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Generic Morse-Smale property for the
parabolic equation on the circle

Romain JOLY and Geneviève RAUGEL

Abstract

In this paper, we show that, for scalar reaction-diffusion equations ut = uxx +
f(x, u, ux) on the circle S1, the Morse-Smale property is generic with respect to the
non-linearity f . In [13], Czaja and Rocha have proved that any connecting orbit,
which connects two hyperbolic periodic orbits, is transverse and that there does not
exist any homoclinic orbit, connecting a hyperbolic periodic orbit to itself. In [30],
we have shown that, generically with respect to the non-linearity f , all the equilibria
and periodic orbits are hyperbolic. Here we complete these results by showing that
any connecting orbit between two hyperbolic equilibria with distinct Morse indices
or between a hyperbolic equilibrium and a hyperbolic periodic orbit is automatically
transverse. We also show that, generically with respect to f , there does not exist
any connection between equilibria with the same Morse index. The above properties,
together with the existence of a compact global attractor and the Poincaré-Bendixson
property, allow us to deduce that, generically with respect to f , the non-wandering
set consists in a finite number of hyperbolic equilibria and periodic orbits . The main
tools in the proofs include the lap number property, exponential dichotomies and the
Sard-Smale theorem. The proofs also require a careful analysis of the asymptotic
behavior of solutions of the linearized equations along the connecting orbits.
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1 Introduction

In the study of the dynamics of flows or semi-flows generated by systems of ordinary
differential or partial differential equations arising in physics or biology, global stability
(also called structural stability) is a very important property. Indeed, often, one only
knows approximate values of the various coefficients in the equations; or else, in order
to numerically determine the solutions of the equations, one introduces a space and (or)
time discretized system. Therefore, one often studies a system, which is an approximation
of the original dynamical system. If the dynamics of the original system are globally
stable, then the qualitative global behaviour of the solutions remains unchanged under
small perturbations of the system and the knowledge of the dynamics of this approximate
system is sufficient in practice. Unfortunately, in general dynamical systems bifurcation
phenomena can take place and thus drastic changes in the dynamics can arise. However, one
may hope that such phenomena almost never happen in the considered class of dynamical
systems or that the systems, which are robust, are dense or generic in the considered class
(see Section 1.2 below for the definition of genericity).

In the 1960’s and 1970’s, such structural stability problems have been extensively stud-
ied in the frame of vector fields (and also iterates of diffeomorphisms) on compact smooth
manifolds Mn of finite dimension n ≥ 1. In this context (see [56]), Smale introduced the
notion of Morse-Smale dynamical systems, that is, systems for which the non-wandering
set consists only in a finite number of hyperbolic equilibria and hyperbolic periodic or-
bits and the intersections of the stable and unstable manifolds of equilibria and periodic
orbits are all transversal. Palis and Smale have shown that Morse-Smale vector fields on
compact manifolds Mn are structurally stable ([40], [42]). Moreover, the class of Morse-
Smale vector fields on a compact manifold M2 of dimension 2 is generic in the class of
all C1-vector fields ([46]). In the case of the sphere S2, the proof is a consequence of the
genericity of the Kupka-Smale property and of the Poincaré-Bendixson theorem. In the
same way, one also shows that the Morse-Smale vector fields are generic in the class of
“dissipative” vector fields on R2. In the case of a general two-dimensional manifold (espe-
cially in the non-orientable case), the proof is more delicate. The Morse-Smale property
is also generic in the class of all gradients vector fields on a Riemannian manifold Mn,
n ≥ 1. In the simple case of gradient systems (where the non-wandering set is reduced
to equilibrium points), this genericity property is an immediate consequence of the gener-
icity of the Kupka-Smale vector fields ([32, 57, 47]). On compact manifolds Mn of finite
dimension n ≥ 3, the Morse-Smale vector fields are still plentiful. There had been some
hope that Morse-Smale systems (and hence stable dynamics) could be generic in the class
of general vector fields. But unfortunately, in dimension higher than two, the Morse-Smale
vector fields are no longer dense in the set of all vector fields. In particular, transverse
homoclinic orbits connecting a hyperbolic periodic orbit to itself may exist, giving rise to
chaotic behaviour ([58]). And this cannot be removed by small perturbations.
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The above mentioned results give us a hint on what can be expected in the case of
dynamical systems generated by partial differential equations (PDE’s in short). The results
available in infinite dimensions are still rather partial. Like in the case of vector fields on
compact manifolds or on Rn, one can define Morse-Smale dynamical systems. W. Oliva
[39] (see also [20]) has proved that the Morse-Smale dynamical systems S(t), generated by
“dissipative” parabolic equations or more generally by “dissipative in finite time smoothing
equations”, are structurally stable, in the sense that the restrictions of the flows to the
compact global attractors are topologically equivalent under small perturbations. Already,
in 1982, he had proved the structural stability of Morse-Smale maps, which in turn implies
the stability of Morse-Smale gradient semi-flows generated by PDE’s. We recall that a
dynamical system S(t) on a Banach space, generated by an evolutionary PDE, is gradient
if it admits a strict Lyapunov functional, which implies that the non-wandering set reduces
to the set of equilibria.

As in the finite-dimensional case, one expected the density or genericity of the Morse-
Smale gradient semi-flows within the set of gradient semi-flows generated by a given class
of PDE’s. Already, in 1985, D. Henry [23] proved the noteworthy property that the stable
and unstable manifolds of two equilibria of the reaction-diffusion equation with separated
boundary conditions on the interval (0, 1) intersect transversally (see also [3] for another
proof in the case of hyperbolic equilibria). One of the main tools in his proof was the
decay property of the zero number (also called Sturm number or lap number; see Section
2.1), which will also be often used in this paper. Since, as shown by Zelenyak in [60],
the reaction-diffusion equation on the interval (0, 1) with separated boundary conditions is
gradient, the transversality property of Henry implies the first known result of genericity of
Morse-Smale systems in a class of PDE’s. The scalar reaction-diffusion equation, defined
on a bounded domain Ω of Rn, n ≥ 2, is no longer gradient in general. However, it is
gradient if one considers non-linearities f(x, u), depending only on x and the values of the
function u (and not of the values of its derivatives). In this class of gradient parabolic
equations, Brunovský and Poláčik [8] have shown in 1997 that the Morse-Smale property
is generic with respect to the non-linearity f(x, u). Later, the genericity of the gradient
Morse-Smale flows in the class of gradient flows generated by the damped wave equations
(with fixed damping) defined on any bounded domain has been proved by Brunovský and
Raugel in [9] (for the case of variable damping, we refer to [29]).

It must be emphasized that, whereas the proof of the structural stability follows the
lines (with some adjustments) of the proof given on compact finite-dimensional manifolds,
the proof of the genericity of Morse-Smale property requires other approaches. Indeed,
perturbing a semi-flow generated by a PDE in order to make it Morse-Smale has an interest
only if one is able to perform it within the same class of equations. In the case of general
vector fields on finite-dimensional manifolds, one can perturb the vector field in a local
manner with all the freedom one needs. In the case of PDE’s, the perturbed equations must
remain in the considered class. Therefore, the perturbations are constrained. An analogous
problem involving constrained perturbations has been studied in the finite-dimensional
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case by Robbin [51]. An additional problem arises in the case of PDE’s, namely the
perturbations could a priori really non-local. Typically, perturbing the nonlinearity changes
the semi-flow in a large part of the phase space in a way which is hard to understand.

At first glance, the non-density of the Morse-Smale vector fields on compact manifolds
of dimension n ≥ 3 gave only little hope that infinite-dimensional Morse-Smale semi-flows
are dense in some classes of non-gradient PDE’s. However, Fiedler and Mallet-Paret ([14])
showed in 1989 that the scalar reaction-diffusion equation (1.1) on S1 satisfies the Poincaré-
Bendixson property (which, as we recalled earlier, played an important role in the proof of
density of Morse-Smale vector fields in the set of all dissipative vector fields in R2). More
recently, in 2008, Czaja and Rocha ([13]) proved that, for the scalar reaction-diffusion
equation on S1, the stable and unstable manifolds of hyperbolic periodic orbits always
intersect transversally. These results gave us some hope that Morse-Smale dynamics could
be generic for scalar reaction-diffusion equations on S1 since they are generic for two-
dimensional vector fields. In 2008, we proved that the equilibria and periodic orbits are
hyperbolic, generically with respect to the non-linearity ([30]). The results of Fiedler,
Rocha and Wolfrum ([15]) together with the generic hyperbolicity property of [30] imply
that the Morse-Smale property is generic in the special class of reaction-diffusion equations
with spatially homogeneous non-linearities f(u, ux).

Here, we complete the global qualitative picture of the scalar reaction-diffusion equa-
tions (1.1) on S1 in the case of a general non-linearity f(x, u, ux) and conclude the proof
of the genericity of the Morse-Smale systems in this class. These results indicate a simi-
larity between scalar reaction-diffusion equations on S1 and two-dimensional vector fields
and take place in a more general correspondence between parabolic equations and finite-
dimensional vector fields in any space dimension, as noticed in [31]. For scalar parabolic
equations on bounded domains Ω in Rd, d ≥ 2, the properties of zero number do no longer
hold, the Poincaré-Bendixson property fails and the Morse-Smale property is no longer
generic. But, the genericity of the Kupka-Smale property still holds like in the case of
vector fields in dimension n ≥ 3, see [7].

1.1 The parabolic equation on the circle: earlier results

In this paper, we consider the following scalar reaction-diffusion equation on S1,
{

ut(x, t) = uxx(x, t) + f(x, u(x, t), ux(x, t)) , (x, t) ∈ S1 × (0,+∞) ,
u(x, 0) = u0(x) , x ∈ S1 ,

(1.1)

where f belongs to the space C2(S1 × R × R,R) and u0 is given in the Sobolev space
Hs(S1), with s ∈ (3/2, 2) (so that Hs(S1) is continuously embedded into C1+α(S1) for
α = s− 3/2).

Eq. (1.1) defines a local dynamical system Sf (t) on H
s(S1) (see [22] and [48]) by setting

Sf(t)u0 = u(t), where u(t) is the solution of (1.1) (if the dependence in f of the dynamical
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system is not important, we simply denote S(t) instead of Sf(t)).
In order to obtain a global dynamical system, we impose some additional conditions on f ,
namely we assume that there exist a function k(.) ∈ C0(R+,R+) and constants ε > 0 and
κ > 0 such that

∀R > 0, ∀ξ ∈ R , sup
(x,u)∈S1×[−R,R]

|f(x, u, ξ)| ≤ k(R)(1 + |ξ|2−ε) ,

∀|u| ≥ κ, ∀x ∈ S1 , uf(x, u, 0) ≤ 0 .
(1.2)

Then, Eq. (1.1) defines a global dynamical system Sf (t) in H
s(S1) (see [48]). Moreover,

Sf(t) admits a compact global attractor Af , that is, there exists a compact set Af in
Hs(S1) which is invariant (i.e. Sf (t)Af = Af , for any t ≥ 0) and attracts every bounded
set of Hs(S1).

The most interesting part of the dynamics of (1.1) is contained in the attractor Af .
Our purpose is to describe these dynamics, at least for a dense set of nonlinearities f . We
introduce the set G = C2(S1 ×R×R,R) endowed with the Whitney topology, that is, the
topology generated by the neighbourhoods

{g ∈ G / |Dif(x, u, v)−Dig(x, u, v)| ≤ δ(u, v), ∀i ∈ {0, 1, 2}, ∀(x, u, v) ∈ S1×R
2} , (1.3)

where f is any function in G and δ is any positive continuous function (see [17]). It is well
known that G is a Baire space, which means that any countable intersection of open and
dense sets is dense in G (see [17] for instance). We say that a set is generic if it countains a
countable intersection of open and dense sets and we say that the parabolic equations on the
circle (1.1) satisfy a property generically (with respect to the non-linearity) if this property
holds for any f in a generic subset of G. The notion of genericity is a common notion for
defining “large” subsets of Baire spaces, replacing the notion of “almost everywhere” of
R
d.

Before describing the properties of (1.1), we recall a few basic notions in dynamical
systems, for the reader convenience. For any u0 ∈ H1(S1), the ω and α-limit sets of u0 are
defined respectively by

ω(u0) ={v ∈ H1(S1) | there exists a sequence tn ∈ R
+, such that

tn →
n→+∞

+∞ and S(tn)u0 →
n→+∞

v}

α(u0) ={v ∈ H1(S1) | there exist a negative orbit u(t), t ≤ 0, with u(0) = u0,

and a sequence tn ∈ R
+, such that tn →

n→+∞
+∞ and u(−tn) →

n→+∞
v}

The non-wandering set is the set of points u0 ∈ H1(S1) such that for any neighbourhood
N of u0, S(t)N ∩N 6= ∅ for arbitrary large times t. In particular, equilibria and periodic
orbits belongs to the non-wandering set.
A critical element means either an equilibrium point or a periodic solution of (1.1).
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Let e ∈ Hs(S1) be an equilibrium point of (1.1). As usual, one introduces the linearized
operator Le around the equilibrium e (see Section 2, for the precise definition and the
spectral properties of Le).
We say that e is a hyperbolic equilibrium point if the intersection of the spectrum σ(Le)
of Le with the imaginary axis is empty. The Morse index i(e) is the (finite) number of
eigenvalues of Le with positive real part (counted with their multiplicities).
If e is a hyperbolic equilibrium point of (1.1), there exists a neighbourhood Ue of e such
that the local stable and unstable sets

W s
loc(e) ≡W s(e, Ue) ={u0 ∈ Hs(S1) |Sf(t)u0 ∈ Ue , ∀t ≥ 0}

W u
loc(e) ≡W u(e, Ue) ={u0 ∈ Hs(S1) |Sf(t)u0 is well-defined for t ≤ 0 and

Sf(t)u0 ∈ Ue , ∀t ≤ 0} .

are (embedded) C1-submanifolds of Hs(S1) of codimension i(e) and dimension i(e) respec-
tively.
We also define the global stable and unstable sets

W s(e) = {u0 ∈ Hs(S1) |Sf(t)u0 →
t→+∞

e} ,

W u(e) = {u0 ∈ Hs(S1) |Sf(t)u0 is well-defined for t ≤ 0 and Sf (t)u0 →
t→−∞

e} .

Since the parabolic equation (1.1), as well as the corresponding adjoint equation, satisfy
the backward uniqueness property (see [6]), Theorem 6.1.9 of [22] implies that W s(e) and
W u(e) are injectively immersed C1-manifolds in Hs(S1) of codimension i(e) and dimension
i(e) respectively (see also [10] and [18]). We remark that W u(e) = ∪t≥0Sf(t)W

u(e, Ue) is
the union of C1 embedded submanifolds of Hs(S1) of dimension i(e) (see [13]).

Let next Γ = {γ(x, t)|t ∈ [0, p]} be a periodic orbit of (1.1) of minimal period p.
The linearized equation around Γ defines an evolution operator Π(t, 0) : ϕ0 ∈ Hs(S1) →
Π(t, 0)ϕ0 = ϕ(t) ∈ Hs(S1), where ϕ(t) is the solution of the linearized equation. The
operator Π(p, 0) is called the period map (see Section 2 for the precise definition of Π(p, 0)
and its spectral properties) .
The periodic orbit Γ or the periodic solution γ(t) is hyperbolic if the intersection of the
spectrum σ(Π(p, 0)) with the unit circle in C is reduced to 1 and 1 is a simple (isolated)
eigenvalue. The Morse index i(Γ) is the (finite) number of eigenvalues of Π(p, 0) of modulus
strictly larger than 1 (counted with their multiplicities).
By [49, Theorem 14.2 and Remark 14.3]) or [21] (see also [18]), if γ(t) is a hyperbolic
periodic orbit, there exists a small neighbourhood UΓ of Γ in Hs(S1) such that

W s
loc(Γ) ≡W s(Γ, UΓ) = {u0 ∈ Hs(S1) |Sf(t)u0 ∈ UΓ , ∀t ≥ 0}

W u
loc(Γ) ≡W u(Γ, UΓ) = {u0 ∈ Hs(S1) |Sf(t)u0 ∈ UΓ , ∀t ≤ 0}

(1.4)

are (embedded) C1-submanifolds of Hs(S1) of codimension i(Γ) and dimension i(Γ) + 1
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respectively. We also define the global stable and unstable sets

W s(Γ) = {u0 ∈ Hs(S1) |Sf(t)u0 →
t→+∞

Γ} ,

W u(Γ) = {u0 ∈ Hs(S1) |Sf(t)u0 is well-defined for t ≤ 0 and Sf (t)u0 →
t→−∞

Γ} .

Again, Theorem 6.1.9 of [22] implies that W s(Γ) and W u(Γ) are injectively immersed C1-
manifolds in Hs(S1) of codimension i(Γ) and dimension i(Γ) + 1 respectively (see also [10]
and [18]). We also notice (see Lemma 6.1 of [13] and also [21] or [18]) that W u(Γ) =
∪t≥0Sf (t)W

u
loc(Γ) is a union of embedded submanifolds of Hs(S1) of dimension i(Γ) + 1.

Let q± be two hyperbolic critical elements. We say that W u(q−) and W s
loc(q

+) intersect
transversally (or are transverse) and we denote it by

W u(q−) ⋔ W s
loc(q

+) ,

if, at each intersection point u0 ∈ W u(q−) ∩W s
loc(q

+), Tu0W
u(q−) contains a closed com-

plement of Tu0W
s
loc(q

+) in Hs(S1). By convention, two manifolds which do not intersect
are always transverse.

We now describe all the known properties of the dynamics of (1.1). First, we mention
that in the particular case where f(x, u, ux) = f(x, u) does not depend on the values of the
derivative ux, the dynamical system Sf (t) generated by (1.1) is gradient, that is, admits a
strict Lyapunov functional. In particular, it has no periodic orbits and the non-wandering
set is reduced to equilibria. As a direct consequence of [8], the Morse-Smale property is
generic with respect to the non-linearity f(x, u).

In the general case where f(x, u, ux) depends on the three variables, all the two-
dimensional dynamics can be realized on locally (non-stable) invariant manifolds of the
flow Sf(t) of (1.1) (see [55]) and thus periodic orbits can exist ([5]). Hence, the dynamics
can be more complicated. However, like for vector-fields in R2, the remarkable Poincaré-
Bendixson property holds ([14]).

Theorem 1.1. Fiedler-Mallet-Paret (1989) (Poincaré-Bendixson property)
For any u0 ∈ Hs(S1), the ω−limit set ω(u0) of u0, satisfies exactly one of the following
possibilities.
i) Either ω(u0) consists of a single periodic orbit,
ii) or the α− and ω−limit sets of any v ∈ ω(u0) consist only of equilibrium points.

Theorem 1.1 is the first step towards showing that the non-wandering set generically
reduces to a finite number of equilibria and periodic orbits. One of the main ingredients
of the proof of Theorem 1.1 is the Sturm property (also called zero number or lap number
property). More precisely, for any ϕ ∈ C1(S1), we define the zero number z(ϕ) as the
(even) number of strict sign changes of ϕ. If v(x, t) is the solution of a scalar linear
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parabolic equation on a time interval I = (0, τ), then, z(v(·, t)) is finite, for any t ∈ I, and
nonincreasing in t. Moreover, z(v(·, t)) drops at t = t0, if and only if v(·, t0) has a multiple
zero (the detailed statement of these properties is recalled in Section 2.1). Sturm property
is very specific to the parabolic equation in space dimension one.

The second major step on the way to the proof of the genericity of the Morse-Smale
property has been the paper of Czaja and Rocha [13]. Inspired by the transversality results
of Fusco and Oliva ([16]) for special classes of vector fields on Rn, Czaja and Rocha have
proved the following fundamental and nice transversality properties.

Theorem 1.2. Czaja-Rocha (2008)
1) There does not exist any solution u(t) of (1.1) converging to a same hyperbolic periodic
orbit Γ, as t goes to ±∞.
2) Let Γ± be two hyperbolic periodic orbits. Then,

W u(Γ−) ⋔ W s
loc(Γ

+) .

Moreover, if the intersection W u(Γ−) ∩W s
loc(Γ

+) is not empty, then i(Γ−) > i(Γ+).

Among other arguments, the proof of Theorem 1.2 ([13]) uses the decay properties of
the zero number as well as the filtrations of the phase space with respect to the asymp-
totic behaviour of the solutions of the linearized equation around an orbit connecting two
hyperbolic periodic orbits like in [10].

The above results hold under the assumption of hyperbolicity of the periodic orbits.
To complete Theorem 1.2, we have proved in [30] that, generically with respect to the non-
linearity f , the periodic orbits are all hyperbolic, which means that the above hyperbolicity
assumption is not so restrictive.

Theorem 1.3. Joly-Raugel (2008) There exists a generic subset Oh of G such that, for
any f ∈ Oh, all the equilibria and the periodic solutions of (1.1) are hyperbolic.

Besides the Sard-Smale theorem (recalled in Appendix A), one of the main ingredients
of Theorem 1.3 is again the zero number property of the difference of two solutions of (1.1)
or of the solutions of the linearized equations around equilibria or periodic solutions.

1.2 Main new results

In this paper, we prove that, generically with respect to f , the semi-flow Sf(t) generated by
Eq. (1.1) on S1 is Morse-Smale. To this end, we first complete the automatic transversality
results of Czaja and Rocha as follows.

Theorem 1.4. Automatic transversality results
1) If e− and e+ are two hyperbolic equilibrium points of (1.1) with different Morse in-
dices, then the unstable manifold W u(e−) transversally intersects the local stable manifold
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W s
loc(e+).

2) If Γ (respectively e) is a hyperbolic periodic orbit (respectively a hyperbolic equilibrium
point) of (1.1), then

W u(e) ⋔ W s
loc(Γ) ,

and
W u(Γ) ⋔ W s

loc(e) .

The proof of Theorem 1.4 is similar to the one of Theorem 1.2. However, the proof of
the automatic transversality of the connecting orbits between two hyperbolic equilibria of
different Morse indices requires a tricky argument, in addition to those of [13]. We also
emphasize that, even if most of the ideas in our proof are basically similar to the ones of
[13], they are used in a different way. In fact, as in [13], the basic tools are the same as
the ones of [23], [4], [16], namely a careful analysis of the asymptotic behavior of solutions
converging to an equilibrium or a periodic orbit (Appendix C) combined with a systematic
application of the Sturm properties (recalled in Theorem 2.1).

Theorems 1.2 and 1.4 show that a non-transverse connecting orbit arises only as an
orbit connecting two equilibrium points with same Morse index. We call such an orbit a
homoindexed orbit. Since every two-dimensional flow can be realized in a (locally) invariant
manifold of the semi-flow of a parabolic equation on S1 ([55]), we know that homoindexed
orbits, in particular homoclinic orbits, may occur in the flow of (1.1). However, as we
prove here, such connecting orbits can be broken generically in f .

Theorem 1.5. Generic non-existence of homoindexed connecting orbits
There exists a generic subset OM ⊂ Oh of G such that, for any f ∈ OM , there does not exist
any solution u(t) of (1.1) such that u(t) converges, when t goes to ±∞, to two equilibrium
points with the same Morse index. In particular, homoclinic orbits are precluded.

To prove Theorem 1.5, we actually prove the genericity of the transversality of the
homoindexed orbits, which at once implies the genericity of non-existence of such orbits.
In order to prove the genericity of transversality and to get a meaningful result, we need to
perturb (1.1) by arbitrary small perturbations, in such a way that the perturbed semi-flow is
still generated by a scalar parabolic equation on S1. As already mentionned, perturbing the
non-linearity acts on the phase-space in a non-local way. In the context of proving generic
tranversality in the class of gradient scalar-reaction diffusion equations, these problems
were first circumvented by Brunovský and Poláčik in [8]. They employed an equivalent
formulation of transversality which appeared earlier in [51], [19], [54], but remained almost
unnoticed for some time (such formulation has however been used, already in the 1980’s,
by Chow, Hale and Mallet-Paret [11] in global bifurcation problems of heteroclinic and
homoclinic orbits). This equivalent formulation says that 0 is a regular value of a certain
mapping Φ (depending on the perturbation parameter), defined on a space of functions
of time with values into the state space of the equation. It is noteworthy that, in this
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formalism, the elements, the image of which are 0, are precisely the trivial and non-trivial
connecting orbits. Using this equivalent formulation of the transversality together with the
Sard-Smale theorem, given in Appendix A, Brunovský and Poláčik achieved their proof of
genericity of the transversality of stable and unstable manifolds of equilibria with respect
to the non-linearity.
In the proof of Theorem 1.5, we follow the lines of the one of [8] (see also [9] and [29]),
by introducing this equivalent formulation of transversality. But, as in [9], the equivalent
regular value formulation of transversality takes place in a space of sequences (obtained by
a time discretization of the semi-flow associated with (1.1)). As there, in the application of
the Sard-Smale theorem, one returns to the continuous time only in the last step, when one
verifies the non-degeneracy condition of the Sard-Smale, which gives rise to a functional
condition (see Theorem 5.5). To find a perturbation satisfying this functional condition,
we use as a central argument the one-to-one property of homoindexed connecting orbits
stated in Proposition 3.6 (which is again a consequence of the Sturm property). Notice that
parabolic strong unique continuation properties lead to a weaker version of Proposition 3.6,
which is actually sufficient to show the genericity of transversality and holds in any space
dimension (see [7]).

Using Theorems 1.1, 1.2, 1.3, 1.4 and 1.5, we finally prove the following genericity of
Morse-Smale systems of type (1.1).

Theorem 1.6. Genericity of Morse-Smale property
For any f in the generic set OM , Sf(t) is a Morse-Smale dynamical system, that is,
1) the non-wandering set consists only in a finite number of equilibria and periodic orbits,
which are all hyperbolic.
2) the unstable manifolds of all equilibria and periodic orbits transversally intersect the
local stable manifolds of all equilibria and periodic orbits.

Since the second part of Theorem 1.6 is a direct consequence of Theorems 1.2, 1.3, 1.4
and 1.5, it only remains to show that the non-wandering set is trivial. This is done by
using the Poincaré-Bendixson Property (Theorem 1.1) together with arguments similar to
the ones used for vector fields in R2

Remark : All the above theorems are stated under the “dissipative” condition (1.2) on the
non-linearity f . Actually, Theorems 1.1, 1.2, 1.3 and 1.4 still hold without assuming (1.2)
and the proofs are not more involved. Theorem 1.5 is also still true, even if the proof is a
little more technical (but not more difficult). However, Theorem 1.6 is not true in general
without a dissipative condition on f or more generally without knowing that Sf (t) admits
a compact global attractor. Indeed, if Sf (t) has no compact global attractor, already the
number of equilibria (and periodic orbits) can be infinite. For the reader convenience and
for avoiding unnecessary technicalities, we have chosen to impose the dissipative condition
(1.2) in the whole paper.
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The paper is organized as follows. In Section 2, we recall the fundamental properties of
the zero number on S1 as well as the useful spectral properties of the linearized equations
around equilibrium points or periodic orbits. Section 3 is devoted to relations between the
lap number and the Morse indices and to the one-to-one property of homoindexed orbits.
In all these results, the zero number plays an important role. While some of these results
are primordial in the proof of our main theorems, others are stated for sake of completeness
in the description of the properties of Eq. (1.1) on the circle. Section 4 contains the proof of
the automatic transversality results stated in Theorem 1.4. In Section 5, we prove Theorem
1.5, that is, the generic non-existence of orbits connecting two hyperbolic equilibria with
same Morse index. Section 6 is focused on the study of the non-wandering set and on the
proof of Theorem 1.6. The appendices contain the necessary background for reading this
paper. In Appendix A, we recall the Sard-Smale theorem in the form used in Section 5.
Appendix B contains the basic definitions and properties of exponential dichotomies and
their applications to the functional characterization of the transversality of the trajectories
of the parabolic equation. This Appendix plays an important role in the core of the proof
of Theorem 1.5. Finally, in the Appendix C, we describe the asymptotics of the solutions
of the linearized equations around connecting orbits, which are one of the main ingredients
of the proof of Theorem 1.4.

Acknowledgements: The authors wish to thank P. Brunovský, R. Czaja and C. Rocha
for fruitful discussions.

2 Preliminaries and auxiliary results

In the introduction, we have already seen that (even without Assumption (1.2)) for any u0 ∈
Hs(S1), s ∈ (3/2, 2), Equation (1.1) admits a local mild solution u(t) ∈ C0([0, τu0), H

s(S1))
(see [22]). Moreover, this solution u(t) is classical and belongs to C0((0, τu0), H

2(S1)) ∩
C1((0, τu0), L

2(S1)) ∩ Cθ((0, τu0), H
s(S1)), where θ = 1 − s/2. In addition, the func-

tion ut(t) : t ∈ (0, τu0) 7→ ut(t) ∈ Hℓ(S1), 0 ≤ ℓ < 2, is locally Hölder-continuous
(see [22, Theorem 3.5.2]). Since u(t) is in C0((0, τu0), H

2(S1)), the term f(x, u, ux) be-
longs to C0((0, τu0), H

1(S1)) and thus uxx = ut − f(x, u, ux) is in C0((0, τu0), H
1(S1)).

In particular, u(t) belongs to C0((0, τu0), H
3(S1)), which is continuously embedded into

C0((0, τu0), C
2(S1)). If moreover the condition (1.2) holds, then τu0 = ∞ for every u0.

In the course of this paper, we often need to consider the linearized equation along a
bounded trajectory u(t) ≡ Sf(t)u0, t ∈ R, of Eq. (1.1), that is, the equation

vt = vxx +Duf(x, u, ux)v +Duxf(x, u, ux)vx , t ≥ σ , v(σ, x) = v0 , (2.1)

where v0 belongs to L
2(S1). Since u(t) is in Cθ(R, Hs(S1)), the coefficientsDuf(x, u(t), ux(t))

and Duxf(x, u(t), ux(t)) are locally Hölder-continuous from R into C0(S1). Thus, we de-
duce from [22, Theorem 7.1.3] that, for any v0 ∈ L2(S1), for any σ ∈ R, there exists a
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unique (classical) solution v(t) ∈ C0([σ,+∞), L2(S1))∩C0((σ,+∞), Hℓ(S1)) of (2.1) such
that v(σ) = v0, where ℓ is any real number with 0 ≤ ℓ < 2. Setting Tu(t, σ)v0 = v(t), we
define a family of continuous linear evolution operators on L2(S1). We remark that the
evolution operator Tu(t, σ), t ≥ σ, associated with the trajectory u is injective and that its
range is dense in Hs(S1).

We complete these generalities by remarking that, in what follows, we sometimes con-
sider the difference w = u1 − u2 between two solutions u1 ∈ C0([0,+∞), Hs(S1)) and
u2 ∈ C0([0,+∞), Hs(S1)) of Eq. (1.1). The difference w is a solution of the following
linear equation,

wt = wxx + a(x, t)wx + b(x, t)w , t ≥ σ , w(σ, x) = w0 , (2.2)

where
{

a(x, t) =
∫ 1

0
f ′
∂xu

(x, θu2 + (1− θ)u1, ∂x(θu2 + (1− θ)u1))dθ

b(x, t) =
∫ 1

0
f ′
u(x, θu2 + (1− θ)u1, ∂x(θu2 + (1− θ)u1))dθ

(2.3)

We emphasize that, since ut is locally Hölder-continuous from (0,+∞) into Hℓ(S1), 3/2 <
ℓ < 2 and ux is continous from (0,+∞) into H2(S1), the coefficients a(x, t) and b(x, t)
belong to C1(S1 × (0,+∞),R).

2.1 The lap number property

The lap number property, or zero number property, is the fundamental property of one-
dimensional scalar parabolic equations. We recall that, for any ϕ ∈ C1(S1), the zero
number z(ϕ) is defined as the (even) number of strict sign changes of ϕ.

Theorem 2.1. 1) Let T > 0, a ∈ C1(S1 × [0, T ],R) and b ∈ C0(S1 × [0, T ],R). Let
v : S1 × (0, T ) → R be a classical bounded non-trivial solution of

vt = vxx + a(x, t)vx + b(x, t)v ,

Then, the number z(v(t)) of zeros of v(t) is finite and non-increasing in time t ∈ [0, T ] and
strictly decreases at t = t0 if and only if x 7→ v(x, t0) has a multiple zero.

2) If u and v are two solutions in C0([0, T ], Hs(S1)) of (1.1), then ut and u− v satisfy
the lap number property stated in Statement 1) on the time interval (0, T ].

Such kind of results goes back to Sturm [59] in the case where a and b are time-
independent. The non-increase of the number of zeros in the time-dependent problems has
been obtained in [38] and [36]. The property of strict decay first appeared in [5] in the
case of analytic coefficients. It has been generalized in [37] and [4].
We notice that the statement 2) is a direct consequence of the first statement and of the
remarks made at the beginning of this section.
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2.2 The spectrum of the linearized operators

We recall here the Sturm-Liouville properties of the linearized operators associated to Eq.
(1.1). These results mainly come from [4] and [5], together with a property obtained in
[30].

Let e ∈ Hs(S1) be an equilibrium point of (1.1). We introduce the linearized operatorLe
on L2(S1), with domain H2(S1), defined by

Lev = vxx +Duf(x, e, ex)v +Duxf(x, e, ex)vx , (2.4)

and consider the linearized equation around e, given by

vt(x, t) = Lev(x, t) , (x, t) ∈ S1 × (0,+∞) ,

v(x, 0) = v0(x) , x ∈ S1 .
(2.5)

The operator Le is a sectorial operator and a Fredholm operator with compact resolvent.
Therefore, its spectrum consists of a sequence of isolated eigenvalues of finite multiplic-
ity. Let (λi)i∈N be the spectrum of Le, the eigenvalues being repeated according to their
multiplicity and being ordered so that Re(λi+1) ≤ Re(λi).

Proposition 2.2. The first eigenvalue λ0 is real and simple and the corresponding eigen-
function ϕ0 ∈ H2(S1) does not vanish on S1. The other eigenvalues go by pairs (λ2j−1, λ2j)
and Re(λ2j+1) < Re(λ2j) for all j ≥ 0. The pair (λ2j−1, λ2j) consists of either two simple
complex conjugated eigenvalues, or two simple real eigenvalues with λ2j < λ2j−1, or a real
eigenvalue with multiplicity equal to two. Finally, if ϕ is a real function belonging to the
two-dimensional generalized eigenspace corresponding to (λ2j−1, λ2j), then ϕ has exactly 2j
zeros which are all simple.

Let Γ = {γ(x, t) | t ∈ [0, p]} be a periodic orbit of (1.1) of minimal period p. We consider
the linearized equation

ϕt = ϕxx +Duf(x, γ, γx)ϕ+Duxf(x, γ, γx)ϕx , t ≥ σ , ϕ(x, σ) = ϕ0(x) . (2.6)

Let s ∈ (3/2, 2), we introduce the operator Π(t, σ) : Hs(S1) −→ Hs(S1), defined by
Π(t, σ)ϕ0 = ϕ(t) where ϕ(t) is the solution of the linearized equation (2.6). The operator
Π(p, 0) is called the period map. Due to the regularization properties of the parabolic
equation, Π(p, 0) is compact. Its spectrum consists of zero and a sequence of eigenvalues
(µi)i∈N converging to zero, where we repeat the eigenvalues according to their multiplicity
and order them such that |µi+1 ≤ |µi|. Notice that 0 is not an eigenvalue of Π(p, 0) due
to the backward uniqueness property of the parabolic equation. Moreover, we also remark
that, since (1.1) is an autonomous equation, 1 is always an eigenvalue of Π(p, 0) with
eigenfunction γt(0).
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Proposition 2.3. The first eigenvalue µ0 is real and simple and the corresponding eigen-
function ϕ0 ∈ Hs(S1) does not vanish on S1. The other eigenvalues go by pairs (µ2j−1, µ2j)
and |µ2j+1| < |µ2j| for all j ≥ 0. The pair (µ2j−1, µ2j) consists of either two simple complex
conjugated eigenvalues, or two simple real eigenvalues of the same sign, or a real eigenvalue
with multiplicity equal to two. In particular, −1 is never an eigenvalue. Finally, if ϕ is
a real function belonging to the two-dimensional generalized eigenspace corresponding to
(µ2j−1, µ2j), then ϕ has exactly 2j zeros which are all simple.

3 Main consequences of the lap number properties on

connecting orbits

In this section, we describe several important consequences of the lap number theorem on
the properties of orbits connecting hyperbolic critical elements. Most of them will be used
in the core of the proofs of Theorems 1.4 and 1.5.

3.1 Relations between Morse indices and lap numbers

In this paragraph, we consider orbits connecting hyperbolic equilibrium points and hyper-
bolic periodic orbits and give several inequalities involving Morse indices and numbers of
zeros. The ideas of these properties were already contained in [13], where they have been
proved in the case of connections between two periodic orbits. We complete the results of
[13] by considering the cases where equilibrium points are also involved. Actually, some of
the proofs are slightly simpler in these cases since, if e is an equilibrium point and γ(t) a
periodic orbit, e− γ(t) is periodic, whereas the difference between two periodic orbits may
be only quasiperiodic.

The properties stated in this section have their own interest. In the other parts of this
paper, we will use them in the case of a connection between an equilibrium point and a
periodic orbit. Therefore, we mainly restrict the proofs to this case. The omitted proofs
are similar.

The following theorem corresponds to [13, Theorems 5.2 and 6.2]. We recall that z(v)
denotes the strict number of sign changes of the function x 7→ v(x).

Theorem 3.1. Let γ(x, t) be a hyperbolic periodic orbit of (1.1) of minimal period p and
let Γ = {γ(t), t ∈ [0, p)}.
1) For any u0 ∈ W s

loc(Γ) \ Γ, there exist a ∈ Γ and κ > 0 such that limt→∞ eκt‖Sf (t)u0 −
Sf(t)γ(a)‖Hs = 0. Moreover,

z(u0 − γ(a)) ≥

{

i(Γ) + 1 = 2q if i(Γ) = 2q − 1,

i(Γ) + 2 = 2q + 2 if i(Γ) = 2q.
(3.1)
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2) For any u0 ∈ W u(Γ) \ Γ, there exist ã ∈ Γ and κ̃ > 0 such that limt→∞ eκ̃t‖Sf(−t)u0 −
Sf(−t)γ(ã)‖Hs = 0. Moreover,

z(u0 − γ(a)) ≤

{

i(Γ)− 1 = 2q − 2 if i(Γ) = 2q − 1,

i(Γ) = 2q if i(Γ) = 2q.
(3.2)

Proof: For sake of completeness, we give a short proof of statement 1) which is slightly
different from the one of [13]. The proof of statement 2) is similar.

The first part of the statement 1) is just a reminder of the fact that the local stable
manifold of Γ is the union of the local strongly stable manifolds of all the points γ(b),
b ∈ [0, p] as explained in Appendix C.3. The second part of 1) directly follows from
Corollary C.10. Indeed, let v(t) = Sf(t)u0−γ(t+a) ≡ u(t)−γ(t+a). Then, there exists a
complex eigenvalue µi of the period map Π(p+ a, a) with |µi| < 1 such that v(np) satisfies
one of the asymptotic behaviors (i)-(iv) described in Corollary C.10. If the index i(Γ) is
equal to 2q − 1, then µ2q−1 = 1 and thus i ≥ 2q, which implies that the number of zeros
z(v(np)) is at least equal to 2q for n large enough. If the index i(Γ) is equal to 2q, then
µ2q = 1 and thus i ≥ 2q + 1, which implies that the number of zeros z(v(n)) is at least
equal to 2q + 2 for n large enough. Since v(t) is the difference of two solutions of (1.1),
Theorem 2.1 shows that these lower bounds on z(v(np)) for large n ∈ N hold in fact for
all t ∈ R. �

Of course, the corresponding properties are true for hyperbolic equilibrium points. Since
their proof is similar to the one of Theorem 3.1 (and even simpler), it is omitted.

Theorem 3.2. Let e(x) be a hyperbolic equilibrium point of (1.1).
1) For any u0 ∈ W s

loc(e) \ {e},

z(u0 − e) ≥

{

i(e) + 1 = 2q if i(e) = 2q − 1,

i(e) = 2q if i(e) = 2q.

2) For any u0 ∈ W u(e) \ {e},

z(u0 − e) ≤

{

i(e)− 1 = 2q − 2 if i(e) = 2q − 1,

i(e) = 2q if i(e) = 2q.

The following two lemmas, which are rather simple, are useful in the following sections.

Lemma 3.3. If e is an equilibrium point of (1.1) and γ(t) is a periodic solution of (1.1)
of minimal period p > 0, then the zero number z(e − γ(t)) is constant and thus, for any
time t, the function x 7→ e(x) − γ(x, t) has no multiple zero. The same properties hold if
one considers the difference between two distinct equilibrium points or two distinct periodic
solutions.
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Proof: By Theorem 2.1, the number of zeros of v(t) = e − γ(t) is non-increasing and
strictly decreases only at the times t where v(t) has a multiple zero. If v(t) has a multiple
zero at t = t0, then Theorem 2.1 and the periodicity of v imply that, for any ε ∈ (0, p),

z(v(t0 − ε)) > z(v(t0 + ε)) ≥ z(v(t0 + p− ε)) = z(v(t0 − ε)) ,

which leads to a contradiction. Thus v(t) has no multiple zero. �

Remark : Since, for each t, v(t) has no multiple zero and Hs(S1) is embedded in C1(S1),
there exists a neighbourhood BHs(v(t), 2εv(t)) on which the zero number is constant. Since
the curve {e − γ(t) | t ∈ [0, p]} is compact, there exists a finite covering ∪ni=1BHs(S1)(e −
γ(ti), εi) of the set {e− γ(t) | t ∈ R} in Hs(S1), on which the zero number in constant.

Lemma 3.4. Let e− be a hyperbolic equilibrium of (1.1) and let Γ+ be a hyperbolic periodic
orbit of minimal period p > 0. Let u0 ∈ W u(e−) ∩W s

loc(Γ
+) and let u(t), t ∈ R, be the

solution of (1.1) with u(0) = u0. Let a ∈ [0, p) be such that limt→+∞ ‖u(t)−γ+(a+t)‖Hs =
0. Then, for any time t ∈ R,

z(u(t)− γ+(a+ t)) ≤ z(γ+(a)− e−) ≤ z(u(t)− e−) .

The same property holds for any orbit connecting hyperbolic equilibrium points or hyperbolic
periodic orbits.

Proof: We set v+(t) = u(t) − γ+(a + t) and v−(t) = u(t) − e−. We notice that the lap
number property stated in Theorem 2.1 holds for v±. Lemma 3.3 shows that z(γ+(a) −
e−) = z(γ+(a+ t)−e−). Moreover, γ+(a)−e− has no multiple zeros due to Lemma 3.3 and
thus its number of zeros is stable with respect to small enough perturbations in Hs(S1).
For any large t0, v+(t0) is small enough so that

z(γ+(a)− e−) = z(γ+(a+ t0)− e−) = z(v+(t0) + γ+(a+ t0)− e−) = z(v−(t0)) .

Applying Theorem 2.1, we get that for all t ≤ t0, z(γ
+(a)− e−) ≤ z(v−(t)).

The inequality z(v+(t)) ≤ z(γ+(a)− e
−

), for all t ∈ R, is proved in a similar way.
The proof is the same in the case of orbits connecting hyperbolic equilibria or hyperbolic
periodic orbits. These inequalities have been previously proved in the case of orbits con-
necting two hyperbolic periodic orbits in [13, Theorem 7.3] �

As a direct consequence of Lemma 3.4, Theorem 3.1 and Proposition 3.2, we obtain
the following result.
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Corollary 3.5. Let e± and Γ± be hyperbolic equilibria and periodic orbits of Eq. (1.1).
1) If W u(e−) ∩W s

loc(Γ
+) 6= ∅, then

i(Γ+) + 1 ≤ i(e−) .

Moreover, if i(Γ+) = 2q+, q+ > 0, then i(Γ+) + 2 ≤ i(e−).
2) If W u(Γ−) ∩W s

loc(e
+) 6= ∅, then

i(e+) ≤ i(Γ−) .

Moreover, if i(Γ−) = 2q − 1, q ≥ 1, then i(e+) + 1 ≤ i(Γ−).
3) If W u(e−) ∩W s

loc(e
+) 6= ∅, then

i(e+) ≤ i(e−)

and the equality is possible if and only if i(e+) = i(e−) is even.

3.2 One-to-one property of homoindexed orbits

The proposition proved in this section plays a central role in the construction of a suitable
perturbation to break homoindexed orbits (see Section 5). A similar one-to-one property
has been previously used in [30] to make the periodic orbits hyperbolic. As already indi-
cated, the proof relies on the decay of the lap-number stated in Theorem 2.1. In space
dimension higher than one, there is no equivalent of the lap-number property. However,
one can use unique continuation properties to obtain a weaker but useful equivalent of
Proposition 3.6, see [7].

Proposition 3.6. Let e± be two hyperbolic equilibria such that i(e−) = i(e+) = m = 2m′ is
even, and let u(t) be a connecting orbit between e− and e+. In the case where e− = e+ = e,
we assume that u(t) 6= e. Then the following properties hold:
1) For any t ∈ R, for any x ∈ S1, (u(x, t), ∂xu(x, t)) 6= (e±(x), ∂xe±(x)).
2) The map (x, t) ∈ S1 × R 7→ (x, u(x, t), ∂xu(x, t)) is one to one.

Proof: As in Section 2.2, we denote by Le± the linearized operator around the equilibrium
e± and by λ±i , i ≥ 0, its eigenvalues, counted with their multiplicities.

Since u(t) converges to e± when t goes to ±∞, according to Corollary C.7, there exists
an eigenvalue λ±i± of Le± such that the asymptotic behaviors of u are given by

u(t) = e± + eRe(λ±
i±

)tψ±
i±(t) + o(eRe(λ±

i±
)t) when t→ ±∞ (3.3)

where ψ±
i± corresponds to one of the possible asymptotic behaviors (i)-(iv) described at the

beginning of Section 4.1. We emphasize that the term o(eRe(λ±
i±

)t) has to be understood in
the sense of the Hs(S1) topology (and thus this term is also small in the C1-sense). We
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recall that if i± = 2q − 1 or 2q then ψ±
i± has exactly 2q zeros which are simple. Finally,

notice that since i(e−) = i(e+) = m is even, λ±m < 0 < λ±m−1 are simple real eigenvalues
and that i− ≤ m− 1 and i+ ≥ m.

We are now ready to prove the first assertion. We introduce the functions v±(t) =
u(t) − e±. By the second part of Theorem 2.1, the number of zeros z(v±) is finite and
non-increasing and it strictly decreases at some time τ± if and only if the function x 7→
v±(x, τ±) has a multiple zero. But Proposition 3.2 and Lemma 3.4 at once imply that
z(e+− e−) = m = z(v+(t)) = z(v−(t)) for any t and thus that the map x 7→ u(x, t)− e±(x)
has no multiple zero. We deduce that

λ−i− = λ−m−1 , ψ−
i− = ϕ−

m−1 , λ+i+ = λ+m and ψ+
i+ = ϕ+

m , (3.4)

where ϕ−
m−1 and ϕ+

m are eigenfunctions corresponding to the simple real eigenvalues λ−m−1

and λ+m respectively.

We next prove by contradiction that the second statement holds. Assume that the map
(x, t) ∈ S1 × R 7→ (x, u(x, t), ∂xu(x, t)) is not injective. Then there exist x0, t0 ∈ R and
τ0 ∈ R, such that

u(x0, t0) = u(x0, t0 + τ0) , ∂xu(x0, t0) = ∂xu(x0, t0 + τ0) .

The function v(x, t) = u(x, t+ τ0)− u(x, t) satisfies v(x0, t0) = 0 and ∂xv(x0, t0) = 0. It is
not identically zero since it is a non-trivial connecting orbit. Thus, due to the second part
of Theorem 2.1, the zero number z(v(t)) is non-increasing and drops strictly at t = τ0. The
properties (3.3) and (3.4) imply that

v(t) = eλ
−

m−1t(eλ
−

m−1τ0 − 1)ϕ−
m−1 + o(eλ

−

m−1t) , as t→ −∞

v(t) = eλ
+
mt(eλ

+
mτ0 − 1)ϕ+

m + o(eλ
+
mt) , as t→ ∞ .

Thus, z(v(t)) = m, for any t ∈ R, which contradicts the fact that z(v(t)) drops at t = τ0
and the second statement holds. �

4 Automatic transversality results

This section is devoted to the proof of Theorem 1.4. In Section 4.1, we prove the first
statement of Theorem 1.4, whereas in Section 4.2 , we prove the second statement.
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4.1 Automatic transversality of heteroindexed orbits connecting
two equilibria

Let e− and e+ be two hyperbolic equilibrium points of (1.1) with different Morse indices
i(e−) and i(e+). Following the notations of Section 2.2, we denote Le± the corresponding
linearized operators and by (λ±i , ϕ

±
i ) their set of eigenvalues and generalized eigenfunctions.

Assume that W u(e−)∩W s
loc(e+) 6= ∅ (otherwise the intersection is transversal by defini-

tion). Notice that Corollary 3.5 and the fact that i(e−) 6= i(e+) imply that i(e+) < i(e−).
Let u(t) be a global solution of (1.1) with u(0) ∈ W u(e−) ∩ W s

loc(e+). Since W u(e−)
is a finite-dimensional manifold, there exists a finite basis (v01, . . . , v

0
p) of Tu(0)W

u(e−) ∩
Tu(0)W

s
loc(e+). Let vk(t) be the (global) solutions of

∂tvk = ∂2xxvk +Duf(x, u, ux)vk +Duxf(x, u, ux)∂xvk , vk(0) = v0k . (4.1)

Notice that, since v0k belongs to the finite-dimensional space Tu(0)W
u(e−), the solution vk(t)

exists for any t ∈ R. Corollary C.8 gives all the possible precise asymptotic behaviors of
vk(t) when t goes to ±∞. For each k, there exist an eigenvalue λ−

i−
k

of Le− with positive

real part such that, when t→ −∞, the asymptotic behavior of vk(t) in H
s(S1) is described

by the following possibilities:

(i) if λ−
i−
k

is a simple real eigenvalue with eigenfunction ϕ−

i−
k

, then there exists ak ∈ R−{0}

such that vk(t) = ake
λ−
i
−

k

t
ϕ−

i−
k

+ o(e
λ−
i
−

k

t
) ≡ ψ−

i−
k

(t) + o(e
λ−
i
−

k

t
).

(ii) If λ−
i−
k

= λ−
i−
k
+1

is a double real eigenvalue with two independent eigenfunctions ϕ−

i−
k

and ϕ−

i−
k
+1
, then there exist (ak, bk) ∈ R2 − {(0, 0)} such that vk(t) = ake

λ−
i
−

k

t
ϕ−

i−
k

+

bke
λ−
i
−

k

t
ϕ−

i−
k
+1

+ o(e
λ−
i
−

k

t
) ≡ ψ−

i−
k

(t) + o(e
λ−
i
−

k

t
).

(iii) If λ−
i−
k

= λ−
i−
k
+1

is an algebraically double real eigenvalue with eigenfunction ϕ−

i−
k

and

with generalized eigenfunction ϕ−

i−
k
+1
, then there exist (ak, bk) ∈ R

2 − {(0, 0)} such

that vk(t) = (ak + bkt)e
λ−
i
−

k

t
ϕ−

i−
k

+ bke
λ−
i
−

k

t
ϕ−

i−
k
+1

+ o(e
λ−
i
−

k

t
) ≡ ψ−

i−
k

(t) + o(e
λ−
i
−

k

t
).

(iv) If λ−
i−
k

= λ−
i−
k
+1

is a (simple) nonreal eigenvalue with eigenfunction ϕ−

i−
k

= ϕ−

i−
k
+1
, then

there exist (ak, bk) ∈ R2 − {(0, 0)} such that

vk(t) = e
Re(λ−

i
−

k

)t(

(ak cos(Im(λ−
i−
k

)t)− bk sin(Im(λ−
i−
k

)t))Re(ϕ−

i−
k

)

− (ak sin(Im(λ−
i−
k

)t) + bk cos(Im(λ−
i−
k

)t))Im(ϕ−

i−
k

)
)

+ o(e
Re(λ−

i
−

k

)t
)

≡ ψ−

i−
k

(t) + o(e
Re(λ−

i
−

k

)t
) .
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The vectors vk(t) have the same type of behaviors when t→ +∞, provided λ−
i−
k

is replaced

by an eigenvalue λ+
i+
k

of Le+ with negative real part.

Lemma 4.1. Without loss of generality, we may assume that the behaviors of the functions
vk(t) when t goes to −∞ are different in the sense that the corresponding family (ψ−

i−
k

),

1 ≤ k ≤ p, is free and hence generates a finite-dimensional vector space of dimension p.

Proof: This lemma is a simple consequence of a Gram-Schmidt process. Without loss of
generality, we can assume that λ−

i−1
has the smallest real part among the family (λ−

i−1
, . . . , λ−

i−p
).

If there exists k > 1 such that Re(λ−
i−
k

) = Re(λ−
i−1
) with asymptotic behavior of type (i)

or with asymptotic behavior of type (ii)-(iv) such that the pairs (a, b) for v1(t) and vk(t)
are linearly dependent, then we can replace vk by vk − αv1 such that the real part of λ−

i−
k

increases. Notice that (v01, . . . , v
0
p) is still a basis of Tu(0)W

u(e−) ∩ Tu(0)W
s(e+). Assume

now that λ−
i−2

has the smallest real part among the real parts of the family (λ−
i−2
, . . . , λ−

i−p
)

(which can be the same as the real part of λ−
i−1
, but not smaller). If there exists k > 2 such

that Re(λ−
i−
k

) = Re(λ−
i−2
) and vk(t) has an asymptotic behavior linearly dependent of the

one of v2(t), then we can replace vk by vk − αv2 so that the real part of λ−
i−
k

increases. We

pursue the process until the end to obtain Lemma 4.1. �

Proof of the first statement of Theorem 1.4:
In what follows, we assume that the basis (v01, . . . , v

0
p) of Tu(0)W

u(e−)∩Tu(0)W
s(e+) has

been chosen as in Lemma 4.1. By definition W u(e−) intersects W
s(e+) transversally if and

only if Tu(0)W
u(e−) + Tu(0)W

s(e+) = Hs(S1). We know that dim(Tu(0)W
u(e−)) = i(e−)

and codim(Tu(0)W
s(e+)) = i(e+). Thus, Tu(0)W

u(e−) + Tu(0)W
s(e+) = Hs(S1) if and only

if
dim

(

Tu(0)W
u(e−) ∩ Tu(0)W

s(e+)
)

≤ i(e−)− i(e+) . (4.2)

The proof of the first statement of Theorem 1.4 consists in the careful study of three
different cases.

If i(e+) = 0, then Tu(0)W
s(e+) = Hs(S1) and the transversality trivially holds.

Assume that i(e+) = 2q − 1 is odd, which implies that the eigenvalues of Le+ with
negative real part are (λ+i )i≥2q−1. By Proposition 2.2, the corresponding generalized eigen-
functions (ϕ+

i )i≥2q−1 have all at least 2q zeros. Due to Corollary C.8 in Appendix C, each
function vk(t) has at least 2q zeros for large t. Since by Theorem 2.1 the number of ze-
ros of vk(t) is non-increasing, vk(t) has at least 2q zeros for every time t ∈ R. Applying
Corollary C.8 again, we obtain that necessarily i−k ≥ 2q − 1 and that i(e−) ≥ 2q. Since
Lemma 4.1 states that the asymptotic behaviors of all vk(t) are different, there are at most
i(e−)− (2q − 1) = i(e−)− i(e+) possible asymptotic behaviors.
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Assume now that i(e+) = 2q 6= 0 is even. By Proposition 2.2, this means that the pair
of eigenvalues (λ+2q−1, λ

+
2q) is a pair of simple real eigenvalues satisfying λ+2q < 0 < λ+2q−1. All

eigenfunctions corresponding to the eigenvalues of Le+ with negative real part have at least
2q+2 zeros, except ϕ+

2q which has 2q zeros. Arguing as above, we obtain that i−k ≥ 2q−1 and
that i(e−) ≥ 2q, that is, that there are at most i(e−)− (2q−1) = i(e−)− i(e+)+1 possible
asymptotic behaviors for the functions vk(t) when t → −∞. Here is the point where the
fact that i(e−) > i(e+) is crucial. Indeed, this assumption implies that λ−2q and λ

−
2q−1 have

both positive real parts. Assume that p = i(e−)−i(e+)+1. Then, according to Lemma 4.1,
all the possible asymptotic behaviors corresponding to the eigenvalues λ−2q−1, . . . , λ

−
i(e−)−1

are taken by the functions vk(t). Without loss of generality, we may assume that v1(t)
and v2(t) have an asymptotic behavior corresponding to ψ−

2q(t) and ψ−
2q−1(t). Since, due

to Theorem 2.1, the number of zeros of vk(t) is non increasing in time, the asymptotic
behaviors of v1(t) and v2(t), when t → +∞, correspond necessarily to λ+2q. Since λ+2q
is a simple eigenvalue, we can find α ∈ R \ {0} such that v1(t) + αv2(t) = o(eλ

+
2qt) when

t→ +∞. Therefore, by Corollary C.8, v1(t)+αv2(t) has at least 2q+2 zeros when t tends to
infinity. However, when t→ −∞, the asymptotic behavior of v1(t) + αv2(t) is determined
by ψ−

2q + αψ−
2q−1, which does not identically vanish by Lemma 4.1. By Proposition 2.2,

ψ−
2q + αψ−

2q−1 has exactly 2q zeros. Thus, v1(t) + αv2(t) has exactly 2q zeros for t close to
−∞ and we get a contradiction with the lap number property stated in Theorem 2.1. As a
consequence, one of the asymptotic behaviors corresponding to ψ−

2q or ψ
−
2q−1 is not realized

by the family (vk(t))1≤k≤p. Thus, p ≤ i(e−)− i(e+) and (4.2) holds.
This concludes the proof of Assertion 1) of Theorem 1.4. �

4.2 Connections involving periodic orbits

This section is devoted to the proof of the second statement of Theorem 1.4. The proof
follows the same lines as the ones of the proof of the first part of Theorem 1.4. As we shall
see, the proof is even simpler because of the presence of the eigenvalue µ = 1, which implies
for example that the dimension of the unstable manifold of a hyperbolic periodic orbit is
larger than its Morse index. In particular, the difficulties encountered in the second part
of the proof in Section 4.1 (see the case i(e+ = 2q) do not occur.

Theorem 4.2. 1) Let e− (resp. Γ+) be a hyperbolic equilibrium point (resp. hyperbolic pe-
riodic orbit of period p+ > 0). Then the unstable manifold W u(e−) intersects transversally
the local stable manifold W s

loc(Γ
+).

2) Let Γ− (resp. e+) be a hyperbolic periodic orbit of period p− > 0 (resp. hyperbolic
equilibrium point). Then the unstable manifold W u(Γ−) intersects transversally the local
stable manifold W s

loc(e
+).

Proof: We proceed as in Section 4.1. The main ideas behind this proof are the same as
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those of the proof of the transversality orbits connecting two hyperbolic periodic orbits of
[13].

Assume thatW u(e−)∩W s
loc(Γ

+) 6= ∅ (otherwise the intersection is transversal by defini-
tion). Let u(t) be a global solution of (1.1) with u(0) ∈ W u(e−) ∩W s

loc(Γ
+). By definition

W u(e−) intersects W s
loc(Γ

+) transversally if and only if Tu(0)W
u(e−) + Tu(0)W

s
loc(Γ

+) =
Hs(S1). We know that dim(Tu(0)W

u(e−)) = i(e−) and codim(Tu(0)W
s
loc(Γ

+)) = i(Γ+).
Thus, Tu(0)W

u(e−) + Tu(0)W
s
loc(Γ

+) = Hs(S1) if and only if

dim
(

Tu(0)W
u(e−) ∩ Tu(0)W

s
loc(Γ

+)
)

≤ i(e−)− i(Γ+) . (4.3)

Since W u(e−) is a finite-dimensional manifold, there exists a finite basis (v01, . . . , v
0
p) of

Tu(0)W
u(e−) ∩ Tu(0)W

s
loc(e+). Let vk(t) be the global solutions of Eq. 4.1, that is,

∂tvk = ∂2xxvk +Duf(x, u, ux)vk +Duxf(x, u, ux)∂xvk , vk(0) = v0k .

The basis (v01, . . . , v
0
p) of Tu(0)W

u(e−)∩Tu(0)W
s
loc(Γ

+) has the asymptotic behavior described
by (i)-(iv) at the beginning of Section 4.1, when t goes to −∞. Without loss of generality,
we may assume that this basis has been chosen as in Lemma 4.1. By Corollary C.8, we
know that the number of zeros of vk(t) is at most equal to the Morse index i(e−). Let
Γ+ = {γ+(t)|t ∈ [0, p+)}. Since u(0) belongs to W s

loc(Γ
+), there exists a+ ∈ [0, p+) such

that u(0) belongs to the local strongly stable manifold of the point γ+(a+). Thus, when
t goes to +∞, the asymptotic behavior of the function vk(t) is given by Corollary C.11
and corresponds to eigenvalues µ+

i+
k

of the period map Π+(p+ + a+, a+) (which coincide

with the eigenvalues of the period map Π+(p+, 0), with |µ+

i+
k

| < 1. Hence, i+k > i(Γ+) + 1.

Furthermore, if i+k = 2j or 2j − 1, then, when t is large enough, vk(t) has exactly 2j zeros
which are all simple.

If i(Γ+) = 0, then Tu(0)W
s
loc(Γ

+) = Hs(S1) and the transversality trivially holds. We
notice that however this situation does not arise, since, as poved by [26], periodic orbits
are never stable in the case of Eq. (1.1).

Assume that i(Γ+) = 2q+ − 1 is odd, then for t large enough, each function vk(t) has
at least 2q+ zeros. Since by Theorem 2.1 the number of zeros of vk(t) is non-increasing,
vk(t) has at least 2q

+ zeros for every time t ∈ R. Applying Corollary C.8, we obtain that
necessarily i−k ≥ 2q+−1 and that i(e−) ≥ 2q+ (we already know this property by Corollary
3.5). Since Lemma 4.1 states that the asymptotic behaviors of all vk(t) are different, there
are at most i(e−)− (2q+ − 1) = i(e−) − i(Γ+) possible asymptotic behaviors when t goes
to −∞.

Assume that i(Γ+) = 2q+ is even, then, for t large enough, each function vk(t) has at
least 2q++2 zeros and, arguing as above, we obtain that there are at most i(e−)−(2q++1) ≤
i(e−)− i(Γ+) possible asymptotic behaviors when t goes to −∞.

In each case, (4.3) is satisfied and the heteroclinic orbit u(t) is transverse.

The proof of the second statement is similar to the one of statement 1) and also to
the proof of the first part of Theorem 1.4 given in Section 4.1. Notice that we do not
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encounter the difficulty, which arises in Section 4.1 in the case where i(e+) = 2q and
i(Γ−) = i(e+) = 2q, since we have an additional dimension at our disposal. Indeed, if Γ− is
a hyperbolic periodic orbit, then dim(W u(Γ−))) = i(Γ−)+1. Therefore, W u(Γ−) intersects
W s
loc(e

+) transversally at u(0) if and only if

dim
(

Tu(0)W
u(Γ−) ∩ Tu(0)W

s
loc(e

+)
)

≤ i(Γ−) + 1− i(e+) . (4.4)

Thus, arguing as in Section 4.1, we prove that the intersectionW u(Γ−)∩W s(e+) is transver-
sal, even if i(Γ−) = i(e+). �

5 Generic non-existence of homoindexed orbits

In the previous sections, we have seen that the unstable manifolds of hyperbolic periodic
orbits always intersect transversally the local stable manifolds of hyperbolic periodic orbits
or equilibrium points. Likewise, the unstable manifolds of hyperbolic equilibrium points
always intersect transversally the local stable manifolds of hyperbolic periodic orbits. In
Section 4.1, we have proved that any orbit connecting two hyperbolic equilibrium points e−
and e+ of different Morse indices i(e−) and i(e+) is transverse. In Section 3.1, we have seen
that there does not exist any connecting orbit between two hyperbolic equilibrium points
with same odd index i(e−) = i(e+) = 2m− 1, m ≥ 1. Thus, in this section, it remains to
show that generically with respect to the non-linearity f , there does not exist any orbit
connecting two equilibrium points with same even index i(e−) = i(e+) = 2m, m ≥ 1.
In the proof of the generic non-existence of homoindexed orbits, we will actually show
that generically with respect to f , all the connecting orbits, connecting equilibria with
equal even Morse index, are transverse, which precludes the existence of homoindexed
orbits. To show this genericity result, we we shall use a functional characterization of the
transversality of all connecting orbits C(e−(f), e+(f)) of (1.1) and apply the Sard-Smale
theorem.

5.1 Preliminaries

In the introduction, we have assumed that the conditions (1.2) hold, which imply that Eq.
(1.1) defines a global dynamical system Sf(t) in Hs(S1) given by Sf(t)u0 = u(t), where
u(t) ∈ C1(R+, Hs(S1)) is the (classical) solution of (1.1). If the conditions (1.2) do not
hold, then Sf(t) is only a local dynamical system. At the end of the introduction, we have
remarked that the automatic transversality as well as the generic transversality properties
are still true, even if Hypothesis (1.2) does no longer hold. For this reason, in this section,
we do not take into account this hypothesis.

23



We recall that G denotes the space C2(S1×R×R,R) endowed with Whitney topology
(see (1.3)). We fix a non-linearity f0 in G (satisfying or not Hypothesis (1.2)). We assume
that f0 is chosen so that all the equilibria and periodic orbits of the corresponding equation
(1.1) are hyperbolic. We also consider the set C0(e

−
0 , e

+
0 ) ≡ Cf0(e

−
0 , e

+
0 ) of all the orbits

u(t) = Sf0(t)u0 of (1.1), connecting two (hyperbolic) equilibria e±0 . Remark that e+0 could
be equal to e−0 .

In the next section 5.3, we shall give a functional characterization of the transversality
of the connecting orbits C(e−(f), e+(f)) of (1.1) for t ∈ R, which connect equilibria e−(f)
and e+(f), close to e−0 and e+0 , when f belongs to a small enough neighbourhood of f0 in
G. We will show that, even if C0(e

−
0 , e

+
0 ) is not a transverse connecting orbit, we can find

f as close to f0 as is wanted so that all the connecting orbits C(e−(f), e+(f)) (with norm
less than a given constant) are transverse.

Since G is not metrizable and the classical perturbation theorems are usually proved
in Banach spaces, we will “replace” G by a Banach space in the following way.
Since Hs(S1) is continuously embedded in C1(S1), there exists a positive integer k0 > 1
such that ‖v‖C1 ≤ k0‖v‖Hs, for any v ∈ Hs(S1). Now, for any M0, we introduce the
restriction operator R(M0) : g ∈ G 7→ Rg ∈ C2(S1× [−k0(M0+2), k0(M0+2)]× [−k0(M0+
2), k0(M0 + 2)],R) defined by

R(M0)g = g|S1×[−k0(M0+2),k0(M0+2)]×[−k0(M0+2),k0(M0+2)] .

The map R(M0) is continuous, open and surjective from G into R(M0)G.
In what follows, we need the following two auxiliary lemmas. The first lemma allows

to construct appropriate neighborhoods of the equilibria e±0 in Hs(S1), when f is close to
f0 in a small enough neighborhood of f0 in C

2. This lemma is classical and is proved as [8,
Lemma 4.c.2] (see also [9, Lemma 4.10 ]). Its proof mainly uses the continuous dependence
of the equilibria and local unstable or stable manifolds with respect to the non-linearity f .

Lemma 5.1. Let M0 be a given positive constant and f0 ∈ G be given such that all its
equilibrium points are hyperbolic. Then, f0 has a finite number of equilibria ej, 1 ≤ j ≤ N0

such that ‖ej‖Hs ≤ M0. There exist r0 > 0, R0 > 0, R1 > 0, with r0 < R0 < R1, and a
small neighbourhood V(f0) ≡ V(f0,M0) of f0 in R(M0)G, depending only on f0 and M0,
such that the following properties hold:

1. For any f ∈ V(f0,M0) and any j, 1 ≤ j ≤ N0, there exists an equilibrium point
ej(f) of Sf (t) in BHs(ej(f0), r0). The equilibrium ej(f) is unique in the closed ball
BHs(ei(f0), R1)) and has the same Morse index as ej(f0).

2. R1 can be chosen so that BHs(ei(f0), R1)) ∩BHs(ej(f0), R1)) = ∅, if i 6= j.

3. There exist small neighbourhoods Nj(f) of ej(f), (with BHs(ej(f0), R0) ⊂ Nj(f) ⊂
BHs(ej(f0), R1)), which converge to Nj(f0) in H

s(S1) as f converges to f0 in R(M0)G
and satisfy the following property:
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the local stable set W s
loc,f(ej(f),Nj(f)) and the local unstable set W u

loc,f(ej(f),Nj(f))
are C1-manifolds of codimension i(e(f0)) and dimension i(e(f0)) respectively. More-
over, W u

loc,f(ej(f),Nj(f)) ∩W
s
loc,f(ej(f),Nj(f)) = {ej(f)}.

4. If u(t) = Sf(t)u
∗ is a solution of (1.1) such that u(t) belongs to BHs(ej(f0), R0) for

all t ≥ t0 (respectively, to BHs(ej(f0), R0) for all t ≤ t1), then u(t), t ≥ t0 belongs to
the local stable manifold W s

loc,f(ej(f),Nj(f)) (respectively u(t), t ≤ t1 belongs to the
local unstable manifold W u

loc,f(ej(f),Nj(f))).

5. Moreover, there exists a positive constant c0 such that, if u1, u2 are two solutions of
(1.1) with f = f1 and f = f2, where fi, i = 1, 2 belong to V(f0,M0), and if u1(t),
u2(t) belong to BHs(ej(f0), R0) for all t ∈ J , where J = (−∞, t0] or J = [t0,+∞) for
some t0 ∈ R, then,

sup
t∈J

‖u1(t)− u2(t)‖Hs ≤ c0
(

‖f1 − f2‖C1 + ‖u1(t0)− u2(t0)‖Hs

)

(5.1)

We also need the following auxiliary lemma about convergence of connecting orbits. Its
proof is the same as the proofs of [8, Lemma 4.c.3] and [9, Lemma 4.11 ]. See the proof of
Lemma 6.2 for similar arguments.

Lemma 5.2. Let f0, M0 and r0 < R0 be as in Lemma5.1. Let e−(f0) and e+(f0) be two
(hyperbolic) equilibria of f0 satisfying the conditions of Lemma 5.1. Let ρ0 > 0 be any
positive number such that r0 < ρ0 < R0.

Let fν ∈ V(f0) be a sequence converging in R(M0)G to some function f∞ ∈ V(f0).
Assume that, for ν = 1, 2, . . ., uν is a solution of (1.1) for f = fν such that,

uν(t) ∈ BHs(0,M0) , ∀t ∈ R

uν(t) ∈ BHs(e−(f0)), ρ0) , ∀t ∈ (−∞,−t0]

uν(t) ∈ BHs(e+(f0)), ρ0) , ∀t ∈ [t0,∞) ,

(5.2)

where t0 is a positive time. If e−(f0) = e+(f0) = e(f0), we assume in addition that there
exists a sequence of times tν ∈ (−t0, t0) such that uν(tν) /∈ BHs(e(f0), R0).
Then, uν admits a subsequence uνj that converges in C0

b (R, H
s(S1)) to a non trivial con-

necting orbit u∞ of (1.1) for f = f∞, connecting the equilibria e−(f∞) and e+(f∞).

Remark : If, in the case where e−(f0) = e+(f0) = e(f0), we do not require that there exists
a sequence of times tν ∈ (−t0, t0) such that uν(tν) /∈ BHs(e(f0), R0), then the subsequence
uνj could converge in C0

b (R, H
s(S1)) to an equilibrium point e(f∞) of Sf∞(t).

In [8], in order to give a functional characterization of the transversality of the con-
necting orbits C(e−, e+), Brunovský and Poláčik have introduced a functional defined on a
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subspace E of the continuous bounded mappings from R into L2. In our situation, following
the path of [8], we could introduce the spaces,

E = C1,δ(R, L2(S1)) ∩ C0,δ(R, H2(S1)) , δ > 0 , Z = C0,δ(R, L2(S1)) .

Then, we would fix a non-linearity f0, the equilibrium points of which are all hyperbolic,
and fix two such equilibria e−0 and e+0 . By Lemma 5.1, if a solution u(t) = Sf0(t)u0 belongs
to the ball BHs(e+0 (f0), R0) for every time t ≥ t0 and to the ball BHs(e−0 (f0), R0) for every
time t ≤ −t0, where t0 > 0, then u(t) is a connecting orbit from e−0 to e+0 . This leads us to
introduce the open subset U0 ⊂ E ,

U0 ≡ U0(e
−
0 , e

+
0 ) = {w(t) ∈ E |w(t) ∈ BHs(e+0 (f0), R0) for every t ≥ t0 ,

w(t) ∈ BHs(e−0 (f0), R0) for every t ≤ −t0} .
(5.3)

We could finally define the functional Φ(w, f) : (w, f) ∈ U0 × V(f0) 7→ Φ(w, f) ∈ Z by

Φ(w, f) = wt(x, t)− wxx(x, t) + f(x, w(x, t), wx(x, t)) . (5.4)

As in [8, Lemma 4.b.5 and Corollary 4.b.6], we could show that, if (u, f) belongs to
Φ−1(0) ∩ (U0 × V(f0)), then the linearized operator DuΦ(u, f) is a Fredholm operator of
index i(e−0 ) − i(e+0 ). Moreover, we could show that, if 0 is a regular value of the map
u ∈ U0 7→ Φ(u, f), then all the connecting orbits ũ(t) such that (ũ, f) ∈ U0 × V(f0))
are transverse. This is a consequence of a functional characterisation of the transversality
similar to the one of Appendix B. Then, we would apply the Sard-Smale theorem (Theorem
A.1) to the function Φ to deduce that, generically with respect to f , 0 is a regular value
of the map u ∈ U0 7→ Φ(u, f).

However, we have seen, in [9], that it is more convenient to use a discretized version
of the functional Φ, that is, to work with bounded sequences (w(nτ))n∈N rather than with
bounded continuous mappings w(t). In the next section, as in [9], we shall discretize the
time variable and replace the functional Φ(·) defined on bounded functions on R by a
discrete analog, defined on bounded sequences.

5.2 Proof of Theorem 1.5

As already explained, the proof of Theorem 1.5 essentially consists in using the (discrete)
functional characterisation of the transversality given in Appendix B and in applying the
Sard-Smale theorem to an appropriate discretization of the functional (5.4). The applica-
tion of the Sard-Smale theorem involves some technical difficulties. The way to overcome
them is now well understood (see [8] and [9]). The verification of the surjectivity of the
functional Φ is the crucial point in the application of the Sard-Smale theorem.

The proof of Theorem 1.5 can be decomposed into several steps.
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Step 1: Choice of particular neighborhoods and reduction to a simpler problem

We introduce the sequence of bounded open sets, m ∈ N, given by

Bm = BHs(0, m) = {v ∈ Hs(S1) | ‖v‖Hs < m} .

Since Hs(S1) = ∪mBm, Theorem 1.5 will be proved if we show that, for each m, there
exists a generic set in G, such that, for any f in this generic set, any orbit ũ(t) of (1.1),
connecting two (hyperbolic) equilibria and satisfying ũ(t) ∈ Bm, t ∈ R, is transverse. We
recall that, since Hs(S1) is continuously embedded in C1(S1), there exists a positive integer
k0 such that ‖v‖C1 ≤ k0‖v‖Hs, for any v ∈ Hs(S1). In [30, Proposition 3.2], we have shown
that the set

Oh
m = {f ∈ G | any equilibrium e of (1.1) with ‖e‖C1(S1) ≤ k0(m+ 1) is hyperbolic}

is open and dense in G.
As in Section 5.1, we want to work in subspaces of C2(S1×[−k0(m+2), k0(m+2)]×[−k0(m+
2), k0(m+ 2)],R) and hence, we use the restriction operator R(m) that we simply denote
R. We set ROm = R(Oh

m) endowed with the topology of C2(S1 × [−k0(m + 2), k0(m +
2)]× [−k0(m+ 2), k0(m+ 2)],R), which is a separable Banach space. The set ROm is an
open subset of C2(S1× [−k0(m+2), k0(m+2)]× [−k0(m+2), k0(m+2)],R) and the map
R is continous, open and surjective.

As already remarked in [8, Proof of Theorem 4.c.1, p. 165] (and also in [9, Proposition
4.12]), Theorem 1.5 will be proved by using the following proposition.

Proposition 5.3. Assume that, for any m ∈ N and any f0 ∈ ROm, there exist a small
neighbourhood Vf0 of f0 in ROm (or simply in C2(S1× [−k0(m+2), k0(m+2)]× [−k0(m+
2), k0(m+2)],R)) and a generic set Gf0,m in Vf0 such that, for any f ∈ Gf0,m, any solution
ũ(t) of (1.1), connecting two (hyperbolic) equilibria and satisfying ‖ũ(t)‖Hs ≤ m, for any
t ∈ R, is transverse. Then Theorem 1.5 holds.

Proof: Let m be given. Since ROm is separable, there exists a countable set of functions
fi, i ∈ N, such that the family of corresponding neighbourhoods (Vfi), i ∈ N, covers ROm.
Let (Gfi,m), i ∈ N, be the corresponding generic sets and et G̃fi,m = Gfi,m ∪ (ROm \ Vfi),
which is a generic subset of ROm. The set Gm = ∩i∈NG̃fi,m is generic in ROm. Moreover,
for any f ∈ Gm, any solution ũ(t) of (1.1), connecting two (hyperbolic) equilibria and
satisfying ‖ũ(t)‖Hs ≤ m, t ∈ R, is transverse. Since the map R is continous, open and
surjective, R−1(Gm) and R−1(Gm)∩Oh (where Oh is the generic set introduced in Theorem
1.3) are generic subsets of G. Finally, we notice that OM = ∩m∈NR

−1(Gm) ∩ Oh is the
generic set given in Theorem 1.5. �

The interest of Proposition 5.3 is that we can now work in a small neighborhood Vf0
of f0 in ROm insted of working in ROm. This neighborhood can be chosen as small as is
needed.
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From now on, we fixm ∈ N and f0 ∈ ROm. We apply Lemma 5.1 withM0 = m. Hence,
there exists a small neigborhood V(f0) of f0 in ROm such that all the properties described
in Lemma 5.1 are satisfied. In particular, let ej(f0), 1 ≤ j ≤ N0 be the (hyperbolic)
equilibrium points of Sf0(t) such that ‖ej(f0)‖Hs ≤ m. Since Sf0(t) has also a finite
number of (hyperbolic) equilibrium points in the closed ball BHs(0, m + 1), there exist
two real numbers k and k1 such that 1 < k1 < k < k0(m + 2)/(m + 1) and that Sf0(t)
has only N0 equilibrium points in the closed ball BHs(0, km). Moreover, we may choose
the neighbourhood V(f0) of f0 small enough so that, for any f ∈ V(f0), Sf(t) has only
N0 equilibrium points in the closed balls BHs(0, km) and has no equilibrium points in
{v ∈ Hs(S1) | k1m ≤ ‖v‖Hs ≤ km}. Let r0 and R0 be chosen as in Lemma 5.1. We notice
that r0 and R0 can be chosen small enough so that, for any 1 ≤ j ≤ N0, BHs(ej(f0), R0) ⊂
BHs(0, km). For later use, we also fix ρ0 and ρ1 such that r0 < ρ0 < ρ1 < R0.

For any (even) integer d, we introduce the set Ed of equilibria of Eq. (1.1) for f = f0
in BHs(0, m), the Morse indices of which are equal to d and we set

Dd = ∪ej(f0)∈EdBHs(ej(f0), r0) .

For any integer ℓ and (even) integer d, we denote by Gℓ,dm the set of all f ∈ V(f0) that have
the following property: every solution u of (1.1) satisfying

u(t) ∈ Bm , ∀t ∈ R

u(t) ∈ Dd , ∀t ∈ (−∞,−ℓ] ∪ [ℓ,+∞) ,
(5.5)

is transverse. We notice that, due to Lemma 5.1, any non-trivial orbit satisfying the
conditions (5.5) is a connecting orbit, connecting two equilibria contained in Dd. Due to
the choice of V(f0), the set

Gm = ∩ℓ,dG
ℓ,d
m

satisfies the transversality conditions stated in Proposition 5.3. It is therefore sufficient to
prove that each Gℓ,dm is open and dense in V(f0).

Step 2: Proof of the openess of Gℓ,dm
Assume that (fν) is a sequence in V(f0) \ Gℓ,dm which converges to f∞ ∈ V(f0). We want
to show that f∞ does not belong to Gℓ,dm . Since fν ∈ V(f0) \ Gℓ,dm , there exists a solution of
(1.1) for f = fν , distinct from any equilibrium and connecting two equilibria in Dd. Since
there is only a finite number of sets BHs(ej(f0)r0) in Dd, passing to a subsequence, we may
suppose that there exist indices i1, i2, with 1 ≤ i1 ≤ N0, 1 ≤ i2 ≤ N0 such that

uν(t) ∈ BHs(ei1(f0), r0) , ∀t ∈ (−∞,−ℓ],

uν(t) ∈ BHs(ei2(f0), r0) , ∀t ∈ [ℓ,+∞) .

Moreover, if i1 = i2 ≡ i, since the solution uν(t) is not an equilibrium point, there exists a
time τν such that uν(τν) /∈ BHs(ei(f0), R0). By Lemma 5.2, there exists a subsequence uνj
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that converges in C0
b (R, H

s(S1)) to a non trivial connecting orbit u∞ of (1.1) for f = f∞,
connecting the equilibria ei1(f∞) and ei2(f∞). Since this non-trivial orbit connects two
equilibrium points with same Morse index, it cannot be a transverse orbit, which proves
the openess of Gℓ,dm .

It remains to show that Gℓ,dm is dense in V(f0). This will be done in the next (and
remaining) steps of the proof, by introducing a discrete version of the functional Φ described
in Section 5.1 and applying the Sard-Smale theorem to it. To this end, we first need to
discretize the semi-flow Sf(t).

Step 3: Discretization of the semi-flow Sf(t)

For any u0 ∈ Hs(S1) and f close to f0, we consider the image by the time τ -map Sf (τ)u0 ∈
Hs(S1) of u0,

G(u0) := Gf(u0) = eAτu0 +

∫ τ

0

eA(τ−σ)f(x, Sf(σ)u0, ∂x(Sf(σ)u0)) dσ , (5.6)

where A = ∂xx. As we do not assume global existence of solutions in this section, G(u0) may
not be defined if Sf(t)u0 blows up in a time shorter than τ . To overcome this difficulty,
for any given m > 0, we choose a time τm > 0 such that G is well defined for any
u0 ∈ BHs(0, m) and any f in a neighbourhood of f0. Then, since u 7→ f(., u, ux) belongs
to Cr(Hs(S1), L2(S1)), r ≥ 1, the mapping G belongs to Cr(BHs(0, m), Hs(S1)) and, for
any v0 ∈ Hs(S1),

DG(u0)v0 = eAτmv0 +

∫ τm

0

eA(τm−σ)
(

Duf(x, Sf(s̃)u0, ∂x(Sf(σ)u0))((DSf(σ)u0)v0)

+Duxf(x, Sf(σ)u0, ∂x(Sf(σ)u0))((DSf(σ)u0)v0)x

)

dσ ,

(5.7)

that is, DG(u0)v0 is the image at the time t = τm of the (classical) solution of the linearized
equation,

∂tv = Av +Duf(x, Sf (t)u0, ∂x(Sf(t)u0))v +Duxf(x, Sf(t)u0, ∂x(Sf(t)u0))vx , t > 0,

v(0) = v0 .

In other words, if ũ(t) is a bounded orbit of (1.1) with supt∈R ‖ũ(t)‖X ≤ m, then, for any
n ∈ Z,

G(ũ(nτm)) = ũ((n+ 1)τm) , DG(ũ(nτm))v0 = Tũ((n + 1)τm, nτm)v0 , (5.8)

where Tũ(t, s) is the evolution operator (on L2(S1)) defined by the linearized equation along
the bounded orbit ũ(t) (see Eq. (B.11) in Appendix B.3).

In the next step, we shall introduce the discretized version of the functional Φ defined
in (5.4) and the “discretized” open set corresponding to U0. We require several smallness
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conditions on the time step τm. We assume that τ ≡ τm ≡ τm,k,k1 and V(f0) are small
enough such that:
(i) if ‖u0‖Hs ≤ m, then Sf0(t)u0 ∈ BHs(0, k1m), for 0 ≤ t ≤ τm,
(ii) if ‖u0‖Hs ≤ k1m, then Sf0(t)u0 ∈ BHs(0, km), for 0 ≤ t ≤ τm,
(iii) if u0 ∈ BHs(ej(f0), ρ0), 1 ≤ j ≤ N0 and f ∈ V(f0), then Sf(t)u0 ∈ BHs(ej(f0), ρ1) for
0 ≤ t ≤ τ0.
With these conditions, we control the behavior to the continuous solution Sf (t)u0 between
two time steps nτ and (n + 1)τ . For example, (iii) ensures that if u(nτ) belongs to
BHs(ej(f0), ρ0) for any large enough n, then u(t) belongs to BHs(ej(f0), R0) for t large
enough and thus u(t) belongs to the local stable manifold of ej(f0).

Step 4: A functional characterisation of the transversality

We are now ready to define the discretized version of the functional Φ introduced in
Section 5.1. This follows the lines of [9].

We recall that the integer m, the function f0 and the neighbourhood V(f0) are fixed.
Since the Sard-Smale theorem requires that Φ is defined on open sets and the set Bm used
in the definition of Gℓ,dm is closed, we need to introduce the following set

B∗
m = {v ∈ Hs(S1) | ‖v‖Hs < k1m} .

Let Ed be the set of equilibrium points of Sf0(t) in Bm of Morse index d. We set

D∗
d = ∪ej(f0)∈EdBHs(ej(f0), ρ0) .

For any integer ℓ and any (even) integer d, we finally introduce the following subspace of
ℓ∞(Z, Hs(S1)),

X ≡ Xm,ℓ,d = {w(·τ) ∈ ℓ∞(Z, Hs(S1)) | ∀|n| ≥ ℓ, w(nτ) ∈ D∗
d and ∀n ∈ Z, w(nτ) ∈ B∗

m} .
(5.9)

We notice that X is open in ℓ∞(Z, Hs(S1)) and contains the discretizations of all connecting
orbits of Sf (t) satisfying (5.5). We next define the discretized map Φ ≡ Φm,ℓ,d : Xm,ℓ,d ×
V(f0) → l∞(Z, Hs(S1)) by

Φ(w, f)(n) ≡ Φm,ℓ,d(w, f)(n) = w((n+ 1)τ)−Gf (w(nτ)) , ∀n ∈ Z , (5.10)

where Gf has been defined in (5.6).
Arguing as in [9, Section 4.2], we obtain the following characterization of the transver-

sality. Its proof is based on the abstract formulation of transversality given in Appendix
B. Without loss of generality, we may replace V(f0) by a smaller neighborhood and thus
assume that V(f0) is actually a convex neighborhood.

Theorem 5.4. The above map Φ : Xm,ℓ,d × V(f0) → l∞(Z, Hs(S1)) is of class C1. A pair
(u, f) belongs to Φ−1(0) if and only if u is the discretization of a connecting orbit ũ(t) (or
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an equilibrium point) of Sf(t) contained in BHs(0, km) whose discretization belongs to B∗
m.

Moreover, for any (u, f) ∈ Φ−1(0) the mapping DuΦ(u, f) is a Fredholm operator of index
0.
If 0 is a regular value of the map u ∈ Xm,ℓ,d 7→ Φ(u, f), then all the connecting orbits the
discretizations of which are contained in Xm,ℓ,d are transverse, i.e. f ∈ Gℓ,dm .

Proof: The description of the zeros (u, f) of Φ is obvious. Indeed, Gf(u(nτ)) = Sf(τ)u(nτ)
and thus u is the discretization of a trajectory ũ(t) of Sf(t). Moreover, due to the definition
of X ≡ Xm,ℓ,d and to Lemma 5.1, it is a connection between two equilibrium points e−(f)
and e+(f) of same index d and is a constant sequence if and only if it coincides with an
equilibrium e−(f) = e+(f).

It is straightforward to prove that the mapping Φ : X × V 7→ l∞(Z, Hs(S1)) is of class
C1 (see [8, Lemma 4.c.4] or [9, Lemma 4.13]). Moreover, the first derivative DΦ(u, f), for
(u, f) ∈ X × V(f0), is given by

DΦ(u, f)(Y, h)(n) = Y ((n+ 1)τ)−DuGf(u(nτ)))Y (nτ)−DfGf(u(nτ)) · h

= Y ((n+ 1)τ)− Tu,f((n+ 1)τ, nτ)Y (nτ)−DfGf (u(nτ)) · h

≡ (Lu,fY )(nτ)−DfGf (u(nτ)) · h ,

(5.11)

where (Y, h) is any element of l∞(Z, Hs(S1)) × G and where Tu,f , t ≥ s, is the evolution
operator defined by the linearized equation (B.11) and ũ is the solution of (1.1), the
discretization of which is given by u.

The expression (5.11) of the derivative DΦ shows that u is a regular zero of the mapping
u ∈ Xm,ℓ,d 7→ Φ(u, f) if and only if the mapping Lu,f is surjective. Corollary B.14 implies
that the map Lu,f is surjective if and only if ũ is transverse. Corollary B.14 also tells that
Lu,f is a Fredholm operator of index equal to i(e−(f))− i(e+(f)) = 0.
As noticed above, if ũ = {. . . , e, e, . . . ., } is a constant sequence, then, by the construction
of the various neighbourhoods made in Lemma 5.1, e is a hyperbolic equilibrium point of
(1.1), which implies that e = e−(f) = e+(f). Again, by Theorem B.7, the surjectivity of
the map Lu,f is then equivalent to the hyperbolicity of e−(f). �

Step 5: Surjectivity of DΦ

As already explained, we will apply the Sard-Smale theorem to the functional Φ introduced
in Step 4 and consider the set Φ−1(0) in particular. One of the main hypotheses of the
Sard-Smale is the fact that 0 is a regular value of the map (w, f) ∈ X × V(f0) 7→ Φ(w, f).
This property will be shown in the next theorem as consequence of Corollary B.14 and the
one-to-one property of homoindexed orbits proved in Proposition 3.6.

Theorem 5.5. Assume that X and Φ are given as in Step 4.
1) The pair (ũ, f) is a regular zero of the map (w, f) ∈ X × V(f0) 7→ Φ(w, f), if and only
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if, for any nontrivial bounded solution ψ(t) ∈ C0
b (R, L

2(S1)) of the adjoint equation (B.12),
there exists g̃ ∈ RG such that

∫ +∞

−∞

〈ψ(t), g̃(ũ(t))〉L2(S1) dt 6= 0 ,

where ũ(t) = Sf(t)ũ(0) is the (continuous) trajectory corresponding to the sequence (ũ(nτ)).

2) As a consequence of the first statement and of Proposition 3.6, 0 is a regular value
of the map Φ.

Proof: We first prove the second statement of the theorem, which is a direct consequence
of Proposition 3.6. If Φ(ũ, f) = 0 and ũ is the discretization of an (hyperbolic) equilibrium
point, then as explained in the proof of Theorem 5.4, the map Lũ,f is surjective and thus
DΦ(ũ, f) is also surjective. Thus, it remains to consider the case where (ũ, f) ∈ Φ−1(0)
and ũ is not the discretization of an equilibrium point. By the first statement, the operator
DΦ(ũ, f) ∈ L(X ×V, l∞(Z, Hs(S1)) is surjective if and only if, for any nontrivial bounded
solution ψ(t) ∈ C0

b (R, L
2(S1) of the adjoint equation (B.12), there exists g̃ ∈ RG such that

∫

S1

∫ +∞

−∞

ψ(x, t), g̃(x, ũ(x, t), ũx(x, t))dxdt 6= 0 . (5.12)

Since ψ(t) is a non trivial solution of the adjoint equation, there exist x0 ∈ S1 and t0 such
that ψ(x0, t0) 6= 0. Due to the injectivity property of Proposition 3.6, for x0 fixed, there
exists no other time t1 such that ũ(x0, t1) = ũ(x0, t0) and ũx(x0, t1) = ũx(x0, t0). Moreover,
Proposition 3.6 also implies that (ũ(x0, t), ũx(x0, t)) stays outside a small neighbourhood
of (ũ(x0, t0), ũx(x0, t0)) for t close to ±∞. Therefore, one easily constructs a regular bump
function g̃ which vanishes outside a small neighbourhood of (x0, ũ(x0, t0), ũx(x0, t0)) and
is positive in this neighbourhood; so that the function (x, s) 7→ g̃(x, ũ(x, s), ũx(x, s)) is a
regular bump function concentrated around (x0, t0). For such a choice of g̃, the condition
(5.12) is thus satisfied.

We now prove the first statement of the theorem. This proof is nothing else as the
proof of [9, Theorem 4.7]. For the reader’s convenience, we reproduce it here.

As already explained, if (ũ, f) belongs to Φ−1(0), then ũ is a discretization of a trajectory
ũ(t), t ∈ R, of (1.1), connecting two equilibria e−(f) and e+(f). Without loss of generality,
we may assume that ũ is a nonconstant sequence. Indeed, if ũ = {. . . , e, e, . . . ., }, then
e = e−(f) = e+(f) is a hyperbolic equilibrium point and so ũ is a regular zero of Φ. On
the other hand, the adjoint equation (B.12) has no nontrivial bounded solution.

Thus, we assume that ũ is not a constant sequence. We recall that, by (5.11), for any
(Y, g̃) ∈ l∞(Z, Hs(S1))× RG

(DΦ(ũ, f) · (Y, g̃))(nτ) = (Lũ,fY )(nτ)−DfGf(ũ(nτ)) · g̃ .
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We notice that Lũ,f corresponds to the operator L defined in (B.2). A sequence H ∈
ℓ∞(Z, Hs(S1)) is in the range of DΦ if and only if one can choose g̃ ∈ RG such that
H + DfGf (ũ).g̃ is in the range of Lũ. According to Corollary B.14, this is equivalent to
finding g̃ such that

+∞
∑

n=−∞

〈ψ((n+ 1)τ), DfGf(ũ(nτ)) · g̃〉L2(S1) = −
+∞
∑

n=−∞

〈ψ((n+ 1)τ,H(nτ)〉L2(S1) , (5.13)

for every nontrivial sequence ψ(nτ) = T ∗(nτ, 0)ψ0, ψ0 ∈ L2(S1), which is bounded in
L2(S1). We can choose such a g̃ ∈ RG if, given a basis ψ1, ψ2, . . . , ψq of the (necessarily)
finite-dimensional vector space of bounded sequences ψ(n) = T ∗(nτ, 0)ψ0, the mapping

g̃ ∈ G 7→ (
+∞
∑

−∞

〈ψj((n+ 1)τ), DfGf (ũ(nτ)) · g̃〉L2(S1) )1≤j≤q ∈ R
q (5.14)

is surjective. If the range of the mapping (5.14) is not the whole vector space R
q, there

exists a vector (α1, . . . , αq) orthogonal to the range, that is, there exists a bounded sequence
ψ =

∑

αjψj 6= 0 such that, for any g̃ ∈ RG,

+∞
∑

n=−∞

〈ψ((n+ 1)τ), DfGf (ũ(nτ)) · g̃〉L2(S1) = 0 .

Thus, DΦ is surjective if and only if, for any bounded sequence ψ(nτ) = T ∗(nτ, 0)ψ0, there
exists g̃ ∈ RG such that,

+∞
∑

n=−∞

〈ψ((n+ 1)τ,DfGf(Ũ(nτ)) · g̃〉L2(S1) 6= 0 . (5.15)

Since the solution of (1.1) is differentiable with respect to f , we can differentiate (1.1)
formally with respect to f to deduce that, for any g̃,

DfGf(ũ(nτ)) · g̃ =

∫ (n+1)τ

nτ

Tũ((n + 1)τ, σ)g̃(ũ(σ)) dσ . (5.16)
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Using the expression (5.16) in the condition (5.15) yields

+∞
∑

n=−∞

〈ψ(n+ 1), DfGf(ũ(nτ)) · g̃〉L2(S1)

=
+∞
∑

n=−∞

∫ (n+1)τ

nτ

〈ψ((n+ 1)τ), Tũ((n + 1)τ, σ)g̃(ũ(σ))dσ〉L2(S1)

=
+∞
∑

n=−∞

∫ (n+1)τ

nτ

〈T ∗
ũ (σ, (n + 1)τ)ψ((n+ 1)τ), g̃(ũ(σ))dσ〉L2(S1)

=

∫ +∞

−∞

〈ψ(σ), g̃(ũ(σ))dσ〉L2(S1) ,

(5.17)

where, for any σ ∈ R, ψ(σ) = T ∗
ũ (σ, (n + 1)τ)ψ((n + 1)τ) = T ∗

ũ (σ, 0)ψ0. We remark that
ψ(·) belongs to C0

b (R, L
2(S1)) and is a bounded solution of (B.11). Theorem 5.5 is thus

proved. �

Step 6: Application of the Sard-Smale theorem and density of Gℓ,dm
After all the preliminaries given in the previous steps, we are now ready to apply the Sard-
Smale theorem (in the form recalled in Appendix A). This follows the lines of [8] and in
[9].

We recall that the subspace X of ℓ∞(Z, Hs(S1)) has been defined in (5.9). We introduce
the open subset Y = V(f0) of ROm and the Banach space Z = ℓ∞(Z, Hs(S1)).
We recall that the mapping Φ ≡ Φm,ℓ,d : X × Y → Z has been given in (5.10) as follows:

Φ(w, f)(n) = w((n+ 1)τ)−Gf(w(nτ)) , ∀n ∈ Z ,

where Gf has been defined in (5.6).
We now check that all the hypotheses of Theorem A.1 are satisfied with ξ = 0.

By Theorem 5.4, Φ is a C1-mapping from X × Y into Z and it is also a Fredholm
operator of index 0 for any (w, f) ∈ Φ−1(0). Thus Hypothesis 1 of Theorem A.1 holds.

By Theorem 5.5, DΦ(w, f) : TwX × TfY → T0Z is surjective, for (w, f) ∈ Φ−1(0).
Thus Hypothesis 2 of Theorem A.1 also holds.

Taking into account Lemma 5.2 and the remark following this lemma, we can prove
Hypothesis 3(b) by following the lines of the proof of the corresponding property in [9] (see
[9, Step 3 of the proof of Proposition 4.12]).

Thus, the functional Φ satisfies all the assumptions of the Sard-Smale theorem. Due
to the relation between Φ and the transversality of connecting orbits (Theorem 5.4), this
shows the genericity of Gℓ,dm in V(f0) and concludes the proof of Theorem 1.5.
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6 The non-wandering set

To prove Theorem 1.6, it remains to show that generically there does not exist non-
wandering elements which are not critical elements and that generically the number of
critical elements is finite. We emphasize that the dynamics of (1.1) may have non-trivial
non-wandering elements. Indeed, as shown in [55], every two-dimensional flow can be re-
alized in the dynamics of (1.1). Thus, one can for example create a sequence of periodic
orbits, which piles up on a homoclinic orbit. This orbit is then a non-wandering orbit
which is not critical. However, non-trivial non-wandering orbits are generically precluded.

Proposition 6.1. Assume that f is a non-linearity such that the dynamics of (1.1) satisfy
the following properties:
- there exists a compact global attractor for (1.1).
- All the equilibria and periodic orbits of (1.1) are hyperbolic.
- There is no homoclinic orbit and all the heteroclinic orbits are transversal.
Then, the set of non-wandering elements consists in a finite number of equilibrium points
and periodic orbits.

As usual in this article, the property stated in Proposition 6.1 has its equivalent for two-
dimensional dynamical systems. It mainly relies on Poincaré-Bendixson property, proved
in [14] for (1.1). Proposition 6.1 is the key point to deduce the genericity of Morse-Smale
property from the genericity of Kupka-Smale property. The genericity of Morse-Smale
property for dynamical systems of orientable surfaces shown in [46] also relies on a similar
property, see [41].

We enhance that, if f is such that (1.1) admits a compact global attractor and that
any equilibrium point and any periodic orbit are hyperbolic, then there is at most a finite
number of equilibrium points. However, as we explained above, there could exist an infinite
number of hyperbolic periodic orbits: think of a sequence of hyperbolic periodic orbits
piling up to a homoclinic orbit. One can only ensure that there is a finite number of
hyperbolic periodic orbits with a period less than a given number.

We begin the proof of Proposition 6.1 by several lemmas. We assume in the whole
section that f has been chosen so that the hypotheses of Proposition 6.1 are satisfied.

Let C be a hyperbolic equilibrium point or periodic orbit of (1.1). We recall that there
exists an open neighbourhood B of C in Hs(S1) such that each global solution u(t) of (1.1),
satisfying u(t) ∈ B for all t ≤ 0, belongs to the local unstable manifold W u

loc(C). We refer
for example to [18], [49].

Lemma 6.2. Let C be a hyperbolic equilibrium point or periodic orbit of (1.1) and let B
be the neighbourhood of C as described above. Let (un(t))n∈N be a sequence of solutions of
(1.1) such that, for each n ∈ N, there exist three times σn < tn < τn such that the following
properties hold. For all t ∈ (σn, τn), un(t) ∈ B, un(σn) ∈ ∂B, un(τn) ∈ ∂B and,

d (un(tn), C) := inf
c∈C

‖un(tn)− c‖Hs(S1) −−−−−−→
n−→+∞

0 .
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Then, there exist an extraction ϕ and a globally defined and bounded solution u∞(t) of
(1.1) such that u∞(t) ∈ W u

loc(C), t ≤ 0, and

∀ T > 0, sup
t∈[−T,T ]

∥

∥uϕ(n)(τϕ(n) + t)− u∞(t)
∥

∥

Hs(S1)
−−−−−−→
n−→+∞

0 . (6.1)

Proof: First, we claim that τn − tn −→ +∞ when n → +∞. Indeed, if this is not true,
since C is compact, we can extract a subsequence uψ(n)(tψ(n)) converging to some c ∈ C
and such that τψ(n) − tψ(n) converges to some t ≥ 0. Then, by continuity of the Cauchy
problem related to (1.1), uψ(n)(τψ(n)) converges to a point of C, which contradicts the fact
that uψ(n)(τψ(n)) ∈ ∂B.
We set T = 1. Since (1.1) admits a compact global attractor and that (τn) converges to +∞,
the sequence un(τn − T ) is precompact in Hs(S1) and there is an extraction ϕ1 such that
uϕ1(n)(τϕ1(n) − T ) converges to some u∞(−T ) ∈ Hs(S1). Let u∞(t) = S(t + T )u∞(−T ),
t ≥ −T , be the solution of (1.1) associated to u∞(−T ). By continuity of the Cauchy
problem related to (1.1), uϕ1(n)(τϕ1(n) + t) converges to u∞(t) uniformly with respect to
t ∈ [−T, T ]. To achieve the proof of uniform convergence of un(t) to u∞(t) on any compact
set of time, it is sufficient to repeat the argument for all T ∈ N and to use the diagonal
extraction ϕ(n) = ϕn ◦ ... ◦ ϕ1(n).
Finally, let us notice that u∞(t) belongs to W u

loc(C). Indeed, since un(t) ∈ B for all
t ∈ [tn, τn) and that τn − tn −→ +∞, u∞(t) ∈ B for all t ≤ 0. Due to the choice of B, this
implies that u∞(t) ∈ W u

loc(C). �

Let M ∈ R ∪ {+∞}. We use the notation [[1,M + 1]] = {k ∈ N, 1 ≤ k ≤ M + 1}. We
say that a sequence of critical elements (Ck)k∈[[1,M+1]] is connected if for any k ∈ [[1,M ]],
there exists a heteroclinic orbit uk(t) such that the α−limit set of uk(t) is Ck and its
ω−limit set is Ck+1. We recall that a chain of heteroclinic orbits denotes the sequence of
heteroclinic orbits corresponding to a connected sequence of critical elements (Ck)k∈[[1,p+1]]

with Cp+1 = C1.

Lemma 6.3. Assume that f is as in Proposition 6.1. Then, there is no connected sequence
of critical elements with infinite length. As a consequence, there is no chain of heteroclinic
orbits and, every ω−limit set and every non-empty α−limit set of trajectories of (1.1)
consist exactly of one critical element

Proof: Let M ∈ N∪{+∞} and let (Ck)k∈[[1,M+1]] be a connected sequence of closed orbits
with heteroclinic connections (uk(t))k∈[[1,M ]]. We consider the Morse indices i(Ck) of the
closed orbits. We have several cases:
- if Ck and Ck+1 are both periodic orbits, then Theorem 1.2 shows that i(Ck) > i(Ck+1).
- if Ck is an equilibrium point and if Ck+1 is an equilibrium point or a periodic orbit, then
dim(W u(Ck))=i(Ck) and codim(W s(Ck+1))=i(Ck+1). Thus, since the intersection ofW u(Ck)
and W s(Ck+1) is non-empty and transversal, one must have i(Ck) > i(Ck+1).
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- if Ck is a periodic orbit and Ck+1 is an equilibrium, then dim(W u(Ck))=i(Ck)+1 and
codim(W s(Ck+1))=i(Ck+1). Therefore, i(Ck) ≥ i(Ck+1).
Hence, the Morse index of Ck is non-increasing and decreases except if uk goes from a peri-
odic orbit to an equilibrium point. However, a sequence cannot consist only of connections
from a periodic orbit to an equilibrium and the Morse index must decrease at least every
two steps. Therefore, since the Morse indices are non-negative, M is bounded by 2i(C0).

The non-existence of connected sequence of critical elements of infinite length precludes
the existence of chains of heteroclinic orbits since every chain (Ck)k∈[[1,p+1]] with Cp+1 =
C1 can be extended to a periodic connected sequence of critical elements and thus to a
connected sequence of infinite length.

Let u0 ∈ Hs(S1) be chosen such that its ω−limit set ω(u0) is not a unique periodic
orbit. Then, the Poincaré-Bendixson property stated in Theorem 1.1 shows that ω(u0)
consists of equilibrium points and homoclinic or heteroclinic orbits connecting them. We
know that homoclinic orbits are precluded. Moreover, since there is no connected sequence
of equilibria of infinite length, there exists an equilibrium point e where no connected
sequence can be extended, that is, such that W u(e) ∩ ω(u0) = {e}. Let Be be a small
neighbourhood of e in Hs(S1) such that any solution u(t) of (1.1) satisfying u(t) ∈ Be

for any t ≤ 0, belongs to the unstable manifold W u(e). If ω(u0) 6= {e}, then one easily
constructs three sequences of times (σn), (tn) and (τn) going to +∞ and satisfying the
hypotheses of Lemma 6.2 with C = {e} and un(t) = S(t)u0. But then Lemma 6.2 implies
that there exists a solution u∞(t) of (1.1) belonging to the unstable manifold W u(e) and
with u(τϕ(n)) converging u∞(0). Therefore u∞(0) ∈ ω(u0)∩ ∂Be and W

u(e)∩ω(u0) 6= {e},
which leads to a contradiction. Therefore, ω(u0) = {e}. �

Proof of Proposition 6.1: Let ũ0 ∈ Hs(S1) be a non-wandering element and let ũ(t) =
S(t)ũ0. Using the definition of a non-wandering element, we easily construct a sequence of
trajectories un(t) such that un(0) converges to ũ0 and, for any sequence (tn), there exists
a sequence (t′n) such that t′n > tn and un(t

′
n) converges to ũ0. By Lemma 6.3, there exists

a hyperbolic critical element C1 such that ω(ũ0) = {C1}. Let B1 be a neighbourhood of
C1 as in Lemma 6.2. Assume that ũ0 6∈ C1. Replacing B1 by a smaller neighbourhood if
needed, we may assume that ũ0 6∈ B1. There is a sequence of times (tn) and a point c ∈ C1
such that ũ(tn) → c. By continuity of the Cauchy problem, we may assume without loss
of generality that un(tn) → c. As we can find a sequence of times t′n such that t′n > tn
and un(t

′
n) → ũ0 6∈ B1, there exists a sequence of times τ 1n such that un(t) ∈ B1 for

t ∈ [tn, τ
1
n) and un(τ

1
n) ∈ ∂B1. By Lemma 6.2, we may assume without loss of generality

that un(τ
1
n + t) converges to some ũ1(t) ∈ W u(C1). Now, we can repeat the arguments:

there exist a critical element C2 such that ω(ũ1(t)) = {C2} and a sequence of times τ 2n such
that, up to an extraction, un(τ

2
n + t) converges to some solution ũ2(t) ∈ W u(C2) and so

on... Thus, we are constructing a connected sequence of critical elements of infinite length,
which is precluded by Lemma 6.3. This means that ũ0 belongs to C1, that is, that our
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non-wandering element either is an equilibrium point or belongs to a periodic orbit.
To finish the proof of Proposition 6.1, it suffices to show that the number of critical

elements is finite. First, as noticed earlier, due to the compactness of the global attractor
and the hyperbolicity of the equilibrium points and the periodic orbits, the number of
equilibrium points and periodic orbits of smallest period bounded by a given number is
finite. Thus we only need to show that there does not exist an infinite sequence of periodic
orbits γn(x, t) of smallest period pn, where pn tends to infinity when n goes to infinity. If
we had such a sequence, we would be able to repeat the arguments of the first part of the
proof and, by using lemmas 6.2 and 6.3, construct a connected sequence of critical elements
of infinite length, which leads to a contradiction. �

Appendices

A Fredholm operator and Sard-Smale Theorem

As we have explained in the introduction, an ingredient of the proof of the generic non-
existence of homoindexed orbits is the Sard-Smale theorem. We recall the precise statement
of the version of the Sard-Smale theorem, that we are applying in Section 5.

Let X , Z be two differentiable Banach manifolds and Φ : X → Z be a C1 map. A
point z is a regular value of Φ if, for any x ∈ Φ−1(z) the derivative DΦ(x) is surjective and
its kernel splits, i.e. has a closed complement in TxX (sometimes this property is denoted
by Φ ⋔ z). A point z ∈ Z which is not regular is called a critical value of Φ. A subset in a
topological space is generic or residual if it is a countable intersection of open dense sets.

We recall that a continuous linear map L : X → Z between two Banach spaces X and
Z, is a Fredholm map if its range R(L) is closed and if both dim ker(L) and codimR(L)
are finite. The index ind(L) is the integer ind(L) = dim ker(L)− codimR(L).

The version of the Sard-Smale theorem given here has been proved in [25] (for weaker
versions, we also refer to [50] and [52]). The next theorem has been widely used in the
genericity proofs in [8] and [9].

Theorem A.1. Sard-Smale Theorem
Let X ,Y ,Z be three smooth Banach manifolds, Φ : X × Y → Z be a mapping of class

Cr, r ≥ 1 and ξ an element of Z. Assume that the following hypotheses hold:

1. for each (x, y) ∈ Φ−1(ξ), DxΦ(x, y) is a Fredholm operator of index strictly less than
r;

2. for each (x, y) ∈ Φ−1(ξ), DΦ(x, y) : TxX × TyY → TξZ is surjective;

3. one of the following properties is satisfied:
(a) X and Y are separable metric spaces;
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(b) the map (x, y) ∈ Φ−1(ξ) 7→ y ∈ Y is σ-proper, that is, there is a countable
system of subsets Vn ⊂ Φ−1(ξ) such that ∪nVn = Φ−1(ξ) and for each n the map
(x, y) ∈ Vn 7→ y ∈ Y is proper (i.e. any sequence (xk, yk) ∈ Vn such that yk is
convergent in Y has a convergent subsequence in Vn).

Then, the set {y ∈ Y | ξ is a regular value of Φ(., y)} contains a countable intersection of
open dense sets (and hence dense) in Y.

B Exponential dichotomies, shifted exponential di-

chotomies and applications to transversality

In the proof of the generic non-existence of homoindexed connections between equilibria,
we will use a functional characterization of the transversality property. A main tool in this
proof is the notion of dichotomy. Also, when studying the asymptotics of the solutions
of linearized equations along connecting orbits connecting a hyperbolic periodic orbit to
another critical element, we will need to consider iterates of maps and thus, in particular,
discrete shifted dichotomies. We begin this appendix by recalling the definition and the
basic properties of the exponential dichotomies and shifted exponential dichotomies. Then,
we give some applications to the scalar parabolic equation on S1.
The results, that we recall here, are all contained in [22], [35], [19], [24], [10], [8], [9], [43]
and [44].

B.1 Generalities

Let X be a Banach space and J be an interval in Z. Let {Tn ∈ L(X,X) |n ∈ J} be a
family of continuous maps from X into X . We define the family of evolution operators

T (m,m) = I , T (n,m) = Tn−1 ◦ . . . ◦ Tm , ∀n ≥ m in J ,

where I is the identity in X .

Definition B.1. We say that the family of linear operators Tn, n ∈ J , or the family of
evolution operators {T (n,m) |n ≥ m in J}, admits an exponential dichotomy (or discrete
dichotomy) on the interval J with exponent β > 0 (or constant e−β), bound M > 0 and
projections P (n) if there is a family of continuous projections P (n), n ∈ J , such that the
following properties hold for any n in J :

(i) T (n,m)P (m) = P (n)T (n,m) for n ≥ m in J ,

(ii) the restriction T (n,m)|R(P (m)) is an isomorphism of R(P (m)) onto R(P (n)), for n ≥
m in J , and T (m,n) is defined as the inverse from R(P (n)) onto R(P (m)),
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(iii) ‖T (n,m)(I − P (m))‖L(X) ≤Me−β(n−m) for n ≥ m in J ,

(iv) ‖T (n,m)P (m)‖L(X) ≤Me−β(m−n) for n ≤ m.

If dimR(P (n)) = k is finite for some n ∈ J , the equality holds for all n ∈ J by (ii) and
we say that the dichotomy has finite rank k.

Remarks :

1) We could also have defined (continuous) exponential dichotomies on an interval J ⊂ R

(see [22] for instance). However, here we restrict our discussion to discrete dichotomies
on time intervals J ⊂ Z for two reasons. First, as it was already pointed out by Henry
in [24], the theory of dichotomies is much simpler with discrete time and there is little
loss in restricting to this case. Moreover, in our applications to the asymptotics near
periodic orbits, we really need to work with maps and not with continuous evolution
operators. Finally, we remark that constructing discrete dichotomies from continuous ones
or conversely is an easy task (see Theorem 1.3 of [24] for example).
2) Let A be a sectorial operator on a Banach space Y . For any J ⊂ Z and n ≥ m in J , we
define Tn = eA (independent of n) and T (n,m) = eA(n−m) on the Banach space X = Y α,
α ∈ [0, 1]. Then {T (n,m) |n ≥ m in J} is a family of evolution operators on X . If the
spectrum σ(A) satisfies σ(A) ∩ {µ |Reµ = 0} = ∅, then, for any t0 > 0, we can define the
projection P by

P = I −
1

2iπ

∫

|z|=1

(zI − eAt0)−1 dz . (B.1)

And T (n,m) has an exponential dichotomy with projection P . If the spectrum σ(A)
satisfies σ(A) ∩ {µ | − β ≤ Reµ ≤ β} = ∅ for some β > 0, then there exists a positive
constant M such that T (n,m) has an exponential dichotomy with projection P , exponent
β and constant M . If the essential spectrum of eAt is strictly inside the unit circle, the
dichotomy has finite rank. This is the case for the linear parabolic equation.

Let again {Tn ∈ L(X,X) |n ∈ J} be a family of continuous maps from X into X . We
define the family of operators on X∗, given by

T ∗(m,n) = (T (n,m))∗ .

Definition B.2. We say that the family of maps T ∗
n , n ∈ J , or the family of evolution

operators {T ∗(m,n) |n ≥ m in J}, admits a reverse exponential dichotomy on the interval
J with exponent β > 0, bound M > 0 and projections P ∗(t) if there is a family of
continuous projections P ∗(n), n ∈ J , such that the following properties hold, for any n in
J :

(i) T ∗(m,n)P ∗(n) = P ∗(m)T ∗(m,n) for n ≥ m in J ,

(ii) the restriction T ∗(m,n)|R(P ∗(n)) is an isomorphism of R(P ∗(n)) onto R(P ∗(m)), for
n ≥ m in J , and T ∗(n,m) is defined as the inverse from R(P ∗(m)) onto R(P ∗(n)),
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(iii) ‖T ∗(m,n)(I − P ∗(n))‖X ≤Me−β(n−m) for n ≥ m in J ,

(iv) ‖T ∗(m,n)P ∗(n)‖X ≤Me−β(m−n) for n ≤ m.

The following natural property is proved in [8] for example.

Lemma B.3. If the family of evolution operators T (n,m), n,m ∈ J on the Banach space
X admits an exponential dichotomy on the interval J , with projections P (n), exponent β
and boundM , then T ∗(m,n) = (T (n,m))∗ admits reverse exponential dichotomy on J with
the same exponent and bound and with the projections P ∗(n) = (P (n))∗.

In our applications to the asymptotics near a periodic orbit, we cannot directly use the
concept of exponential dichotomy since 1 always belongs to the spectrum of the period
map Π(p, 0) associated to a periodic orbit γ(t) of (1.1) of minimal period p. For this rea-
son, we also recall the notion of shifted exponential dichotomy, which is a generalization
of the notion of exponential dichotomy. Calling these dichotomies shifted, we follow the
terminology of [19]; alternatively it is sometimes called pseudodichotomy. If λ1 < 1 < λ2,
it reduces to the usual exponential dichotomy.

Definition B.4. We say that the family of linear operators Tn, n ∈ J , or the family of
linear evolution operators {T (n,m) |n ≥ m in J}, admits a shifted exponential dichotomy
on the interval J with gap [λ1, λ2], bound K > 0 and projections P (n), Q(n) = I−P (n) if
there is a family of continuous projections P (n), n ∈ J , such that the following properties
hold for any n in J :

i) T (n,m)P (m) = P (n)T (n,m) for n ≥ m in J ,

ii) the restriction T (n,m)|R(P (m)) is an isomorphism of R(P (m)) onto R(P (n)), for n ≥ m
in J , and on R(P (n)), T (m,n) is defined as the inverse from R(P (n)) onto R(P (m)),

iii) ‖T (n,m)(I − P (m))‖X ≤ Kλn−m1 for n ≥ m in J ,

iv) ‖T (n,m)P (m)‖X ≤ Kλn−m2 for n ≤ m.

We also say that the family of operators Tn, n ∈ J , or the family of evolution operators
{Φ(n,m) |n ≤ m in J}, admits a reverse shifted exponential dichotomy on the interval
J with gap [λ1, λ2], bound K > 0 and projections P (n), Q(n) = I − P (n) if the above
properties hold with n ≥ m in J (resp. n ≤ m in J) replaced by n ≤ m in J (resp. n ≥ m
in J).

Before describing the applications of these abstract notions to our problem, we recall
two properties, which are very useful in proving that linearized equations along connecting
orbits of (1.1) admit exponential dichotomies. The next roughness property is given in
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[24, Corollary 1.9] and is a consequence of [24, Theorem 1.5 and Lemma 1.6] (see also [22,
Theorem 7.6.7] as well as Proposition C.1 below). The extension of the result below to
trichotomies is stated in [19].

Theorem B.5. Perturbation of exponential dichotomies
Let n0 > 0 (resp. n0 < 0) be a given integer and let T (n + 1, n), n ∈ Z+, n ≥ n0,

(respectively n ∈ Z−, n ≤ n0), be a discrete family of evolution operators on a Banach space
X admitting a discrete dichotomy on [n0,+∞) (respectively on (−∞, n0]), with exponent
β, constant M and projections P T (n). Let M1 > M , 0 < β1 < β and 0 < ε ≤ ( 1

M
−

1
M1

) e−β1−e−β

1+e−(β+β1)
. If S(n + 1, n), n ∈ Z+, n ≥ n0 (respectively n ∈ Z−, n ≤ n0), is a discrete

family of evolution operators on X with ‖S(n + 1, n) − T (n + 1, n)‖L(X,X) ≤ ε, for all
n ≥ n0 in Z+ (respectively for all n ≤ n0 in Z−), then S(n + 1, n) admits a discrete
dichotomy on [n0,+∞) (respectively on (−∞, n0]) with exponent β1, constant M1 and
projections P S(n). Moreover, the projections P S(n) satisfy supn ‖P

T (n)−P S(n)‖L(X,X) =
O(supn ‖T (n+ 1, n)− S(n+ 1, n)‖L(X,X)) as supn ‖T (n+ 1, n)− S(n+ 1, n)‖L(X,X) tends
to 0. Furthermore, there exists ε0 > 0 such that, for 0 < ε ≤ ε0, if T (n + 1, n) has a
dichotomy of finite rank m, then the dichotomy of S(n+ 1, n) is also of finite rank m.

The next result, which is proved in [24, Theorem 1.14], allows to extend dichotomies
from smaller to larger “time intervals”. The continuous version of it is proved in [35] and
the extension to trichotomies is stated in [19].

Theorem B.6. Extension of exponential dichotomies
Let T (n + 1, n), n ∈ Z−, n < n1, be a discrete family of evolution operators on a Ba-

nach space X, and suppose that, for n < n0, with n0 < n1, T (n + 1, n) admits a discrete
dichotomy with finite rank m, exponent β, constant M and projections P (n), n ≤ n0. As-
sume moreover that T (n1, n0)∣

∣R(P (n0))
is injective. Then, T (n + 1, n), for n < n1, admits

a discrete dichotomy with the same rank m, same exponent and projections P̃ (n), n ≤ n1,
such that ‖P (n)− P̃ (n)‖L(X) → 0 exponentially as n goes to −∞. The constant M has to
be replaced by a larger one.
Let T (n + 1, n), n ∈ Z+, n ≥ n0, be a discrete family of evolution operators on a Banach
space X. Suppose that, for n ≥ n1, with n0 < n1, T (n+ 1, n) admits a discrete dichotomy
with finite rank m, exponent β, constant M and projections P (n), n ≥ n1. Assume more-
over that the adjoint operator T ∗(n0, n1)∣

∣R(P ∗(n1))
is injective, then T (n+1, n), for n ≥ n0,

admits a discrete dichotomy with the same rank m, same exponent β and projections P̃ (n),
n ≥ n0, such that ‖P (n)− P̃ (n)‖L(X) → 0 exponentially as n goes to +∞. The constant
M has to be replaced by a larger one.
In both cases, the convergence of ‖P (n)− P̃ (n)‖L(X) is of order O(e−2β|n|).
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B.2 Dichotomies and Fredholm property

In Section 5, in proving the generic non-existence of homoindexed connecting orbits, we
use a functional characterization of the transversality, which is based on dichotomies and
a Fredholm property. In this appendix, we quickly recall the tools and basic facts, which
lead to this functional characterization.

Let X be a Banach space. We introduce the following spaces

Z = ℓ∞(Z, X) , (respectively Z± = ℓ∞(Z±, X)) .

Given a family T (n,m) of evolution operators on X for n,m ∈ Z, we define the mapping
L from XZ into XZ (respectively the mapping L± from XZ

±

into XZ
±

) by

(LY )(n) = Y (n + 1)− T (n+ 1, n)Y (n) , ∀n ∈ Z , (B.2)

(respectively (L±Y )(n) = Y (n+ 1)− T (n+ 1, n)Y (n), ∀n ∈ Z±).
We say that Y = {Y (n)}n∈Z belongs to the domain D(L) if supn∈Z ‖Y (n + 1) − T (n +
1, n)Y (n)‖X < ∞ (likewise, we define D(L±)). This allows to define the operator L :
D(L) ⊂ Z → Z by (B.2) (likewise, we may define the operator L± : D(L±) ⊂ Z± → Z±).

In [22, Theorem 7.6.5], Henry has given the following characterization of the existence
of a discrete dichotomy for T (n + 1, n) (see also [24]; for a finite-dimensional version, see
[43], [44]). The family of evolution operators T (n + 1, n) has a discrete dichotomy if and
only if, for every bounded sequence F ∈ Z, there is a unique bounded sequence Y ∈ Z
with (LY )(n) := Y (n+1)−T (n+1, n)Y (n) = F (n), for any n ∈ Z. Moreover, the unique
bounded solution is given by

Y (n) =

+∞
∑

k=−∞

G(n, k + 1)F (k) , (B.3)

where G(n,m) = T (n,m)(I − P (m)) for n ≥ m, G(n,m) = −T (n,m)P (m) for n < m, is
called the Green function.

Henry has also proved in Theorem 1.13 of [24] that any discrete family of evolution
operators T (n + 1, n) admits a discrete dichotomy on Z if and only if the restrictions to
both Z+ and Z− have dichotomies and also X = S0 ⊕ U0 where

U0 = {x0 | ∃{xn}n≤0 ∈ Z− with xn+1 = T (n+ 1, n)xn , n < 0}

S0 = {x0 | ∃{xn}n≥0 ∈ Z+ with xn+1 = T (n+ 1, n)xn , n ≥ 0} .
(B.4)

When the dichotomies in Z+ and Z− have finite rank, the equality X = S0 ⊕ U0 means
that they have the same rank.

The previous existence result of a dichotomy on Z is actually a particular case of the
following more general result, which is also proved in Theorem 1.15 of [24] (see also [53],
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[43], [19] and [8, Theorem 4.a.4] in the case of ordinary differential, functional differential
and parabolic equations).

We recall that 〈·, ·〉X,X∗ denotes the duality pairing between X and X∗.

Theorem B.7. Fredholm alternative
Let T (n + 1, n) be a discrete family of evolution operators on a Banach space X, ad-

mitting discrete dichotomies of finite rank on both Z+ and Z−, with projections P+(n) and
P−(n). Then the operator L, defined by (B.2), belongs to L(D(L),Z) and is a Fredholm
operator with index ind(L) given by

ind(L) = dim(R(P−(0)))− dim(R(P+(0))) . (B.5)

The codimension codimR(L) of R(L) is given by codimR(L) = dim[R(I − P−∗(0)) ∩
R(P+∗(0))].
A sequence F ∈ Z belongs to R(L) if and only if

+∞
∑

n=−∞

〈F (n),Ψ(n+ 1)〉X,X∗ = 0 , (B.6)

for every sequence Ψ(n) = T ∗(n, 0)Ψ0, Ψ0 ∈ X∗, which is bounded.

The proof of Theorem B.7 uses the following two auxiliary lemmas. First, recall that,
for any operator Q ∈ L(X), one has

ker(Q∗) = (R(Q))⊥ , (B.7)

where, for any subspace X0 ∈ X , X⊥
0 = {ψ ∈ X∗ | 〈x, ψ〉 = 0 , ∀x ∈ X0}.

If Q ∈ L(X) is a projection, we have, in addition,

R(I −Q∗) = ker(Q∗) = (R(Q))⊥ . (B.8)

Lemma B.8. Let T (n,m) be an evolution operator admitting discrete dichotomies of finite
rank on both Z+ and Z−. Then, any element Ψ0 ∈ X∗ belongs to (R(P−(0)))⊥ ∩ (R(I −
P+(0)))⊥ if and only if the sequence

Ψ(m) = T ∗(m, 0)Ψ0 , m ∈ Z ,

(which is defined for all m due to the property (ii) of the reverse dichotomy) is bounded
(that is belongs to ℓ∞(Z, X∗)). In this case, Ψ(m) belongs to R(I − P−∗(m)) for m ≤ 0
and to R(P+∗(m)) for m ≥ 0.

The next lemma emphasizes the formulas given in (B.3).

44



Lemma B.9. We assume that the hypotheses of Theorem B.7 hold. Then,
(i) if F ∈ Z−, there exists Y ∈ Z− such that F = L−Y if and only if, for any n ∈ Z−,

Y (n) = T (n, 0)P−(0)Y (0)−
−1
∑

k=n

T (n, k + 1)P−(k + 1)F (k)

+
n−1
∑

k=−∞

T (n, k + 1)(I − P−(k + 1))F (k) ;

(B.9)

(ii) similarly, if F ∈ Z+, there exists Y ∈ Z+ such that F = L+Y if and only if, for
any n ∈ Z+,

Y (n) = T (n, 0)(I − P+(0))Y (0) +

n−1
∑

k=0

T (n, k + 1)(I − P+(k + 1))F (k)

−
+∞
∑

k=n

T (n, k + 1)P+(k + 1)F (k) .

(B.10)

We remark that these “variation of constants formulas” generalize the formula (B.3).
They have already been given in [44] under this discrete form in the finite dimensional
context (see [44, Formula (13) of Lemma 2.7]) and they are contained in Theorem 1.15 of
[24]. In the continuous case for parabolic equations, they are well-known and can be found
in [22] and in [8].

B.3 Application to the parabolic equation on S1

In this section, we apply the previous abstract results to the homoclinic and heteroclinic
orbits between equilibrium points of the scalar parabolic equation (1.1) and we give some
equivalent formulations of transversality.

We assume in this section that ũ(t) ∈ C0
b (R, H

s(S1)) is a bounded trajectory of S(t) =
Sf(t) satisfying limt→± ũ(t) = e±, where e± are hyperbolic equilibria of finite Morse index
i(e±). We recall that ũ belongs to C0

b (R, H
2(S1)) ∩ Cθ(R, Hs(S1)), where 0 < θ ≤ 1. We

consider the linearized equation along ũ, that is, the linear equation for t ≥ s,

vt(t) = vxx(t) +Duf(x, ũ, ũx)v(t) +Duxf(x, ũ, ũx)vx(t) ≡ Cũ(t)v(t) , t > σ , v(σ) = v0 .
(B.11)

We recall that, for any v0 ∈ L2(S1), for any σ ∈ R, there exists a unique classical solution
v(t) ∈ C0([σ,+∞), L2(S1)) ∩ C0((σ,+∞), Hs(S1)) of (B.11) such that v(σ) = v0. We set
T (t, σ)v0 = Tũ(t, σ)v0 = v(t).

We next introduce the adjoint linearized equation to (B.11), that is, the linear equation
for σ ≤ t,

∂tψ(σ) = −C∗
ũ(σ)ψ(σ) , σ ≤ t , ψ(t) = ψ0 . (B.12)
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Since ũ belongs to Cθ(R, Hs(S1)) for any θ ≤ 1 and thus that (Cũ(t) − ∂xx)
∗ is locally

Hölder continuous with exponent γ > s/2 as a mapping from R into L(Hs(S1), L2(S1)),
(B.12) has a unique classical solution ψ(σ) = ψ(σ, t;ψ0) on (−∞, t), for any ψ0 ∈ L2(S1)
(see [22, Theorem 7.3.1] for example). We denote this solution ψ(s) := ψ(s, t;ψ0).

With Tũ(t, s), we associate the adjoint evolution operator on L2(S1), given by

T ∗
ũ (σ, t) = (Tũ(t, σ))

∗ , t ≥ σ . (B.13)

It is well-known (see [22, Theorem 7.3.1]) that, for any ψ0 ∈ L2(S1),

T ∗
ũ (σ, t0)ψ0 = ψ(σ, t0;ψ0) , ∀σ ≤ t0 . (B.14)

We also remark that the adjoint operator (Tũ(t, σ))
∗ is injective and that its range is dense

in Hs(S1).

From now on, we discretize the evolution operators. We fix a time step τ > 0 and con-
sider the discretizations S(nτ) and Tũ(nτ,mτ), with n,m ∈ Z. The hyperbolic equilibria
e± of S(t), their stable and unstable sets coincide with those of the discretization S(nτ);
the discretization of the trajectory ũ(t) connecting e− to e+ is a heteroclinic or homoclinic
orbit connecting these equilibria for the discretized semi-flow. Let β± > 0 be chosen such
that

σ(eLe± ) ∩ {z | e−β
±

≤ |z| ≤ eβ
±

} = ∅ ,

where the linearized operator Le± has been defined in (2.4). As explained in the remarks
of Section B.1, eLe±

τ admits an exponential dichotomy with projection P± (see (B.1)),
exponent β± and constant M in H2α(S1) for any α ∈ [0, 1). Thus, we will be able to
deduce from Theorems B.5 and B.6 that Tũ(nτ, (n− 1)τ) admits exponential dichotomies
on Z− and on Z+ of respective index i(e−) and i(e+) in H2α(S1), for any α ∈ [0, 1). We
will only give a sketch of the proof. For a more detailed proof in the case of ordinary
differential equations (resp. functional differential equations, resp. parabolic equations,
resp. in the case damped wave equations), we refer the reader to [43], [44] (resp. to [35],
[8] and [9]).

Theorem B.10. For any β±
1 ∈ (0, β±), the discrete family of evolution operators T (n,m) =

Tũ(nτ,mτ) admits exponential dichotomies on Z± in L2(S1) (resp. Hs(S1)) of finite rank
equal to the index i(e±) of e±, with exponent β±

1 , constantM
± and projections P̃±

ũ (n) (resp.
P±
ũ (n)), satisfying

lim
n→±∞

‖P̃±
ũ (n)− P±‖L(L2,L2) = 0 , (resp. lim

n→±∞
‖P±

ũ (n)− P±‖L(Hs,Hs) = 0 ) . (B.15)

Moreover, P±
ũ is the restriction of P̃±

ũ to Hs(S1), that is,

P̃±
ũ (n)|Hs(S1)

= P±
ũ (n) . (B.16)
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Proof: In the proof of Corollary C.7 below, (see (C.25)), we show that, for n ∈ Z±, with
|n| large enough, we have the exponential asymptotic convergence

‖Tũ((n+ 1)τ, nτ)− eLe±‖L(Hs,Hs) ≤ Ce−C|n| , (B.17)

where C is a positive constant. Thus we may apply Theorem B.5, which implies that
there exists n0 ∈ Z+ such that Tũ((n + 1)τ, nτ) admits an exponential dichotomy on Z+

(resp. Z
−) in Hs(S1), for n ≥ n0 (resp. n ≤ −n0) of finite rank i(e+) (resp. i(e−)) and

projections P+
T (resp. P−

T ) satisfying the properties of Theorem B.5. Applying Theorem
B.6 with X = Hs(S1), we next extend these dichotomies in Hs(S1) to Z± and thus prove
that Tũ((n+1)τ, nτ) admits exponential dichotomies on Z± in Hs(S1) of finite rank equal
to i(e±), with exponent β±

1 , constant M
± and projections P±

ũ (n), satisfying the property
(B.15). Using next [22, Lemma 7.6.2 and Exercise 5 of Chapter 7], we may extend these
projections P±

ũ (n) in H
s(S1) to projections P±

ũ in L2(S1) satisfying the properties (B.15)
and (B.16).
An alternative proof consists in showing first that, for any n ∈ Z±, with |n| large enough,
we have the exponential asymptotic convergence

‖Tũ((n+ 1)τ, nτ)− eLe±‖L(L2,Hs) ≤ Ce−C|n| , (B.18)

where C is a positive constant. Then we may apply Theorem B.5 in the space L2(S1),
which implies that there exists n0 ∈ Z+ such that Tũ((n + 1)τ, nτ) admits an exponential
dichotomy on Z+ (resp. Z−) in L2(S1), for n ≥ n0 (resp. n ≤ −n0) of finite rank i(e+)
(resp. i(e−)) and projections P̃+

T (resp. P̃−
T ) satisfying the properties of Theorem B.5.

Applying Theorem B.6 with X = L2(S1), we next extend these dichotomies in L2(S1) to
Z
± and thus prove that Tũ((n+ 1)τ, nτ) admits exponential dichotomies on Z

± in L2(S1)
of finite rank equal to i(e±), with exponent β±

1 , constant M± and projections P̃±
ũ (n),

satisfying the property (B.15). We remark that, by the property (ii) of the definition B.1
and by the property (B.18), the image of P̃±

ũ (n) belongs to H
s(S1), which implies, together

with [22, Lemma 7.6.2 of Chapter 7], that the restrictions P±
ũ of the projections P̃±

ũ (n) to
Hs(S1) define an exponential dichotomy of Tũ((n+1)τ, nτ) on Z

± in Hs(S1) of finite rank
equal to i(e±), with exponent β±

1 , constant M
±. �

We notice that Theorem B.10 and Lemma B.3 imply that T ∗(n, n+1) = Tũ((n+1)τ, nτ)∗

admits a reverse exponential dichotomy on Z± in L2(S1) (resp. H−s(S1)) with rank i(e±),
exponent β±

1 and projections (P̃±
ũ (n))

∗ (resp. (P±
ũ (n))

∗).

Lemma 4.2 (on page 376) and Appendix C of [10] yield the important characterization
of the range of P±

ũ (n) given in the next proposition.

Proposition B.11. We have the following equalities in Hs(S1),

R(P−
ũ (n)) = Tũ(n)W

u(e−) , ∀n ∈ Z
−

R(I − P+
ũ (n)) = Tũ(n)W

s(e+) , ∀n ∈ Z
+ .

(B.19)
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Let ũ(t) belongs to W u(e−) ∩W s(e+). We say that the bounded orbit ũ is transverse
at ũ(0) if

W u(e−) ⋔ũ(0) W
s
loc(e

+) ,

which means that Tũ(0)W
u(e−) contains a closed complement of Tũ(0)W

s(e+) in Hs(S1)
(notice that, as W u(e−) ∩W s(e+) are immersed manifolds in Hs(S1), this notion is well-
defined, see [33, Page 23]). It is easily seen that, since the linearized operator T (t, σ) is
injective and has dense range in Hs(S1), the above condition implies that, for any t ∈ R,

W u(e−) ⋔ũ(t) W
s
loc(e

+) ,

which allows to simply say that the orbit ũ is a transverse connecting orbit.
From the previous proposition and the equalities (B.7) and (B.8) as well as the property

that the range of P̃±
ũ is contained in Hs(S1), we at once deduce the following equivalences.

Proposition B.12. (i) The trajectory ũ(t) is transverse in Hs(S1) if and only if

R(P−
ũ (0)) +R(I − P+

ũ (0)) = Hs(S1) , (B.20)

or equivalently, since R(P−
ũ (0)) is finite-dimensional and, thus, this sum is closed,

[R(P−
ũ (0))]

⊥ ∩ [R(I − P+
ũ (0))]

⊥ = {0} , (B.21)

or also
R(I − P−

ũ (0)
∗) ∩ R(P+

ũ (0)
∗) = {0} . (B.22)

(ii) Moreover, the trajectory ũ(t) is transverse in Hs(S1) if and only if

R(P̃−
ũ (0)) +R(I − P̃+

ũ (0)) = L2(S1) , (B.23)

or equivalently,
[R(P̃−

ũ (0))]
⊥ ∩ [R(I − P̃+

ũ (0))]
⊥ = {0} , (B.24)

or also
R(I − P̃−

ũ (0)
∗) ∩ R(P̃+

ũ (0)
∗) = {0} . (B.25)

Applying Lemma B.8 and Proposition B.12, we obtain the next characterization of
transversality.

Corollary B.13. The trajectory ũ(t) is transverse if and only if there does not exist any
element ψ0 ∈ (Hs(S1))∗, ψ0 6= 0, such that the sequence (T ∗

ũ (n, 0)ψ0)n∈Z is bounded in
(Hs(S1))∗ or equivalently, if and only if there does not exist any element ψ1 ∈ L2(S1),
ψ1 6= 0, such that the sequence (T ∗

ũ (n, 0)ψ1)n∈Z is bounded in L2(S1))
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Finally we show how to apply Theorem B.7 to obtain a corollary, which plays a crucial
role in the proof of the genericity of the non-existence of homoindexed orbits between
equilibrium points. We introduce the operator Lũ ≡ L defined in (B.2) with T (n,m) =
Tũ(nτ,mτ), X = Hs(S1) and Z = ℓ∞(Z, X). Likewise, we introduce the extension L̃ũ of
Lũ to Z̃ = ℓ∞(Z, L2(S1)). We notice that, due to the smoothing properties of Tũ(nτ,mτ),
a sequence F ∈ Z belongs to R(Lũ) if and only if F ∈ Z belongs to R(L̃ũ). This remark,
Theorem B.7 and Corollary B.13 imply the following results.

Corollary B.14. Functional characterization of transversality
The operators Lũ : D(Lũ) → Z and L̃ũ : D(L̃ũ) → Z̃ defined above are Fredholm operators
of index i(e−) − i(e+). In particular, the codimension of R(Lũ) in Hs(S1) and of R(L̃ũ)
in L2(S1) is equal to codim [R(P̃−

ũ (0)) +R(I − P̃+
ũ (0))].

Moreover, a sequence F ∈ Z belongs to R(Lũ) if and only if

+∞
∑

n=−∞

〈F (n),Ψ(n+ 1)〉L2(S1) = 0 ,

for every bounded sequence Ψ(n) = T ∗
ũ (nτ, 0)Ψ0, Ψ0 ∈ L2(S1). Finally, the connecting

orbit ũ(t) is transverse if and only if Lũ is surjective or also if and only if L̃ũ is surjective.

C Asymptotics of solutions of perturbations of linear

autonomous equations

In this section, X denotes a Banach space and J an interval of Z.
In several proofs of the previous sections, we need to know the asymptotics of the

bounded solutions (as t→ ±∞) of the linearized equations along orbits, connecting hyper-
bolic equilibrium points or periodic orbits of (1.1). These asymptotics will be described in
the second and third sections of this appendix.

C.1 Abstract results

Here, we are going to describe these asymptotics for a general linearized equation or for
iterates of a general linearized mapping. Thus, in the first place, we are interested in the
asymptotic behaviour of the bounded sequences u(n), n ∈ Z+ (resp. n ∈ Z−), defined by

u(n+ 1) = Tu(n) + Σ(n)u(n) ≡ L(n)u(n) , (C.1)

where T ∈ L(X) and Σ(n) ∈ L(X), for any n ∈ Z+ (resp. n ∈ Z−).

All the statements given in this appendix are already known and are mainly results or
generalizations of results of [23], [24], [10] and [9]. The main theorems C.5 and C.6 are a
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refinement of Theorem B.5 of [10] and have been proved in Appendix B of [9]. Here, we
closely follow Appendix B of [9]. We want to point out that all the statements contained
in this appendix are more or less common knowledge, at least in finite dimensions. For
additional references, see [12], [43], [44], [45], [19] and [53] for example.

For n ≥ m in J , we define the evolution operator Φ(n,m) = L(n− 1) ◦ . . . ◦ L(m).
For any linear operator T : X → X , we denote by R(T ) the set of all nonnegative

numbers ρ for which
σ(T ) ∩ {z ∈ C | |z| = ρ} 6= ∅ .

For ρ /∈ R(T ), we denote by Pρ, Qρ the spectral projections associated with the partition
of the spectrum σ(T ) into its subsets σ(T ) ∩ {|z| > ρ} and σ(T ) ∩ {|z| < ρ} respectively.
The following proposition gives a sufficient condition for L(t) defined by (C.1) to admit a
shifted dichotomy.

Proposition C.1. Let L(n) = T +Σ(n) where T , Σ(n), n ∈ Z+, belong to L(X) and Σ(n)
satisfies the asymptotic condition

‖Σ(n)‖L(X) = O(rn) , for some r < 1, when n→ +∞ . (C.2)

Assume that 0 < ρ∗1 < ρ1 ≤ ρ2 < ρ∗2 are such that σ(T ) ∩ {ρ∗1 ≤ |z| ≤ ρ∗2} = ∅, which
implies that Qρ∗2

−Qρ∗1
= 0. Suppose also that T admits shifted exponential dichotomy with

gap [ρ∗1, ρ
∗
2] and with projections Pρ∗1 , Qρ∗1

. Then the family L(·) admits shifted dichotomy
on J = Z+ with gap [ρ1, ρ2] and projections P (n), Q(n). Moreover, when n ∈ Z+ is
sufficiently large,

‖Q(n)−Qρ1‖L(X) = O(rn) , ( resp. ‖P (n)− Pρ2‖L(X) = O(rn)) , (C.3)

and Q̃(n) := Q(n)∣
∣R(Qρ1 )

: R(Qρ1) → R(Q(n)) (resp. Q̃1(n) = Q
ρ1

∣

∣R(Q(n)
: R(Q(n)) →

R(Qρ1)) is an isomorphism satisfying

max(‖Q̃(n)− I‖L(X), ‖Q̃1(n)− I‖L(X)) ≤ ‖Q(n)−Qρ1‖L(X) = O(rn) ,

max(‖Q̃−1(n)− I‖L(X), ‖Q̃
−1
1 (n)− I‖L(X)) ≤

‖Q(n)−Qρ1‖L(X)

1− ‖Q(n)−Qρ1‖L(X)

= O(rn) .
(C.4)

The same statement holds on J = Z− if the condition “n ∈ Z+” is replaced by “n ∈ Z−”
and r < 1 by r > 1.

We next recall three results about the asymptotic behaviour of u(n) for n large enough,
where u(n) is given by (C.1). The first theorem has been proved by D. Henry (see Theorem
2 in [23]) ; here we state it under the form given by Chen, Chen and Hale in [10, Theorem
B.2].
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Theorem C.2. Let T ∈ L(X,X) and let 0 < ρ1 ≤ ρ2 be such that [ρ1, ρ2]∩R(T ) = ∅. Let
u(n) 6= 0, n ≥ n0 in Z+, be a sequence in X such that

lim
n→+∞

‖u(n+ 1)− Tu(n)‖X
‖u(n)‖X

= 0 . (C.5)

Then, either

(i) lim
n→+∞

‖Pu(n)‖X
‖Qu(n)‖X

= +∞ , and lim inf
n→+∞

‖u(n)‖1/nX ≥ ρ2 ;

or

(ii) lim
n→+∞

‖Pu(n)‖X
‖Qu(n)‖X

= 0 , and lim sup
n→+∞

‖u(n)‖1/nX ≤ ρ1 ;

where P = Pρ1 = Pρ2 and Q = Qρ1 = Qρ2. The same property holds if, in the above
statements, n ≥ n0 in Z+ and n → +∞ are replaced by n ≤ −n0 in Z− and n → −∞
respectively.

Theorem C.2 gives a close relation between the spectrum of T and the growth rate of
u(n). As direct corollary, Chen, Chen and Hale (see [10, Corollary B.3]) have proved the
following property.

Theorem C.3. Let T be a continuous linear operator from X into X such that R(T ) is
nowhere dense in [0,+∞) and let u(n) 6= 0, n ≥ n0 in Z+, be a sequence in X satisfying
the property (C.5). Then, there exists ρ ∈ R(T ) such that

lim
n∈Z+→+∞

‖u(n)‖1/nX = ρ . (C.6)

The same property holds when Z+ is replaced by Z−.

Remark : For sequences u(n), n ∈ Z+, given by the recursion formula (C.1) with Σ(n)
satisfying the hypothesis (C.2), the condition (C.5) obviously holds. We thus deduce from

Theorem C.3 that there exists ρ ∈ R(T ) such that limn∈Z+→+∞ ‖u(n)‖1/nX = ρ.

In this paper, we cannot directly apply this corollary since R(T ) has an accumulation
point at 0. However, we know that the sequences u(n) that we will consider do not converge
faster to zero than an exponential.

For any ψ ∈ X , for any integers m, n, with n ≥ m, following the notations of [10], we
set,

u(n,m;ψ) = Φ(n,m)ψ ,

where Φ(n,m) = L(n−1) ◦ . . . ◦L(m) and L(n) is defined by (C.1). We also introduce the
quantity

r∞(m,ψ) = lim sup
n→+∞

‖u(n,m;ψ)‖1/nX .
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Let T be a continuous linear operator fromX into X such that R(T ) is a bounded sequence
converging to 0 and that ρj+1 ≤ ρj , for any integer j. We then introduce the spaces

E+
j (m) = {ψ ∈ X | r∞(m,ψ) ≤ ρj} .

Then,
. . . E+

2 (m) ⊂ E+
1 (m) ⊂ E+

0 (m) .

If we assume that, for any ψ ∈ X , ψ 6= 0 and any integer m, r∞(m,ψ) > 0 (that is
Φ(n,m)ψ does not decay faster to 0 than an exponential), then

j=∞
⋂

j=0

E+
j (m) = {0} .

Taking into account the above considerations and following the proof of Corollary B.3 of
[10], we obtain the following theorem.

Theorem C.4. Let T be a continuous linear operator from X into X such that R(T )
is a bounded sequence converging to 0 and that ρj+1 ≤ ρj, for any integer j. We also
assume that the property (C.2) holds. Let u(n) ≡ u(n,m;ψ), be a sequence in X such that
r∞(m,ψ) > 0. Then, there exists ρ ∈ R(T ) such that

lim
n∈Z+→+∞

‖u(n)‖1/nX = ρ . (C.7)

The same property holds when Z+ is replaced by Z−.
In particular, if for any ψ ∈ X, ψ 6= 0 and any integer m, r∞(m,ψ) > 0, then

X = E+
0 (m) = {ψ ∈ X | r∞(m,ψ) ≤ ρ1} ,

and
E+
j (m)−E+

j+1(m) = {ψ ∈ X | r∞(m,ψ) = ρj+1} .

The next theorem is nothing else as Theorem B.6 of [9] and is actually a refinement
of Theorem B.5 of [10] about the asymptotics of sequences u(n) given by the recurrence
formula (C.1) when n goes to ±∞.

Theorem C.5. Convergence to a solution of the asymptotic equation
Let T ∈ L(X,X) and suppose that there exist positive numbers δ1, δ̃1, δ, δ̃, with 0 <

δ1 < δ and 0 < δ̃1 < δ̃, and ρ ∈ R such that

∅ 6= σ(T ) ∩ {z ∈ C | ρ− δ ≤ |z| ≤ ρ+ δ̃} ⊂ {z ∈ C | ρ− δ1 < |z| < ρ+ δ̃1} . (C.8)

Suppose also that T admits shifted dichotomy with gap [ρ + δ̃1, ρ + δ∗], for some δ∗ > δ̃
(resp. with gap [ρ − δ∗, ρ − δ1], for some δ∗ > δ). Let u(n), n ∈ Z+ (resp. n ∈ Z−) be a
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sequence given by the recurrence formula (C.1), with Σ(n) satisfying the hypothesis (C.2),
where (ρ+ δ̃)r < ρ− δ (resp. where (ρ− δ)r < ρ+ δ̃), such that

ρ− δ1 ≤ lim
n→+∞

‖u(n)‖1/nX ≤ ρ+ δ̃1 (resp. ρ− δ1 ≤ lim
n→−∞

‖u(n)‖1/nX ≤ ρ+ δ̃1) . (C.9)

Denote by Tρ the operator

Tρ = [Qρ+δ̃ −Qρ−δ]T [Qρ+δ̃ −Qρ−δ] .

Then, there exists a non-vanishing sequence u+∞(n), n ∈ Z
+, (resp. u−∞(n), n ∈ Z

−,) in
R(Qρ+δ̃ −Qρ−δ) and satisfying

u+∞(n+ 1) = Tρu+∞(n) (resp.u−∞(n+ 1) = Tρu−∞(n)) , (C.10)

and

‖u(n)− u+∞(n)‖X = O((ρ− δ)n) , as n −→ +∞ (C.11)

(resp. ‖u(n)− u−∞(n)‖X = O((ρ+ δ̃)n) , as n −→ −∞ ). (C.12)

The previous theorem allows to specify the asymptotics of the bounded sequences u(n)
given by (C.1). As consequences of Theorem C.5, one obtains corresponding results for
solutions of evolutionary partial differential equations. More precisely, let Y be a Banach
space and A be the infinitesimal generator of an analytic semigroup on Y . Let α ∈ [0, 1)
be a real number. We introduce the fractional space X = Y α and consider the equation

∂tU(t) = (A+G(t))U(t) , t > 0 , U(0) = U0 , (C.13)

where U(t), t ≥ 0, and U0 belong to X , and G : t ∈ R 7→ G(t) ∈ L(Y α, Y ) is such that

‖G(t)‖L(Y α,Y ) = O(e−rt) , as t ∈ R → +∞ , where r > 0 . (C.14)

If α = 0, it suffices to assume that A is the generator of a C0- semigroup.
The proof of the next theorem, which is a consequence of Theorem C.5, follows the

lines of the proof of Theorem B.8 of [9].

Theorem C.6. Suppose that there exist positive constants d1, d̃1, d, d̃ with 0 < d1 < d,
0 < d̃1 < d̃, and µ ∈ R such that

∅ 6= σ(A) ∩ {z ∈ C |µ− d ≤ Rez ≤ µ+ d̃} ⊂ {z ∈ C |µ− d1 < Rez < µ+ d̃1} . (C.15)

Suppose also that eA admits shifted dichotomy with gap [eµ+d̃1 , eµ+d
∗

], for some d∗ > d̃
(resp. with gap [eµ−d

∗

, eµ−d1 ], for some d∗ > d). Let U(t), t ∈ R+ (resp. t ∈ R−), be
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a solution of (C.13) with G(t) satisfying the hypothesis (C.14) and with e(µ+d̃−r) < eµ−d

(resp. with e(µ−d−r) > eµ+d̃), such that

µ− d1 ≤ lim
t→+∞

ln(‖U(t)‖1/tX ) ≤ µ+ d̃1 . (C.16)

Denote
Aµ = [Qµ+d̃ −Qµ−d]A[Qµ+d̃ −Qµ−d] ,

where now Qµ+d̃ and Qµ−d denote the spectral projections associated with the parts of the

spectrum σ(A) ∩ {Rez > µ+ d̃} and σ(A) ∩ {Rez > µ− d}.
Then, there exists a non-vanishing solution U+∞(t), t ∈ R+, (resp. U−∞(t), t ∈ R−,) in
R(Qµ+d̃ −Qµ−d) and satisfying

∂tU+∞(t) = AµU+∞(t) (resp. ∂tU−∞(t) = AµU−∞(t) ) , (C.17)

and

‖U(t)− U+∞(t)‖X = O(e(µ−d)t) , as t −→ +∞ . (C.18)

(resp. ‖U(t)− U−∞(t)‖X = O(e(µ+d̃)t) , as t −→ −∞ ) . (C.19)

C.2 Applications to the parabolic equation near an equilibrium
point

The results of Appendix B and those of the first part of this appendix, together with those
of Section 2.2, will be applied here in order to determine the asymptotics of the solutions
u(t) of (1.1), which belong to the local unstable or stable manifolds of hyperbolic equilibria
or periodic orbits, as well as the asymptotics of the solutions of the corresponding linearized
equations.

Let e be a hyperbolic equilibrium point of (1.1). In accordance with Section 2.2, we
denote by Le the corresponding linearized operator and by λi, i ≥ 1 its eigenvalues, counted
with their multiplicity.

Corollary C.7. Let u(t) be a trajectory of (1.1) belonging to the unstable manifold W u(e)
of e (resp. the local stable manifold W s

loc(e)) and let v(t) = u(t)− e.
Then, there exist (a, b) ∈ R2 − {(0, 0)} and an eigenvalue λi of Le such that Re(λi) > 0
(resp. Re(λi) < 0) and

lim
t→−∞

ln ‖v(t)‖Hs(S1) = Re(λi) ( resp. lim
t→+∞

ln ‖v(t)‖Hs(S1) = Re(λi)) .

More precisely, the asymptotic behavior of v in Hs(S1) is as follows:
(i) if λi is a simple real eigenvalue with eigenfunction ϕi, then there exists a ∈ R − {0}
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such that v(t) = aeλitϕi + o(eλit).
(ii) If λi = λi+1 is a double real eigenvalue with two independent eigenfunctions ϕi and
ϕi+1, then there exist (a, b) ∈ R

2 − {(0, 0)} such that v(t) = aeλitϕi + beλitϕi+1 + o(eλit).
(iii) If λi = λi+1 is an algebraically double real eigenvalue with eigenfunction ϕi and with
generalized eigenfunction ϕi+1, then there exist (a, b) ∈ R2 − {(0, 0)} such that v(t) =
(a+ bt)eλitϕi + beλitϕi+1 + o(eλit).
(iv) If λi+1 = λi is a (simple) nonreal eigenvalue with eigenfunction ϕi+1 = ϕi, then there
exist (a, b) ∈ R

2−{(0, 0)} such that v(t) = eRe(λi)t
[

(a cos(Im(λi)t)−b sin(Im(λi)t))Re(ϕi)−

(a sin(Im(λi)t) + b cos(Im(λi)t))Im(ϕi))
]

+ o(eRe(λi)t).
Let j ∈ N \ {0} be such that λi belongs to the pair of eigenvalues (λ2j−1, λ2j), or let

j = 0 if λi = λ0. As a consequence of the asymptotic behaviour, there exists t0 ∈ R such
that, for all t ≤ t0 (resp. t ≥ t0), v(t) has exactly 2j zeros which are simple.

Proof: Since the proofs are very similar when t tends to ±∞, we shall only prove the
corollary when u(t) belongs to the local stable manifold W s

loc(e). To prove the corollary,
we shall apply Theorem C.6, so we have to check that the hypotheses of Theorem C.6 are
satisfied.
Since u(t) belongs to W s

loc(e), there exist two positive constants c1 and κ such that

‖u(t)− e‖Hs ≤ c1e
−κt , as t→ +∞ . (C.20)

The function v(t) ≡ u(t)− e is a classical solution of the equation

vt = vxx +Duxf(x, e, ex)vx +Duf(x, e, ex)v + a(x, t)vx + b(x, t)v , (C.21)

where

a(x, t) =

∫ 1

0

(

f ′
ux(x, e + θ(u− e), ex + θ(ux − ex))− f ′

ux(x, e, ex)
)

dθ

b(x, t) =

∫ 1

0

(

f ′
u(x, e + θ(u− e), ex + θ(ux − ex))− f ′

u(x, e, ex)dθ
)

One at once checks that ‖a(x, t)‖C0 + ‖b(x, t)‖C0 ≤ c2‖u(t)− e‖Hs, which implies that

‖a(x, t)vx + b(x, t)v‖L2 ≤ c3e
−κt‖v‖Hs (C.22)

Thus, v is the solution of an equation of the form (C.13), with G(t)v = a(x, t)vx + b(x, t)v
satisfying the condition (C.14).
We next remark that

v(n+ 1) = Tv(n) + Σ(n)v(n) ,

where T = T (1), Σ(t)v(t) =
∫ 1

0
T (1−σ)G(t+σ)v(t+σ)dσ and T (t) is the linear semigroup

associated with the linear equation vt = vxx+f
′
ux(x, e, ex)vx+f

′
u(x, e, ex)v ≡ Lev. We next
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verify that Σ(n) satisfies the condition (C.2), for some r < 1, when n goes to infinity. First,
Σ(n) is a continuous linear operator from Hs(S1) into Hs(S1). Moreover, since T (t) is an
analytic linear semigroup, we obtain the following inequality, for 0 < τ ≤ 1,

‖v(t+ τ)‖Hs ≤ Ceατ‖v(t)‖Hs + C

∫ τ

0

eα(τ−σ)(τ − σ)−s/2‖v(t+ σ)‖H1 , (C.23)

where α > 0. Using a generalized Gronwall inequality (see [22, Lemma 7.1.1]), we deduce
from (C.23) that, for 0 < τ ≤ 1,

‖v(t+ τ)‖Hs ≤ Ce(α+K)τ‖v(t)‖Hs , (C.24)

where K is a positive constant. The definition of Σ(n) and the properties (C.22) and
(C.24) imply that, for n > 0 large enough,

‖Σ(n)v(n)‖Hs ≤ C

∫ 1

0

eα(1−σ)(1− σ)−s/2c3e
−κn‖v(n+ σ)‖H1 ≤ C∗e(α+K)e−κn‖v(n)‖Hs ,

(C.25)
and hence Σ(n) satisfies the property (C.2).
Since Σ(n) satisfies the property (C.25) and that T admits a shifted exponential dichotomy
on Z+, the family L(·) = T + Σ(·) admits a shifted dichotomy on Z+ by Proposition C.1.
As, by a result of Agmon (see [1]), every non-zero solution of a linear parabolic equation
does not go to zero faster than an exponential when t tends to infinity, the hypotheses of
Theorem C.4 are satisfied, that is, for any integer m and any ψ ∈ Hs(S1), r∞(m,ψ) > 0.
Hence, by Theorem C.4, there exists ρi ∈ R(T ), ρi < 1, (and thus µi belonging to the
spectrum of T ), such that

lim
n→∞

‖v(n)‖1/nHs = ρi = |µi| ,

or, in other terms, there exists an eigenvalue λi of the linearized operator Le such that

lim
t→∞

ln(‖v(t)‖1/tHs) = |Re(λi)| .

We can now apply Theorem C.6. Let Ei be the generalized (real) eigenspace associated
with the eigenvalue λi and Le,i be the restriction of the operator Le to this eigenspace Ei.
By Theorem C.6, there exists a nonvanishing solution ψ∞,i(t) ∈ Ei of the equation

∂tψ∞,i(t) = Le,iψ∞,i(t) , (C.26)

such that
‖v(t)− ψ∞,i(t)‖Hs = o(eRe(λi)t) . (C.27)

Now the corollary is an elementary consequence of the properties (C.26) and (C.27) and
of Proposition 2.2. According to this proposition, λi is either a simple real eigenvalue (and
the dimension of Ei is one), or a double real eigenvalue or a simple non-real eigenvalue (in
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which cases, the dimension of Ei is equal to two). �

In the same way, we prove the following corollary.

Corollary C.8. Let u(t) be a trajectory of (1.1) belonging to the unstable manifold W u(e)
of e (resp. the local stable manifold W s

loc(e)). Let v0 ∈ Tu(0)W
u(e) (resp. v0 ∈ Tu(0)W

s
loc(e))

and let v(t) be the solution for t ≤ 0 (resp. t ≥ 0) of the linearized equation

vt = vxx +Duf(x, u, ux)v +Duxf(x, u, ux)vx , v(0) = v0 . (C.28)

Then, there exist (a, b) ∈ R
2 − {(0, 0)} and an eigenvalue λi of Le such that Re(λi) > 0

(resp. Re(λi) < 0) and

lim
t→−∞

ln ‖v(t)‖Hs(S1) = Re(λi) ( resp. lim
t→+∞

ln ‖v(t)‖Hs(S1) = Re(λi)) .

Moreover, all the possible asymptotic behaviors are the same as those described in Corollary
C.7.
In addition, let j ∈ N \ {0} be such that λi belongs to the pair of eigenvalues (λ2j−1, λ2j),
or let j = 0 if λi = λ0. Then, there exists t0 ∈ R such that, for all t ≤ t0 (resp. t ≥ t0),
v(t) has exactly 2j zeros which are simple.

Proof: If u(t) belongs to the local stable manifold W s
loc(e), u(t) satisfies the property

(C.20) and Eq. (C.28) can be written in the form (C.21), where the functions a(x, t) and
b(x, t) satisfy the properties (C.22). We remark that, by [10, Theorem C2], we already

know that lim supn→∞ ‖v(n)‖1/nHs < 1. We thus obtain the asymptotic behavior of v(t) by
following the lines of the proof of Corollary C.7. �

C.3 Application to the parabolic equation near a periodic orbit

Before proving analogous corollaries in the case of periodic orbits, we briefly recall the
known properties of the local stable and unstable manifolds of hyperbolic periodic orbits.

Let γ(x, t) be a hyperbolic periodic solution of (1.1) of minimal period p and let
Γ = {γ(t), t ∈ R}. As in the introduction and in section 2, we introduce the linearized
equation (2.6) along the periodic solution γ(t) and introduce the associated evolution op-
erator Π(t, 0) : Hs(S1) −→ Hs(S1), defined by Π(t, 0)ϕ0 = ϕ(t) where ϕ(t) is the solution
of the linearized equation (2.6). We recall that the operator Π(p, 0) = Du(Sf(p, 0)γ(0)) is
called the period map and we denote (µi) its eigenvalues (the spectral properties of Π(p, 0)
have been given in Proposition 2.3). Since γ(x, t) is a hyperbolic periodic solution, the
intersection of the spectrum of Π(p, 0) with the unit circle of C reduces to the eigenvalue 1,
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which a simple (isolated) eigenvalue. We remark that, if γ(a), a ∈ [0, p), is another point
of the periodic orbit, the spectrum of Du(Sf (p, 0)γ(a)) coincides with the one of Π(p, 0)
whereas the corresponding eigenfunctions depend on the point γ(a).

We denote Pu(a) (resp. Pc(a), resp. Ps(a)) the projection in Hs(S1) onto the space
generated by the (generalized) eigenfunctions of Du(Sf(p, 0)γ(a)) corresponding to the
eigenvalues with modulus strictly larger than 1 (resp. equal to 1, resp. with modulus
strictly smaller than 1).

Since a hyperbolic periodic orbit is a particular case of a normally hyperbolic C1 man-
ifold, we may apply, for example, the existence results of [27], [28] or [49, Theorem 14.2
and Remark 14.3] (see also [21]) and thus, we may state the following theorem.

Theorem C.9. Let Γ = {γ(t), t ∈ R} be a hyperbolic periodic orbit of Eq. (1.1).
1) There exists a small neighbourhood UΓ of Γ in Hs(S1) such that the local stable and
unstable sets

W s
loc(Γ) ≡W s(Γ, UΓ) = {u0 ∈ Hs(S1) |Sf(t)u0 ∈ UΓ , ∀t ≥ 0}

W u
loc(Γ) ≡W u(Γ, UΓ) = {u0 ∈ Hs(S1) |Sf(t)u0 ∈ UΓ , ∀t ≤ 0}

are (embedded) C1-submanifolds of Hs(S1) of codimension i(Γ) and dimension i(Γ) + 1
respectively.
2) Moreover, W s

loc(Γ) and W u
loc(Γ) are fibrated by the local strong stable (resp. unstable)

manifolds at each point γ(a) ∈ Γ, that is,

W s
loc(Γ) = ∪a∈[0,p)W

ss
loc(γ(a)) , W u

loc(Γ) = ∪a∈[0,p)W
su
loc(γ(a)) ,

where there exist positive constants r̃, κ and κ∗ such that

W ss
loc(γ(a)) ={u0 ∈ Hs(S1) | ‖Sf(t)u0 − γ(a + t)‖Hs < r̃ , ∀t ≥ 0 ,

lim
t→∞

eκt‖Sf(t)u0 − γ(a+ t)‖Hs = 0} ,

W su
loc(γ(a)) ={u0 ∈ Hs(S1) | ‖Sf(t)u0 − γ(a + t)‖Hs < r̃ , ∀t ≤ 0 ,

lim
t→−∞

eκ
∗t‖Sf(t)u0 − γ(a+ t)‖Hs = 0} .

(C.29)

For any a ∈ [0, p), W ss
loc(γ(a)) (resp. W

su
loc(γ(a))) is a C

1-submanifold of Hs(S1) tangent at
γ(a) to Ps(a)H

s(S1) (resp. Pu(a)H
s(S1)).

In the introduction, we have also defined the global stable and unstable sets as follows

W s(Γ) = {u0 ∈ Hs(S1) |Sf(t)u0 →
t→+∞

Γ} ,

W u(Γ) = {u0 ∈ Hs(S1) |Sf(t)u0 is well-defined for t ≤ 0 and Sf (t)u0 →
t→−∞

Γ} .

We recall that W s(Γ) and W u(Γ) are injectively immersed C1-manifolds of codimension
i(Γ) and dimension i(Γ) + 1 respectively. Moreover,

W u(Γ) = ∪t≥0Sf(t)W
u
loc(Γ) ,
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is a union of embedded C1-submanifolds of Hs(S1) of dimension i(Γ) + 1 (see [13] or [18]
for example).

We are now ready to prove the following corollary.

Corollary C.10. Let Γ = {γ(t), t ∈ R} be a hyperbolic periodic orbit of Eq. (1.1).
Let u(t) be a trajectory of (1.1) belonging to the strong unstable manifold W su(γ(a)) \ γ(a)
(resp. the local strong stable manifold W ss

loc(γ(a)) \ γ(a)) and let v(t) = u(t)− γ(t + a).
Then, there exists an eigenvalue µi of Π(p, 0) such that |µi| > 1 (resp. |µi| < 1) and

lim
n→−∞

‖v(np)‖1/nHs = |µi| , (resp. lim
n→∞

‖v(np)‖1/nHs = |µi| ) .

More precisely, the asymptotic behavior of v(np) in Hs(S1) is given by one of the following
possibilities:
(i) if µi is a simple real eigenvalue with corresponding real eigenfunction ϕi(a) ∈ Hs(S1),
then there exists b ∈ R− {0} such that v(np) = bµni ϕi(a) + o(|µi|n).
(ii) If µi = µi+1 is a double real eigenvalue with two independent eigenfunctions ϕi(a) and
ϕi+1(a), then there exist (b, c) ∈ R2 − {(0, 0)} such that v(np) = bµni ϕi(a) + cµni ϕi+1(a) +
o(|µi|

n).
(iii) If µi = µi+1 is an algebraically double real eigenvalue with eigenfunction ϕi(a) and
generalized eigenfunction ϕi+1(a), then there exist (b, c) ∈ R2 − {(0, 0)} such that v(t) =
(b+ cn)µni ϕi(a) + cµni ϕi+1(a) + o(|µi|n).
(iv) If µi = |µi|eiθ is a (simple) complex eigenvalue with eigenfunction ϕi(a) = ϕi+1(a), then
there exist (b, c) ∈ R2 − {(0, 0)} such that v(np) = |µi|n

[

(b cos(nθ)− c sin(nθ))Re(ϕi(a))−
(b sin(nθ) + c cos(nθ))Im(ϕi(a))

]

+ o(|µi|n).
Let j ∈ N \ {0} be such that µi belongs to the pair of eigenvalues (µ2j−1, µ2j), or let

j = 0 if µi = µ0. As a consequence of the asymptotic behaviour, there exists t0 ∈ R such
that, for all t ≤ t0 (resp. t ≥ t0), v(t) has exactly 2j zeros which all are simple.

Proof: Since u(t) belongs to the local strong stable manifold (or strong unstable ) manifold
of a point γ(a) of the non trivial periodic solution γ(t) of (1.1), the proof of this corollary
is very similar to the one of Corollary C.7. Thus, we will not repeat the whole proof, but
only give the details of the beginning of the proof, in order to point out the differences
with the proof of Corollary C.7 and also to emphasize the properties of the strong stable
or unstable manifolds of γ(a), that we are using here.
Since the proofs are very similar when n tends to ±∞, we only consider the case where
u(t) belongs to the local strong stable manifold W ss

loc(γ(a)) \ γ(a). To prove the corollary,
we shall apply Theorem C.5, so we have to check that the hypotheses of Theorem C.5 are
satisfied. Also, without loss of generality, we may assume that a = 0.
Since u(t) belongs to W ss

loc(γ(0)) \ γ(0), there exist two positive constants c1 and κ such
that

‖u(t)− γ(t)‖Hs ≤ c1e
−κt , as t→ +∞ . (C.30)
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The function v(t) ≡ u(t)− γ(t) is a classical solution of the equation

vt = vxx +Duxf(x, γ(x, t), γx(x, t))vx +Duf(x, γ(x, t), γx(x, t))v + a(x, t)vx + b(x, t)v ,
(C.31)

where

a(x, t) =

∫ 1

0

(

f ′
ux(x, γ + θ(u− γ), γx + θ(ux − γx))− f ′

ux(x, γ, γx)
)

dθ

b(x, t) =

∫ 1

0

(

f ′
u(x, γ + θ(u− γ), eγx + θ(ux − γx))− f ′

u(x, γ, γx)dθ
)

One at once checks that ‖a(x, t)‖C0 + ‖b(x, t)‖C0 ≤ c2‖u(t)− γ(t)‖Hs, which implies that
‖a(x, t)‖L2 + ‖b(x, t)‖L2 satisfies the inequality (C.22). We next remark that

v((n+ 1)p) = Tv(pn) + Σ(n)v(pn) ,

where T = Π(p, 0), and

Σ(n)v(pn) =

∫ p

0

Π(p, σ)(a(x, np+ σ)vx(x, np + σ) + b(x, np + σ)v(x, np+ σ))dσ .

Arguing as in the proof of Corollary C.7, one checks that Σ(n) satisfies the condition (C.2).
As the periodic orbit Γ is hyperbolic, T = Π(p, 0) admits a shifted exponential dichotomy
on Z+ (see [19] for example). Thus, by Proposition C.1, the family L(·) = T+Σ(·) admits a
shifted dichotomy on Z+. As, by [1], every non-zero solution of a linear parabolic equation
does not go to zero faster than an exponential when t tends to infinity, the hypotheses
of Theorem C.4 hold. Since the exponential decay property (C.30) holds, it follows from
Theorem C.4, that there exists ρi ∈ R(T ), ρi < 1, (and thus µi belonging to the spectrum
of Π(p, 0)), such that

lim
n→∞

‖v(n)‖1/nHs = |ρi| = |µi| .

Corollary C.10 is now an easy consequence of Theorem C.5 and of Proposition 2.3 (for the
details, see the proof of Corollary C.7). �

Corollary C.11. Let Γ = {γ(t), t ∈ R} be a hyperbolic periodic orbit of Eq. (1.1) and
u(t) be a trajectory of (1.1) belonging to the strong unstable manifold W su(γ(a)) \ γ(a)
(resp. the local strong stable manifold W s

loc(γ(a)) \ γ(a)). Let v0 ∈ Tu(0)W
su(γ(a)) (resp.

v0 ∈ Tu(0)W
ss
loc(γ(a))) and v(t) be the solution for t ≤ 0 (resp. t ≥ 0) of the linearized

equation (C.28). Then, there exists an eigenvalue µi of Π(p, 0) such that |µi| > 1 (resp.
|µi| < 1) and

lim
n→−∞

‖v(np)‖1/nHs = |µi| , (resp. lim
n→∞

‖v(np)‖1/nHs = |µi| ) .
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Moreover, all the possible asymptotic behaviors are the same as those described in Corollary
C.10.
In addition, let j ∈ N \ {0} be such that µi belongs to the pair of eigenvalues (µ2j−1, µ2j),
or let j = 0 if µi = µ0. Then, there exists t0 ∈ R such that, for all t ≤ t0 (resp. t ≥ t0),
v(t) has exactly 2j zeros which all are simple.

Proof: If u(t) belongs to the local strong stable manifold W ss
loc(γ(a)) \ γ(a), u(t) satisfies

the property (C.30) and Eq. (C.28) can be written in the form (C.31), where the functions
a(x, t) and b(x, t) satisfy the properties (C.22). We emphasize that, by [10, Theorem C6],

we already know that lim supn→∞ ‖v(np)‖1/nHs < 1. We thus obtain the asymptotic behavior
of v(t) by following the lines of the proof of Corollary C.10. �
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