N

N

Comparing Approaches to Implement Feature Model
Composition
Mathieu Acher, Philippe Collet, Philippe Lahire, Robert B. France

» To cite this version:

Mathieu Acher, Philippe Collet, Philippe Lahire, Robert B. France. Comparing Approaches to Im-
plement Feature Model Composition. Sixth European Conference on Modelling Foundations and
Applications, Jun 2010, Paris, France. pp.16. hal-00484232

HAL Id: hal-00484232
https://hal.science/hal-00484232
Submitted on 18 May 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00484232
https://hal.archives-ouvertes.fr

Comparing Approaches to
Implement Feature Model Composition

Mathieu Acher!, Philippe Collet!, Philippe Lahire!, and Robert France?

! University of Nice Sophia Antipolis, France,
I3S Laboratory (CNRS UMR 6070)
{acher,collet,lahire}@i3s.unice.fr
2 Computer Science Department,
Colorado State University, USA
france@cs.colostate.edu

Abstract. The use of Feature Models (FMs) to define the valid combi-
nations of features in Software Product Lines (SPL) is becoming com-
monplace. To enhance the scalability of FMs, support for composing
FMs describing different SPL aspects is needed. Some composition op-
erators, with interesting property preservation capabilities, have already
been defined but a comprehensive and efficient implementation is still
to be proposed. In this paper, we systematically compare strengths and
weaknesses of different implementation approaches. The study provides
some evidence that using generic model composition frameworks are not
helping much in the realization, whereas a specific solution is finally nec-
essary and clearly stands out by its qualities.

1 Introduction

The concept of Software Product Line (SPL) [1] is based upon an appealing idea:
instead of considering applications individually, the co-development of a family
of related programs is planned from the beginning. The family’s common features
are collected in reusable assets that can be later adapted to derive and fit the
requirements of an individual product. In domain and application engineering,
feature models [2|3,/4] are widely used to describe a family (e.g., an SPL) in
terms of common and variable features. A feature model represents a set of valid
combination of features, each one corresponding to an actual product of a family.

Current feature modeling techniques often do not scale up to SPLs with a
large number of features and a high degree of variability [5/6]. In these situations,
the techniques produce large feature models that are too complex to be easily
understood by engineers or analyzed by reasoning tools. Applying separation
of concerns principles and providing support for modularising and composing
feature models can improve scalability. Yet a study of the literature about SPL
engineering demonstrates that providing automated support for composing fea-
ture models still remains an open challenge [7[8l/5,)9,/10]. In previous work [11], we
designed a set of composition operators for feature models and defined semantic
properties that must be preserved during composition.

There are several ways to implement the composition operators. On the one
hand, previous work in the feature modeling community can be revisited to im-
plement the composition operators. On the other hand, Model-Based Engineer-
ing (MBE) and Aspect-Oriented Modeling (AOM) communities have developed



a set of model composition techniques and tools. Therefore, there is an interest
in determining how these techniques perform with feature model composition
and which techniques are the most suitable. The intended audience of this paper
are 1) SPL researchers working on feature modeling techniques or developers of
feature modeling tools ; ii) researchers involved in the AOM community or more
generally dealing with model transformation.

The remainder of this paper is organized as follows. In Section [2] we give an
overview of feature models, motivate the need to support a set of composition
operators and present their semantic properties. We then discuss the properties
we expect in a good implementation of the composition operators (Section
so that we can set up an experimental comparison to systematically evaluate
and compare the considered implementation techniques (Section . Results are
reported and interpreted while most suitable approaches are determined and
discussed (Section [f]).

2 Background and Motivation

2.1 Feature Models

A Feature Model (FM) is a representation of a family, e.g., a family of medical
images, in terms of features [4}3]. Let us consider F'M,p3 depicted in the right
part of Figure [If A medical image has two mandatory features, Modality and
Format, which implies that each valid configuration of a medical image should
include these two features. There are two alternatives for Modality acquisition:
SPEC and PET features form an Xor-group (i.e., at least and at most one feature
must be selected). An optional feature is Anonymized, which states whether all
patients metadata of the medical image are included or not. Finally, a medical
image Header supports either the format DICOM or Nifti or both of them:
DICOM and Nifti form an Or-group. A FM thus describes the set of valid feature
combinations. Every member of a family is represented by a unique combination
of features. In the remainder of the paper, a combination of selected features
s called a configuration of a FM and is represented as a set of features. In
FigureEI7 a valid configuration of F'M.p3 is {Medicallmage, Modality, SPEC, Format,
Anonymized, Header, DICOM}.

2.2 Composition Operators

In realistic SPL development, large and monolithic FMs must be built, evolved
and analyzed. These tasks are cumbersome, error-prone and costly owing to
the large amount of features to be considered by (different) stakeholders [5]. To
manage complexity, FMs can be separated and composed, with then the crucial
need to ensure that relevant properties are preserved during composition. In
prior work |11], we promote the use of multiple FMs, each one focusing on a
well-identified concern and we define a set of composition operators for FMs.
Two main composition operators, insert and merge, were proposed. For each
operator, the semantics is given in terms of the expressed configurations and
implementation feasibility is demonstrated. Here, we focus on the merge operator
and detail the preserved properties when two FMs are merged.
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Fig. 1: Chaining Merge of Feature Models

Merge Operator Semantics. When two FMs share several features and are
different viewpoints of a concern, the goal of the merge operator is to merge the
overlapping parts of the two FMs to obtain an integrated model of the system.
Two modes are defined for the merge operator. The intersection mode is the
most restrictive option: the merged FM, F'M,y, expresses the common valid
configurations of F'M, and F'Mc,o. The union mode is the most conservative
option: the merged FM, can express either valid configuration of first input FM
or second input FM. The variability information associated to features in the
merged FM is different according to the merge mode and the properties that one
want to preserve. The properties of the merged FM is formalized with respect to
the sets of configurations of input FMs. Let f be a FM and [f] denotes its set
of configurations. The relationship between a merged FM Result in intersection
mode and two input FMs Base and Aspect can be expressed as follows:

[Base] ﬂ[[Aspectﬂ = [Result] (My)

The merge operator in the intersection mode is noted: Base®n Aspect = Result.
In the intersection mode, a valid configuration of the merged FM, Result, is
valid in Base and in Aspect at the same time. In Figure[l] the DICOM feature is
always part of any valid configuration of F'M,,» whereas the Nifti feature cannot
be part of any valid configuration of F'M.po. As a result, DICOM feature is a
mandatory feature of the merged FM F'M,,/» while the Nifti feature is not part
of the merged FM F M,y 2. The reader can check that the following relations
hold: [FMep1 ] N[EMep2] = [FMep2] and [FMepo] [FMeps] = [FMeps]-

In the union mode, we want to obtain a merged FM that represents the set
of configurations of Base and Aspect. The union of two FMs, Base and Aspect,
is a new FM where each configuration that is valid either in Base or Aspect, is

also valid: [Base] U[[Aspectﬂ C [Result] (M2)



A more restrictive property in union mode, called strict union, is defined as

follows: [Base] U[[Aspectﬂ = [Result] (M3)

2.3 Motivating Scenario

In the grid-based medical imaging community, scientists compose a wide vari-
ety of parameterized image services to create processing pipelines, and the lack
of variability management mechanisms causes major issues in provisioning and
composing such services [12][13].

We illustrate here how the merge operator can be used. Figure [1| shows three
services F'Service;, F'Services and F Services connected in sequence. The con-
nection between services implies that some of their entities are dependent in
some way. For instance, we consider that the functional interfaces of F'Service;
which is connected to F'Service; 1 has to be compatible for ¢ € 1...n. In particu-
lar, the medical image associated to F'Service; must be compatible with the one
of FService;y1. This implies to check that i) F M,y and FM,,. are consistent
and also that ) F M.y, and FM.ps are consistent. It is necessary to check if,
e.g., the set of configurations of F'M,p,; is equal or included in the set of config-
urations of F'M,ps (and vice versa). In this case, the use of the merge operator
occurs: The technique is to compute the merge in intersection mode of two FMs.
If the merged FM should not represent an empty set of configurations, then there
should be at least one configuration that is valid in the former and latter FM.
The consistency checking can thus be achieved: In the example, such an FM
exists when merging F'M,,1 and FM.,s (see FM.y2) and also when merging
FM.,e and FM,p3 (see FM,.,y3). Nevertheless, there is no solution when merg-
ing F'Mcpo and FMc,3. It implies that F'Service;, F'Services and FServices
are not compatible.

2.4 Related Work

In the literature, several papers suggest the design and implementation of a
merge operator, as in [7], in which separate FMs are used to model decisions
taken by different stakeholders and the need to compose and merge FMs is
identified. In [8], Hartmann and Trew dealt with multiple product lines and
identified several compositional issues, especially the significance of the merg-
ing activity. Recently, Hartmann et al. propose a Supplier Independent Feature
Model (SIFM) which contains the “super-set of the features from all the FMs
of suppliers” |14], corresponding to property in union mode. The creation
of the SIFM relies on the work described in [10] and further considered in Sec-
tion Reiser and Weber propose to use multi-level feature trees consisting
of a tree of FMs in which the parent model serves as a reference FM for its
children [5]. Their purpose is mostly to cope with large diagrams and large-scale
organizations, rather than different concerns. They thus do not provide operators
to merge FMs. A few approaches use multiple FMs during the SPL development
(e.g., see |15]). Such contributions do not consider FMs that are sharing some



features, whereas this can happen when FMs interact, when multiple perspec-
tives or views on a FM needs to be managed or when SPLs are composed with
SPLs.

In [16], an algorithm is designed to automatically determine the kind of re-
lations between two FMs in terms of sets of configuration. In [17], the case of
synchronizing existing configurations of a FM that have evolved over time (e.g.,
some features are added) is considered and can be seen as a merge. However the
properties preserved by the synchronization are not formalized and the authors
consider FMs with attributes and cardinality. The composition operators pre-
viously defined are restricted to basic [18] FMs and do not consider such FM
formalism.

Other relevant works [31|19}/11,(9/10,(18] are discussed and compared in the
rest of the paper.

3 Comparison Framework

In this section, we describe the properties we expect in a good implementation
(see Section [3.2) of the merge operators and outline how we evaluate different
implementation approaches.

3.1 An Illustrative Approach

We use the following implementation of the merge operator, inspired from |[3]
and [19], to discuss the properties considered to evaluate approaches. The overall
idea is that intersection or (strict) union can be realized by maintaining separate
input FMs and inter-relating them with constraints. In intersection mode, the
merged FM consists of a root feature R which joins Base and Aspect FMs, the
roots of Base and Aspect being child mandatory features of R. Then, features
are renamed so that they are disjoint in Aspect and Base (e.g., priming them
in Aspect). Finally, constraints are added: P requires P’ and P’ requires P for
each feature P (P’ is the renaming of P in Aspect).

[B] [ B ] [ B ]
(a) Base (b) Aspect (c) (d) Separate
FExpected

Fig. 2: Merging FMs in intersection mode

The merge in intersection mode between Base FM of Figure [2a] and Aspect
FM of Figure [2b] computes the Separate FM shown in Figure [2d] The resulting
FM respects the property given in Section assuming that the primed
features A’, B’, C' and the root feature R are removed in each set of features



belonging to [Separate]. Based on this assumption, Separate FM represents
exactly the set of configurations of Expected FM (see Figure . It is straight-
forward to check the following equality:

{u € [Separate] | u\ {A",B',C’,R}} = {{A, B}} = [Base] ﬂ[[Aspecﬂ] = [Expected]

3.2 Properties of a Good Implementation

Quality of the Result. A good implementation of the merge operators should
possess Semantics Properties defined in Section [2.2] This is truly the case in our
illustration, even if additional effort is required to remove primed features from
the set of configurations of the resulting FM. Although the semantics proper-
ties are correctly preserved in the resulting FM, the implementation is deficient
from several perspectives. In [3}|19], the authors precisely recognize that “the
resulting FM should probably be simplified for readability.” As this readability
criterion is too general, we define specific factors that affect success in reading
and understanding FMs: Hierarchy Respect, Number of Features and FM Errors.

Hierarchy Respect requires that the resulting FM preserves the hierarchy used
in the input models. The essence of FMs have often been defined as feature
hierarchy and variability [20]. The hierarchy indeed helps to organize features
with increasing detail [20] and loosing the initial hierarchy of input FMs affects
the understandability of the model and complicates selections and deselections
of features. In Figure the resulting FM clearly illustrates these issues, with a
root feature different from the root features of Base and Aspect, a new sub-tree
and some additional constraints making it confusing.

An interesting property of the merge operator is its ability to reduce the set of
features to be considered (i.e., merging two features with the same name into one
feature). For example, F'M,,o has only 8 features while input FMs F M., and
FM.p,s have 9 features each in Figure[l| In the illustrative approach, there is no
such benefit: The entire set of features of input FMs is included in the resulting
FM (see Figure . This becomes worse when merge calls are chained (e.g.,
when FMcp1, FMcyo and F My are merged, see Figure [If) since the number
of features increases and large FMs are produced. We draw the conclusion that
a good implementation of the merge operators should produce a composed FM
that contains the minimum Number of Features needed to express the desired set
of configurations.

With some final observations on Figure 2d] one can note that features C and
C' are not included in any configuration. Trinidad et al. identify dead features and
full-mandatory features as FM errors |21]. A dead feature is a non-instantiable
feature, i.e., a feature that despite being defined in a FM, it appears in no product
in the SPL. C and C' are dead features. A child feature in a non-mandatory
relationship is a full-mandatory feature if it has to be instantiated whenever
its parent feature is, i.e., it is neither an optional nor an alternative feature.
C is a full-mandatory feature since it belongs to an Xor-group but appears in
every configuration. The presence of dead or full-mandatory features introduces
incorrect relationships between features and should be avoided [21].

Error Handling. In intersection mode, if the condition [Base] ([Aspect] = 0
holds, the FM Result then defines no configuration at all and is considered as



an unsatisfiable or void FM [22,21]. When two input FMs cannot be merged
(see FMpo and F M,y s, in Figure , we consider that there is an error to be
detected by the merge operator. Error Detection can be done during the merge
computation or a priori. In the illustrative approach, there is no a priori: detec-
tion. The only way to detect an error is to determine whether the resulting FM
of Figure 2d] is void or not.

If an error is detected, providing the causes why the two input FMs cannot
be merged can assist users to diagnose and repair variability contradictions.
The source of error can be a feature or a variability information associated
to a feature. For instance, the observation that the (mandatory) feature PET
of FMep3 is not included in F M, can be a conceivable Explanation. In our
example, locating the source of errors during the computation of the resulting
FM is not possible. Automated error-analysis techniques presented in [4121}/23|
can be applied once the FM of Figure 2d] is computed but the primed features
may disturb the understandability of the diagnosis.

Assumption on Input FMs. The interest here is to determine the degrees of
difficulties arising from the handling of several kinds of input FMs (FMs with
Constraints, Different Sets of features or Hierarchy mismatch) by an implementa-
tion of the merge operator.

Basic FMs support Constraints between features such as implies or excludes.
Constraints crosscut the hierarchy of features (the feature tree) and can be ar-
bitrary propositional formulas [4]. In previous work [11], we intentionally do not
consider constraints. Nevertheless handling constraints in FMs can be useful.
The presence of constraints alters the set of valid combinations of features but
does not change the semantics of the merge operator that still remains to pre-
serve properties (see Section in terms of sets of configurations represented
by input FMs.

Given the open nature of software architecture or domains, the assumption
that FMs to be merged have the same granularity may no longer be valid. The
merge operator should be able to deal with input FMs defined on Different Sets
of features. Input FMs can also have different hierarchies, e.g., the depth of a
feature B in the Base FM can be equal to 2 whereas the depth of a feature
B in the Aspect FM can be equal to 4. Supporting Hierarchy mismatch between
input FMs is an interesting quality of a merge operator implementation. As
for our illustrative approach, it supports hierarchy mismatch, since there is no
assumption made about the hierarchy of input FMs, as well as different set of
features or constraints.

Aspects of the Implementation. Finally, additional properties are defined
to evaluate some qualities of the implementation. The Ease of Implementation
attempts to capture how much effort is required to implement the approach,
looking at how built-in mechanisms of considered tools help in the implementa-
tion. In the illustration, the implementation is trivial. The Testing Effort property
concerns evidences of the respect of the semantics properties, e.g., tests or proof
that the implementation is sound, or additional effort to get more confidence in
the implementation. Finally, there is need to evaluate the Computational Com-



plexity since the number of calls to the merge operator can be dramatically
important (e.g., when a large number n of services are connected in the moti-
vating scenario). In the illustrative approach, the computation of the result FM
is solved in linear time [3].

3.3 Comparison Set Up

In order to compare the other approaches according to the defined properties,
we set up a comparison protocol described in Figure

Constraints
Hierarchy Mismatch
Number of Features

@ Input FMs Generation

Performance

Ease of Implementation FMs that cannot be merged
Testing Effort j%\[ ﬁ% QQD

Error Detection

Explanation

Approach; @ R4

base aspect
Approach, R,

Oracle @

_ >
implements computes R;

Hierarchy
Number of Features

Approach; .
erge
Operator

.
.
,~° assessment FM errors
.
Approach, R, ﬁ@ Vg

Fig. 3: Comparison Protocol

The first step is to generate two FMs, aspect and base. Then merge operator
provided by a given approach (see @) is used to compute the merged FM (R
corresponds to the merged FM computed by Approach;, Ro corresponds to the
merged FM computed by Approachs, etc.). The generation process of FMs is
manually or randomly performed @. The way FMs are generated depends on the
assumptions made on input FMs by an approach. For example, if an approach
is known to mot support hierarchical mismatch of input FMs, then only input
FMs with the same hierarchy are generated. The generation process controls the
number of features of input FMs and may propose input FMs that cannot be
merged to evaluate the ability of the approach to detect errors. Pre-conditions of
the merge operator can be tuned to determine how approaches deal with several
kinds of input FMs. In addition, once the merge operator has computed a FM,
an oracle (see ®) states whether the result is correct, i.e., in terms of sets of
configuration, hierarchy respect, FM errors, etc. For most of the properties, the
oracle can be automated and post-conditions of the merge operator be evaluated.
The algorithm presented in [16] allows us to reason on the relationship between
input FMs and the output FM in terms of sets of configurations. We make use
of the tree edit distance metric [24], a common similarity measure for rooted
ordered trees, to evaluate the hierarchy respect of the output FMs.

4 Systematic Comparison

Sets of configurations



Our selection of approaches for establishing the comparison covers a large spec-
trum of paradigm and technology. We do not claim to cover all possible solutions
but we choose, for each paradigm, at least one possible technique, i.e., AGG
and Kermeta for model transformation, Kompose for model composition and an
FM-specific solution. For each candidate approach, we report our experience and
experimental results considering the set of criteria and the comparison protocol
previously described.

4.1 Catalogue Rules

We first consider the work of Segura et al. [10] who propose a catalogue of visual
rules to merge FMs using AGG technology [25].

In AGG, a transformation rule is composed mainly of a source graph or Left-
Hand Side (LHS) and a target graph or Right-Hand Side (RHS). For each merge
rule of the catalogue, LHS consists of two input FM patterns (pre-conditions)
and an output FM pattern representing the merging result (post-conditions).
In Figure [a] two rule samples are given. LHS patterns are searched iteratively
into the FMs to be merged. Let us show how the catalogue rules apply for the
merge in union mode with Base the FM of Figure [Ab] and Aspect the FM of
Figure The expected merged FM is Base FM. The reader can check that
the property defined in Section holds. Rule 1 applies for Anonymized
features such that Anonymized is optional in the merged FM. Rule 2 applies for
Header features such that the Header feature is optional in the merged FM.

LHS RHS
[A] [A]
Rule; —> &
8] | | (&) [B]
[Format]
[A] [A]
Rule; —’
Q Q Q
[B] [B] [B] [Anonymized| [Header] [Anonymized]| [Header]
(a) Rules (b) Base FM (c) Aspect FM

Fig.4: Rules to merge in union mode

The implementation turned out to be time-consuming and error-prone. The
catalogue rules should be modified and maintained according to properties ex-
pected in union or intersection mode. The number of rules to specify in the
union mode is around 30. Validating the catalogue of rules such that the seman-
tics properties are preserved for any input FMs is still missing. A brute force
testing strategy, which consists in generating randomized input FMs and then
ensuring each output FM as correct, is not sufficient to cover all cases. Inter-
estingly, AGG implements the mechanism of critical pair analysis which can be
used to check consistency of catalogue rules. However, there is no proof about
the completeness of the rules. Studying theorem provers and model checkers, as
done in [26] for refactoring rules (the starting point of [10]), is still to be done
and requires intensive research.

The semantics properties currently implemented are limited to the merge in union



mode (see property in Section . The intersection mode remains par-
ticularly challenging to be implemented. Considering the merge in intersection
mode of Base (see Figure and Aspect (see Figure7 it is hard to specify, in
the general case, a rule and an associated pattern that deduce the removal of the
feature B. Indeed, the expressiveness of AGG is limited to non recursive-patterns
(thus prohibiting traversal of multi-level parent-child relationships) and does not
support multi-objects. Handling constraints largely disturbs the strategy based
on graph patterns since the presence of constraints may lead to the removal of
a feature which may be located elsewhere in the FM.

The elements not mentioned in any of the patterns remain unchanged by
default [10]. Then, considering the number of features in the merged FM, there
is a risk to unnecessarily adding features and FM errors. Moreover, additional
rules are needed to deal with different sets of features of input FMs. As the
approach is based on graphs, the hierarchy of the resulting FM is well restored
assuming that “The parental relationship between features is equal in all the
FMs. That is, a feature must have the same parent feature in all the models
in which it appears.” [10]. It seems hardly conceivable to deal with hierarchy
mismatch. Finally, the approach can detect that two input FMs cannot be merged
in intersection mode during the iterative application of rules but not a priori.
Interestingly, negative application conditions (NAC) can provide explanations
and precisely locate the source of errors.

(¢) Expected

(d) Bases (e) Aspecta (f) Eaz-
pecteds

Fig.5: Non-trivial example of merging FMs in intersection mode

4.2 Compositional Approach

The second approach considers the use of Kompose [27,[28] which implements
a generic structural composition operator that can be specialized to a particu-
lar modeling language. We implement the merging rules and strategy proposed
in [11] using as much as possible the composition facilities of Kompose.

In Kompose, the composition mechanism is structured in two major phases:
(1) The Matching phase identifies model elements that describe the same con-
cepts in the input models to be composed; (2) The Merging phase where
matched elements are merged to create new elements in the resulting model.



Each element type has a signature that determines the uniqueness of ele-
ments, i.e, two elements with equivalent signatures are merged. A signature is
a set of syntactic properties associated with an element type. To achieve our
goal we first define the signature of type Feature as the name of the feature.
The hardest issue is to specify the various types Operator (i.e., Xor-, Or-, And-)
associated to features. Such operators are likely to be in conflict : two features
having the same name may be associated to different operators. The decision to
merge them or not and the nature of the resulting operator depends on the in-
tended semantics properties (e.g., as defined in |11] the merging of an Or-group
with an Or-Group gives an Or-Group in union mode).

In Figure |5 the merge operator in intersection mode is applied on Base
(Figure and Aspect (Figure [5b). Result (Figure is the expected FM
according to the semantics of the merge operator defined in Section The
merge operator provided by Kompose has a behaviour which interferes with
it. It is obvious that feature A of Base and A of Aspect must be merged and
produces feature A of Result (this is exactly what Kompose does automatically).
But Kompose applies recursively the same strategy to feature B and this is
not what is expected according to Result. This shows that a compositional
approach only structured in two-stages (matching and merging) is too restrictive
for implementing an FM-specific merge operator. In particular, the recursive
detection of matching elements is not sufficient since we need a more global
vision to decide whether elements should be merged or not. To address this issue
we could use the post-directives mechanism provided by Kompose. This would
allow automatically removing feature B but this solution is practically hard to
implement since it is specific to each composition.

As Kompose implies local reasoning, handling constraints is not conceivable
as well (see the removal of feature F in Figure . Moreover due to its recursive
merging strategy, Kompose does not handle hierarchy mismatch. Consequently
input FMs must be already aligned. Finally, the current approach cannot de-
termine a priori when two FMs cannot be merged. Thanks to the case-based
reasoning during the matching process, source of errors can be located and ac-
curate explanations can be provided.

4.3 Transformational Approach

Due to the limits previously observed with AGG or Kompose, we decide to
leverage the expressiveness of the model manipulation language used to imple-
ment the merge operator. We rely on Kermeta [29] an executable, imperative
and object-oriented (meta-)modeling language which is designed to define both
structures and behaviors of EMOF and Ecore (meta-)models.

We apply the same strategy as with Kompose but without strictly following
the compositional approach which consists in match and merging phases. We
gain some benefits, notably a better coverage of semantics properties. Now that
global and more complex reasoning is possible, some features are not necessary
added and less FM errors are generated.

Although the implementation is not obliged to apply a recursive reasoning
and to strictly follow the hierarchy during traversal of input FMs, there is still



an issue when dealing with different hierarchies. Finally, difficulties arise in con-
structing a merged FM that preserves properties with the presence of constraints.

4.4 Boolean Logic Based Composition

Enumerating all valid configurations of an FM is usually infeasible. Fortunately,
the set of configurations represented by a FM can be compactly described by a
propositional formula defined over a set of Boolean variables, where each vari-
able corresponds to a feature. The intersection of two sets of configurations
represented by two FMs, Base, and Aspect, is computed as follows. First, Base
(resp. Aspect) FMs are encoded into a propositional formula @pgse (resp. @aspect)
as defined in [4]. Then, the following formula is computed:

(bResult = (¢base A nOt(]:aspect \fbase)) A ((baspect A nOt(]:base \ faspect))

with Fpase (resp. Faspect) the set of features of Base (resp. Aspect) FM.
Faspect \ Foase denotes the complement (or difference) of Fyspect with respect to
Fbase. If we consider Base FM of Figure [fa] and Aspect FM of Figure [5b] then
faspect \]:base = {G) H, I}

not is a function that, given a non-empty set of features, returns the Boolean
conjunction of all negated variables corresponding to features:

not({ fi, fa, .., fn}) = /\ —fi

i=1l..n

Computing the strict union of two sets of configurations represented by two FMs,
Base, and Aspect, follows the same principles and we obtain:

(bResult = (¢base A nOt(faspect \fbase>) \ (¢aspect A nOt(fbase \ faspect))

Interestingly, ¢ gesui+ can be simplified. If @resuir A f is unsatisfiable, the fea-
ture F is dead and can be removed. Similarly, the feature F can be identified as
a full mandatory feature if ¢resuir A —f is unsatisfiable. Moreover, the current
approach can detect a priori that two FMs cannot be merged in intersection
mode: In this case, @resyir 1S unsatisfiable. Such operations on ¢resyi: can be
realized using SAT solvers or BDD representation. The semantics properties are
by construction respected. The technique does not introduce FM errors or does
not increase unnecessarily the number of features. Constraints in FMs can be ex-
pressed using the full expressiveness of Boolean logic and different sets of features
can be manipulated. At the moment, ¢ pes.: is solely a compact representation
of the sets of configurations of the expected FM. The hierarchy of the FM and the
structuring information (e.g., parent-child relations between features) are still to
be constructed. Czarnecki et al. propose an algorithm to construct a FM from
Boolean formula [18|. More precisely, the algorithm constructs a tree with addi-
tional nodes for feature groups that can be translated into a basic FM. We first
experiment their work on a set of input FMs sharing a same set of features and a
same hierarchy. The simplifications of the formula ¢ ges,i+ described above have
been applied and then fed to the algorithm. Importantly, the algorithm indicates
all parent-child relationships (mandatory features) and all possible optional sub-
features such that the hierarchy of the merged FM corresponds to hierarchies of



input FMs. And-group, Or-group and Xor-group can be efficiently restored in
the resulting FM when it was necessary.

The limitations come when different hierarchies of input FMs or different sets
of features are proposed to the merge operator. Although the resulting FM is
correct in terms of sets of configuration, determining the most suitable hierarchy
for the resulting FM requires the intervention of the user since it can be the
hierarchy of the Base FM, the hierarchy of the Aspect FM, or a combination
of the two hierarchies. It comes even more challenging when several features are
to be removed in intersection mode. As a result, there is need to impose a given
FM hierarchy to the resulting FM and the current technique should be adapted.

5 Results and Concluding Remarks

5.1 Results
Separate App.|Catalog Rules|Composition|Transform.|Boolean Logic

Related Work 13119 |10}j9] |11] |11] (18]
Technology - AGG Kompose | Kermeta | SAT/BDD
Quality of the Result
Semantics Properties + = = + T+
Hierarchy Respect - ++ 4t I +
Number of Features —— - - - T+
FM errors - - - = 44
Aspects of the Implementation
Fase of Implementation 4+ —— — = +
Computational Complexity ++ - - - +
Testing Effort 4t _ _ _ T+
Assumption on Input FMs
Different Sets 44 + + + Tt
Hierarchy mismatch + - —— - T+
Constraints ++ - _ — T+
Error Handling
Error Detection + + + + ++
Explanation - + + + _

Fig. 6: Comparison of approaches

Figure @ summarizes our results. ++ is the highest score (i.e., the criteria is
fully fulfilled by the approach) whereas —— is the lowest score (i.e., a non accept-
able solution). We can observe that only FM-specific solutions fully implement
semantics properties. Current MBE or AOM solutions have issues related to the
intersection or the strict union modes, especially when constraints are present.
Strategies to avoid the adding of unnecessary features in the merged FM were
difficult to implement. The confidence in modeling solutions appears to be too
low (e.g., there is no proof that the set of rules in AGG is comprehensive such
that semantics properties are preserved in all cases) and intensive testing effort
is required. This is not the case with FM-specific solution which preserves, by
construction, the sets of configurations.



Open Issues. Scalability. The manageable size (i.e., number of features) of input
FMs is still to be determined. Using Boolean logic, preliminary experiments
indicate that on typical propositional formula the algorithm presented in [18|
scales up to 300 variables, e.g., the number of features commonly shared by
input FMs should not exceed 300 features. Other approaches have scalability
issues (100 features in each input FMs is the limit).

Explanation. When two inputs FMs cannot be merged, ¢ geswi¢ i unsatisfiable
and no FM can be synthesized from @pgesqz- It is only possible to reason at
the Boolean logic level (e.g., by computing a small unsatisfiable subset of the
formula’s clauses) and thus hard to provide the source of errors at the FM
level. Rule-based approaches (AGG, Kompose) have better results. They provide
precise explanations (e.g., NAC in AGG) when features’ relations lead to FMs
merging failure. Nevertheless, there is no evidence that the rules are sufficient
to cover all merging failures.

Hierarchy mismatch. FM-specific solutions are more efficient to deal with dif-
ferent hierarchies of input FMs (no assumption is made about hierarchies) but
the current proposals are not fully satisfying (see Section 4.4)).

Revisiting Model-based Solutions. The study provides some evidence that
MBE or AOM solutions considered in this paper are not suitable for implement-
ing the merge of FMs. Below we give some possible reasons.

In AOM, many existing approaches to match and merge focus on structural
similarities between models and on their syntactical properties. Most of these
approaches treat models as graphical artifacts while (largely) ignoring their se-
mantics. This treatment provides generalizable tools that can be applied to many
different modeling notations. Our first intuition was to resolve every syntactical
conflict and to reason recursively on the hierarchy of FMs — a classical approach
in model composition. However, complex reasoning that takes into account the
semantics of FMs is required to compute the combination of two or more FM el-
ements into new FM elements. The experimentation of MBE techniques gives an
insight to the characterization of FMs composition. A merging strategy mainly
based on syntactical properties (as applied with AGG, Kompose and Kermeta)
is likely to fail so that we can now consider that FMs composition is not purely
structural. On the contrary, semantical transformations or semantics preserving
model composition are needed to preserve the semantics properties of model. An
open question in this area is how to achieve semantics preservation, both for-
mally and practically. For instance, recent work on behavioural models has con-
centrated on establishing semantic relationships between models (e.g., see [30]).
Merging FMs can be seen as a non-trivial case of semantics preserving model
composition. Currently, model composition techniques are not necessary dedi-
cated to support semantics preserving model composition: This is another way
to interpret the difficulties of the modeling techniques considered in this paper.
Nevertheless, the selection of approaches in the present study does not pretend
to be comprehensive regarding MBE or AOM solutions. Other solutions based
on different paradigms or technologies (e.g., QVT) are still conceivable and may
successfully implement a merge operator. For instance, graph transformation



tools with advanced transformation language constructs or supporting many-to-
one transformations [31] may help to better cover semantics properties.

5.2 Future Work

The implementation of a merge operator for FMs is an interesting challenge for
MBE and AOM techniques. Other modeling approaches and technologies can
be considered and may emerge to outperform the solutions considered in this
paper. Nevertheless, the use of Boolean logic turns out to fulfill most of the
criteria expected from a merge operator. As future work, we plan to accurately
determine for which amount of features the logic-based approach scales and to
fully support different hierarchies of input FMs. The use of CSP solvers can also
be considered in addition to SAT and BDD techniques.

A longer term perspective is to consider the implementation of diff and refac-
toring |9,/16] operations for FMs. These operators are commonly used in MBE
for various kinds of models, but the specificity and the semantics properties of
FMs should be taken into account. The efficiency of modeling techniques can
be evaluated for diff and refactoring of FMs as similarly done for the merge
operator. Another research direction is to consider other formalisms of FM in-
cluding cardinality-based FMs and feature attributes. In this case, the sole use
of Boolean logic is not sufficient to represent the semantics of FMs: MBE and
AOM techniques may provide interesting support and built-in mechanisms to
deal with such extended formalisms.
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