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Statistical inference for density dependent

Markovian forestry models

Abstract

A stochastic forestry model with a density-dependence structure

is studied. The population evolves in discrete-time through stage-

structured processes, in a way that its temporal evolution is described

by a stochastic Markov chain. For adequate scalings of the transi-

tion rates, it is shown to converge to the deterministic matrix model,

known as the Usher model, as a parameter n, interpreted as the pop-

ulation size roughly speaking, becomes large. From the perspective of

the analysis of forestry data and predict the forestry population evo-

lution, this approximation result may serve as a key tool for exploring

the asymptotic properties of standard inference methods such as max-

imum likelihood estimation. We state preliminary statistical results in

this context. Eventually, relation of the model to the available data of

a tropical rain forest in French Guiana is investigated and numerical

applications are carried out.

Keywords. Population dynamics; matrix model; Markov chain; density
dependence; large population approximation; maximum likelihood estima-
tion.

1 Introduction

Models of population dynamics are an important tool in many ecological
studies. They are used to mimic the future evolution of the population.
Among the discrete-time models, matrix model are often used to study the
dynamics of structured populations (either age-structured or size-structured
populations). They also permit to simplify the dynamics of a population into
its basic components: recruitment or birth, growth or ageing, and mortality.
Matrix models have been widely used in ecology to deal with invasive species
[18, 29], population viability [5, 3, 26, 28, 15], or the management of the
harvested populations [13, 7, 16].

The most general matrix model was proposed by [21], and allows any
transition from one stage to another. The Usher model [31, 32] is a size-
structured population model and restricts the possible transitions: during
on time step, an individual either stays alive in the same stage, moves up to
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the next stage, or dies. It is often used in forestry because it is well adapted
to the dynamics of a forest stand and it permits to simulate quickly and in
a synthetic way large areas of forest [14]. This model is particularly adapted
to deal with forest management [27, 8, 33, 4, 7, 19], economic potential of
forests [25, 6], or biodiversity assessment [8, 25, 17, 24, 23]. The Leslie model
[22] describes a population grouped by age, and is a special case of the Usher
model: during each time step, an individual can only move up a class or die.

Matrix models describe the dynamics of a population by the effectif vector
which components are the number of individuals in each class. These models
were at first deterministic. Demography stochasticity, consisting on describe
the population dynamics by Markov chains, was used above all to deal with
small-size populations, to model for instance the probability of extinction
[5, 20, 26]. However some recent population modelling efforts have employed
this type of modelisation [12, 9, 11, 1, 30].

In this paper we focuse on a generalized Usher model where individual
evolutions are assumed to be dependent of the running density. This model
take into account the tree interactions due to competition effects into in-
dividual dynamicsAt any time, recruitment, growth and mortality in each
state class depend on the overall density. Assuming a large population of
tree, the properties of the mathematical model are investigated and prelim-
inaries statistical questions are tackled. Beyond the stochastic modelling,
the main goal is to establish large population limit results (law of large num-
ber and limit central theorem) for the effective Markov chain describing the
forest dynamics. This is a classical approach for the statistical analysis in
population dynamics and its applications.

The paper is organized as follows. In section 1 a Markov chain with
density-dependence in individual dynamics is introduced for modeling the
temporal evolution of a forest stand. A short description giving an insight
into how the dynamics is driven. In average, the evolution of the Markov
chain verifies the deterministic relation given by the Usher model. A short
probabilistic study is also given describing the long-term behavior of the
Markov chain. The main part of this work is concerned by the section 3.
Considering a Markov chain indexed by a positive natural n, representing
approximatively the initial size of the population, limit results when n tends
to infinity are established. These results provide maximum likelihood esti-
mators that are consistent in a large population framework in section 4.

2 The markovian forestry model

2.1 The population dynamics

The population is grouped into I stages. Its evolution is described in discrete
time by the random vector N(t) = (Ni(t))i=1...I , where Ni(t) is the number
of individuals in stage i at time t. The sequence (N(t))t∈N takes its values
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in N
I and is adapted with respect to the filtration F = (Ft)t∈N defined by :

Ft = σ (∪s≤tσ(N(s))). Between time t and t + 1 an individual either stays
in the same class, or grows up to the next stage, or dies (see Fig. 1). Then
the model is written by:

Ni(t + 1) = Fi i(t) + Fi−1 i(t) (1)

where Fi j(t) is the flow of individuals from the stage i to the stage j between
time t et t + 1, with convention F0 1(t) = Rt where Rt being the number of
birth. We denote also Fi †(t) the number of individuals from the stage i
which die between the time t and t + 1. Flow law conditionally to N(t) is a
multinomial law, and number of birth follows a Poisson’s law:

(Fi i(t), Fi i+1(t), Fi †(t)) ∼ M (Ni(t), pi(N(t)), qi(N(t)), mi(N(t)))

Rt ∼ P(

I∑

i=1

fi(N(t))Ni(t))

where pi(N(t)) is the transition rate for an individual in stage i which stays
in the same stage, qi(N(t)) the transition rate for an individual which grows
up to the next stage, and mi(N(t)) the death rate. Those parameters verify
the stochastic relation:

pi(N(t)) + qi(N(t)) + mi(N(t)) = 1 (2)

Furthermore fi(N(t)) denotes the fecundity of stage i.
With those assumptions, the average evolution of effective vector is given

by the equation
E(N(t + 1)|N(t)) = U(N(t))N(t) (3)

where U is a matrix of size I × I, called "Usher" matrix. Its elements are
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Figure 1: Flow diagram of the Usher model
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the transition parameters, that is U(N(t)) = P (N(t)) + R(N(t)) where:

P (N(t)) =




p1(N(t)) 0 · · · 0

q1(N(t)) p2(N(t))
...

. . .
. . . 0

0 qI−1(N(t)) pI(N(t))




R(N(t)) =




f1(N(t)) · · · fI(N(t))
0 · · · 0
...

...
0 · · · 0




Example 1 (On modelling the density-dependence) Density dependence
can take an infinity of shapes, but the most commonly found (see [9]) are
the Berverton-Holt dependence:

v(N) =
c

b + N · a
and the Ricker (or exponential) dependence:

v(N) = c exp(−bN · a) (4)

where v is any of the vital rates, c and b are constant parameters, a is a
constant positive vector of R

I , and dot denotes the scalar product in R
I .

For instance, a can be the unit vector (1, 1, ..., 1), so that N · a is the total
number of individuals at time t. In forestry applications, a is often taken
as the vector whose ith element is the average basal area of an individual
in stage i. The quantity N · a then represents the cumulative basal area
of the population. Exploratory analyses showed us that the exponential
density-dependence better suited the experimental data at Paracou than
the Beverton-Holt dependence. In what follows, we shall thus focus on the
exponential dependence given by equation (4).

Nevertheless, this representation not assures the probability condition
given by equation (2). For this reason, we propose the following model
where each vital rate has his own density-dependence, that is to say:

pi(N) = (1 − γi)
µie

ξiN ·a

µieξN ·a + νie−κiN ·a
(i = 1, . . . , I)

qi(N) = (1 − γi)
νie

−κiN ·a

µieξiN ·a + νie−κiN ·a
(i = 1, . . . , I − 1) (5)

f(N) = αe−βN ·a

Especially, pi increases with N ·a and tends to a constant 1−γi at infinity,
while qi decreases toward zero. Here survival rate is constant, equal to 1−γi,

4



and not depends on the density. With this simplification, the mortality rate
represents the natural death. To take into account competition in mortality,
we propose the following shape for death rate:

mi(N) = ηi + δi(1 − e−λiN ·a) (6)

with ηi + δi < 1. The death rate is the sum of natural mortality, ηi, and
mortality due to competition. Also, when N · a tends to infinity, the death
rate increases toward ηi + δi.

2.2 Markov chain description

The sequence (N(t))t∈N that verifies equation (1) is a markov chain in N
I

with initial law µ0 and transition probability denoted Π, defined, for all
m = (m1, . . . ,mI) and n = (n1, . . . , nI) of N

I , by :

Π ((m1, . . . ,mI), (n1, . . . , nI)) =
I∏

i=1

Πi(m, ni)

where Πi(m, ni) = P (Ni(t + 1) = ni|N(t) = m) is, for i ≥ 2, the convolution
of two binomial distributions, that is:

Πi(m, ni) =





min(mi,ni)∑

k=ni−min(mi−1,ni)

B1
ik(p, m, n)B2

ik(q, m, n), if ni ≤ mi + mi−1

0 else

and, for i = 1, the convolution of a binomial and a Poisson distribution:

Π1(m, n1) =

min(m1,n1)∑

k=0

B1
1k(p, m, n)Dk(f, m, n)

where:




B1
ik(p, m, n) = Ck

mi
pi(m)k(1 − pi(m))mi−k for i = 1, . . . , I

B2
ik(q, m, n) = Cni−k

mi−1
qi−1(m)ni−k(1 − qi−1(m))mi−1−ni+k for i = 2, . . . , I

Dk(f, m, n) =

(∑I
j=1 fj(m)mj

)n1−k

(n1 − k)!
e−

PI
j=1

fj(m)mj
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2.3 Limiting behavior in long time asymptotics

We now state a limit result for the forestry markov chain, as time goes to
infinity.

Proposition 1 Considering the markov chain (Nt)t>0 introduced in defi-
nition 1, we have, whatever the intitial state N0, that (Nt) tends to 0 in
distribution as t tends to infinity.

The details of the proof is given in Appendix A. This ergodicity result
shows that the time of population extinction is almost surely finite, though
it may be very long in practice. In situation of long-lasting dynamics, as
a tropical forest, the long-term behavior can be refined by studying quasi-
stationnarity measures.

3 Large population limit

3.1 Renormalization

We consider a sequence {(N (n)(t))t∈N;n ≥ 1} of Usher markov chain. For
n ≥ 1, the markov chain (N (n)(t))t∈N starting from N (n)(0), proportionnal
to n and with the modifications on transition rates

v(n)(N (n)(t)) = v(
N (n)(t)

n
) (7)

where v verifies one of equations (5).

Remark 1 (On the meaning of the renormalization) With this renormaliza-
tion, the competition term of any vital rate is function of the density. The
definition of the competition then not depends of the plot area where the
population lives.

Let consider a Usher markov chain starting from N (n)(0) during time T ,
(N (n)(0), . . . , N (n)(T )). If the population size increases, the term N (n)(t)/n
increases, and p(n)(N (n)(t)) increases while q(n)(N (n)(t)) decreases.

Let now Ñn =
Nn

n
and T ∈ N

∗. Then Ñn(T ) verifies the following

equation:

Ñn(T ) = Ñn
0 +

T−1∑

s=0

F (Ñn(s)) + Mn(T ) (8)

where:

• F is the function defined for all x = (xi)i=1,...,I in R
I by:

F (x) = U(x)x − x
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• the series

(
t−1∑

s=0

F (Ñn(s)), t ≥ 1

)
is Fn-predictable

• Mn = (Mn(t), t ∈ N) is a Fn-martingale, defined for all t ≥ 1 by:

Mn(t) =
t−1∑

s=0

[
Ñn(s + 1) − E

(
Ñn(s + 1)|Fn

s

)]

=

t−1∑

s=0

[
Ñn(s + 1) − U

(
Ñn(s)

)
Ñn(s)

]

and Mn(0) = 0.

3.2 The Law of Large Numbers

We want to show that Ñn(T ) tends, when n tends to infinity and almost
surely, towards the deterministic vector yT in R

I which verifies the following
equation:

yT = y0 +
T−1∑

s=0

F (ys) (9)

This proof is particularly based on the convergence to zero of the martingale
Mn(t) when n tends to infinity and almost surely.

The convergence of Ñn(T ) is ensured under the following assumptions:

(H1) fi is a bounded function for all i = 1, . . . , I.

(H2) lim
n→∞

Ñn(0) = y0 in L1 and almost surely.

(H3) For each compact K of R
I , there is a constant CK such that

‖F (x) − F (y)‖1 ≤ CK‖x − y‖1

Remark 2 The assumption (H3) can be substituted by the following as-
sumption

(H′

3) For each compact K of R
I , there is a constant C

′

K such that

‖U(x) − U(y)‖1 ≤ CK‖x − y‖1

because of the relation

‖F (x) − F (y)‖1 ≤ ‖U(y)‖1‖x − y‖1 + ‖U(x) − U(y)‖1‖x‖1

Then, the following theorem is a limit theorem on the sequence (Ñn
t )

when n tends to infinity:
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Theorem 3.1 Let assumptions (H1), (H2) and (H3) hold. Then:

lim
n→∞

sup
t≤T

‖Ñn(t) − yt‖1 = 0 in L1

where yt is the unique solution of the equation (9).

3.3 The Central Limit Theorem

Let Xn(t) =
√

n(Ñn(t) − yt). From the equations (8) and (9), we deduce
that:

Xn(T ) = Xn(0) +
√

n
T−1∑

t=0

[
F (Ñn(t)) − F (yt)

]
+

√
nMn(T )

We want to show that Xn(T ) converges to the random vector XT defined
by the equation:

XT = X0 +
T−1∑

t=0

dytF.Xt + MT (10)

where MT is a centered random vector.
The convergence of Xn(T ) is ensured under assumption (H1) and the

following assumptions:

(H′′
2) lim

n→+∞
Xn(0) = X0

(H′′
3) F is in class C1

Theorem 3.2 Let assumptions (H1), (H′′
2) and (H′′

3) hold. Then:

lim
n→∞

sup
t≤T

‖Xn(t) − Xt‖1 = 0 in L1

where Xt verifies the equation (10).

4 Statistical applications

4.1 The likelihood function

Let T > 0 and n ∈ N
⋆. We suppose that the transitions parameters pi, qi and

fi for i = 1, . . . , I are entirely determined by a parameter θ taking values in
a set Θ ⊂ R

d, with d ≥ 1. The likelihood is:

L(n)
T (θ) =

T−1∏

t=0

I∏

i=1

Π
(n)
θ,i (Nn(t), Nn(t + 1))
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where, for all m = (m1, . . . ,mI) and l = (l1, . . . , lI)

Π
(n)
θ,i (m, li) =





min(mi,li)∑

k=li−min(mi−1,li)

B
1 (n)
θ,ik (m, l)B

2 (n)
θ,ik (m, l), if li ≤ mi + mi−1

0 else

and, for i = 1, the convolution of a binomial and a Poisson distributions:

Π
(n)
θ,1 (m, l1) =

min(m1,l1)∑

k=0

B
1 (n)
θ,ik (m, l)D

(n)
θ,k (m, l)

with:




B
1 (n)
θ,ik (m, l) = Ck

mi
pn

θ,i(m)k(1 − pn
θ,i(m))mi−k for i = 1, . . . , I

B
2 (n)
θ,ik (m, l) = C li−k

mi−1
qn
θ,i−1(m)li−k(1 − qn

θ,i−1(m))mi−1−li+k for i = 2, . . . , I

D
(n)
θ,k (m, l) =

(∑I
j=1 fn

θ,j(m)mj

)l1−k

(l1 − k)!
e−

PI
j=1

fn
θ,j

(m)mj

Let lnT (θ) = log[L(n)
T (θ)].

4.2 The MLE consistency

Consider the ML estimator for T > 0 and n ∈ N
∗:

θ̂n = arg max
θ∈Θ

l
(n)
T (θ).

Model identifiability
Let assume that the map θ ∈ Θ 7→ vθ is injective for any vital rate v.
Then, we want to show that for any (θ, θ∗) ∈ Θ2:

1

n
[l

(n)
T (θ) − l

(n)
T (θ∗)]

Pθ∗−−−→
n→∞

K(θ, θ∗)

where K(θ, θ∗) = 0 iff θ = θ∗.
Proof : For n enough large,

B
1 (n)
θ,ik (Nn(t), Nn(t + 1)) ∼ Ck

nyt,i
pθ,i(yt)

k(1 − pθ,i(yt))
nyt,i−k

∼ (nyt,i)
k

k!

(
pθ,i(yt)

1 − pθ,i(yt)

)k

(1 − pθ,i(yt))
nyt,i

∼ K1
θ,i(t, k)(nyt,i)

k(1 − pθ,i(yt))
nyt,i
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with K1
θ,i(t, k) =

1

k!

(
pθ,i(yt)

1 − pθ,i(yt)

)k

. In the same way:

B
2 (n)
θ,ik (Nn(t), Nn(t + 1)) ∼ K2

θ,i(t, k)B̃
2 (n)
θ,ik (t)

with

B̃
2 (n)
θ,ik (t) =

1

(nyt+1,i − k)!

(
qθ,i−1(yt)

1 − qθ,i−1(yt)

)nyt+1,i

(nyt,i−1)
nyt+1,i−k(1 − qθ,i−1(yt))

n(yt,i−1−yt+1,i)

K2
θ,i(t, k) =

(
1 − qθ,i−1(yt)

qθ,i−1(yt)

)k

(1 − qθ,i−1(yt))
k

4.2.1 MLE asymptotic normality

Fisher Information
For all θ, the fisher information matrix is given by:

I(θ) = E[∇θlT (θ)]2

where ∇θF is the gradient vector of F in θ.
We have:





∇θB
1
θ,ik = ∇θpθ,i

k − mipθ,i

pθ,i(1 − pθ,i)
B1

θ,ik for i = 1, . . . , I

∇θB
2
θ,ik = ∇θqθ,i

(li − k) − mi−1qθ,i−1

qθ,i(1 − qθ,i)
B2

θ,ik for i = 2, . . . , I

∇θDθ,k =
I∑

j=1

∇θfθ,jmj

(
n1 − k

∑I
j=1 fθ,j(m)mj

− 1

)
Dθ,k

Then, for i = 2, . . . , I:

∇θΠθ,t i =

min(mi,li)∑

k=li−min(mi−1,li)

B1
θ,ikB

2
θ,ik

[
∇θpθ,i

k − mipθ,i

pθ,i(1 − pθ,i)
+ ∇θqθ,i

(li − k) − mi−1qθ,i−1

qθ,i(1 − qθ,i)

]

and for i = 1:

∇θΠθ,1 =

min(m1,l1)∑

k=0

B1
θ,1kDθ,k


∇θpθ,1

k − m1pθ,1

pθ,1(1 − pθ,1)
+

I∑

j=1

∇θfθ,jmj

(
n1 − k

∑I
j=1 fθ,j(m)mj

− 1

)


Appendices

A Proof of proposition 1

The markov chain (N(t))t∈N is not an irreducible chain, the stage of extinc-
tion of the population {0I} being an absorbing stage. Nevertheless, under
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hypothesis of "immigration", we can establish a convergence of the process
to the stage {0I} with an exponential rate.

Let V the application of N
I in [1; +∞[, defined for all N = (Ni)i=1,...,I

by: V (N) =
∑I

i=1 Ni. The drift function at time t related to the function
V , ∆Vt, is defined by the relation:

∆Vt = E(V (N(t + 1))|N(t)) − V (N(t))

=

I∑

i=1

[E(Ni(t + 1)|Nt) − Ni(t)]

From equation (3) given the evolution of the effective vector in mean, we
deduce the expression of the drift function:

∆Vt =

I∑

i=1

fi(N(t))Ni(t) −
[

I−1∑

i=1

[1 − pi(N(t)) − qi(N(t))]Ni(t) + [1 − pI(N(t))]NI(t)

]

=
I∑

i=1

[fi(N(t)) − mi(N(t))]Ni(t)

Denote strictly positive real β defined by β = infi=1,...,I mi(N) and suppose
that it exists constant c > 0 such

sup
i=1,...,I

fi(N)‖N‖1 ≤ c

Then
∆V (N) ≤ −βV (N) + c

Let now define the markov chain N by:

N = N + L

where L takes values in R
I , and is equal to L = (l, 0, . . . , 0) with: l ∼ P(λ), λ > 0.

The markov chain N is irreducible, recurrent. Its drift function expresses
itself as:

∆V (N) = ∆V (N) + ∆V (L)

which verifies:

∆V (N) ≤ −βV (N) + c + λ − V (L)

≤ −β
′

V (N) + c
′

with β
′

and c
′

> 0.
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B Proof of proposition 3.1

We first show the following proposition:

Proposition B.1 Let assumptions (H1) and (H2) hold. Then, for all t:

1.
Ñn(t)

n

n→∞−−−→ 0 in L1.

2. Ñn(t) is square integrable.

3. V(Ñn(t + 1)|Fn
t )

n→∞−−−→ 0 in L1.

Proof :

1. As Ñn(0) tends to y0 in L1, Ñn(0) verifies the property. Now, the
equation (1) of the model can be also written like this:

Nn
i (t + 1) = Nn

i (t) + Fn
i−1 i(t) − (Fn

i i+1(t) + Fn
i †(t))

Therefore by summing we obtain:

‖Nn(t + 1)‖1 = ‖Nn(t)‖1 + Rn(t) − Mn(t)

where Mn(t) =
∑I

i=1 Fn
i †(t)) is the total number of dead trees between

t and t + 1. We deduce the inequality

‖Nn(t + 1)‖1 ≤ Rn(t) + ‖Nn(t)‖1 (11)

implying

E

(
‖Ñn(t + 1)‖1

n

)
≤ E

(
Rn(t)

n2

)
+ E

(
‖Ñn(t)‖1

n

)

≤ 1

n

I∑

i=1

E(fθ,i(Ñ
n(t))Ñn

i (t)) + E

(
‖Ñn(t)‖1

n

)

Now, by the assumption (H1), it exists a real A > 0 such as:

E

(
‖Ñn(t + 1)‖1

n

)
≤ (1 + A) E

(
‖Ñn(t)‖1

n

)

as if to this relation for t = 0, . . . , T :

E

(
‖Ñn(t)‖1

n

)
≤ (2 + A)t

E

(
‖Ñn(0)‖1

n

)

Then, as
‖Ñn(0)‖1

n
tends to zero in L1, we deduce that

‖Ñn(t)‖1

n
tends also to zero in L1

12



2. From the equation (11), we deduce that:

E(‖Ñn(t + 1)‖2
1) ≤ E

(
Rn(t)2

n2

)
+ 4E

(
Rn(t)

n
‖Ñn(t)‖1

)
+ 4 E

(
‖Ñn(t)‖2

1

)

≤
I∑

i=1

E(fθ,i(Ñ
n(t))Ñn

i (t)) . . .

≤
(

2 +
A

n

)2

E(‖Ñn(t)‖2
1) +

A

n
E(‖Ñn(t)‖1)

As Ñn(0) is square integrable, we prove by recurrence that Ñn(t) is
also like this for all t.

3. Now, V(Ñn(t)|Fn
t ) =

1

n2
V n(t), and the expression of V n(t) is given

by the equation (??). As pn
θ,i(N

n(t)) + qn
θ,i(N

n(t)) ≤ 1 for all n and

t, and as
Ñn(t)

n
tends to zero in L1, therefore V(Ñn(t)|Fn

t ) tends to

zero in L1.

Lemma 1 Let assumptions (H1) and (H2) hold. Then:

lim
n→∞

sup
t≤T

‖Mn(t)‖1 = 0 in L2 and almost surely

Proof

Step 1. We prove the convergence of supt≤T ‖Mn(t)‖1 in L2.

• First, we verify that Mn(t) is square integrable. Indeed :

E

(
‖Mn(t)‖1

2
)

≤
t−1∑

s=0

E

[
‖Ñn(s + 1) − E

(
Ñn(s + 1)|Fn

s

)
‖1

2
]

≤ 2
t−1∑

s=0

E

[
‖Ñn(s + 1)‖1

2
]

We conclude by the proposition B.1.

• Let Mn
i (t) the ith composant of Mn(t), for i = 1, . . . , I. The

series Mn
i (t) is in L2 and:

E[Mn
i (t)2] = E[(Mn

i (t) − Mn
i (0))2]

= E



(

t−1∑

s=0

(Mn
i (s + 1) − Mn

i (s))

)2



13



As Mn
i (t) is a martingale, we deduce that:

E[Mn
i (t)2] = E

[
t−1∑

s=0

(Mn
i (s + 1) − Mn

i (s))2

]

=

t−1∑

s=0

E[V(Ñn
i (s + 1)|Fn

s )]

By the proposition B.1 we deduce that Mn
i (t) converges to zero

in L2.

• Now, from the Doob’s inequality:

E[(sup
t≤T

‖Mn(t)‖1)
2] ≤ 4E[‖Mn(T )‖2

1]

≤ 4E



(

I∑

i=1

|Mn
i (T )|

)2



≤ 4
I∑

i=1

E[Mn
i (T )2]

Then, we deduce that supt≤T ‖Mn(t)‖1 tends to zero in L2.

Step 2. [as convergence] Let Mn
∗ = supt≤T ‖Mn(t)‖1. Mn

∗ converges to zero in
L2 so in probability. Then, by the Borel-Cantelli’s lemma, it exists an
under-series of (Mn

∗ )n which converges to zero almost surely. We have
to show that (Mn

∗ )n is a Cauchy series almost surely.(. . .)

Proof of theorem 3.1: First, as the sequence (Ñn(t)), for t = 0, . . . , T ,
are bounded in L1, it exists a compact K in

(
R

I , ‖.‖L1((µ0, Π),‖.‖1)

)
which

contains {y0, . . . , yT } and {Ñn(0), . . . , Ñn(T )} for all n, where:

‖f‖L1(µ,‖.‖1) =

∫
‖f‖1dµ

for all measurable function f with values in R
I .

On the other hand, for all t ≤ T and in L1:

‖Ñn(t) − yt‖1 = ‖Ñn(0) − y0 + Mn(t) +

t−1∑

s=0

(
F (Ñn(s) − F (ys)

)
‖1

≤ ‖Ñn(0) − y0‖1 + ‖Mn(t)‖1 +

t−1∑

s=0

‖F (Ñn(s)) − F (ys)‖1

≤ ‖Ñn(0) − y0‖1 + ‖Mn(t)‖1 +
t−1∑

s=0

CK‖Ñn(s) − ys‖1

14



By Gronwall’s inequality this implies that:

‖Ñn(t) − yt‖1 ≤
(
‖Ñn(0) − y0‖1 + ‖Mn(t)‖1

)
eCKt

Then, taking the supremum on t, we obtain:

sup
t≤T

‖Ñn(t) − yt‖1 ≤
(
‖Ñn(0) − y0‖1 + sup

t≤T

‖Mn(t)‖1

)
eCKT

The first term in the brackets converges to 0 in L1 by assumption, and
the second term by the lemma 1. The exponential function is moreover
independent of n. This completes the proof of the theorem.

C Proof of theorem 3.2

Let Γ(t) defined , for i = 2, . . . , I, by:

Γii(t) = yt,ipi(yt)[1 − pi(yt)] + yt,i−1qi−1(yt)[1 − qi−1(yt)]

Γi−1i(t) = Γt
ii−1 = −yt,i−1pi−1(yt)qi−1(yt) (12)

Γ11(t) = yt,1p1(yt)[1 − p1(yt)] +

I∑

i=1

fi(yt)yt,i

Proposition C.1 Let assumptions (H1), (H2) and (H′

3) hold. Then, for all
t

nV(Ñn(t + 1)|Fn
t )

n→∞−−−→ Γ(t) in probability

Proof The proposition is a straight result from the theorem 3.1 and from
the continuity of U .

Lemma 2 It exists a real c such as for all t = 1, . . . , T

E(‖Xn(t)‖1) < c

Proof Let t = 1, . . . , T . The random vector Xn(t) verifies

Xn(t) = Xn(0) +
√

n
t−1∑

s=0

[
F (Ñn(s)) − F (ys)

]
+

√
nMn(t)

Step 1. From the definition of the function F

F (Ñn(s)) − F (ys) =
[
U(Ñn(s))Ñn(s) − U(ys)ys

]
+ [ys − Ñn(s)]

=
[
U(Ñn(s)) − U(ys)

]
Ñn(s) + (1 − U(ys))[ys − Ñn(s)]

15



Then, from the assumption (H′

3)

√
n‖F (Ñn(s)) − F (ys)‖ ≤

[
C

′

KÑn(s) + (1 − U(ys))
]
‖Xn(s)‖

Step 2. As the same as the step 1 of the proof of the lemma 1,

E[‖Mn(t)‖2
1] ≤

I∑

i=1

t−1∑

s=0

E[V(Ñn
i (s + 1)|Fn

s )]

Then

(
√

nE[‖Mn(t)‖1])
2 ≤

I∑

i=1

t−1∑

s=0

nE[V(Ñn
i (s + 1)|Fn

s )]

By the proposition C.1,
√

nE[‖Mn(t)‖1] is bounded.

Step 3. Hypothesis (H′′
2) unsures that it exists a real c0 such that E(‖Xn(0)‖) < c0.

By a recurrence we deduce the lemma.

Lemma 3 Let assumptions (H1), (H2) and (H′

3) hold. Then:

√
nMn(T )

n→∞−−−→ N (0,Γ) in law

where Γ =
∑T−1

t=0 Γ(t).

Proof Let Φn the characteristic function of
√

nMn(T ) and N
n
(t) =√

n
[
Ñn(t) − E(Ñn(t)|Fn

t−1)
]

for t = 1, . . . , T . For all λ ∈ R
I

Φn(λ) = E
[
exp i〈λ,

√
nMn(T )〉√n

]

=
T−1∏

t=0

E
[
exp i〈λ, N

n
(t)〉√n

]

=
T−1∏

t=0

[
1 − 1

2
tλV(N

n
(t))λ + ◦

(
V(N

n
(t))
)]

= exp[−1

2

T−1∑

t=0

tλV(N
n
(t))λ]

From the proposition C.1 we deduce that

Φn(λ)
n→∞−−−→ exp[−1

2
tλΓλ]

Proof of theorem 3.2: The Taylor’s development of F gives:

√
n
(
F (Ñn(t)) − F (yt)

)
=

√
ndytF.(Ñn(t) − yt) + O(

√
n‖Ñn(t) − yt‖2

1)

= dytF.Xn(t) + O(‖Ñn(t) − yt‖1)X
n(t)
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Then for all t ≥ 1

Xn(t) = Xn
0 +

t−1∑

s=0

(
dysF.Xn(s) + O(‖Ñn(s) − yt‖1)X

n(s)
)

+
√

nMn(t)

and

Xn(t)−Xt = (Xn
0 −X0)+

t−1∑

s=0

dysF.(Xn(s)−Xs)+ (
√

nMn(t)−Mt)+ ǫn(t)

where Xt verifies the equation (10) and ǫn(t) =
∑t−1

s=0 O(‖Ñn(s)−yt‖1)X
n(s).

As the same as the proof of the theorem 3.1, we deduce by Gronwall
inequality that

sup
t≤T

‖Xn(t)−Xt‖1 ≤ (‖Xn
0 −X0‖1+sup

t≤T

‖√nMn(t)−Mt‖1)e
CF T +sup

t≤T

‖ǫn(t)‖1

where CF = ‖dF‖∞.
The first term in the brackets converges to 0 in L1 by assumption and

the second term by the lemma 3. By theorem 3.1 and lemma 2 we deduce
the convergence of supt≤T ‖ǫn(t)‖1 toward to zero. The exponential function
being independent of n this completes the proof of the theorem.
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