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SOME MULTIVARIATE RISK INDICATORS ;

MINIMIZATION BY USING A KIEFER-WOLFOWITZ

APPROACH TO THE MIRROR STOCHASTIC

ALGORITHM.

P. CÉNAC, V. MAUME-DESCHAMPS, AND C. PRIEUR

Abstract. We consider some risk indicators of vectorial risk processes.
These indicators take into account the dependencies between business
lines as well as some temporal dependencies. By using stochastic algo-
rithms, we may estimate the minimum of these risk indicators, under a
fixed total capital constraint. This minimization may apply to optimal
reserve allocation.

1. Introduction

The new regulation rules for insurance industry, namely Solvency 2 in
Europe, lead companies to adjust their solvency margins to the underlying
risks. Once the overall company capital requirement has been computed,
it must be splited into solvency capital for each line of business. In other
words, given an initial capital u we assume that it is allocated to each
line of business: uk is the initial capital of the kth line of business, then
u1+ . . .+ud = u. We aim to optimize the capital allocation with respect to
some risk indicator. In this context u is fixed and we search for an optimal
choice of the uk’s. The ruin probability is a quite standard risk indicator
and has been widely studied in dimension 1 (see [5] for a review). Other
risk indicators have been introduced by S. Loisel [10] in a multidimensional
setting. These risk indicators either do not take the dependence structure
into account or are not convex so that convex analysis cannot be used for
minimization. We introduce some new risk indicators, both involving de-
pendence and having nice convexity properties. Considering that the main
risk drivers for the overall company have been identified and that the global
solvency capital requirement has been computed, they reveal the marginal
solvency capitals for each line of business. A way to avoid as far as possible
that some lines of business become insolvent too often could be to mini-
mize these risk indicators, under a fixed total capital constraint. This might
be achieved if some capital fungibility between lines of business or between
entities is possible. One possible way to define optimality of the global re-
serve allocation is to minimize the expected sum of the penalties that each
line of business would have to pay due to its temporary potential insolvency.

Key words and phrases. Multivariate risk processes, risk indicators, stochastic algo-
rithms, optimal allocation.
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We consider a vectorial risk process

Xi =




X1
i
...

Xd
i


 ,

where Xk
i corresponds to the gains of the kth business line during the ith

period. That is, Xk
i = Gk

i − Lk
i where Gk

i denotes the incomes and Lk
i de-

notes the losses. We are interested in the cumulative gain : Y k
i =

i∑

p=1

Xk
p .

As a simple example, it might be considered that Gk
i = ck : the income is

constant on each period and thus, Y k
i = ick−Sk

i where Sk
i is the cumulative

losses.
The ruin probability in a multivariate setting may be defined as the prob-
ability that one of the d lines of business makes default during the n first
periods :

R(u1, . . . , ud) = P(∃k = 1, . . . , d ∃i = 1, . . . , n / Y k
i + uk < 0).

In [3] some bounds for ruin probabilities in multivariate compound risk
models are provided.
Let Rk

p = uk + Y k
p . We may also be interested in the total cost of ruin :

A(u1, . . . , ud) = −
d∑

k=1

E




n∑

p=1

Rk
p1{Rk

p<0}




The asymptotic (as u → ∞) properties of A have been studied in [2]. In
the case d = 1, they study the asymptotics of A(u). In higher dimension,
they provide the asymptotic behavior of the vector u⋆ ∈ R

d realizing the
minimum of A under the constraint u1 + · · ·+ ud = u.
The risk indicator A doesn’t take into account the dependence structure
between the lines of business. A multivariate risk indicator that takes into
account the dependence structure may be :

B(u1, . . . , ud) =

d∑

k=1

E




n∑

p=1

1{Rk
p<0}1{

∑d
k=1

Rk
p>0}


 .

This risk indicator gives an indication on some average time to ruin, it has
been introduced in [10]. The risk indicator B, as the ruin probability, is
not in general convex. In our approach, we need the convexity property so
we introduce the following risk indicator, related to the ruin cost. Given a
differentiable and convex function gk : R → R satisfying gk(x) ≥ 0 for
x ≤ 0, k = 1, . . . , d, we consider the risk indicator

(1.1) I(u1, . . . , ud) =

d∑

k=1

E




n∑

p=1

gk(R
k
p)1{Rk

p<0}1{
∑d

k=1
Rk

p>0}


 .

The function gk represents the cost that the kth business branch has to
pay if it becomes insolvent. In the case gk(x) = −x, the risk indicator I is
a generalization of B that takes into account the cost of insolvency. The
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following picture represents the risk indicator (light area) for gk(x) = −x
and d = 2.

time
1 2 3

Local insolvency Global insolvency

u1

R
2

1

u2

R
1

2

R
1

1
+ R

2

1

u = u1 + u2

∑
d
k=1

R
k
p

R
1

p

R
2

p

We aim to find a minimum under the constraint v1+ · · ·+vd = u. Formally,
we are looking for u⋆ ∈ (R+)

d such that

(1.2) I(u⋆) = inf
v1+...+vd=u

I(v), v ∈ (R+)
d.

Unless for very specific examples, no explicit solution is available. We pro-
pose to solve this problem by using stochastic algorithms (see [4, 1, 6] for a
review). Also, the gradient of the function I is not explicitly computable.
We are thus led to use approximations of ∇I in stochastic algorithms. Be-
cause we have to find a minimum under an affine constraint, it would seem
reasonable to use a stochastic algorithm including the Lagrange multipliers.
It is known that in this case the algorithm is parameter-sensitive. Indeed,
we observed this phenomena in practice. We shall use instead an algorithm
introduced in the deterministic form by Nemirovski and Yudin ([9]) and by
Tauvel ([11]) in its stochastic form. In her thesis, Tauvel considers that
an approximation of the gradient of I by a martingale difference is avail-
able, which is not our case. Thus we use a Kiefer-Wolfowitz approach of
her algorithm : we approximate the gradient online. We construct a sto-
chastic algorithm to estimate u⋆, the optimal allocation. Under a moment
condition (order > 2) we prove the almost sure convergence of the estimator.

Notice that our approach do not require any hypothesis, apart from a mo-
ment assumption, on the distribution of Xi and the existence of a density.
Also there may be temporal dependence on a period of length n. Neverthe-
less, in order to achieve the algorithm, we shall need N independent copies
of the distribution of Xi on a period of length n.
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The paper is organized as follows: in section 2 we prove some convexity
property on I. In section 3 we make explicit the algorithm. In section 4
we prove the convergence results. In section 5 we show how to apply these
results for our risk indicator and provide some simulations.

2. Convexity property

Let us first prove that, under suitable assumptions on gk, the risk indicator
I is differentiable and convex. Notice that the knowledge of the whole joint
distribution Rk

p , p = 1, . . . , n, k = 1, . . . , d, which should be required to
prove the differentiability of the ruin probability, is not needed here.

Let v(−k) =
∑

j 6=k

vj and let Sp =
d∑

k=1

Y k
p . In the following, we assume that

(Y i
p , Sp) has a joint density distribution denoted by fY i

p ,Sp
.

Proposition 2.1. Assume that the functions gk are differentiable and con-

vex, that gk : R → R with gk(0) = 0, gk(x) ≥ 0 for x < 0 and

gk(x) ≤ 0 for x > 0. Then the risk indicator I is convex on the convex

set Uu = {(v1, . . . , vd) ∈ (R+)d / v1 + · · ·+ vd = u}.

Proof. In order to prove the convexity of the risk indicator I, it is sufficient
to prove the gradient inequality, that is for any v, w ∈ Uu,

(2.1) (v − w)T∇I(w) ≤ I(v)− I(w).

We have :

(∇I(v))i =

d∑

k=1

n∑

p=1

−vk∫

−∞

gk(y + vk)fY k
p ,Sp

(y,−u)dy

+

n∑

p=1

E(g′i(Y
i
p + vi)1{Y i

p<−vi}1{Sp>−u})

−
n∑

p=1

gi(0)

+∞∫

−u

fY i
p ,Sp

(−vi, s)ds.

Using that gi(0) = 0 and
∑d

k=1 vk =
∑d

k=1wk = u gives

(v − w)T∇I(w) =

d∑

k=1

n∑

p=1

(vk − wk)E(g
′
k(Y

k
p + wk)1{Y k

p <−wk}
1{Sp>−u}).

Since the function gk is convex, it satisfies the gradient inequality, thus

(v − w)T∇I(w) ≤
d∑

k=1

n∑

p=1

E

[
(gk(Y

k
p + vk)− gk(Y

k
p + wk))1{Y k

p <−wk}
1{Sp>−u}

]

The second term of this inequality is equal to

I(v)− I(w) +
d∑

k=1

n∑

p=1

E

[
gk(Y

k
p + vk)1{Sp>−u}(1{Y k

p <−wk}
− 1{Y k

p <−vk}
)
]
.
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For k = 1, . . . , d, if vk > wk then

1{Y k
p <−wk}

− 1{Y k
p <−vk}

= 1{−vk≤Y k
p ≤−wk}

and

E

[
gk(Y

k
p + vk)1{Sp>−u}(1{Y k

p <−wk}
− 1{Y k

p <−vk}
)
]

= E(gk(Y
k
p + vk)1{Sp>−u}1{−vk≤Y k

p <−wk}
) ≤ 0.

If wk > vk then

E

[
gk(Y

k
p + vk)1{Sp>−u}(1{Y k

p <−wk}
− 1{Y k

p <−vk}
)
]

= −E(gk(Y
k
p + vk)1{Sp>−u}1{−wk≤Y k

p <−vk}
) ≤ 0.

We conclude that the gradient inequality is satisfied which concludes the
proof of the proposition. �

The fact that I is a convex function is crucial to ensure the convergence
of the stochastic algorithm. The convexity assumption is also standard for
classical stochastic algorithms (as Robbins-Monro or Kiefer-Wolfowitz).

3. Estimation by use of stochastic algorithms

In this section we present our algorithm which is a Kiefer-Wolfowitz ver-
sion of the mirror algorithm. In section 4 we shall prove its convergence
under general assumptions (see Assumption 1) that are satisfied in particu-
lar for our specific risk indicator I.

3.1. Auxiliary function for the mirror algorithm. The stochastic mir-
ror algorithm introduced by Tauvel requires the use of an auxiliary function
that will be used to push the trajectory into the set of constraints. We
consider that Rd is endowed with the L1 norm ‖ ‖ and the dual space (Rd)⋆

is endowed with the dual norm ‖ ‖⋆ :

‖x‖ =
d∑

i=1

|xi|, ‖ξ‖⋆ = sup
i=1,...,d

|ξi|.

Let C be a compact convex subset of Rd. Recall that a convex function
δ : C −→ R is strongly convex with parameter α > 0 with respect to the
norm ‖ ‖ if for any λ ∈ [0, 1] and any x, y belonging to C,

δ(λx+ (1− λ)y) ≤ λδ(x) + (1− λ)δ(y)−
α

2
λ(1− λ)‖x− y‖2.

The mirror algorithm uses an α-convex function δ differentiable on a point
x0 ∈ C to define the auxiliary function V :

V (x) = δ(x)− δ(x0)− < ∇δ(x0), x− x0 > .

It is then easy to see that the function V is also α-convex.
Setting a positive β, Wβ denotes the Legendre-Fenchel transform of βV :

Wβ(ξ) = sup
x∈C

{〈ξ, x〉 − βV (x)} .

Due to the properties of Legendre-Fenchel transform of α-convex functions,
we know that Wβ is continuously differentiable and that its gradient takes
its values in C. Moreover, the gradient of Wβ has a Lipschitz constant equal
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to (αβ)−1.
We consider a function Ψ which is an approximation of the gradient of I.
The mirror algorithm uses two positive sequences βi and γi and a sequence
of i.i.d. random vectors Y i in the following way (the choices for these se-
quences will be explicited a bit later).

Algorithm 1

Initialization :

{
ξ0 = 0 ∈ (Rd)⋆

χ0 ∈ C

Update : for i = 1, . . . , N do

{
ξi = ξi−1 − γiΨ(χi−1,Yi)
χi = ∇Wβi

(ξi)

Output : SN =

∑N
i=1 γiχi−1∑N

i=1 γi

Under assumptions on the function Ψ, we shall prove that SN goes a.s. to
the unique minimum x⋆ of I.

3.2. Approximate gradient. In our case, we do not have access directly
to the gradient of I, ∇I, but we may approximate it online.
Recall that

I(u1, . . . , ud) =

d∑

k=1

E




n∑

p=1

gk(R
k
p)1{Rk

p<0}1{
∑d

k=1
Rk

p>0}


 .

d denotes the number of lines of business, and n the number of periods of
interest. The problem is to solve (1.2). We will consider an approximation
Ψ of ∇I with the following decomposition Ψ = ∇I + η + r, where η is a
martingale difference and r is negligible with respect to ∇I and η. Arguing
as for Kiefer-Wolfowitz, we first notice that

I(u1, . . . , ud) = E (I(u1, . . . , ud,Y))

where

Y =



Y 1
1 · · · Y 1

n

· · · · · · · · ·
Y d
1 · · · Y d

n




and

I(u1, . . . , ud, y) =
d∑

k=1

n∑

p=1

gk(y
k
p + uk)1{ykp+uk<0}1{

∑d
k=1

ykp+uk>0}.

Let us denote a realization of Y by

y =




y11 · · · y1n
· · · · · · · · ·
yd1 · · · ydn


 .
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For sake of shortness, we introduce the following notations :

Ik
(
c+i ,Y

)
= I(χ1

i−1, . . . , χ
k−1
i−1 , χ

k
i−1 + ci, χ

k+1
i−1 , . . . , χ

d
i−1,Y),

Ik
(
c−i ,Y

)
= I(χ1

i−1, . . . , χ
k−1
i−1 , χ

k
i−1 − ci, χ

k+1
i−1 , . . . , χ

d
i−1,Y),

Ik
(
c+i
)

= I(χ1
i−1, . . . , χ

k−1
i−1 , χ

k
i−1 + ci, χ

k+1
i−1 , . . . , χ

d
i−1),

Ik
(
c−i
)

= I(χ1
i−1, . . . , χ

k−1
i−1 , χ

k
i−1 − ci, χ

k+1
i−1 , . . . , χ

d
i−1).

We then consider DciI (resp. DciI) the random vector whose kth coor-
dinate Dk

ci
I(u1, . . . , ud,Y) (resp. Dk

ci
I(u1, . . . , ud,Y)) is defined by

Ik
(
c+i ,Y

)
− Ik

(
c−i ,Y

)

2ci

(
resp.

Ik
(
c+i ,Y

)
− Ik

(
c−i ,Y

)

2ci

)
.

Considering independent copies of the random matrix Y : Y1, . . . ,YN , we
perform Algorithm 2 below :

Algorithm 2

Initialization :

{
ξ0 = 0 ∈ (Rm)⋆

χ0 ∈ C

Update : for i = 1, . . . , N do

{
ξi = ξi−1 − γiΨci(χi−1,Yi)
χi = ∇Wβi

(ξi)

Output : SN =

∑N
i=1 γiχi−1∑N

i=1 γi

with
Ψci(χi−1,Yi) = DciI(χi−1,Yi).

Then defining

ηci(χi−1,Yi) = DciI(χi−1,Yi)−DciI(χi−1),

rci(χi−1) = DciI(χi−1)−∇I(χi−1),

it enhances the decomposition

(3.1) Ψci(χi−1,Yi) = ∇I(χi−1) + ηci(χi−1,Yi) + rci(χi−1).

In the next section, we give conditions on γi, βi and ci for the convergence
of the algorithm.

4. Convergence of the algorithm

Let us consider C is compact convex subset of Rd. We make also the
following assumptions on I :

Assumption 1.

(1) I is a convex function from R
d to R,

(2) I is of C2 class,
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(3) I admits a unique minimum x⋆ on C,

Moreover, we have for any x in R
d and any c > 0

E(ηc(x,Y)) = 0 and

rc(x) converges to zero as c goes to 0.

We perform Algorithm 2 with χ0 being any random vector taking values
in C, and Fi being the σ-field generated by χ0,Y1, . . . ,Yi. Then ξi is Fi

measurable and Yi is independent of Fi−1. We get therefore

E(ηci(χi−1,Yi)|Fi−1) = 0.

We shall need the following additional assumption on the function I.

Assumption 2. There exists some non negative real number σ such that
for all vector (v1, . . . , vd) ∈ R

d, the random variable I(x,Y) satisfies the
moment condition ∀i

E
(
I(v1, . . . , vd,Yi)

2|Fi−1

)
≤ σ2.

Remark 1. Assumption 2 yields the existence of a real number σ > 0 such
that for any i = 1, . . . , N ,

(4.1) E

(
‖ηci(χi−1,Yi)‖

2
∗ |Fi−1

)
≤

σ2

c2i
.

Indeed, one has

E

(
‖ηci(χi−1,Yi)‖

2
∗ |Fi−1

)
= sup

1≤k≤d

(
Var

(
Ik(c+i ,Yi)|Fi−1

)

4c2i
+

Var
(
Ik(c−i ,Yi)|Fi−1

)

4c2i

−
1

2c2i
E

[(
Ik(c+i ,Yi)− I(c+i )

)(
Ik(c−i ,Yi)− I(c−i )

)])
.

From Assumption (2) together with the Cauchy-Schwartz inequality, one
gets

E

(∥∥ηci(χi−1,Y
i)
∥∥2
∗
|Fi−1

)
≤

σ2

c2i
,

which concludes the proof of (4.1). Condition (4.1) is sufficient to obtain
the L1-convergence. In order to prove the almost sure convergence, we shall
need a higher order moment condition.

Assumption 3. There exists p > 2 such that almost surely

sup
i>0

E (|I(v1, . . . , vd,Y)|p |Fi−1) < ∞.

Remark 2. Assumption 3 yields the existence of a real p > 2 such that
almost surely

sup
i>0

E(‖ciηci(χi−1,Yi)‖
p
⋆|Fi−1) < ∞.

Our main result is the following.

Theorem 4.1. Let (βi)i≥0, (γi)i≥0 and and (ci)i≥0 be sequences in
(
R
∗
+

)N
.

Assume moreover that (βi)i≥0 is non decreasing and that the following as-

sumptions are satisfied :
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(i) βN/
∑N

i=1 γi −−−−−→
N→+∞

0,

(ii)
∑N

i=1 γici/
∑N

i=1 γi −−−−−→
N→+∞

0,

(iii)
∑N

i=1
γ2

i

c2i βi−1

/
∑N

i=1 γi −−−−−→
N→+∞

0,

(iv)
∑+∞

i=1

(
γi
ci

)2
< ∞.

Then, provided that Assumptions 1 and 2 are satisfied, we have :

SN
L1

−→ x⋆.

If moreover, Assumption 3 is satisfied, we have :

SN
a.s.
−→ x⋆.

Remark 3. Let 0 < c < a− 1
2 < 1

2 . One can choose for (βi)i≥0 the constant
sequence equal to 1, for (ci)i≥0 the sequence (i−c)i≥0 and for (γi)i≥0 the
sequence (i−a)i≥0.

Remark 4. For the “classical” Kiefer-Wolfowitz algorithm, the assumptions
on the gains are particular cases of our assumption with a constant sequence
(βi)i≥0:

∑
γn = ∞,

∑
γncn < ∞, and

∑
γ2nc

−2
n < ∞.

The proof of Theorem 4.1 uses an estimation of εN = I(SN ) − I(x⋆)
inspired from [11].

Lemma 4.2. Assume that (βi)i∈N is a non decreasing sequence, then

0 ≤

(
N∑

i=1

γi

)
εN ≤ βNV (x⋆)−

N∑

i=1

γi 〈ηci(χi−1,Yi), χi−1 − x⋆〉

−
N∑

i=1

γi 〈rci(χi−1), χi−1 − x⋆〉+
N∑

i=1

γ2i
2αβi−1

‖Ψci(χi−1,Yi)‖
2
⋆ .

Proof. We remark that because I (x⋆) = inf
x∈C

I(x) then εN ≥ 0 and for any

i = 1, . . . , N , I(χi−1)− I(x⋆) ≥ 0. Because I is a convex and differentiable
function,

(
N∑

i=1

γi

)
εN ≤

N∑

i=1

γi (I(χi−1)− I(x⋆))

≤
N∑

i=1

γi 〈∇I(χi−1), χi−1 − x⋆〉 .
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Thus,
(

N∑

i=1

γi

)
εN ≤

N∑

i=1

γi 〈Ψci(χi−1,Yi), χi−1 − x⋆〉

−
N∑

i=1

γi 〈ηci(χi−1,Yi), χi−1 − x⋆〉 −
N∑

i=1

γi 〈rci(χi−1), χi−1 − x⋆〉

= 〈ξN , x⋆〉+
N∑

i=1

γi 〈Ψci(χi−1,Yi), χi−1〉

−
N∑

i=1

γi 〈ηci(χi−1,Yi), χi−1 − x⋆〉 −
N∑

i=1

γi 〈rci(χi−1), χi−1 − x⋆〉

Now, because the sequence (βi)i∈N is non decreasing and using the convexity
and the differentiability of Wβi−1

(as the Legendre transform of a strictly
convex function), item 2 in Proposition A.3. of Tauvel [11] yields :

Wβi
(ξi)−Wβi−1

(ξi−1) ≤ Wβi−1
(ξi)−Wβi−1

(ξi−1)

≤
〈
∇Wβi−1

(ξi−1), ξi − ξi−1

〉
+

γ2i
2αβi−1

‖Ψci(χi−1,Yi)‖
2
∗

= −γi 〈χi−1,Ψci(χi−1,Yi)〉+
γ2i

2αβi−1
‖Ψci(χi−1,Yi)‖

2
∗ .

As a consequence, we get:

N∑

i=1

γi 〈Ψci(χi−1,Yi), χi−1〉 ≤ Wβ0
(ξ0)−WβN

(ξN )

+

N∑

i=1

γ2i
2αβi−1

‖Ψci(χi−1,Yi)‖
2
∗

= −WβN
(ξN ) +

N∑

i=1

γ2i
2αβi−1

‖Ψci(χi−1,Yi)‖
2
∗ .

The result finally follows from:

〈x⋆, ξN 〉 −WβN
(ξN ) ≤ βNV (x⋆).

�

Remark 5. With our assumptions, we have that

E(< ηci(χi−1,Yi), χi−1 − x⋆ >) = 0,

indeed,
< ηci(χi−1,Yi), χi−1 − x⋆ >

is a martingale difference.

The following lemma may be deduced from Taylor inequality, recalling
that χi ∈ C ∀i.

Lemma 4.3. There exists κ > 0 such that, for any i,

‖rci(χi−1)‖⋆ ≤ κci.
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Proof. It follows from the fact that the Hessian matrix of I on C is bounded.
�

Remark 6. As a consequence of Lemmas 4.2 and 4.3, we have that

0 ≤ E(εN ) ≤
βNV (x⋆)

N∑

i=1

γi

+

2κD

N∑

i=1

γici

N∑

i=1

γi

+

N∑

i=1

Bγ2i
2c2iαβi−1

N∑

i=1

γi

,

where D is the diameter of C and B
c2i

denotes a bound of E ‖Ψci(χi−1,Yi)‖
2
⋆.

Indeed, because of Decomposition (3.1)
(4.2)

‖Ψci‖
2
⋆ ≤ ‖∇I‖2⋆+‖rci‖

2
⋆+‖ηci‖

2
⋆+2 (‖∇I‖⋆ + ‖rci‖⋆) ‖ηci‖⋆+2‖∇I‖⋆×‖rci‖⋆.

Recall that ‖∇I‖⋆ is bounded (because C is compact and ∇I is continuous),
also following Lemma 4.3,

‖rci‖⋆ ≤ κci.

Finally, using (4.1),

E(‖ηci‖
2
⋆) ≤

σ2

c2i
recall that ci → 0 as i → ∞.

So that, sufficient conditions to have the L1-convergence of (εN ) are As-
sumptions (i), (ii) and (iii) of Theorem 4.1 (let us recall that εN > 0).

We shall apply some standard results for martingales. Let us fix some
notations :

Definition 1. Let MN be a square integrable martingale written as

MN =

N∑

i=1

ei

with ei a martingale difference. Let

〈M〉N =

N∑

i=1

E(e2i |Fi−1),

with Fi−1 = σ (e1, . . . , ei−1).

The following results are well known.

Theorem (Law of large numbers for martingales, see for instance [8]). Let

MN be a square integrable martingale if

〈M〉∞ = lim
N→∞

〈MN 〉 < ∞ a.s.

then (MN )N∈N converges a.s. to M∞ square integrable.

Theorem (Chow Lemma, see for instance [4] p.22). Suppose (aN )N∈N is a

bounded sequence of positive numbers , suppose that 1 < p ≤ 2. For N ∈ N,
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let AN = 1+
N∑

k=0

ak and A∞ = lim
N→∞

AN . Suppose that (ZN )N∈N is a positive

sequence of random variables adapted to FN and K is a constant such that

E(ZN+1|FN ) ≤ K and sup
N

E(Zp
N+1|FN ) < ∞

then we have the following properties almost surely :

(4.3) on {A∞ < ∞}
∞∑

k=1

akZk+1 converges

(4.4) on {A∞ = ∞} A−1
N

N∑

k=1

akZk+1 ≤ K.

Proof of Theorem 4.1. We have already proved the convergence in L1 (see
Remark 6).
Let us prove the almost sure convergence. We apply the law of large numbers
for martingales to

MN =
N∑

i=1

γi < ηci(χi−1,Yi), χi−1 − x⋆ >,

MN is a martingale. Under Assumption (iv), 〈MN 〉 is bounded and hence
converges because it is increasing, thus MN converges almost surely. Using
Lemma 4.2 we get:

0 ≤ εN ≤
βNV (x⋆)

N∑

i=1

γi

−
MN

N∑

i=1

γi

+

2Dκ
N∑

i=1

ciγi

N∑

i=1

γi

(4.5)

+

N∑

i=1

γ2i
2αβi−1

‖Ψci(χi−1,Yi)‖
2
⋆

N∑

i=1

γi

.(4.6)

The three terms in (4.5) goes to zero a.s. by using the convergence of MN ,

(i) and (ii), remark that (i) implies that
∞∑

i=1

γi = +∞. In order to prove

that the term in (4.6) converges to zero a.e., we use the decomposition (4.2)

and we apply the Chow Lemma twice to ZN = c2N‖ηcN ‖
2
⋆ and aN =

γ2N
βN−1c2N

(resp. ZN = cN‖ηcN ‖⋆ and aN =
γ2N

βN−1cN
).

Theorem 4.1 is proved. Indeed, we have proved that

I(SN )
a.s.
−→ I(x⋆).
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Now, one gets SN
a.s.
−→ x∗ because SN belongs to the compact set C. If s⋆ is

an accumulation point then because I(SN )− I(x⋆) goes to zero, s⋆ is also a
minimum of I. So that s⋆ = x⋆ by uniqueness of the minimum. �

Remark 7. If some higher order moment assumption holds we could obtain
an estimation of the rate of convergence, by using Markov inequality and
the Chow Lemma.

5. Application to risk indicators and simulations

We go back to our initial problem: we aim at estimating the optimal
allocation of the function I (defined by (1.1)) on the simplex

Uu = {uk ≥ 0, u1 + · · ·+ ud = u}.

In order to run our mirror algorithm, we have to find an auxiliary function
V , whose Legendre-Fenschel transform is computable. A natural strongly
convex function on Uu is the entropy function :

δu(x) =

d∑

k=1

xk
u

ln
(xk
u

)
,

it is 1
u2 -convex and admits a unique minimum x0 = (u

d
, . . . , u

d
). As in [11],

we consider the function

V (x) = δu(x)− δu(x0)− 〈∇δu(x0), x− x0〉

= ln d+

d∑

k=1

xk
u

ln
(xk
u

)
.

This function is also 1
u2 -convex and its Legendre-Fenschel transform is easily

computable :

∇Wβ(ξ) = β ln

(
1

d

d∑

k=1

exp[ξk
u

β
]

)
.

Remark that this function involves an exp part which could be problematic
in the computations if u is large. Nevertheless, in that case, we could take
β = u, so that the computations remain feasible.

5.1. Properties of the risk indicator I. We have proved (Proposition
2.1) that our risk indicator I is convex. If we chose gk a C2 function for all k,
then I is also C2. In order to prove that it satisfies Assumption 1, it remains
to prove that the minimum x⋆ is unique. Let s⋆ be another minimum. Going
back to the proof of Proposition 2.1, we have:

I(s⋆)− I(x⋆)− (s⋆ − x⋆)T∇I(x⋆) ≥

−
d∑

k=1

n∑

p=1

E

[
gk(Y

k
p + s⋆k)1{Sp>−u}(1{Y k

p <−x⋆
k
} − 1{Y k

p <−s⋆
k
})
]
.
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Now, if x⋆ ∈ int(Uu) the interior of Uu then ∇I(x⋆) = 0; if x⋆ is in the
boundary of Uu, then (s⋆ − x⋆)T∇I(x⋆) ≥ 0. In any cases, we have:

I(s⋆)−I(x⋆) ≥ −
d∑

k=1

n∑

p=1

E

[
gk(Y

k
p + s⋆k)1{Sp>−u}(1{Y k

p <−x⋆
k
} − 1{Y k

p <−s⋆
k
})
]
,

the right term of the inequality being positive provided that for some k =
1, . . . , d or some p = 1, . . . , n, for u < wk < vk,

−E

[
gk(Y

k
p + vk)1{

∑d
k=1

Y k
p >−u} · 1{−wk<Y k

p <−vk}

]
< 0.

(see the proof of Proposition 2.1 for the proof that all the terms in the sum
are positive under these hypothesis).

In the sequel we have performed some simulations for some models. For
simplicity, we consider only normal laws. A deeper study involving other
laws (with heavy tail e.g.), more realistic models and temporal dependencies
will be done in a forthcoming work.
In Section 5.2, we consider that n = 1 (observation of several periods of
length 1) and that Xk

p = Y k
p are independent (k = 1, . . . , d, p ∈ N). In

Section 5.3, we are still considering that n = 1, and that there is no tem-
poral dependencies: the vectors Xp ∈ R

d are independent and identically
distributed random vectors, but some dependencies on the coordinates of Xp

are allowed. In section 5.4, a example with temporal dependency is provided.
Below, the algorithm has been performed with the following sequences (γn)n∈N⋆ ,
(cn)n∈N⋆ and (βn)n∈N⋆ :

• γn =
1

(n+ 1)α
with α = 3

4 + 1
10 ,

• cn =
1

(n+ 1)δ
with δ = 1

4 ,

• βn = 1.

Also, we have chosen to perform the simulations with u = 2. The initial-
ization of the algorithm (χ0) is done at random uniformly in the simplex
Uu.

5.2. Independent models. The aim of this section is to provide some
benchmark for the use of the algorithm. So we consider the simplest exam-
ples : d = 2, n = 1, the coordinates X1

i and X2
i are independent and the

vectors Xi are also independent. At first, we assume that X1
i and X2

i have
the same normal laws, then we consider different normal laws.

5.2.1. Same normal laws. We have chosen independent normal laws with
mean equal to 0.3 and standard deviation equal to 1. For N = 10000 in-
dependent simulations we obtain : SN = (0.996; 1.004) and the following
graphs. Remark that, as expected, it seems that the minimum of our risk
indicator is reached for u1 = u2 = u

2 = 1. Below we have plotted for each
of the two coordinates the trajectory χi (black line) and Si (gray line); we
have plotted the whole trajectories (i = 1, . . . , 10000) and a zoom on the
end of the trajectories (i = 2000, . . . , 10000).
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We conclude this subsection on independent same normal laws by a study of
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50 simulations of length N = 1000, with the same parameters as above. The
table below gives for each of the two coordinates, the mean of the estimation
(û1, û2) of the minimum (u1, u2) and the standard error.

first coord. second coord.
mean 1.01 0.99

standard error 0.04 0.04

5.2.2. Different normal laws. For this subsection, we have chosen to present
the results of 50 simulations of length N = 1000, with two independent
normal laws. First of all, we consider for the first coordinate a normal law
N (0.3, 1) and for the second coordinate a normal law N (0.8, 1).
The table below gives for each of the two coordinates, the mean of the esti-
mation (û1, û2) of the minimum (u1, u2) and the standard error.

first coord. second coord.
mean 1.226 0.774

standard error 0.051 0.051

We observe that there is a significant difference between the two coordinates.
As one could have guest, in order to minimize the risk indicator, one should
affect more initial capital to the branch whose expected income is the less
(which is the more risky branch in that case).
We terminate this section on independent normal laws with two normal laws
with different variance (and same mean). As above, we have performed 50
simulations of length N = 1000, with two independent normal laws. For
the first coordinate we consider a normal law N (0.3, 1) and for the second
coordinate we consider a normal law N (0.3, 4).
The table below gives for each of the two coordinates, the mean of the esti-
mation (û1, û2) of the minimum (u1, u2) and the standard error.

first coord. second coord.
mean 0.787 1.213

standard error 0.067 0.067

In that case also, we observe that there is a significant difference between
the two coordinates. Here, the more risky branch is the second one (which
has a higher variance).

5.3. Model with spatial dependencies. We propose two simple models
of spatial dependence. First of all we consider random vectors in R

3 with the
first two coordinates begin independent identically distributed normal laws,
the third coordinate begin two times the second coordinate (X3 = 2X2). A
second example of spatial dependence is given by Gaussian vectors.

5.3.1. Strong dependence. We consider the following model : two indepen-
dent normal laws X1 and X2 with mean equal to 0.3 and standard deviation
equal to 1 and let X3 = 2X2. We have performed 50 simulations of length
N = 1000 of this dimension 3 model. As before, we consider n = 1 (the
periods are of length 1).
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The table below gives for each of the two coordinates, the mean of the es-
timation (û1, û2, û3) of the 3−uplet (u1, u2, u3) satisfying the minimum of I
and the standard error.

first coord. second coord. third coord.
mean 0.8 0.43 0.77

standard error 0.06 0.02 0.05

From our model, X2 and X3 fail together and if they fail, X3 fails two times
more than X2. The loss is larger when X2 and X3 fail together. This is
revealed by the results of the simulation where û2 + û3 > û1 and û3 ≈ 2 û2.

5.3.2. Gaussian vectors. We conclude this paragraph on vectorial depen-
dence with an example of a Gaussian vector in dimension 2 and an example
of a Gaussian vector in dimension 3. First, we consider the Gaussian vector
with covariance matrix

Σ =

(
1 0.8
0.8 1

)

and expectation m = (0.3, 0.3). As above, we have performed 50 simulations
of length N = 1000, of the Gaussian vector X.
The table below gives for each of the two coordinates, the mean of the esti-
mation (û1, û2) of the minimum (u1, u2) and the standard error.

first coord. second coord.
mean 0.999 1.001

standard error 0.034 0.034

It seems that the result is the same as in the non correlated case but with
a smaller standard deviation.
We have also performed the simulations for a Gaussian vector with expec-
tation m = (0.3, 0.8) and the covariance matrix Σ. The table below gives
for each of the two coordinates, the mean of the estimation (û1, û2) of the
minimum (u1, u2) and the standard error.

first coord. second coord.
mean 1.21 0.79

standard error 0.0.34 0.034

As in the above example where the marginal laws where the same, it seems
that the result is the same as in the non correlated case but with a smaller
standard error.
We have also performed simulations for a Gaussian vector in R

3 with co-
variance matrix

Σ =




1 0 0
0 1 0.9
0 0.9 1




and expectation m = (0.3, 0.3, 0.3). As above, we have performed 50 simu-
lations of length N = 1000, of the Gaussian vector X.
The table below gives for each of the three coordinates, the mean of the
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estimation (û1, û2, û3) of the minimum (u1, u2, u3) and the standard error.

first coord. second coord. third coord.
mean 0.785 0.604 0.612

standard error 0.045 0.03 0.028

5.4. An example with temporal dependency. We end this simulation
section with an example with temporal dependency. The first to coordinates
are independent AR(1) processes with same law (Xi = 0.4Xi−1 + εi with
(εi)i∈N a Gaussian white noise (N (0, 1)). Then the third coordinate is two
times the second one. We consider that we observe 500 independent periods
of length n = 5.
The table below gives for each of the three coordinates, the mean of the
estimation (û1, û2, û3) of the minimum (u1, u2, u3) and the standard error.

first coord. second coord. third coord.
mean 0.85 0.39 0.76

standard error 0.035 0.012 0.025

Some more work has to be done for realistic models, including temporal
dependencies, as well from a theoretical and simulation point of view, in
order to propose a useful tool for risk managers. This will be the aim of a
forthcoming paper.
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SOME MULTIVARIATE RISK INDICATORS 19
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