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CHOOSABILITY OF A WEIGHTED PATH AND

FREE-CHOOSABILITY OF A CYCLE

YVES AUBRY, JEAN-CHRISTOPHE GODIN AND OLIVIER TOGNI

Abstract. A graph G with a list of colors L(v) and weight w(v) for
each vertex v is (L,w)-colorable if one can choose a subset of w(v) colors
from L(v) for each vertex v, such that adjacent vertices receive disjoint
color sets. In this paper, we give necessary and sufficient conditions
for a weighted path to be (L,w)-colorable for some list assignments L.
Furthermore, we solve the problem of the free-choosability of a cycle.

1. Introduction

The concept of choosability of a graph, also called list coloring, has been
introduced by Vizing in [16], and independently by Erdős, Rubin and Taylor
in [5]. It contains of course the colorability as a particular case. Since
its introduction, choosability has been extensively studied (see for example
[1, 3, 14, 15, 7] and more recently [8, 9]). Even for the original (unweighted)
version, the problem proves to be difficult, and is NP-complete for very
restricted graph classes. Existing results for the weighted version mainly
concern the case of constant weights (i.e. (a, b)-choosability), see [1, 5, 8, 15].
For the coloring problem of weighted graphs, quite a little bit more is known,
see [13, 10, 11, 12].

This paper considers list colorings of weighted graphs by studying condi-
tions on the list assignment for a weighted path to be choosable. Starting
from the idea that in a path, the lists of colors of non consecutive vertices
do not interfere, and following the work in [6], we introduce here the notion
of a waterfall list assignment of a weighted path. It is a list assignment such
that any color is present only on one list or on two lists of consecutive ver-
tices. We show that any list assignment (with some additional properties)
can be transformed into a similar waterfall list assignment. Then, using
the result of Cropper et al. [4] about Hall’s condition for list multicoloring,
we prove a necessary and sufficient condition for a weighted path with a
given waterfall list L to be (L,w)-colorable (Theorem 9) and use it to derive
(L,w)-colorability results for some general lists assignments.

In 1996, Voigt considered the following problem: let G be a graph and L a
list assignment and assume that an arbitrary vertex v ∈ V (G) is precolored
by a color f ∈ L(v). Is it always possible to complete this precoloring to a
proper list coloring ? This question leads to the concept of free-choosability
introduced by Voigt in [17].
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We investigate here the free-choosability of the first interesting case,
namely the cycle. As an application of Theorem 9, we prove our second
main result which gives a necessary and sufficient condition for a cycle to
be (a, b)-free-choosable (Theorem 12). In order to get a concise statement,
we introduce the free-choice ratio of a graph, in the same way that Alon,
Tuza and Voigt in [1] introduced the choice ratio (which equals the so-called
fractional chromatic number).

In addition to the results obtained in this paper, the study of waterfall
lists may be of more general interest. For now on, the method is extended
in [2] to be used in a reduction process, allowing to prove colorability results
on triangle-free induced subgraphs of the triangular lattice.

We recall in Section 2 some definitions related to choosability and free-
choosability and introduce the definitions of the similarity between two lists
and of a waterfall list that are fundamental for this paper. In Section 3,
we show how to transform a list into a similar waterfall list and present
a necessary and sufficient condition for a weigthed path to be choosable.
Theses result are used in Section 4 to obtain conditions for the (L,w)-
colorability of a weighted path and for the (a, b)-free-choosability of a cycle.

2. Definitions and Preliminaries

Let G = (V (G), E(G)) be a graph where V (G) is the set of vertices and
E(G) is the set of edges, and let a, b, n and e be integers.

Let w be a weight function of G i.e. a map w : V (G) → N and let L be
a list assignment of G i.e. a map L : V (G) → P(N). By abuse of language
and to simplify, we will just call L a list. If A is a finite set, we denote by
|A| the cardinal of A.

A weighted graph (G,w) is a graph G together with a weight function w
of G.

Let us recall the definitions of an (L,w)-colorable graph and an (a, b)-
free-choosable graph which are essential in this paper.

Definition 1. An (L,w)-coloring c of a graph G is a map that associate
to each vertex v exactly w(v) colors from L(v) such that adjacent vertices
receive disjoints color sets, i.e. for all v ∈ V (G):

c(v) ⊂ L(v), |c(v)| = w(v),

and for all vv′ ∈ E(G):

c(v) ∩ c(v′) = ∅.

We say that G is (L,w)-colorable if there exists an (L,w)-coloring c of
G.

Particular cases of (L,w)-colorability are of great interest. In order to
introduce them, we define (L, b)-colorings and a-lists.

An (L, b)-coloring c of G is an (L,w)-coloring of G such that for all v ∈
V (G), we have w(v) = b.

A a-list L of G is a list of G such that for all v ∈ V (G), we have |L(v)| = a.

Definition 2. G is said to be (a, b)-choosable if for any a-list L of G, there
exists an (L, b)-coloring c of G.
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Definition 3. G is said to be (a, b)-free-choosable if for any v0 ∈ V (G), and
for any list L of G such that for any v ∈ V (G) \ {v0}, we have |L(v)| = a
and |L(v0)| = b, there exists an (L, b)-coloring c of G.

We define now the similarity of two lists with respect to a weighted graph:

Definition 4. Let (G,w) be a weighted graph. Two lists L and L′ are said
to be similar if this assertion is true:

G is (L,w)-colorable ⇔ G is (L′, w)-colorable.

The path Pn+1 of length n is the graph with vertex set V = {v0, v1, . . . , vn}
and edge set E =

⋃n−1
i=0 {vivi+1}. To simplify the notations, L(i) denotes

L(vi) and c(i) denotes c(vi).

By analogy with the flow of water in waterfalls, we define a waterfall list
as follows:

Definition 5. A waterfall list L of a path Pn+1 of length n is a list L such
that for all i, j ∈ {0, . . . , n} with |i− j| ≥ 2, we have L(i) ∩ L(j) = ∅.

Notice that another similar definition of a waterfall list is that any color
is present only on one list or on two lists of consecutive vertices. Figure 1
shows a list L of the path P5 (on the left), together with a similar waterfall
list Lc (on the right).

Definition 6. For a weighted path (Pn+1, w),

• A list L is good if |L(i)| ≥ w(i) + w(i+ 1) for any i, 1 ≤ i ≤ n− 1.
• The amplitude A(i, j)(L) (or A(i, j)) of a list L is A(i, j)(L) =

∪j
k=iL(k).

L() 0 1 2 3 4

-�

similar

Lc() 0 1 2 3 4

Fig. 1. Example of a list L which is similar to a waterfall list Lc.

In [4], Cropper et al. consider Philip Hall’s theorem on systems of distinct
representatives and its improvement by Halmos and Vaughan as statements
about the existence of proper list colorings or list multicolorings of com-
plete graphs. The necessary and sufficient condition in these theorems is
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generalized in the new setting as ”Hall’s condition” :

∀H ⊂ G,
∑

k∈C

α(H,L, k) ≥
∑

v∈V (H)

w(v),

where C =
⋃

v∈V (H) L(v) and α(H,L, k) is the independence number of the

subgraph of H induced by the vertices containing k in their color list. Notice
that H can restricted to be a connected induced subgraph of G.

It is easily seen that Hall’s condition is necessary for a graph to be (L,w)-
colorable. Cropper et al. showed that the condition is also sufficient for some
graphs, including paths:

Theorem 7 ([4]). For the following graphs, Hall’s condition is sufficient to
ensure an (L,w)-coloring:

(a) cliques;
(b) two cliques joined by a cut-vertex;
(c) paths;
(d) a triangle with a path of length two added at one of its vertices;
(e) a triangle with an edge added at two of its three vertices.

This result is very nice, however, it is often hard to compute the left part
of Hall’s condition, even for paths. Hence, for our study on choosability of
weigthed paths, we find convenient to work with waterfall lists for which, as
we will see in the next section, Hall’s condition is very easy to check.

3. waterfall lists

We first show that any good list can be transformed into a similar waterfall
list.

Proposition 8. For any good list L of Pn+1, there exists a similar waterfall
list Lc with |Lc(i)| = |L(i)| for all i ∈ {0, . . . , n}.

Proof. We are going to transform a good list L of Pn+1 into a waterfall list
Lc and we will prove that Lc is similar with L.

First, remark that if a color x ∈ L(i − 1) but x 6∈ L(i) for some i with
1 ≤ i ≤ n− 1, then for any j > i, one can change the color x by a new color
y 6∈ A(0, n)(L) in the list L(j), without changing the choosability of the list.
With this remark in hand, we can assume that L is such that any color x
appears on the lists of consecutive vertices ix, . . . , jx.

Now, by permuting the colors if necessary, we can assume that if x < y
then ix < iy or ix = iy and jx ≤ jy.

Repeat the following transformation:
1. Take the minimum color x for which jx ≥ ix + 2 i.e. the color x is

present on at least three vertices ix, ix + 1, ix + 2, . . . , jx;
2. Replace color x by a new color y in lists L(ix + 2), . . . , L(jx);

until the obtained list is a waterfall list (obviously, the number of iterations
is always finite).

Now, we show that this transformation preserves the choosability of the
list. Let L′ be the list obtained from the list L by the above transformation.

If c is an (L,w)-coloring of Pn+1 then the coloring c′ obtained from c
by changing the color x by the color y in the color set c(k) of each vertex
k ≥ ix + 2 (containing x) is an (L′, w)-coloring since y is a new color.
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Conversely, if c′ is an (L′, w)-coloring of Pn+1, we consider two cases:

Case 1: x 6∈ c′(ix +1) or y 6∈ c′(ix + 2). In this case, the coloring c obtained
from c′ by changing the color y by the color x in the color set c′(k) of each
vertex k ≥ ix + 2 (containing y) is an (L,w)-coloring.

Case 2: x ∈ c′(ix +1) and y ∈ c′(ix +2). We have to consider two subcases:

• Subcase 1: L′(ix +1) 6⊂ (c′(ix)∪ c′(ix +1)∪ c′(ix +2)). There exists
z ∈ L′(ix + 1) \ (c′(ix) ∪ c′(ix + 1) ∪ c′(ix + 2)) and the coloring c
obtained from c′ by changing the color x by the color z in c′(ix + 1)
and replacing the color y by the color x in the color set c′(k) of each
vertex k ≥ ix + 2 (containing y) is an (L,w)-coloring.

• Subcase 2: L′(ix + 1) ⊂ (c′(ix) ∪ c′(ix + 1) ∪ c′(ix + 2)). We have

|L′(ix + 1)| =
∣

∣

∣

(

(c′(ix) ∪ c′(ix + 1) ∪ c′(ix + 2)
)

∩ L′(ix + 1)
∣

∣

∣
.

As c′ is an (L′, w)-coloring of Pn+1, we have

|L′(ix+1)| = |c′(ix+2)∩L′(ix+1)|+|c′(ix+1)∩L′(ix+1)|+
∣

∣

∣

(

c′(ix)\c
′(ix+2)

)

∩L′(ix+1)
∣

∣

∣
,

|L′(ix+1)|−w(ix+1)−|c′(ix+2)∩L′(ix+1)| =
∣

∣

∣

(

c′(ix)\c
′(ix+2)

)

∩L′(ix+1)
∣

∣

∣
.

Since y ∈ c′(ix + 2) and y /∈ L′(ix + 1), we obtain that

|c′(ix + 2) ∩ L′(ix + 1)| ≤ w(ix + 2)− 1,

hence
(

|L′(ix+1)| −w(ix+1)−w(ix+2)
)

+1 ≤
∣

∣

∣

(

c′(ix)\c
′(ix+2)

)

∩L′(ix+1)
∣

∣

∣
.

But, by hypothesis, L is a good list. Thus |L(ix+1)| = |L′(ix+1)| ≥
w(ix + 1) + w(ix + 2) and

1 ≤
∣

∣

∣

(

c′(ix)\c
′(ix + 2)

)

∩ L′(ix + 1)
∣

∣

∣
.

Consequently, there exists z ∈
(

c′(ix)\c
′(ix + 2)

)

∩ L′(ix + 1). The

coloring c is then constructed from c′ by changing the color x by the
color z in c′(ix+1), the color z by the color x in c′(ix) and the color
y by the color x in the set c′(k) of each vertex k ≥ ix + 2.

�

The following theorem, which is a corollary of Theorem 7, gives a nec-
essary and sufficient condition for a weighted path to be (Lc, w)-colorable
where Lc is a waterfall list.

Theorem 9. Let Lc be a waterfall list of a weighted path (Pn+1, w). Then
Pn+1 is (Lc, w)-colorable if and only if:

∀i, j ∈ {0, . . . , n}, |

j
⋃

k=i

Lc(k)| ≥

j
∑

k=i

w(k).
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Proof. “if” part: Recall that A(i, j) = ∪j
k=iL

c(k). For i, j ∈ {0, . . . , n}, let
Pi,j be the subpath of Pn+1 induced by the vertices i, . . . , j. By Theorem 7,
it is sufficient to show that

∀i, j ∈ {0, . . . , n},
∑

x∈A(i,j)

α(Pi,j , L
c, x) ≥

j
∑

k=i

w(k).

Since the list is a waterfall list, then for each color x ∈ A(i, j), α(Pi,j , L
c, x) =

1 and thus
∑

x∈A(i,j) α(Pi,j , L
c, x) = |A(i, j)| = |

⋃j
k=iL

c(k)|.

“only if” part: If c is a (Lc, w)-coloring of Pn+1 then

∀i, j ∈ {0, . . . , n} :

j
⋃

k=i

Lc(k) ⊃

j
⋃

k=i

c(k).

Since Lc is a waterfall list, it is easily seen that |
⋃j

k=i c(k)| =
∑j

k=iw(k).

Therefore, ∀i, j ∈ {0, . . . , n} : |
⋃j

k=i L
c(k)| ≥

∑j
k=iw(k). �

4. Choosability of a path and free-choosability of a cycle

Theorem 9 has the following corollary when the list is a good waterfall
list and |L(n)| ≥ w(n).

Corollary 10. Let Lc be a waterfall list of a weighted path (Pn+1, w) such
that for any i, 1 ≤ i ≤ n− 1, |Lc(i)| ≥ w(i) + w(i + 1) and |Lc(n)| ≥ w(n).
Then Pn+1 is (Lc, w)-colorable if and only if

∀j ∈ {0, . . . , n}, |

j
⋃

k=0

Lc(k)| ≥

j
∑

k=0

w(k).

Proof. Under the hypothesis, if Pn+1 is (Lc, w)-colorable, then Theorem 9
proves in particular the result.

Conversely, since Lc is a waterfall list of Pn+1, we have:

∀i, j ∈ {1, . . . , n}, |A(i, j)| = |∪j
k=iL

c(k)| ≥ |∪j
k=i

k−i even

Lc(k)| =

j
∑

k=i
k−i even

|Lc(k)|.

Since Lc is a good list of Pn+1 (for simplicity, we set w(n+ 1) = 0):

∀i, j ∈ {1, . . . , n},

j
∑

k=i
k−i even

|Lc(k)| ≥

j
∑

k=i
k−i even

(w(k) + w(k + 1)) ≥

j
∑

k=i

w(k),

then we obtain for all i, j ∈ {1, . . . , n}, |A(i, j)| ≥
∑j

k=iw(k). Since for all

j ∈ {0, . . . , n}, |A(0, j)| ≥
∑j

k=0w(k), Theorem 9 concludes the proof. �

Another interesting corollary holds for lists L such that |L(0)| = |L(n)| =
b, and for all i ∈ {1, . . . , n− 1}, |L(i)| = a. The function Even is defined for
any real x by: Even(x) is the smallest even integer p such that p ≥ x.

Corollary 11. Let L be a list of Pn+1 such that |L(0)| = |L(n)| = b, and
|L(i)| = a = 2b+ e for all i ∈ {1, . . . , n − 1} (with e 6= 0).
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If n ≥ Even
(

2b
e

)

then Pn+1 is (L, b)-colorable.

Proof. The hypothesis implies that L is a good list of Pn+1, hence by Propo-
sition 8, there exists a waterfall list Lc similar to L. So we get:

∀i ∈ {1, . . . , n− 1}, |Lc(i)| ≥ 2b = w(i) + w(i + 1)

and |Lc(n)| ≥ b = w(n). By Corollary 10 it remains to prove that:

∀j ∈ {0, . . . , n}, |A(0, j)| ≥

j
∑

k=0

w(k) = (j + 1)b.

Case 1: j = 0. By hypothesis, we have |A(0, 0)| = |Lc(0)| ≥ b.

Case 2: j ∈ {1, . . . , n− 1}. Since Lc is a waterfall list of Pn+1 we obtain
that:
if j is even

|A(0, j)| ≥

j
∑

k=0
k even

|Lc(k)| = b+

j
∑

k=2
k even

2b = b+
j

2
2b = (j + 1)b,

and if j is odd

|A(0, j)| ≥

j
∑

k=0
k odd

|Lc(k)| =

j
∑

k=1
k odd

2b =
j + 1

2
2b = (j + 1)b.

Hence for all j ∈ {0, . . . , n− 1}, |A(0, j)| ≥ (j + 1)b.

Case 3: j = n. Since n ≥ Even
(

2b
e

)

by hypothesis, and

| A(0, n) |≥
n
∑

k=0
k odd

|Lc(k)| =

{

an
2 if n is even

b+ an−1
2 otherwise

we deduce that |A(0, n)| ≥ (n+ 1)b, which concludes the proof. �

For example, let Pn+1 be the path of length n with a list L such that
|L(0)| = |L(n)| = 4, and |L(i)| = 9 for all i ∈ {1, . . . , n − 1}. Then the
previous Corollary tells us that we can find an (L, 4)-coloring of Pn+1 when-
ever n ≥ 8. In other words, if n ≥ 8, we can choose 4 colors on each vertex
such that adjacent vertices receive disjoint colors. If |L(i)| = 11 for all
i ∈ {1, . . . , n− 1}, then Pn+1 is (L, 4)-colorable whenever n ≥ 4.

The above result is a starting tool used in [2] to attack McDiarmid and
Reed’s conjecture claiming that every triangle free induced subgraph of the
triangular lattice is (9, 4)-colorable (hence the values a = 9 and b = 4 are
somehow “natural”). It is also used in the following to determine the free-
choice-ratio of the cycle.

The cycle Cn of length n is the graph with vertex set V = {v0, . . . , vn−1}
and edge set E =

⋃n−1
i=0 {vivi+1(mod n)}.
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Let FCh(x) be the set of graphs G which are (a, b)-free-choosable for all
a, b such that a

b
≥ x:

FCh(x) = {G | ∀
a

b
≥ x, G is (a, b)-free-choosable}.

Moreover, we can define the free-choice ratio fchr(G) of a graph G by:

fchr(G) := inf{
a

b
| G is (a, b)-free-choosable}.

If ⌊x⌋ denotes the greatest integer less or equal to the real x, we can state:

Theorem 12. If Cn is a cycle of length n, then

Cn ∈ FCh(2 +
⌊n

2

⌋

−1
).

Moreover, we have:

fchr(Cn) = 2 +
⌊n

2

⌋

−1
.

Proof. Let a, b be two integers such that a/b ≥ 2 + ⌊n2 ⌋
−1. Let Cn be a

cycle of length n and L a a-list of Cn. Without loss of generality, we can
suppose that v0 is the vertex chosen for the free-choosability and L0 ⊂ L(v0)
has b elements. It remains to construct an (L, b)-coloring c of Cn such that
c(v0) = L0. Hence we have to construct an (L′, b)-coloring c of Pn+1 such
that L′(0) = L′(n) = L0 and for all i ∈ {1, ..., n − 1}, L′(i) = L(vi). We
have |L′(0)| = |L′(n)| = b and for all i ∈ {1, ..., n − 1}, |L′(i)| = a. Since
a/b ≥ 2+ ⌊n2 ⌋

−1 and e = a− 2b, we get e/b ≥ ⌊n2 ⌋
−1 hence n ≥ Even(2b/e).

Using Corollary 11, we get:

Cn ∈ FCh(2 +
⌊n

2

⌋

−1
).

Hence, we have that fchr(Cn) ≤ 2 + ⌊n2 ⌋
−1. Moreover, let us prove that

M = 2 + ⌊n2 ⌋
−1 is reached.

For n odd, Voigt has proved in [18] that the choice ratio chr(Cn) of a
cycle of odd length n is exactly M . Hence fchr(Cn) ≥ chr(Cn) = M , and
the result is proved.

For n even, let a, b be two integers such that a
b
< M . We construct a

counterexample for the free-choosability: let L be the list of Cn such that

L(i) =















{1, . . . , a} if i ∈ {0, 1}
{1 + i−1

2 a, . . . , ( i−1
2 + 1)a} if i 6= n− 1 is odd

{b+ 1 + i−2
2 a, . . . , b+ ( i−2

2 + 1)a} if i is even and i 6= 0
{1, . . . , b, 1 + (n−4

2 + 1)a, . . . , (n−4
2 + 2)a− b} if i = n− 1

If we choose c0 = {1, . . . , b} ⊂ L(0), we can check that it does not exist
an (L, b)-coloring of Cn such that c(0) = c0, so we could not do better. �

Remark 13. In particular, the previous theorem implies that if n ≥ Even(2b
e
)

then the cycle Cn of length n is (2b+ e, b)-free-choosable.
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Remark 14. Erdős, Rubin and Taylor have stated in [5] the following ques-
tion: If G is (a, b)-colorable, and c

d
> a

b
, does it imply that G is (c, d)-

colorable ? Gutner and Tarsi have shown in [8] that the answer is negative
in general. If we consider the analogue question for free-choosability, then
the previous theorem implies that it is true for the cycle.
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