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SOME MULTIVARIATE RISK INDICATORS:

MINIMIZATION BY USING A KIEFER-WOLFOWITZ

APPROACH TO THE MIRROR STOCHASTIC

ALGORITHM.

P. CÉNAC, V. MAUME-DESCHAMPS, AND C. PRIEUR

Abstract. We consider some risk indicators of vectorial risk processes.
These indicators take into account the dependencies between business
lines as well as some temporal dependencies. By using stochastic algo-
rithms, we may estimate the minimum of these risk indicators, under a
fixed total capital constraint. This minimization may apply to capital
reserve allocation.

1. Introduction

The new regulation rules for insurance industry, namely Solvency 2 in
Europe, lead companies to adjust their solvency margins to the underlying
risks. Once the overall company capital requirement has been computed,
it must be splited into solvency capitals for each line of business. In other
words, given an initial capital u we assume that it is allocated to each
line of business: uk is the initial capital of the kth line of business, then
u1 + · · · + ud = u. We aim at optimizing the capital allocation with re-
spect to some risk indicators. In this context u is fixed and we search for
an optimal choice of the uk’s. The ruin probability is a quite standard risk
indicator and has been widely studied in dimension 1 (see [8] for a review).
The ruin probability is related to the much used Value at Risk (VaR) which
is simply a quantile and do not take into account the amount or severity
of ruin, moreover it is not coherent in Artzner’s et al. sense (see [1]). Risk
measures incounting severity of ruin or some penalties functions have also
been studied in dimension 1 (see for example [6, 23]) and they are related
to the Tail Value at Risk (TVaR) or Tail conditional Expectation (see [1]).
Generalizations of these notions in higher dimension are not straightforward.
Several attempts exist. The simplest way to construct risk measures or risk
indicators for vectors could be to consider risk measures or indicators asso-
ciated to the sum of the coordinates (this is a way to aggregate risks). But,
in a ERM (Enterprise Risk Management) point of view, one should wonder
about the risk induced by each business line. Generalizations of the ruin
probability or the tail conditional expectation may be found in [4, 10, 5].

Key words and phrases. Multivariate risk processes, risk indicators, stochastic algo-
rithms, reserve allocation.
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In a multidimensional framework, risk indicators have been introduced by
Loisel [26], which do not take into account the dependence structure or the
ruin amount. We introduce some new risk indicators, both involving depen-
dence and local insolvency severity. Considering that the main risk drivers
for the overall company have been identified and that the global solvency
capital requirement has been computed, they reveal the marginal solvency
capitals for each line of business. A way to avoid as far as possible that some
lines of business become insolvent too often could be to minimize these risk
indicators, under a fixed total capital constraint. This might be achieved if
some capital fungibility between lines of business or between entities is pos-
sible. One possible way to define optimality of the global reserve allocation
is to minimize the expected sum of the penalties that each line of business
would have to pay due to its temporary potential insolvency.

We consider a vectorial risk process Xi = (X1
i , . . . , X

d
i )t, where Xk

i cor-
responds to the gains of the kth business line during the ith period. That
is, Xk

i = Gki − Lki where Gki denotes the incomes and Lki denotes the losses.
We are interested in the cumulative gain:

Y k
i =

i∑
p=1

Xk
p .

We shall say that the kth line of business makes default during the n first
periods if there exists i = 1, . . . , n such that Y k

i + uk < 0, where we recall
that uk is the initial capital of the kth line of business. The ruin probability
in a multivariate setting may be defined as the probability that one of the
d lines of business makes default during the n first periods that is:

R(u1, . . . , ud) = P(∃k = 1, . . . , d ∃i = 1, . . . , n / Y k
i + uk < 0).

Other definitions of ruin probability and some bounds on them are provided
in [4].

Let Rkp denotes the capital of the kth line of business at time p, that is

Rkp = uk + Y k
p . We may also be interested in the total cost of ruin :

A(u1, . . . , ud) = −
d∑

k=1

E

 n∑
p=1

Rkp1{Rkp<0}


The asymptotic (as u→∞) properties of A have been studied in [3]. More
precisely, in the case d = 1, they study the asymptotics of A(u). In higher
dimension, they provide the asymptotic behavior of the vector u? ∈ Rd
realizing the minimum of A under the constraint u1 + · · ·+ ud = u, ui ≥ 0,
i = 1, . . . , d.
The risk indicator A does not take into account the dependence structure
between the lines of business. A multivariate risk indicator that takes into
account the dependence structure may be :

B(u1, . . . , ud) =
d∑

k=1

E

 n∑
p=1

1{Rkp<0}1{
∑d
j=1R

j
p>0}

 .
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This risk indicator is a measure of the time to ruin, it has been introduced in
[26]. It does not take into account the severity (or the cost) of the insolvency.
We introduce the following risk indicators, related to the ruin cost and
dependending on penalty functions gk. Given convex functions gk : R → R,
k = 1, . . . , d satisfying gk(x) ≥ 0 for x ≤ 0, and E(|gk(Rkp)|) < ∞, we
consider the risk indicator

(1.1) I(u1, . . . , ud) =
d∑

k=1

E

 n∑
p=1

gk(R
k
p)1{Rkp<0}1{

∑d
j=1R

j
p>0}

 .

The function gk represents the cost that the kth business branch has to
pay when it becomes insolvent while the whole company is solvent. The risk
indicator I is constructed with the idea that the solvency requirement for the
whole company has been determined (namely u is determined). Minimizing
I allows to control a partial insolvency, that is, insolvency measured for
some branches while the whole company is solvent.
A natural choice for the cost could be gk(x) = −x. The following picture
represents the risk indicator I (light area) for gk(x) = −x and d = 2.

time
1 2 3

Local insolvency Global insolvency

u1

R2
1

u2

R1
2

R1
1 + R2

1

u = u1 + u2

∑d
k=1 R

k
p

R1
p

R2
p

We aim at finding a minimum under constraint on the initial capital u.
Formally, we are looking for u? ∈ (R+)d such that

(1.2) I(u?) = inf
v1+...+vd=u

I(v), v ∈ (R+)d.

Unless for very specific examples, no explicit solution is available. We pro-
pose to solve this problem by using stochastic algorithms (see [7, 2, 14] for
a review). The classic algorithm introduced by Robbins and Monro [25]
consists in applying a gradient descent method with a noisy gradient. In
case such a noisy gradient is not observable, Kiefer and Wolfowitz (see [13])
developed a finite difference version of the Robbins-Monro method. The
inconvenient of such algorithms is their very high sensitivity to the choice of
the stepsize, which are very difficult to calibrate in practice. Moreover, we
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are here in the context of constraint optimization problem. To handle the
constraints, we first turned to the Lagrange multipliers approach. It was not
tractable in practice in our setting, it did not converge on our simulations.
Improvements of Robbins-Monro and Kiefer-Wolfowitz algorithms have been
developed more recently using an averaging tool (see for instance [24, 22]) or
with mirror versions of the stochastic descent algorithms. Deterministic form
of the mirror descent algorithm is introduced by Nemirovski and Yudin [19].
The stochastic one has been proposed by Nesterov [21] and used in [11, 12]
to solve non-smooth stochastic convex optimization problems. Recently new
stochastic approximation algorithms, with stronger convergence properties,
based on Nesterov’s method have been proposed (see [9, 15, 16, 20]). All
these algorithms rely on the existence of a stochastic oracle, that is a mech-
anism to generate noisy versions of the gradient. In our problem, we do not
have access to a noisy gradient (or to a noisy subgradient). We are thus led
to use approximations of ∇I in stochastic algorithms. That is the reason
why we have chosen to follow a Kiefer-Wolfowitz approach, in order to take
into account an estimation of the gradient online. Our proof for the conver-
gence of the algorithm is inspired by the work of Tauvel [27].
We construct a stochastic algorithm to estimate u?, the optimal allocation.
Under a moment condition (order > 2) we prove the almost sure convergence
of the estimator. Notice that our approach do not require any hypothesis,
apart from a moment assumption, on the distribution of Xi and the exis-
tence of a density for some parts of our work. Also there may be tempo-
ral dependence on a period of length n. Nevertheless, in order to achieve
the algorithm, we shall need N independent copies of the distribution of
(X1, . . . , Xn) ∈ (Rd)n, that is of the gains over a period of length n.

The paper is organized as follows: in section 2 we prove some convexity
properties on I. In section 3 we make explicit the algorithm. In section 4
we prove the convergence results. In section 5 we show how to apply these
results to our risk indicator and provide some simulations. While it is well
known that standard Robbins-Monro and Kiefer-Wolfowitz algorithms are
very sensitive to the choice of the stepsize, it is remarkable that our Kiefer-
Wolfowitz version of the mirror algorithm is very stable. Namely, it seems,
from our simulations, that any choice of the sequences in the theoretical
convergence domain is convenient. So that our algorithm is very tractable
while more standard ones are very hard to use in practice. For our purpose,
more classical algorithms were not tractable, either because of the instability
of the algorithm or because we do not have access to the gradient or even
to an oracle of this gradient. Also, we have performed high dimensional
simulations (10 and 40) and still the results are very satisfactory.

2. Convexity property

Let us first prove that, under suitable assumptions on gk, the risk indica-
tor I is convex.

Let v(−k) =
∑
j 6=k

vj and Sp =

d∑
k=1

Y k
p .
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Proposition 2.1. Assume that the functions gk are convex, that gk : R → R
with gk(0) = 0, gk(x) ≥ 0 for x < 0, and for all k = 1, . . . , d and p =
1, . . . , n, gk(R

k
p) admits an order 1 moment. Then the risk indicator I is

convex on the convex set Uu = {(v1, . . . , vd) ∈ (R+)d / v1 + · · ·+ vd = u}. If
moreover, for some k = 1, . . . , d, gk is strictly convex, gk(x) > 0 for x < 0
and the joint distribution of (Y k

p , Sp) contains ] − u,+∞[×] − ∞, u[ in its
support then I admits a unique minimum in Uu.

Proof. We rewrite I as

I(u) = I(u1, . . . , ud) =
d∑

k=1

E

 n∑
p=1

gk(Y
k
p + uk)1{Y kp <−uk}1{Sp>−u}

 .

Since gk(0) = 0,

(u1, . . . , ud) 7→ gk(Y
k
p + uk)1{Y kp <−uk}1{Sp>−u}

is a convex function on Uu. So that I is a convex function as the sum of
expected values of convex functions. The unicity of the minimum follows
from the fact that I is strictly convex, due to the strict convexity of the
gk’s. �

Remark 1. If, in addition to the hypothesis of Proposition 2.1, the functions
gk are differentiable and such that for all k = 1, . . . , d and p = 1, . . . , n,
g′k(Y

k
p + uk) admits an order 1 moment and for all i = 1, . . . , d, (Y i

p , Sp) has
a joint density distribution denoted by fY ip ,Sp , then the risk indicator I is

differentiable. Indeed, it writes:

I(u) = I(u1, . . . , ud) =
d∑

k=1

E

 n∑
p=1

gk(Y
k
p + uk)1{Y kp <−uk}1{Sp>−u}


=

d∑
k=1

n∑
p=1

−uk∫
−∞

∞∫
−u

gk(y + uk)fY kp ,Sp(y, s)dyds.
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Hence, the assumptions on gk imply that I is differentiable. Moreover, we
have:

(∇I(v))i =

d∑
k=1

n∑
p=1

−vk∫
−∞

gk(y + vk)fY kp ,Sp(y,−u)dy

+
n∑
p=1

E(g′i(Y
i
p + vi)1{Y ip<−vi}1{Sp>−u})

−
n∑
p=1

gi(0)

+∞∫
−u

fY ip ,Sp(−vi, s)ds

=
d∑

k=1

n∑
p=1

−vk∫
−∞

gk(y + vk)fY kp ,Sp(y,−u)dy

+

n∑
p=1

E(g′i(Y
i
p + vi)1{Y ip<−vi}1{Sp>−u}).

Thus ∇I(v) is a sum of two terms. The second term appears as an expec-
tation of an observable function which could be an oracle for a stochastic
algorithm design. For the first part of the sum, such an oracle does not seem
simply reachable, this is why we turned to a Kiefer-Wolfowitz approach.

The fact that I is a convex function is used to prove the convergence
of our stochastic algorithm. The convexity assumption is also standard for
classical stochastic algorithms (as Robbins-Monro or Kiefer-Wolfowitz) and
also in more recent extensions ([9, 15, 16, 20]).

3. Estimation by use of stochastic algorithms

In this section we present our algorithm which is a Kiefer-Wolfowitz ver-
sion of the mirror algorithm. In section 4 we shall prove its convergence
under general assumptions (see Assumption 1) that are satisfied in particu-
lar for our specific risk indicator I.

3.1. Auxiliary function for the mirror algorithm. The stochastic mir-
ror algorithm requires the use of an auxiliary function that will be used to
push the trajectory into the set of constraints. We consider that Rd is en-
dowed with the L1 norm ‖ ‖ and the dual space (Rd)? is endowed with the
dual norm ‖ ‖? :

‖x‖ =
d∑
i=1

|xi|, ‖ξ‖? = sup
i=1,...,d

|ξi|.

Let C be a compact convex subset of Rd. Recall that a convex function
δ : C −→ R is strongly convex with parameter α > 0 with respect to the
norm ‖ ‖ if for any λ ∈ [0, 1] and any x, y belonging to C,

δ(λx+ (1− λ)y) ≤ λδ(x) + (1− λ)δ(y)− α

2
λ(1− λ)‖x− y‖2.
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The mirror algorithm uses an α-convex function δ differentiable on a point
x0 ∈ C to define the auxiliary function V . Following Definition A.3 of [27],
we consider:

V (x) = δ(x)− δ(x0)− < ∇δ(x0), x− x0 > .

It is then easy to see that the function V is also α-convex.
Setting a positive β, Wβ denotes the Legendre-Fenchel transform of βV :

Wβ(ξ) = sup
x∈C
{〈ξ, x〉 − βV (x)} .

Due to the properties of Legendre-Fenchel transform of α-convex functions,
we know that Wβ is continuously differentiable and that its gradient takes
its values in C. Moreover, the gradient of Wβ has a Lipschitz constant equal

to (αβ)−1.
We consider a function Ψ which is an approximation of the gradient of I.
The mirror algorithm uses two positive sequences (βn)n and (γn)n and a
sequence of i.i.d. random vectors (Yn)n in the following way (the choices for
these sequences will be made explicit a bit later).

Algorithm 1

Initialization :

{
ξ0 = 0 ∈ (Rd)?
χ0 ∈ C

Update : for i = 1, . . . , N do{
ξi = ξi−1 − γiΨ(χi−1,Yi)
χi = ∇Wβi(ξi)

Output : SN =

∑N
i=1 γiχi−1∑N
i=1 γi

Under assumptions on the function Ψ, we shall prove that SN goes a.s. to
the unique minimum x? of I.

3.2. Approximate gradient. In our case, we do not have access directly
to the gradient of I, ∇I, but we may approximate it online.
Recall that

I(u1, . . . , ud) =

d∑
k=1

E

 n∑
p=1

gk(R
k
p)1{Rkp<0}1{

∑d
k=1R

k
p>0}

 .

Let us recall that d denotes the number of lines of business, and n the number
of periods of interest. The problem is to solve (1.2). We will consider an
approximation Ψ of ∇I with the following decomposition Ψ = ∇I + η + r,
where η is a martingale difference and r is negligible with respect to ∇I and
η. Arguing as for Kiefer-Wolfowitz, we first notice that

I(u1, . . . , ud) = E (I(u1, . . . , ud,Y))
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where

Y =

Y 1
1 · · · Y 1

n

· · · · · · · · ·
Y d

1 · · · Y d
n


and

I(u1, . . . , ud, y) =
d∑

k=1

n∑
p=1

gk(y
k
p + uk)1{ykp+uk<0}1{

∑d
k=1 y

k
p+uk>0}.

Let us denote a realization of Y by

y =

 y1
1 · · · y1

n

· · · · · · · · ·
yd1 · · · ydn

 .

For sake of shortness, we introduce the following notations :

Ik
(
c+
i ,Y

)
= I(χ1

i−1, . . . , χ
k−1
i−1 , χ

k
i−1 + ci, χ

k+1
i−1 , . . . , χ

d
i−1,Y),

Ik
(
c−i ,Y

)
= I(χ1

i−1, . . . , χ
k−1
i−1 , χ

k
i−1 − ci, χk+1

i−1 , . . . , χ
d
i−1,Y),

Ik
(
c+
i

)
= I(χ1

i−1, . . . , χ
k−1
i−1 , χ

k
i−1 + ci, χ

k+1
i−1 , . . . , χ

d
i−1),

Ik
(
c−i
)

= I(χ1
i−1, . . . , χ

k−1
i−1 , χ

k
i−1 − ci, χk+1

i−1 , . . . , χ
d
i−1).

We then consider DciI (resp. DciI) the random vector whose kth coordi-
nate Dk

ciI(u1, . . . , ud,Y) (resp. Dk
ciI(u1, . . . , ud,Y)) is defined by

Ik
(
c+
i ,Y

)
− Ik

(
c−i ,Y

)
2ci

(
resp.

Ik
(
c+
i ,Y

)
− Ik

(
c−i ,Y

)
2ci

)
.

Let Ψci(χi−1,Yi) = DciI(χi−1,Yi). Considering independent copies of the
random matrix Y, denoted by Y1, . . . ,YN , we perform Algorithm 2 below :

Algorithm 2

Initialization :

{
ξ0 = 0 ∈ (Rm)?

χ0 ∈ C

Update : for i = 1, . . . , N do{
ξi = ξi−1 − γiΨci(χi−1,Yi)
χi = ∇Wβi(ξi)

Output : SN =

∑N
i=1 γiχi−1∑N
i=1 γi

Then defining

ηci(χi−1,Yi) = DciI(χi−1,Yi)−DciI(χi−1),

rci(χi−1) = DciI(χi−1)−∇I(χi−1),

it enhances the decomposition

(3.1) Ψci(χi−1,Yi) = ∇I(χi−1) + ηci(χi−1,Yi) + rci(χi−1).
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In the next section, we give conditions on (γi)i, (βi)i and (ci)i for the con-
vergence of the algorithm.

4. Convergence of the algorithm

Let us consider C a compact convex subset of Rd. We make also the
following assumptions on I :

Assumption 1.

(1) I is a convex function from Rd to R,
(2) I is of C2 class,
(3) I admits a unique minimum x? on C,

Moreover, we have for any x in Rd and any c > 0

E(ηc(x,Y)) = 0 and

rc(x) converges to zero as c goes to 0.

We perform Algorithm 2 with χ0 being any random vector taking values
in C, and Fi being the σ-field generated by χ0,Y1, . . . ,Yi. Then ξi is Fi
measurable and Yi is independent of Fi−1. We get therefore

E(ηci(χi−1,Yi)|Fi−1) = 0.

We shall need the following additional assumption on the function I.

Assumption 2. There exists some nonnegative real number σ such that
for all vector (v1, . . . , vd) ∈ Rd, the random variable I(x,Y) satisfies the
moment condition ∀i

Var(I(v1, . . . , vd,Yi)|Fi−1) ≤ σ2.

Remark 2. Assumption 2 yields the existence of a real number σ > 0 such
that for any i = 1, . . . , N ,

(4.1) E
(
‖ηci(χi−1,Yi)‖2∗ |Fi−1

)
≤ dσ

2

c2
i

.

Indeed, one has

E
(
‖ηci(χi−1,Yi)‖2∗ |Fi−1

)
≤

d∑
k=1

(
Var

(
Ik(c+

i ,Yi)|Fi−1

)
4c2
i

+
Var

(
Ik(c−i ,Yi)|Fi−1

)
4c2
i

− 1

2c2
i

E
[(
Ik(c+

i ,Yi)− I(c+
i )
)(
Ik(c−i ,Yi)− I(c−i )

)])
.

From Assumption 2 together with the Cauchy-Schwartz inequality, one gets

E
(∥∥ηci(χi−1,Y i)

∥∥2

∗ |Fi−1

)
≤ dσ

2

c2
i

,

which concludes the proof of (4.1). Condition (4.1) is sufficient to obtain
the L1-convergence. In order to prove the almost sure convergence, we shall
need a higher order moment condition.

Assumption 3. There exists p > 2 such that almost surely

sup
i>0

E (|I(v1, . . . , vd,Y)|p |Fi−1) <∞.
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Remark 3. Assumption 3 yields the existence of a real p > 2 such that
almost surely

sup
i>0

E(‖ciηci(χi−1,Yi)‖p?|Fi−1) <∞.

Our main result is the following.

Theorem 4.1. Let (βi)i≥0, (γi)i≥0 and (ci)i≥0 be sequences in
(
R∗+
)N

. As-
sume moreover that (βi)i≥0 is non decreasing and that the following assump-
tions are satisfied :

(i) βN/
∑N

i=1 γi −−−−−→
N→+∞

0,

(ii)
∑N

i=1 γici/
∑N

i=1 γi −−−−−→
N→+∞

0,

(iii)
∑N

i=1
γ2i

c2i βi−1
/
∑N

i=1 γi −−−−−→
N→+∞

0,

(iv)
∑+∞

i=1

(
γi
ci

)2
<∞.

Then, provided that Assumptions 1 and 2 are satisfied, we have :

SN
L1

−→ x?.

If moreover, Assumption 3 is satisfied, we have :

SN
a.s.−→ x?.

Remark 4. Let 0 < c < a− 1
2 <

1
2 . One can choose for (βi)i≥0 the constant

sequence equal to 1, for (ci)i≥0 the sequence (i−c)i≥0 and for (γi)i≥0 the
sequence (i−a)i≥0.

Remark 5. For the “classical” Kiefer-Wolfowitz algorithm, the assumptions
on the gains are particular cases of our assumption with a constant sequence
(βi)i≥0: ∑

γn =∞,
∑

γncn <∞, and
∑

γ2
nc
−2
n <∞.

The proof of Theorem 4.1 uses an estimation of εN = I(SN ) − I(x?)
inspired from [27].

Lemma 4.2. Assume that (βi)i∈N is a non decreasing sequence, then

0 ≤

(
N∑
i=1

γi

)
εN ≤ βNV (x?)−

N∑
i=1

γi 〈ηci(χi−1,Yi), χi−1 − x?〉

−
N∑
i=1

γi 〈rci(χi−1), χi−1 − x?〉+

N∑
i=1

γ2
i

2αβi−1
‖Ψci(χi−1,Yi)‖2? .

Proof. We remark that because I (x?) = inf
x∈C

I(x) then εN ≥ 0 and for any

i = 1, . . . , N , I(χi−1)− I(x?) ≥ 0. Because I is a convex and differentiable
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function, (
N∑
i=1

γi

)
εN ≤

N∑
i=1

γi (I(χi−1)− I(x?))

≤
N∑
i=1

γi 〈∇I(χi−1), χi−1 − x?〉 .

Thus,(
N∑
i=1

γi

)
εN ≤

N∑
i=1

γi 〈Ψci(χi−1,Yi), χi−1 − x?〉

−
N∑
i=1

γi 〈ηci(χi−1,Yi), χi−1 − x?〉 −
N∑
i=1

γi 〈rci(χi−1), χi−1 − x?〉

= 〈ξN , x?〉+
N∑
i=1

γi 〈Ψci(χi−1,Yi), χi−1〉

−
N∑
i=1

γi 〈ηci(χi−1,Yi), χi−1 − x?〉 −
N∑
i=1

γi 〈rci(χi−1), χi−1 − x?〉

Now, because the sequence (βi)i∈N is non decreasing and using the convexity
and the differentiability of Wβi−1

(as the Legendre transform of a strictly
convex function), Lemma A.1. of Tauvel [27] yields :

Wβi(ξi)−Wβi−1
(ξi−1) ≤ Wβi−1

(ξi)−Wβi−1
(ξi−1)

≤
〈
∇Wβi−1

(ξi−1), ξi − ξi−1

〉
+

γ2
i

2αβi−1
‖Ψci(χi−1,Yi)‖2∗

= −γi 〈χi−1,Ψci(χi−1,Yi)〉+
γ2
i

2αβi−1
‖Ψci(χi−1,Yi)‖2∗ .

As a consequence, we get:

N∑
i=1

γi 〈Ψci(χi−1,Yi), χi−1〉 ≤ Wβ0(ξ0)−WβN (ξN )

+
N∑
i=1

γ2
i

2αβi−1
‖Ψci(χi−1,Yi)‖2∗

= −WβN (ξN ) +

N∑
i=1

γ2
i

2αβi−1
‖Ψci(χi−1,Yi)‖2∗ .

The result finally follows from:

〈x?, ξN 〉 −WβN (ξN ) ≤ βNV (x?).

�

Remark 6. With our assumptions, we have that

E(< ηci(χi−1,Yi), χi−1 − x? >) = 0,

indeed, (< ηci(χi−1,Yi), χi−1 − x? >)i is a martingale difference sequence.
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The following lemma may be deduced from Taylor inequality, recalling
that χi ∈ C ∀i.
Lemma 4.3. There exists κ > 0 such that, for any i,

‖rci(χi−1)‖? ≤ κci.
Proof. It follows from the fact that the Hessian matrix of I on C is bounded.

�

Remark 7. As a consequence of Lemmas 4.2 and 4.3, we have that (recall
that εN ≥ 0)

0 ≤ E(|εN |) = E(εN ) ≤ βNV (x?)
N∑
i=1

γi

+

2κD

N∑
i=1

γici

N∑
i=1

γi

+

N∑
i=1

Bγ2
i

2c2
iαβi−1

N∑
i=1

γi

,

where D is the diameter of C and B
c2i

denotes a bound of E ‖Ψci(χi−1,Yi)‖2?.
Indeed, because of Decomposition (3.1)

‖Ψci‖
2
? ≤ ‖∇I‖2? + ‖rci‖

2
? + ‖ηci‖

2
?(4.2)

+ 2
(
(‖∇I‖? + ‖rci‖?

)
‖ηci‖? + ‖∇I‖? . ‖rci‖?).

Recall that ‖∇I‖? is bounded (because C is compact and ∇I is continuous),
also following Lemma 4.3,

‖rci‖? ≤ κci.
Finally, using (4.1),

E(‖ηci‖2?) ≤
dσ2

c2
i

.

So that, sufficient conditions to have the L1-convergence of (εN ) are As-
sumptions (i), (ii) and (iii) of Theorem 4.1.

We shall apply some standard results for martingales. Let us fix some
notations :

Definition 1. Let MN be a square integrable martingale written as

MN =

N∑
i=1

ei

with (ei)i a martingale difference sequence. Let

〈M〉N =
N∑
i=1

E(e2
i |Fi−1),

with Fi−1 = σ (e1, . . . , ei−1).

The following results are well known.

Theorem (distribution of large numbers for martingales, see for instance
[18]). Let MN be a square integrable martingale if

〈M〉∞ = lim
N→∞

〈MN 〉 <∞ a.s.

then (MN )N∈N converges a.s. to a square integrable M∞.
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Theorem (Chow Lemma, see for instance [7] p.22). Suppose (aN )N∈N is a
bounded sequence of positive random variables, suppose that 1 < p ≤ 2. For

N ∈ N, let AN = 1 +

N∑
k=0

ak and A∞ = lim
N→∞

AN . Suppose that (ZN )N∈N is

a positive sequence of random variables adapted to FN and K is a constant
such that

E(ZN+1|FN ) ≤ K and sup
N

E(ZpN+1|FN ) <∞

then we have the following properties almost surely :

(4.3) on {A∞ <∞}
∞∑
k=1

akZk+1 converges

(4.4) on {A∞ =∞} A−1
N

N∑
k=1

akZk+1 ≤ K.

Proof of Theorem 4.1. We have proved the convergence in L1 of (εN )N to 0
(see Remark 7). The convergence of SN to x? follows:
I(SN ) converges in L1 to I(x?), so it converges also in probability to I(x?).
The unicity of x? (as a minimum of I) and the continuity of I gives that for
any δ > 0, there exists ε > 0 such that:

|s− x?| > δ =⇒ |I(s)− I(x?)| > ε.

Now, since SN and x? belong to the compact set C, there exists K > 0 such
that for any N ∈ N and any δ,

E|SN − x?| ≤ δ + |SN − x?|P (|SN − x?| > δ)

≤ δ +KP (|SN − x?| > δ)

≤ δ +KP (|I(SN )− I(x?)| > ε)

Thus, for any δ, lim sup
N→∞

E|SN−x?| ≤ δ (using the convergence in probability)

and finally we get the convergence in L1 of SN to x?.
Let us prove the almost sure convergence. We apply the distribution of large
numbers for martingales to

MN =

N∑
i=1

γi < ηci(χi−1,Yi), χi−1 − x? >,

MN is a martingale. Under Assumption (iv), 〈MN 〉 is bounded and hence
converges because it is increasing, thus MN converges almost surely. Using
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Lemma 4.2 we get:

0 ≤ εN ≤ βNV (x?)
N∑
i=1

γi

− MN

N∑
i=1

γi

+

2Dκ

N∑
i=1

ciγi

N∑
i=1

γi

(4.5)

+

N∑
i=1

γ2
i

2αβi−1
‖Ψci(χi−1,Yi)‖2?

N∑
i=1

γi

.(4.6)

The three terms in (4.5) go to zero a.s. by using the convergence of MN , (i)
and (ii), remark that (i) implies that

∑
γi = +∞. In order to prove that

the term in (4.6) converges to zero a.s., we use the decomposition (4.2) and
we apply the Chow Lemma twice to ZN = c2

N−1‖ηcN−1‖2? and

aN =
γ2
N

βN−1c2
N

(resp. ZN = cN‖ηcN ‖? and aN =
γ2
N

βN−1cN
).

Remark that in that case, we apply the Chow Lemma to constant random
variables (an)n∈N. With our hypothesis on the sequences (γn)n∈N, (cn)n∈N
and (βn)n∈N, the two considered sequences (an)n∈N are summable.
Theorem 4.1 is proved. Indeed, we have proved that

I(SN )
a.s.−→ I(x?).

Now, one gets SN
a.s.−→ x∗ because SN belongs to the compact set C. If s? is

an accumulation point then because I(SN )− I(x?) goes to zero, s? is also a
minimum of I. So that s? = x? by uniqueness of the minimum. �

Remark 8. If some higher order moment assumption holds we could obtain
an estimation of the rate of convergence, by using Markov inequality and
the Chow Lemma.

5. Application to risk indicators and simulations

We go back to our initial problem: we aim at estimating the optimal
allocation of the function I (defined by (1.1)) on the simplex

Uu = {(v1, . . . , vd) ∈ Rd+, v1 + · · ·+ vd = u}.

In order to run our mirror algorithm, we have to find an auxiliary function
V , whose Legendre-Fenchel transform is computable. A natural strongly
convex function on Uu is the entropy function :

δu(x) =

d∑
k=1

xk
u

ln
(xk
u

)
,
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it is 1
u2

-convex and admits a unique minimum x0 = (ud , . . . ,
u
d ). As in [27],

we consider the function

V (x) = δu(x)− δu(x0)− 〈∇δu(x0), x− x0〉

= ln d+

d∑
k=1

xk
u

ln
(xk
u

)
.

This function is also 1
u2

-convex and its Legendre-Fenchel transform is easily
computable :

∇Wβ(ξ) = β ln

(
1

d

d∑
k=1

exp[ξk
u

β
]

)
.

In Proposition 2.1 above, we have proved that our risk indicator I is convex
and admits a unique minimum provided that gk(x) > 0 for x < 0 and that
the joint distribution of (Y k

p , Sp) contains ]−u,+∞[×]−∞, u[ in its support.

The present section is devoted to simulations, whose aim is more to dis-
cuss the performances of our algorithm on simple test cases than to inves-
tigate more complex models. A more complete study on realistic models
(heavy tailed distributions, temporal and spatial dependencies) will be the
purpose of a future work, which should be written as a useful tool for risk
managers. Here we focus on what happens when dealing with Gaussian
distributions, and also when handling the so-called common shocks model.
In all the examples below, the gk’s are chosen equal to −Id : gk(x) = −x
for all k = 1, . . . , d. Moreover the cumulative gain is considered only on one
period. In that case, n = 1 thus Y = X ∈ Rd.
In Section 5.1, the components of X are independent. We first consider
that they also are identically distributed (see Subsection 5.1.1), then one
knows that the minimum is achieved for u∗ = (ud , . . . ,

u
d ). We can therefore

study the performances of our algorithm for various tuning of the parame-
ters, (γn)n∈N and (cn)n∈N, on this simple test case. The sequence (βn)n∈N
is fixed equal to 1 in the following. Various choices for (γn)n∈N and (cn)n∈N
are tested, provided that they satisfy conditions (i)-(iv) of Theorem 4.1.
It is well known that for standard algorithms such as Robbins-Monro or
Kiefer-Wolfowitz it is hard to calibrate these sequences to get the conver-
gence of the algorithm in practice. In the following, the sequences (γn)n∈N
and (cn)n∈N are chosen as follows :

• γn =
1

(n+ 1)α
,

• cn =
1

(n+ 1)δ
, with 0 < δ < α− 1/2 < 1/2.

On our test cases, it seems that choosing α too close to one can deteriorate
the mean squared error, but the overall feeling is that our algorithm is not
too sensitive to the parameters (see Subsection 5.1.1). Thus from Subsec-
tion 5.1.2, we fixed α = 3

4 + 1
10 and δ = 1

4 . In Subsection 5.1.2 we still
consider independent normal coordinates for X but the marginals may have
different means or variances. In Section 5.2, but some dependencies on the
coordinates of X are allowed.
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In section 5.3, some higher dimensional problems are considered (dimensions
10 and 40).

Also, we have chosen to perform the simulations with the initial capital
u = d (except when another value for u is specified). The initialization of
the algorithm (χ0) is done at random uniformly in the simplex Uu.

5.1. Independent models. The aim of this section is to provide some
benchmark for the use of the algorithm. So we consider : d = 2, n = 1, the
coordinates X1 and X2 are independent. At first, we assume that X1 and
X2 have the same normal distribution, then we consider different normal
distributions.

5.1.1. Same normal distribution. We have chosen an independent normal
distribution with mean equal to 0.3 and standard deviation equal to 1. For
N = 10000 independent simulations we obtain : SN = (0.996; 1.004) and
the following graphs. Remark that, as expected, it seems that the mini-
mum of our risk indicator is reached for u∗1 = u∗2 = u

2 = 1. In order to
illustrate the convergence, we have plotted for each of the two coordinates
the trajectory χi (black line) and Si (gray line); we have plotted the whole
trajectories (i = 1, . . . , 10000) and a zoom on the end of the trajectories
(i = 2000, . . . , 10000). We see on these graphs the importance of the aver-
aging step which provides a solution which is much more smooth.

Figure 1. Convergence of the algorithm, first coordinate
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Figure 2. Convergence of the algorithm, second coordinate
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We conclude this subsection by a study of k = 30 simulations of length
N = 1000, with various sequences (γn)n∈N and (cn)n∈N. These simulations
allow to see the influence of these sequences on the results of the algorithms.
The performance is measured with the mean squared error :

mse =
1

k

k∑
j=1

‖u? − ûj‖2,

where ûj is the estimated value of the vector u? on the jth simulation.
The table below gives for each of the two coordinates, the mean of the esti-
mation (û1, û2) of the minimum (u?1, u

?
2), the standard error and the mean

squared error mse for sequences (γn)n∈N and (cn)n∈N :
γn = 1

(n+1)α and cn = 1
(n+1)δ

for various values of α and δ satisfying the

hypothesis of Theorem 4.1. The parameter δ is used for finite differences
and it seems that it is better to choose it not too close to 1, as it deteriorates
the mean squared error. The parameter α (used to define the descent step
(γn)n∈N) does not seem to have a great influence on our test case.

α = 1 α = 1 α = 3
4+

1
10 α = 3

4+
1
10 α = 3

4 α = 3
4

δ = 1
2 δ = 1

4 δ = 1
2 δ = 1

4 δ = 1
2 δ = 1

4

1st coord. mean 1.02 1.01 1.01 1.02 1.01 1.01
1st standard error 0.084 0.071 0.04 0.04 0.03 0.03
2nd coord. mean 0.98 0.99 0.99 0.98 0.99 0.99
2nd standard error 0.084 0.071 0.04 0.04 0.03 0.03
mse 0.015 0.01 0.003 0.003 0.002 0.002



18 P. CÉNAC, V. MAUME-DESCHAMPS, AND C. PRIEUR

However, even with a naive fitting of the parameters we observe the conver-
gence of the algorithm in practice.

5.1.2. Different normal distributions. For this subsection, we have chosen to
present the results of 50 simulations of length N = 1000, with two indepen-
dent normal distributions. First of all, we consider for the first coordinate a
normal distribution N (0.3, 1) and for the second one a normal distribution
N (0.8, 1).
The table below gives for each of the two coordinates, the mean of the esti-
mation (û1, û2) of the minimum (u?1, u

?
2).

first coord. second coord.
mean 1.226 0.774

standard error 0.051 0.051

We observe that there is a significant difference between the two coordi-
nates. This is intuitive that in order to minimize the risk indicator, one
should affect more initial capital to the branch whose expected income is
the less (which is the more risky branch in that case).
We achieve this section with independent normal distributions with different
variance (and same mean). As above, we have performed 50 simulations of
length N = 1000, with two independent normal distributions. For the first
coordinate we consider N (0.3, 1) and for the second one N (0.3, 4).
The table below gives for each of the two coordinates, the mean of the esti-
mation (û1, û2) of the minimum (u?1, u

?
2) and the standard error.

first coord. second coord.
mean 0.787 1.213

standard error 0.067 0.067

In that case also, we observe that there is a significant difference between
the two coordinates. Here, the more risky branch is the second one (which
has a higher variance).

5.2. Models with spatial dependencies. We propose two simple mod-
els of spatial dependence. First of all we consider random vectors in R3

with common shocks. A second example of spatial dependence is given by
Gaussian vectors.

5.2.1. Model with common shocks. Models with common shocks are very
popular in insurance because they allow to model dependencies due to some
common factor. We consider a dimension three vector:

X1 = I × Z1 + (1− I)×W, X2 = I × Z2 + (1− I)×W, X3 = Z3

with Z1, Z2, Z3 independent normal distributions N (0.3, 1), W = 0.3 + T ,
T a Student distribution with 5 degrees of freedom and I a Bernoulli distri-
bution with parameter 1

5 .
The Z’s, W , I are independent.
We have simulated 30 times 1000 independent periods of length n = 1 with
u = 2.



SOME MULTIVARIATE RISK INDICATORS 19

first coord. second coord. third coord.
mean 0.61 0.61 0.78

standard error 0.024 0.033 0.042

The first two coordinates are positively correlated. If one fails then the
probability that the other one fails is more important. Putting more capital
for the entity constituted with these first two branches should reduce the
insolvency risk of the branches.

5.2.2. Gaussian vectors. We conclude this paragraph on vectorial depen-
dence with an example of a Gaussian vector in dimension 2 and an example
of a Gaussian vector in dimension 3. First, we consider the Gaussian vector
with covariance matrix

Σ =

(
1 0.8

0.8 1

)
and expectation m = (0.3, 0.3). As above, we have performed 50 simulations
of length N = 1000, of the Gaussian vector X.
The table below gives for each of the two coordinates, the mean of the esti-
mation (û1, û2) of the minimum (u?1, u

?
2) and the standard error.

first coord. second coord.
mean 0.999 1.001

standard error 0.034 0.034

It seems that the result is the same as in the non correlated case but with
a smaller standard deviation.
We have also performed the simulations for a Gaussian vector with expec-
tation m = (0.3, 0.8) and the covariance matrix Σ. The table below gives
for each of the two coordinates, the mean of the estimation (û1, û2) of the
minimum (u?1, u

?
2) and the standard error.

first coord. second coord.
mean 1.21 0.79

standard error 0.0.34 0.034

As in the above example where the marginal distributions where the same, it
seems that the result is similar to the non correlated case but with a smaller
standard error.
We have also performed simulations for a Gaussian vector in R3 with co-
variance matrix

Σ =

 1 0 0
0 1 0.9
0 0.9 1


and expectation m = (0.3, 0.3, 0.3). As above, we have performed 50 simu-
lations of length N = 1000, of the Gaussian vector X.
The table below gives for each of the three coordinates, the mean of the
estimation (û1, û2, û3) of the minimum (u?1, u

?
2, u

?
3) and the standard error.
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first coord. second coord. third coord.
mean 0.785 0.604 0.612

standard error 0.045 0.03 0.028

As in the example with common shocks, the strategy is to put more capital
on the entity constituted with the positively correlated branches.

5.3. Simulations in higher dimension. We have performed simulations
in higher dimension, still considering one period for the cumulative gain
(n = 1 ). First for Gaussian random vectors in dimension 10 then in
dimension 40, in order to see if our algorithm gives good results in high
dimension. In order to measure the performance of the algorithm, we have
performed k = 30 simulations of length N = 1000, with independent normal
Gaussian vectors of R10 then of R40, each coordinate following a normal
N (0.3, 1). We have chosen for the sequences γn = 1

(n+1) and cn = 1

(n+1)
1
4

.

5.3.1. Results in dimension 10. The table below contains for each coordi-
nate, the mean - over the 30 simulations - of the estimated value of ûi and
the standard-error. Then we have computed the mse. Remark that as be-
fore, since the coordinates of the vector are i.i.d. then the minimum of the
indicator will be realized for u?i = u

10 = 1 for i = 1, . . . , 10.

coordinate mean standard error
1 0.997 0.043
2 1.004 0.044
3 1.002 0.042
4 0.996 0.042
5 0.987 0.044
6 1.004 0.05
7 0.998 0.044
8 1.002 0.044
9 1.016 0.045
10 0.993 0.048

The mean squared error is 0.02. Even if the mean squared is greater (around
5 times greater as in dimension 2), it seems that the algorithm is still per-
formant in dimension 10.
We have also considered in dimension 10, a Gaussian vector with mean 0.3
for all the coordinates and with the covariance matrix:

1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0.5 0.5 0.5 0.5 0.5
0 0 0 0 0 0.5 0.5 0.5 0.5 0.5
0 0 0 0 0 0.5 0.5 0.5 0.5 0.5
0 0 0 0 0 0.5 0.5 0.5 0.5 0.5
0 0 0 0 0 0.5 0.5 0.5 0.5 0.5


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The table below contains for each coordinate, the mean - over the 30 simu-
lations - of the estimated value of ûi and the standard-error.

coordinate mean standard error
1 1.192 0.043
2 1.19 0.035
3 1.188 0.034
4 1.189 0.034
5 1.189 0.034
6 0.81 0.036
7 0.811 0.035
8 0.81 0.035
9 0.81 0.036
10 0.811 0.034

Clearly, the algorithm recognizes two blocks in the random vector and puts
more capital on the more risky (with higher variance) one.

5.3.2. Results in dimension 40. We conclude this simulation session by a
simple example in dimension 40. We have performed k = 30 simulations
of length N = 1000, with independent normal Gaussian vectors each coor-
dinate following a normal distribution N (0.3, 1). We have chosen for the
sequences γn = 1

(n+1) and cn = 1

(n+1)
1
4

. The mean squared error is 0.09.

The picture below shows the mean (over the 30 simulations) of the estimated
values û1, . . . , û40 of u?1 = · · · = u?40 = u

40 = 1.

Figure 3. Estimated values of u?1, . . . , u
?
40.
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All these results show that our algorithm is tractable even for relative high
dimensions. Of course the mean squared error increases with the dimension
but even in dimension 40 we obtain a quite good precision for our estimator
(it seem that the mse increases linearly with the dimension). Note that
for all these simulations, we did not encounter any difficulty for fitting our
various parameters.
More realistic models, including temporal dependencies and heavy tailed
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distributions, have to be investigated from a theoretical and simulation point
of view, in order to propose a useful tool for risk managers. This will be the
aim of a forthcoming work.
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