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ABSTRACT: In this paper, we present a three-phase solving mechanism for the vehicle routing problem. The
solving mechanism is part of a decision support system architecture deduced from an interdisciplinary study.
We highlight that human factors and dynamic aspects are generally ignored in the classical approaches to solve
the problem. In our approach, a link is done between methods of operations research and an ecological interface
design coming from cognitive ergonomics. We focus our study in how to manage the constraint relaxation if the
problem is not satisfiable. We propose and evaluate model inversion techniques and data classification based
methods in order to determine the most suitable constraints to relax in priority.
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1 INTRODUCTION

The importance of the optimization of the vehicle
routing problem (VRP) has considerably increased
during the last two decades. The aggressive com-
petition forces the companies involved in goods and
services to guarantee a minimum level of quality of
service for the customers.

The vehicle routing problem consists in determining
the routes of a fleet of vehicles for the transportation
of goods or passengers according to some customer
demands (Figure 1).

customers

routes

  depot

depot

Figure 1: Vehicle routing

Besides the economical and social aspects, the VRP
is a very interesting problem that has drawn the re-
searchers attention. A large number of methods to
solve very efficiently the various existing variants of
the problem have been proposed (Barnhart and La-

porte, 2007; Golden, Raghavan and Wasil, 2008; Toth
and Vigo, 2001).

Many examples of decision support systems (DSSs)
are available in the literature. In Basnet, Foulds
and Igbaria (1996) a DSS for the construction of
milk tanker routes in New Zealand is proposed. The
authors propose to use the sweep algorithm (Gillet
and Miller, 1974) mixed with the farthest insertion
algorithm (Syslo and N. Deo, 1983) to construct
the routes. Similarly, in Ruiz, Maroto and Alcaraz
(2004) the authors propose an interactive DSS for
a feed compounder company. A two-stage, route
enumeration and integer programming optimization,
exact approach is proposed to solve the customer-
constrained VRP. More recently, Ray (2007) and San-
tos, Coutinho-Rodrigues and Current (2008) pro-
pose spatial decision support systems integrating Ge-
ographical Information Systems in the DSS. The first
article uses a hybrid-iterative search algorithm to
solve the problem while the second paper proposes to
use a modified version of the path-scanning (Golden,
DeArmon and Baker, 1983). Finally, Mendoza,
Medaglia and Velasco (2009) propose a DSS for a
real distance-constrained VRP. The authors propose
a memetic algorithm using an adapted variant of the
savings heuristic (Clarke and Wright, 1964) to get
the initial population, a local search procedure in-
spired on the λ interchange method proposed by Os-
man (1993) to improve the solutions, and two integer-
programming clustering models to distribute the cus-
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tomers into workdays.

However we consider that the DSSs to solve the VRP
have two important limitations. The first one is that
human factors are not much considered in the model-
ing phase of the problem. Now, humans play a major
role by carrying out specific operations and making
decisions whenever perturbations occur. For exam-
ple, when supervising the routes, the user of the reso-
lution methods has enough knowledge and know-how
to anticipate emergencies, vehicle breakdowns, traf-
fic jams, driver substitutions, and so on (see Cegarra
(2008) for a discussion on human contributions).

It is important to allow the human be part of the sys-
tem. We consider that the robustness of the proposed
solutions may increase if the human is allowed to act
on constraints. It is usually noted that experienced
individuals build schedules that are robust enough to
disturbances (Cegarra, 2008). For example, the expe-
rienced individuals may assign the operations to the
least flexible resources with the intention of preserv-
ing the most flexible resources for later unexpected
disturbances. Another example is the use of more
than one hundred different “human” heuristics to ten-
tatively anticipate problems in order to build robust
schedules.

The second limitation is that these models are not
ready to deal with the rapid changing situations. In
the logistics domain the constraints may even change,
in some extreme cases, before the end of the modeling
phase. The model still has to remain valid recovering
these changes. The DSSs that we find in the literature
are not adapted to deal with the changes, for example
the proposed solver tools do not allow to consider new
types of constraints without a system redesign.

In order to overcome these limitations, we propose
in Gacias, Cegarra and Lopez (2009) a generic ar-
chitecture for a decision support system for the
VRPs (see Figure 2). In the article, an interdisci-
plinary approach with two components is proposed:
(1) an ecological interface based on the abstrac-
tion hierarchy resulting from a work domain analy-
sis (Rasmussen, Pejtersen and Goodstein, 1994; Vi-
cente, 1999a); (2) solving mechanisms based on Oper-
ations Research techniques, in particular Constraint
Programming (Dechter, 2003; Rossi, van Beek and
Walsh, 2006).

We consider the work domain analysis as a first step
for the design of a VRP decision support system. A
solving system based on optimization techniques is
also part of the DSS. The user could interact with the
DSS through an Ecological Interface (Vicente, 1999b;
Vicente, 2002). The human could participate in the
modeling and also in the problem solving (Figure 2).
The decision-making process is shared between the
human and the proposed specific algorithms.
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Figure 2: Architecture for a VRP Decision Support
System

The Ecological Interface is the interface capable to
represent the abstraction hierarchy as an external
mental model for the resolution of the problem. The
physical and the functional information are displayed
for the interface in order to make constraints and
complex relationships in the work environment per-
ceptually obvious to the user. This allows more of
users’ cognitive resources to be devoted to higher cog-
nitive processes such as problem solving and decision
making. By reducing mental workload and support-
ing knowledge-based reasoning, the Ecological Inter-
face aims to improve user performance and overall
system reliability for both anticipated and unantici-
pated events in a complex system.

We focus here on the solving mechanism description.
In Section 2 we formally describe the vehicle routing
problem and the problem constraints. We present
in Section 3 the algorithms used and the interfaces
proposed to facilitate the user participation in the
decision-making process. The model inversion tech-
niques and the data classification methods are pro-
posed in Section 4. Finally, the Section 5 is devoted
to computational results.

2 PROBLEM STATEMENT

The problem considered is the VRP taking into ac-
count the constraints deduced from the Work Domain
Analysis. In this section, we define the objects of the
problem and we give a formal definition of the con-
straints.

Let us consider the objects of the problem: the cus-
tomers (Ci, i = 1..nc), the vehicles (Vj , j = 1..nv),
the drivers (Dl, l = 1..ndr), the depots (Det, t =
1..nde), and the products (Pk, k = 1..np).

A set of nc customers, each with a demand dki for
each product and a time service tsi, has to be served
by a set of nv vehicles. A vehicle j starts the route
from a depot t and ends at the same depot.

We describe some characteristics of the problem.
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First, the customer demands can be indifferently de-
liveries (dki > 0) or pick-ups (dki < 0). Second, each
vehicle j has a maximal weight capacity (Cwj ), a max-
imal volume capacity (Cvj ) and a maximal authorized

length (Clj). As the same way, each product k has a

weight (Pwk ), a volume (P vk ) and a length (P lk). Let

us consider the variable xji = 1 if customer i is served

by vehicle j, and xji = 0 otherwise. We can deduce a
set of constraints for the deliveries (Equations 1).

nc∑
i

np∑
k

xji ∗max(dki , 0) ∗ Pwk ≤ Cwj ∀ j = 1..nv

nc∑
i

np∑
k

xji ∗max(dki , 0) ∗ P vk ≤ Cvj ∀ j = 1..nv (1)

max
i,dk

i
>0

(xji ∗ P
l
k) ≤ Clj ∀ j = 1..nv

and a set of constraints for the pick-ups (Equations 2):

nc∑
i

np∑
k

xji ∗max(−dki , 0) ∗ Pwk ≤ Cwj ∀ j = 1..nv

nc∑
i

np∑
k

xji ∗max(−dki , 0) ∗ P vk ≤ Cwj ∀ j = 1..nv (2)

max
i,dk

i
<0

(xji ∗ P
l
k) ≤ Clj ∀ j = 1..nv

If there exist any other vehicle limitation for a prod-
uct property, the DSS offers the possibility to add
new constraints of this type. Third, for each vehicle
the distance (V Dj ), the time (V Tj ), and the number of

customers (V Cj ) may be limited. Let us define Rj as
the route of vehicle j, D(Rj) and T (Rj) are the dis-
tance and the time of Rj , respectively. The following
new set of constraints is defined:

D(Rj) ≤ V Dj ∀ j = 1..nv

T (Rj) ≤ V Tj ∀ j = 1..nv (3)

nc∑
i

xji ≤ V
C
j ∀ j = 1..nv

Fourth, time windows (TWCi = [ri, di]) are con-
sidered for each customer. The customer has to be
served inside the interval of its time windows. De-
pot time windows (TWDet = [rt, dt]) and driver

(TWDrl = [rl, dl]) time windows are also considered.
The vehicle departures and arrivals have to occur in-
side the depot time windows, and drivers cannot work
outside their time windows. Fifth, precedence and
immediate precedence constraints between customers
can be considered. If customer i precedes customer
i′ (i ≺ i′), customer i has to be served before cus-
tomer i′, and if customer i immediately precedes cus-
tomer i′, customer i′ has to be served after customer
i without delay by the same vehicle. Finally, we take
into account allocation or not-allocation constraints
between the objects of the problem. For example, a
product may be allocated to a vehicle due to trans-
portation conditions, or one customer cannot be allo-
cated to a vehicle because of route access character-
istics.

3 SOLVING MECHANISM

The solving mechanism is divided in three indepen-
dent phases: the vehicle selection, the customer al-
location and the routes creation. In this section we
describe the algorithms and the user interfaces pro-
posed.

For each phase, we propose different control modes to
solve the problem. In van Wezel and Cegarra (2007)
five control modes are proposed: manual, advisory,
dynamic allocation or interactive, supervisory, and
automatic. The control mode defines the level of user
participation in the problem solving. In the manual
control, the human makes all decisions (none algo-
rithmic assistance is provided). In the advisory con-
trol, the human makes the decisions and an algorithm
checks the decisions feasibility. In the interacting
mode or dynamic allocation, the decision-making pro-
cess is shared between the human and the algorithms.
In the supervisory control, the algorithm is executed
automatically, then necessarily informs the user who
accepts the decisions. Finally, in the automatic con-
trol, the algorithm makes all the decisions (the user
is completely out of the decision-making process).

3.1 Vehicle Selection

The vehicle selection phase is used to determine the
vehicles to use to solve the problem (Figure 3). The
available vehicles with the same characteristics are
grouped as a same type of vehicle (tv is the number of
vehicle types). Let us define the number of vehicles of
type τ used to solve the problem (nvτ ) as the decision
variables for this phase.



MOSIM’10 - May 10-12, 2010 - Hammamet - Tunisia

Figure 3: User interface for the vehicle selection

In some cases a chosen solution for the vehicle selec-
tion is not feasible. Therefore the DSS informs the
user about the margin of constraint satisfaction (see
Figure 3). That way, the user has pieces of informa-
tion about the problem feasibility and the flexibility
of the tested solution.

3.1.1 Advisory mode: user solution checking

The solution checking is the advisory control mode
of the phase. It verifies whether a solution proposed
by the user is a feasible solution. First, we verify
that the weight capacity, the volume capacity and the
maximum length of the vehicles is sufficient to serve
the customer demands (Equations 4). We also check
whether a given type of vehicle has to be actually
present because of allocation constraints.

nc∑
i=1

np∑
k=1

dki ∗ Pwk ≤
tv∑
τ=1

nvτ ∗ Cwτ

nc∑
i=1

np∑
k=1

dki ∗ P vk ≤
tv∑
τ=1

nvτ ∗ Cvτ (4)

max
i,dk

i
6= 0

(P lk) ≤ max
nvτ>0

(Clτ )

Then, we compare the number of vehicles used in
the solution (

∑tv
τ nvτ ) with a lower bound for the

number of vehicles necessary to solve the problem
(LBnv). We compute different lower bounds using
the information about the customer and the depot
time windows (LBCTWnv , LBDTWnv ), the distance lim-
itation for vehicle (LBDmaxnv ), the time limitation for
vehicle (LBTmaxnv ) and the maximal authorized num-
ber of customers for vehicle (LBCmaxnv ). The LBnv is
equal to the maximum value of the lower bounds. We
verify that

∑tv
τ nvτ ≥ LBnv.

To compute a lower bound LBCTWnv using customer
time windows TWi = [ri, di], we determine for each

couple of customers if they are in conflict. A customer
is in conflict with another customer if both cannot be
served by the same vehicle. Let us consider tii′ as the
time necessary to go from customer i to customer i′.
For a couple of customers < i, i′ >, if ri + tsi + tii′ >
di′ and ri′ + tsi′ + ti′i > di, then the couple < i, i′ >
is in conflict. LBCTWnv equal to the maximal number
of customers in conflict.

For the LBDmaxnv and the LBTmaxnv computa-
tion, we use a lower bound for the distance
(LBdistance =

∑nc
i mini′ 6= i(dii′)) and for the time

(LBtime =
∑nc
i mini′ 6= i(tii′), where tii′ is cal-

culated using routes speed information). Then,
LBDmaxnv = LBdistance/maxj(V

D
j ) and LBTmaxnv =

LBtime/maxj(V
T
j ). The bound related to the limita-

tion of the number of customers is equal to LBCmaxnv =
nc/maxj(V

C
j ).

The lower bound on the depot time windows
(LBDTWnv ) is computed using the lower bound for the
time (LBtime). Then LBDTWnv = LBtime/maxt(dt −
rt).

If the capacity constraints (Equations 4) are satisfied
and the number of vehicles used is greater than LBnv
then the solution is accepted. If it is not the case, a
constraint relaxation guide based on model inversion
techniques is proposed to the user (see Section 4).

3.1.2 Supervisory mode: vehicle number
minimization

The vehicle number minimization tool corresponds
to the supervisory control mode of the phase. We
compute the solutions for the number of vehicles that
satisfy the capacity constraints (see Equations 4) and
minimize the number of vehicles (min

∑tv
τ nvτ ).

We apply an exact method to obtain a solution for
the minimal number of vehicles necessary to satisfy
the weight or volume constraints. The algorithm se-
lects, among the available vehicles, the vehicle with
the biggest capacity except for the last vehicle (the
sum of vehicle capacities is enough to satisfy the con-
straint) where the vehicle selected is the vehicle with
the smallest capacity that allows the satisfaction of
the constraint.

Finally, we propose an algorithm in order to of-
fer to the user a list of interesting solutions with
a minimal number of vehicles (see Algorithm 1).
Is Possible(solution, extra capacity, trep, tadd) is a
function that returns true if it is possible to replace
a selected vehicle in a solution with a vehicle with
smaller capacity, without violating the constraints.
trep is the type of vehicle with the biggest capacity
that can be replaced, and tadd the type of vehicle to
add to the solution. Then we add a new solution to
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solution list. Note that the list of solutions is not a
complete enumeration but we obtain a list of inter-
esting solutions for the user.

Algorithm 1

//Insert the solution into the list
solution list.push front(solution);
while Is Possible(solution, extra capacity, trep, tadd) do

//Create new solution deleting one vehicle of
//type trep and adding one vehicle of type tadd
solution← Create Solution(solution, trep, tadd);
//Add the new solution into the list
solution list.push front(solution);
//Update the over capacity of the solution
extra capacity = over capacity + Cwtrep − C

w
tadd

;

Again, in case of an infeasible problem because there
are not enough vehicles to satisfy the constraints, a
constraint relaxation guide is proposed to the user
(see Section 4).

3.1.3 Interactive mode: complete a partial
solution

In the interactive control an algorithm completes a
partial solution proposed by the user. The algorithms
proposed are the same algorithms presented for the
minimization of vehicles, but here we start the mini-
mization process including in the solution the vehicles
already selected by the user.

3.2 Customer Allocation

The customer allocation is another subtask of the
problem. In the customer allocation phase, we deter-
mine for each customer the vehicle to be allocated.
For this phase of problem, we take into account all
the constraints of the problem (see Section 2). Thus,
the solution obtained is a feasible customer allocation.
Figure 4 displays the user interface for the customer
allocation; the customer and vehicle information is
easily accessible and the DSS offers to the user the
possibility to make or to modify any decision. The
system supports the advisory, the supervisory and the
interactive control modes.

Figure 4: User interface for the customer allocation

3.2.1 Advisory mode: user customer alloca-
tion

The user proposes an allocation for each customer.
After each decision, the system verifies whether it
is a feasible decision according to the problem con-
straints. We use a limited discrepancy search (LDS)
algorithm (Harvey and Ginsberg, 1996) to find a fea-
sible solution. If no solution is found, the user has to
backtrack to his previous choices or has to modify his
last decision.

3.2.2 Supervisory mode: algorithm customer
allocation

In the supervisory control, a complete solution is pro-
posed by the system. The user can modify the deci-
sions of the algorithm. The sweep algorithm (Gillet
and Miller, 1974) principle is used for the customer
allocation. First, we start to allocate the customers
that have to be allocated to a specific vehicle because
of allocation constraints. Then, we allocate each cus-
tomer (selected following the sweep algorithm) on the
non-empty vehicle with the smallest mean distance
between the customer and the already allocated cus-
tomers. If there is not a not-empty available vehicle to
allocate the customer, then we allocate the customer
on a new vehicle.

3.2.3 Interactive mode: complete a partial
solution

The user provides the allocation for some of the cus-
tomers and the algorithm ends the customer alloca-
tion from the partial solution. The algorithm used is
the same than in the supervisory mode.

3.3 Route Creation

In this phase, the sequence of customers for each
vehicle is determined. Like for the customer alloca-
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tion all the necessary information are available for
the user. Figure 5 shows the proposed user interface.
Three control modes are also proposed for this phase
of problem.

Figure 5: User interface for route creation

3.3.1 Advisory mode: user route creation

The user proposes the sequence of customers for each
vehicle. An algorithm checks for the feasibility after
each decision, we verify that the sequence is feasible
and the not yet sequenced customers can be added
to the sequence without violating the problem con-
straints.

3.3.2 Supervisory mode: algorithm routes
creation

Once the customer allocation is done, we propose to
use the savings algorithm (Clarke and Wright, 1964)
to compose the sequence. When a customer cannot be
inserted, the LDS algorithm is used to find a solution.

In the case when the customer time windows are
very restrictive, a constraint-based heuristic can be
used instead of the savings algorithm to solve the
conflicts. Indeed, Kilby, Prosser and Shaw (2000)
demonstrate that goal-based algorithms like savings
may become very inefficient when the problem is over-
constrained. In our case, if the algorithm is modified
according to the constraints nature, the computation
time spent by the LDS algorithm can be consider-
ably reduced. We propose a variation of the regrets
algorithm (Franklin and Sheng-Yuan, 1999). The al-
gorithm selects, as the next customer to sequence, the
customer with less positions to be inserted until the
conflicting customers are resolved; then the savings
algorithm is used.

3.3.3 Interactive mode: complete a partial
solution

The user begins the sequence design supported by the
checking algorithm and the algorithm completes the
solution. For that phase, we propose a local search
to improve the solution. The user can select between
a local search method to improve the route for one
vehicle, preserving the decisions already made (cus-
tomer allocation, partial sequence, . . . ), or to use an
algorithm for a global optimization.

4 MODEL INVERSION

We propose to use model inversion techniques in order
to offer user support for constraint relaxation, when
the problem becomes infeasible. The model inversion
consists in the exchange of roles between the decision
variables and the parameters, endogenous (related to
a given decision center) and exogenous (not-related
to the decision center). In model inversion, the de-
cision variables become parameters, that restrict the
decision space, and the parameters become decision
variables, that we can use to deduce inferences.

We describe here a model inversion for the first phase
of the resolution only: the vehicle selection. The anal-
ysis of the parameters subject to be modified for the
vehicle selection phase is quite simple, since the re-
lations between the parameters and the number of
constraints considered are limited.

The first step of the method is to identify the param-
eters that integrate the constraints (the constraints
of Equation 4 and the lower bounds presented in Sec-
tion 3.1). We propose to divide the parameters in
several groups. Each parameter is related to its phys-
ical object group (customers, vehicles, drivers, de-
pots, products). When a constraint or a group of
constraints is violated, the DSS asks the user what
are the group of parameters that are candidate to be
modified in order to obtain a feasible problem. That
way, we reduce the number of parameters to inverse
and the number of operations to compute.

For example, if we consider the capacity constraints
(see Equation 4), we find parameters related to cus-
tomer group, the demand of each customer (

∑np
k dki ),

and parameters being part of the vehicle group, the
maximal capacity for each type of vehicle (Cwj , Cvj ,

Clj).

Once the parameters are defined, we propose an in-
version model procedure for each constraint. The pro-
cedure is called when a constraint is violated. It com-
putes for each parameter the limit value to obtain a
feasible problem, or propose, when we deal with an
extended set of values, an ordered list of constraints
to relax. The proposed choices try to minimize the
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impact of the relaxation and try to propose the most
suitable modifications.

Each model inversion procedure is divided into two
phases. At the first stage, the procedure identifies
the parameters susceptible to be modified in order to
obtain a feasible problem. The second phase uses the
data analysis to propose the list of the most suitable
parameters to modify.

The parameters identification for each constraint are
not presented in this paper. In this section, we de-
scribe the generic data classification methods with
different constraint adapted criteria that are used to
propose a list of options to the user. The methods
have to be adapted to each constraint in order to pro-
pose the best adapted choice to the user.

The first criterion used to class the customers is a ge-
ographic criterion. We propose the k-means (Forgy,
1965) which aims to partition nc customers into K
clusters (P = P1 ∪ P2 ∪ .. ∪ PK) as homoge-
neous as possible in relation to a similarity measure
defined for each couple of customers. The similar-
ity measure is the distance between the customers
and the number of clusters is the number of vehi-
cles of the solution (

∑nt
τ nvτ ). The k-means algo-

rithm is an iterative algorithm (see Algorithm 2).
Select Means(k, customers) creates K means, we
propose to uniformly spread the initial means along
the longest axis of the problem taking the centroid
of the customers as the center point. Then for each
iteration, we compute for each customer the distance
from the means, we allocate the customer to the clus-
ter with the nearest mean, and finally we update the
new means (centroid of each cluster). The algorithm
stops when we observe no more changes between the
clusters of two successive iterations.

Algorithm 2 k-means algorithm for geographic cus-
tomer classification
begin

//Select K means
M ← Select Means(customers);
it← 0;
while (P it! = P it−1) do

//compute distances between customers and means

Compute Distances(M, customers);
//allocate each customer to the nearest mean
Allocate Customers(P,M, customers);
//update the means of each cluster P
M ← Update Means(P );
it← it+ 1;

end

The customers being part of the same cluster have
high probability to belong to the same route. For
each customer, we compute a mean distance (dmi)

between the customer and the other customers of its
cluster. We use the mean distance as indicator to
decide whether a customer is candidate to be sup-
pressed.

We propose a variant of the algorithm in order to
adapt the clusters to the problem constraints. We do
not accept customers in conflict on the same cluster
when a capacity constraint is violated. And, in the
case a time constraint is violated, then the demands
of the customers allocated to a cluster cannot exceed
the maximal capacity of the available vehicles. In
both cases, the customer with the longest distance to
the mean of the cluster is allocated to another cluster.

The second geographical criterion to consider is the
distance between the customer and the nearest depot.
The customer with a largest distance is also proposed
as a candidate to remove from the problem.

We have two geographic-based customer classifica-
tions, now we propose a classification based on tem-
poral information. The clustering approach is based
on the Dynamic Cluster Algorithm (DCA) introduced
by (Diday, 1971). DCA is an extension of k-means al-
gorithm. It needs to define an allocation function (a
dissimilarity measure), because the similarities can
no longer be shown as an Euclidean distance, and
also a way to represent the classes (the centroid does
not exist anymore). We propose a dissimilarity mea-
sure based on customer time windows. The param-
eter measures the degree of centering between two
time windows. Figure 6 displays the main relations
between two time windows and the value of the dis-
similarity measure for each configuration.

10

i

δ(i, j)

−min(dj − ri, di − rj)di − rjdi − rjdi − rj

dj − ridj − ri dj − ri

i i i i

j j j j j

Figure 6: Main configurations between two time win-
dows

δ(i, j) =


1− min(dj−ri,di−rj)

max(dj−ri,di−rj)
if min(di, dj) ≥ max(ri, rj),

1− min(dj−ri,di−rj)
1
n

∑n

i=1
(di−ri)

otherwise.

We also need an allocation and a representation func-
tion. The core of a cluster Pk is the customer Ck
which its release date rk is the nearest to the mid-
dle of the time interval [mini∈Pk ri,maxi∈Pk ri]. At
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each iteration, a customer Ci′ is allocated to a core
Ck with δ(Ck, Ci′) = mink=1..K δ(Ck, Ci′).

To initialize the cores we propose Algorithm 3. The
cores are uniformly distributed all along the release
times scale.

Algorithm 3 Core Initialisation for the temporal-
based classification
begin

time horizon← maxi=1..nc ri −mini=1..nc ri;
step← time horizon/K;
t1 ← mini=1..nc ri + step/2;
C1 ← customer i with ri nearest to t1;
j ← 1;
while (k ≤ K) do

tk ← tk + step;
Ck ← customer i with ri nearest to tk and Ci
is not already a center;

end

The dissimilarity measure groups the customers with
time windows interaction. For each cluster, we com-
pute a parameter, the critical index CIk, as the ratio
between the number of customers of the cluster and
the number of vehicles. It gives an idea of how critical
the cluster is, a big value for the CIk means that, be-
cause of customer time windows, we may have some
troubles to serve the customers of the cluster. The
CIk is also a parameter that we consider to point the
customers to suppress.

We observe that the time travel between the cus-
tomers, parameter that can have a huge influence,
is not considered for the time-based classification. To
cover this lack, we propose to do a time-based classifi-
cation and target a set of customers using the critical
index (CIk), and then, use the proposed k-means al-
gorithm that allows the classification of the customers
geographically. We suppose here that time and dis-
tance are directly proportional for the problem, oth-
erwise the choices proposed for the method will not
be a good candidate. For that reason, instead of the
mean distance (dmi) between the customers of each
cluster a second temporal-based criterion is also pro-
posed.

As we have mentioned, the customer classification
methods have to be adapted to the constraint that
is being violated in order to make the best suitable
choice. For example, if a capacity constraint is vio-
lated, we use the geographic classification to cluster
the customers and, in the case of one cluster is over-
load, we are going to propose to reduce the capacity
of one customer that belongs to the overload cluster.

Each of the candidates proposed by the different cri-
teria are given to the user. In order to help the user

to select one of them, a statistical analysis is pro-
posed. The analysis give an idea of how relevant is
the criterion. We assume that the decision variable X
for each criterion (mean distances between customers
of a cluster, customers distance to the nearest depot,
number of conflicts for each customer, and mean value
of the dissimilarity measure) follows a normal distri-
butionN(µ, σ) that can be approximated forN(X̄, S)

where X̄ and S =
√

(X−X̄)2

n−1 are the mean and the

mean deviation of the sample, respectively. We con-
vert each of the normal distributions to the standard
normal N(0, 1), also called the z-distribution, using

the function z = X−X̄
S . The z-distribution allows us

to compare the candidates of the different criteria.
We can evaluate how relevant is the criterion using
the z value of the candidate. For example, the values
of the z nearest to zero indicate that all the customers
have similar values for this particular criterion, so it
is not very relevant. The user can use the z value of
each candidate in order to decide what is the best one
to remove from the problem.

5 COMPUTATIONAL RESULTS

In this section, we evaluate the criteria proposed in
Section 4. We propose to optimally solve small-
size instances (9 customers) of the capacited vehi-
cle routing problem with customer time windows
(CVRPTW). A complete enumeration of the feasible
solutions is done. We compare the results obtained
taking out of the problem the customer for which the
various criteria give the priority: the GDC (mean
distance between customers of the same cluster after
the geographical clustering), the GDD (largest dis-
tance with the nearest depot), and the TDC (mean
distance between customers of the same cluster after
the temporal clustering), with the optimal solution.
The selected customer SC is the customer with a z
value farther than zero, usually the more relevant cri-
terion. However, for small instances we cannot com-
pletely trust on the statistical analysis results because
the number of elements is very poor.

To generate the instances we have randomly elimi-
nate customers of the CVRPTW small-size instances
of Solomon (Solomon, 1983). Depending on customer
locations, the Solomon’s instances are classified in
three groups: clustered customers (C), random cus-
tomers (R), and mixed customers (RC).

Table 1 displays, in the first column, the number of
times (NbOptDist) the optimal solution for the dis-
tance minimization is reached when the problem is
solved without the customer selected by the crite-
rion. The second column (AvgDev) represents the
average deviation from the optimal solution for the
instances where the optimal solution is reached when
the eliminated customer is not the customer selected
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by the criterion. AvgPos indicates the average posi-
tion of the solution when we class the solutions in a
non-decreasing order of the objective function. For
example, if the solution reached when the problem is
solved without the customer selected by the criterion
is the second best solution, then its position is 2. Fi-
nally, the last column (NbSol) represents the number
of instances the decision of the criterion is the deci-
sion which a bigger number of feasible solutions. We
can see this parameter as a mesure of the flexibility
provided by the decision.

56 instances
nc = 9 NbOptDist AvgDev AvgPos NbSol
GDC-C 13 (17) 8.73 % 2.7 6
GDC-R 9 (23) 5.99 % 3.5 17
GDC-RC 9 (16) 5.01 % 3.2 5
TDC-C 5 (17) 14.98 % 4.5 7
TDC-R 3 (23) 11.46 % 5.4 7
TDC-RC 4 (16) 9.30 % 5.3 7
GDD-C 8 (17) 15.76 % 4.3 8
GDD-R 5 (23) 10.97 % 4.7 11
GDD-RC 3 (16) 9.12 % 4.5 4

SC 32 6.83 % 3.54 30

Table 1: Results for the distance optimization

We can deduce that for small instances the GDC is
the most efficient criterion: it reaches the optimal
solution over a half of the instances. The AvgPos
is around 3 for the GDC criterion that means that
when the criterion decision is not the optimal decision
the proposition of the criterion keeps being a good
proposition.

We also observe that the statistical analysis is effi-
cient, the best candidate is proposed over 50% of the
instances. However, we cannot take relevant informa-
tion from the analysis, since the size of the samples
is not big enough. We think that the performance
of the analysis may increase for the medium-size and
large-size problems.

6 CONCLUSIONS AND FURTHER
WORK

In this paper, we have proposed a three-phase solv-
ing mechanism for a generic vehicle routing problem.
The methods and the algorithms used to solve each
phase of the problem have been presented. We have
also proposed different solving control modes in order
to let the user be part of the decision making system.
The proposed decision support system minimizes the
danger of user skill loss or user complacency because
the system demands for interaction and it offers to the
user the opportunity to use his abilities and knowl-
edge to solve the problem.

We have proposed and tested, for the vehicle selection
phase, model inversion techniques and data classifica-
tion algorithms to support the user to relax some con-
straints when the problem becomes infeasible. The

next step is to propose a procedure to identify the
parameters that can be modified and to adapt the
proposed classification methods for each kind of con-
straint. Finally, we plan to extend the work to the
other two phases of the resolution. In that case, the
model inversion mechanisms have to be more sophis-
ticated for two reasons: the number of constraints
and the number of relations between the parameters
are much more important, and we have to manage a
set of the decisions already made.

REFERENCES

Barnhart, C. and Laporte, G. (eds) (2007). Hand-
books in operational research and management
science: Transportation, Vol. 14, North-Holland.

Basnet, C., Foulds, L. and Igbaria, M. (1996). Fleet-
manager: a microcomputer-based decision sup-
port system for vehicle routing, Decision Support
systems 16(3): 195–207.

Cegarra, J. (2008). A cognitive typology of schedul-
ing situations: A contribution to laboratory and
field studies, Theoretical Issues in Ergonomics
Science 9(3): 201–222.

Clarke, G. and Wright, J. V. (1964). Scheduling of ve-
hicles from a central depot to a number of deliv-
ery points, Operations Research 12(4): 568–581.

Dechter, R. (2003). Constraint Processing, Morgan
Kaufmann, San Francisco, USA.

Diday, E. (1971). Une nouvelle méthode en classifica-
tion automatique et reconnaissance des formes
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