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On the geometry of loop quantum gravity on a graph

Carlo Rovelli and Simone Speziale1
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(Dated: October 22, 2018)

We discuss the meaning of geometrical constructions associated to loop quantum gravity states on
a graph. In particular, we discuss the “twisted geometries” and derive a simple relation between
these and Regge geometries.

I. INTRODUCTION

The state space of loop quantum gravity (LQG) is the
direct sum of Hilbert spaces HΓ associated to graphs Γ
[1–4]. In practical applications, a convenient approxima-
tion is obtained by cutting-off the continuum theory to
a single fixed graph. Can we assign a geometry to the
states on a single graph Γ?

The idea of relating loop-quantum-gravity states with
discrete geometries goes back to Immirzi [5]. Geometric
interpretations of this kind have recently been discussed
in the literature. A detailed interpretation in terms of
discrete “twisted geometries” has been proposed in [6].
An interpretation in terms of a mode expansion of the
geometry of a 3-sphere has been discussed in [7, 8]. Sim-
ilarly, relations between loop gravity (or loop-inspired
models) and discrete geometries have been considered in
[9–11]. On the other hand, a common point of view in
the literature is that LQG states do not need geometrical
interpretations of this kind (see [1–3, 12]).

In this note we contribute to the clarification of this
issue with two comments. First, we discuss the general
meaning of assigning a specific geometrical interpretation
to states in HΓ, and the compatibility between different
choices.

The second comment regards the geometrical interpre-
tation of the twisted geometries. We show that in the
special case in which the dynamical variables are compat-
ible with a Regge geometry, the canonical transformation
studied in [6], which defines the “twisted geometries”, is
precisely given by the explicit computation of the holon-
omy and the flux of the electric field over a given 4d
Regge geometry.

II. ASSIGNING GEOMETRIES TO STATES

A basis of LQG states is given by the spin network
states. A spin network state has support on a graph
Γ and determines a 3d “quantum geometry”. The (in-
trinsic) geometry is discrete, and can be visualized as

∗Unité Mixte de Recherche (UMR 6207) du CNRS et des Uni-
versités Aix-Marseille I, Aix-Marseille II et du Sud Toulon-Var.
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made up of “quanta of space”, or “polymeric”, or sim-
ilar [1, 3, 13]. At the same time, the extrinsic curva-
ture is completly fuzzy, due to the Heisenberg princi-
ple. To bridge to a semiclassical description of space,
we can consider coherent states peaked (but not sharp)
on both the intrinsic and the extrinsic geometry [12].
These are labelled by a continuous classical 3d geometry
(Eai (x), Aia(x)) and have support on all possible graphs.

In order to extract physics from theory, on the other
hand, we often need to rely on approximations. A con-
venient one is to allow only states living on a fixed finite
graph Γ. The Hilbert space HΓ, formed by the states
with support on Γ (or subgraphs of Γ), provides a trun-
cation of the theory, which may be sufficient to capture
the physics of appropriate regimes [4, 7]. Now, one can
consider coherent states also in the Hilbert space HΓ of
the truncated theory. However, in what sense can one as-
sign a classical geometrical interpretation to these states?
This is the problem we address here.

For a given graph Γ with L links l and N nodes n,
HΓ is the space of square integrable functions ψ(Ul) over
the group manifold SU(2)L, invariant under the gauge
transformations Ul → Vs(l)UlV

−1
t(l) , where U, V ∈ SU(2)

and s(l) and t(l) are the source node and the target
node of the link l. The elementary operators defined
on HΓ are the multiplicative operators Ul and the right
invariant vector fields Xl which are the generators of
the left action of SU(2). Consider the set of the op-
erators (Ul, Xl) defined on HΓ (for a fixed graph Γ). The
corresponding classical variables (which we also indicate
as (Ul, Xl)) parametrize the phase space T ∗SU(2)L ∼=
(su(2) × SU(2))L), thus a coherent state in HΓ will be
peaked on a point (Ul, Xl) in this phase space. Can we
interpret a point in this phase space, that is, the set
(Ul, Xl), as a (intrinsic and extrinsic) 3d geometry?

The difficulty is due to the following reason. The oper-
ators (Ul, Xl) have a well-defined interpretation: they are
(the restriction to HΓ of) the holonomy of the Ashtekar-
Barbero connection A along the link l, and the flux of
the Ashtekar’s electric field E over any surface that in-
tersects the sole link l of Γ in the immediate proximity of
its source. They capture only a finite number of degrees
of freedom, out of the infinite number of the degrees of
freedom of the continuous gravitational field. The value
of the observables Ul and Xl on a single graph, therefore,
is not sufficient to determine a continuous gravitational
field uniquely. Therefore, it cannot determine a 3d ge-
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FIG. 1: A data set and various interpolating functions: poly-
nomial (cfr. mode expansion in cosmology), piecewise linear
(cfr. Regge geometries) and piecewise flat (discontinuous, cfr.
twisted geometries for generic holonomy-fluxes).

ometry completely. In fact, we are here in context of a
truncation of the full theory, where the continuous metric
is replaced by a finite set of variables. The set (Ul, Xl)
characterizes a geometry only partially, in the same sense
as when we partially characterize a continuous function
f(x) by means of a finite number of its values fn = f(xn).

However, in physics, when we are given a finite data
set (xn, fn), it is often convenient to choose an algo-
rithm to select a preferred interpolating function f(x),
namely a function such that fn = f(xn). The inter-
polation procedure is of course vastly under-determined,
but it is nevertheless often convenient to choose an in-
terpolating function. Several choices are common. For
instance, if we have N points xn (say in the interval
[0, 2π]), we can choose: (i) the interpolating polyno-

mial f(x) =
∑N
k=1 akx

k, with coefficients ak deter-
mined by

∑
n akx

k
n = fn; or (ii) the periodic function

f(x) =
∑N
k=1 e

ikx ck; or (iii) the piecewise linear function
that takes the value f(x) = fn+fn+1(x−xn)/(xn+1−xn)
for x ∈ [xn+1, xn] ; or (iv) the discontinuous piecewise
constant function that takes the values

f(x) = fn, for n < x < n+ 1; (1)

and so on. Each of this choices has specific advantages,
and each is useful in order to visualize the data set. Can
we do something similar with the geometrical data Ul
and Xl?

That is, can we find an algorithm that picks up a
preferred “interpolating geometry” for each set of data
(Ul, Xl)? Making this choice is not strictly needed for
the interpretation of the theory. LQG is a continuous
theory defined by a set of variables much larger than the
(Ul, Xl) of a single fixed graph. However, in the context
of a truncation we restrict our attention to a finite num-
ber of gravitational field variables, and it is interesting
to choose an algorithm that selects a preferred geometry
characterized by the data Ul and Xl. The algorithm is
not unique, but a good choice may serve the purpose of
providing a geometrical intuition for the restricted set of
gravitational variables Ul and Xl. This is the sense in
which a geometry can be associated to the set (Ul, Xl):
the interpolating result provides an approximation of a
continuous geometry.

Two such choices have been recently considered in the
literature. In [7, 8, 14] the idea of a mode expansion of
the geometrical degrees of freedom of a (compact) space
in hyperspherical harmonics has been put forward in the

context of loop quantum cosmology [15, 16]. Roughly
speaking, it goes as follows. Consider a three-sphere S3

with a smooth metric on it. The components of the
4d metric g(α), α ∈ S3 can be expanded on a basis of
Wigner’s D functions,

g(α) =
∑
j,m,n

gjmnD(j)
mn(α).

If we truncate the expansion to a finite order in j, we
obtain a set of 3d geometries where “short wavelength”
modes are not excited. We can compute the quantities Ul
and Xl for a finite graph (and its dual cellular complex)
on the resulting geometries; these are then expressed as
functions of the modes amplitudes gjmn [8]. Solving for
gjmn we obtain a geometry for each set (Ul, Xl). Notice
that this is the analog of using the data set fn for fixing
the amplitudes of the first N Fourier components of f(x),
namely the analog of the example (ii) mentioned above.

Alternatively, one may capture this finite amount of
information with a discrete metric space. This is an al-
ternative interpolation procedure, analog to the examples
(iii) or (iv) above. A construction of a discrete geometry
determined by the variables (Ul, Xl) is discussed in [6].
The idea is to introduce a class of discrete metric spaces,
called “twisted geometries”, defined over a cellular com-
plex. The geometry is specified by the the set of variables

(Nl, Ñl, jl, ξl) ∈ Pl ≡ S2 × S2 ×R× S1 (2)

associated to each oriented face l of the complex. Each
three-cell is taken to be flat, and equipped with an (arbi-
trary) orthonormal reference system. The two quantities

Nl and Ñl are interpreted as the two (normalized) nor-
mals to the face l, in the two reference frames associated
to the two cells bounded by l. The quantity |j| is the area
of the face l and the quantity ξ is related to the extrin-
sic curvature of the complex at l (in a manner that we
clarify in this paper). The relation between the variables

(Nl, Ñl, jl, ξl) that specify a twisted geometry and the
LQG variables is given by the canonical transformation
(dropping the suffix l)

X = jnτ3ñ
−1, U = neξτ3 ñ−1. (3)

Here X = Xiτi ∈ su(2) where τi, i = 1, 2, 3 are the Pauli
matrices multiplied by −i/2, and n = n(N) ∈ SU(2) is
defined by

N i = Rij(n)zj . (4)

where ~z = (zj) = (0, 0, 1), Rij(n) is the adjoint represen-
tation of SU(2) (equivalently N iτi = nτ3n

−1), and by
(the “phase convention”)

Rij(n)(~z × ~N)j = (~z × ~N)i. (5)

From the quantities above one can construct a metric,
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but it is in general discontinuous on the faces. In par-
ticular, the limit of the length of a line that approaches
a 1-cell depends on the side from which the 1-cell is ap-
proached. This discontinuity is analogous to the discon-
tinuity in (1).

In the next section we illustrate in some detail this
discontinuity and the metric structure of such twisted
geometries. In particular, we show that a Regge geome-
try is a special case of twisted geometry, and we give a
simple derivation of (3) in this case. This will show in
particular that ξ can be directly obtained from the angle
between the 4d normals to the 3-cells.

III. TWISTED GEOMETRIES FROM REGGE
GEOMETRIES

Consider a four-dimensional Regge manifold. By this
we mean a metric space composed by glued flat four-
simplices, with matching geometry at the intersections.
Consider a three dimensional slice Σ in this manifold.
The slice is formed by a collection of tetrahedra and has
intrinsic and extrinsic curvature. The intrinsic curva-
ture in concentrated on the edges, while the extrinsic
curvature is concentrated on the triangles. Let qab(x)
be the metric tensor, in some coordinate system. Let
ea(x) = eia(x)τi be a corresponding co-triad, in some
gauge. These can be taken to be continuous, but, in gen-
eral, not necessarily smooth, because of the distributional
curvature on the edges. Thus, the metric is continuous
but non differentiable, like in the interpolating function
of the example (iii) above.

Let kab(x) be the extrinsic curvature. Notice that on
a Regge manifold the extrinsic curvature vanishes inside
each tetrahedron, since each tetrahedron is flat, and is
concentrated on the triangles. Consider in particular a
triangle f and a cartesian coordinate system that covers
the triangle (this is always possible in a Regge manifold,
of course), and let Na be the 3d normal to this triangle
in this coordinate system (we use a capital letter instead
of the more common low-case notation for the normal, to
avoid confusion with the n ∈ su(2) group elements con-
sidered above). In these coordinates kab(x) is constant
along the triangle, that is

kab(x) = kab

∫
f

δ3(x, f(σ)) d2σ. (6)

An important observation is that the matrix kab has
a particular form. First, the extrinsic curvature is the
derivative of the 4d normal to Σ. Since the normal
changes only across f , the derivative is non vanishing
only in the direction Na normal to f . Second, in a Regge
geometry, when moving across the surface, the normal
rotates in a plane normal to f . This is because the nor-
mals of both tetrahedra are orthogonal to the triangle;
hence the difference is also orthogonal to the triangle.
Therefore both indices of kab are nonvanishing only in

the direction of the normal to the triangle

kab = k NaNb, (7)

The value of k is then simply the curvature of a curve at
a point where there is an angle θ, where θ is the dihedral
angle between the 4d normals to the two tetrahedra at f .
Such curvature can be computed by approximating the
angle with an arc of angle θ in a circle of radius ε, and
hence curvature 1/ε. The integral of the curvature along
the curve is ∫

k(s)ds =

∫ εθ

0

1

ε
ds = θ (8)

Therefore, in the limit ε → 0 we have k(s) = θδ(s).
Comparing with (6) and (7), we have finally

k = θ. (9)

Consider now a graph dual to the triangulation Σ.
That is, a graph with a 4-valent node inside each tetra-
hedron and a link l crossing each triangle f . Consider
the holonomy-flux variables Ul and Xl, where l in Ul is
a link of the graph and l in Xl is the corresponding dual
triangle f . These can be explicitly computed on the given
Regge geometry, according to their definition

Xi
l =

∫
f

Ei =

∫
f

EaiNa d
2σ (10)

in the frame of the source of l, and

Ul = P exp

∫
l

A = P exp

∫
l

dla(Γia + γebikab)τi. (11)

Here Eai is the Ashtekar electric field, namely the inverse
densitized triad, Aia = Γia + γkia is the Ashtekar-Barbero
connection, where Γia is the 3d spin connection, γ the
Immirzi parameter, and kia = ebikab with ebi is the triad
field. Finally, P is the path ordering along l, and dla is
the line element along to the link l.

Let us evaluate these variables on Σ. It is convenient to
start by choosing a gauge for eia(x). It will then be easy
to transform the variables to arbitrary gauges. Given
a tetrahedron t, fix cartesian coordinates that cover the
tetrahedron, its four faces, as well as the entirety of the
four edges dual to the four faces. Then qab(x) = δab
and we can choose a gauge where eia(x) = δia on this
coordinate patch. Then we have immediately

Xi =

∫
f

EaiNad
2σ = δaiNa

∫
f

d2σ = jN i (12)

where j is the area of the face and N i = eiaNa is the
normal to the face in the coordinate system chosen. Next,
consider two adjacent tetrahedra. We can extend the
cartesian coordinate system to the second tetrahedron.
Because of the 3d flatness, the spin connection part of
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the connection vanishes, and we are left with

Ul = P exp γ

∫
l

dlaδibkabτi (13)

Inserting the explicit form (6) and (7) of the extrinsic
curvature into this equation we have

Ul = P exp γθ δbiNbτi

∫
l

∫
f

δ3(l, f(σ))dlaNad
2σ. (14)

But the integration is precisely the definition of the in-
tersection number, which is unit. Hence we have simply

Ul = P exp γθN iτi. (15)

So far we have worked in a gauge in which the two
tetrahedra adjacent to the face share the same reference
frame. Let us now rotate the second of these with an arbi-
trary SO(3) rotation. Then the parallel transport Ul gets
an additional contribution Ul → UlV where V ∈ SU(2)
is the rotation that rotates the first reference frame into
the second. Let us parametrize V with a unit vector
Ñ and an angle α. We then write V ≡ nñ−1

α , where
n = n(N) ∈ SU(2) is defined by (4), and analogously

ñα = ñ(Ñ)eατ3 . Multiplying (15) from the right by V
we get

Ul = n e(γθ−α)τ3 ñ−1. (16)

The expressions (12) and (16) reproduce precisely the
canonical transformation (3) considered in [6], which map
the holonomy-flux variables (U,X)l into twisted geometry

variables (j, ξ,N, Ñ)l, where we recognize ξ as

ξ = γ θ − α, (17)

namely (up to gauge and the Immirzi parameter) as the
modulus of the extrinsic curvature, that is the dihedral
angle between the 4d normals of a Regge geometry.1

This calculation gives a simple geometrical interpre-
tation to (3), in the sense that it shows that whenever
a Regge geometry is available, the variables of twisted
geometries coincide precisely with the evaluation of the
holonomy-flux variables on this Regge geometry. The
underlying Regge geometry can therefore be chosen as
the interpolating geometry for these particular (Ul, Xl)
configurations.

1 Notice that a similar relation arises in the semiclassical limit of
the new spin foam models, e.g. [17].

IV. TWISTED GEOMETRIES THAT ARE NOT
REGGE GEOMETRIES

Holonomies and fluxes computed as above from the
Regge geometries automatically satisfy certain condi-
tions, namely that the length of the edges of a triangle is
the same when computed in the frames of the two tetra-
hedra sharing it. This means that the metric induced
on a given triangle is continuous. However, these gluing
or “shape matching” conditions [18] are not satisfied by
a generic point (Ul, Xl) in the (gauge-invariant) phase
space of loop gravity [6, 9, 19]. As a consequence, an
interpolating geometry in terms of piecewise flat contin-
uous metrics is not possible in general, but only on the
(measure zero) subspace where the shape matching con-
ditions hold. In a sense, Regge geometries are “too rigid”
to be able to interpolate an arbitrary holonomy-flux con-
figuration.

What can the interpolating geometries be then, in the
general case? The above discussion suggests that we
could insist on piecewise-flat discrete geometries, upon
giving up the continuity. In fact, the result of [6] is
that the full (gauge-invariant) phase space can be still

described by the variables (j, ξ,N, Ñ)l, except they now
have a larger range: instead of being only the ones com-
ing from a Regge geometry as above, they now span the
space

P 0 ≡ ×l Pl // C, (18)

where C is the closure condition

Cn =
∑
l∈n

jlNl = 0 (19)

at each node n; and // indicates the restriction to C = 0
and the factorization by the orbits generated by C.
Thanks to the closure conditions, the set of the variables
(Nl, jl) for the links adjacent to each given 4-valent node
n can still be interpreted as determining the local geom-
etry of a flat tetrahedron. This fixes the metric inside
each tetrahedron. However, while the area of the face
is the same when measured as a limit coming from one
side or the other, nothing now guarantees that the length
of the edges match. The difference with the Regge case
is that the metric is in general discontinuous across the
triangles. Thus, the interpolating geometry is obtained
gluing flat tetrahedra in such a way that the metric across
the faces is discontinuous. This is analogous to the value
of the interpolating function (1) above, where the value
of the function of the integers is different if defined as a
limit from one side or the other. These are the (gauge-
invariant, or closed) twisted geometries (18): a partic-
ular choice of interpolating geometry, which is valid for
any point in the phase space of loop gravity, and which
reduces to a Regge geometry when the shape matching
conditions are satisfied.

An advantage of this construction is that it extends
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to nodes of arbitrary valence, and thus arbitrary graphs
not only dual to triangulations. In this case, the twisted
geometry is assigned to a cellular decomposition dual to
the graph, in which each node is dual to a polyhedron,
and each link to a polygon [20–22].

The twisted geometry parameterization extends to the
non-gauge-invariant level. The kinematical phase space
is given by ×lPl ∼= T ∗SU(2)L (see [6] for details), with
(19) relaxed. To each link is thus assigned an angle, the
(oriented) area of the face dual to it, and the two nor-
mals as seen from the two frames sharing it. Because of
the lack of closure conditions, these kinematical twisted
geometries do not define a piecewise flat metric even lo-
cally. In this case, the area of a face is still the same
when approached from one side or the other.

Finally, it is interesting to consider relaxing also the
area matching condition [23]. This leads to a even
larger space, in which each link is equipped with the
normals, but also two areas and two additional angles:
(N, Ñ, j, ̃, ξ, ξ̃). Remarkably, this eight-dimensional link
phase space turns out to span precisely the twistor space
C4 with canonical Poisson brackets [23]. Although this
takes us out of the LQG phase space, it is compelling to
have such a simple starting point for describing quantum
geometry.

The relations among the different spaces considered are
summarized in Table 1.

Twistor space

↓ area matching reduction

Twisted geometries ⇐⇒ phase space of
loop gravity

↓ closure reduction

Closed twisted geometries ⇐⇒ gauge-invariant
loop gravity

↓ shape matching reduction

Regge phase space

TABLE I: The relation between the spaces considered for the
discrete variables on a truncation of general relativity.

V. CONCLUSIONS

Loop gravity on a fixed graph describes a truncation
of general relativity [4]. The variables in this truncation
capture only a finite number of the degrees of freedom
of the metric. Therefore there is no unique geometric
interpretation associated to a single graph.

“Interpolating” geometries –such as the twisted geome-
tries, multipolar expansions and Regge geometry, dis-
cussed here– are not strictly needed for the physical in-
terpretation of the theory, but provide useful approxi-
mations of a continuous geometry. They have important
applications, for instance in cosmology, in the study of
semiclassical limit in spinfoams [17] in the definition of
n-point functions [24–26] and in the interpretation of co-
herent states [27, 28].

A twisted geometry is a specific choice of “interpolat-
ing geometry”, chosen among discontinuous metrics. To
any graph and any holonomy-flux configuration, we can
associate a twisted geometry: a discrete discontinuous
geometry on a cellular decomposition space into polyhe-
dra. Thanks to this result, the phase space of LQG on a
graph can be visualized not only in terms of holonomies
and fluxes, but also in terms of a simple geometrical pic-
ture of adjacent flat polyhedra.

We have shown here that in the special case when
the holonomy-flux variables admit a Regge interpreta-
tion, the canonical trasformation that defines the twisted
geometry variables is precisely given by the explicit com-
putation of the holonomy and the flux of the electric field
over the underlying Regge geometry.

The relation between twisted geometry and Regge cal-
culus implies that holonomies and fluxes carry more in-
formation than the phase space of Regge calculus. This
is not in contradiction with the fact that the Regge vari-
ables and the LQG variables on a fixed graph both pro-
vide a truncation of general relativity: simply, they define
two distinct truncations of the full theory.

Acknowledgements

We are grateful to Eugenio Bianchi for useful discus-
sions.

[1] C. Rovelli, Quantum Gravity. Cambridge University
Press, Cambridge, UK, 2004.

[2] T. Thiemann, Modern Canonical Quantum General
Relativity. Cambridge University Press, Cambridge,
UK, 2007.

[3] A. Ashtekar and J. Lewandowski, “Background
independent quantum gravity: A status report,” Class.
Quant. Grav. 21 (2004) R53, arXiv:gr-qc/0404018.

[4] C. Rovelli, “A new look at loop quantum gravity,”
arXiv:1004.1780.

[5] G. Immirzi, “Quantizing Regge calculus,” Class. Quant.
Grav. 13 (1996) 2385–2394, arXiv:gr-qc/9512040.

[6] L. Freidel and S. Speziale, “Twisted geometries: A
geometric parametrisation of SU(2) phase space,”
arXiv:1001.2748.

[7] C. Rovelli and F. Vidotto, “Stepping out of
Homogeneity in Loop Quantum Cosmology,” Class.
Quant. Grav. 25 (2008) 225024, arXiv:0805.4585.

[8] M. V. Battisti, A. Marciano, and C. Rovelli,
“Triangulated Loop Quantum Cosmology: Bianchi IX

http://dx.doi.org/10.1088/0264-9381/21/15/R01
http://dx.doi.org/10.1088/0264-9381/21/15/R01
http://arxiv.org/abs/gr-qc/0404018
http://arxiv.org/abs/gr-qc/0404018
http://arxiv.org/abs/1004.1780
http://arxiv.org/abs/1004.1780
http://dx.doi.org/10.1088/0264-9381/13/9/006
http://dx.doi.org/10.1088/0264-9381/13/9/006
http://arxiv.org/abs/gr-qc/9512040
http://arxiv.org/abs/gr-qc/9512040
http://arxiv.org/abs/1001.2748
http://arxiv.org/abs/1001.2748
http://dx.doi.org/10.1088/0264-9381/25/22/225024
http://dx.doi.org/10.1088/0264-9381/25/22/225024
http://arxiv.org/abs/0805.4585
http://arxiv.org/abs/0805.4585


6

and inhomogenous perturbations,” Phys. Rev. D81
(2010) 064019, arXiv:0911.2653.

[9] B. Dittrich and J. P. Ryan, “Phase space descriptions
for simplicial 4d geometries,” arXiv:0807.2806.

[10] V. Bonzom, “From lattice BF gauge theory to
area-angle Regge calculus,” Class. Quant. Grav. 26
(2009) 155020, arXiv:0903.0267.

[11] D. Oriti and T. Tlas, “Encoding simplicial quantum
geometry in group field theories,” arXiv:0912.1546.

[12] T. Thiemann, “Complexifier coherent states for
quantum general relativity,” Class. Quant. Grav. 23
(2006) 2063–2118, arXiv:gr-qc/0206037.
H. Sahlmann, T. Thiemann and O. Winkler, “Coherent
states for canonical quantum general relativity and the
infinite tensor product extension,” Nucl. Phys. B 606
(2001) 401, arXiv:gr-qc/0102038.

[13] C. Rovelli and L. Smolin, “Loop Space Representation
of Quantum General Relativity,” Nucl. Phys. B331
(1990) 80.

[14] E. Bianchi, C. Rovelli, and F. Vidotto, “Towards
Spinfoam Cosmology,” arXiv:1003.3483.

[15] A. Ashtekar, “An Introduction to Loop Quantum
Gravity Through Cosmology,” Nuovo Cim. 122B
(2007) 135–155, arXiv:gr-qc/0702030.

[16] M. Bojowald, “Loop quantum cosmology,” Living Rev.
Rel. 11 (2008) 4.

[17] J. W. Barrett, R. J. Dowdall, W. J. Fairbairn,
H. Gomes, and F. Hellmann, “A Summary of the
asymptotic analysis for the EPRL amplitude,” Talk
given at 25th Max Born Symposium: The Planck Scale,
29 Jun - 3 Jul 2009, Wroclaw, Poland arXiv:0909.1882.

[18] B. Dittrich and S. Speziale, “Area-angle variables for
general relativity,” New J. Phys. 10 (2008) 083006,
arXiv:0802.0864.

[19] B. Bahr and B. Dittrich, “(Broken) Gauge Symmetries
and Constraints in Regge Calculus,” Class. Quant.
Grav. 26 (2009) 225011, arXiv:0905.1670.

[20] F. Conrady and L. Freidel, “Quantum geometry from
phase space reduction,” J. Math. Phys. 50 (2009)
123510, arXiv:0902.0351.

[21] L. Freidel and E. R. Livine, “The Fine Structure of
SU(2) Intertwiners from U(N) Representations,”
arXiv:0911.3553.
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