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Preface 
 

Separation of concerns is an interesting design concept which is more or less addressed in 

various paradigms objects, aspects, components and, services in order to achieve software 

reusability and adaptability. Composition of these concerns is a key issue in software 

development.  

The goal of the workshop is to bring the researchers to discuss on software composition 

according the paradigm which is used, the degree of dynamicity, the stage in the software life 

cycle, the application domain and the software variability. More generally, the unique 

contribution of this workshop is to view composition as it is impacted by several points of 

variation associated for example to the context of reuse, the time of composition or the 

business domain.  

Composition can be applied in particular on Objects, Aspects, SOA, Component-Based 

architectures and may address various phases of the development process such as: GUI, 

design, programming, deployment, and maintenance. We have been particularly interested in 

having contributions dealing with any combination of a topic taken in “Composition and 

paradig ” and “Composition and product line” in order to get a view of the composition 

process colored with variability issues. 

We had eleven submissions and the program committee selected only seven of them on the 

basis of novelty, relevance to the AOSD community, and adequacy to workshop objective. 

According to the papers which had been selected the workshop will address in particular the 

following topics:  

 Dynamic (re) configuration, adaptation and composition, 

 Language features for composition and Software Product Lines. 

The proceedings are printed as an internal report of the I3S Laboratory
1
 and will be included 

as the Vol-564 on CEUR-WS.org. They may be reached at http://CEUR-WS.org/Vol-564/. 

 

 

 

On behalf of the organizing committee 

 

 

                                                 
1
 Internal reports may be reached at the URL : http://www.i3s.unice.fr/I3S/ 

http://ceur-ws.org/Vol-564/
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A Dynamic Software Product Line Approach using
Aspect Models at Runtime

Tom Dinkelaker1 Ralf Mitschke1 Karin Fetzer2 Mira Mezini1
1Technische Universität Darmstadt, Germany

{dinkelaker,ralf.mitschke,mezini}@cs.tu-darmstadt.de
2SAP Research Dresden, Germany

karin.fetzer@sap.com

ABSTRACT
Dynamic software product lines (DSPLs) are software prod-
uct lines, which support late variability that is built into
the system to address requirements that change at runtime.
But it is difficult to ensure at runtime that all possible adap-
tations lead to a correct configuration. In this paper, we
propose a novel approach for DSPLs that uses a dynamic
feature model to describe the variability in the DSPLs and
that uses a domain-specific language for declaratively im-
plementing variations and their constraints. The approach
combines several trends in aspect-oriented programming for
DSPLs, namely dynamic aspects, runtime models of aspects,
as well as detection and resolution of aspect interactions.
The advantage is, that reconfigurations must not be speci-
fied for every feature combination, but only for interacting
features. We have validated the approach in an example dy-
namic software product line from industry and preliminarily
evaluated the approach.

Keywords
Dynamic Software Product Line Engineering, Dynamic Fea-
ture Models, Domain-Specific Languages

1. INTRODUCTION
Large scale information technology infrastructures are the

backbone of many enterprise processes. Yet these systems
are driven to continuous adaptation, due to changing re-
quirements [10]. However, the evolutionary transitions for
crucial enterprise information systems must be smooth and
not hamper current running business processes [18]. Hence,
methods and mechanisms for dynamic adaptation of the
software system are required.

The challenge of building dynamically adaptable software
systems is how to define suitable methods and mechanisms
for the dynamism. An ad-hoc approach is to use exist-
ing variability mechanisms (e.g., if -statements, method dis-
patch) directly in the architecture, and/or the underlying

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
First Workshop on Composition and Variability’10 Rennes, France colo-
cated with AOSD’2010
Copyright 2010 ACM ...$10.00.

implementation. However, lacking appropriate methodolo-
gies for building such software systems, the rising complexity
(i.e., number of configurations, complex re-configuration re-
lationships) can limit the number of dynamic re-configuration
points to a few well-defined ones (e.g., all points at which
variability must be supported must be known at design time,
and the corresponding if-statements and all possible varia-
tions must be provided).

Dynamic software product lines (DSPLs) [11, 13] are an
emerging field that can systemize the configuration space in
dynamically adaptable software system. Thus, DSPLs break
down the complexity of managing dynamic re-configuration
points by modeling them explicitly in a product line ap-
proach as late variability [22]. Central to software product
lines (SPLs) are features, where a feature is a distinct prop-
erty of the software product. The late variability can be
represented through dynamic features, i.e., features that can
be (de-)activated in a running software system.

A research challenge for DSPLs is to find suitable variabil-
ity mechanisms to support dynamic features in the underly-
ing architecture and implementation. The mechanism must
not constrain the range of existing techniques used to build
product lines, i.e., it should peacefully co-exist with model-
driven and generative techniques. Further, the mechanism
should be able to cope with dynamic features that affect sev-
eral modules and require modification of several classes or
components in the product line. It should also detect and
resolve interactions between features, in particular feature
interactions that are not statically detectable but arise for a
set of dynamic contexts of the configuration.

An interesting research question for aspect-oriented pro-
gramming (AOP) [16] is how far dynamic AOP [2, 20, 19, 5,
7] is capable as a variability mechanism for dynamic SPLs.
For example, dynamic aspects [4] have been used to im-
plement business rules. Although dynamic AOP solutions
provide a flexible variability mechanism, they do not pro-
vide appropriate support for declaring, detecting, and re-
solving dynamic interactions. Most dynamic AO solutions
only provide support for defining the precedence of aspects
[2], i.e., defining the execution order of their advice. But
these precedence relations are inappropriate for expressing
exclusions, i.e., one cannot declare that one aspect does not
allow another aspect to be present. Furthermore, dynamic
dependency relations between the features implemented by
aspects cannot declare that one aspect needs another aspect
to work correctly. The works in [20, 5] support static decla-
ration of exclusions and dependencies between aspects, but
do not address dynamic interactions.



In DSPLs the dynamicity in the exclusion of features is of
great interest. The problem with static exclusions and de-
pendencies is that they must be declared permanently (e.g.,
aspect A always excludes aspect B) and are enforced inde-
pendent of the fact that aspects A and B may not actually
conflict because the aspects are never applied at the same
points at runtime. This is too conservative and disallows
meaningful compositions of dynamic features.

For example, a workflow requires an approval step, which
can be automatic manual. Modularizing the variability in
the approval step entails interaction between the automatic
and the manual variants, because the goal of immediate au-
tomated approval is violated by waiting for a manual ap-
proval. The repetitive manual approval following an auto-
mated appoval would be a waste of human resources.

However, using more powerful declaration mechanism, we
can declare that both dynamic features be selected at once
and affect different parts of the DSPL, with the exception of
cases in which conflict occurs. For example, when the auto-
matic approval is only applied to orders that have a certain
state (e.g., exceeds a certain amount), a conflict occurs only
for those particular orders and must be resolved only when
this runtime condition is satisfied. The other orders are only
affected by the manual approval without any conflicts.

In this paper, we propose mechanisms to detect and re-
solve such context-dependent interactions between features
in a DSPL. The contribution of this paper is twofold. On
the one hand, we adopt DSPLs as a systematic framework
in which complex dynamic software systems can be planned
and managed by modeling late variability. On the other
hand, we provide support for detecting and resolving context-
dependent interactions by validating an aspect-oriented (AO)
model at runtime.

First, we extend existing DSPL approaches by a novel no-
tation termed dynamic feature model that allows us to model
late variability. Feature models are a widely used nota-
tion, that models the configuration space of software product
lines, yet they lack explicit support to model late variabil-
ity. Our notation extends feature models to capture dynamic
features, i.e., features that may be (de-)activated at runtime,
and to model their runtime constraints. Thus we provide an
explicit representation of dynamic re-configuration points in
an adaptable software system.

Second, we propose a novel approach for DSPLs on top of
a dynamic AO runtime environment with a meta-aspect pro-
tocol [7] that is used as a dynamic feature manager. We map
dynamic feature models to aspect-oriented models that are
available as first-class entities in running products. DSPLs
are delivered with the AO runtime environment, through
which (de-)activation of dynamic features is enabled, which
updates dynamic feature model representation, takes care
of the composition of dynamic features, as well as it detects
and resolves dynamic feature constraints.

We have validated the approach by evolving a static soft-
ware product-line from industry into a DSPL in a case study.
Furthermore, we have evaluated the performance overhead
of dynamic aspects in the context of SPLs. The results in-
dicate that the approach copes well with performance re-
quirements, also in the presence of the special scalability
requirements of SPLs.

The remainder of this paper is structured as follows. Sec. 2
illustrates the example SPL and motivates late variability.
In Sec. 3, we present dynamic feature models for modeling
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Figure 1: Late variation point for approval step in
the order management business process

late variability and give an overview of the methodology.
In Sec. 4, we describe how dynamic aspects can be used to
realize dynamic SPLs. Sec. 5 presents the case study. Sec. 6
evaluates the approach. Sec. 7 discusses related work. Sec. 8
concludes the paper and outlines future work.

2. LATE VARIABILITY IN AN SPL
Our example SPL is the Sales Scenario, which is a soft-

ware system for the management of business data, including
central storage and user-centric information inquiry. The
main focus of the Sales Scenario is on stock sales processes,
where the core processes are customer order management,
payment, account management, stock management and com-
munication. The main goal of the Sales Scenario is to inte-
grate all processes and corresponding data of an organization
into one system. The system addresses sales processes for
both mid-sized and large enterprises. The business processes
themselves are customizable, often in multiple independent
variations. For example the order management process can
include a quotation management (i.e., placing strategic of-
fers to customers) or sales order processing (i.e., tracking of
individual orders).

The customer needs for these features vary depending on
the business size of the customer, thus making it advanta-
geous for the software provider to implement the system as
a SPL. The products resulting from the SPL might be as
small as a simple way to keep track of executed orders, or
as large as a complete sales management system, in which
everything from the first idea of a sales opportunity to the
delivery and payment of the sold product can be managed.

The processes in the Sales Scenario are modeled using
model-driven techniques. Thus, we can identify variation
in the processes on the model level. For example, Fig. 1
depicts a short version of the order management process,
which consists of at least three steps: “receive” (order is
received from a customer), “pack” (order items are prepared
for delivery), and “ship” (order is sent to the customer). The
lower part of Fig. 1 models an example of late variability in
the order management process. The modeling elements with
solid lines describe the static part of the process. The receive
step is subject to a dynamic variation that is described using
modeling elements with dashed lines.

As an example for late variability, we model an additional
approval step after an order is received. We have identified
two subcategories of approval, namely a manual approval,
which requires human interaction with the system, or an
automated approval, e.g., a check if the order is issued by
credit-worthy customers. To provide flexibility we allow cus-
tomers of the product line to adapt their software system



from one process model to another without the need to re-
deploy the whole system. Therefore, these two variants of
approval processes are modeled as dynamic features.

A conceptual problem arises when multiple dynamic fea-
tures are composed, e.g., when a customer activates both
of the above features at once, as indicated in the last row
of Fig. 1. When composing the features, it is necessary to
take into account their semantics. One solution would be
that the automated approval manages all orders and that
we require human intervention only in cases where the au-
tomation does not approve of an order. However, we cannot
describe such compositions with the current technology.

Existing approaches support a form of linear composition
for features, by controlling their order through precedences
[1, 19, 5]. But, declaring that the automated approval step
precedes the manual approval step is not enough, since we
want to declare that the automated approval must be exe-
cuted and that the manual approval must be skipped. The
above approaches also provide composition strategies to de-
clare and enforce a static exclusion constraint between fea-
tures. For example, the manual approval feature always ex-
cludes the automatic approval feature in all configurations.

The problem is that static precedences and exclusions are
too conservative. If the constraint between features only
occurs in a certain (runtime-) context, such strategies are
inappropriate. A correct strategy must take into account
the application context. For example, a manual approval is
selected only for a certain group of orders, e.g., orders with
a high quantity, while the rest is approved automatically.
Without knowledge of the domain and application seman-
tics, we cannot express such a composition scenario at the
level of feature modeling.

3. MODELING DYNAMIC SPLS
Dynamic feature models are an extension of existing ’static’

feature model notations, such as [6], and provide a special-
ized notation to specify the product lines dynamism and run-
time constraints. The dynamic constraints allow expressing
i) that the activation of one dynamic feature requires that
another dynamic feature be active as well. This constraint
is termed implies in dynamic feature models and allows SPL
designers to model requirements on the reconfiguration logic
of the DSPL. Furthermore, we model ii) that two features
must not be simultaneously active, by constraining them
with excludes. This constraint allows restricting the run-
ning system from activating both features, if an SPL de-
signer deems their combination harmful due to possible in-
teractions. The iii) precedes constraint declares that an in-
teraction of features is allowed and states a resolution strat-
egy, which grants one feature precedence over another. The
precedence is not exclusive, thus all features are active but at
interacting points, the precedence defines an order in which
the features are taken into account.

Dynamic
Feature A

Dynamic 
Feature B

<<constraint >> implies

excludes

precedes

i)

ii)

iii)

<<constraint >>

Figure 2: Notation of dynamic features

Fig. 2 depicts the visual representation of dynamic feature
models and the possible constraints. Dynamic features are

depicted with dashed border lines. Likewise dynamic con-
straints are modeled using dashed arrows.

We impose some limitations in the usage of our constraints.
First of all, the conjunction of implies and excludes is for-
bidden, as this combination is not satisfiable by the DSPL.
For multiple features with multiple precedes constraints we
disallow cycles, thereby all involved precedence constraints
must form a chain. Furthermore, the combination of pre-
cedes and excludes ii) + iii) is allowed and states that the
feature with the highest precedence is the only one taken
into account at points where these features interact.

Static constraints may also be formulated between dy-
namic and static features. For example, a dynmic feature
requires the presence of a static feature. The static con-
straints must be enforced with the same semantics as having
static constraints between static features.

4. DSPLS USING DYNAMIC AOP
Our approach realizes a DSPL by mapping dynamic fea-

tures and their interactions to an aspect-oriented model at
runtime. The AO model consists of first-class entities, such
as dynamic aspects and their pointcuts-and-advice, primitive
pointcut designators that match join points, and rule base
with declared constraints on aspect interactions. Dynamic
features are mapped to dynamic aspects, which adapt late
variation points in the DSPL. To enforce the modeled con-
straints, feature interactions are mapped to constraints on
dynamic aspects. The aspect model is used as a first-class
runtime representation of the dynamic feature model. The
AO model is validated to ensure consistency when features
are dynamically activated and deactivated at runtime.

To express dynamic features in terms of dynamic aspects,
SPL developers define a DSL. This language, also denoted
as dynamic feature language (DFL), incorporates the neces-
sary abstractions for the specification of dynamic features in
terms of domain concepts. In addition, the DFL provides the
required aspect-oriented machinery to declare constraints on
dynamic features, as well as semantics for the composition of
dynamic features. The DFL enables a safe feature composi-
tion, because dynamic feature interactions are automatically
detected.

As the underlying language technology for implementing
the DFL, we use Popart [7], which is a dynamic aspect-
oriented language that provides generic AO mechanisms and
that is extensible for new domain-specific syntax and se-
mantics. Domain extensions are integrated into Popart to
create a complete SPL-specific aspect language.

The process of defining a DFL consists of the steps: 1) late
variation points are identified and modeled as a domain-
specific join point model (DS-JPM) [8], 2) late VPs are
made available for the DFL using a domain-specific pointcut
language DS-PCL [8] that quantifies over the DS-JPM, 3)
the results are integrated with a generic declarative aspect-
oriented language, that provides commonly used AO con-
cepts (e.g., before/after/around advice). The resulting dy-
namic feature language is thus summarized as: DFL = DS-
JPM + DS-PCL + Generic AO Concepts.

4.1 Modeling Late VPs (DS-JPM)
The first step of the SPL developer is to analyze the design

of the SPL for possible late variation points and model them
in a dynamic DS-JPM. For each late variation point, the
developer defines the context for this VP, i.e., a properties



map that defines identifiers referring to relevant values, e.g.,
the identifier “customerOrder” refers to the business object
in the dynamic context of the running application.

Late VPs can be defined at various levels of abstraction
in the SPL and thus identify different artifacts, e.g., model
elements or source code points. At the model level, late VPs
are modeled as annotations on modeling elements. For ex-
ample, in a UML activity diagram, one activity is annotated
to be dynamically variable. These annotated modeling ele-
ments are treated in a special way by code generators. Late
VPs require a facility for dynamic de-/activation, thus, the
respective source code elements for the model elements are
generated, e.g., classes or methods, and the de-/activation
is provided by generating domain-specific aspects for these
source code elements. At the code level, the late VPs refer
to code elements, such as a class, an attribute, a method,
or an expression in the body of a method, e.g., when an ac-
tivity is implemented in a method, the late VP casts on the
call to this method.

An excerpt of late VPs that we have identified in the Sales
Scenario inside the order management workflow is presented
in the following:

1) Payment type selection: The customer chooses a
specific payment type, e.g., credit card or cash-on-delivery.
This step presents various payment types to the customer.
Variation at this point can restructure the choice of payment
types, e.g., filtering to a more specific list. The context
made available at this late variation point are the choice
of payment types presented to the customer as well as the
customer’s concrete choice.

2) Price calculation: The price of an order or a quota-
tion is calculated as the sum of the prices of the contained
order items. This is a late variation point, that allows to in-
troduce new pricing strategies and override existing strate-
gies, e.g., to define a discount and allowances on the price.
The context is the order for which the price is calculated.
From the domain model this implies the exposure of the in-
dividual items in the order, since they are accessible via the
order.

3) Receive order: The first step in the order manage-
ment is the reception of new orders. In the Sales Scenario
orders enter the workflow with all information on the cus-
tomers and the payment modalities. This step is a late vari-
ation point such that we can insert an approval step before
packing and shipping the order. Such an additional step
then approves whether the customer is trustable before an
unpaid cash-on-delivery order is shipped. The available con-
text is the customer, the order, and the selected payment
method.

From the identified late variation points the SPL devel-
oper builds the DFL for a particular dynamic software prod-
uct line. To allow the dynamic aspects to intercept the late
variation points of the DSPL, the SPL developer declares
an instrumentation 1 of the SPL implementation, that rei-
fies SPL concepts. Using this instrumentation we define a
domain-specific join point model. In this DS-JPM, each late
variation point is represented through a SPL-specific join
point type as a sub-class of JoinPoint and its context is a
properties map. For the above late variation points, the SPL
developer defines join point types: 1) PaymentTypeSelec-

tionJP, 2) PriceCalculationJP, and 3) ReceiveOrderJP.

1In the case-study AspectJ aspects are used to reify runtime
information.

1 class SalesScenarioDFL extends PointcutDSL {
2 ...
3 Pointcut receive order (long quantity ) {
4 return new ReceiveOrderPredicate(quantity );
5 } }
6

7 class ReceiveOrderPredicate extends PrimitivePCD {
8 ReceiveOrderPredicate(long quantity ) {...}
9 ...
10 boolean match(ReceiveOrderJP jp) {
11 long orderOuantity = computeQuantity(jp.context.get(”order ”));
12 if ( orderOuantity < quantity ) return true ;
13 return false ;
14 } }

Figure 3: Excerpt of the Sales Scenario DFL imple-
mentation for selecting an example late VP

The AO instrumentation of the SPL binds context values at
late variation points to instances of these join point types.
The full technical details of the definition of a DS-JPM are
elaborated in [8].

4.2 Quantification over Late Variation Points
(DS-PCL)

To allow the dynamic features to quantify over late vari-
ation points, the SPL developer declares predicates on the
late variations points. In principle, a dynamic feature can
select every one of the defined late variation points. All late
variation points are made available by a set of predicates,
which can be combined using logical expressions (and, or,
not). For each late variation point, a predicate is defined
that selects this point. For the above late variation points,
the following predicates are defined: 1) payment_type, 2)
price_calculation, and 3) receive_order.

Further, the predicates can be parameterized, e.g., to con-
strain late variation points depending on runtime values of
the application context. For example, receive_order(quantity)
defines a parameterized predicate that filters late variation
points, where the quantity of the order is less than a certain
threshold, e.g., receive_order(1000) selects the late vari-
ation points of all orders with a quantity of less than 1000
units. Fig. 3 depicts the implementation of the receive_or-

der(quantity) predicate, which constitutes a domain-specific
keyword in the Sales Scenario DFL. Using the POPART
framework, the receive_order(long) method becomes a
keyword in the aspect runtime that can be used to declare
where a dynamic feature is active. The concrete matching
happens in the ReceiveOrderPredicate, where the match

method of the framework is adopted to match at join points
(ReceiveOrderJP) that have an order in their runtime con-
text, that contains a quantity lower than the threshold. For
every predicate, the domain-specific pointcut language (DS-
PCL) defines a domain-specific keyword that selects the join
points of the corresponding late variation point. Each DS-
PCL keyword creates a primitive pointcut designator as a
sub-class of Pointcut in the AO model used to filter Join-

Point objects. More details about implementing a DS-PCL
are elaborated in [8].

4.3 Generic AO Concepts
To define dynamic features as aspects the following general-

purpose AO concepts are provided by Popart and reused in
the DFL. The aspect keyword defines a new dynamic aspect
module, parameters define its name and initial activation



status (deployed), i.e., active (true) or inactive (false).
Popart allows to define where to insert actions at a late
variation point using before/after advice, which execute
before or after reaching the late variation point. In addi-
tion, around advice replaces the actions of a late variation
point and proceed invokes the replaced actions in an around
advice. To define constraints from the feature model the
following mechanics are used: i) assert validates a boolean
expression when loading the aspect and is used to model
dependencies to static features. ii) declare_dependency,
declare_exclusion, and declare_precedence are used to
declare aspect interaction constraints that are detected and
resolved at runtime by Popart.

4.4 DSPL specific AO language (DFL)
To instantiate the DFL, the SPL developer mixes the ex-

isting generic AO language with the specific parts for the
SPL. Popart take care that all common and specific parts
of the AO syntax are integrated together into a SPL-specific
aspect language

Using the DFL, each dynamic feature is mapped to a dy-
namic aspect. The aspect is declared with a unique name,
that maps to the corresponding feature and the aspect is
either active or not depending on the (default) choice of the
user. For each specific variation at a late variation point,
the aspect defines a pointcut-and-advice. Its pointcut uses
the DS-PCL to quantify over join points (i.e., it intercepts
the execution of a late variation point) and its advice de-
fines how to adapt selected variation points by inserting or
replacing certain actions at the join point (i.e., it adapts a
late variation point). We will discuss concrete examples of
dynamic aspects in the next section.

Each constraint on dynamic features is implemented as
an aspect interaction in one of the aspects. A dynamic con-
straint is defined using one of the declare-keywords. For
implies, an aspect declares declare_dependency between
the two aspects with the corresponding feature names. For
excludes, the aspect uses declare_exclusion; and for prece-
dence, the aspect uses declare_precedence instead. Note
that for symmetric constraints such as excludes it does not
matter which aspect actually declares the interaction. Re-
call that dynamic feature models are an extension to ’static’
feature models. A static constraint on features can also be
defined using the assert keyword.

Using our AO model at runtime for the composition of
features and the detection and resolution of constraints has
several advantages. First, there is no need to consider all
combinations of feature selections. When dynamic features
are selected or deselected at runtime, the DSPL is automat-
ically adapted by Popart as aspects are composed at join
points in the runtime model of the application. Second, the
dynamic AO mechanisms allow the declaration of runtime
context-dependent feature interactions in conjunction with
a continuous enforcement of these constraints by validating
possible aspect interaction as specified in the rule base of
the AO model. Thus the DFL allows the safe specification
of features that interact with each other, because advice are
ordered, conflicting advice are never executed at the same
time, and dependencies are enforced. We will see example
resolutions in the next section.

5. CASE STUDY
To validate our concept, we have implemented the Sales

Scenario as an example dynamic SPL, parts of which were
introduced in Sec. 2. While static variability is modeled and
implemented using existing technologies, the late variability
is modeled and implemented using the technology that is
presented in this paper and that helps to manage late vari-
ability. The late variability technology seamlessly integrates
with the above technologies in the Eclipse-based workbench.
In the remainder of this section, we first summarize the static
part of the Sales Scenario, then we elaborate how the dy-
namic features are implemented using the feature DSL.

For the implementation of the static part of the SPLs, we
used the Eclipse based facilities for developing SPLs, pro-
vided by the feasiPLe research project [9]. The static vari-
ability is modeled and implemented using extension of ex-
isting methodology, adapted by feasiPLe to better support
model-driven and aspect-oriented software development of
SPLs.

To give a short overview of the methodology: 1) we de-
signed domain-specific languages (DSLs) for the different ap-
plication domains (e.g., process, business objects, graphical
view, etc.) as Ecore2 metamodels, and instantiated them
into variant independent models (VIMs). 2) The model el-
ements in these models were then mapped to features us-
ing the FeatureMapper [15], and 3) using this mapping the
VIMs were transformed into variant specific models (VSMs)
using pure::variants3 For each DSL, we also implemented
4) one code generator in Xpand4 , and generated Java and
AspectJ [1] code based on these VSMs using the code gener-
ators. In summary, the Sales Scenario has 27 static features
and six dynamic features. The implementation consists of
4,000 Java hand-written lines of code (LOC), 17.000 LOC
generated Java, 10.000 LOC related to oAW artifacts, 6,000
LOC AspectJ, and 130 LOC Groovy/Popart.

In Fig. 4 the dynamic feature model of the Sales Scenario
is presented, of which we will discuss first the dynamic ap-
proval feature, and then the dynamic pricing strategy fea-
ture. The purpose of the dynamic approval feature is to
validate customer creditability to reduce risk for large quan-
tity orders. An implementation of the dynamic approval
feature from the Sales Scenario is shown in Fig. 5. In lines 1–
8, the class OrderManager (realizing the Customer Order

Mgmnt feature) is shown that is part of the static part of
the SPL. It implements one method for each step in the
order management use case, i.e. receive, pack, and ship.
The execution of the method receive (lines 3–5) constitutes
a late VP as modeled in the previous section. In Fig. 3, the
class ReceiveOrderJP represents executions of the receive

method and is used to declare the receive_order predicate.
This predicate is used in lines 10 and 15 (parameter quan-

tity is optional), to specify where the different approval
steps are inserted.

For the dynamic features, the three aspects in the ex-
ample are deployed to the running system. The Manual-

Approval aspect defines a pointcut that selects the late VP
of the receive step by using the corresponding predicate re-
ceive_order defined in Sec. 4. The advice extends the SPL
at the selected variation point by opening a dialog (line 11)

2http://www.eclipse.org/modeling/emf/
3http://www.pure-systems.com/
4http://www.openarchitectureware.org/
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Figure 4: Dynamic feature model of the Sales Scenario; extending notation from [6] with dynamic features

1 class OrderManager {
2 ...
3 void receive (Order order) {
4 //receive the order from customer ( is a dynamic VP)
5 }
6 void pack(Order order) {...}
7 void send(Order order) {...}
8 }
9 aspect(name:”ManualApproval”, deployed:true) {
10 after ( receive order () ) {
11 boolean trustable = UI.openApprovalDlg(order).isCustomerTrustable ();
12 if (! trustable ) // clarify customers creditibility
13 } }
14 aspect(name:”AutomaticApproval”, deployed: false ) {
15 after ( receive order (100) ) { ... } }
16 aspect(name:”CreditCheck”) {...}
17 aspect(name:”ApprovalInteraction ”, deployed: true) {
18 declare exclusion ”ManualApproval”, ”AutomaticApproval”;
19 declare precedence ”AutomaticApproval”, ”ManualApproval”;
20 declare dependency ”AutomaticApproval”, ”CreditCheck”;
21 }

Figure 5: Dynamic feature: order approval

for the manual approval in a user interface. If the user is not
trustable, a sub-workflow is invoked (line 12) to clarify the
status of the customer, e.g., the customer presents further
credentials, pays the order before shipment, or the process is
aborted. The aspect AutomaticApproval (line 15) is imple-
mented similarly to the manual approval feature, but only
executes at late VPs where the quantity of the received order
is smaller than 100. As an automation, customer creditabil-
ity is checked via the corresponding credit card. To illustrate

the SPL dynamicity, the AutomaticApproval aspect is not
deployed (i.e. inactive) during startup. At a later point,
i.e. when the company exceeds a certain amount of placed
orders, the automated approval is deployed.

The feature interaction between the two approval features
is mapped to an aspect constraint, which is delcared in a sep-
arate aspect (ApprovalInteraction). Line 18 declares the
aspects ManualApproval and AutomaticApproval to be mu-
tually exclusive, i.e., they may not affect variation points at
the same time. The following line declares the precedence
constraint between the two features. We choose to declare
the interaction in a separate aspect, because this has the
advantage that the implementation of the two aspects is in-
dependent from each other. When the AutomaticApproval

aspect is deployed, the interaction at the late VP is detected
and resolved according to the constraints. Because of the dy-
namic exclusion constraint in line 18, a conflict is detected
that is resolved by taking into account the dynamic prece-
dence constraint in line 19. As the AutomaticApproval has a
higher precedence, its advice will be executed and the advice
of ManualApproval are skipped. Because of the dynamic
dependency constraint in line 20, the advice of Automatic-

Approval requires the CreditCheck feature to be deployed.
For the Sales Scenario, we have implemented a flexible

pricing strategy feature using our late variability support,
to introduce new pricing strategies as dynamic features into
a running product line. The static part of our SPL comes
with a simple pricing strategy that calculates the price of an
order by calculating the sum of the price of its order items.
However, in the context of discounts, allowances and taxes,
the actual price of an order depends on various requirements



1 aspect(name:”VATPricing”) {
2 final float VAT FACTOR = 1.19; //Currently the German VAT is 19%
3 around ( pricing ()) {
4 return proceed() ∗ VAT FACTOR;
5 } }
6 aspect(name:”EnterpriseDiscount ”) {
7 assert Class .forName(”EnterpriseCustomer”) != null ;
8 ...
9 }
10 aspect(name:”QuantityDiscount”) {...}
11 aspect(name:”PricingInteraction ”) {
12 declare precedence ”QuantityDiscount”, ”VATPricing”;
13 declare precedence ”EnterpriseDiscount ”, ”VATPricing”;
14 declare exclusion ”EnterpriseDiscount ”, ”QuantityDiscount”;
15 declare precedence ”EnterpriseDiscount ”, ”QuantityDiscount”;
16 }

Figure 6: Dynamic feature: pricing strategy

from the business domain, e.g., there are business rules that
add the value added tax (VAT) to the order price, depending
on the customers country or rules that give various discounts
to certain customers. In the context of discounts, the inter-
action of features is again of high interest. Depending on the
actual context, two discounts are applicable to one order at
the same time, or only one discount is allowed to be applied.

A late VP has been inserted into the price calculation of
orders that exposes the necessary context, such as the order,
its items, and the customer. We use 3 aspects shown in
Fig. 6 for realizing the dynamic pricing features: 1) VATPric-
ing: calculating the VAT, 2) EnterpriseDiscount: giving
a discount to enterprise customers5, and 3) QuantityDis-

count: a special discount is applied when the order contains
a large quantity of items. Note that all aspects advise the
same late variation point through the pricing predicate.

In this scenario the dynamic feature interactions between
the pricing strategies must be handled by appropriate aspect
constraints (Fig. 6), as declared in the PricingInteraction

aspect. The tax calculation is performed after all other cal-
culations have been applied, consequently the VATPrice as-
pect is declared to have the lowest precedence, using the
aspect precedences in lines 12 and 13. The Enterprise-

Discount feature requires that the static feature Enterprise
has been selected for the product. To check the presence,
an assertion is used to check whether the class Enterprise-
Customer, corresponding to the Enterprise feature, is avail-
able in the product. This static assertion is checked during
startup of the application.

The EnterpriseDiscount and the QuantityDiscount ex-
clude each other (line 14), since for these particular discounts
in the product line we choose to disallow double discounts.
Such a situation arises only if an order contains a significant
quantity of items and is ordered by an EnterpriseCustomer.
Because of the exclusion constraint in line 14, the interaction
of QuantityDiscount and EnterpriseDiscount is detected
as a conflict. Because in line 15 the EnterpriseDiscount

is declared to have a higher precedence than Quantity-

Discount, Popart can resolve this conflict by not excluding
the effects of the dynamic feature with a lower precedence,
i.e. QuantityDiscount, in the composition.

5The order business object (BO) refers to the corresponding
customer BO, which is typed as a representative of a com-
pany or a private customer. We use the type to decide if the
discount should be applied.

6. EVALUATION
There are certain limitations in the current implementa-

tion that prevent our technology to be used in production.
1) In a real-world business scenario, new business rules

would need to be defined and loaded to the Sales Scenario
during its lifetime. In the case study, we provide support
only for de-/activation of features via a management con-
sole. For convenient runtime evolution a special manage-
ment console is required, through which new dynamic fea-
ture can be uploaded into a running system. Popart comes
with the necessary support, since it allows to deploy aspect
definitions provided as a String, due to its roots in Groovy.

2) Our approach does detect feature interactions if the in-
teracting aspects affect the same join point, but omits cer-
tain indirect interactions, e.g., two aspect accessing shared
state. Such interactions are also possible using our approach,
i.e. through the contexts available to aspects. Using these
interactions in a structured way can prove advantageous.
For example in the Sales Scenario this allows us to define
a manual approval, that checks in the context of the join
point, that the order was not automatically approved and
only in this case asks the user with a feedback. However,
such interactions are currently not detected by Popart and
are not modeled at the level of the feature model. How to
capture such feature interactions in a structured way at the
modeling level is an interesting research question.

3) When deploying new dynamic features at runtime, the
integrity of internal state of adapted use cases is not ensured
by Popart. Adapting a running use case that has an inter-
nal state is difficult, as for example previously started stack-
frames may be omitted from the aspects execution leading
to erroneous internal state. In our case study, we did not ex-
perience such problems because deploying aspects was only
allowed after all running instances of a business process, e.g.
the order management use case, were completed.

To evaluate our approach w.r.t. performance scalability,
we have determined the relative instrumentation overhead
incurred by the AO runtime. We executed our Sales Sce-
nario case study with and without our AO runtime, i.e., in
Popart and in Java. To measure the bare instrumentation
overhead, we do not apply any dynamic aspects at the de-
clared late VPs. Thus the basic AO instrumentation is in
place and delegates to our matching algorithm, which does
almost nothing, i.e. iterating over an empty list of poten-
tial dynamic aspects. We measured the relative overhead
incurred by the instrumentation for repeating execution of
the variation point and found the approach to scale well with
the number of late VPs. When the VP is executed only once
there is a large overhead of 97%, but when the late VPs is
visited more often, the overhead is reduced to a value as
low as 0.8% (1000 executions). This is due to a dynamic
adaptive optimization applied by the Java virtual machine,
which identifies frequently called methods at runtime and
performs more advanced optimizations such as inlining.

7. RELATED WORK
Most AOP tools only support aspect precedences similar

to AspectJ [1]. Several AOP tools allow expressing aspect
dependencies (such as [19, 7]) but there is little work on
context-dependent interactions [14, 17, 7].

Context-oriented programming [5] supports modularizing
features into layers of functionality that can be activated



and deactivated at runtime. This work supports only static
dependencies between interacting features.

Research on dynamic product-lines [12] [13] is particularly
relevant. In [11], DSPLs are specified as a set of components
that can be exchanged at runtime. The components follows
the design of software reconfiguration patterns and have a
set of state charts that define all valid reconfiguration cases.
In contrast to our approach, components have to implement
patterns and interfaces, features with a crosscutting char-
acter are not modularized, and runtime evolution is disal-
lowed because all possible reconfigurations must be known
and enumerated into the state chart models at design time.

Cetina et al. [3] discuss possible architectures of dynamic
software product-lines and distinguish connected and dis-
connected architectures for DSPLs, depending on whether
the DSPL or the product is responsible for reconfiguration.
They propose to follow a hybrid approach that combines the
best of both, our approach can be used to implement such
a hybrid approach, because every product is delivered with
a runtime model of the DSPL. Our approach complements
their discussion by prosing a concrete realization.

Trinidad et al. [21] propose the realization of DSPLs
through a mapping of features onto components in a com-
ponent model. Their component architecture introduces the
specialized concepts of feature component that can be de-
/activated and feature relationship that can be un-/linked.
However, the approach does not consider crosscutting fea-
tures, it enforces only static constraints on features, and it
does not allow to consider runtime context.

8. CONCLUSION
We have proposed a novel approach for dynamic software

product-lines that uses a dynamic feature model to describe
the variability in the DSPLs. The approach combines several
trends in aspect-oriented programming for DSPLs, namely
dynamic aspects, runtime models of aspects, as well as de-
tection and resolution of aspect interactions. We have imple-
mented and validated the approach and preliminarily eval-
uation results show its scalability.

Although, current support for managing aspect interac-
tions is weak in existing dynamic AOP tools, we strongly
believe that dynamic AOP solutions in general can be used
for dynamic product-lines. The biggest challenges for dy-
namic AOP for DSPLs are a) addressing the limitations
found when building (static) SPLs that are also present in
dynamic AOP, b) improving the support to handle aspect in-
teractions in particular context-dependent interactions, and
c) scalability requirements, such as performance in case of
large DSPLs.

Future work will address the current limitations. In par-
ticular, we would like to provide better means to scope
feature constraints and wildcards in constraint expressions,
e.g., to specify that a constraint must be enforced a global
application scope, for all sub-features of a certain feature,
and for all features that names starts with a certain prefix.
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and B. Krämer. Service-oriented computing: A
research roadmap. International Journal of
Cooperative Information Systems, 17(2):223–255, 2008.
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ABSTRACT
We show how package templates, a mechanism for code mod-
ularization, can be extended with features for dynamic load-
ing. We pose the question of whether or not this is may a
useful mechanism with respect to software composition and
dynamic configuration of software.

Categories and Subject Descriptors
D.3 [Software]: Programming Languages; D.3.3 [Progra-
mming Languages]: Language Constructs and Features—
Classes and objects; D.3.3 [Programming Languages]:
Language Constructs and Features—Modules, packages

General Terms
Languages, Design

Keywords
OOP, Modularization, Dynamicity, Templates

1. INTRODUCTION
There are several challenges when working with a large soft-
ware system, including modularization, separation of con-
cerns and reuse. These challenges are large enough in them-
selves when writing, testing and maintaining a large system.
However, even more challenges arise when there are many
different variations of a system, when the environment chan-
ges over time and when new requirements and extensions
may arrive after the initial system has started running and
should not be taken down.

Given these challenges, it seems beneficial to have similar
support for such dynamic features as one has for the static
build of large systems. One mechanism that is useful in this
respect is the use of interfaces and abstract classes in writing
the system and the possibility of loading different implemen-
tations into a running system based on configurations and
runtime events. These implementations may be written and

separately compiled after the system they are loaded into
has been started.

Although a set of such classes may be written, compiled and
loaded together, they are still considered as separate entities
and not checked as one coherent entity upon loading. There
is no assurance that the individual classes belong to the same
version of the extension. In this work, we are looking at a
way to dynamically load an entity that represents a group of
classes in a package or template. We believe it to be useful
if one is allowed to take a group of statically checked classes,
that are compiled and tested together, and adapt them in a
coordinated fashion to an existing system.

A recent paper [15] describes a new language mechanism
called PT (short for Package Templates), which is meant to
be a useful tool for software composition. The mechanism
is intended for object oriented languages in order to support
better code modularization, where statically type-checked
templates can be written independently and subsequently
be instantiated in programs with such flexibility that classes
may be merged, methods renamed and new classes added.
Templates may contain hierarchies of classes (single inheri-
tance) and these hierarchies are preserved when a template
is used. Also, different instantiations of the same templates
are independent of each other, creating unique types.

The basic PT mechanism allows flexibility in package reuse,
program composition and support for readability and reusabil-
ity in large systems. The way that multiple classes may be
affected by instantiating a template gives the language an
AOP-like quality. More AOP-specific extensions to PT have
also been studied in [3].

In this work, we look at a possible extension to the basic
package template mechanism that supports dynamic load-
ing of package templates. We ask to what extent this will
be a useful tool for dynamic configuration of software sys-
tems. Furthermore, we discuss some of the properties of this
mechanism.

We introduce an extension to PT where templates are pa-
rameterized by templates. A template with template param-
eters must be instantiated with actual templates that “ex-
tend” the formal parameters’ bounds. In standard PT, all
instantiations of templates are done at compile-time. How-
ever, in this work we look at extending this concept so that
templates may be loaded dynamically into a running sys-



tem, not unlike how classes may be loaded dynamically in
languages like Java. We discuss how this can be achieved
with template extensions and with parameterized templates.

Being able to load classes dynamically into a system is use-
ful since it allows extensions to be written after the system
has started running. It also allows one to configure and re-
configure a running systems and for a system to configure
itself based on discovery of its environment.

Dynamically loading classes in a controlled type-checked
way has advantages over other dynamic linking mechanisms.
A compiler and loader will together have checked that the
loaded class can be used in a type safe way. Doing this at the
levels of templates, each containing several related classes,
extends the reach of this checking.

The mechanism proposed here for dynamically loading tem-
plates in PT preserves the relation between the classes in the
template and thereby supports family polymorphism [9]. It
has the advantage of the flexible adaption and name change
mechanisms of PT while still being dynamic. Since new
types are created when a template is loaded, different ver-
sions of the same software package can safely be used simul-
taneously in the same runtime without name clashes. Thus,
PT extended this way becomes more a mechanism of dy-
namic composition than a static mechanism of reuse and
extension.

We will first present an overview of the basic package tem-
plate mechanism. Then we will present templates that ex-
tend other templates and template parameterized templates.
After that, we will present dynamic loading before a discus-
sion and a survey of related work.

2. OVERVIEW OF THE PACKAGE TEMP-
LATE MECHANISM

We here give a brief and general overview of the package
template mechanism as it is described in [15]. The mech-
anism is not in itself tied to any particular object-oriented
language, but the examples will be presented in a Java-like
syntax, and the forthcoming examples will be based on Java.

A package template looks much like a regular Java package,
but the classes are always written in one file and a syntax is
used where curly braces enclose the contents of the template,
e.g. as follows:

template T {
class A { ... }
class B extends A { ... }

}

Valid contents of a template (with a few exceptions) are also
valid as plain Java programs. As such, templates may also
be type checked independently of their potential usage(s).

In PT, a template is instantiated at compile time with an
inst statement like below. This has some significant differ-
ences from Java’s import. Most notably, an instantiation
will create a local copy of the template classes, potentially
with specified modifications, within the package where the
inst statement occurs.

package P {
inst T with A => C, B => D;
class C adds { ... }
class D adds { ... } // D extends C, see text

}

In this example, a unique instance of the contents of the
package template T will be created and imported into the
package P. In its simplest form, the inst statement just
names the template to be instantiated, e.g. inst T, without
any other clauses. In the example above the template classes
A and B are also renamed to C and D, respectively, and ex-
pansions are made to these classes. Expansions are written
in adds-clauses, and may add variables and methods, and
also override virtual or implement abstract methods from
the template class.

An important property of PT is that everything in the in-
stantiated template that was typed with classes from this
template (A and B) is re-typed to the corresponding expan-
sions (C and D) at the time of instantiation (PT rules guar-
antee that this is type-safe). Any sub/super-type relations
within the template is preserved in the package where it is
instantiated. Therefore, implicitly D extends C since B ex-
tends A.

Another important property is that classes from different,
possibly unrelated, templates may also be merged to form
one new class, upon instantiation. Consider the simple ex-
ample below.

template T {
class A { int i; A m1(A a) { ... } }

}
template U {
class B { int j; B m2(B b) { ... } }

}

Consider now the following usage of these templates:

inst T with A => MergeAB;
inst U with B => MergeAB;

class MergeAB adds {
int k;
MergeAB m2(MergeAB ab) { return ab.m1(this); }

}

These instantiations result in a class MergeAB, that contains
the integer variables i, j and k, and the methods m1 and
m2.1 Note that both m1 and m2 now have signatures of the
form MergeAB → MergeAB.

Summing up, some of the useful properties of PT are: It
supports writing reusable templates of interdependent, co-
operating classes which may be statically type checked with-
out any information about their usage. Upon instantiation,
a template class may be customized, and merged with other
template classes. References within a template to a tem-
plate class will be re-typed according to the instantiation.
After all the instantiations, a PT program will have a set of
regular classes with single inheritance, like an ordinary Java
program.

1The handling of potential name clashes resulting from a
merge is beyond the scope of this article, but PT has rules
and the rename mechanism discussed to deal with this



3. TEMPLATE EXTENSIONS AND TEMP-
LATE PARAMETERS

In this section we propose an extension to PT where tem-
plates may have bounded template parameters. Dynamic
loading of templates will be presented in the next section.

To be able to enforce a bound on template parameters, we
also introduce the concept of a template extending another,
and thus also of sub-templates. A skeleton of a parameter-
ized template may look as follows.

template W <template S extends U, template T extends V>
{ ... }

S and T are template parameters and U and V are statically
known templates that serve as parameter bounds for the
respective parameters.

When a parameterized template is instantiated, one must
provide an actual template for each parameter, which must
be an extension of the bound of the formal parameter.

Below is a template called Ext. This template could be part
of a framework and programmers would be supposed to write
extensions to it in order for their code to use the function-
ality of the framework. Other templates in the framework
(like Use below) may have parameters bounded by the tem-
plate and may hence be instantiated with a programmer’s
sub-templates of Ext as parameters. The template Ext and
a sub-template ExtOne may look as follows.

template Ext {
class A { void m1(B b) { ... } }
class B { void m2(A a) { ... } }

}

template ExtOne extends Ext {
class A adds { ... }
class B adds {

void m2(A a) { ... } // redefines m2
void m3(B b) { ... } // new method m3

}
class C { ... } // new class C

}

There may be an open ended number of extensions to a
template, written separately and without knowledge of each
other. The extensions may override method implementa-
tions and add methods and properties to classes, and they
may also add new classes and instantiate other templates.
Extension templates can only extend one template, and there
is an implicit instantiation (inst) of the extended template
within the extension. For now, we will not consider the pos-
sibility of allowing name changes in extension templates.

Below, the template Use is defined with a template parame-
ter E bounded by Ext. The template parameter can be used
in an inst statement in Use, but the actual instantiation is
postponed until an actual parameter is provided.

Within Use, it is known from the bound Ext and the inst

statement that the template will have at least the classes A

and B from Ext, and they may be used in Use in the same
way as classes from a regular inst statement.

Thus, through the use of adds-clauses (such as A and B be-
low), the parameterized template may add fields and meth-
ods to the classes defined in the parameter bounds, as well

as override methods from these classes. Furthermore, it may
instantiate other templates using a normal inst statement,
and add its own classes (such as C in the example below).

template Use<template E extends Ext> {
inst E;
class A adds { ... }
class B adds {
void m2(A a) { ... } // redefines m2
void m3(B b) { ... } // new method m3

}
class C { // new class C
void foo(B b) {
new A().m1(b);

}
}

}

In a program, the template Use can be instantiated with Ex-

tOne as its actual parameter, as shown in the example below.
In the package2 Program, the contents of the parameterized
template and of the actual parameter are statically known,
and make up the available classes (and interfaces) accessible
from the instance of Use<ExtOne>. For these classes, addi-
tions may be supplied in the normal PT manner, as shown
below for A, B, C and D. Other templates may be instantiated
as well, and merging may be performed as for normal PT
instantiations.

package Program {
inst Use<ExtOne> with Use.C=>C, ExtOne.C=>D;
rename ExtOne.B.m3=>m4;
class A adds { ... }
class B adds { ... }
class C adds { ... }
class D adds { ... }
class E { ... }

}

Both the actual parameter (here ExtOne) and the parame-
terized template (here Use) may have a class that overrides a
method in a class defined in the template bound Ext (like m2

above). In that case, the general rule is that changes from
the parameterized template (Use) override changes from the
extending template (ExtOne). This rule fits into a program-
ming pattern where it is the programmer of the parameter-
ized template who is in charge and wants to use the method
in the parameterized template regardless of the extension to
the base template. However, we envision that there might be
a need for users to change this precedence, but we explicitly
leave that topic open for future work.

A similar issue is the question of what should happen when
the extension (actual parameter) and the parameterized tem-
plate both have defined new classes with the same name (like
C above). In such situations, these new classes are considered
to be separate classes, and must be renamed in the package
Program in the regular PT fashion to avoid ambiguity (as in
the example above). The same goes for methods within an
existing class (like m3 above). A regular package may also
add classes (like E).

Below is an example that illustrates some of the different sit-
uations that might occur with regards to method overrides.

2Like templates, packages are written within curly brackets
in PT.



template U {
class A { void m(){ ... } }
class B extends A { void m(){ ... } }

}
template V extends U {

class A adds { void m(){ ... } }
class B { void m(){ ... } } // extends A implicitly

}
template X <template UU extends U> {

class A adds { void m(){ ... } }
class B { void m(){ ... } } // extends A implicitly

}
package P {

inst X<V>;
}

Package P will have classes A and B, both with a method m.
The methods will be the ones from template X, since they
override the others. As with regular single inheritance a call
to super in B will invoke the method defined in A. If, on the
other hand, A in X did not define an override of m, a call to
super.m in X.B.m would call the implementation in V.A.

However, if one wants to reuse the methods that are overrid-
den by the template mechanism as opposed to by ordinary
class inheritance, the keyword tsuper may be used, and a
call to tsuper in A in template X will call the method defined
in A in the template that is given as the actual parameter (in
P this is V). A call to tsuper in A in template V will invoke
the one in A in template U. Combining super and tsuper

yields a useful and flexible mechanism for reuse.

A package can be used as a regular Java package in other
compilation units and its classes are regular classes. A reg-
ular Java class may, for example, refer to (and import) the
class P.A. We will see later that regular classes can also have
template parameters, and these work in a different way.

We have not worked out rules for visibility or access restric-
tion at the package level yet. Hence, there is no mention of
public or private classes or methods.

There are obviously many other questions around templates
with template parameters that are not fully answered in the
text above, but to keep this exposition fairly short, we will
not pursue all of these questions here.

4. DYNAMIC INSTANTIATIONS
We saw in Section 2 how to instantiate templates, and how
to merge classes from different templates by using the compile-
time inst construct. In section 3 we saw how templates can
have template parameters and how to write sub-templates.
In this section we introduce dynamic instantiation and adap-
tion of templates. We believe this is very useful, as which
features (in the form of templates) should be used is of-
ten not known until after the execution has started. For
simplicity and to keep this short we limit our detailed dis-
cussion here to instantiating templates dynamically without
any name changes or merges.

The approach we use is based on the hierarchies of templates
formed through the extends-relation, and on using this some-
what like the hierarchies of subclasses in traditional object-
oriented programming. Thus, we can type e.g. a variable
with a template based type, and it can thereby refer to in-
stances of that template, or to instances of a sub-template.

However, we shall also use template types in a way that is
somewhat unusual, by saying that each template instance
has a type of it own which includes both the template of
which it is an instance, and the identity of the instance.
Thus, two instances of the same template have different
types. This is done to make it easier to handle the fact that
the “same” local class in different instances of a template
are indeed different classes. To form a consistent model, we
also say that the full type of an instance is a subtype of the
template it is an instance of.

In the following discussion, we will use as an example the
three templates below. Templates U1 and U2 can be written
after a program referring to U has started running. They
can be separately compiled and neither of U1 and U2 need
any knowledge of the other (nor does U need any knowledge
of its descendants, obviously).

template U { class A {...} class B {...} }
template U1 extends U {
class A adds {...} class B adds {...} }

template U2 extends U {
class A adds {...} class B adds {...} }

In this context, U can often be seen as a sort of “template
interface”, providing mostly abstract classes (in a template
sense), and U1 and U2 can then be different implementations
of this interface. At runtime, a program referring to U may
load one of the templates U1 or U2 (or further sub-templates
of these) and create one or more instances of it. Such in-
stances can be kept track of by template-typed variables and
can be passed around by assignments etc. according to nor-
mal object-oriented polymorphism rules, e.g as the following
code.

Instance<instance ? of U> u = /* A dynamically
generated instance of U, U1 or U2 */;

Instance<instance ? of U1> u1 = /* A dynamically
generated instance of U1 */;

u = u1;

Here, Instance<T> is a class much like the class Class in
Java. It is parameterized by an instance type T and has
the signature class Instance <instance T>. It represents
a template instance (and not a template) in the same way
that Class represents a class. The reason that we use a class
that represents the instance and not the template is that
every instance generation results in the creation of a new
instance type and new types for all the classes in the instan-
tiated template. The concrete mechanism for performing
a dynamic load and instantiation will be explained shortly,
but the result is an object of the class Instance<T>. The
special syntax <instance ? of U> tells the compiler that
the exact instance is not known statically, but that it is
a sub-template of U. The parameter T of Instance will be
bound to the type of the instance. As is shown in the last
line above, template instance references may be assigned to
a template variable having a more general type. Also, an
obvious form of casting can be used for the opposite case.

In the program, a method can have template parameters
bounded by U in the following way:

<instance T of U> void method(){
T.A a = new T.A();
a.doStuff();

}



Within such a parameterized method, elements can be typed
with classes from the template using the template type as
a prefix, like T.A above. Code like this makes it possible to
use classes and invoke methods in dynamically instantiated
templates in a type-safe way. Type safety depends on the
fact that, in the scope, T is bound to an instance and T (a
type parameter) does not change like object variables.

We are considering whether a syntax like the following should
be allowed:

Instance<instance ? of U> u = /* A dynamically
generated instance of U1 or U2 */;

...
method<u.TYPE>();

Here, the formal parameter T in the method is bound to
the current type of u (which is identical with the instance
identity), and will remain so throughout the body of the
method. This will fail if u is a null value.

A class can be written with the same kind of template pa-
rameter. This can look as follows:

class P <instance T of U> {
public T.A a;
public P(){

...
a = new T.A();
...

}
}

This class can be statically and separately checked in the
same way that a generic class can be type checked, with the
difference being the dot-named classes, like T.A. T will be the
same type in this scope and T will be an instance of U or of a
subtype of U. Thus, the class T.A can be seen as a type just
like any type and it has all the properties of A in U. Note
that if A has a method void m(B b) it can be invoked with
m(new T.B()) here. T.A and T.B will, since T is the same,
be from the same instance and at runtime the actual type
of B will match up with the method signature.

The class P can then be used e.g. as follows:

Instance<instance ? of U> u = /* Instance of U or of a
sub-template */;

P<?> pu = new P<u.TYPE>();

... // Maybe another assignment to u

P<?> pu1 = new P<u.TYPE>();

pu = pu1; // OK
pu.a = pu1.a; // COMPILE TIME ERROR !

Here, P<?> is a type where ? is similar to ? in Java generics
in that pu can point to any object of P. Similarly, u can
point to an instance class for any instance of U or instance
of a sub-template of U. Since it is not known statically in
this scope if pu and pu1 point to an object created with the
same template instance (because of the question mark), the
last assignment is not legal.

Objects of the classes of a template instance may be passed
around like the template instance itself. This can be illus-
trated by the following two methods:

<instance T of U> void method_1() {
T.A a1 = new T.A();
T.B a2 = new T.B();
method_2<T>(a1, a2); // <T> may be omitted as it

} // can be inferred

<instance Z extends U> void method_2(Z.A a1, Z.B b) {
...; a1.m(b); ...;

}

When method_1 is invoked, T is bound to the type of some
template instance u. The clause T.A is bound to the type
of A for that particular instance. The second method takes
two formal parameters that are of types called Z.A and Z.B

where Z is a the type of the template instance (a sub-type
of U). The invocation of this method in the first method can
be type checked since both the actual parameters are typed
with class A from the same template which is also a sub-
template of U. Inside the second method, the methods (for
example m) defined in template U can be called.

In a scope, there is often only one known template that
is being used and it would be nice not to have to write
the instance type parameter T all the time. Therefore, we
propose the shorthand notation shown below. Within the
with-block, class names can be written without the type
prefix.

<instance T of U> void method(){
...
with(T) do {
...; .A a = new .A(); ...;

}
...;

}

Other times, one may want to work with two (or more) dif-
ferent instances of a template (or more likely, two instances
of different sub-templates) at the same time. Below we as-
sumes that A in Ext has a field b of type B and that B has a
field x of type int.

<instance T of Ext, instance U of ExtOne>
U.A[] method(T.A tas[]) {

U.A uas[] = new U.A[tas.length];
for (int i = 0; i<tas.length; i++){
uas[i] = new U.A();
uas[i].b = new U.B();
uas[i].b.x = tas.[i].b.x; // A and B from different

} // instances are never
return uas; // mixed up

}

Dynamically generated instances of templates are produced
by a special loader, with a method instantiate that has a
template parameter, and a normal String parameter. The
first parameter should be a statically known template, and
the second should be a filename (or net-address, etc.) where
a sub-template of the template parameter can be found. The
loader will check that this is the case, and maybe also com-
pile the template if necessary. Thus, a dynamic instantiation
may look as below. The exact details of the loader and its
implementation are not worked out, but at runtime it can
be checked that it will only return an instance of the given
template or a sub-template.

Instance<instance ? of U> u =
TLoader.instantiate<U>("-file-");

Just as metods and classes in regular classes can be param-
eterized with regular template instances and used with any



instance of any sub-template, they can also be parameter-
ized with a parameterized template. The example below is a
class that uses the template Use from earlier as a parameter
bound.

class StartOff<instance T of Use>{
run(){ ...

new T.C().foo(new T.B());
... }

}

An object can be created of this class using any instance
of Use instantiated with any sub-template of Ext. All the
classes known in Ext can be used within this class, prefixed
by T. Below is an example of instantiating an instance of
Use with ExtOne and using StartOff.

Instance<instance ? of Use> u =
TLoader.instantiate<Use>("-Use<ExtOne>-");

StartOff<?> s = new StartOff<u.TYPE>();
s.run();

Note that the use of the name C in StartOff refers to the
one originating in Ext and that the one from ExtOne is not
visible in StartOff.

All these examples of regular classes and methods parame-
terized by templates are mainly there to be starting points
for the code within the templates. The interesting code will
probably be inside templates Ext and Use and classes like
StartOff will usually just set this off.

There are more details about dynamic instantiations of pack-
age templates that have not been discussed here and open
questions obviously still exist, but we nevertheless believe
that the mechanism should be useful as a starting point for
developing a language mechanism for dynamically config-
ured and composed systems.

5. DISCUSSION AND FURTHER WORK
The aim of this work is to develop tools that allow parts of
larger software systems to be written as independent pieces
and that can be merged in a flexible way. This should pro-
vide flexibility in both organization of a system and reuse of
components. To be truly flexible, merging and composition
of independently written parts of software should even be
allowed at runtime. However, one would like to do this with
some sort of static checking to avoid some of the often oc-
curring errors with uncoupled code. Also, there is value in
the ability to run different versions of a library or framework
in the same runtime without having to deal with conflicting
types. We try to solve this with an extension of the package
template (PT) mechanism.

PT and the extensions proposed here should provide some of
the apparatus not only for merging and composing unrelated
templates of cooperating classes, but also for doing so in a
running system.

One feature of the PT approach is that the classes within the
templates form a whole and that the relations and inheri-
tance between the classes are preserved during instantiation.

New types are created whenever a template is instantiated.
Each instance is kept separate, and in addition to allow-
ing flexibility in merging and renaming, this can be used to

make sure that objects created from different template in-
stances have their own type. This enables a form of family
polymorphism [9].

The dynamic loading and composition proposed is not as
dynamic as some other systems. Requiring that the loaded
template be a sub-template of some bound, the program can
be type checked and if the loading itself does not fail, the
system will not cause type errors during execution.

Loading single classes, as is usual in Java, means that one
can only depend on a single interface with named methods
that have parameters that are of statically known and un-
changeable types. Loading a complete template not only
allows one to view several classes as a whole, but in PT the
types of the parameters of methods and variables in the tem-
plate itself are adapted to new types. This is a useful new
feature of package templates and dynamic package templates
in particular – which does this composition at runtime.

PT is more flexible in renaming, etc, than is discussed here.
There is also more flexibility in using template parameters
than what has been discussed. There is work going on look-
ing at merging and other type safe mechanisms for creating
instances from multiple dynamically loaded templates and
on abstract methods in templates.

We have not discussed how this proposal would work to-
gether with the aspect oriented extensions discussed in [3].
A consistent combination of the two extensions should be
worked out. For an even more dynamic approach, there
is also a study of a similar mechanism for the dynamically
typed language Groovy [2].

We are also looking at doing dynamic updates to running
code, that is updating already loaded template instance, by
for example redirecting calls to new methods. Allowing this
in some restricted way, could create even more useful aspect
oriented features in the language.

The most important future work is to settle the open ques-
tions concerning the rules of the language, prove its type
safety and building a compiler.

6. RELATED WORK
The authors of the trait mechanism [22] approach the prob-
lem of composition from the angle that the primary unit
to be composed is the class. A trait is as such a construct
that encloses a stateless3 collection of provided and required
methods. Traits may subsequently be used to compose new
traits or as part of a class definition. The composition of
traits is then said to be flattened. This entails that (1)
the trait ordering in each composition is irrelevant, and (2)
that a class composed from traits is semantically equal to
a class in which all the methods are defined directly in the
class. When used to compose a class, all requirements must
be satisfied by the final composition. Traits were originally
developed for the dynamic language Squeak, and supports
method aliasing and exclusion upon composition. A stati-
cally typed version also exists [20]. Still, neither the static

3Traits were originally defined to be stateless, although a
more recent paper [5] has shown how a stateful variant may
be designed and formalized.



nor the dynamic version have explicit support for runtime
selection of which features that should be composed.

Mixins [6] are similar in scope to traits, in that they target
the reuse of small units of code. Mixins also define provided
and required functionality, and the main difference between
them and traits is arguably the method of composition. Mix-
ins traditionally rely on inheritance, by defining a subclass
with as-of-yet undefined parent, and thereby requiring that
mixins are linearly composed.

Functionality similar to that of traits and mixins can quite
easily be mimicked with PT. For instance, to create a reusable
collection of methods (with or without accompanying state),
one might simply define a template with a single class, con-
sisting of the methods that are subject to reuse. This class
may then be merged with other classes where the functional-
ity is needed. When it comes to specifying required methods,
PT provides no such concept out-of-the-box, but a solution
might be to define abstract and/or virtual methods in the
template class. As is the case with traits, merge/composition
order is not significant in PT.

Perhaps the biggest conceptual difference between mixins/traits
and PT comes in form of intended scope, in the sense that
PT is targeted towards reusing and specializing larger chunks
of code as one coherent unit. In that regard, the former two
can be seen as a special case of what can be accomplished
with PT, admittedly with a slightly more involved syntax
and some ’glue code’.

Aspect-oriented programming (AOP) [14] involves several
concepts related to PT. For instance, intertype declarations
in AspectJ [7] may (statically) add new members to existing
classes, and may as such be used to compose previously un-
related features. An example of this is exemplified through
the Observer design pattern [10] in [11]. However, this im-
plementation, and on a higher level the general approach em-
ployed to composition, is arguably less than optimal, given
that it suffers from the fact that the aspect itself entan-
gles several conceptual roles within a single aspect, and that
this aspect also exists as a unit at runtime, lacking a clear
mapping to objects from the problem domain. The Caesar
language [1, 19] supports both aspect-oriented programming
constructs and code reuse and specialization through the use
of virtual classes. It also supports wrappers for defining ad-
ditional behavior for a class, and dynamic deployment of
aspects at runtime (through use of the deploy keyword).
Dynamically deployed aspects are in effect from all calls
propagating down the call stack with respect to the lexi-
cal scope of a deploy construct. Expanding on the notion
of dynamic deployment, Tanter [24] describes a mechanism
for controlling the scope of dynamically deployed aspects (in-
cluding propagation down the call stack and to new objects).
Note, however, that these aspects may affect behavior only,
and not class structure or hierarchy, as opposed to dynamic
instantiations in PT.

Context-oriented programming (COP) [8] provides a way to
activate and deactivate layers of a class definition at run-
time. Layer activation can be nested, and propagate down
the call stack (for the current thread).

Like PT, Mixin layers [23] is a mechanism for writing an ad-
dition with affect accross multiple entities like classes. Mixin
layers can be composed by instantiating a layer with another
as its parameter and thus mixin layers are both reusable and
interchangeable. They are also nested. However, there does
not seem to be a way to build hierarchies withing a mixin
layer.

BETA [18, 17], gbeta [9] and J& [21] (pronounced ”jet”) are
systems that in many ways are similar to each other and
in many respects can achieve similar end results to those of
PT. A common property of all of them (except PT, that is)
is that they utilize virtual classes (as introduced by BETA)
to enable specialization and adaption of hierarchies of re-
lated classes. gbeta and J& support multiple inheritance,
and this may to a certain extent be used to ”merge” (in the
PT sense of the word) independent classes. Neither BETA,
gbeta nor J& support concepts similar to runtime template
instantiations.

As we now introduce dynamicity and more free-standing
template instances, the mechanism we present will become
more similar to a solution with virtual classes and family
polymorphism, as e.g. in gbeta [9]. However, the rules and
restrictions used to keep the system consistent will be dif-
ferent in our version.

In a subject-oriented [13] programming (SOP) system, dif-
ferent subjects may have differing views of the (shared) ob-
jects of an application. There is no global concept of a class;
each subject defines ’partial classes’ that model that sub-
ject’s world view. What is called a merge in SOP, is some-
what different from a merge in PT. In SOP, a merge is an
example of a composition strategy (and there may be many
of them), that tells the system how to compose separate
subjects with overlapping methods and/or state. Like with
mixins and traits, there seems to be a difference in intended
scope when comparing SOP with PT; SOP targets a broader
scope, with entire (possibly distributed) systems (that may
even be written in different languages) being composed. One
could, however, picture an extended PT-like mechanism as
a basis for an implementation of SOP.

Our approach to typing classes and methods with instance
types to keep different instances of a template apart at run-
time is based on a clever idea for keeping different implemen-
tations of a single API apart at runtime using Java generics
and tying the classes of an implementation together using a
type parameter. This idea is found in [12].

Ada originally (in 1983, [16]) had no mechanisms supporting
object-orientation, but it had a mechanism called generic
packages with some of the same aims as PT, in that packages
can contain type definitions and that you get a new set of
these each time the generic package is instantiated. Generic
packages also have type parameters.

In Ada 95 [4] a slightly untraditional mechanism for object-
orientation was introduced, and it was further elaborated
in Ada 2005. Thus, the potential for PT-like mechanisms
should be there, but as far as the authors understand it,
there is nothing similar to virtual classes (at compile-time or
at runtime) in the language, and the mechanims for adapt-



ing a package to its use during instantiation are not very
advanced.

7. CONCLUSION
We have proposed an extension to the package template
mechanism that will allow dynamic loading and instantia-
tions of templates. We have discussed some of the properties
of the proposed language. It is in some crucial ways different
from other mechanisms that try to solve similar challenges.
The practical consequences of these differences need to be
worked out.

Further studies need to be done to find out if the language is
really useful for dynamic software composition, and details
of the language need to be worked out based on a study of
what makes most sense in a practical language.

Although our initial work on finding a translation of the
mechanism to Java generics suggests that the language is
type safe, a proof of this needs to be worked out and a
compiler must be built.
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ABSTRACT 

In aspect-oriented middleware systems, the aspect modules are 

typically composed as chains of aspects within the connectors (or 

bindings) that join the base software components. However, this 

approach can lose or hide information about the dependencies 

between multiple aspects in the chain; this is particularly 

important when dynamically reconfiguring such a system at run-

time. Without knowledge of these dependencies the system could 

reconfigure a new aspect with a dependency to a prior aspect in 

the chain resulting in a cyclic dependency and subsequent 

deadlock. Furthermore, the problem is harder to detect with the 

presence of remote aspects within the connectors as their 

dependencies are hidden across address spaces. To resolve cyclic 

dependencies that may occur when reconfiguring both local and 

remote aspects we propose the use of a reconfiguration cyclic 

dependency resolution (ReCycle) model. This approach can be 

employed generally in dynamic AOP middleware platforms, and 

in this paper we evaluate it within the AO-OpenCom middleware. 

Categories and Subject Descriptors 

D.2.11 [Software Engineering]:  D.2.11 Software Architectures 

– Languages (interconnection), Patterns. 

General Terms 
Design, Management 

Keywords 

Middleware, dependency, aspect, dynamic reconfiguration. 

1. INTRODUCTION 
Aspect-oriented middleware platforms provide solutions to create 

distributed component-based systems into which aspect modules 

representing cross-cutting concerns can be woven. Aspects are 

made up of individual code elements that implement the concern 

(advices), which are deployed at multiple positions in a 

distributed system (join points) that are expressed by pointcuts—a 

particular form of composition language. AO-OpenCom[11], 

AspectOpenCom[4] ,CAM/DAOP [3], FAC [9], FuseJ [13], 

DyMAC [5], and DyReS [14] are examples of aspect-oriented 

middleware which allow aspects to be composed and adapted at 

runtime. The aspect runtime composition of aspects in such AO 

middleware platforms differs from the standard component to 

component binding (where there is a direct reference from the 

provided interface to the required interface). In these AO 

middleware aspects are advice components which are woven non-

invasively at their connector (between the required and provided 

interfaces of the base software components) in advice chains with 

the aspect reference stored in the advice chain. Then, the aspects 

are invoked from the connector chain when a call or execution 

occurs from the call or execution of the provided or required 

interface. 

Unlike components, the dependency of an aspect to another 

aspect is not explicitly defined, such that an aspect within a chain 

may have a dependency with another aspect located earlier in the 

chain, and cause a cyclic dependency while performing 

reconfiguration. The potential problem of cyclic dependency is 

that it may cause the running system to enter into a deadlock after 

performing reconfiguration, when an invocation occurs at the join 

point. The cyclic dependency problem is hard to detect since an 

AO-Connector, maintains both local and remote advices. For an 

AO-Connector containing solely local advices, inspection of the 

AO-Connector can reveal the possibility of cyclic dependencies. 

However, this is non-trivial when the AO-Connector contains 

both local and remote advices, since for remote advices the 

visibility of the methods invoked by remote advices is located in 

the remote address space from where the AO-Connector is. 

In this paper, we present a reconfiguration cyclic dependency 

resolution (ReCycle) model for dynamic aspect-oriented, 

component-based middleware; this provides the capability to 

describe the various kinds of built-in dependency inconsistencies 

that affect aspect configuration and reconfiguration at runtime. 

This is coupled with a graph-based tool which detects and 

resolves cyclic dependency inconsistencies at run-time while 

reconfiguration is performed. 
We evaluate our approach within the AO-OpenCom platform 

for developing dynamic reconfigurable middleware solutions; this 

demonstrates the following contributions of our approach: 

• Resolution of reconfiguration cyclic dependency. We show 

that cyclic dependency inconsistencies can be resolved for one 

case-study with minimal performance overhead. 

• Transparency. We apply consistent reconfiguration with 

minimal developer effort or change to the underlying 

component model. 

• Flexibility.  New dependency consistency can be described 

dynamically to evolve with the running application or domain 

context without breaking the implementation details of the 

instantiated aspect. Moreover, the approach can be applied in 

different compositions approaches and tools; for example we 

show how both node-local and distributed reconfiguration 

cyclic dependency consistency can be avoided in this paper. 



 

The remainder of this paper is organised as follows. Section 2 

examines the types of aspect reconfiguration cyclic dependency 

that may occur. Then, section 3 describes the design of our 

ReCycle model, followed by section 4 which validates the 

proposed ReCycle model. Finally we describe related work in 

section 5 and offer our conclusions in section 6. 

2. ASPECT RECONFIGURATION  
In aspect-component middleware, aspects (which are themselves 

implemented as component modules) are composed with the base 

components (hereafter termed components) using AO-Connectors 

[4, 8, 11, 12, 14]. AO-Connectors are the architectural element 

offering aspectual composition (weaving) of aspects between a 

receptacle and a provided interface of components.  AO-

Connectors maintain the meta-data containing references to 

aspects instances in an advice chain. For example, it maintains 

details of all advised aspects and their types and allows these to be 

queried to determine the operations they support and the aspects 

currently advising them. It also supports the runtime manipulation 

of the chain to add a new advice, or remove or reorder aspects in 

the chain of advices. 

 

 

Figure 1: Aspect-Component Model 

A list of advices is attached to the connector between the required 

and the provided interface. This capability is illustrated in Figure 

1, which shows a caller component connected to a callee 

component, and an AO-Connector containing a list of aspects that 

get called. Where a call comes from the caller component (arrows 

marked CR) then the aspects in the chain are executed first or 

otherwise in case an execution is triggered from the Callee 

component, the aspect chain is executed in the reverse order, as 

highlighted with arrows marked CE) in Figure 1. 

We now identify and classify the types of dependency 

inconsistencies that can occur in the aspect-component model.  

2.1 Use case scenario 
To motivate the requirement to resolve cyclic dependency for AO 

reconfiguration we present its occurrence within the distribution 

framework stack. The AO composition is as follows (see Figure 

2): when the message handler is called on the communication 

module, the following aspects are enforced, before the execution 

of the communication module operation: 

i.) Selecting the format of transportation. Format selection 

handles the formatting of the message such that it can be 

serialised and deserialised for remote invocations and replies. 

ii.) Selection of the transportation. Transport selection creates a 

transport listener and transport request and binds them to a 

socket. 

iii.) Deployment handler for the message transfer. The 

deployment handler creates the skeleton and binding for the 

message transfer as well extracting the object name in the 

URI to lookup the correct instance in case of a normal 

method call.  

 

Figure 2: Distribution Stack AO Composition scenario  

Whenever, the Message Handler component calls the 

Communication Module, the list of advices within AO-Connector 

chain gets invoked and executed in the following order: 

 

 Format Selection Aspect → Transport Selection Aspect → 

Deployment Handler Aspect.  

 

2.2 Cyclic Dependency Occurrence 
To cope with the application and environmental demand the 

following two dynamic (re)configurations may be required: (i) 

new users with limited bandwidth may join, requiring a 

Compression aspect to be configured to split data before being 

sent; (ii) data may be required to be encrypted using a Security 

aspect to protect the users’ privacy. 

 

 Figure 3: Reconfiguration with Cyclic Dependency 

Occurrence 

The reconfiguration proceeds by weaving the Compression Aspect 

after the Deployment Handler Aspect in the AO Connector chain 

and the Security Aspect woven after the compression aspect in the 

chain, as illustrated in Figure 3.  However, both the Compression 

aspect and the Security Aspect may have a dependency on the 

Format Selection aspect prior to the reconfiguration, causing 

cyclic dependencies to occur at the AO Connector such that calls 

may not return back to the Security Aspect, causing a deadlock to 

occur if the reconfiguration is allowed to proceed. The cyclic call 

dependency for Figure 3 when called proceeds as follows: 



 

Format Selection Aspect → Transport Selection Aspect → 

Deployment Handler Aspect → Compression Aspect → Format 

Selection Aspect. 

A more complicated cyclic dependency occurrence is when 

remote aspects are attached to the AO-Connector. In the case of 

remote aspects, they may have dependencies with other aspects 

located on different address spaces, causing the dependency to be 

unnoticed while performing reconfiguration. 

2.3 Analysis 
An aspect represents a crosscutting functionality that may be 

referenced and shared by other software modules in a running 

system. That is AO middleware typically just add/reconfigure at 

runtime without knowledge of the chain or taking into 

consideration the existing aspects dependencies that may already 

be present.  So doing, as described above, can potentially lead to 

cyclic dependencies. Furthermore, creating two versions of the 

aspect by replicating the aspect functionality is not a feasible 

solution either and can potentially result in an exponential growth 

in versions of the same aspect. To solve the above problems, we 

propose the ReCycle model.  

3. ReCycle: RECONFIGURAION CYCLIC 

DEPENDENCY RESOLUTION MODEL 
In this section we describe our ReCycle model to support the 

detection of cyclic dependencies that may result in the 

configuration and reconfiguration of aspects as well as its 

resolution by supporting the following dimensions: (i) describing 

aspect dependency; (ii) attaching metadata to entities in the 

aspect-component model; (iii) using graph based detection with a 

resolution engine capable of parsing the AO-Connector to detect 

the occurrence of any cyclic dependency inconsistencies. Each of 

the dimensions is now examined in turn. 

3.1 Aspect Dependency Metadata 
In order to detect cyclic dependencies each aspect-component is 

attached with metadata that describes and explains its 

functionality as well as the dependency they may have on other 

aspect-components. This is used to inform the deployment of the 

aspect—i.e. to help manage compositional and reconfiguration 

cyclic detection between aspect-components in the aspect-

component model as illustrated. These descriptions are written by 

the AO middleware developer in the format as illustrated in the 

BNF form of Figure 4.  

 

Figure 4: ReCycle Model BNF Metadata representation 

The aspect-instance defines the aspect-component instance aspect 

scope, list of aspect required interfaces of the aspect-component 

instance and list of provided interfaces for the aspect-component.  

Aspect-dependency defines the list of aspect-instance aspect-

type to which the aspect is dependent on as well as the AO-

connector to which it is currently bound with.  

The aspect scope refers to the aspect-component instance of 

whether it is deployed on the local host, or is remote.   

The AO-Connectors tag refers to the list of connectors to 

which the aspect-component instance or type is bound with.  This 

can be zero in case there is no connection dependency for the 

aspect-component. 

3.2 Attaching Metadata  
As described in our previous work in [12] tagged metadata needs 

to be kept separate from the main source functionality. This is 

because: 

1. aspect-components are considered as black-boxes which 

provide advices in the form of operations within the provided 

interface (but hide their implementation);  

2. aspects represent crosscutting functionality such that adding 

descriptions by extending the implementation, e.g. through a 

new interface, will restrict its applicability to different 

applications and domains because it couples the consistency 

checking with the aspect-component functionality.  

Keeping metadata separate allows both the core functionality and 

metadata to be reconfigured independently and transparently from 

each other. 

Metadata is attached to the aspect-component interfaces and 

receptacles at load-time, as they are the only access points 

available to other aspect-components to be inspected and inform 

runtime decisions. Then to provide for runtime reconfiguration, 

since aspect-components are invoked through their operations, 

aspect-component operations also need to be annotated. This is 

because when reconfiguration is performed at runtime, already 

woven aspect metadata might be required to detect cyclic 

dependencies at the join point the aspect is accessed via its 

operations. 

3.3 ReCycle Model 
A ReCycle model provides the tool to query and reason about the 

annotated aspect-components; and resolve possible sources of 

cyclic inconsistency that may result from a dynamic 

reconfiguration. The latter retrieves the associated aspect-

component metadata as illustrated in Figure 5, by getting the 

annotation file path from the aspect-component and parsing the 

Aspect Metadata file (retrieved from the  Aspect Metadata 

Repository) to extract respective dependencies tags for the aspect-

component (structured as described by the BNF Cycle Metadata 

representation from Figure 4).  Then, the ReCycle model builds a 

graph using the aspect-component instance and its dependencies if 

they are connected for the corresponding AO-Connector involved 

with the reconfiguration.  After the graph is built, the graph is 

traversed from the root, the aspect-component contained in the 

first-order to the end of the graph.  

In case the validation is successful the reconfigured AO-

Connector, chain list is first stored in a reconfiguration repository 

having transactional capabilities and the reconfiguration is then 

allowed to proceed. However, in case of any cyclic dependency 

issue found, based on the composition policy, two alternative 

remedy actions can be taken by the ReCycle model in terms of: 



 

either the ReCycle Configurator stopping reconfiguration from 

proceeding by calling the rollback operation to drive the system to 

the state prior to when the reconfiguration started by restoring the 

AO-Connector chain from the reconfiguration repository; or if 

appropriate resolution policies are specified these can be deployed 

by the ReCycle model and the reconfiguration can proceed (e.g. 

removing the cyclic connector or adding a null binder to return 

the call and exiting the cyclic loop). If a connector is removed or 

updated, the associated AO-Connector meta data is updated for 

the respective aspect-component (by updating the aspect 

component associated AO-Connector tag meta data).  

Moreover, to avoid the potential occurrence of semantic 

interactions, the Semantic Resolution model from [12] may be 

called by the ReCycle model to reason about the resolved 

reconfiguration interaction. In case a semantic conflict is detected 

and no policies are defined, the reconfiguration gets aborted by 

calling the rollback operation. Otherwise if appropriate resolution 

is defined, the semantic valid reconfiguration is allowed to 

proceed while ensuring with the ReCycle model it does not result 

in any cyclic dependencies.  

 

Figure 5:  ReCycle model to resolve Cyclic Dependency 

4. VALIDATION 
In this section we validate our approach using AO-OpenCom 

[11].  We first provide some background on AO-OpenCom and 

then validate the extent to which our ReCycle model achieves the 

stated goals of cyclic dependency resolution, transparency and 

flexibility. Finally we measured the performance and resource 

overhead of deploying the ReCycle model.  

4.1 AO-OpenCom  
The purpose of AO-OpenCom is to build on OpenCom and its 

associated reflective meta-models and component frameworks 

architectures [2], to provide a distributed AO composition service, 

and to allow aspectual compositions to be dynamically 

reconfigured. The programming model employs components to 

play the role of aspects—i.e. an aspect is simply an OpenCom 

component. The AO-OpenCom aspect framework comprises a set 

of components that are instantiated across each host. The set of 

components is as follows (see Figure 6): 

The Configurator manages the other components in the 

framework as it is responsible for accepting and handling 

(re)configuration requests that will apply to a set of hosts. The 

Configurator also caches join point information it receives from 

Pointcut-Evaluators in case similar behaviour needs be applied in 

the future. The Aspect-Repository holds a set of instantiable 

aspect-components e.g. the cache aspect, encryption aspect, etc.  

The Pointcut-Evaluator evaluates the pointcuts provided by 

the Configurator and returns a list of the matching join points 

found within the local address space. Finally, the Aspect-Handler 

acts on instructions from the Configurator to weave advices at 

join points as well as supporting the invocation of remote aspects.   

The main API provided by an AO-OpenCom-enabled instance 

for AO (re)configuration is as follows: 

Configurator.reconfigure(pc, command, aspect); 

 The pc argument specifies a pointcut that picks out the join 

points in the target nodes at which the desired reconfiguration 

should occur. The command argument offers options for the 

action to be taken at the indentified join points: the ‘add’ action is 

used to weave the specified aspect at the join points; ‘remove’ is 

used to remove it, and ‘replace’ is used to add the specified aspect 

after removing an existing aspect of the same type that is assumed 

to be already there. The aspect argument can be a direct reference 

to a local aspect-component, or an indirect reference to an aspect 

stored in an Aspect-Repository, or a reference to an already-

instantiated remotely-accessible singleton aspect. The aspect 

weaving order and the type of aspect in terms of (before, after, 

around) are also specified in the aspect argument.  

 

Figure 6: AO-OpenCom platform Architecture 

4.2 Applying the ReCycle Model to AO-

OpenCom 
To ensure semantic consistency, the ReCycle model and the 

Composition-Policy modules are both encapsulated as aspects and 

woven at the AO-connector component join point connecting the 

Configurator and the pointcut evaluator component as an ‘after’ 

advice in the AO-OpenCom platform. Moreover, the Aspect 

Metadata file of the ReCycle model is implemented in an XML 

file with each aspect annotated with the path to the XML metadata 

file.1  

4.3 Qualitative Validation 
To illustrate the ReCycle model preserving reconfiguration 

consistency, we consider the use case scenario reconfiguration. To 

                                                                 
1  Since AO-OpenCom also supports remote aspects [11], the respective URL path to 

the XML file Annotation Metadata Repository is provided for remote aspects. 



 

perform the reconfiguration outlined in Section 2.1, the 

application developer would provide a reconfiguration request by 

writing code as shown in Figure 7 (the code is simplified for 

presentational purposes). 

The Configurator.reconfigure() call takes the given pointcut 

and aspect specifications and also specifies that the specified 

aspect should be added. This reconfiguration specification 

however fails to capture the cyclic dependency by adding the two 

aspects at the AO Connector as shown in Figure 3. 

 

Figure 7:  Aspect Reconfiguration specification example  

4.3.1 Resolution 
The Security and Compression aspects in the AO-OpenCom 

Application Repository is tagged with appropriate metadata 

describing its dependencies on other aspect-components, that is: 

the Security and Compression aspects interface is tagged with the 

location path of the xml file containing the metadata having the 

aspect-dependency tags specifying a corresponding Compression 

and Security aspects each have a dependency with the Format 

Selection aspect and with an active AO-connector. 

When Configurator.reconfigure() is called on the 

Configurator of one of the nodes (referred as the ‘initiator’), the 

latter calls the Pointcut-Evaluator to locate all the target join 

points. On returning the located join points, the ReCycle aspect 

gets invoked. The latter evaluates the AO-Connector to build a 

aspect dependency graph and using the annotation metadata from 

the Format Selection aspect, the graph is updated to detect any 

cyclic dependencies that may occur.  

In this case, a cyclic dependency is detected such that the 

Cyclic Resolution Dependency Engine checks with the 

Composition Policy or any ‘condition-action’ policies to resolve 

such a cyclic dependency.  

The Composition-Policy aspect, as illustrated in Figure 8 

specifies the ‘condition-action’ rules in terms if a cyclic 

dependency is located and aspect-instance is Security aspect, and 

the latter aspect has a dependency connection with a Format 

Selection aspect, then the connection needs to be removed, as the 

messages format are already set. (Otherwise if the connector 

cannot be removed based on the Composition-Policy specification 

then the reconfiguration is aborted to avoid the occurrence of 

cyclic dependency.) 

The Cyclic Resolution Dependency Engine aspect then 

instructs the AdviceHandler to remove the AO-Connector 

connecting the Security with the Format Selection aspect, thus 

resolving any potential cyclic dependencies issue for this 

reconfiguration scenario. In case remedy policies were not 

specified, the reconfiguration would be aborted with the rollback 

operation deployed for any changes.  

 

  Figure 8: Composition Policy Example 

4.3.2 Transparency 
The approach naturally supports a selectively transparent 

approach as the ReCycle aspect and the Composition-Policy 

aspect  can be pre-configured at application start-up time so that 

the application developer who wishes to initiate a run-time 

reconfiguration needs only to make the appropriate call to 

Configurator.reconfigure(). This achieves complete transparency 

of consistency-related mechanisms from the code to invoke a 

reconfiguration. At the other extreme, the developer can be 

explicit specifying the ReCycle and Composition-Policy aspects 

should be put in place for each reconfiguration. In this case, both 

aspects are woven on-the-fly (if they are not already present) 

before proceeding to perform the requested reconfiguration. Note 

that this extreme is still partially transparent as the developer is 

protected from the low level details of actually weaving ReCycle.  

4.3.3 Flexibility 
The use of a separate Aspect Metadata file to attach dependencies 

of the aspect-components allows new metadata updates to be 

applied without having to recompile existing source-code.  

Moreover, our approach adds the ReCycle as an independently-

deployable service which can be used for both local and 

distributed reconfiguration. This means that ReCycle imposes no 

overhead when it not used, and can be dynamically 

woven/unwoven where and when required. We also believe that 

the approach, being based upon applying metadata and behaviour 

at common architectural elements (i.e. interfaces), can be applied 

generally to other AOM not just AO-OpenCom; indeed we see 

important future work in the deployment of our model in a wider 

range of systems. 

4.4 Overhead of ReCycle 
We next evaluate the overheads incurred by ReCycle to perform 

dynamic reconfiguration. The baseline for our experiments is as 

follows; we reconfigure aspects at one join point using AO-

OpenCom without ReCycle (in this case there are no cyclic 

dependencies to detect). This was performed as follows: 

• the compression aspect and security aspect both instantiated 

on a local aspect repository; 

• the compression aspect instantiated on the same local node as 

the join point (AO-Connector) and the security aspect 

instantiated on a remote node; 



 

• both the compression aspect and security aspect instantiated 

on separate remote nodes from the join point. 

Each node ran on a separate Core Duo 2 processor 1.8 GHz PC 

with 2GB RAM, using the Java-based version of the AO-

OpenCom platform. Each measurement was repeated ten times 

and the mean value was calculated to discount anomalous results.  

The cyclic dependency algorithm used is the single-source 

negative-weighted acyclic-graph shortest-path algorithm [6] and 

the results of the experiment are shown in Table 1.  

It can be observed that on a single node the use of ReCycle 

added an average overhead of 5.6% when no conflicts where 

managed; there was an extra 8 % when aspects with a cyclic were 

woven on the node. The overhead of the ReCycle is mainly 

attributed to the use of XML and the parsing of the file structure 

before the proper metadata are retrieved, which accounts for the 

extra overhead of using ReCycle when detecting cyclic 

dependency. 

Table 1. Overhead of using ReCycle in AO-OpenCom 

 

Reconfiguration: 

Reconfiguration Time in (ms) 

Setup A Setup B Setup C 

Without ReCycle 390 1356 2651 

With ReCycle with no 

cyclic dependency 

411 1432 2810 

With ReCycle with cyclic 

dependency 

442 1541 3024 

 

Setup  A  –   Security and Compression Aspect woven locally. 

Setup B – Security as remote aspect and compression as local 

aspect.  

Setup C – Both Security and Compression woven as remote   

aspects. 

 

A final point to note is that overhead of the ReCycle is determined 

by the cyclic graph detection algorithm. An optimised algorithm 

detection could be used to reduce the induced overhead of 

ReCycle in detecting cyclic dependency.  

5. RELATED WORK 
There are several cyclic dependency algorithms developed to 

detect cyclic cycles among software modules at runtime. JooJ [7] 

checks source code of java classes to detect for cyclic 

dependencies among java classes. However, JooJ requires the 

developer intervention to resolve the occurrence of any detected 

cyclic dependencies. Our approach differs from Jool in that the 

reconfiguration is entirely managed by the ReCycle Configurator 

and in case of cyclic dependencies based on the attached metadata 

the Configurator can apply appropriate resolution or rollback from 

invalid reconfiguration without the developer assistance.  

ByeCycle [15] is a tool that is very similar to JooJ in that it 

checks for cycles among java packages. As a result only packages 

on which classes depend on are analysed to detect cyclic 

dependencies, such that internal invocations occurring within 

classes are not detected.  AOR [1] tackles cyclic referential 

dependencies by reverting the dependency between modules such 

that the references points in one direction only. However, this can 

potentially lead to semantic interactions concerns, whereby one 

aspect could be in mutually exclusive of another. ReDac [10] uses 

a configuration framework to detect cyclic dependencies while 

composing components. The configuration framework works for 

multi-threaded component. However, the approach does not 

detect cyclic dependencies in the connector component. 

With respect to AOM platforms: CAM/DAOP [3], FAC [9], 

FuseJ [13], DyMAC [5], and DyReS [14] none of the existing 

platforms provide mechanisms to detect the occurrence of cyclic 

dependency while composing and reconfiguring the platforms. 

6. CONCLUSION AND FUTURE WORK 
In this paper we have demonstrated the need to consider the 

occurrence of cyclic dependencies in aspect chains to better 

support and ensure consistent reconfiguration in dynamic AO 

middleware.  We have illustrated the ReCycle model, a general 

approach for validating distributed dynamic reconfiguration, 

catering for potential cyclic dependencies following a dynamic 

distributed reconfiguration. Moreover, our solution does not 

change the implementation of the aspect-component, which would 

result in breaking the encapsulation of its functionality; this 

allows aspects dependencies to be dynamically evolving without 

changing the source-code of running aspects. The essence of our 

approach is that ReCycle can be encapsulated as an aspect to 

resolve any occurrence of cyclic dependency at configuration and 

reconfiguration. This means that ReCycle model can be 

independently woven and unwoven as required. We believe this 

gives the approach strong flexibility and generality that will allow 

it to be deployed in a number of AO-Middleware platforms not 

just AO-OpenCom. 

Turning to future work, we first plan to investigate extending 

our approach to cover cyclic dependency in multi-threaded 

aspects environments. Then, we also plan to integrate our 

semantic resolution model [12] and the ReCycle model to ensure 

consistent aspect reconfiguration when building large-scale 

distributed middleware applications.   
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ABSTRACT
Meta-object protocols are used to open up the implemen-
tations of object-oriented general-purpose languages to sup-
port semantic variability. They enable performing appli-
cation-level semantic adaptations to the language even at
runtime. However, such meta-object protocols are not avail-
able for domain specific-modeling languages. Also, existing
approaches to implementing domain-specific modeling lan-
guages do not support semantic adaptations, where the ap-
plication basically redefines specific parts of the language
semantics. We propose a new approach for the implementa-
tion of domain-specific modeling languages that uses meta-
objects and meta-object protocols to open up the implemen-
tation of domain-specific abstractions. This approach en-
ables runtime semantic variability of the form of application-
specific late semantic adaptations of domain-specific model-
ing languages that depend on the runtime application con-
text.

Categories and Subject Descriptors
D.3.3 [Software Engineering]: Language Constructs and
Features—Classes and Objects, Frameworks; D.2.11 [Soft-
ware Architectures]: Languages

General Terms
Design, Languages

Keywords
Domain-Specific Modeling Languages, Variability, Semantic
Adaptation, Meta-Object Protocols

1. INTRODUCTION
Domain-specific modeling languages (DSMLs) facilitate

the development of software in a certain application domain
by providing direct means to express domain-specific ab-
stractions and operations. DSMLs are supported by domain-
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specific interpreters or compilers, which implement DSML
syntax and semantics [22].

Previous work showed that most of the current methods
for implementing DSMLs are closed with respect to changes
in their semantics [30, 22]. For instance, van Deursen pointed
that extensible DSL compilers and interpreters [30] have
been little explored and Mernik stated [22] that “building
DSLs [...] in an extensible way” is an open problem. To
support the need for extensible modeling languages, note
that even UML2 [25] defines an extension mechanism of its
semantics called semantic variation point. This is where
this makes its contribution: we propose a new approach for
implementing DSMLs which supports semantic variability.

This approach allows DSML users to define the DSML se-
mantics that exactly fits their needs, in the spirit of semantic
variation points of UML2 [25]. For illustration, consider a
model of a travel package booking Web service defined in a
DSML for composing Web services. Let us assume that the
initial DSML semantics only supports synchronous events
consumption, thus DSML programs can only handle syn-
chronous Web service partners. What happens if the de-
fault Web service for booking flights fails and that the only
other partner available works asynchronously? The DSML
application has to be rewritten using another modeling lan-
guage. If the user could change the DSML semantics in an
application-specific manner, she could implement an adapta-
tion of the DSML semantics in order to enable asynchronous
event consumption to also support asynchronous partners,
while still reusing the initial DSML application and most of
the default DSML semantics. If the DSML application has
to support at runtime both synchronous and asynchronous
partners, i.e. be self-adaptive to recover dynamically if a
partner fails [2], the semantic adaptation has to depend on
the execution context.

In [31], van Gurp coined the term late variability in the
context of product lines, where it means changing a product
after its delivery. In this paper, we explore the use of late
variability in the context of DSML, which means being able
to change the DSML semantics after the default interpreter
or compiler has been delivered. To do so, we define the
concept of late semantic adaptation as a replacement of one
or more parts of the default semantics of the DSML within
a DSML program; late meaning that the adaptation occurs
after the delivery of the DSML and even as late as during
the execution of a DSML program.

Let us now list and define what could be adapted in a
DSML: A domain type is a type of the metamodel of the
DSML, i.e. a type representing a domain abstraction. Adapt-



ing a domain type means that every instance created after
the adaptation will have the new semantics. Domain types
contain domain operations that may change the state of do-
main objects. A domain object is an instance of a domain
type. Adapting a domain object means that the semantics
(the implementation) of its domain operations (and only the
operations of this particular object) are changed.

Existing approaches to implementing DSMLs (e.g. DSML
compilation [1], domain virtual machine [23], and polymor-
phic embedding [14]) do not support such late semantic
adaptations, where the application basically redefines spe-
cific parts of the language semantics. In existing approaches,
changing the semantics at runtime is only possible if the se-
mantic adaptations had already been anticipated at design
time. However, it is not possible to envision every possi-
ble semantic adaptation a priori at design-time. Even if it
would be possible to embed into the DSML variation points
for the known adaptations, the resulting implementation of
the DSML semantics would be bloated with additional at-
tributes and conditional logic. Such a one-size-fit-alls solu-
tion hampers the design of the default semantics which is
used by most of the DSML programs. Last but not least,
the DSML semantics could not be causally connected to the
application state (i.e., dependent on the application state).

Our contribution is a method to implement DSMLs which
are able to support runtime semantic adaptations. Meta-
object protocols (MOPs) are interfaces to change the seman-
tics of object-oriented programming languages [17]. MOPs
define meta-objects that for instance handle the dispatch
of method calls. Our key insights are that: 1) domain ob-
jects can be linked to a meta-object and 2) by implementing
a DSML in a specific manner, an existing general-purpose
MOP enables to change the semantics of the DSML itself.
The method supports unanticipated semantic adaptations
after the default DSML implementation has been delivered
to a particular domain, as late as during the execution of a
DSML program.

To evaluate our approach, we instantiate the method by
building a DSML for state machines. This DSML supports
semantic adaptations discussed previously in literature [25,
3].

The remainder of this paper is structured as follows. Sec-
tion 2 presents different dimensions along which semantic
adaptations may be defined. The proposed DSML method
is presented in Section 3. Section 4 evaluates the support for
semantic adaptations of a DSML implemented following our
method. Related work is discussed in Section 5. Section 6
concludes the paper and discusses future research directions.

2. DIMENSIONS OF
LATE SEMANTIC ADAPTATIONS

It’s not straightforward to adapt the DSML semantics at
the application level. DSML programmers require analysis
means to design their adaptations. Hence, we have identified
the following dimensions of semantic adaptations.

2.1 Scope of Variability
The first dimension along which we classify DSML seman-

tic adaptations is the scope of variability. This dimension
is discrete and has two values: (a) domain type semantic
adaptation and (b) domain object semantic adaptation. A
domain type semantic adaptation affects the semantics of

--- DSL Loading
+++ Adaptation
+++ Adaptation
%%% DSL Execution
%%%
%%% 
%%%
%%% End of Execution

--- DSL Loading
%%% DSL Execution
%%%
+++ Adaptation
%%% 
+++ Adaptation
%%% 
%%% End of Execution

(D3.a) Pre-Execution 
Semantic Adaptation

(D3.b) Execution Context Dependent 
Semantic Adaptation

Figure 1: Semantic Adaptations and DSML Pro-
gram Execution

all domain objects of a given domain type. On the con-
trary, a domain object semantic adaptation affects only one
particular domain object.

2.2 Granularity of Changes
The second dimension of semantic adaptations is the gran-

ularity of adaptations that are made. The size of these adap-
tations ranges from one single domain operation to multiple
parts of the DSML semantics. Indeed changing one part of
the semantics often requires also changing another part of
the semantics, and multiple “elementary” semantic adapta-
tions have to be packed into a unit of change.

2.3 Relation to DSML Execution
The third dimension characterizes the relation between

the point in time in which the semantic adaptations happen
and the point in time when DSML programs are executed.
In most cases, the right semantics for a program execution
can be determined beforehand and stays fixed for a complete
program run. Sometimes, the selection of the right seman-
tics depends on the execution state of a DSML program, i.e.,
a change in the DSML program context triggers a semantic
adaptation.

Let us consider the following two abstract examples of ex-
ecution traces that illustrate the two possible points in time
when adaptations may take place. Figure 1 shows the differ-
ence in the execution traces of a pre-execution adaptation
and a context-dependent adaptation. In both traces, the
first step is to load the DSML program of which the cor-
responding trace is prefixed by “– – –”. Then, two kinds of
execution steps can occur: semantic adaptation (“+ + +”)
and normal DSML execution (“% % %”).

The left-hand side of figure 1 schematically depicts a pre-
execution semantic adaptation: the semantics of the DSML
changes before any domain object is created, or any call to a
domain operation has occurred. Note that multiple adapta-
tions can be applied as indicated. Then, the DSML program
is evaluated until completion. In this case, the adaptation
is independent of the DSML execution. The right-hand side
of figure 1 depicts an execution context-dependent seman-
tic adaptation, as used in the running example. Unlike the
previous trace, the adaptation happens during DSML exe-
cution, depending on the concrete values of domain objects.
This is symbolized by the interlacing of several regular do-
main operation execution and semantic adaptation steps.
Such context-dependent adaptations enable semantic self-
adaptation of DSML programs.



3. A NEW METHOD FOR
IMPLEMENTING DSMLS

This section presents a method for implementing DSMLs.
DSMLs interpreters implemented with this method have
the particularity to allow late semantic adaptations (as de-
scribed in 2), i.e. semantic adaptations of the DSML inside
DSML programs. We use the Groovy programming lan-
guage to demonstrate the feasibility of the approach, as well
as to fully instantiate the approach later in section 4.

3.1 Using Groovy to Implement DSMLs
Groovy [5, 18] is an object-oriented scripting language

that nicely integrates with Java [12]. We have selected
Groovy as the implementation language of our method for
the following reasons:

1. Groovy provides a runtime MOPs in which meta-objects
are first-class entities that can be directly accessed and
modified by users1.

2. Groovy has a flexible syntax that enables the definition
of embedded DSMLs with a small syntax overhead.
While for other host languages, such as Haskell, a
large syntax overhead has been measured [19], Groovy
supports named parameters and command expressions
that allow the DSML implementer to design the syntax
of the embedded DSML more openly.

3. Groovy is accessible to a broad community of devel-
opers since it has a syntax that is close to the Java
syntax. Groovy is seamlessly integrated into Java and
Groovy code can be called from Java code and vice
versa. Hence, DSML programs can be called from Java
and DSML programs can call existing Java libraries.
All these argument allow an easy dissemination of our
method.

While our method for implementing DSMLs could be imple-
mented using other programming languages that come with
a meta-object protocol (Smalltalk [10], CLOS [17], Ruby
[27]), none of these languages satisfy all the aforementioned
requirements.

Let us now give a quick overview of the features of Groovy
that our method uses for implementing DSMLs2. Every
Groovy object is bound to a meta-object [17]. This meta-
object has several responsibilities: 1) it contains the logic
related to introspection (e.g. the method getMethods) and
2) it handles every method call to this object. It is possible
to change or replace this meta-object at runtime.

Also, there is a registry that links a class name to its
default meta-object. Every new instance of a class, say x, is
bound to the meta-object for its class in the registry. Hence,
when the registry is updated, already existing objects keep
the old meta-object and the new generation of objects is
bound to the updated meta-object.

Groovy supports first-class closures. A closure can be
created dynamically, passed as parameters to methods and
functions, and executed. Listing 1 illustrates these points

1Note that users do not have to understand and use the
MOP as long as they use the default semantics of a DSML
and do not need to adapt it.
2Note that our approach is not bound to Groovy specifically,
but to dynamic languages with a MOP. For instance, our
approach is completely applicable in the context of Ruby.

1 // creating a closure
2 aClosure = {x->
3 print ”hello ”+x }
4

5 def m(Closure c) {
6 c(”world”) // executing the closure
7 }
8

9 // passing the closure as parameter
10 m(aClosure)

Listing 1: Closures in Groovy

1 // creating a closure
2 aClosure = {-> bar() }
3

4 // two different contexts
5 class Context1 {
6 def bar() { println ”bar” } }
7 class Context2 {
8 def bar() { println ”bar2” } }
9

10 // executing the closure with Context1
11 aClosure.delegate=new Context1()
12 aClosure() // output ”bar”
13 // executing the closure with Context2
14 aClosure.delegate=new Context2()
15 aClosure() // output ”bar2”

Listing 2: Delegates in Groovy

Also, an important feature of Groovy closures is that their
execution can be parameterized by a delegate context. By
default, a closure has access to the lexical context in which it
has been created. The lexical context contains all local vari-
ables of the closure. If it has been created within a method
body, all variables available in the method are also avail-
able for the closure. In particular, all instance attributes
and methods of the object that has created the closure are
available when the closure is executed. This creating object
is called the owner of the closure. In addition to the lexical
context, the available context can be extended. When using
a delegate for the closure, by changing its delegate attribute
to refer to the delegate, the lexical context of the delegate
becomes accessible in the closure. This way, the instance at-
tributes and methods of another object than its owner can
be used. If a function is not found in the closure’s lexical
context, a method with same signature is looked up in the
delegate context, as shown in listing 2. Note that depending
on the current binding of the delegate, the execution of the
same closure can produce different results.

Technically, extending the available context for a closure
is possible because Groovy uses a special meta-object for ev-
ery closure. This meta-object first tries to lookup attribute
accesses and method calls in the lexical context of a closure,
i.e., in the local variables and in the owner. If no attribute or
method with a corresponding name or signature is available
in the lexical context and if the closure’s delegate attribute
is set, then the meta-object tries to lookup the attribute or
method in the class of the delegate object. Only if the at-
tribute or method can be found neither in the lexical context
nor in the delegate, Groovy throws a runtime error.

3.2 The Embedding of DSMLs
Our method is based on Hudak’s method to implement

DSLs [15], i.e., no parser and compiler has to be written.
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Figure 2: Architecture of the Default Interpreter

Implementing a DSML relies on two main steps. First, a
metamodel specifies domain types, domain operations, and
associated semantics in terms of a set of interrelated Groovy
classes. Second, a syntactic language interface – a Groovy
class – maps DSML syntax to DSML semantics by map-
ping DSML keywords to domain objects. There is a method
in the syntactic language interface for each keyword in the
DSML. DSML programs are enclosed in Groovy closures and
the latter are assigned an instance of the language interface
class as their delegate. The delegation mechanism of Groovy
closures then maps DSML keywords to the corresponding
method calls to a closure’s delegate.

For instance, let us consider the implementation of the
default semantics for a DSML for state machines. Figure 2
depicts the design of this DSML. The metamodel consists
of classes Fsm, State, Transition, Actions. The Fsm class
maintains a set of states, refers to a current state and im-
plements some default semantics of state machines, e.g., the
method receiveEvents(...) defines the dispatch mecha-
nism of events received by a state machine. State instances
maintain a set of outgoing transitions and may have an
on_entry action and implement the state semantics. For
instance, the method handleEvent(...) defines the state
event handling mechanism. A Transition points to the
next state. The fire(...) method is called whenever a
transition is selected. The class Action encapsulates a set of
domain-specific actions; the semantics of an action execution
is encoded in the doIt method. Finally, the syntactic lan-
guage interface is implemented in class StateMachineDSML.
There is a method in StateMachineDSML for each keyword in
the DSML. When called, these methods instantiate domain
objects.

Listing 3 shows an excerpt of an embedded DSML pro-
gram for state machines. The DSML program is contained
in the closure dslPackage (cf. line 3) which is configured in
line 22 to have an instance of StateMachineDSML as its dele-
gate and whose evaluation starts at line 24. The evaluation
is performed in two steps.

The first step transforms the textual DSML program (from
line 5 to 9), embedded into the host language syntax, to
a representation as a network of interrelated domain ob-
jects (instances of the domain classes from the metamodel,
e.g., the instance MyFsm of class Fsm). During the execu-
tion of the closure, keywords, e.g. fsm, state, and when,
are encountered in the DSML program. These keywords
are turned into method calls due to the flexible syntax of
Groovy. When using curly brackets at the end of a key-
word method call, Groovy creates a closure and passes the
closure to the method call as the last parameter. For in-
stance, the program segment fsm ’MyFsm’, {...} is turned

1 // this closure contains
2 // the DSML program + adaptations
3 def dslPackage = {
4 // the DSML program
5 fsm ’MyFsm’, {
6 state ’S1’, { ... }
7 ...
8 state ’SX’, { ... }
9 }
10

11 // will execute the DSML program
12 // when the closure dslPackage is called
13 // with the event list passed as a parameter
14 MyFsm.execute({’ok’,’error’,...})
15 }
16

17 // in Groovy a delegate is
18 // the interpretation context for closures
19 // we set the interpretation context for dslPackage
20 // to be the default interpreter for state machines
21 dslPackage.delegate =
22 new de.tud.statemachine.StateMachineDSML()
23

24 dslPackage(); // evaluates the closure

Listing 3: State Machine Embedded in Groovy

aDomainObj:
DomainClass

x:MetaObject

barImpl:Operation

fooImpl1:Operation

<<meta-object>>

<<impl>>

<<impl>>

foo()
bar()

DomainClass:Class
<<meta-object>>

<<instance of>>

Figure 3: A Meta-Level for Domain Objects

into a method call of the form fsm(’MyFsm’, closure-in-

brackets) with the dslPackage closure as the receiver. These
calls are dispatched to closure’s delegate, in this case a StateMa-

chineDSML, of which the method with the corresponding key-
word name and signature is called. These methods serve
mostly as factories of domain objects. The second step, in
line 14, is the execution of the DSML program as a method
call to a domain object (resp. MyFsm and execute), given
a specific execution context ({’ok’,’error’,...}). This
triggers a cascade of method calls on domain objects cre-
ated during the first step.

3.3 How to Support Late Semantic Adapta-
tions in DSMLs

In the following, we explain how to use meta-objects to en-
able late semantic adaptations. The meta-level introduced
by our method is schematically depicted in Figure 3. Every
domain type is mapped to a domain class A domain class,
e.g., DomainClass in Figure 3, defines the domain operations
of its instances – the domain objects, e.g., aDomainObj. The
semantics of domain objects is reified in meta-objects, which
are responsible for handling the execution of domain opera-
tions. Every domain class is associated with a meta-object,
which is the default meta-object of any new instance of the
domain class. Meta-objects, e.g., x in Figure 3, dispatch
method calls received by domain objects to concrete imple-
mentations of domain operations. The links meta-object

and/or impl can be changed at runtime, which is the key to
allow dynamic semantic adaptations.
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Our base embedding method in Groovy presented above
supports this meta-level: 1) all domain classes are Groovy
classes whose semantics can be modified at runtime; 2) all
domain objects are Groovy objects, and the corresponding
meta-object can be changed for a single instance only.

3.3.1 Scope of Variability
Figure 4 shows how the two kinds of variability with re-

gard to the scope dimension – domain type versus domain
object – are supported in the proposed meta-level.

The upper part shows the effects of semantic adaptations
whose scope is an entire domain type; the lower part corre-
sponds to an adaptation that is specifically scoped for a par-
ticular domain object, thus, only domain objects are shown
there. Both parts show the relation between domain types
and domain objects to their corresponding semantics (encap-
sulated in a meta-object) before and after the adaptation.

In the upper left quadrant, the domain type A is bound
to the default semantics represented by the meta-object x.
Every new domain object that is created, e.g., a, runs under
the default semantics. The semantic adaptation defines new
semantics for domain type A. In the upper right quadrant,
a new meta-object y is defined to represent the new seman-
tics and A is associated with it. Any domain object created
subsequently runs under the new semantics: the domain ob-
ject b is created after the adaptation, hence, it is linked to
the new meta-object y. Objects that were created before
the semantic adaptation continue to run under the previous
semantics, e.g., a is still linked to the meta-object x.

In the lower left quadrant, the domain objects c and d are
created with the same semantics. The object-level semantic
adaptation depicted here modifies the semantics of d only.
The lower right quadrant shows the domain objects, meta-
objects, and their relations after the semantic adaptation
has taken place. While c keeps the former semantics, d uses
the new semantics represented by meta-object z.

3.3.2 Granularity of Changes
Figure 5 depicts how adaptations at different levels of

granularity are also supported by the proposed meta-level.
The upper part shows the most fine-grained semantic adap-
tation at the level of an atomic domain operation. Unlike
figure 4, the meta-objects are represented along with the do-
main operations. Doing so, we can highlight that the adap-
tation can separately impact a particular operation. In the
upper left quadrant, the object a is attached to meta-object
x; in the upper right quadrant, the same object is attached
to a new meta-object y, which is the result of cloning x

and binding foo to a new implementation, called fooImpl2.
This way, the whole default semantics gets reused except the
re-bound domain operation(s).

In general, it is likely that a semantic adaptation affects
several places in the default implementation of the seman-
tics. Obviously, it is preferable to apply the changes together
as a unit of semantic adaptation. In contrast to the atomic
adaptation at the level of a single domain operation, in this
case the changes have to be packed into a bigger variability
unit. This abstract unit is depicted as the gray rectangle
in the lower left part of figure 5. When an adaptation hap-
pens, all changes of this adaptation unit are performed in
concert. The impacted domain objects are then bound to
a new meta-object, which is the result of mixing the previ-
ous meta-object and the semantic adaptation unit. In figure

Interpreter

a:A

z:MetaObject

<<create>>

call a domain operation

adapt domain operations

<<create>>

Domain object a is 
bound to the default 
meta-object x

Domain object a
will execute under 
default semantics 
of x

call a domain operation
Domain object a
will execute under 
the semantics of z 

replace <<meta-object>> link

Figure 6: Context-Dependent Semantic Adaptation

5, after the change, the domain object a is attached to the
meta-object z, which binds both foo and bar to new imple-
mentations.

3.3.3 Relation to DSML Execution
Semantic adaptations may occur at loading time or at

runtime of DSML programs. Figure 6 depicts the sequence
diagram of context-dependent semantic adaptation. Nor-
mal execution and semantic adaptation are interlaced. After
loading DSML program the first execution phase starts. In
this phase, while executing the DSML program and when
entering a context that requires a semantic adaptation, a
special phase is started that consists of applying seman-
tic adaptations onto domain objects (respectively domain
types). At the end of the adaptation phase, control is passed
back to DSML execution. The subsequent execution phase
will run under the new tailored semantics. It is worth men-
tioning that several adaptation phases can be executed, e.g.,
the adaptation can be reverted or other semantics can be in-
stalled.

4. APPLYING THE METHOD
This section discusses an implementation of a DSML for

finite state machines (FSM DSML) using the method de-
scribed in section 3. We show why the DSML interpreter
supports semantic adaptations and how to implement them
in at the level of DSML programs.

4.1 Possible Semantic Adaptations for the FSM
DSML

The UML specification [25] discusses several semantic adap-
tations for state machines. We consider here two of them.

4.1.1 Synchronous vs. asynchronous event handling.
Listing 4 shows two possible implementations of State’s

domain operation handleEvent. The first implementation is
the default one and encodes synchronous event handling; the
second implementation supports asynchronous event han-
dling.



1 // default: synchronous event handling
2 def handleEvent(Event e) {
3 this.fsm.currentState =
4 this.transitionSelection(e).fire()
5 }
6

7 // alternative: asynchronous event handling
8 def handleEvent(Event e) {
9 if (this.queue.isEmpty) {
10 this.fsm.currentState =
11 this.transitionSelection(e).fire()
12 } else {
13 this.fsm.queue.add(e)
14 }
15 }

Listing 4: Two Implementations of handleEvent

1 // default semantics: deterministic transition selection
2 def transitionSelection(Event e) {
3 return this.transitions.findAll(event).first
4 }
5

6 // alternative semantics: random transition selection
7 def transitionSelection(Event e) {
8 return this.transitions.findAll(event).getRandom()
9 }

Listing 5: Two Implementations of transitionSelec-
tion

4.1.2 Deterministic vs. random transition selections.
A given state of a state machine can have several transi-

tions matching a given event. In this case, a state machine
implementation has to provide a transition selection policy.
Following our method, the semantics of transition selection
is encoded in the transitionSelection method of the do-
main class State. Listing 5 shows two possible implementa-
tions of transitionSelection. The default implementation
of the transition selection policy is a deterministic one. It
returns the first element of the collection of matched tran-
sitions. The alternative implementation selects a random
item in the collection of matched transitions for a fairer load-
balancing.

The following sub-sections will discuss scenarios of using
our method to apply alternative semantics for event han-
dling and transition selection thereby varying the kind of
adaptation along the three dimensions discussed previously.
Section 4.3, specifically, will discuss how to combine several
variation points in one semantic module; for instance, how
to use the tailored version of both handleEvent and tran-

sitionSelection in a concise and elegant manner.

4.2 Scope of Adaptations
Listing 6 shows the implementation of the first dimension

presented in section 3.3.1.
Listing 6 illustrates domain type semantic adaptation.

The module dslPackage (lines 5-9) is a Groovy closure,
which consists of three parts: (a) the declaration of a DSML
program (lines 5 to 9), (b) a piece of meta-program that tai-
lors the semantics of the DSML (lines 17 to 19), and (c) a
piece of code that starts the execution of the DSML program
(line 26). Parts (a) and (c) have been explained in 3.2. The
adaptation consists in changing the transitionSelection

method of the default state meta-object in line 17. As ex-
plained earlier, all instances of class State are affected by

1 // this closure contains the DSML package
2 // (DSML program + adaptations)
3 def dslPackage = {
4 // the DSML program
5 fsm ’MyFsm’, {
6 state ’S1’, { ... }
7 ...
8 state ’SX’, { ... }
9 }
10

11 // adaptation of the default semantics
12 // of the domain class State
13 // by replacing the implementation of
14 // the transitionSelection method
15 // of the default meta−object associated
16 // with the State class
17 State.metaClass.transitionSelection = { event ->
18 return this.transitions.findAll(event).last
19 }
20

21 // executing the DSML program
22 MyFsm.execute({’ok’,’error’,...})
23 }
24 dslPackage.delegate =
25 new de.tud.statemachine.StateMachineDSML()
26 dslPackage();

Listing 6: Domain Type Semantic Adaptation

this kind of adaptation and will execute with the tailored
transition selection semantics.

For sake of space, we cannot elaborate on a complete
DSML program that performs a semantic adaptation at the
level of a single domain object. The code is similar to that
in listing 6, except that it is not the metaClass of class
State (line 17) that is changed but the metaClass of a do-
main object. For example, we can change the meta-object
of S1 using MyFsm.S1.metaClass.transitionSelection =

{...} .

4.3 Granularity of Adaptations
This section illustrates the second semantic dimension,

presented in section 3.3.2. On the one extreme in this dimen-
sion, a semantic adaptation affects a single domain method;
on the other extreme, a semantic adaptation may imply the
construction of a completely new meta-object.

Listing 7 shows DSML code that is embedded similarly
to listing 6. It focuses on the adaptation in lines 7 to 10.
The only element that is changed is a domain method of a
domain class.

On the contrary, listing 8 shows the creation of a seman-
tic module and its use for tailoring the semantics of a do-
main class. Similarly to using classes to represent domain
types, we use a new subclass for modularizing alternative
semantics for a domain type. In the example, lines 2–9 de-
fine such a subclass called TailoredState. Subclassing a
domain type to create a new meta-object allows leveraging
two key Groovy features used in listing 8:

1. The possibility to attach new semantics to an existing
domain class, using a registry mechanism (line 13).

2. The automatic creation of a meta-object for each new
class (line 14).

A meta-object for the new subclass is automatically cre-
ated and stored in the class variable TailoredState.meta-

Class. In listing 8 lines 13–14, we register this meta-object



1 fsm ’MyFsm’, {
2 ...
3 }
4

5 // we tailor only transition selection
6 // part of the semantics of States
7 State.metaClass.transitionSelection = {
8 event ->
9 return this.transitions.findAll(event).last
10 }
11 // executing the DSML program
12 MyFsm.execute({’ok’,’error’,...})

Listing 7: Method-Level Adaptation

1 // we use classes for modularizing the semantics
2 class TailoredState extends State {
3 def transitionSelection(event) {
4 /∗ cf. variation point transitionSelection ∗/
5 }
6 def handleEvent(event) {
7 /∗ cf. variation point handleEvent ∗/
8 }
9 }
10

11 // we tailor the semantics of State in one unit
12 // for both event handling and transition selection
13 InvokerHelper.metaRegistry.setMetaClass(State,
14 TailoredState.metaClass)
15 // executing the DSML program
16 MyFsm.execute({’ok’,’error’,...})

Listing 8: Semantic Module Adaptation

also for the State class. As a consequence, the domain op-
eration implementations of TailoredState will be used for
State objects.

4.4 Moment of Adaptations
As shown figure 1, a pre-execution adaptation is simply a

piece of code preceding the DSML program that changes the
semantics of the language itself. While our method enables
such adaptations, for sake of space, we cannot elaborate on
them.

We now present a complete example of a semantic adap-
tation that occurs during the execution of a DSML program,
i.e. a context-dependent adaptation. Consider now the self-
adaptive DSML program in listing 9. This DSML program
is a state machine representing a Web service composition
for a travel booking process. The machine consists of two
states, first booking a flight and second booking a hotel. In
both states, a call to a Web service is made in the on_entry

blocks. States transitions are triggered by the reception of
Web service responses.

This program is self-adaptive since it is able to recover
from failing synchronous partners, thanks to our FSM DSML
which supports semantic adaptations: the TravelPackage

program is able:

1. to handle the error event in the BookingFlight state
(line 12);

2. to replace the failing partner whith an asynchronous
one (line 14)

3. to adapt itself to the new webservice by changing the
event reception semantics of the DSML only for state
BookingFlight in order to listen to asynchronous events
(lines 12–21).

1 def dslPackage = {
2 // declaration of the DSML program
3 fsm ’TravelPackage’, {
4 state ’BookingFlight’, {
5 on_entry {
6 /∗ synchronous call to flight webservice ∗/ }
7

8 // nominal mode
9 when ’done’, { enter ’BookingHotel’}
10

11 // error recovery mode
12 when ’error’, {
13 // change to an asynchronous webservice
14 targetService = ”another flight webservice”
15 // and we have to change the semantics too
16 this.metaClass.handleEvent = { event ->
17 /∗ new asynchronous implementation ∗/
18 }
19 // re−enter current state
20 enter ’BookingFlight’
21 } // end when
22 } // end state
23

24 state ’BookingHotel’, {
25 on_entry {
26 /∗ synchronous call to hotel webservice ∗/ }
27 }
28 }
29 }
30

31 // executing the DSML program
32 TravelPackage.execute({’ok’,’error’,’done’,...})
33 }
34 dslPackage.delegate =
35 new de.tud.statemachine.StateMachineDSML()
36 dslPackage();

Listing 9: Context-Dependent Adaptation

In such cases, the semantic adaptation code becomes part
of the code of the DSML program and the adaptation logic
is executed only when DSML execution reaches the lines 12–
21.

In this section, we have presented an instantiation of our
method as a proof of concept that has shown its real imple-
mentability. From the viewpoint of end-users of our method,
i.e. DSML designers, this section is fully complementary to
the conceptual presentation of our method in sections 2 and
3 and enables them to implement on their own a DSML that
supports late semantic adaptations.

5. RELATED WORK

Domain-Specific Languages.
The implementation of DSMLs using “traditional, closed”

compilers (e.g. [1]) does not allow semantic adaptations.
In contrast, extensible compilers, such as Polyglot [24] or
JastAdd [13, 8], target semantic adaptations of the form of
extensions to Java language. Akesson et al. [33] address the
implementation of extensible DSMLs. However, extensible
compilers do not support all the semantic adaptation dimen-
sions discussed in this paper. Only class-level adaptations
are supported, in the sense that the adaptation granularity
is the class as well as in the sense that all domain objects are
executed under the same semantics. Furthermore, dynamic
semantic adaptation that depends on application execution
state is not supported. Last but not least, the application
adaptation are very different as opposed to our approach,
where – due to using the language embedding technology –



the same language is used for implementing an application
and the semantics of the DSML.

Our approach follows the domain virtual machine pattern
[9], i.e., it is a DSML interpreter realized by a set of domain
classes implementing the domain semantics in their meth-
ods. Kermeta [23] is a language to implement DSML inter-
preters following the domain virtual machine pattern. How-
ever, our domain classes are embedded into a host language
which allows to seamlessly integrate DSML programs and
programmatic semantic adaptations. More importantly, our
approach supports non-invasive, application-specific, and even
execution context specific semantic adaptations.

Steele [28] proposes to build interpreters out of a set of
building blocks called pseudomonads, in reference to Haskell
monads [32]. Achieving a semantic adaptation can be done
by composing interpreters. Comparing to our method, the
DSML programmer has to understand not only the inter-
preter of the DSML but also the composition operator of
pseudomonads.

Ramsey [26] described the implementation of the Lua script-
ing language as an embedded interpreter in Objective Caml.
While Ramsey implements a general-purpose language (Lua)
interpreter, our approach targets domain-specific interpreters
in order to design them as extensible.

The initial method of embedding DSMLs by Hudak [15]
does not consider the issue of semantic adaptations. Simi-
lar to our work, polymorphic embedding [14] enables several
interpretations of a DSML program by employing a similar
architecture for the DSML implementation that separates
the language interface and the domain metamodel. How-
ever, polymorphic embedding does not support a meta-level
architecture allowing DSML programs to change their se-
mantics in a fine-grained and application context-specific
manner during their execution.

Reflection and Meta-Object Protocols.
Meta-interfaces have been implemented for various lan-

guages, e.g., 3-KRS [21], CLOS [17], Smalltalk [10]. Meta-
object protocols (MOPs) provide “interfaces to the language
that give users the ability to incrementally modify the lan-
guage’s behavior and implementation” [17]. MOPs are open
implementations [16] of (object-oriented) general-purpose lan-
guages. Compile-time MOPs have been provided for pop-
ular compiled languages OpenC++ [4] and OpenJava [29].
MOPs have been adopted in dynamic scripting languages,
such as Ruby [27] and Groovy [5]. Using the above MOPs
for extending DSML semantics have not been addressed.

There are no methods for DSML implementation avail-
able, that derive a MOP for the implemented DSML. The
approach proposed in this paper is generic for class-based
languages. Other dynamic languages that come with a MOP
can be used to provide a flexible DSML semantics as pre-
sented in this paper.

xPico [11] allows to extend the syntax and semantics even
at runtime by reflectively manipulating the AST at well-
defined adaptation points. The idea to use reflection and
the targeted flexibility is similar to our approach. Although
xPico allows syntactic variability, the semantic adaptation
of xPico is limited, as explicit adaptation points must be de-
fined to allow extensibility. The problem with the xPico ap-
proach is that it does not provide an adequate meta-interface
and provides only access to the AST but not to domain ab-
stractions. However when implementing a DSML for multi-

ple users, it is impossible to envision every adaptation point
at design-time of the DSML semantics. On the contrary,
our approach permits unanticipated adaptation points, i.e.,
every domain class method is a latent adaptation point.

A domain-specific meta-object protocol for distributed en-
vironment, called diMOP, has been presented in [20]. This
design-time MOP is used to specify behavioral characteris-
tics, such as non-functional concerns, at the design level in
extended UML diagrams. However, the focus of this paper
is the language level and executable meta-objects. The idea
of having a domain-specific meta-object protocol is an inter-
esting one. The diMOP is only a MOP for one domain, while
every DSML implemented following our approach exposes a
domain-specific MOP.

6. SUMMARY AND FUTURE WORK
In this paper, we have presented a method for implement-

ing DSMLs that support semantic adaptations that may be
application-specific and may occur as late as during the ex-
ecution of DSML programs. The proposal leverages meta-
objects [16] in the context of domain-specific modeling lan-
guages. Also, we have elaborated on an instantiation of the
method in the Groovy programming language in the context
of state machines. Although not shown in this paper, our
solution is applicable for DSMLs with more complex sets of
domain concepts (and language constructs), such as work-
flow languages, aspect languages, and others [6, 7].

As usual for dynamic approaches, there is a trade-off be-
tween adaptability and statically checked correctness. Our
approach supports a maximal adaptability and may suffer
from possible correctness issues. For instance, DSML pro-
grammers who override part of the default DSML semantics
might violate contracts and responsibilities that are implicit
in the DSML design. These limitations will be addressed
in future work. For instance, semantic adaptations may re-
quire adaptations in several domain classes and operations
performed in concert. Our future work will also explore ex-
plicit contracts that can be checked at runtime to ensure the
semantic consistency of adaptations.
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ABSTRACT
Programming languages typically support a fixed set of com-
position operators, with fixed semantics. This may impose
limits on software designers, in case a desired operator or se-
mantics are not supported by a language, resulting in subop-
timal quality characteristics of the designed software system.
We demonstrate this using the well-known State design pat-
tern, and propose the use of a composition infrastructure
that allows the designer to define custom, composable com-
position operators. We demonstrate how this approach im-
proves several quality factors of the State design pattern,
such as reusability and modularity, while taking a reason-
able amount of effort to define the necessary pattern-related
code.

1. INTRODUCTION
One of the most important quality characteristics of source
code is its modularity. Good modularity is achieved, when
each distinct piece of behavior (also called concern) in a
program is encapsulated in one or only a few modules; and
when it is possible to extend and refine this behavior in a
way that requires no changes to existing code. A high degree
of modularity in source code, thus, favors its re-usability and
maintainability.

The degree of modularity that can be achieved, is signif-
icantly influenced by the composition power of operators
offered by a language to compose modules. Therefore, re-
search in the field of programming languages is intensively
concerned with providing new composition operators. Ex-
amples are method or function calls, aggregation, inheri-
tance, mixin-composition, or aspect-oriented composition.

However, we have observed that in each programming lan-
guage only a few of the known composition operators are at
the developer’s disposal as language features. This hinders
the modularity of source code. Thus, the ability to mod-
ularize source code is limited by the choice of composition
operators made by the language designers. In our research,

we want to enable the developer to freely use and mix all
existing—and future—composition operators.

For most of the composition operators, different variations
exist, e.g., when inheriting from a class, either the parent
(e.g., in Beta) or the child implementation (e.g., in Java)
may have precedence. While approaches exist to support
different variants of single operators simultaneously (e.g.,
Beta-style and Java-style inheritance in [12]), the developer
is typically provided with very limited choice. That is, dif-
ferent concerns may be well modularizable in different com-
position styles; but if no language exists that supports all
necessary styles, not all concerns can be optimally modular-
ized.

To avoid this limitation, often domain-specific languages
(DSL) are developed that provide composition operators tai-
lored toward a specific program domain. However, develop-
ing a DSL only pays off, when it is used sufficiently often.
If this approach, thus, is not feasible and a general-purpose
language is used, often the missing composition operators
are emulated by a specific programming style, e.g., in terms
of design patterns [10], which encode interactions between
(and thus compositions of) objects.

To emulate composition operators, design patterns typically
require some pieces of code which are application-independent
(possibly tailored with element names from the application
program) but cannot be localized in one module; we refer to
these code pieces as boilerplate code. Boilerplate code entails
several disadvantages.

• Firstly, it obfuscates the design; instead of specifying
the relation of two or more modules explicitly, this code
defines their composition imperatively. Because this
code is scattered over multiple participating modules,
the design intention becomes even more implicit.

• Secondly, boilerplate code is difficult to write. While
it is not very sophisticated, its correctness is not eas-
ily enforced; for example, consider the Visitor pat-
tern, where each Element class must implement the
method void accept(Visitor visitor){ visitor.accept

(this); }
1. Each class contains the same line, but it

is not possible to factor it out into the superclass.

1In languages like Java with an overloading semantics for
methods, the static type of the argument distinguishes be-
tween the accept methods for different Element types in a
Visitor.



• Finally, while it is sometimes necessary to combine
multiple composition operators, not all required op-
erators can be emulated by design patterns. As an
example, consider the expression problem [8], where
the building blocks of the application are data types
and operations on them. With an object-oriented lan-
guage, the data types are easily extensible, but not the
operations. The Visitor pattern emulates a functional
composition style, which makes it easy to extend the
operations, but in turn the data types cannot be eas-
ily extended. Different language-level solutions to this
problem have been proposed that are all founded on
combining multiple composition operators [5, 8].

As also others have noticed [7, 26, 13], we claim that quality
characteristics of design pattern implementations can often
be improved if the implementation language supports par-
ticular composition operators. However, while this decreases
the complexity of programs using a supported pattern, pro-
viding such support by extending the syntax of a language
will increase the language’s complexity [19].

In our research, we are concerned with developing a compo-
sition infrastructure, where the developer can choose from
different composition operators and from different variations
thereof. However, we do not simply aim at providing a
fixed set of composition operators to choose from; but we
aim to provide an infrastructure in which composition op-
erators can be user-defined. In addition, our approach al-
lows to re-use and combine implementations of composition
operators—thereby developing new composition operators—
because they are first-class. This also makes our approach
open for future developments in the research of composition
operators.

In this paper we present our approach through the exam-
ple of the State pattern and our prototypical Co-op lan-
guage. We have chosen this pattern because it is suitable
to demonstrate the interplay between different composition
operators, namely forwarding and delegation semantics as
well as aspect-oriented composition. By this example we
show that customizable composition operators can lead to
a re-usable implementation of design patterns as well as to
improved modularity of source code.

2. COMPOSITION ISSUES DEMONSTRATED
In this section, we demonstrate the occurrence of issues
caused by language limitations, based on a concrete exam-
ple. For this purpose, we discuss the object-oriented “State”
design pattern [10], which realizes a state machine.

Figure 1 shows a concrete instance of the State pattern that
(partially) implements the TCP/IP protocol. Based on this
figure, which is very similar to the example found in the
Design Patterns book [10], we identify several issues.

First, the State pattern has to be instantiated and tailored to
this specific application. In general, many patterns (includ-
ing the State pattern) specify roles that have to be mapped
to implementation-specific classes. However, parts of these
classes represent common pattern-defined behavior, made
specific for a particular instantiation of the pattern. This
obfuscates the generality of the design pattern, decreases the

state

init()
openPort()
receiveSyn()
receiveAck()
receiveRst()
changeState(newState)

TCPInterface

openPort(connection, ...)
TCPClosed

receiveSyn()
TCPListen

receiveAck()
receiveRst()

TCPSynReceived

openPort()
receiveSyn()
receiveAck()
receiveRst()

TCPState

 
TCPEstablished

state.openPort(this, ..)

...
connection.
   changeState(TCPListen);

   state = newState;

Figure 1: State pattern instantiation partially rep-
resenting TCP/IP

separation between application-specific and pattern-generic
code, and makes it harder to reuse common parts of the
pattern implementation (“boilerplate” code).

Specifically in this example, the most important occurrence
of boilerplate code is found in the methods defined in class
TCPInterface. For each action (e.g., openPort, receive-
Syn, etc.) supported by the state machine, this interface
class has to define a method that forwards calls to the cur-
rently active state. As shown in figure 1, the forwarding
method has to pass the this reference to the state object,
such that it can, e.g., call changeState on the context
object. Similarly, whenever a new action has to be added
to the state machine, additional boilerplate code has to be
added to both the State superclass TCPState, as well as
TCPInterface. Both issues can be addressed more con-
cisely in languages that support explicit delegation [22].

Second, pattern implementations may impose limitations on
the way a particular concept is expressed. In the case of the
State pattern implementation as shown in figure 1, the be-
havior associated with each state is modularized. However,
state transitions are encoded as part of the actions, and
thus become scattered over multiple State implementation
classes.

As an alternative, the State pattern therefore also explicitly
suggests that all state transitions can be kept in a single
location, e.g., a transition table. This addresses the scatter-
ing of transition statements over the program, thus making
it easier to, e.g., check whether an instantiation of the State
pattern matches a corresponding state diagram, or to modify
several transitions in one go. However, in many languages
this alternative requires additional boiler-plate code, as is
shown in figure 2.

In this alternative design, the constructor of TCPInterface
constructs a table of state transitions. The methods in class
TCPInterface each call the method changeState(..).
This method is parameterized by the action that is being
executed, which is needed to look up the “next” state in
the transition table. Similar to the code that “manually”
forwards method calls to the current state object, the invo-
cation of method changeState, passing the action, is thus
replicated for each action supported by the state machine
implementation.



TCPInterface()
openPort()
receiveSyn()
receiveAck()
receiveRst()
changeState(event)

table
TCPInterface

state
openPort()
receiveSyn()
receiveAck()
receiveRst()

TCPState

...
table.addTransition(
"fromState", "toState", 
"event");
...

state = table.
   lookup(state, event);

openPort()
TCPClosed

receiveSyn()
TCPListen

receiveAck()
receiveRst()

TCPSynReceived

 
TCPEstablished

state.openPort(..);
this.changeState("openPort");

Figure 2: State pattern implementation using a
transition table

One way to improve on the situation described above, is
by addressing limitations in the underlying implementation
language. In this case specifically, both implementations
can benefit from a language that supports explicit delega-
tion, whereas the table-based design can additionally benefit
from a language that supports pointcut-advice constructs.
We demonstrate this in detail in the next section; it should
be noted, however, that this example is meant as a demon-
strator for the usefulness of more flexible composition oper-
ator support in general, even if space limitations prevent us
from discussing other examples here.

3. USING COMPOSABLE COMPOSITION
OPERATORS

Our approach is based on a composition infrastructure, which
supports composition primitives that allow programmers to
design custom or domain-specific composition operators. This
infrastructure is implemented as an object-based language
called Co-op, which is discussed in detail elsewhere [14, 15].

Figure 3 shows a schematical overview of a Co-op-based de-
sign of the State pattern, applied to the TCP/IP example.
As is the case with the original OO pattern, it supports both
design alternatives discussed in the previous section (i.e., en-
coding transitions as part of the state implementations, or as
a separate transition table). The lower half of the diagram
contains the reusable, pattern-generic parts, which should
fulfill two main tasks. First, it establishes and controls a
delegation relation between a context object (as it is called
in the original pattern description; in our example, class
TCPInterface fulfills the role of context) and state imple-
mentation objects (instances of TCPClosed, TCPListen,
etc.). Second, in case a table-based implementation is de-
sired, it automatically ensures that the specified state tran-
sitions are executed at the appropriate moment, i.e., without
adding any invocations to the application-specific state im-
plementations (in the upper half of the diagram).

Below, we discuss each module described in the diagram in
some detail, and show how this approach reduces the amount
of boiler-plate code in the application-specific part.

Listing 1 shows the implementation of the generic, reusable
parts of the State pattern. An instance of the State pat-
tern can be created by constructing an instance of module

<<Delegation>>

init(target, initState)
addTransition()
getCurrentState()
getDelegatorOperator()
changeDelegatorOperator(newState)

@target
@currState
@currDelegator

StatePattern

init(patternInstance, toState)
stateChangeImpl()

@patternInstance
@toState

StateTransition

init(portNumber)
getPortNumber()
getStateObject(stateName)
getFSM()

@portNumber
@stateObjects
@fsm

TCPInterface

<<creates>><<creates>>

@currState

openPort()
TCPClosed

receiveSyn()
TCPListen

receiveAck()
receiveRst()

TCPSynReceived

TCPEstablished

<<AspectJTarget
PointcutAdvice>>

Figure 3: Design diagram of the Co-op-based State
pattern

StatePattern. To facilitate the delegation from the con-
text object to an object representing the current state, each
state pattern instance keeps references to the context and
currentState objects, and a reference to the delegation
operator2. These instance variables of the pattern are de-
fined on line 2. The constructor (lines 4–8) calls the oper-
ation that establishes the delegation relation (line 7). This
operation, changeDelegatorOperator(..) (lines 10–
18), which should be invoked whenever a state change is re-
quired, deactivates the delegation to the current state object
(lines 12–13), and activates a new delegation relation from
the context object to the new state object (lines 16–17).

We lack the space to discuss the internal details of the Dele-
gation operator in detail, but a discussion of this exact
operator can be found in prior work [14]. Here, it suffices
to know that the constructor of the Delegation module
establishes and activates delegation from the object refer-
enced by the first argument (here: @context) to the object
referenced by the second argument (here: newState). Ef-
fectively, this means that invocations on the context object
are forwarded to the indicated state object, while the “this”-
object still refers to the context object (i.e., this-calls are
all directed to the context object).

Finally, lines 20–22 implement the state transition mecha-
nism used in the table-based pattern implementation: by in-
voking addTransition, a pointcut-advice instance is con-
structed, which triggers after the specified action is in-
voked on the fromState. Whenever the pointcut triggers,
as an advice the operation stateChangeImpl is invoked,
as defined on lines 33–35, which changes the state to the
selected toState. The module StateTransition stores
references to the pattern instance, as well as the desired
toState, so that these can be used by the advice3.

2In Co-op, operators are themselves implemented as mod-
ules, and can be referenced as first-class objects. For a de-
tailed explanation, see [14].
3Ideally, these could be supplied as advice parameters, mak-



1 module StatePattern {
2 var context, currState, currDelegator;
3
4 initWithContext:aContext initState:initState {
5 context = aContext;
6 currState = initState;
7 this changeDelegatorOperator: initState;
8 }
9

10 changeDelegatorOperator:newState {
11 // Deactivate the existing delegation (if any)
12 (currDelegator isDefined) ifTrue:
13 [currDelegator deactivate];
14
15 // Active delegation to new state object
16 currState = newState;
17 currDelegator = Delegation newFrom: context to:

newState;
18 }
19
20 addTransitionFrom:fromState action:action to:toState {
21 AspectJTargetPointcutAdvice new: "after" matchTarget:

fromState matchOperation:action aspectInstance: (
StateTransition new:this to:toState) advMethod: "
stateChangeImpl";

22 }
23 ... // trivial accessors not shown here
24 }
25
26 module StateTransition {
27 var patternInstance, toState;
28
29 init:aPatternInstance to:aToState {
30 patternInstance = aPatternInstance;
31 toState = aToState;
32 }
33 stateChangeImpl {
34 patternInstance changeDelegatorOperator: toState;
35 }
36 }

Listing 1: Co-op-based implementation of the State
pattern

As mentioned in section 2, we found two types of function-
ality in the State pattern that can be made more reusable,
while also removing the need for a lot of boilerplate code.
First, by using delegation, it is no longer necessary to write
manual forwarding operations in the context class (here:
TCPInterface). Second, when using a table-based im-
plementation, the pointcut-advice composition operator re-
moves the need to manually invoke a method that decides
about the next state. Note that although our approach al-
lows the use of such a transition table, this is by no means
obligatory; embedding transitions in action implementations
works fine, as well. However, when transition tables are
used, our approach removes the need for boilerplate associ-
ated with the original implementation.

Listing 2 shows how the State pattern implementation de-
fined above as a custom, “pluggable” composition operator
that can be used in any Co-op program, is applied to the
TCP/IP example discussed in section 2.

1 module TCPInterface {
2 var portNumber, fsm;
3
4 init:aPortNumber {
5 var closedState, listenState, synReceivedState,

establishedState;
6

ing the module StateTransition superfluous, but our
much simplified implementation of AspectJ-like pointcut-
advice does not support this at present.

7 portNumber = aPortNumber;
8 closedState = TCPClosed new;
9 listenState = TCPListen new;

10 synReceivedState = TCPSynReceived new;
11 establishedState = TCPEstablished new;
12
13 fsm = StatePattern newWithContext: this initState:

closedState;
14
15 fsm addTransitionFrom: closedState action: "openPort"

to: listenState;
16 fsm addTransitionFrom: listenState action: "receiveSyn

" to: synReceivedState;
17 fsm addTransitionFrom: synReceivedState action: "

receiveAck" to: establishedState;
18 fsm addTransitionFrom: synReceivedState action: "

receiveRst" to: listenState;
19 // ...additional transitions not shown here
20 }
21 getPortNumber { return portNumber; }
22 }
23
24 module TCPClosed
25 {
26 openPort {
27 Console writeln: "TCPClosed: opening port: " with: (

this getPortNumber);
28 }
29 }
30
31 module TCPListen
32 {
33 receiveSyn {
34 Console writeln: "TCPListen: received SYN; sending SYN

-ACK";
35 }
36 }
37 // etc. for other TCP states not shown here

Listing 2: Application of the generic State-pattern
implementation

In this listing, the constructor of module TCPInterface,
found on lines 4–21, sets up the state machine: it creates an
instance of each TCP state modeled in this example (lines
8–11), and initializes a State pattern instance (line 14), ap-
pointing itself as the context object, and setting closed-
State as the initial state object. In this example, we also
used the pointcut-advice based transition mechanism, which
is initialized in lines 16–19. Note that all the initializa-
tion code here is completely application-specific, and also,
no boilerplate related to the internal “machinery” required
by the pattern implementation is visible. Once the state
machine is thus set up, the delegation and pointcut-advice
operators automatically take care of effectuating the desired
state machine behavior.

The remaining code in listing 2 shows the mock-up state im-
plementations. Note that the state modules do not contain
or need any references to the state pattern. Still, because of
delegation, you can still use behavior of class TCPInterface
by means of this-calls, such as this getPortNumber (line
27).

An example demonstrating how the complete state machine
can be instantiated and executed is shown in listing 3. Note
that in listing 3, no boilerplate code or references to the
state pattern are necessary either.

1 module Main {
2 main { var tcpserver;
3 tcpserver = TCPInterface new: "80";
4 tcpserver openPort; // Request port open



5 tcpserver receiveSyn; // Receive incoming conn.
6 //etc.
7 } }

Listing 3: Using the state machine implementation

When the state machine is initialized (line 5), calls will be
delegated to the initial state, an instance of TCPClosed.
Thus, when openPort is invoked (line 6), the call is dele-
gated to the operation openPort in TCPClosed, as shown
before. After this action has been executed, the pointcut-
advice that executes the state transition to listenState,
an instance of TCPListen, is automatically invoked, since it
triggers after the invocation of openPort on the instance of
TCPClosed. Thus the state machine implementation auto-
matically delegates calls to the appropriate implementation,
and automatically triggers state changes.

The complete example as well as a prototype Co-op-interpreter
(a plain jar-file, no installation required) can be downloaded
from the Co-op website [1].

4. RELATED WORK
The work in this paper is related to a large body of re-
search on defining new languages that support novel com-
position techniques, especially in the domain of object-based
and aspect languages. Many papers also present a (small)
set of composition techniques that aim at unifying exist-
ing ones. However, most of such related research proposes
a fixed set of composition operators, presented as part of a
language, extension of a language, or an application frame-
work. In contrast, our work focuses on a language that has
no—or just one—built-in composition operators, but rather
is a platform for constructing a wide range of user-defined
composition operators.

To the best of our knowledge, there are no other languages
that offer dedicated support for user-defined composition op-
erators (that can be reused and combined), at least not
within the domain of object-oriented and aspect-oriented
languages. Please note that this excludes languages that of-
fer generic extension mechanisms—such as macros in Lisp—
or allow for the extension and modification of the program
through metaprogramming; our work is particularly related
to metaprogramming [6] and especially meta-object proto-
cols [21]. As explained, e.g., in [20], the power of metapro-
gramming comes with more complexity and responsibility.

This means that the difficulty of language design—except for
the concrete syntax—is now on the MOP designer. Indeed,
our work might just as well have been presented as a novel
design of a MOP, but for practical reasons we chose to use
a concrete language, Co-op. We are not aware of any MOPs
(or languages, or frameworks) that offer similar generic ab-
stractions and structure as we presented in this paper. In
particular, we do not know any MOPs that provide abstrac-
tions for defining new composition operators with similar
variety, expressiveness and composability. For example, Co-
op explicitly supports a variety of object-oriented as well as
aspect-oriented composition operators.

Of the research that aims at providing frameworks for higher-
level languages through reflection or meta object protocols,

we just mention COLA [24], AspectS [18], MetaClassTalk [4]:
please refer to [14] for a discussion of these. There are several
frameworks that aim at offering a generic platform for OO
and AOP language implementations. For such platforms,
the designers have typically made efforts to find a small set
of generic constructs that typically serve as a target ‘lan-
guage’ for a compiler/code transformation. An important
distinction with our work is that these platforms do not aim
at, and hence do not support, the ability of creating user-
defined composition operators within the same language.

We have used the example of a modular, reusable implemen-
tation of a design pattern to exemplify that a single fixed
composition technique is insufficient, while at the same time
demonstrating that a design pattern implementation can in
fact be modeled as a composition operator that ‘extends’
the language.

In [3], Bosch argues that language support is needed for
explicit representation of design patterns in programming
languages. The LayOM language offers a number of com-
mon design patterns as built-in constructs. These can be
extended by growing the language, which supports modular
extension of the lexer, parser and code generators for a new
pattern: in contrast to our approach, the extension is not
specified in the programming language itself. Also in [17],
techniques for explicit representation of design patterns are
proposed that are based on extension of the language and,
consequently, the compiler.

Rajan and Sullivan [25] argue that design patterns are a
suitable test case for evaluating and comparing aspect lan-
guages, because (1) design patterns are standard, well-docu-
mented design structures, and (2) existing examples [13]
of design pattern implementations in AOPLs are available.
They base their evaluation of the EOS language on a com-
parison with the AspectJ implementations of patterns in
[13], following the metrics that have been proposed by Gar-
cia et al. in [11].

Several efforts have been made to represent design patterns
as first-class entities. For example, in [9], the fragment
model is introduced to represent design patterns and their
components. The FACE approach [23] extends the OMT
notation with pattern-specific entities. Similarly, [26] pro-
poses a modeling notation for representing design patterns—
specifically for the support of the design and integration of
object-oriented frameworks. All of these approaches build
on the assumption that a design pattern has roles, which
must be filled in by entities that use the design pattern.
These roles are called participants in [10].

Hanneman and Kiczales [13] shows how to implement the
GoF design patterns using aspect-oriented modularization
techniques; in several cases this enables the modularization
of all pattern-generic code within a single module (aspect).

5. EVALUATION AND CONCLUSION
Support for flexible, user-definable composition operators
can help to improve the modularity and reusability of design
pattern implementations, as we have shown for the State
design pattern specifically in this paper.



Although this paper shows only one example, the results
can be generalized. As has been discussed by the example
of the Visitor pattern in section 1, or by the example of other
patterns in [16, 15, 2, 13], rich composition operators in the
language provide a powerful way to solve problems which are
typically only“worked-around”by means of Design Patterns,
i.e., requiring boilerplate code in several locations.

In addition, our approach of using a composable composition
infrastructure (called Co-op) allows the definition of new
composition operators that reuse existing ones. We have
shown this by expressing the State design pattern as a cus-
tom composition operator, which reuses two existing opera-
tors that implement explicit delegation and a basic pointcut-
advice mechanism. Also as a result of this, we could define
such a relatively complex and reusable operator in less than
50 lines of code.
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ABSTRACT
Programming-language research produces a significant number of new
programming styles to improve the composability of programs. This
increases re-usability as well as other quality characteristics. But al-
though they offer interesting composition concepts, new program-
ming languages are rarely used because IDE support, which devel-
opers are used to, is missing. Examples of such IDE support are the
visualization of call hierarchies or interactive debugging. While some
languages, e.g., AspectJ, eventually reach a more mature level with
elaborate IDE integration, not all language designers are able to invest
this much effort towards IDE integration. Furthermore, the IDE inte-
gration of AspectJ also has its limitations; when debugging, the devel-
oper is confronted with synthetic code with no exact correspondence
in the source code. As a result, the developer needs to understand the
transformations performed by the compiler. Finally, some informa-
tion invariably gets lost during weaving, e.g., the ability to map code
evaluating pointcut designators to their definition in the source code.

In this paper, we propose to implement generic IDE tools for pro-
gramming languages that provide advanced dispatching mechanisms.
Such languages, including predicate dispatching and pointcut-advice
languages, can be mapped to our execution model, called ALIA. The
same execution model can then drive debugging functionality as well
as static IDE services.

1. INTRODUCTION
In order to improve the modularity of source code, research strives

to define new composition mechanisms, often in terms of new lan-
guages. Many such languages provide composition mechanisms by
allowing to influence the dispatch of, e.g., method calls, like in multi-
ple dispatching [9] or predicate dispatching [14]. But other composi-
tion styles can be mapped to a dispatching-based execution model as
well, as we have shown [5] for pointcut-advice languages [15], Com-
position Filters [12], and a DSL for composing objects following the
Decorator design pattern.

Usually, advanced dispatching mechanisms are provided as an ex-
tension of an existing programming language, the so-called base lan-
guage, and the semantics of the advanced program features are re-
alized by transforming them to the base language’s imperative code.
We have shown [5] that the dispatching mechanisms of all these lan-

.

guages share concepts from several broad categories: selection of
call sites based on syntactic properties, access to the runtime state
in which they are executed, evaluation of functions over the runtime
state to select from alternative meanings, declaration of meaning in
terms of actions on the runtime state, and description of relationships
between applicable actions. Each language uses some extension of
each core concept and the concrete concepts used in different lan-
guages often overlap.

Similarly, the requirements for IDE support of such languages over-
lap. Different kinds of support for the development in the investigated
languages are recurring, but have to be implemented from scratch for
each language. As a result, the IDE support for new languages is typ-
ically limited, as more effort is spent on the design of the language
and the implementation of compilers than on the language’s IDE inte-
gration. In the following, we discuss a few examples of IDE support
from which all investigated languages can benefit.

Among the investigated languages, the aspect-oriented ones sup-
port implicit invocation. It thus is desirable to let the IDE visualize the
places in the code at which other code may be (implicitly) the target
of dispatch. To this end, the IDE support for the AspectJ language, the
AspectJ Development Tools (AJDT), provides different ways of visu-
alizing such relations. However, even for languages with only explicit
invocation, similar IDE support is present. The Eclipse Java Develop-
ment Tools (JDT) allow, e.g., to search for all call sites of a method,
or to show the possible targets of a call site. It should be noted that,
while calls must be explicit in Java, they can be virtual and multiple
implementations may be applicable. The potential targets depend on
the inheritance hierarchy, which may be too complex for the devel-
oper to grasp in its entirety. IDE support is therefore essential. The
same observation holds for predicate-dispatching languages.

All investigated languages can be compiled to pure Java bytecode
and can run on a standard JVM. Therefore, the default debugger of
the IDE can be used to debug programs written in those languages.
What is debugged, however, is the program after the transformation.
Consequently, the developer is facing large amounts of infrastructural
code that has been inserted by the compiler to realize the semantics
and will often end up stepping through code for which no source code
exists, which makes it even harder to understand. Another difficulty is
that the Java debugger assumes that all code of a class was compiled
from a single source file, but with new composition mechanisms this
assumption may no longer hold: one class may be composed of multi-
ple source files. Compilers merge all files into one; thus, the mapping
from target code to the source code is lost and cannot be used by the
debugger anymore.

We have provided an architecture for implementing advanced-dis-
patching languages in a way that they can share the implementation
of overlapping concepts [5]; it is called the Advanced-dispatching
Language-Implementation Architecture (ALIA) and consists of a lan-
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Figure 1: Overview of the application life cycle in ALIA4J-based language implementations.

guage-independent meta-model of advanced dispatching concepts and
any number of execution environments that process models conform-
ing to this single meta-model. For languages extending Java we have
implemented this architecture, called ALIA for Java (ALIA4J), which
furthermore provides a framework factoring out shared components
of such execution environments.

In this position paper, we will discuss how ALIA’s meta-model,
more specifically its implementation in ALIA4J, and the framework
for execution environments can be used to provide a generic infras-
tructure for IDE support of advanced-dispatching languages.

2. THE ALIA ARCHITECTURE FOR JAVA
In ALIA4J, the meta-model stipulated by ALIA is embodied in the

Language-Independent Advanced-dispatching Meta-model (LIAM).
LIAM hereby acts as the form of intermediate representation for ad-
vanced dispatching in programs. The actual intermediate representa-
tion, in turn, is a model conforming this meta-model (the so-called
LIAM model). Code of the program not using advanced dispatching
mechanisms is represented in its conventional Java bytecode form.
The Framework for Implementing Advanced-dispatching Languages (FIAL)
implements common components and work flows required to imple-
ment execution environments based on a JVM for executing LIAM
models. A brief overview, of the approach can be found in [7]1.

Figure 1 shows an overview of the ALIA4J approach. Concretely,
the flow of compiling and executing applications in this approach is
shown. The compiler 1 starts processing the source code; a dedi-
cated importer component 2 adapts the compiler’s output to a model
for the advanced dispatch declarations in the program 3 based on the
refined subclasses 4 of the LIAM meta-entities 5 . Furthermore, the
compiler produces an intermediate representation of those parts of the
program that are expressible in the base language 6 alone.

The nine meta-entities of LIAM capture the core concepts under-
lying the various dispatching mechanisms, but at a finer granularity
than the concrete concepts found in high-level languages; one con-
crete concept often maps to a combination of LIAM’s core concepts.
Figure 2 shows the meta-entities in LIAM, which are implemented
as abstract classes. Attachment, specialization, and predicate are an
exception to this rule, i.e., they are concrete classes, as they provide
logical groupings of entities of the meta-model and cannot be refined.
The meta-entities are discussed in detail in [5, Chapter 3.2]2.

In short, an attachment corresponds to a unit of dispatch descrip-
tion. In terms of aspect-orientation (AO), this is a pointcut-advice

1Some details presented in [7] are outdated, but it may nevertheless
act as an introduction to the basic concepts.
2There, some meta-entities are named differently, but the structure of
the meta-entities is the same. Therefore, the interested reader will be
able to map the discussion to the new names.
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Figure 2: Entities of the Language-Independent Advanced-
dispatching Meta-Model (LIAM) as UML class diagram.

pair, in terms of predicate dispatching, an attachment corresponds to
a predicate method. Action specifies an action to which the dispatch
may lead (e.g., an advice or the predicate-method body). Special-
ization defines static and dynamic properties affecting dispatch: pat-
terns specify syntactic properties of call sites which are affected by
the declared dispatch; predicate and atomic predicate entities model
dynamic properties a dispatch depends on (dynamic pointcut desig-
nators in AO terminology). Context entities model access to values in
the context of a dispatch, like the calling object or argument values.
Finally, the schedule information models constraints between multi-
ple actions applicable at the same generic-function call. This includes
the order of their execution, as well as relations like mutual exclusion.

At runtime, FIAL derives a dispatch model for each dispatch site
in the program from all attachments that have been defined. Thereby,
FIAL solves the constraints specified as schedule information and de-
rives a single dispatch function per call site from the predicates of
all specializations. This function is represented as a binary decision
diagram (BDD) [8], where the inner nodes are the atomic predicates
used in the predicate definitions and the leaf nodes are labeled with
the actions to be executed. For each possible result of dispatch, the
BDD has one leaf node. Figure 3 shows an example of such a dis-
patch model with the atomic predicates x1 and x2 and the actions y1

and y2. For a detailed explanation of this model, we refer the reader
to [18].

The dispatch model is defined in such a way that an execution strat-
egy can immediately be derived from it. The default execution strat-
egy requires that each concrete entity implementation provides a Java
method implementing its semantics. It is possible to override the de-
fault strategy and implement an optimization strategy on a per atomic
predicate basis, in a modular way. These strategies are extensively
discussed in [5].

The approach allows to implement new concrete concepts modu-
larly by refining the abstract class of a meta-entity. We have already
shown how to map the languages AspectJ, JAsCo, Compose*, Cae-
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Figure 3: A dispatch function’s evaluation strategy.

sarJ, and a simple domain-specific language to our meta-model [5].
By now, we have also developed mappings for the languages Mul-
tiJava [10], JPred [16], and ConSpec [4], which are, however, still
unpublished work.

Important for the present paper is the fact that all concrete concepts
participating in a dispatch are expressed in a declarative and fine-
grained model. This model can thus be used to derive information
relevant to the different services of an IDE. Furthermore, the model
stays first-class during the execution of a program and can therefore
easily support dynamic features of an IDE, e.g., debugging, profiling,
or testing.

3. ALIA4J-BASED IDE SUPPORT
So far, we have implemented a limited IDE integration for the

ALIA4J mapping of AspectJ language. However, we aim at making
this support more general and support other languages, too. More-
over, we aim at filling the gaps in our IDE support.

3.1 Cross References for AspectJ
For the AspectJ language, we have implemented a nearly complete

integration with our architecture. All necessary LIAM entities are
implemented and we have developed an automatic importer compo-
nent which allows to execute AspectJ programs on an FIAL-based
execution environment while developing it in the standard AJDT. The
benefit of this integration is that some FIAL-based execution envi-
ronments perform sophisticated dynamic optimizations which make
AspectJ programs execute faster than the product of the standard com-
piler [6].

Because we bypass the weaving phase of the AspectJ compiler in
this approach, pointcuts are not evaluated at compile time anymore.
Thus, the compiler also cannot determine the crosscutting structure
of the aspects which would normally be used by the IDE to show,
e.g., in the “Cross References” view, or which would be used to facil-
itate navigation between advised join point shadows and their advice,
as depicted in Figure 4. To restore the accustomed functionality, we
have developed an extension to the AJDT that provides the crosscut-
ting structure when compiling AspectJ applications for execution on a
FIAL-based execution environment, i.e., without compile-time weav-
ing. This comprises an instantiation of the FIAL framework which is,
however, not integrated in a Java Virtual Machine like a full-fledged
FIAL-based execution environment. Instead of providing FIAL with
dynamic information about generic-function calls, it provides static
approximations of call sites. Our framework then evaluates all pat-
terns in the LIAM models of the AspectJ project and builds the dis-
patch model for each call site. Afterwards, for dispatch models which
are not trivial, i.e., where no advice is attached, the links are estab-
lished in AJDT’s abstract structure model.

To support this work, the LIAM meta-entities are extended to also
store the location in the source code where they are defined. This is
similar to the debug information present in Java bytecode. This de-
bug information facilitates recovery of the file name and line number

Figure 4: Linking of pointcut-advice and advised locations in
AJDT.

whose compilation has lead to a bytecode instruction, respectively in
the case of LIAM to a model entity. The builder uses this informa-
tion to establish links between source locations, as is stipulated by the
AJDT abstract structure model.

In the current version, input is hard-wired to the AspectJ compiler’s
output. But since our architecture already provides a plug-in mech-
anism to provide input in different formats, a straight-forward exten-
sion is to use this mechanism. Then, the same support can be provided
for any language that can be mapped to our approach.

While the above AJDT extension shows the feasibility of building
static tool support based on our ALIA approach, we do not aim to
extend the AJDT in our future research work. Instead, we will re-
implement similar support, including an AJDT-like structure model
and related views, by directly extending the Java Development Tools
(JDT). This is necessary because the AJDT and the structure model
are hard-linked to the AspectJ compiler, a dependency that we would
rather avoid. Furthermore, we have already outlined that there are
commonalities between the cross references view and, e.g., the call
hierarchy of methods explicitly called. Since both concepts, explicit
and implicit calls, are unified in our architecture, we like to provide
IDE support for both in the same way. The developer will benefit
from such unified tools, because he will see all contributors to a call
at the same time.

3.2 Debugging Support
The debugging support we envision will be based on the availabil-

ity of our declarative dispatch model at runtime. For example, this
makes it possible to visualize the dispatch model for a call at a break-
point. The dispatch model is complete in the sense that it specifies on
which runtime values the dispatch depends and which predicates are
evaluated on these values. While the model, naturally, only specifies
the role of values that are used (e.g., “the first argument value”), in a
debugger, also the value can be shown. This is already done by mod-
ern debuggers, e.g., in the “Variables” view of the Eclipse debugger.
In contrast to general-purpose debuggers, our debugger for advanced
dispatch will only show values relevant for the dispatch, and associate
them to their role names.

Another contribution that results from using the ALIA approach
to enable debugging is that dispatch declarations defined in different
languages can be combined. Since all dispatch declarations (pointcut-
advice, multi-methods, etc.) are mapped to the same meta-model,
i.e., to LIAM, the actions resulting from these declarations can be



Figure 5: An idea of the GUI for generic debugging support for
multiple advanced-dispatching languages.

executed alongside. That means that, e.g., calls to multi-methods can
be advised.

Figure 5 illustrates the envisioned visualization in debugger. At the
top of the figure, three editors are shown. The editor at the left-hand
side shows Java code calling the method C.m(A) in line 7; at this line,
a breakpoint is set. At the right-hand side, the top editor shows an
AspectJ pointcut-advice and the bottom editor shows a multi-method
defined in MultiJava. Both dispatch declarations define a dynamic
constraint on the first argument: Only when this is of type B, the
advice is to be executed, respectively, the multi-method applies. In
this case, the multi-method overrides the Java method definition.

The bottom part of Figure 5 shows a possible visualization of the
(simplified) dispatch model for the call at the breakpoint. The dis-
patch function is simple and only contains one atomic predicate, which
tests the type of a context value, in the example that of the first argu-
ment. The bold elements show the path which the evaluation actu-
ally has followed. The bold solid arrow emerging from the predi-
cate indicates that it has been satisfied, therefore, the actions in the
bold box are to be executed as the dispatch’s result, i.e., the actions
Logger.before1 and handleB.m(B). If the predicate was satisfied, the
action C.m(A) would be executed.

In a graphical debugger as proposed here, the user can select and
introspect entities that participate in the dispatch at which the virtual
machine is currently suspended. In the figure, the TypePredicate is
selected. The selection in the editors showing the AspectJ and Mul-
tiJava code highlights the code which has led to this predicate in the
dispatch function. The “Variables” view shows the runtime values on
which the current selection depends, i.e., the first argument value. As
can be seen, this is an instance of B and therefore, the predicate is
satisfied.

As outlined above, the entities in the dispatch model can be linked
to multiple source locations. The result of single atomic predicates in
the dispatch function can be presented, which explains the result of
the dispatch. Potentially, it will be advantageous not to completely
evaluate the dispatch function and let the developer view the result
afterward, but to allow a step-wise evaluation of the dispatch function.
We will investigate both approaches.

3.3 Additional Ideas
The AJDT provides the developer with more detailed information

than just “these advice apply to this join-point shadow”. It already
includes additional information by specifying whether the join-point
shadow is always affected by an advice or only sometimes because
there is a dynamic pointcut designator in the matching pointcut. Also,
when showing the applicable advice, the AJDT orders them according
to their precedence.

Nevertheless, we envision to increase the provided information in
several ways. First, it is interesting to specify not only that an ad-
vice is conditional but also, what the condition is. Next, presenting a
sequential list of advice is too limited because some languages sup-
port more complex relations between advice at a join-point shadow.
AspectJ, e.g., already provides “around” advice which can be nested;
thus, a tree would be more suitable to present this information. Other
languages allow to define more complex relationships between advice
at a shared join-point shadow. Examples are mutual exclusion or con-
ditional execution in Compose*, or overriding in JPred and MultiJava.

The dispatch model, explained in some detail in the previous sub-
section, can also be made available before runtime. A visualization
of the cross references can, thus, take all information in the dispatch
model into account. This includes the exact specification of the condi-
tion under which an action is applicable at a call, dispatch declarations
sharing the call site and relationships (order, execution constraints,
etc.) among them.

Since the implementation of our architecture, i.e., FIAL and LIAM,
is very modular, it is also easily possible to make part of their im-
plementation interactive. A possible use is making pattern matching
interactive in order to debug patterns. The AJDT shows the devel-
oper in which places pointcuts match, but in some cases, developers
of pointcut-advice may wonder why a specific pointcut (respectively
the pattern used in a pointcut) does or does not match. Since the def-
inition of specializations (the equivalent to pointcuts in AspectJ) and
the call sites are available first-class in FIAL, it is possible to perform
the evaluation, e.g., for a specific call site, and show the developer
the different steps in the evaluation. This is similar to the debugging
support for dispatch functions, but can be performed before runtime.

4. RELATED WORK AND FUTURE WORK
Eaddy et al. [13] have identified several requirements for debug-

ging aspect-oriented programs. They support source-level debugging
by deferring the weaving to runtime, as in our approach. It is thus
possible to view the definition of pointcut-advice that have lead to the
execution of a specific statement. In contrast to our approach, the dis-
patch function is not represented in a structured declarative way, but
only by the imperative code resulting from the pointcut-advice defi-
nitions. Thus, the dynamic program state that has lead to executing
or not executing an advice is more difficult to determine for the de-
veloper. Furthermore, the original definition of an aspect (or dispatch
declaration) is not presented. Therefore, constraints among advice
sharing this join-point shadow are not easily visible, and, thus, cannot
be easily debugged.

Pothier et al. [17] discuss a retrospective debugging approach for
aspect-oriented programs. They record a complete execution trace
that can be inspected after the execution. While this is not the kind
of debugging that we will support, we will nevertheless take inspira-
tion from their work in order to present AO-specific visualization of
debugging information.

De Borger at al. [11] define an architecture for implementing de-
buggers for aspect-oriented languages. This architecture is based on a
structurally reflective model of aspect definitions. For each aspect that
is active during the program’s execution, its structure can be queried
by means of this model. It is possible to determine the executions of
advice, which are caused by a pointcut, including executions in the
past and in the future. Their model is meant to be an API used by a
debugger front-end and offers some infrastructure required by debug-
gers, e.g., to enable aspect-specific breakpoints.

Our underlying model is more fine-grained and provides more in-
formation: constraints among aspects like precedence are not avail-
able through the reflective API. Nevertheless, we plan to investigate
whether their work can be used as an interface for our approach. It



may be possible that our back-end, i.e., a FIAL-based execution envi-
ronment, can be used as an implementation of their API. Should we
follow this path, we aim to contribute additional functionality to the
API which can be provided by means of our back-end. Similarly, the
IDE integration of debugging that we envision, may be implementable
with their API as back-end.

The IDE Meta-tooling Platform (IMP) [2] is an Eclipse project aim-
ing at providing meta-implementations of typical IDE tools. Exam-
ples are a re-usable infrastructure for syntax highlighting, refactoring
support, semantic or static analyses, execution and debugging. Their
focus is on providing an infrastructure for the IDE integration and
the graphical user interface, but not on providing an infrastructure for
the runtime part of actual debugger implementations. Nevertheless,
we will consider to integrate our work with this project. Potentially,
the LIAM meta-model can act as re-usable abstract syntax tree for
dispatch declarations in the IMP. We hope to be able to re-use compo-
nents for the more static IDE support like the visualization of implicit
and explicit calls.

There are other Eclipse projects into which we may integrate our
envisioned work. The first option is the Dynamic Languages Toolkit
(DLTK) [1] which is a collection of frameworks to minimize the ef-
fort of developing IDEs for dynamic languages. The second option is
the Textual Modeling Framework (Xtext) [3] which is a framework
for generating full-fledged Eclipse text editors from grammars for
domain-specific languages, including an abstract source code model.

5. CONCLUSION
In the suggested research work, we aim at providing a generic im-

plementation of IDE support, most importantly containing debugging
support, for advanced-dispatching programming languages. We will
build this support on the FIAL framework and the LIAM meta-model
(part of the ALIA architecture for Java), which provide a first-class,
declarative model of all dispatches in a program. We have mapped
the aspect-oriented languages AspectJ, CaesarJ, Compose*, JAsCo,
the predicate-dispatching languages JPred and MultiJava, and other
languages to this model. All mapped languages will thus be able to
directly benefit from the IDE support we aim to provide.

The IDE support will primarily consist of a navigable visualization
of explicit as well as implicit calls (the former are used in predicate
dispatching, the latter in pointcut-advice languages), and of debug-
ging support. Both kinds of IDE integration will be driven by the
declarative, first-class dispatch model available in ALIA. Since ALIA
facilitates the execution of dispatch declarations written in different
languages, all such dispatch declarations can be executed in one pro-
gram run alongside; similarly, the debugging support we envision will
be able to debug all such declarations at the same time. It will fa-
cilitate to jump to the source code defining the dispatch declaration,
and it will to show all execution steps leading to a specific dispatch-
ing result. We will investigate similar support for reasoning about
the evaluation of patterns used in pointcut-advice, respectively for the
composition of actions applicable at the same call site.

Providing such IDE support that will work “out of the box” will
increase the acceptance of new programming languages which offer
sophisticated composition mechanisms by means of dispatch decla-
rations. The envisioned IDE support will make the effects of apply-
ing advanced composition mechanisms to a program more obvious
to developers, which will help them to learn such new mechanisms.
ALIA’s ability to execute programs written in different languages with
different composition primitives and the resulting IDE support, will
give developers the free choice of combining different languages and
benefit from all their features. We would also like to note that many
composition mechanisms which do not obviously map to a dispatch-
ing problem can still be handled by our architecture. For example, we

successfully mapped AspectJ’s inter-type member declarations to our
approach; in fact, the example used in section Section 3.2 uses the
open classes feature of MultiJava, which is equivalent to inter-type
member declarations.
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ABSTRACT
Different clients have different needs, therefore adaptability
and variability are crucial properties for service compositions
to fit those varying requirements. This is hard to achieve
in a cross-organizational context where services are imple-
mented and deployed by different organizations (e.g. com-
panies, administrative domains, . . . ): a feature, for example
security, cannot be condensed into a single module that is
applicable to all the different services. This paper proposes
an aspect-based variability model for representing cross-or-
ganizational features in service networks such as systems of
systems or service supply chains. We argue that cross-or-
ganizational features should be managed in a multi-layered
architecture, distinguishing between policy and mechanism.
Such a multi-layered architecture is completely lacking in
AOSD currently. Based on this tenet, we first describe a
technology-independent feature ontology that is well-defined
for a domain or a specific service network and map it to an
aspect-based feature implementation.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems—Distributed applications; D.2.11 [Software
Engineering]: Software Architectures—Service-oriented ar-
chitecture (SOA); D.2.13 [Software Engineering]: Reus-
able Software

General Terms
Design, Documentation, Management

Keywords
AOSD, Variability modelling, Service engineering, Feature-
oriented

1. INTRODUCTION
Recent trends in service engineering aim to combine the ben-
efits of feature-based and service-based approaches [5, 14, 1,
19]. This combination increases the reusability of services

and gives service consumers the opportunity to select differ-
ent variants of a service. In addition, a service provider can
provide fine-grained customization capabilities for a service,
without having to create new services for each customiza-
tion.

A feature is a distinctive mark, quality, or characteristic of
a software system or systems in a domain [12]. Features
define both common facets of the domain as well as differ-
ences between related systems in the domain. They make
each system in a domain different from others. Features
are also used to define the domain in terms of the manda-
tory, optional, or alternative characteristics of these related
systems. Aspect-oriented software development (AOSD) [9]
often has been put forward as a possible solution to enable
modularization and composition of features [20, 17, 15].

However, services are mostly used in a service composi-
tion consisting of services from different organizations. In
such a cross-organizational context, a feature cannot be con-
densed into a single feature module any more. The reason is
that service implementations are black boxes, implemented
and deployed by different organizations, and only the in-
terface descriptions are available [1]. But this doesn’t ex-
clude the need to share semantically compatible features
between those different services. A typical example of a
cross-organizational crosscutting feature is security. When
implementing an access control concern in an application,
for instance, security actions need to be performed for every
interaction between application components. However in a
cross-organizational application, it is difficult to defend that
a single module, for instance an aspect, should encapsulate
the implementation of the internal security mechanisms of
the organization involved as well as the global security policy
governing how security must be addressed in the overall in-
teraction between organizations. The latter security policy
belongs to a level of abstraction above the internal security
mechanism.

Therefore this paper proposes an aspect-based variability
model for representing cross-organizational features in ser-
vice networks such as systems of systems or service supply
chains. We argue that cross-organizational features should
be managed in a multi-layered architecture. Such a multi-
layered architecture is completely lacking in AOSD currently.

The remainder of this paper is structured as follows. In
section 2, we further illustrate and motivate the need for a



variability model for cross-organizational features in AOSD.
Section 3 elaborates the overall approach and presents the
application of the approach to an example. We discuss re-
lated work in section 4 and conclude in section 5.

2. MOTIVATION & ILLUSTRATION
In this section we further motivate and illustrate the impor-
tance of an aspect-based variability model for cross-organi-
zational features in service networks.

We present an example in the e-finance domain (see Fig. 1).
A bank offers a stock trading service to inspect, buy and
store stock quotes. To be able to provide this service, it
cooperates with the stock market, which in turn cooperates
with a settlement company. So the stock trading service is a
composition of the services provided by these three compa-
nies. Each participant can take up two roles in a composi-
tion: service consumer (client) and service provider (server).
For example the bank company is a server for the bank cus-
tomers, but consumes the QuotesOrderService of the stock
market.

QuotesPortalService

Bank Company

QuotesOrderService

Stock Quotes Market

SettlementService

Settlement Company

Bank Customers

Order
Registering

Order
Processing

Transaction
Preparation

Figure 1: Illustration of the stock trading service
composition.

During a typical session, a client inspects stock quote data,
inspects the stored stock quotes in his custody account and
potentially buys or sells some stocks. Clients can issue a
stock order by using the web service portal facility of their
bank. The bank service acquires the client’s order and for-
wards it to the stock market. Processing the order request
in the stock market consists of three sequential functional
steps. Firstly, the client order is registered in the stock mar-
ket by the OrderRegistration unit and then forwarded to
the OrderProcessing unit. Secondly, at regular time in-
tervals, the OrderProcessing unit searches for matches be-
tween buying and selling offers. If two orders match, they
are forwarded to the TransactionPreparation unit, which
delegates the actual trade of goods to the settlement com-
pany.

Since different clients have different needs, this service com-
position can be customized with respect to agreed features
such as prioritized processing, billing, stepwise feedback, log-
ging, non-repudiation, transaction support, secure commu-
nication, authentication, authorization and secure server-
side storage. Choosing different features results in differ-
ents variants. If selected, the stepwise feedback feature, for
instance, informs the client about the progress made in pro-
cessing its requests, at the level of the individual services as
well as the different sequential units within a service. Several
alternatives are available for the stepwise feedback feature,

such as feedback by email or by mobile text messages. Sim-
ilarly, a client can select prioritized processing. By having
this feature injected, the client’s requests are prioritized over
other requests. However, the prioritizing feature requires the
billing feature: prioritizing requests comes at an expense.

Figure 2 presents the stock trading service composition in-
cluding the prioritized processing feature. We see that the
stepwise feedback feature affects both the QuotesPortalSer-
vice, to retrieve customer account information, and the
QuotesOrderService, to perform the prioritizing. A more
trivial case is the secure communication feature: encryp-
tion and decryption operations should be performed at both
sides of the connection. This clearly illustrates that a single
feature, often consisting of a client and server functionality
part, can affect multiple services in a service composition.

Prioritized
Processing

Acquisition

Order
Registering

Order
Processing

Transaction
Preparation

process prepareregister

Settlement

process settle
up

QuotesPortalService SettlementService

QuotesOrderServer

perform
prioritizing

retrieve
customer
information

Figure 2: Services affected by the stepwise feedback
feature.

However, each company in a cross-organizational service
network has its own IT administration and trust domain,
and will not allow external parties to add or update fea-
ture implementations. The services provided by the different
partners are black boxes, loosely-coupled and independently
maintained by the company’s own administrators. This
black-box scenario hinders the feature modularization and
composition in a cross-organizational context [1]. There-
fore a feature cannot be condensed into a single module
any more. Cross-organizational features need to be split up
in client-side and server-side aspects, independently imple-
mented with possibly different AO-technologies. However, a
uniform high-level representation of those features is crucial
to be able to share them in a particular application domain
or service network.

3. APPROACH
In this section we present our approach to achieve a multi-
layered architecture for the uniform representation of cross-
organizational features in AOSD. A multi-layered architec-
ture, distinguishing between policy and mechanism, is a
core tenet of the body of research on cross-organizational
coordination architectures. We shortly review the state-
of-the-art in this field. Subsequently, based on this tenet,
we propose that aspect-based variability is first described
at the level of a technology-independent feature ontology
that is well-defined for a domain or a specific service net-
work. Each organization implements this feature ontology
independently using an AOP technology of its choice. The
mapping between the independent feature ontology and the
aspect-based implementation is then specified as part of the
second layer of the model. Finally, we show how this feature



ontology is used for cross-organizational service customiza-
tion.

3.1 Cross-organizational Coordination Archi-
tectures

Our approach is inspired by the design principles of cross-
organizational design. In the field of cross-organizational
coordination architectures, a layered system architecture is
a core principle of the reference model [31]. This reference
model distinguishes between (i) the type of agreements that
are established, (ii) the language for describing the agree-
ments, and (iii) the middleware for establishing and execut-
ing the agreements.

The language for describing how the interactions between
two or more independent services are to be done is further
refined into a conceptual and a computational model [31]:

1. A conceptual model provides the modeling concepts
to describe the regulations at a sufficient high-level of
abstraction that is independent from the organizations
internal processes and data.

2. A computational model offers behavioral concepts that
are mappable to implementable actions in the under-
lying software system that can be enforced upon con-
tracted services.

The conceptual model of the language should be as inde-
pendent as possible from the computational model to enable
that different organizations can implement the same agree-
ment differently depending on their choice of implementa-
tion platform, while adhering to the terms of the agreement.

When multiple independent organizations interact with each
other, they have to integrate their business processes in order
to be able to operate, gain added-value and survive in a mar-
ket. To enable this, a certain agreement must be complied
by all participating organizations in the business relation-
ship. We think that a common feature ontology can be part
of this agreement. Therefore, it is plausible to assume that
services in a service network can share a common feature
ontology.
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Figure 3: Aspect-based variability model.

3.2 High-level Feature Ontology
The conceptual model in our approach for specifying cross-
organizational features consists of a feature ontology. Sim-
ilarly to the conceptual model of the cross-organizational
coordination architectures, this feature ontology should be
high-level and independent from the aspect-based implemen-
tation to enable organizations in service networks to imple-
ment cross-organizational features using an AOP technol-
ogy of their choice (see Fig. 3). In order to be successful,
the feature ontology must have a clear scope on which par-
ticular application domain or area it applies, for example,
a specific market such as financial services or an individual
(long-running) business relationship between multiple orga-
nizations.

The specification of such a common feature ontology is di-
vided into a base level and one or more application-specific
levels. The base ontology is a framework and vocabulary for
specifying application-specific ontologies. An application-
specific ontology contains a catalog of features that can be
used within a certain cross-organizational service network.
Application-specific ontologies are hierarchically structured:
the application-specific ontology of a specific service compo-
sition imports and extends the ontology of the application
domain.

A feature ontology can be seen as a high-level, technology-
independent agreement between the parties involved (typi-
cally a service consumer and service provider). This agree-
ment prescribes the intended behavior of the feature and
clearly sets out the roles that different parties involved have
to play, as depicted in Fig. 3. These roles are described by a
name (e.g. Service Consumer) and a set of responsibilities.
These responsibilities specify constraints on behavior (the
specification of an algorithm to be used) and interfaces (mes-
sage types and operations that are required or provided).
Further, composition rules can be specified that prescribe
which features depend on other features and which features
can’t be executed during the same request due to feature
interference.

Listing 1: Example of high-level features.

feature P r i o r i t i z e d P r o c e s s i n g {
dependsOn : B i l l i n g ;
role ServiceConsumer {

r e s p o n s i b i l i t y retr ieveCustomerAccount {
prov ides : CustomerAccount ;

}
}
role Serv i c eProv ide r {

r e s p o n s i b i l i t y p e r f o r m P r i o r i t i z i n g {
r e q u i r e s : CustomerAccount ;
prov ides : AccountableItem ;

}
}
}

For example, the PrioritizedProcessing feature from Fig. 2
needs two roles: a service consumer who retrieves customer
account information, and a service provider, responsible for
performing the prioritizing. The service provider role re-
quires a CustomerAccount attribute, which will be provided
by the service consumer role. After the prioritizing, the ser-



vice provider role will provide a AccountableItem attribute
that will be used by the Billing feature. The feature de-
scription is presented in Listing 1. It also defines a com-
position rule that prescribes that PrioritizedProcessing

requires the Billing feature.

3.3 Mapping to Aspect-based Implementation
The mapping between the high-level feature ontology and
the aspect-based implementations is specified on the level
of the service platform, hiding the implementation details
for external parties. The use of AOSD [9] enables a clean
separation of concerns, in which the core functionality of a
service is separated from any feature behavior. Therefore
they are implemented separately from each other as com-
posite entities containing a set of aspect-components, pro-
viding the behavior of the features (so called advice). This
advising behavior can be dynamically composed on all the
components of a service – at client-side and at server-side.

By capturing the semantics of the features in a high-level
feature ontology, the different features can be implemented
independently by each of the service providers using their
favorite service platform and AO-composition technology.
Hence, the different services in the network may have their
own optimized aspect-based implementations of the different
features, and the most appropriate feature implementation
in each service may depend on environmental circumstances.
This decentralized feature management allows a variety of
service platforms using different AO-composition technolo-
gies to be interconnected. In addition, the implementation of
the different features and the software composition strategy
are open for adaptation by each of the local administrators.
However, the feature implementations have to satisfy certain
constraints, enforced by the feature ontology.

Each feature implementation mapping within a specific orga-
nization is described by means of a declarative specification
that specifies: (i) the feature and role that is implemented,
(ii) the aspect-component that implements the particular
role, and (iii) optionally an AO-composition for weaving the
aspect-component into the internal processes and data of the
organization (see Listing 2).

Listing 2: Example of a feature implementation
mapping.

featureImplementationMapping PPImpl {
implements : P r i o r i t i z e d P r o c e s s i n g ;
r o l e : ServiceConsumer ;
ao−component : PPAOComponent ;
ao−compos it ion {

. . .
}
}

3.4 Using the Feature Ontology for Cross-Or-
ganizational Service Customization

The Web Services Description Language (WSDL) is an XML-
based language that provides a model for describing web
services. The web service is defined by an interface, describ-
ing the operations that can be performed and the message
types that are required/provided by these operations. The
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Figure 4: Using the Variability Model for Web Ser-
vices.

WSDL also defines services as collections of network end-
points, or ports. A port is nothing more than the address or
connection point to the web service (typically a http URL).
To be able to use our feature ontology, the WSDL should be
extended with the set of available features (see Fig. 4).

The variability model is accessible to the clients of the ser-
vice application and allows them to select a desired set of
features. Configuration of features across the service net-
work happens through instantiation of service bindings. A
service binding is a declarative specification, specifying the
web service location, the selected port and which features
are desired (see Listing 3).

Listing 3: Example of a service binding.

servicebinding {
URI : http : //www. s t o c k t r a d i n g e x a m p l e . be ;
port : StockTradingServiceSoapEndpoint ;
f e a t u r e s : P r i o r i t i z e d P r o c e s s i n g , B i l l i n g ;
}

4. RELATED WORK
We first discuss the work in the context of cross-organiza-
tional service provisioning. Next we discuss the related re-
search in the domain of service composition.

Cross-organizational coordination architectures. A multi-
layered architecture, distinguishing between policy and mech-
anism, is a core principle of the body of research on cross-or-
ganizational coordination architectures. Firstly, agreements
must be represented digitally by means of a language that
offers the necessary concepts for describing and enforcing
agreements. Second, coordination middleware must be de-
veloped in order to establish agreements dynamically, and
to enforce the agreements or detect violations against it.

The current state-of-the-art on cross-organizational coordi-
nation architectures in the general area of SOA consists
of policy-based and contract-based frameworks. Contract
frameworks (such as BCL [21], [11], [26], GlueQoS [32], T-
BPEL [29] and SLAng [28, 27]) focus mostly on negotia-
tion, enactment and monitoring, while policy-based archi-
tectures (e.g. Ponder [7] and LGI [22]) focus exclusively
on enforcement. These coordination architectures estab-
lish agreements dynamically between two or more organi-
zations, but fail to support the coordination of system-wide
customizations of service compositions. Our approach deals
with this by providing an aspect-based variability model for



cross-organizational features, managed in a multi-layered ar-
chitecture.

Service composition. Previous research focussed already on
automated composition of web services into composite web
services [10, 6, 13]. For this purpose, matchmaking algo-
rithms search for matching web services based on their in-
put/output, the interaction protocol and functional behav-
ior, using a forward or backward chaining algorithm and a
discovery service. The matchmaking process can be either
centralized (i.e. planning a complete composition at once), or
decentralized, allowing each web service in the composition
to decide individually which web services to select in pro-
viding the required services for processing the request. This
functional matchmaking process is originally based upon
WSDL information in the UDDI directory to select the ap-
propriate services. In more recent work, the matchmaking
process is based upon QoS properties of the different web
services [32, 33, 34, 16, 4, 8]. Here, non-functional prop-
erties such as security, reliability and performance are used
by the matchmaking algorithm to select the most appropri-
ate service. For example, in [33], Zheng et al. propose a
quality-driven approach to select component services dur-
ing the execution of a composite service. For this purpose,
they define a web service quality model based upon five non-
functional properties and a global quality-driven selection
algorithm formulating these properties as a linear optimiza-
tion problem. In this approach, every service is assumed
to have one particular QoS profile, described in the quality
model. [18] presents an heuristic algorithm for composing
services to achieve global QoS requirements in dynamic ser-
vice environments.

A common denominator in this research domain is the us-
age of ontologies [3] to store semantic information about
web services to automate the matchmaking of services in
a web service composition based upon functional and non-
functional properties [25, 16, 30]. In our approach, we use
ontologies and semantic information to describe features as
first class entities rather than describing web services with
their properties. In this way, the information about the fea-
tures is web service independent. Thanks to this ontology,
automated reasoning can be done about the customization
of the orchestration on a per-request basis, without consid-
ering the actual web service composition.

The GlueQoS middleware-based approach of Wohlstadter
et al. [32] manages dynamically changing QoS requirements
of web services by delaying QoS commitments of the ser-
vices. Each service describes its QoS preferences, and a
middleware-based resolution mechanism searches for a sat-
isfiable set of QoS features to inter-operate for services that
encounter each other for the first time. Similar to our ap-
proach, GlueQoS uses a fixed ontology for classifying fea-
tures and describing their interactions and possible interfer-
ence. However, their selection of features is fully decentral-
ized and on a per-collaboration basis (optimally suited for a
highly dynamic web service composition), but lacking sup-
port for client-specific customization and consistent process-
ing throughout cross-organizational service compositions, as
our approach does.

Finally, our approach does not pretend to replace existing

WS-standards such as WS-Coordination [24], WS-Policy [2]
and WS-Security [23], but we intend to offer a complemen-
tary approach for consistent customization of features in or-
chestrations. For example, in our approach we use a per-
request tagging solution to achieve coordination between the
client and the different web services. In case more complex
coordination schemes are needed (e.g. if coordination mes-
sages don’t follow the message flow), our approach can be
combined with WS-Coordination. This coordination speci-
fication was originally defined for coordinating transaction
protocols, but is extensible for all kinds of coordination pro-
tocols in a web service environment.

5. CONCLUSION AND FUTURE WORK
In this paper, we proposed an aspect-based variability model
for representing cross-organizational features in service net-
works. Our approach consists of a multi-layered architec-
ture, mapping a technology-independent feature ontology
onto an aspect-based implementation.

The approach supports maintaining the compatibility of fea-
ture implementations across a service network of indepen-
dent organizations. The common feature ontology can also
be leveraged to support client-specific customization of cross-
organizational features across such service networks. As only
limited tests have been performed, further validation and
evaluation of our approach are necessary.
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