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Exponential rarefaction

of real curves with many components

Damien Gayet, Jean-Yves Welschinger

May 18, 2010

Abstract

Given a positive real Hermitian holomorphic line bundle L over a smooth real
projective manifold X , the space of real holomorphic sections of the bundle Ld inher-
its for every d ∈ N∗ a L2 scalar product which induces a Gaussian measure. When
X is a curve or a surface, we estimate the volume of the cone of real sections whose
vanishing locus contains many real components. In particular, the volume of the cone
of maximal real sections decreases exponentially as d grows to infinity.

Mathematics subject classification 2010: 14P25, 32U40, 60F10

Introduction

Let (X, cX) be a smooth real projective manifold of dimension n and (L, cL)
π→ (X, cX)

be a real ample holomorphic line bundle. In particular, cX and cL are antiholomorphic
involutions on X and L respectively, such that cX ◦ π = π ◦ cL. Let h be a real
Hermitian metric on (L, cL) with positive curvature ω. It induces a Kähler structure
on (X, cX). For every nonnegative integer d, this metric induces a Hermitian metric
hd on Ld and then a L2-Hermitian product on the complex vector space H0(X,Ld)
of holomorphic sections of Ld. This product is defined by (σ, τ) ∈ H0(X,Ld) ×
H0(X,Ld) 7→ 〈σ, τ〉 =

∫
X
hd(σ, τ)dx ∈ C, where dx = ωn/

∫
X
ωn is the normalized

volume induced by the Kähler form. Let RH0(X,Ld) be the space of real sections
{σ ∈ H0(X,Ld) | cL ◦ σ = σ ◦ cX} and ∆k ⊂ H0(X,Ld) (resp. R∆k ⊂ RH0(X,Ld))
be the discriminant locus (resp. its real part), that is the set of sections which do
not vanish transversally. For every σ ∈ H0(X,Ld) \ {0}, denote by Cσ = σ−1(0)
the vanishing locus of σ and when σ is real, by RCσ its real part. The divisor Cσ is
smooth whenever σ ∈ RH0(X,Ld)\R∆d. In this case, we denote by b0(σ) = b0(RCσ)
the number of connected components of RCσ.

0.1 Real projective surfaces

When X is two-dimensional, we know from Harnack-Klein inequality [9], [11] that
b0(RCσ) ≤ g(Cσ) + 1, where equality holds for the so-called maximal curves. Here,
the genus g(Cσ) of these smooth curves Cσ gets computed by the adjunction formula
and equals g(Cσ) =

1
2
(d2L2−dc1(X).L+2), where c1(X) denotes the first Chern class
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of the surface X . For every d ∈ N∗ and a ∈ Q∗
+, denote by

Ma
d = {σ ∈ RH0(X,Ld) \ R∆d, | b0(RCσ) ≥ g(Cσ) + 1− ad};

it is an open cone in RH0(X,Ld). The main purpose of this article is to prove the
following

Theorem 1 Let (X, cX) be a smooth real projective surface and (L, cL) be a real
Hermitian holomorphic line bundle on X with positive curvature. Then for every
sequence d ∈ N∗ 7→ a(d) ≥ 1 of rationals, there exist constants C, D > 0, such that

∀d ∈ N∗, µ(Ma(d)
d ) ≤ Cd6e−D

d
a(d) ,

where µ(Ma(d)
d ) denotes the Gaussian measure of Ma(d)

d .

The Gaussian measure µ on the Euclidian space (RH0(X,Ld), 〈 , 〉) is defined by the
formula

∀A ⊂ RH0(X,Ld), µ(A) =
1

√
π
Nd

∫

A

e−|x|2dx,

where dx denotes the Lebesgue measure associated to 〈 , 〉. This Gaussian measure
is a probability measure on RH0(X,Ld) invariant under its isometry group.

Remark 1 Likewise, the scalar product 〈 , 〉 induces a Fubini-Study form on the
linear system P (RH0(X,Ld)). The volume of the projection P (Ma

d) for the associated
volume form just coincides with the measure µ(Ma

k) computed in Theorem 1.

In particular, when the sequence a(d) is bounded, Theorem 1 implies that the

measure of the set Ma(d)
d decreases exponentially with the degree d. This exponential

rarefaction holds in particular for the set of maximal curves.

0.2 Real curves

When X is one-dimensional, we get the following result:

Theorem 2 Let X be a closed smooth real curve and L be a real Hermitian holo-
morphic line bundle on X with positive curvature. Then for every positive sequence
(ǫ(d))d∈N of rationals numbers, there exist constants C, D > 0 such that

∀d ∈ N, µ{σ ∈ RH0(X,Ld) \ R∆d, | #(σ−1(0) ∩ RX) ≥
√
dǫ(d)} ≤ Cd3/2e−Dǫ

2(d),

where µ denotes the Gaussian measure of the space RH0(X,Ld).

0.3 Roots of polynomials

When (X, cX) is the projective space of dimension n ≥ 1, and (L, h, cL) is the de-
gree one holomorphic line bundle equipped with its standard Fubini-Study metric,
the vector space RH0(X,Ld) gets isomorphic to the space Rd[X1, · · · , Xn] of poly-
nomials with n variables, real coefficients and degree at most d. The scalar prod-
uct induced on Rd[X1, · · · , Xn] by this isomorphism is the one turning the basis(√(

d+n
j

)
xj11 · · ·xjnn

)
0≤j1+···+jn≤d

into an orthonormal one, where
(
d+n
j

)
= (d+n)!

n!j1!···jn!(d−j1−···−jn) .

Thus, the induced measure µ on Rd[X1, · · · , Xn] is the Gaussian measure associated
to this basis. As a special case of our Theorems 1 and 2, we get the following
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Corollary 1 1. For every positive sequence (ǫ(d))d∈N∗ of rational numbers, there
exist positive constants C, D such that the measure of the space of polynomials
P ∈ Rd[X ] which have at least ǫ(d)

√
d real roots is bounded by Cd3/2 exp(−Dǫ2(d)).

2. For every sequence d ∈ N∗ 7→ a(d) ≥ 1 of rationals, there exist positive constants
C,D such that the measure of the space of polynomials P ∈ Rd[X, Y ] whose
vanishing locus in R2 has at least 1

2
d2 − da(d) connected components is bounded

from above by Cd6 exp(−D d
a(d)

).

0.4 Strategy of the proof of Theorems 1 and 2

Every curve Cσ ⊂ X , σ ∈ RH0(X,Ld)\{0}, defines a current of integration which we
renormalize by d, for its mass not to depend on d ∈ N∗. In order to prove Theorems
1 and 2, we first obtain large deviation estimates for the random variable defined
by this current. When d grows to infinity, the expectation of this variable converges
outside of RX to the curvature form ω of L. These results thus go along the same
lines as the one of Shiffman and Zelditch [14]. They make use in particular of the
asymptotic isometry theorem of Tian [18] (see also [3] and [19]), as well as smoothness
results [10] and behaviour close to the diagonal for the Bergman kernel [15],[1]. In
order to deduce from these results informations on the random variable b0, we use the
theory of laminar currents introduced by Bedford, Lyubich and Smillie [2]. Indeed,
we show as a corollary of a theorem of de Thélin [4] that every current in the closure
of the ones arising from Ma

d (in particular every limit current of a sequence of real
maximal curves) is weakly laminar outside of the real locus RX , see Theorem 3. As
a consequence, these currents remain in a compact set away from ω. At this point,
our large deviation estimates provide the exponential decay.

0.5 Description of the paper

In the first paragraph, we bound the Markov moments needed for our large deviation
estimates. In the second paragraph, we recall some elements of the theory of laminar
currents in order to establish Theorem 3, that is laminarity outside of the real locus
of currents in the closure of the union of the sets Ma

d. We then get our estimates
and their corollaries. We prove Theorems 1 and 2 in the third paragraph, dealing
separately with the cases of bounded and unbounded sequences a. The last paragraph
is devoted to some final discussion on the existence of real maximal curves on general
real projective surfaces as well as on the expectation of the current of integration on
real divisors.

Acknowledgements. We are grateful to Cédric Bernardin for fruitful discussions
on Markov moments and large deviations. This work was supported by the French
Agence nationale de la recherche, ANR-08-BLAN-0291-02.

1 Markov-like functions on real linear systems of divisors

1.1 Case of projective spaces

LetOCP k(1) be the degree one line bundle over CP k and ||.|| be its standard Hermitian
metric with curvature the Fubini-Study Kähler form ωFS. For every integer m ≥ 1,
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set

Mm
CP k : CP k → R

z 7→
∫

RH0(CP k,O
CPk (1))

∣∣log ||σ(z)||2
∣∣m dµ(σ),

where dµ denotes the Gaussian measure of the Euclidian space RH0(CP k,OCP k(1)).

Proposition 1 For every m ≥ 1, the function Mm
CP k satisfies

∀z ∈ CP k \ RP k, Mm
CP k(z) ≤

4m!(k + 1)

1− ||τ(z)|| ,

where τ denotes the section of OCP k(2) defined by τ(z0, · · · , zk) = z20 + · · ·+ z2k.

Remark 2 The holomorphic section τ in Proposition 1 is invariant under the action
of the group POk+1(R) of real isometries of CP k. A slice of CP k for this action is
given by the interval I = {zr = [1 : ir : 0 : · · · : 0], 0 ≤ r ≤ 1}, where the end r = 0
(resp. r = 1) corresponds to the orbit RP k (resp. τ−1(0)) of this action.

Proof of Proposition 1. Both members of the inequality are invariants under
the action of POk+1(R), so that it is enough to prove it for z in the fundamental
domain I. Let σ0, · · · , σk be the orthonormal basis of RH0(CP k,OCP k(1)) given by
σi([z0 : · · · : zk]) =

√
k + 1zi. This basis induces the isometry

a = (a0, · · · , ak) ∈ Rk+1 7→ σa = a0σ0 + · · ·+ akσk ∈ RH0(CP k,OCP k(1)).

By definition, for every a ∈ Rk+1 and z ∈ CP k,

||σa(z)||2 = (k + 1)
|a0z0 + · · ·+ akzk|2

|z|2 .

We deduce that for every 0 < r ≤ 1 and m ≥ 1,

Mm
CP k(zr) =

∫

Rk+1

∣∣log ||σa(zr)||2
∣∣m dµ(a)

=

∫

R2

∣∣∣∣log
(
(k + 1)

|a0 + ira1|2
1 + r2

)∣∣∣∣
m
e−|a|2

π
da0da1

=

∫ ∞

0

∫ 2π

0

∣∣∣∣log((k + 1)ρ2) + log
| cos θ + ir sin θ|2

1 + r2

∣∣∣∣
m
e−ρ

2

π
ρdρdθ

≤ 2

∫ ∞

0

∣∣∣∣| log((k + 1)ρ2)|+ log(
1 + r2

r2
)

∣∣∣∣
m

e−ρ
2

ρdρ,

since for every 0 ≤ r ≤ 1 and every θ ∈ [0, 2π], r2 ≤ cos2 θ + r2 sin2 θ = | cos θ +
ir sin θ|2 ≤ 1. Hence,

Mm
CP k(zr) ≤ 2

∫ 1

0

(− log(
ρ

α
)2)me−ρ

2

ρdρ+ 2

∫ ∞

1

(log(αρ)2)me−ρ
2

ρdρ,
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where

α2 = (k + 1)
(1 + r2)

r2
= 2

(k + 1)

1− ||τ(zr)||
.

We now compute these two integrals.

2

∫ 1

0

(− log(
ρ

α
)2)me−ρ

2

ρdρ = 2α2

∫ 1/α

0

(− log ρ2)me−α
2ρ2ρdρ

≤ 2α2

∫ 1

0

(− log ρ2)mρdρ

= α2

∫ ∞

0

tme−tdt with t = − log ρ2

= 2
(k + 1)m!

1− ||τ(zr)||
.

As for the second integral, we deduce from the estimate ρe−ρ
2 ≤ e−1/ρ2/ρ3 valid for

every ρ ≥ 1, that

2

∫ ∞

1

(log(αρ)2)me−ρ
2

ρdρ ≤ 2

∫ ∞

1

(log(αρ)2)m
e−1/ρ2

ρ3
dρ.

With t = 1/ρ, the right hand side becomes 2

∫ 1

0

(− log(
t

α
)2)me−t

2

tdt ≤ 2
(k + 1)m!

1− ||τ(z)|| .
2

1.2 Asymptotic results in the general case

Let X be a closed real Kähler manifold of dimension n and L be a real Hermitian
line bundle over X with positive curvature ω. We denote by dL the smallest integer
such that Ld is very ample for every d ≥ dL and by Φd : X → P (H0(X,Ld)∗) the as-
sociated embedding, where x ∈ X is mapped to the set of linear forms that vanish on
the hyperplane {σ ∈ H0(X,Ld) | σ(x) = 0}. The L2-Hermitian product of H0(X,Ld)
induces a Fubini-Study metric on the complex projective space P (H0(X,Ld)∗) to-
gether with a Hermitian metric ||.|| on the bundle OP (H0(X,Ld)∗)(1). We denote by hΦd

the pullback of ||.|| on Ld under the canonical isomorphism Ld → Φ∗
dOP (H0(X,Ld)∗)(1).

Recall that the latter is induced by the isomorphism

(x, α) ∈ Ld 7→ (Φd(x), αx) ∈ OP (H0(X,Ld)∗)(1),

where αx : σ ∈ H0(X,Ld) 7→ 〈σ, α〉x ∈ C. In particular, the curvature form of hΦd

is Φ∗
dωFS, where ωFS denotes the Fubini-Study form of P (H0(X,Ld)∗). The quotient

hd/hΦd
of these metrics of Ld is given by the function x ∈ X 7→∑Nd

i=1 h
d(σi(x), σi(x)),

where (σ1, · · · , σNd
) stands for any orthonormal basis of H0(X,Ld). Let ||.||Φd

be the
norm induced by hΦd

. For every m ∈ N∗, we set

Mm
(X,Ld) : X → R

x 7→
∫

RH0(X,Ld)

∣∣log ||σ(z)||2Φd

∣∣m dµ(σ),

so that Mm
(X,Ld) =Mm

P (H0(X,Ld)∗) ◦ Φd.
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Proposition 2 Let X be a closed real Kähler manifold of dimension n and L be a
positive real Hermitian line bundle over X. For every sequence (Kd)d∈N∗ of compact
subsets of X \ RX such that the sequence (d dist(Kd,RX)2)d∈N∗ grows to infinity,
the sequence || ||τ || ◦ Φd||C0(Kd)

converges to zero as d grows to infinity, where τ ∈
RH0(OP (H0(X,Ld)∗)(2)) is the section defined in Proposition 1. If K is a fixed compact,
the same holds for any norm Cq(K), q ∈ N.

The L2-Hermitian product on H0(X,Ld) induces a scalar product on RH0(X,Ld) and
its dual RH0(X,Ld)∗. Let 〈 , 〉C be the extension of this scalar product to a complex
bilinear product on H0(X,Ld)∗. The section τ of O(2)P (H0(X,Ld))∗ that appears in

Propositions 1 and 2 is the one induced by σ∗ ∈ H0(X,Ld)∗ 7→ 〈σ∗, σ∗〉C ∈ C.

Proof of Proposition 2. Let D∗ ∈ L∗ be the open unit disc bundle for
the metric h and dxdv the product measure on D∗, where dx = ωn/

∫
X
ωn is the

measure on the base X of D∗ and dv is the Lebesgue measure on the fibres. Let
L2(D∗,C) be the space of complex functions of class L2 on D∗ for the measure dxdv
and H2 ⊂ L2(D∗,C) be the closed subspace of L2 holomorphic functions on the
interior of D∗. Every function f ∈ H2 has a unique expansion

f : (x, v) ∈ D∗ 7→
∞∑

d=0

ad(x)v
d ∈ C,

where for every d ≥ 0, ad ∈ H0(X,Ld). The series

∞∑

d=0

ad(x)v
d converges uniformly

on every compact subset of D∗ as well as in L2-norm. Let B be the Bergman kernel
of D∗, defined by the relation:

∀(y, w) ∈ D∗, ∀f ∈ H2, f(y, w) =

∫

D∗

f(x, v)B((x, v), (y, w))dxdv,

where this function B : D∗ × D∗ → C is holomorphic in the first variable and
antiholomorphic in the second one. Kerzman [10] proved that the Bergman kernel
can be extended smoothly up to the boundary outside of the diagonal of D∗ × D∗.
Now, denote by D∗

X\RX = {(x, v) ∈ D∗ | x ∈ X \ RX}. The function

b : (x, v) ∈ D∗
X\RX 7→ B((x, v), cL∗(x, v)) ∈ C

is holomorphic on D∗
X\RX and can be extended smoothly on D∗

X\RX . For every d ≥ 0

let (σi,d)1≤i≤Nd
be an orthonormal basis of RH0(X,Ld) and

ei,d =

√
d+ 1

π
σ̂i,d ∈ H2,
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where σ̂i,d : (x, v) ∈ D∗ 7→ σi,d(x)v
d ∈ C. The family (ei,d)i,d forms a Hilbertian basis

of H2. Then,

∀(x, v) ∈ D∗
X\RX , b(x, v) = B((x, v), cL∗(x, v))

=
∞∑

d=0

Nd∑

i=1

ei,d(x, v)ei,d(cL∗(x, v))

=

∞∑

d=0

d+ 1

π

Nd∑

i=1

σi,d(x)v
dσi,d(c(x))cL∗(v)d

=

∞∑

d=0

d+ 1

π

Nd∑

i=1

σ2
i,d(x)v

2d

since σi,d is real, that is satisfies σi,d◦c = cLd ◦σi,d. Note that τ ◦Φd =
∑Nd

i=1 σ
2
i,d(x) and

from Tian’s asymptotic isometry theorem [18] (see also [3] and [19] ) ||.||Φd
≤ C

dn
||.||.

For a fixed compact K, the result thus just follows from Cauchy formula applied to
b. In general, we may substitute L with Ld, K with Kd and deduce the result from
Proposition 2.1 of [15] (see also [1]) since the sequence (d supx∈Kd

dist(x, cX(x))
2)d∈N∗

grows to infinity as d grows to infinity. 2

Proposition 2 and Proposition 1 imply the following

Corollary 2 Let X be a real Kähler manifold and L be a real positive Hermitian line
bundle over X. For every sequence (Kd)d∈N of compact subsets of X \ RX such that
the sequence (d dist(Kd,RX)2)d∈N∗ grows to infinity, there exists a positive constant
cK such that as soon as Ld is very ample,

∀m ∈ N∗, sup
Kd

Mm
(X,Ld) ≤ cKm!Nd,

where Nd = dimH0(X,Ld).

Remark 3 Actually, in Corollary 2, limd→∞ 1/Nd supKd
Mm

(X,Ld)
≤ 4m!. Also, Propo-

sition 2 and even the exponential decay of the quantity sup
K

||τ ||◦Φd are easy to establish

in some cases, including the following ones.

Projective spaces. When X = CP n, Φd : CP n → CPNd−1 is equivariant with
respect to the groups of real isometries POn+1(R) and PONd

(R). Since τ is invariant
under these actions, τ ◦ Φd has to be a multiple of the section τd. Now ||τ ||RPn ≡ 1,
so that τ ◦ Φd = τd and sup

K
||τ ◦ Φd|| = sup

K
||τ ||d. This was observed by Macdonald

[12] in the case X = Cn.

Ellipsoid quadrics. Assume now that X = {[x0 : · · · : xn+1] ∈ CP n+1 | x20 =
x21 + · · · + x2n+1} is the ellipsoid quadric and L the restriction of OCPn+1(1) to X .
Then, τ ◦ Φd is a multiple of the hyperplane section x2d0 , since it is invariant under
the group of isometries On+1(R) acting on the coordinates (x1, · · · , xn+1). At a real
point x = (x0, · · · , xn+1), ||τ || ◦ Φd = 1 and

||x20|| =
|x20|

|x0|2 + · · ·+ |xn+1|2
=

1

2

(
x20

x20 + · · ·+ x2n+1

+
x21 + · · ·+ x2n+1

x20 + · · ·+ x2n+1

)
=

1

2
,
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hence τ ◦ Φd = 2dx2d0 and sup
K

||σ|| ◦ Φd = sup
K

(2||x20||)d.
The hyperboloid surface. Finally, if X = (CP 1

1 × CP 1
2 ; Conj × Conj) is the hy-

perboloid quadric surface and L = O(a)CP 1
1
⊗ O(b)CP 1

2
with a, b > 0, then τ ◦ Φd is

PO2(R) × PO2(R)-invariant, hence a multiple of (τa1 ⊗ τ b2)
d where τi = τCP 1

i
∈ O(2)

for i = 1, 2. Computed at a real point, this multiple is one, so that τ ◦Φd = (τa1 ⊗τ b2)d
and sup

K
||σ|| ◦ Φd = (sup

K
||τa1 ⊗ τ b2 ||)d.

2 Weakly laminar currents and large deviation estimates

2.1 Weakly laminar currents

Let (X,ω) be a smooth Kähler manifold and T (1,1)

L2 be its space of closed positive
currents of type (1, 1) and mass L2 =

∫
X
ω ∧ ω. Recall that by definition such a

current is a continuous linear form on the space of smooth two-forms that vanishes on
forms of type (2, 0) and (0, 2) as well as on the exact forms. Moreover, the mass 〈T, ω〉
equals L2 and T is positive once evaluated on a positive (1, 1)-form. In particular, T is

of measure type, that is continuous for the sup norm on two-forms. The space T (1,1)

L2 ,
equipped with the weak topology, is a compact and convex space. For every d ∈ N∗

and every σ ∈ H0(X,Ld) \ {0}, denote by Zσ ∈ T (1,1)
L2 the current of integration

Zσ : φ ∈ Ω2(X) 7→ 1

d

∫

Cσ

φ ∈ R,

where Cσ = σ−1(0). The following definition of weakly laminar currents was intro-
duced in [2].

Definition 1 A current T ∈ T (1,1)

L2 is called weakly laminar in the open set U ⊂ X
iff there exist a family of embedded discs (Da)a∈A in U together with a measure da on
A, such that for every a and a′ in A, Da ∩Da′ is open in Da and Da′, and such that
for every smooth two-form φ with support in U ,

〈T, φ〉 =
∫

a∈A

(∫

Da

φ

)
da.

For every open subset U of X , denote by Lam(U) ⊂ T (1,1)

L2 the subspace of closed
positive currents of mass L2 which are weakly laminar on U . For all a ∈ Q∗

+, denote

by Za the closure of the union ∪d∈N∗Za
d in T (1,1)

L2 , where Za
d denotes the image of the

set
Ma

d = {σ ∈ RH0(X,Ld) \ R∆d | b0(RCσ) ≥ g(Cσ) + 1− ad}
under the map σ 7→ Zσ ∈ T (1,1)

L2 .

Theorem 3 Let X be a closed real projective surface and L be a positive real Her-
mitian line bundle on X. Then, for every a ∈ Q∗

+, the inclusion Za ⊂ Lam(X \RX)
holds.

In particular, every limit of a sequence of real maximal curves is weakly laminar
outside of the real locus of the manifold.
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Proof. This result is actually a direct consequence of Theorem 1 of [4]. Indeed,
let T ∈ Za and (Zσd)d∈N∗ be a sequence of currents of integration which converges
to T (we can indeed assume that T /∈ ⋃

d∈N∗ Za
d ). For every d ∈ N∗, the genus

of the complement Cσd \ RCσd satisfies g(Cσd \ RCσd) ≤ ad, while its area equals
d
∫
X
ω2. Let B be a ball with compact closure in X \ RX and A(Cσd ∩ B) be the

area of the restriction of Cσd to B . Without loss of generality, we can assume that
1
d
A(Cσd ∩ B) converges to mB ∈ [0,

∫
X
ω2]. If mB = 0, the restriction of T to B

vanishes. Otherwise, g(Cσd ∩ B) = O(A(Cσd ∩ B)), where the area A(Cσd ∩ B) can
be computed for the flat metric on the ball. From Theorem 1 of [4] we know that
1/mBT|B is weakly laminar. Hence the result. 2

Lemma 1 Let ω be a Kähler form on a complex surface X. Then ω is nowhere
weakly laminar.

Proof. Assume that there exists an open subset U of X and a measured family
(Da)a∈A of embedded discs in U given by Definition 1 such that for every two-form φ
with compact support in U ,

∫

U

ω ∧ φ =

∫

A

(∫

Da

φ

)
da.

For every two-form ψ defined and continuous on
⋃
a∈ADa, we denote by Tψ the current

φ ∈ Ω2
c(U) 7→ Tψ(φ) =

∫

a∈A

(∫

Da

(
ψ ∧ φ
ω2

)ω

)
da.

Then Tω = ω, since for every φ ∈ Ω2
c(U),

Tω(φ) =

∫

A

(∫

Da

(
ω ∧ φ
ω2

)ω

)
da =

∫

U

(
ω ∧ φ
ω2

)ω2 =

∫

U

ω ∧ φ.

Let ψ be the (1,1)-form defined along ∪a∈ADa in such a way that for every a ∈ A
and x ∈ Da, TxDa lies in the kernel of ψx and ψx ∧ ω = ω2. Then Tψ = ω, since

∀φ ∈ Ω2
c(U), Tψ(φ) =

∫

A

(∫

Da

(
ψ ∧ φ
ω2

)ω

)
da =

∫

A

(∫

Da

φ

)
da.

But ψ is integrable for both currents Tψ and Tω and Tψ(ψ) = 0 while Tω(ψ) = ω2.
This contradicts the equality Tψ = Tω. 2

2.2 Large deviation estimates

Proposition 3 Let X be a real projective manifold of dimension n and L an ample
real Hermitian line bundle over X. For every smooth (2n− 2)−form φ with compact
support in X \ RX, every d ≥ dL and every ǫ > 0, the measure of the set

{
σ ∈ RH0(X,Ld) \ R∆d | 1

d

∣∣∣∣
∫

X

log ||σ(x)||2Φd
∂∂̄φ

∣∣∣∣ ≥ ǫ

}

9



is bounded from above by the quantity

2cKφ
Nd

V ol(Kφ)
exp

( −ǫd
2||∂∂̄φ||L∞Vol (Kφ)

)
,

where Kφ can denote both the support of φ or the support of ∂∂̄φ, while cKφ
and dL

are given in §1.2.

Recall that X is equipped with the volume form dx = ωn/
∫
X
ωn. The norm ||∂∂̄φ||L∞

and the volume V ol(Kφ) are computed with respect to this volume form. Recall also
that Nd denotes the dimension of RH0(X,Ld) and finally that from the Poincaré-
Lelong formula, the current 1/(2iπd)∂∂̄ log ||σ(x)||2Φd

coincides with 1
d
Φ∗
dωFS − Zσ.

Proof. We use Markov’s trick. For every λ > 0,
∣∣∣∣
∫

X

log ||σ||2Φd
∂∂̄φ

∣∣∣∣ ≥ ǫd ⇐⇒ exp

(
λ

∣∣∣∣
∫

X

log ||σ||2Φd
∂∂̄φ

∣∣∣∣
)

≥ eλǫd,

where

exp

(
λ

∣∣∣∣
∫

X

log ||σ||2Φd
∂∂̄φ

∣∣∣∣
)

=
∞∑

n=0

λm

m!

∣∣∣∣
∫

X

log ||σ||2Φd
∂∂̄φ

∣∣∣∣
m

.

From Hölder’s inequality we get
∣∣∣∣
∫

X

log ||σ||2Φd
∂∂̄φ

∣∣∣∣
m

≤
∫

X

∣∣log ||σ||2Φd

∣∣m dx
(∫

X

∣∣∂∂̄φ
∣∣ m
m−1 dx

)m−1

≤ 1

V ol(Kφ)

(
||∂∂̄φ||L∞V ol(Kφ)

)m
∫

X

∣∣log ||σ||2Φd

∣∣m dx.

As a consequence, for every d ≥ dL, the measure µdǫ (φ) of our set satisfies

eλǫdµdǫ (φ) ≤
∫

RH0(X,Ld)

exp

(
λ

∣∣∣∣
∫

X

log ||σ||2Φd
∂∂̄φ

∣∣∣∣ dµ(σ)
)

≤ 1

V ol(Kφ)

∞∑

n=0

λm

m!
||∂∂̄φ||mL∞V ol(Kφ)

m

∫

X

Mm
(X,Ld)dx,

where Mm
(X,Ld) is defined in §1.2. Thanks to Corollary 2, the latter right hand side is

bounded from above by
cKφ

Nd

V ol(Kφ)

∑∞
n=0(λ||∂∂̄φ||L∞V ol(Kφ))

m, that is

cKφ
Nd

V ol(Kφ)(1− λ||∂∂̄φ||L∞V ol(Kφ))
.

The result follows by choosing λ = (2||∂∂̄φ||L∞V ol(Kφ))
−1. 2

Corollary 3 Under the hypotheses of Proposition 3, let
◦
K be a relatively compact

open subset of X \ RX. Then, there exist constants CK, DK , λK > 0 and, for every
d ≥ dL, a subset Ad

K ⊂ RH0(X,Ld) of measure bounded from above by CKe
−DKd

such that for every σ ∈ RH0(X,Ld) \ Ad
K, the volume A(Cσ ∩K) of Cσ ∩K satisfies

A(Cσ ∩K) ≥ λKd.

10



Proof. Let
◦
K1 be a relatively compact open subset of

◦
K and χ : X → [0, 1] be a

smooth cutoff function with support in K such that χ|K1 ≡ 1. Applied to φ = χωn−1

and ǫ = π
∫
K1
ωn, Proposition 3 provides us with constants CK and DK such that the

set

Ad
K = {0} ∪

{
σ ∈ RH0(X,Ld) \ {0} | 1

d

∣∣∣∣
∫

X

log ||σ||2Φd
∂∂̄(χωn−1)

∣∣∣∣ ≥ π

∫

K1

ωn
}

is of measure bounded from above by CKe
−DKd, since Nd grows polynomially with d.

From Poincaré-Lelong formula follows that for every σ ∈ RH0(X,Ld) \ Ad
K ,∣∣∣∣

1

d

∫

Cσ

χωn−1 −
∫

X

1

d
Φ∗
dωFS ∧ χωn−1

∣∣∣∣ ≤
1

2

∫

K1

ωn.

Now, from Tian’s asymptotic isometry theorem [18] (see also [3] and [19]), 1
d
Φ∗
dωFS

converges to ω as d grows to ∞, so that for d large enough,
∫
X

1
d
Φ∗
dωFS ∧ χωn−1 ≥∫

K1
ωn. As a consequence,

(n− 1)!

d
A(Cσ ∩K) ≥ 1

d

∫

Cσ

χωn−1 ≥
∫

X

1

d
Φ∗
dωFS ∧ χωn−1 − 1

2

∫

K1

ωn.

The left hand side being bounded from below by a constant (n − 1)!λK , the result
follows. 2

For every n ∈ N∗ and ρ > 0, denote by B2n(ρ) ⊂ Cn the closed ball of radius ρ
and volume πnρ2n/n!. The standard Kähler form of Cn is denoted by ω0.

Definition 2 Let (X,ω) be a Kähler manifold of dimension n. By abuse, we define
a ball of radius ρ of X to be the image of a holomorphic embedding ψρ : B2n(ρ) →
X whose differential at the origin is isometric and which everywhere satisfies the
inequalities 1/2ω0 ≤ ψ∗

ρω ≤ 2ω0.

Corollary 4 Under the hypotheses of Proposition 3, let
◦
K be a relatively compact

open subset of X \ RX. Then, there exist constants DK , λ
1
K , λ

2
K > 0 such that for

every ball B of radius ρ > 0 included in K and every d ≥ dL, there exists a set
Ad
B ⊂ RH0(X,Ld) of measure

µ(Ad
B) ≤

2cKNd

∫
X
ωn

ρ2n
e−DKdρ

2

such that for every σ ∈ RH0(X,Ld) \ Ad
B, the volume of Cσ ∩ B satisfies λ1Kdρ

2n ≤
A(Cσ ∩B) ≤ λ2Kdρ

2n.

Recall that the constant cK is given by Corollary 2, while dL is defined in §1.2.
Proof. Let χ : Cn → [0, 1] be a smooth cutoff function with support in the

unit ball and such that χ−1(1) contains the ball of radius
√

2/π. For any ρ > 0, let
χρ : x ∈ Cn 7→ χ(x/ρ) be the associated cutoff function with support in the ball of
radius ρ. Let ψ : B → B2n(ρ) ⊂ Cn be a biholomorphism given by Definition 2, and
B1 = (χρ ◦ ψ)−1(1). Let φ = (χρ ◦ ψ)ωn−1, Kφ = supp(φ), and for every d ≥ dL,

Ad
B = {0} ∪

{
σ ∈ RH0(X,Ld) \ {0} | 1

d

∣∣∣∣
∫

X

log ||σ||2Φd
∂∂̄φ

∣∣∣∣ ≥ π

∫

B1

ωn
}
.
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From Proposition 3 follows that

µ(Ad
B) ≤

2cKφ
Nd

V ol(Kφ)
exp

(
−πd

∫
B1
ωn

2||∂∂̄φ||L∞V ol(Kφ)

)
,

where

(

∫

X

ωn)V ol(Kφ) =

∫

Kφ

ωn ≥ 1

2n

∫

χ−1
ρ (1)

ωn0 ≥ ρ2n.

The metric on B is bounded from above and below by the flat metric, see Definition
2. The quotient

∫
B1
ωn/V ol(Kφ) is thus bounded from below by a positive constant,

since
∫
χ−1
ρ (1)

ωn0 /
∫
supp(χρ)

ωn0 does not depend on ρ. Likewise, ||∂∂̄φ||L∞ is bounded

from above by a multiple of supB2n(ρ)

∣∣∂∂̄χρ ∧ ωn−1
0 /ωn0

∣∣. The latter being of the order

of 1/ρ2, we deduce the existence of a positive constant DK such that

µ(Ad
B) ≤ 2(

∫

X

ωn)
cKNd

ρ2n
exp(−DKρ

2d).

But for every σ ∈ RH0(X,Ld) \ Ad
B, we have

∣∣∣∣
1

d

∫

Cσ

(χρ ◦ ψ)ωn−1 −
∫

X

1

d
Φ∗
dωFS ∧ (χρ ◦ ψ)ωn−1

∣∣∣∣ ≤
1

2

∫

B1

ωn.

The term 1
d

∫
X
Φ∗
dωFS ∧ (χρ ◦ ψ)ωn−1 is greater than

∫

B1

ωn +

∫

B\B1

(χρ ◦ ψ)ωn−1 − ||(1
d
Φ∗
dωFS − ω) ∧ ωn−1||L∞V ol(B).

From Tian’s asymptotic isometry theorem [18], 1
d
Φ∗
dωFS converges to ω as d grows to

infinity. Together with Definition 2, this implies that for d large enough,

1

d

∫

X

Φ∗
dωFS ∧ (χρ ◦ ψ)ωn−1 ≥

∫

B1

ωn

and
(n− 1)!

dρ2n
A(Cσ ∩B) ≥ 1

dρ2n

∫

Cσ

(χρ ◦ ψ)ωn−1 ≥ 1

2ρ2n

∫

B1

ωn.

The right hand side being bounded from below by a positive constant, we deduce the
lower bound for A(Cσ ∩ B). Likewise, we deduce that (n − 1)!/(dρ2n)A(Cσ ∩ B) ≤
3/(2ρ2n)

∫
B
ωn. The right hand side being bounded from above by a positive constant,

we deduce the upper bound for A(Cσ ∩B) replacing B1 by B in the proof. 2

Lemma 2 For every compact subset K of a n-dimensional Kähler manifold, there
exist constants rK and nK > 0 such that for every ρ > 0 small enough, K can be
covered by rK/ρ

2n balls of radius ρ, in such a way that every point of K belongs to at
most nK balls.

Proof. The lattice Z2n acts by translations on Cn. The orbit of the ball B2n(
√
n)

under this action covers Cn in such a way that every point belongs to a finite number

12



of balls. The images of this covering under homothetic transformations provides for
every ρ > 0 a covering of Cn by balls of radius ρ such that every point belongs to a
number of balls bounded independently of ρ. Let (X,ω) be a Kähler manifold. For
every point x ∈ K, choose a holomorphic embedding φx : B

′ → X , where B′ is a ball
in Cn independent of x, φx(0) = x and φx is everywhere contracting. Let B ⊂ B′

be the ball of half radius. We extract a finite subcovering φ1(B), · · · , φk(B) from the
covering (φx(B))x∈K of K. For every j ∈ {1, · · · , k} and every p ∈ B, there exists an
affine expanding map Dj

p : C
n → Cn that fixes p and such that φj ◦Dj

p is an isometry
at p. Then, there exists ρ0 > 0 such that for every 0 < ρ ≤ ρ0 and 1 ≤ j ≤ k,
the restriction to B of the covering of Cn by balls of radius ρ satisfies the following:
for every ball Bp(ρ) of this covering centered at p ∈ B, we have Dj

p(Bp(ρ)) ⊂ B′,

and φj ◦Dj
p(Bp(ρ)) is a ball of radius ρ of (X,ω). Since Dj

p is expanding, D
j
p(Bp(ρ))

contains Bp(ρ), so that the union of these balls of radius ρ covers K. Moreover, the
norm of Dj

p is uniformly bounded on B. Thus, there exists a constant h > 1 such

that Dj
p(Bp(ρ)) ⊂ Bp(hρ) for every p and j. From this and the construction of our

coverings of Cn, we deduce the existence of a constant nK > 0 independent of p such
that for every point x ∈ K and every covering of K by balls of radius ρ obtained in
this way, x belongs to at most nK balls of the covering. Finally, the existence of rK
follows from the construction of the covering of Cn we used. 2

3 Proof of the theorems

3.1 Proof of Theorem 2

Lemma 3 Let X be a closed real one-dimensional Kähler manifold. There exist
nonnegative constants η0, E1, E2, E3, E4 and a family of smooth cutoff functions
χη : X → [0, 1] with support in X \ RX, 0 < η ≤ η0, such that for every 0 < η ≤ η0,

1. E1η ≤ V ol(supp(∂∂̄χη))

2. V ol(X \ χ−1
η (1)) < E2η

3. ||∂∂̄χη||L∞ ≤ E3/η
2

4. dist(supp(χη),RX) ≥ E4η.

Proof. A neighborhood V of the real locus RX is the union of a finite number of
annuli isomorphic to A = {z ∈ C | 1 − ǫ < |z| < 1 + ǫ}. For every η > 0, choose χη
such that χη(X \ V ) = 1 and the restriction of χη to A only depends on the modulus
of z ∈ A. That is, for every z ∈ A, χη(z) = ρη(|z| − 1), where ρη is a function
] − ǫ, ǫ[→ [0, 1]. Let ρ : R → [0, 1] be an even function such that ρ(x) = 1 if |x| ≥ 1
and ρ(x) = 0 if |x| ≤ 1/2. For every η > 0, we set ρη(x) = ρ(x/η). The family χη,
0 < η ≤ ǫ = η0 satisfies the required conditions. 2

Proof of Theorem 2. For every d ∈ N∗, denote by

Mǫ(d)
d = {σ ∈ RH0(X,Ld) \ R∆d | #(σ−1(0) ∩ RX) ≥

√
dǫ(d)}.

13



For every σ ∈ Mǫ(d)
d , denote by Zσ : φ ∈ C0(X) 7→ 1

d

∫
Cσ
φ ∈ R the associated discrete

measure, where Cσ = σ−1(0). Let (χη)0<η≤η0 be a family of real cutoff functions given

by Lemma 3. By definition, for every 0 < η ≤ η0 and every σ ∈ Mǫ(d)
d ,

〈Zσ, χη〉 =
1

d

∫

Cσ

χη ≤
∫

X

ω − ǫ(d)√
d
,

where ω denotes the curvature of L. Without loss of generality, we can assume that
when d is large enough, ǫ(d)/

√
d ≤ η0. We then set ηd = ǫ(d)/(2E2

√
d
∫
X
ω), where

E2 is given by Lemma 3. From Lemma 3, we deduce that for every σ ∈ Mǫ(d)
d ,

〈ω − Zσ, χηd〉 > ǫ(d)

2
√
d
and then from Poincaré-Lelong formula that

1

d
|
∫

X

log ||σ(x)||2Φd
∂∂̄χηd | ≥

πǫ(d)√
d

− 2π||1
d
Φ∗ωFS − ω||L∞.

We know from Tian’s asymptotic isometry theorem [18] that d||1
d
Φ∗ωFS − ω||L∞ is

bounded, so that for d large enough, the right hand side is greater than ǫ(d)/
√
d. For

every d large enough, denote by Kd the support of ∂∂̄χηd . Without loss of generality,
we can assume that ǫ(d) grows to infinity when d grows to infinity. By Lemma 3, so
does d dist(Kd,RX)2. Proposition 3 and Lemma 3 then provide the result. 2

3.2 Proof of Theorem 1 when a is a bounded function

Let a ∈ Q∗
+. We have to prove the existence of two positive constants C and D

such that µ(Ma
d) ≤ Ce−Dd. From Theorem 3 we know that the compact Za =⋃

d∈N∗ Za
d introduced in §2.1 is included in Lam(X \ RX), whereas from Lemma 1,

ω /∈ Lam(X \ RX). As a consequence, there exists a finite set (φj)j∈J of two-forms
with compact support in X \ RX such that ∀T ∈ Za, ∃j ∈ J , |〈ω − T, φj〉| > 1.
Moreover, Poincaré-Lelong formula writes

∀d ≥ dL, ∀σ ∈ RH0(X,Ld) \ {0}, 1

2iπd
∂∂̄ log ||σ||2Φd

=
1

d
φ∗
dωFS − Zσ,

where ωFS denotes the Fubini-Study form of P (H0(X,Ld))∗ defined in §1.1, and Zσ
the current of integration defined in §2.1. From Tian’s asymptotic isometry theorem
[18] (see also [3] and [19]), 1

d
Φ∗
dωFS converges to ω as d grows to ∞. Thus, there exists

d1 ≥ dL such that

∀d ≥ d1, ∀σ ∈ Ma
d, ∃j ∈ J ,

∣∣∣∣<
1

d
∂∂̄ log ||σ||2Φd

, φj >

∣∣∣∣ > 2π.

From this relation and Proposition 3 we deduce

µ(Ma
d) ≤

∑

j∈J
µ

{
σ ∈ RH0(X,Ld) \ {0} | 1

d

∣∣∣∣
∫

X

log ||σ||Φd
∂∂̄φj

∣∣∣∣ > 2π

}

≤ 2cKNd#J
inf V ol(supp(φj))

exp

(
− πd

maxj∈J ||∂∂̄φj||L∞V ol(K)

)
,

where K ⊂ X \ RX is a compact containing all supports of the φj’s, j ∈ J , and cK
is given by Corollary 2. Hence the result. �
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3.3 Proof of Theorem 1, general case

Lemma 4 Under the hypotheses of Theorem 1, let
◦
K be a relatively compact open

subset of X \ RX equipped with a covering by balls given by Lemma 2. Let nK be
given by Lemma 2 and λK > 0, Ad

K ⊂ RH0(X,Ld) be given by Corollary 3. Then

for every d ≥ dL and σ ∈ Ma(d)
d \ Ad

K, there is a ball B of the covering such that the
genus g(Cσ ∩B) of Cσ ∩B satisfies g(Cσ ∩B) ≤ nK

λK
a(d)A(Cσ ∩B), where A(Cσ ∩B)

denotes the area of Cσ ∩B.

Recall that the integer dL was defined in §1.2.
Proof. By definition, the genus g(Cσ ∩ B) is such that the Euler characteristic

χ(Cσ ∩B) of this curve be given by the formula

χ(Cσ ∩ B) = 2b0(Cσ ∩B)− 2g(Cσ ∩B)− r(Cσ ∩B)

where b0(Cσ ∩B) (resp. r(Cσ∩B)) denotes the number of the connected components

of Cσ ∩ B (resp. of ∂(Cσ ∩ B)). In particular, for every σ ∈ Ma(d)
d , g(Cσ ∩ B) ≤

g(Cσ\RCσ) ≤ a(d)d. Denote by (Bi)i∈I the covering of K. Since σ /∈ Ad
K , Corollary 3

implies that
∑

i∈I A(Cσ ∩Bi) ≥ A(Cσ ∩K) ≥ λKd. Now, from Lemma 2 we conclude
that ∑

i∈I
g(Cσ ∩ Bi) ≤ nKg(Cσ \ RCσ) ≤ nKa(d)d.

Hence the result. 2

Proof of Theorem 1. From §3.2, we can assume that the sequence a(d) grows

to infinity. For every d ∈ N∗, we set ρd = a(d)−1/2. Let
◦
K be a relatively compact

open subset of X \ RX . For every d large enough, we cover K by balls of radius ρd
as given by Lemma 2. This cover contains at most rK/ρ

4
d = rKa(d)

2 balls. From
Corollary 4, there is a subset Bd of RH0(X,Ld) satisfying

µ(Bd) ≤ 2

∫

X

ω2cKrKNda(d)
4 exp

(
−DK

d

a(d)

)
,

and such that for every σ ∈ RH0(X,Ld) \ Bd and every ball B of the cover,

λ1K
d

a(d)2
≤ A(Cσ ∩B) ≤ λ2K

d

a(d)2
.

Let Ad
K ⊂ RH0(X,Ld) be the set given by Corollary 3. By Lemma 4, for every

σ ∈ RH0(X,Ld) \ Ad
K, there is a ball Bσ of our cover such that

g(Cσ ∩Bσ) ≤
nK
λK

a(d)A(Cσ ∩ B).

Without loss of generality, we can assume that Bσ = B4(ρd) ⊂ C2 and that the area

of Cσ is computed with respect to the standard metric ω0 of C2. Denote by C̃σ the
image of Cσ ∩ B under the homothetic transformation with coefficient 1/ρd, so that

C̃σ ⊂ B4(1) and g(C̃σ) ≤ nK

λK
A(C̃σ).
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Let T (1,1)
π2 (B(1)) be the space of positive closed currents of bidegree (1, 1) on the

unit ball B4(1) with mass π2, and Z̃σ ∈ T (1,1)

π2 (B(1)) the current of integration

Z̃σ : φ ∈ Ω(1,1)
c (B4(1)) 7→ Z̃σ(φ) =

π2

A(C̃σ)

∫

C̃σ

φ.

We set

Za =
⋃

d≥dL

{Z̃σ, σ ∈ RH0(X,Ld) \ Ad
K} ⊂ T (1,1)

π2 (B(1)).

By Theorem 1 of [4], Za is contained in the space of weakly laminar currents of the

unit ball B4(1). In particular, from Lemma 1 we know that ω0 /∈ Za. Since B4(1) is

compact, Za is compact and there exists a finite number of two-forms (φ̃j)j∈J with
compact support in B4(1) such that

∀λ ∈ [
λ1K
π2
,
λ2K
π2

], ∀T ∈ Za, ∃j ∈ J , |〈λT − ω0, φ̃j〉| > 1.

Applying this inequality to T = Z̃σ and λ = a(d)2A(Cσ ∩B)/π2d, we get
∣∣∣∣
a(d)2A(Cσ ∩ B)

dA(C̃σ)

∫

C̃σ

φ̃j −
∫

B(1)

ω0 ∧ φ̃j
∣∣∣∣ > 1.

Denote by φj the pullback of φ̃j under the homothetic tranformation of coefficient
1/ρd, so that the support of φj lies in B

4(ρd). We get
∣∣∣∣
1

d

∫

Cσ

φj −
∫

B4(ρd)

ω0 ∧ φj
∣∣∣∣ > 1/a(d),

as long as σ /∈ Bd. Finally, since by Definition 2 a(d)
∫
Bσ
(ω − ω0) ∧ φj converges to

zero, we deduce for d large enough the relation

∀σ ∈ RH0(X,Ld) \ (Ad
K ∪ Bd), ∃j ∈ J ,

∣∣∣∣
1

d

∫

Cσ

φj −
∫

X

ω ∧ φj
∣∣∣∣ ≥ 1/a(d).

Likewise, from Tian’s asymptotic isometry theorem [18], a(d)
∫
X
(ω − 1

d
Φ∗
dωFS) ∧ φj

converges to zero as d grows to ∞. Applying Proposition 3 to every ball of our cover
and every φj, j ∈ J , with support in this ball, we finally obtain the existence of

positive constants C, D, such that µ(Ma(d)
d ) ≤ CNda(d)

4 exp
(
−D d

a(d)

)
. 2

4 Final remarks

4.1 Average current of integration

For every k ≥ 1, denote by

ECP k : CP k → R

z 7→
∫

RH0(CP k,O
CPk (1))

log ||σ(z)||2dµ(σ)

the expectation of the random variable σ 7→ log ||σ||2.
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Proposition 4 For every k ≥ 1 and z ∈ CP k \ RP k,

ECP k(z) = log(
k + 1

4
) +

∫ ∞

0

e−ρ log ρdρ+ log(1 +
√
1− ||τ ||2(z)),

where τ is the section introduced in Proposition 1.

This result is very close to Lemma 2.5 of [12].

Proof. As in the proof of Proposition 1 and using the notations of Remark 2, we
get for every 0 < r ≤ 1:

ECP k(zr) =

∫

R2

log

(
(k + 1)

|a0 + ira1|2
1 + r2

)
e−|a|2

π
da0da1

= log

(
k + 1

1 + r2

)
+

∫ ∞

0

e−ρ log ρdρ+
1

2π

∫ 2π

0

log | cos θ + ir sin θ|2dθ

= log

(
k + 1

4(1 + r2)

)
+

∫ ∞

0

e−ρ log ρdρ+
1

2π

∫ 2π

0

log |e2iθ(1 + r) + 1− r|2dθ.

From Jensen formula, as soon as r > 0,

1

2π

∫ 2π

0

log |e2iθ(1 + r) + 1− r|2dθ = log |1− r|2 + log

∣∣∣∣
1 + r

1− r

∣∣∣∣
2

= log(1 + r)2.

From this we deduce

ECP k(zr) = log(
k + 1

4
) +

∫ ∞

0

e−ρ log ρdρ+ log

(
(1 + r)2

1 + r2

)

= log(
k + 1

4
) +

∫ ∞

0

e−ρ log ρdρ+ log
(
1 +

√
1− ||τ ||2(z)

)
,

since ||τ ||(zr) = |τ(zr)|/|zr|2 = (1−r2)/(1+r2). The result follows from the invariance
of ECP k and ||τ || under the action of POk+1(R), see Remark 2. 2

Corollary 5 For every k ≥ 1 and every real line D in CP k, the restriction of the cur-
rent 1

2iπ
∂∂̄ECP k to D \RD coincides with the Fubini-Study form, while its restriction

to the quadric {τ = 0} vanishes.

Proof. Proposition 4 implies that the restriction of ECP k to the quadric {τ = 0}
is constant, so that the current ∂∂̄ECP k vanishes on this quadric. In the same way,
Proposition 4 implies that the restriction of 1

2iπ
∂∂̄ECP k to D does not depend on k.

Thus, we may assume k = 1 and D = CP 1. Now, every σ ∈ RH0(CP 1,OCP 1(1))
does not vanish on CP 1 \ RP 1, so that by definition

∀z ∈ CP 1 \ RP 1,
1

2iπ
∂∂̄ECP k(z) =

∫

RH0(CP 1,O
CP1(1))

1

2iπ
∂∂̄ log ||σ(z)||2dµ(σ)

=

∫

RH0(CP 1,O
CP1(1))

ωFS(z)dµ(σ)

= ωFS(z).
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2

Now, let L be a real Hermitian line bundle with positive curvature on a smooth
real Kähler manifold X of dimension n ≥ 1. For every d ∈ N∗ and every (2n−2)-form
φ ∈ Ω2n−2(X), we denote by

Zφ : σ ∈ RH0(X,Ld) \ {0} 7→ Zφ
σ =

1

d

∫

Cσ

φ ∈ R

the associated random variable, where the space RH0(X,Ld) is equiped with the L2

Gaussian probability measure µ. We write

Ed(Z
φ) =

∫

RH0(X,Ld)

Zφ
σdµ(σ)

for the expectation of this random variable, and Ed(Z) : φ ∈ Ω2(X) 7→ Ed(Z
φ) ∈ R

for the associated closed positive (1,1)-current.

Proposition 5 Let L be a real Hermitian line bundle with positive curvature on a
smooth closed real Kähler manifold X. Then, for every d ≥ dL,

Ed(Z) =
1

d
Φ∗
dωFS −

1

2iπd
Φ∗
d∂∂̄EP (H0(X,Ld)∗).

Moreover, the restriction of this current to the complement of the real locus converges
to ω as d grows to infinity.

Recall that the embedding Φd : X → P (H0(X,Ld)∗), d ≥ dL, and the Fubini-Study
form ωFS of the projective space P (H0(X,Ld)∗) were introduced in §1.2.

Proof. Poincaré-Lelong formula provides for every σ ∈ RH0(X,Ld) \ {0} the
relation

1

2iπd
∂∂̄ log ||σ||2Φd

=
1

d
Φ∗
dωFS − Zσ.

The first part of Proposition 5 is obtained by integration of this relation onRH0(X,Ld).
Tian’s asymptotic isometry theorem [18] implies that 1

d
Φ∗
dωFS converges to the curva-

ture ω of L. Proposition 2 combined with Proposition 4 imply that 1
2iπd

Φ∗
d∂∂̄EP (H0(X,Ld)∗)

converges to zero faster than every polynomial function in d, and even exponentially
fast in the cases covered by Remark 3 (compare with [12]). Hence the result. 2

Note that when the chosen probability space is the whole complex spaceH0(X,Ld),
the expectation

∫
H0(X,Ld)

log ||σ(z)||2dµ(σ) is a function of z ∈ CP k invariant under

the whole PUk+1(C), thus is constant. Hence, E(Z
φ
C) =

1
d
Φ∗
dωFS, see [14]. Moreover,

Shiffman and Zelditch proved in [16] that the law of Zφ
C converges to a normal law

as d grows to infinity, a result that was already obtained in dimension one in [17]. It
would be here of interest to understand in more details the convergence of the law of
Zφ.

4.2 Existence of real maximal curves

An algebraic curve C of genus g(C) is said to be maximal when the number of compo-
nents of its real locus coincides with g(C)+1, the maximum allowed by Harnack-Klein
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inequality [9], [11]. Our Theorem 1 proves, in particular, that if L is a real ample
Hermitian line bundle over a real projective surface X , the measure of the set of
real maximal curves linearly equivalent to Ld exponentially decreases as d increases.
When X = CP 2, Harnack [9] proved that such maximal curves exist in any degree.
The study of these curves plays a central rôle in real algebraic geometry, at least
since Hilbert included it in his 16th problem. Nevertheless, such curves do not always
exist. For instance, if X is the product of two non maximal real curves, then for every
ample real line bundle L over X and every d ∈ N∗, the linear system RH0(X,Ld)
contains no maximal curve.

However, every real closed symplectic manifold (X,ω, cX) of dimension four with
rational form ω supports, when d is large enough, symplectic real surfaces Poincaré
dual to dω and whose real locus contains at least ǫd components, where ǫ depends
on the manifold (X,ω, cX), see [7]. Applying Harnack’s method to these curves, we
see that there always exist even symplectic real surfaces whose real locus contains at
least ǫ′d2 connected components.

The following questions then arise. For every ample real line bundle L on a
projective real surface X and every d ∈ N∗, denote by

m(Ld) = sup
σ∈RH0(X,Ld)\R∆d

b0(RCσ)

the maximal number of connected components that a smooth real divisor linearly
equivalent to Ld may contain. Then, denote by ǫ(X,L) = lim supd→∞

1
d2
m(Ld), so

that 0 ≤ ǫ(X,L) ≤ 1
2
L.L by Harnack-Klein inequality and the adjunction formula. Is

this quantity ǫ(X,L) bounded from below by a non negative constant independant
of (X,L)? Does there exist a pair (X,L) with RX 6= ∅ such that ǫ(X,L) < 1

2
L2? If

not, what about the quantity lim supd→∞
1
d
(m(Ld)− 1

2
d2L2)?

The same questions hold within the realm of four-dimensional real symplectic
manifolds. Recall that the real symplectic surfaces built in [7] are obtained via Don-
aldson’s method [5], so that their current of integration converges to ω as d grows
to infinity. Theorem 3 provides an obstruction to get real maximal curves using this
method (Donaldson’s quantitative transversality gives another one, as observed in
[7]). This phenomenon was in fact the starting point of our work.

This work raises several questions. It is known [6] that the expectation of the
number of real roots of a real polynomial in one variable is

√
n. What is the expected

value of b0(RCσ) in dimension two? How to improve Theorem 1 to get decays till
this expectation, as in Theorem 2? What happens for values below this expectation?
Note that for spherical harmonics on the two-dimensional sphere, such kinds of results
have been obtained in [13]. More generally, what is the asymptotic law of the random
variable b0? What happens in higher dimensions?
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