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CHOOSABILITY OF A WEIGHTED PATH AND

FREE-CHOOSABILITY OF A CYCLE

YVES AUBRY, JEAN-CHRISTOPHE GODIN AND OLIVIER TOGNI

Abstract. A graph G with a list of colors L(v) and weight ω(v) for
each vertex v is (L, ω)-choosable if one can choose a subset of ω(v) colors
from L(v) for each vertex v, such that adjacent vertices receive disjoint
color sets. In this paper, we give a necessary and sufficient condition for
a weighted path to be (L, ω)-choosable for some lists L. Furthermore,
we solve the problem of the free-choosability of a cycle.

1. Introduction

The concept of choosability of a graph, also called list colouring, has
been introduced by Vizing in [11], and independently by Erdős, Rubin and
Taylor in [3]. It contains of course the colorability as a particular case. Since
its introduction, choosability has been extensively studied (see for example
[1, 2, 9, 10, 5, 8] and very recently [7, 6]).

Following the work in [4], we introduce here the notion of a good list (it
is an obvious necessary condition on the list for the graph to be choosable)
and of a waterfall list (list adapted to find a choosability) and we show that
any list of the first kind can be transformed into a list of the second one. We
give as a first main result a necessary and sufficient condition for a weighted
path with a given waterfall list L to be (L,ω)-choosable (Theorem 9).

In 1996, Voigt considered the following problem: let G be a graph and L a
list assignment and assume that an arbitrary vertex v ∈ V (G) is precoloured
by a colour f ∈ L(v). Is it always possible to complete this precolouring to a
proper list colouring ? This question leads to the concept of free-choosability
introduced by Voigt in [12].

We investigate here the free-choosability of the first interesting case,
namely the cycle. As an application of Theorem 9, we prove our second
main result which gives a necessary and sufficient condition for a cycle to be
free-choosable (Theorem 12). In order to get a concise statement, we intro-
duce the free-choice ratio of a graph, in the same way that Alon, Tuza and
Voigt in [1] introduced the choice ratio (which equals the so-called fractional
chromatic number).

We recall in Section 2 the definitions of choosability and free-choosability.
Section 3 is devoted to the choosability of a weighted path and section 4

to the free-choosability of a cycle.
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2. Definitions

Let G = (V (G), E(G)) be a graph where V (G) is the set of vertices and
E(G) is the set of edges, and let a, b, n and e be integers.

Let L be a list of G i.e. a map: L : V (G) → P(N) and let ω be a weight
of G i.e. a map: ω : V (G) → N.

Definition 1. An (L,ω)-choosability c of a graph G is a list of the weighted
graph G such that for all vv′ ∈ E(G):

c(v) ⊂ L(v), |c(v)| = ω(v) and c(v) ∩ c(v′) = ∅.

We say that G is (L,ω)-choosable if there exists an (L,ω)-choosability c
of G.

An (L, b)-choosability c of G is an (L,ω)-choosability of G such that for
all v ∈ V (G), we have ω(v) = b.

A a-list L of G is a list of G such that for all v ∈ V (G), we have |L(v)| = a.

Definition 2. G is said to be (a, b)-choosable if for any a-list L of G, there
exists an (L, b)-choosability c of G.

Definition 3. G is said to be (a, b)-free-choosable if for any v0 ∈ V (G),
and for any list L of G such that for any v ∈ V (G) \ {v0} : |L(v)| = a and
|L(v0)| = b, there exists an (L, b)-choosability c of G.

3. Choosability of a weighted path

The path Pn+1 or length n is the graph with vertex set V = {v0, v1, . . . , vn}
and edge set E =

⋃n−1
i=0 (vi, vi+1). To simplify the notations L(i) denotes

L(vi) and c(i) denotes c(vi).

Definition 4. For the path Pn+1 of order n,

• a waterfall list L is a list such that for all i, j ∈ {0, . . . , n} with
|i− j| ≥ 2, L(i) ∩ L(j) = ∅;

• two lists L and L′ are similar if and only if Pn+1 is (L,ω)-choosable
whenever Pn+1 is (L′, ω)-choosable;

• the amplitude Ai,j(L) (or Ai,j) of a list L is Ai,j(L) = ∪j
k=i

L(k);
• a list L is good if |L(i)| ≥ ω(i) + ω(i+ 1) for any i, 1 ≤ i ≤ n− 1.

Notice that another similar definition of a waterfall list is that any color
is present only on one list or on two lists of consecutive vertices.
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L() 0 1 2 3 4

-�

similar

Lc() 0 1 2 3 4

Fig. 1. Example of a list which is similar to a waterfall list.

Figure 1 shows a list L of P5 (on the left), together with a similar waterfall
list Lc (on the right).

Proposition 5. For any good list L of Pn+1 , there exists a similar waterfall
list Lc with |Lc(i)| = |L(i)| for all i ∈ {0, . . . , n}.

Proof. We are going to transform a good list L of Pn+1 into a waterfall list
Lc and we will prove that Lc is similar with L.

First, remark that if a color x ∈ L(i − 1) but x 6∈ L(i) for some i, 1 ≤
i ≤ n − 1, then for any j > i, one can change the color x by a new color
y 6∈ A(L) in the list L(j), without changing the choosability of the list. With
this remark in hand, we can assume that L is such that any color x appears
on the lists of consecutive vertices ix, . . . , jx.

Now, by permuting the colors if necessary, we can assume that if x < y
then ix < iy or ix = iy and jx ≤ jy.

Repeat the following transformation:
1. Take the minimum color x for which jx ≥ ix + 2 (i.e. the color x is

present on at least three vertices ix, ix + 1, ix + 2, . . . , jx;
2. Replace color x by a new color y in lists L(ix + 2), . . . , L(jx);
until the obtained list is a waterfall list (obviously, the number of itera-

tions is always finite).
Now, we show that this transformation preserves the choosability of the

list: Let L′ be the list obtained from the list L by the above transformation.
If c is an (L,ω)-choosability of Pn+1 then the choosability c′ obtained

from c by changing the color x by the color y in the color set c(k) of each
vertex k ≥ ix + 2 (containing x) is an (L′, ω)-choosability since y is a new
color.

Conversly, if c′ is an (L′, ω)-choosability of Pn+1 , we consider two cases:

Case 1: x 6∈ c′(ix + 1) or y 6∈ c′(ix + 2). In this case, the choosability c
obtained from c′ by changing the color y by the color x in the color set c′(k)
of each vertex k ≥ ix + 2 (containing y) is an (L,ω)-choosability.

Case 2: x ∈ c′(ix +1) and y ∈ c′(ix +2). We have to consider two subcases:
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• Subcase 1: L′(ix +1) 6⊂ (c′(ix)∪ c′(ix +1)∪ c′(ix +2)). There exists
z ∈ L′(ix +1) \ (c′(ix)∪ c′(ix +1)∪ c′(ix +2)) and the choosability c
obtained from c′ by changing the color x by the color z in c′(ix + 1)
and replacing the color y by the color x in the color set c′(k) of each
vertex k ≥ ix + 2 (containing y) is an (L,ω)-choosability.

• Subcase 2: L′(ix + 1) ⊂ (c′(ix) ∪ c′(ix + 1) ∪ c′(ix + 2)). We have

|L′(ix + 1)| =
∣

∣

∣

(

(c′(ix) ∪ c′(ix + 1) ∪ c′(ix + 2)
)

∩ L′(ix + 1)
∣

∣

∣
.

As c′ is an (L′, ω)-choosability of Pn+1, we have

|L′(ix+1)| = |c′(ix+2)∩L′(ix+1)|+|c′(ix+1)∩L′(ix+1)|+
∣

∣

∣

(

c′(ix)\c
′(ix+2)

)

∩L′(ix+1)
∣

∣

∣
,

|L′(ix+1)|−ω(ix+1)−|c′(ix+2)∩L′(ix+1)| =
∣

∣

∣

(

c′(ix)\c
′(ix+2)

)

∩L′(ix+1)
∣

∣

∣
.

Since y ∈ c′(ix + 2) and y /∈ L′(ix + 1), we obtain that

|c′(ix + 2) ∩ L′(ix + 1)| ≤ ω(ix + 2)− 1,

hence
(

|L′(ix +1)| −ω(ix +1)−ω(ix +2)
)

+1 ≤
∣

∣

∣

(

c′(ix)\c
′(ix +2)

)

∩L′(ix +1)
∣

∣

∣
.

But, by hypothesis, L is a good list. Thus |L(ix+1)| = |L′(ix+1)| ≥
ω(ix + 1) + ω(ix + 2) and

1 ≤
∣

∣

∣

(

c′(ix)\c
′(ix + 2)

)

∩ L′(ix + 1)
∣

∣

∣
.

Consequently, there exists z ∈
(

c′(ix)\c
′(ix + 2)

)

∩ L′(ix + 1). The

choosability c is then constructed from c′ by changing the color x by
the color z in c′(ix + 1), the color z by the color x in c′(ix) and the
color y by the color x in the set c′(k) of each vertex k ≥ ix + 2.

�

Remark 6. Let Lc be a waterfall list of Pn+1 and c be an (Lc, ω)-choosability
of Pn+1. Then, it is clear that if i, j ∈ {0, . . . , n} such that i 6= j then

c(i) ∩ c(j) = ∅ and |

j
⋃

k=i

c(k)| =

j
∑

k=i

ω(k).

We now need to define the notion of waterfall choosability (see Figure 2
for an illustration). For a list L of Pn+1, set

I(i, j) :=

{

⋂j
k=iL(k) if j ≥ i

∅ otherwise

and

Ip(i, j) := I(i, j)\
(

L(i− 1) ∪ L(j + 1)
)

.
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Definition 7. Let Lc be a waterfall list of Pn+1 and c be an (Lc, ω)-choosability
of Pn+1. We say that c is a waterfall (Lc, ω)-choosability of Pn+1 if for all
i ∈ {0, . . . , n}:

c(i) = K2i−1 ∪ Fi ∪K2i

with

K2i−1 ⊂ Ip(i−1, i)\K2i−2 such that |K2i−1| = min{|Ip(i−1, i)\K2i−2|, ω(i)},

Fi ⊂ Ip(i, i) such that |Fi| = min{|Ip(i, i)|, ω(i) − |K2i−1|},

K2i ⊂ Ip(i, i + 1) such that |K2i| = ω(i)− |K2i−1| − |Fi|.

And with the convention K−1 = K−2 = ∅.

?

?

?

?

c(0)

c(1)

c(2)

c(3)

L(0) L(1) L(2) L(3) L(i− 1) L(i) L(i+ 1)

K2i−2
K2i−1

Fi

K2i K2i+1

Fig. 2. Example of a waterfall choosability.

Lemma 8. Let Lc be a waterfall list of Pn+1. There exists an (Lc, ω)-
choosability c of Pn+1 if and only if there exists a waterfall (Lc, ω)-choosability
cc of Pn+1.

Proof. Under the hypothesis, if cc is a waterfall (Lc, ω)-choosability of Pn+1

then c = cc is an (Lc, ω)-choosability of Pn+1.

Conversely, if c is an (Lc, ω)-choosability of Pn+1 then we construct by
induction cj for j ∈ {0, . . . , n} such that: cj is a waterfall (L

c, ω)-choosability
of Pj+1, and cj is an (Lc, ω)-choosability of Pn+1, and

cj(i) =

{

cj−1(i) if i ∈ {0, . . . , j − 1}
c(i) if i ∈ {j + 1, . . . , n}.

We begin by the construction of c0. Let f and δ be two integers such that
f = |c(0) ∩ Ip(0, 0)| and δ = min{|Ip(0, 0)|, ω(0)}. We have obviously f ≤ δ.
Since

|c(0) ∩ Ip(0, 1)| = |c(0)| − |c(0) ∩ Ip(0, 0)| = ω(0)− f ≥ δ − f

and
|Ip(0, 0)\c(0)| = |Ip(0, 0)| − f ≥ δ − f,

we obtain that there exist two sets k ⊂ c(0) ∩ Ip(0, 1) and r ⊂ Ip(0, 0)\c(0)
such that |k| = |r| = δ − f . The inversible process between c0 and c is the
following one:
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c0(i) =

{

r ∪ c(0)\k if i = 0
c(i) otherwise

By construction of r we have: c0(0) ∩ c0(1) = ∅. Hence c0 is a waterfall
(Lc, ω)-choosability of P1 and c0 is an (Lc, ω)-choosability of Pn+1.

Let j ≥ 1 and suppose that cj−1 is constructed. Recall that K2j−2 =
cj−1(j − 1) ∩ Ip(j − 1, j). In the same spirit as above, we consider two
integers f and δ such that f = |cj−1(j) ∩ Ip(j − 1, j)| and δ = min{|Ip(j −
1, j) \K2j−2|, ω(j)}. We have of course δ ≥ f . Since

|cj−1(j) ∩
(

Ip(j, j) ∪ Ip(j, j + 1)
)

| = |cj−1(j)| − f = ω(j)− f ≥ δ − f,

and

|Ip(j − 1, j) \
(

K2j−2 ∪ cj−1(j)
)

| = |Ip(j − 1, j) \K2j−2| − f ≥ δ − f,

there exist two sets

k ⊂ cj−1(j) ∩
(

Ip(j, j) ∪ Ip(j, j + 1)
)

and

r ⊂ Ip(j − 1, j) \
(

K2j−2 ∪ cj−1(j)
)

such that |k| = |r| = δ − f . We construct an intermediary choosability c′j
using cj−1 with the following inversible process:

c′j(i) =

{

r ∪ cj−1(j)\k if i = j
cj−1(i) otherwise

We obtain that |c′j(j) ∩ Ip(j − 1, j)| = min{|Ip(j − 1, j) \K2j−2|, ω(j)}.
Using the same idea, we continue. Recall that K2j−1 = c′j(j)∩Ip(j−1, j).

Let f ′ and δ′ be two integers such that f ′ = |c′j(j) ∩ Ip(j, j)| and δ′ =

min{|Ip(j, j)|, ω(j) − |K2j−1|}. We have δ′ ≥ f ′. Since

|c′j(j) ∩ Ip(j, j + 1)| =
(

ω(j) − |K2j−1|
)

− f ′ ≥ δ′ − f ′

and

|Ip(j, j) \ c
′

j(j)| = |Ip(j, j)| − f ′ ≥ δ′ − f ′,

we obtain that there exist two sets k′ ⊂ c′j(j)∩ Ip(j, j+1) and r′ ⊂ Ip(j, j)\
c′j(j) such that |k′| = |r′| = δ′ − f ′. Then, we construct cj using c′j with the
following inversible process:

cj(i) =

{

r′ ∪ c′j(j)\k
′ if i = j

c′j(i) otherwise

Thus, cj is a waterfall (Lc, ω)-choosability of Pj+1, and cj is an (Lc, ω)-
choosability of Pn+1. Finally, by induction, we construct cn = cc. �

We have the following theorem which gives a necessary and sufficient
condition for a weighted path to be (Lc, ω)-choosable.
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Theorem 9. Let Lc be a waterfall list of a weighted path Pn+1. Then Pn+1

is (Lc, ω)-choosable if and only if:

∀i, j ∈ {0, . . . , n} : |A(i, j)(Lc)| ≥

j
∑

k=i

ω(k).

Proof. Let Lc be a waterfall list of a weighted path Pn+1 . If c is a (Lc, ω)-
choosability of Pn+1 then

∀i, j ∈ {0, . . . , n} : A(i, j) ⊃

j
⋃

k=i

c(k).

Remark 6 shows that:

∀i, j ∈ {0, . . . , n} : |A(i, j)| ≥

j
∑

k=i

ω(k).

Conversely, we use an induction on the length n of the path.
For n = 0, since |Lc(0)| = |A(0, 0)| ≥ ω(0) we have that P1 is (Lc, ω)-

choosable.
Suppose now that the property is true for all k such that 0 ≤ k ≤ n and

let Lc be a waterfall list of Pn+2 such that:

∀i, j ∈ {0, . . . , n + 1} : |A(i, j)| ≥

j
∑

k=i

ω(k).

Consider the path Pn+1 viewed as a subgraph of Pn+2. We have for all

i, j ∈ {0, . . . , n} : |A(i, j)| ≥
∑j

k=i ω(k). Hence, by induction, Pn+1 is
(Lc, ω)-choosable and Lemma 8 shows that there exists a waterfall (Lc, ω)-
choosability cc of Pn+1.

Recall that, by definition

∀i ∈ {0, . . . , n} : cc(i) = K2i−1 ∪ Fi ∪K2i .

We have two cases to study:

Case 1: there exists t ∈ {0, . . . , n} such that |K2t| = 0.
Consider the path P ′

t viewed as the subgraph of Pn+1 such that V (P ′

t) =
{vt+1, . . . , vn+1}. P

′

t is a path of length n− t ≤ n, hence, by induction, there
exists an (Lc, ω)-choosability ct′ of P

′

t . Since

Lc(t+ 1) \K2t = Lc(t+ 1) \ cc(t) = Lc(t+ 1),

there is no conflict between cc and ct′ since cc(vt) ∩ ct′(vt+1) = ∅. Thus, we
obtain an (Lc, ω)-choosability c′ of Pn+2 such that

c′(i) =

{

cc(i) if i ∈ {0, . . . , t}
ct′(i) otherwise

Case 2: for all i ∈ {0, . . . , n} : |K2i| > 0.
By construction of cc we have for all i ∈ {0, . . . , n} : |K2i| = ω(i)− (|Fi|+
|K2i−1|), then

∀i ∈ {0, . . . , n} : ω(i) − |K2i−1| > |Fi|.
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Since for all i ∈ {0, . . . , n} we have |Fi| = min{|Ip(i, i)|, ω(i) − |K2i−1|},
hence we obtain

∀i ∈ {0, . . . , n} : |Fi| = |Ip(i, i)| (∗)

Since for all i ∈ {0, . . . , n} : |Fi| ≥ 0 et ω(i) − |K2i−1| > |Fi| then ω(i) >
|K2i−1|. By definition, we have for all i ∈ {0, . . . , n} : |K2i−1| = min(|Ip(i−
1, i)| − |K2i−2|, ω(i)) hence we obtain that |K2i−1| = |Ip(i − 1, i)| − |K2i−2|
and thus

∀i ∈ {0, . . . , n} : |K2i−1|+ |K2i−2| = |Ip(i− 1, i)| (∗∗)

By construction of cc we have

∀i ∈ {0, . . . , n} : |K2i|+ |Fi|+ |K2i−1| = ω(i),

and by convention |K−1| = 0, hence we add all the previous equalities and
we obtain:

|K2n|+
n−1
∑

i=0

(

|K2i|+ |K2i+1|
)

+

n
∑

i=0

|Fi| =
n
∑

i=0

ω(i).

Now we use the equalities (∗) and (∗∗):

|K2n|+
n−1
∑

i=0

|Ip(i, i + 1)|+
n
∑

i=0

|Ip(i, i)| =
n
∑

i=0

ω(i).

By elementary computations, it can be shown that:

|A(0, n + 1)| =
n+1
∑

i=0

(|Ip(i, i)| + |Ip(i, i + 1)|).

Hence (since |Ip(n+ 1, n + 2)| = 0):

|K2n|+ |A(0, n + 1)| − |Ip(n, n+ 1)| − |Ip(n+ 1, n + 1)| =
n
∑

i=0

ω(i).

In other words, we have:

ω(n+1)+
(

|A(0, n+1)|−
n+1
∑

i=0

ω(i)
)

= |Ip(n, n+1)|+|Ip(n+1, n+1)|−|K2n |.

We use here the hypothesis |A(0, n + 1)| ≥
∑n+1

i=0 ω(i), which implies

ω(n+ 1) ≤ |Ip(n, n+ 1)|+ |Ip(n+ 1, n + 1)| − |K2n|.

Since |Ip(n, n+1)|+ |Ip(n+1, n+1)| = |Lc(n+1)| and K2n = cc(n)∩Lc(n+
1) ⊂ Lc(n+ 1), then

ω(n+ 1) ≤ |Lc(n+ 1) \ cc(n)|.

Finally, we choose c(n+1) ⊂ Lc(n+1)\cc(n) such that |c(n+1)| = ω(n+1),
and we construct an (Lc, ω)-choosability c′ such that :

c′(i) =

{

cc(i) if i ∈ {0, . . . , n}
c(n+ 1) if i = n+ 1

�
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The previous result has the following corollary when the list is a good
waterfall list and |L(n)| ≥ ω(n).

Corollary 10. Let Lc be a good waterfall list of a weighted path Pn+1 such
that |Lc(n)| ≥ ω(n). Then Pn+1 is (Lc, ω)-choosable if and only if

∀j ∈ {0, . . . , n} : |A(0, j)(Lc)| ≥

j
∑

k=0

ω(k).

Proof. Under the hypothesis, if Pn+1 is (Lc, ω)-choosable, then Theorem 9
proves in particular the result.

Conversely, since Lc is a waterfall list of Pn+1, we have:

∀i, j ∈ {1, . . . , n} : |A(i, j)| = |∪j
k=iL

c(k)| ≥ |∪j
k=i

k−i even

Lc(k)| =

j
∑

k=i
k−i even

|Lc(k)|.

Since Lc is a good list of Pn+1 (for simplicity, we set ω(n+ 1) = 0):

∀i, j ∈ {1, . . . , n} :

j
∑

k=i
k−i even

|Lc(k)| ≥

j
∑

k=i
k−i even

(ω(k) + ω(k + 1)) ≥

j
∑

k=i

ω(k),

then we obtain for all i, j ∈ {1, . . . , n} : |A(i, j)| ≥
∑j

k=i ω(k). Since for all

j ∈ {0, . . . , n} : |A(0, j)| ≥
∑j

k=0 ω(k), Theorem 9 concludes the proof. �

Another interesting corollary holds for lists L such that |L(0)| = |L(n)| =
b, and for all i ∈ {1, . . . , n − 1} : |L(i)| = a. The function Even is defined
for any real x by: Even(x) is the smallest even integer p such that p ≥ x.

Corollary 11. Let L be a list of Pn+1 such that |L(0)| = |L(n)| = b, and
|L(i)| = a = 2b+ e for all i ∈ {1, . . . , n − 1}.

If n ≥ Even
(2b

e

)

then Pn+1 is (L, b)− choosable.

Proof. The hypothesis implies that L is a good list of Pn+1 , hence by
Proposition 5, there exists a waterfall list Lc similar to L. So we get:

∀i ∈ {1, . . . , n− 1} : |Lc(i)| ≥ 2b = ω(i) + ω(i+ 1)

and |Lc(n)| ≥ b = ω(n). By Corollary 10 it remains to prove that:

∀j ∈ {0, . . . , n} : |A(0, j)| ≥

j
∑

k=0

ω(k) = (j + 1)b.

Case 1: j = 0. By hypothesis, we have |A(0, 0)| = |Lc(0)| ≥ b.

Case 2: j ∈ {1, . . . , n− 1}. Since Lc is a waterfall list of Pn+1 we obtain
that:
if j is even

|A(0, j)| ≥

j
∑

k=0
k even

|Lc(k)| = b+

j
∑

k=2
k even

2b = b+
j

2
2b = (j + 1)b,
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and if j is odd

|A(0, j)| ≥

j
∑

k=0
k odd

|Lc(k)| =

j
∑

k=1
k odd

2b =
j + 1

2
2b = (j + 1)b.

Hence for all j ∈ {0, . . . , n− 1} : |A(0, j)| ≥ (j + 1)b.

Case 3: j = n. Since n ≥ Even
(

2b
e

)

by hypothesis, and

| A(0, n) |≥
n
∑

k=0
k odd

|Lc(k)| =

{

an
2 if n is even

b+ an−1
2 otherwise

we deduce that |A(0, n)| ≥ (n+ 1)b, which concludes the proof. �

4. Free-choosability of a cycle

The cycle Cn of length n is the graph with vertex set V = {v0, . . . , vn−1}
and edge set E =

⋃n−1
i=0 (vi, vi+1(mod n)).

Let FCh(x) be the set of graphs G which are (a, b)-free-choosable for all
a, b such that a

b
≥ x:

FCh(x) = {G, such that for all
a

b
≥ x, G is (a, b)-free-choosable}.

Moreover, we can define the free-choice ratio fchr(G) of a graph G by:

fchr(G) := inf{
a

b
| G is (a, b)-free-choosable}.

If ⌊x⌋ denotes the greatest integer less or equal to the real x, we can state:

Theorem 12. If Cn is a cycle of length n, then

Cn ∈ FCh(2 +
⌊n

2

⌋

−1
) .

Moreover, we have:

fchr(Cn) = 2 +
⌊n

2

⌋

−1
.

Proof. Let a, b be two integers such that a/b ≥ 2+ ⌊n2 ⌋
−1. Let Cn be a cycle

of length n and L a a-list of Cn. Without loss generality, we can suppose
that v0 is the vertex choosen for the free-choosability and L0 ⊂ L(v0) has
b elements. It remains to construct an (L, b)-choosability c of Cn such that
c(v0) = L0. Hence we have to construct an (L′, b)-choosability c of Pn+1

such that L′(0) = L′(n) = L0 and for all i ∈ {1, ..., n − 1}, L′(i) = L(vi).
We have |L′(0)| = |L′(n)| = b and for all i ∈ {1, ..., n− 1}, |L′(i)| = a. Since
a/b ≥ 2+ ⌊n2 ⌋

−1 and e = a− 2b, we get e/b ≥ ⌊n2 ⌋
−1 hence n ≥ Even(2b/e).

Using Corollary 11, we get:

Cn ∈ FCh(2 +
⌊n

2

⌋

−1
) .

Hence, we have that fchr(Cn) ≤ 2 + ⌊n2 ⌋
−1. Moreover, let us prove that

M = 2 + ⌊n2 ⌋
−1 is reached.
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For n odd, Voigt has proved in [13] that the choice ratio chr(Cn) of a
cycle of odd length n is exactly M . Hence fchr(Cn) ≥ chr(Cn) = M , and
the result is proved.

For n even, let a, b be two integers such that a
b
< M . We construct a

counterexample for the free-choosability: let L be the list of Cn such that

L(i) =















{1, . . . , a} if i ∈ {0, 1}
{1 + i−1

2 a, . . . , ( i−1
2 + 1)a} if i 6= n− 1 is odd

{b+ 1 + i−2
2 a, . . . , b+ ( i−2

2 + 1)a} if i is even and i 6= 0
{1, . . . , b, 1 + (n−4

2 + 1)a, . . . , (n−4
2 + 2)a− b} if i = n− 1

If we choose c0 = {1, . . . , b} ⊂ L(0), we can check that it does not exist an
(L, b)-choosability of Cn such that c(0) = c0, so we could not do better. �

Remark 13. In particular, the previous theorem implies that if n ≥ Even(2b
e
)

then the cycle Cn of length n is (2b+ e, b)-free-choosable.

Remark 14. Erdős, Rubin and Taylor have stated in [3] the following ques-
tion: If G is (a, b)-choosable, and c

d
> a

b
, does it imply that G is (c, d)-

choosable ? Gutner and Tarsi have shown in [6] that the answer is negative
in general. If we consider the analogue question for free-choosability, then
the previous theorem implies that it is true for the cycle.
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french), Université du Sud Toulon-Var, France (2009).

[5] S. Gravier, A Hajós-like theorem for list coloring, Discrete Math. 152, (1996), 299-302.
[6] S. Gutner and M. Tarsi, Some results on (a:b)-choosability, Discrete Math. 309, (2009),

2260-2270.
[7] F. Havet, Choosability of the square of planar subcubic graphs with large girth, Dis-

crete Math. 309, (2009), 3553-3563.
[8] F. Havet, Channel assignement and multicolouring of the induced subgraphs of the

triangular lattice. Discrete Math. 233, (2001), 219-233.
[9] C. Thomassen, The chromatic number of a graph of girth 5 on a fixed surface, J.

Combin. Theory, (2003), 38-71.
[10] Zs. Tuza and M. Voigt, Every 2-choosable graph is (2m,m)-choosable, J. Graph The-

ory 22, (1996), 245-252.
[11] V. G Vizing, Coloring the vertices of a graph in prescribed colors (in Russian), Diskret.

Analiz. No. 29, Metody Diskret. Anal. v Teorii Kodov i Shem 101 (1976), 3-10.
[12] M. Voigt, Choosability of planar graphs, Discrete Math., 150, (1996), 457-460.
[13] M. Voigt, On list Colourings and Choosability of Graphs, Abilitationsschrift, TU

Ilmenau (1998).
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