (y, z) in T ′
σ, labelled

with (join), there exist edges (Q(x), Q(z)) and (Q(y), Q(z)) labelled with (join) in Qσ. Assume
Q(x) is labelled with cx, Q(y) is labelled with cy and let cx,y,z = (q, tx,y,z

1 , · · · , tx,y,z
m ) such that

{cx, cy} →t cx,y,z.

Then, cz = (q, tz1 · · · , t
z
m), where, for k = 1, · · · , m, tzk is the minimal value of the t

x,z
k and of the t

x,y,z
k

above.

Repeating loops with augmentation configurations:

Let Q be a pseudo-promenade of S, V be a partition of the vertices of Q such that (Q, V ) satisfies the tree
property. Let vi above vj ∈ V . Denote by ci the configuration of S labeling vi, and by cj the configuration
of S labeling vj , and let c′j ⊆ cj such that ci ≪ c′j and c′j can be obtained from ci by only modifying the
values at some coordinates of some single configurations, with v′j ⊆ vj the corresponding set of vertices.

Then, the k-repetition of the chain vi · · · vj in P , for k > 1 is the promenade P k
i,j obtained from P by:

1. isolating the subgraph Pi,j of P that is above vj , and not above vi. This is well defined since (P, V )
satisfies the tree property. Let P 1

i,j , · · ·P
k
i,j be k copies of Pi,j . Denote by vt

i the vertices of P t
i,j

corresponding to vi ∈ Pi,j , by vt
j the vertices of P t

i,j corresponding to vj ∈ Pi,j , and by v′
t
j the vertices

of P t
i,j corresponding to v′j ∈ Pi,j , for t = 1, · · · , k.

2. identifying v1
i with vi, v′

t
j with vt+1

i for t = 1, · · · , k − 1, and v′
k
j with v′j .

3. identifying also vj \ v′j with ∪k
t=1v

t
j \ v′j

t
.

4. updating the labeling of the vertices from the top to the bottom, accordingly to the firing of the
transitions.

Now, the remark we have made on finite values of coordinates for the promenade Pσ above extend to
multiplicities for the pseudo-promenade Qσ as follows:
Let Q(vi), Q(vj) ∈ Q(Vσ), such that

1. Q(vi) is above Q(vj) in Qσ, and

2. vi ∈ T ′
σ is labelled with the generalized configuration gi, vj ∈ T ′

σ is labelled with the generalized
configuration gj , with gi ≪ gj .

By construction, gj is obtained from gi only by augmenting values for some coordinates, and adding gen-
eralized single configurations. By construction, these augmentation coordinates are labelled with ∞ in gj ,
and not in gi (i.e. a lifting has been performed), and the augmentation multiplicities are valued to ∞ in
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gj and not in gi (if the corresponding generalized single configuration appears in gi, which may not be the
case). Let a be the augmentation gap of this lifting. Assume Q(vi) is labelled with the configuration ci, and
Q(vj) by cj .

• To any ∞ value for some coordinate in gi corresponds a finite value ti for the same coordinate in ci.
This ∞ value in gi is inherited by construction on the same coordinate in gj , and a finite value tj
corresponds to it in cj . It may happen that tj < ti. It may even happen that tj < 0. We denote ti
and tj as finite coordinates of infinite heredity.

• To any ∞ value for some multiplicity in gi corresponds a finite value ki for the same multiplicity in ci.
This ∞ multiplicity in gi is inherited by construction in gj , and a finite multiplicity kj corresponds to
it in cj . It may happen that kj < ki. It may even happen that kj < 0. We denote ki and kj as finite
multiplicities of infinite heredity.

• To any ∞ augmentation coordinate in gj corresponds a finite value tj for the same coordinate in cj .
Since it is an augmentation coordinate of the lifting, this coordinate has a finite value ti in gi and in
ci, and ti < tj .

• To any ∞ augmentation multiplicity in gj corresponds a finite value kj in cj . If, in the derivation of
gi ≪ gj , this augmentation multiplicity has been introduced by adding new occurrences of a generalized
configuration derived from gi only by augmenting coordinates, to this multiplicity corresponds a finite
multiplicity ki in ci, and ki < kj . In the other case (the augmentation multiplicity has been introduced
by adding a new single generalized configuration in the derivation of gi ≪ gj , no finite multiplicity
corresponds to it in ci.

Now, in order to raise the augmentation coordinates and augmentation multiplicities of this lifting to an
arbitrary level N ∈ N, it suffices to perform the k-repetition of the chain Q(vi) · · ·Q(vj) in Qσ, for k = ⌈N

a
⌉.

Of course, this k-repetition may decrease the values of the finite coordinates and multiplicities of infinite
heredity, even to negative levels; it is therefore necessary to ensure that these finite values are high enough
when performing this k-repetition, i.e have been already leveled up by another k′-repetition above. This is
ensured by the same algorithm A as above, by taking as input Qσ and N .
Now, it is clear that the output of Algorithm A on Qσ and N is a pseudo-promenade QN

σ with only positive
coordinates and positive multiplicities. From QN

σ , we can inductively build a positive promenade PN
σ , by

starting from the top-most configurations of QN
σ , and firing from top to bottom the transitions labeling the

edges of QN
σ . Then, clearly, the promenade PN

σ obtained satisfies Theorem 3.6.
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