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Abstract In this work, we propose a Bayesian source separation method of linear-

quadratic (LQ) and linear mixtures. Since our method relies on truncated prior dis-

tributions, it is particularly useful when the bounds of the sources and of the mixing

coefficients are known in advance; this is the case, for instance, in non-negative ma-

trix factorization. To implement our idea, we consider a Gibbs’ sampler equipped with

latent variables, which are set to simplify the sampling steps. Experiments with syn-

thetic data point out that the new proposal performs well in situations where classical

ICA-based solutions fail to separate the sources. Moreover, in order to illustrate the ap-

plication of our method to actual data, we consider the problem of separating scanned

images.
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1 Introduction

The problem of Blind Source Separation (BSS) concerns the recovery of a set of sig-

nals (sources) based on mixed versions of these original signals. The term “blind” is

employed because separation is conducted by using a minimum amount of information

about the sources and about the underlying mixing process. This problem has been

attracting a great deal attention of the signal processing community, among others,

for about two decades; one can find applications in a great diversity of domains, from

astronomical imaging to biosignal processing [12,13].

Most of the existing BSS methods consider a linear mixing process and are based

on the idea of Independent Component Analysis (ICA) [3,12]. In ICA, the sources are

assumed to be mutually statistically independent. Given that such a property is lost

after the mixing process, ICA tries to recover the sources by retrieving signals that are,

again, independent.

Despite the impressive results provided by the conjunction ICA/linear models, the

extension of this classical framework is quite desirable as it can broaden the range of

BSS applications. On the other hand, the study of BSS in the case of, for instance,

nonlinear mixing models becomes more involved [14,13]. For example, due to the high

degree of flexibility present in a nonlinear model, the application of ICA in such a case

does not guarantee source separation; that is, one may recover independent compo-

nents that are still mixed versions of the sources. In view of such limitations, several

papers [20,7,11] suggest that a better approach to nonlinear BSS is to consider con-

strained classes of nonlinear models, for which source separation is still possible.

In [10,11], Hosseini and Deville studied source separation in a particular constrained

mixing model: the linear-quadratic (LQ) model. This kind of model can be seen as a

second-order approximation of the mixing process, thus suggesting that LQ models

could be a first step toward polynomial mixtures. In addition to such an interesting

theoretical perspective, one can find applications to the LQ model in problems involving

smart gas electrode arrays [2] and the separation of scanned images [16].

A challenging aspect in the development of BSS methods to LQ models is the

definition of a suitable structure for the separating system. Indeed, differently from the

linear case, the inversion of the LQ mixing model does not admit closed formulae in

the general case. To overcome this problem, Hosseini and Deville [10,11] proposed a

recurrent separating network that performs a sort of implicit inversion of the mixing

system. Moreover, they proposed ICA-based methods to train the recurrent separating

system.

Despite its simplicity and its good performance, the solution proposed in [10,11]

presents a limitation. Actually, such an approach can operate only when the sources

and the mixing parameters satisfy the stability conditions imposed by the recurrent

separating system. In view of such a limitation, a recent work [5] showed that the

development of more elaborate recurrent separating systems can extend this stability

region. However, for such systems, the definition of training algorithms becomes quite

complicate.

In this work, we propose an alternative method for separating LQ mixtures based

on a Bayesian framework. Our main motivation is to define a method that does not suf-
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fer from the above-mentioned risk of instability present in recurrent separating systems.

Indeed, as the Bayesian approach treats the BSS problem rather as a data represen-

tation problem, there is no need to define a separating system in this case. Another

advantage brought by a Bayesian approach is the possibility of taking into account

prior information other than the statistical independence. In this work, for instance,

the following prior information can be taken into account: 1) the bounds of the sources

and of the mixing coefficient values are known in advance, and 2) the sources have a

temporal structure. These properties are incorporated via a modeling based on trun-

cated priors. It is worth mentioning that, under minor changes, the developed method

can also be applied to linear models and to non-negative matrix factorization.

Concerning the implementation of the proposed Bayesian method, an hierarchical

model is considered .The inference scheme is based on Markov chain Monte Carlo

(MCMC) methods and on the definition of a set of auxiliary variables for obtaining

standard conditional distributions, which simplifies the posterior distribution sampling

step.

The paper is organized as follows. In section 2, we introduce the mixing model con-

sidered in this work. Then, in Section 3, we introduce the proposed Bayesian method.

Section 4 present a set of experiments to illustrate the gains brought by the proposed

method. In a first moment, we consider simulations with synthetic data. Then, we il-

lustrate the application of our method to the problem of separating scanned images.

Finally, in Section 5, we present conclusions and perspectives for future works.

2 Problem description: the mixing model

Let sj,t denote the j -th source sample at time t. The LQ mixing model is thus given

by

xi,t =

ns∑

j=1

ai,jsj,t +
∑

1≤j<k≤ns

bi,j,ksj,tsk,t + ni,t ∀i ∈ 1, . . . , nc, ∀t ∈ 1, . . . , nd, (1)

where xi,t corresponds to the i-th observed mixture at the instant t. The coefficient ai,j

represents the linear mixing coefficients whereas bi,j,k denotes the quadratic terms. An

independent and identically distributed (i.i.d) Gaussian noise sequence ni,t, with zero

mean and unknown variance σ2
i , is assumed at each sensor. The parameters ns, nc and

nd correspond to the number of sources, sensors and available samples, respectively.

The problem addressed in this work concerns thus the estimation of the sources sj,t

from the observations xi,t. Of course, since we are in a blind context, there are other

unknown parameters in addition to sj,t. In our notation, all these unknown parameters

will be represented by the vector1 θ = [sj,t, ai,j , bi,j,k, σ2
i , µj , pj ], and θ−θq

will denote

the vector containing all elements of θ except θq. Therefore, the estimation problem

considered in this work can be stated as follows: given X (data matrix containing all

xi,t), estimate the parameters of the vector θ. In the sequel, we discuss how to address

this problem in a Bayesian context.

1 The parameters µj and pj correspond to the source parameters.
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3 Bayesian source separation method

The central element in Bayesian estimation is the posterior distribution p(θ|X), which,

according to the Bayes’ theorem, can be written as

p(θ|X) ∝ p(X|θ)p(θ), (2)

where p(X|θ) denotes the likelihood function and p(θ) represents the prior distribu-

tions. The likelihood function provides a probabilistic model for the relation between

the unknown parameters θ and the observed data X. Due to the assumption of white

Gaussian noise in the observation model, the likelihood in our problem is given by

p(X|θ) =

nd∏

t=1

nc∏

i=1

Nxit

(
ns∑

j=1

ai,jsj,t +
∑

1≤j<k≤ns

bi,j,ksj,tsk,t; σ
2
i

)
, (3)

where Nxik (µ; σ2) denotes a Gaussian distribution of xik with mean µ and variance

σ2.

Concerning the prior distributions p(θ), they should be related to the available

information at hand. In the sequel, we describe how these priors are defined in our

method.

3.1 Definition of prior distributions

3.1.1 Sources

In this work, we consider a modeling based on truncated Gaussian distributions for the

sources. This distribution is interesting when, for instance, the bounds of the sources

are known. In a first moment, the following i.i.d. modeling is considered

p(sj,t|µj , pj , s
min
j , smax

j ) =

√
pj

2π exp
(
−pj

2

(
sj,t − µj

)2
)
1[smin

j ,smax
j ](sj,t)

Φ
(√

pj

(
smax
j − µj

))
− Φ

(√
pj

(
smin
j − µj

)) , (4)

where µj and pj correspond to the distribution parameters, which, as we assume a hier-

archical model, are assumed unknown, and Φ(·) is the cumulative distribution function

of the standard normal distribution. The truncation points smin
j and smax

j are fixed

and should be assigned by the user. In order to illustrate the distribution of Equa-

tion (4), we plot it in Figure 4 for different parameters and bound values. Note that

the truncated Gaussian distribution provides a flexible prior as it can model a large

range of distributions from almost uniform sources to signals that are concentrated

near a certain value.

Very often in actual problems, the sources present a temporal structure. Moti-

vated by that, a second prior modeling2 can be defined by substituting µj = sj,t−1

in Equation (4). The resulting prior is a first-order Markovian model quite similar to

the classical AR(1) model driven by Gaussian innovation sequence, with the only dif-

ference that the recurrence is limited in the interval [smin
j , smax

j ]. Both in the i.i.d.

and in the Markovian modeling, we assume that the sources are mutually statistically

independent, i.e. p(S) =
∏ns

j=1 p(sj,:), where sj,: denotes the j -th source.

2 Since the derivation of a Bayesian method is almost the same for the i.i.d. and the Marko-
vian modeling, our calculations will be based in Equation (4). Note however that, in the
Markovian modeling, there is no need to estimate the term µj that appears in this equation.



5

−1 −0.5 0 0.5 1 1.5 2
0

0.01

0.02

0.03

0.04

0.05

s

p(
s)

(a) smin
j = 0, smax

j = 1, µj = 0 and p =
0.01.

0 0.5 1 1.5 2
0

1

2

3

4

5

6

x 10
−9

s

p(
s)

(b) smin
j = 0, smax

j = 100, µj = −6 and
p = 1.

−2 −1.5 −1 −0.5 0 0.5 1
0

0.5

1

1.5
x 10

−6

s

p(
s)

(c) smin
j = −100, smax

j = 1, µj = 6 and
p = 1.

Fig. 1 Truncated Gaussian distribution: examples with different parameters.

3.1.2 Parameters related to the source’s distributions

In our hierarchical models, the parameters associated with the prior distributions of

the sources are also unknown and, thus, should be estimated. In this spirit, for the

i.i.d. modeling expressed in Equation (4), the following uniform priors are considered

p(µj) ∝ 1[µmin
j ,µmax

j ](µj), (5)

p(pj) ∝ 1[pmin
j ,pmax

j ](pj), (6)

where the parameters µmin
j , µmax

j , pmin
j and pmax

j should be defined based on available

information. If, for example, the sources are expected to be concentrated around the

inferior bound smin
j , one can set µmin

j < µmax
j < smin

j . Conversely, if no additional

information is available, one must increase the limits of both hyperparameters to obtain

an almost uniform distribution. Regarding the Markovian modeling, we only have one

hyperparameter (pj) with the same prior of Equation (6).
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3.1.3 Mixing parameters

In an alternative notation, the LQ mixing model can be written as the following linear

model

xi,t =

J∑

m=1

ci,ms̄m,t + ni,t, (7)

where J = ns + ns!
2(ns−2)!

. The vector ci = [ci,1, . . . , ci,J ] results from the concatenation

of the linear terms [ai,1, . . . , ai,ns
] and the quadratic terms [bi,1,2, . . . , bi,ns−1,ns

], and

the vector s̄t = [s̄1,t, . . . , s̄J,t] is the concatenation of the sources [s1,t, . . . , sns,t] and

the quadratic terms [s1,ts2,t, s2,ts3,t . . . , sns−1,tsns,t]. From this alternative notation,

one can note that the conditional distributions of ai,j and bi,j,k used in the Gibbs’

sampler (see Section 3.4) assume similar expressions. Therefore, for sake of simplicity,

both ai,j and bi,j,k will be represented by ci,m in the sequel.

Concerning the priors assigned for the mixing coefficients ci,m, we consider the

following uniform distribution

p(ci,m) ∝ 1[cmin
i,m ,cmax

i,m ](ci,m). (8)

Again, the distribution bounds cmin
i,m and cmax

i,m should be set according to any available

information. It is worth mentioning here that one can perform linear BSS via the same

implementation of the LQ case by simply setting cmin
i,ns+1:J = cmax

i,ns+1:J = 0, i.e. by

canceling the quadratic terms. Besides, when smin
j = 0 and smax

j → ∞, our proposal

becomes able to perform non-negative matrix factorization (NMF), i.e. to provide a

linear representation of the data in which both the mixing coefficients and the sources

are non-negative.

3.1.4 Noise variances

Following the usual approach [17,6], Gamma priors were assigned for the noise preci-

sions (inverse of variances) ri = 1/σ2
i , that is

p(ri) ∝ r
αri

−1

i exp

(−ri

βri

)
1[0,+∞[ (ri) . (9)

This choice culminates in a conjugate pair, which eases the sampling step in the Gibbs’

sampler, and accounts for positivity of the noise variance.

3.2 Bayesian inference

The next step of our development is to obtain the posterior distribution p(θ|X). Since

we assume that all elements of θ are statistically independent (except the sources sj,:

and their parameters µj and pj), the distribution p(θ) factorizes and, as a consequence,

Equation (2) can be written as

p(θ|X) ∝ p(X|θ)×
nc∏

i=1

J∏

m=1

p(ci,m)×
ns∏

n=1

p(sj,:|µj , pj)×
ns∏

n=1

p(µj)×
ns∏

n=1

p(pj)×
nc∏

i=1

p(σ2
i ).

(10)
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There are several ways to define an estimator of θ based on the posterior distri-

bution p(θ|X). In this work, this is done through the Bayesian minimum mean square

error (MMSE) estimator [15] (also known as conditional mean estimator), which is

given by

θMMSE =

∫
θp(θ|X)dθ. (11)

The presence of an integral in the MMSE estimator makes its exact calculation difficult

in our problem. Yet, as we shall see in the sequel, it is possible to obtain a good

approximation through sampling methods.

Let us suppose that a set of samples draw from p(θ|X) is available; these samples

will be represented by θ1, θ2, . . . , θM . Then, the Bayesian MMSE estimator can be

approximated by

θ̃MMSE =
1

M

M∑

i=1

θi. (12)

Of course, in view of this approximation, which is called Monte Carlo integration, the

implementation of the Bayesian MMSE estimator boils down to the task of finding an

efficient way for sampling from the distribution p(θ|X). In this work, this is done via

the Gibbs’ sampler.

3.3 The Gibbs’ sampler

The Gibbs’ sampler is a Markov Chain Monte Carlo (MCMC) method specially tailored

for simulating joint distributions [8]. The idea behind the Gibbs’ sampler is to generate

a set of samples by generating a Markov chain that admits the desired distribution

(p(θ|X) in our case) as stationary distribution. Considering that x ∼ p(x) stands for

the sampling operation, i.e. x is a sample obtained from the distribution p(x), then the

generation of a Markov chain in the Gibbs’ sampler can be summarized as follows [18]:

1. Initialize all the parameters θ0
1, θ0

2, . . . , θ0
N ;

2. For p = 1 to P do

θp
1 ∼ p(θ1|θp−1

2 , θp−1
3 , , . . . , θp−1

N ,X)

θp
2 ∼ p(θ2|θp

1 , θp−1
3 , . . . , θp−1

N ,X)

...

θp
N ∼ p(θN |θp

1 , θp
2 , . . . , θp

N−1,X)

end

One of the attractive features of the Gibbs’ sampler is that it permits to simulate a

joint distribution by sequentially sampling from the conditional distribution of each

variable. Therefore, the next step to implement a Gibbs’ sampler is to obtain the

conditional distribution of each unknown parameter of our problem. This will be done

in the sequel.
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3.4 Conditional distributions

For most of the unknown parameters in our problem, the expression of the conditional

distribution can be obtained by observing that

p(θq|θ−θq
,X) ∝ p(X|θ)p(θq). (13)

Thus, for a given parameter, the calculation of the conditional distributions can be

achieved by substituting the likelihood function and the prior distribution into this

expression. In the sequel, this procedure will be done for each unknown parameter.

3.4.1 Sources

The conditional distribution of the sources can be obtained by replacing (3) and (4)

into (13):

p(sj,t|θ−sj,t ,X) ∝ exp

[
−

nc∑

i=1

1

2σ2
i

(
Ψi,j,tsj,t

+ Ωi,j,t

)2

− 0.5pj

(
sj,t − µj

)2

]
1[smin

j ,smax
j ](sjt), (14)

where

Ωi,j,t = xi,t −
ns∑

g=1,g 6=j

ai,gsg,t −
∑

1≤g<k≤ns,g 6=j

bi,g,ksg,tsk,t, (15)

and

Ψi,j,t = ai,j +

ns∑

g=1,g 6=j

bi,j,gsg,t. (16)

After some manipulation, Equation (14) can be simplified as follows

p(sj,t|θ−sj,t ,X) ∝ exp

(
−

(
sj,t − µPostj

)2

2σ2
Postj

)
1[smin

j ,smax
j ](sj,t), (17)

where σPostj
= σ2

Lj
σ2

j /(σ2
Lj

+ σ2
j ) and µPostj

= (µLj
σ2

j + µjσ
2
Lj

)/(σ2
Lj

+ σ2
j ), and

σ2
Lj

=

(
nc∑

i=1

Ψ2
ijt

σ2
i

)−1

, (18)

µLj
= σ2

Lj

nc∑

i=1

ΩijtΨijt

σ2
i

. (19)

The conditional distribution (14) corresponds to a truncated Gaussian distribution

and its simulation can be conducted by the procedure proposed in [4].
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3.4.2 Parameters related to the priors attributed to the sources

The posterior distribution of the parameter pj is given by

p(pj |sj,:, µj) ∝ p(sj,:|, pj , µj)p(pj),

which, according to Equation (4), can be written as

p(pj |sj,:, µj) ∝ p
nd
2

j exp
(
− 0.5pj

nd∑

t=1

(
sj,t − µj

)2
)

×
1[pmin

j ,pmax
j ](pj)

Φ
(√

pj

(
smax
j − µj

))
− Φ

(√
pj

(
smin
j − µj

)) . (20)

We point our here that such an expression does not assume a standard form because

of the nonlinearity in the denominator of the second term. This is also the case for the

distribution p(µj |sj,:, pj) that appears in the i.i.d. modeling. A first solution to sim-

ulate these non-standard distributions would be achieved via the Metropolis-Hastings

(MH) algorithm [18]. However, the problem in such an approach is that it requires the

definition of an adequate instrumental function which, very often, is not a trivial task.

In order to avoid using a MH step, we consider the alternative approach proposed

in [9]. The idea here is to introduce the latent variables obtained by the following

transformation:

lj,t = µj + p
−1/2
j × Φ−1


 Φ

(√
pj

(
sj,t − µj

))− Φ
(√

pj

(
smin
j − µj

))

Φ
(√

pj

(
smax
j − µj

))
− Φ

(√
pj

(
smin
j − µj

))

 . (21)

The interesting point here is that if sj,t follows a truncated Gaussian with parameters

µj and variance 1/pj , then lj,t is distributed according to a Gaussian distribution of

mean µj and variance 1/pj (see [9] for details).

Since lj,t follows a Gaussian distribution, one can write

p(lj,:|µj , pj) =

nd∏

t=1

√
pj

2π
exp

(
−pj

2

(
lj,t − µj

)2
)

. (22)

Using this equation and the prior distributions (5) and (6), one can show, after some

simple calculations, that the new conditional distributions of µj and pj are given by

p(µj |pj , lj,:) ∝ p(µj)p(lj,:|µj , pj) ∝ 1[µmin
j ,µmax

j ](µj)

× exp


−pj · nd

2

(
µj − 1

ns

nd∑

t=1

lj,t

)2

 (23)

p(pj |µj , lj,:) ∝ p(pj)p(lj,:|µj , pj) ∝ 1[pmin
j ,pmax

j ](pj)

× p
nd
2

j exp

(
−pj

nd∑

t=1

(
lj,t − µj

)2

)
. (24)
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Now we have more tractable distribution, since p(µj |pj , lj,:) is a truncated Gaussian

whereas p(pj |µj , lj,:) is a truncated Gamma. The simulation of these two distributions

can be conducted through the method proposed in [4].

The original procedure of [9], described in the last paragraphs, can be readily

extended for estimating pj when the Markovian modeling is considered. Indeed, this can

be done by observing that the innovation process sj,t−sj,t−1 is distributed according to

a truncated Gaussian whose limits depend on the time index. Therefore, the conditional

distribution of pj in this case is obtained by substituting µj = sj,t−1 in Equation (24).

Also, the same substitution should be conducted in Equation (21) for the calculation

of the latent variables lj,t.

3.4.3 Mixing parameters

Analogously to the procedure conducted in Section (3.4.1), the conditional distributions

of the mixing parameters can be obtained by substituting Equations (8) and (3) into

Equation (13). It can be shown that

p(ci,m|θ−ci,m ,X) ∝ exp

(
− ρL

i,m

2
(ci,m − νL

i,m)2
)
1[cmin

i,m ,cmax
i,m ](ci,m), (25)

where

ρL
i,m = σ2

i

nd∑

t=1

s̄m,t, (26)

νL
i,m =

∑nd
t=1 s̄m,t

(
xi,t −

∑J
g=1,g 6=m ci,g s̄g,t

)

∑nd
t=1 s̄2

m,t

. (27)

Again, the resulting conditional distribution (Equation (25)) is a truncated Gaussian

distribution and can be simulated by the technique presented in [4].

3.4.4 Noise variances

For the noise precisions ri = 1/σ2
i , the conditional distribution is obtained by substi-

tuting Equations (9) and (3) into Equation (13), which gives

p(ri|θ−ri ,X) ∝ r
nd
2

i exp
(−0.5riΘi,t

)
r
αri

−1

i exp

(−ri

βri

)
1[0,+∞[ (ri) (28)

where Θi,t = xi,t−
∑ns

j=1 ai,jsj,t−
∑

i,j,k bi,j,ksj,tsk,t. This equation can be rewritten

as

p(ri|θ−ri ,X) ∝ exp

(
−ri

(
0.5Θi,t +

1

βri

))
r

nd
2 +αri

−1

i 1[0,+∞[ (ri) , (29)

which is a Gamma distribution with parameters αi = nd
2 +αri and β−1

i = 0.5Θi,t+β−1
ri

.
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3.5 Algorithm description

The final algorithm is summarized in Table 1. In a first step, one must define the

hyperparameters, which, as discussed before, should be done based on the available

information. After that, it comes the running of the Gibbs’ sampler, which is done

by sampling the conditional distributions obtained in the last sections. Finally, the

estimation of the unknown parameters is done by averaging the generated samples.

However, as the Markov chain associated with the Gibbs’ sampler takes some iterations

to reach the stationary distribution, the samples generated in an initial moment, the

burn-in period, must be discarded. The determination of the size of the burn-in period

B is done through visual inspection.

Table 1 Bayesian source separation algorithm for LQ mixtures

1. Define hyperparameters smin
j , smax

j , pmin
j , pmax

j , cmin
im , cmax

im and, for the i.i.d. case,
µmin

j , µmax
j ;

2. Random initialization of the current samples θ0 from their feasible domains;
3. Run Gibbs sampler

For m = 1 to M do
– For j = 1, · · · , ns, t = 1, · · · , nd

sm
j,t ∼ p(sj,t|θ−sj,t ,X) (Equation (17))

– Define latent variables lj,t (Equation 21)
– For j = 1, · · · , ns

µm
j ∼ p(µj |θ−µj ,Lj,:,X) (Equation (23)) (only for the i.i.d. case)

pm
j ∼ p(pj |θ−pj ,Lj,:,X) (Equation (24))

– For i = 1, · · · , nm, j = 1, · · · , J
cm
i,j ∼ p(ci,j |θ−ci,j ,X) (Equation (25))

– For i = 1, · · · , nm

rm
i ∼ p(ri|θ−ri ,X) (Equation (29))

end
4. Infer the sources through the Bayesian MMSE estimation

s̃j,t =
1

M −B

M∑

m=B+1

sm
j,t,∀j, t, (30)

where B denotes the number of iterations of the burn-in period.

4 Experimental Results

In order to test our method, we firstly conduct a set of simulations with synthetic

data. In this test, we consider linear and LQ models. In both situations, the signal-to-

interference ratio (SIR) is adopted as performance index

SIR =
1

nd · ns

ns∑

j=1

nd∑

t=1

10 log

(
E{s2

j,t}
E{(sj,t − ŝj,t

)2}

)
, (31)

where ŝj,t is the estimation of the source j at time t (after scaling correction when

needed). In a second moment, in order to test our method with actual data, we consider

the problem of separating scanned images.
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Table 2 SIR (dB) for the separation of linear mixtures.

Situation 1 Situation 2 Situation 3
Bayesian method
i.i.d. modeling 17.5 17.7 15.6

Bayesian method
Markovian modeling 12.7 17.1 18.4

FastICA 20.4 17.8 11.8

4.1 Synthetic data

4.1.1 Separation of linear mixtures

We first test our method in a linear source separation problem where nd = 300, ns = 3,

nc = 3, and the mixing matrix is given by A = [1 0.5 0.5 ; 0.6 1 0.3 ; 0.8 0.4 1] . The fol-

lowing scenarios were considered: 1) the sources are realizations of truncated Gaussian

distributions (matched case with our i.i.d. modeling); 2) the sources are realizations of

truncated Gaussian Markovian process (matched case with our Markovian modeling);

3) the sources correspond to a sine wave, a ramp function and a sawtooth wave. In

all these situations the signal-to-noise ratio (SNR) at each sensor was 20 dB. The total

number of iterations of the Gibbs’ samples was M = 10000 with a burn-in period of

B = 5000.

The results in Table 2 represent the mean SIR over 50 experiments (the differences

between the realization were the Markov chains initialization). Despite a expected

performance degradation when the Markovian prior is used for separating i.i.d. sources,

the proposed method performed satisfactorily in almost all simulations. Although the

FastICA algorithm [12] gave us better results in the first two situations, its application

to the third situation did not provide good results. This was due to the existence of

two correlated sources in this scenario. It is worth remembering that, in contrast to the

Bayesian approach, the FastICA searches for independent components and, therefore,

it may fail when the sources are not independent.

4.1.2 Separation of linear-quadratic mixtures

First, we consider a situation where nd = 500, ns = 2 and nc = 2. The original sources

and the mixtures are presented in Figures. 2(a) and 2(b), respectively. The following

mixing parameters were considered: a1,1 = 1, a1,2 = 0.5, b1,1,2 = 0.2, a2,1 = 0.5,

a2,2 = 1, b2,1,2 = 0.2, and the SNR at each sensor was 30 dB. The hyperparameters

related to the limit values of the prior distributions were3 smin
j = cmin

i,m = 0 and

smax
j = cmax

i,m = 1. Concerning the Gibbs sampler parameters, the total number of

iteration was M = 20000 with a burn in period of B = 8000. In this situation, the

obtained performance indexes were SIR = 26 dB for the i.i.d. modeling and SIR =

27 dB for the Markovian modeling. We also tested the ICA method proposed in [11]

which was able to provide good approximations ( SIR = 22 dB). Despite the better

performance, it is worth mentioning that the gains brought by our method comes at

the price of a greater computational effort.

We then consider a scenario similar to the first one with the only difference that

the mixing parameters are now given by a1,1 = 1, a1,2 = 0.7, b1,1,2 = 0.6, a2,1 = 0.6,

3 We set amin
1,1 = amin

2,2 = 1 to avoid scaling ambiguities.
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a2,2 = 1, b2,1,2 = 0.6. Again, the proposed method was able to recover the sources both

for i.i.d. modeling ( SIR = 22 dB) and for the Markovian modeling ( SIR = 23 dB). In

Figure 2 the retrieved sources for the Markovian modeling are shown. Despite the

noise amplification, which is expected in nonlinear systems, the estimated sources are

close to the actual ones. On the other hand, in this second scenario, the ICA method

proposed in [11] failed to separate the sources because the mixing coefficients violate

the stability condition of the recurrent separating system.
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(c) Retrieved sources

Fig. 2 Separation of LQ mixtures (Markovian modeling).

4.2 Separation of scanned images

Depending on the type of paper, image scanning of printed documents in a duplex

mode (recto verso) may suffer from the so-called show-through effect [19]. Indeed, if

the printed paper is not enough opaque, then the back-side of the image shows through

in the front-side and vice-versa, causing a sort of interference in the scanned images.



14

This phenomenon is illustrated in Figure4 3, which shows scanned versions of the

original images (front-side and back-side).

(a) Front-side.

(b) Back-side (with vertical mirror inversion for
pointing out its similarity with the front-side)

Fig. 3 Scanned images: the show-through effect.

Several papers [21,16,1] dealt with the show-through effect via the application of

blind source separation methods. The problem formulation in this case is as follows:

there are two sources and they correspond to the front-side and back-side images. The

number of mixtures is also two and they correspond to the scanned images (recto and

verso). Recently, Merrikh-Bayat et al. [16] suggested that the mixing process associated

with image scanning can be satisfactory approximated by the LQ model. Given that,

4 These images are available at http://www.site.uottawa.ca/ edubois/documents/ and were
considered in [21,16].
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Table 3 Estimated coefficients (scanned images)

a1,1 a1,2 a2,1 a2,2 b1,1,2 b2,1,2

Bayesian method
Linear model 0.76 0.26 0.28 0.73 − −

Bayesian method
LQ model 0.82 0.03 0.42 0.61 0.01 0.16

they applied the ICA-based source separation method proposed in [11] to retrieve the

original images.

Aiming to illustrate the operation of our method in a scenario with actual data, we

apply it to separate the scanned images of Figure 3. In particular, we focus on the sub-

block of pixels (131×141) shown in the first line of Figure 4, which gives us nd = 18471

samples of the mixed signals5. It is interesting to note here that some prior information

is available in the considered situation. For example, because the scanned images are

text documents, the sources are mostly white and, thus, are concentrated around6 one.

This information can be taken into account in the definition of the hyperparameters. In

our tests, for instance, we consider the i.i.d. modeling of Equation (4) with pmin
j = 1,

pmax
j = 2, µmin

j = 1 and µmax
j = 5. Note that, since we are fixing the value of µj to

the interval [1, 5], the prior distributions of the sources tend to be concentrated around

one.

In Figure 4, we plot the scanned images and the recovered images after applying

the proposed Bayesian method for both linear and LQ cases. One can note that a

slightly better performance is achieved when the LQ model is considered, although, for

the back-side, there are some regions for which the linear model gives a better solution.

In Table 3, we show the mixing coefficients estimated by the Bayesian methods. In all

these cases, the total number of iterations was M = 30000 with a burn-in period of

B = 9000. Concerning the execution time, the method took about 42 minutes7 in both

situations (linear and LQ models).

For matter of comparison we also plot in Figure 4 the solution provided by the

ICA-based method proposed in [11]. In this case, the recovered image of the front-

side was close to the one provided by our Bayesian method (LQ model). Nonetheless,

there is some background noise in the back-side image recovered by the ICA-based

algorithm. Concerning the execution time, the LQ-ICA algorithm was much faster

than our Bayesian method: it took about 4 minutes to converge.

5 Conclusion

In this work, we proposed a novel Bayesian source separation method that can be

applied to linear-quadratic and linear mixing models. Our approach was based on

the definition of truncated priors and, thus, is indicated for problems in which the

bounds of the sources and of the mixing coefficients are known; a particular example in

this context is non-negative factorization. Concerning the sources’ prior modeling, we

5 The signals are obtaining from column vectorization of the images.
6 The images are coded in the grayscale, where 0 and 1 represent, respectively, black and

white.
7 The method was implemented in Matlab (Windows Vista) and the simulations were per-

formed in a Intel Core 2 duo 2 GHz, 3048 GB RAM.
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consider both an i.i.d. distribution and a Markovian one. Finally, the implementation

of our method was done by setting a Gibbs’ sampler and some auxiliary variables with

the aim of simplifying the simulation of some conditional distributions.

Simulations were conducted to check the viability of our proposal. In scenarios with

artificial data, we observed that our method is particularly useful in some cases where

existing methods fail. Furthermore, we tested our method in a real problem related to

the separation of scanned images. The obtained results pointed out that our proposal is

promising as it provided satisfactory solutions. Moreover, we believe that the remaining

interference can be mitigated by the incorporation of a spatial filter into our Bayesian

method, as done in [16]. This problem will be object of future works.

We could check that, despite the good results, the main limitation of our approach

concerns its computational complexity. Indeed, as each iteration of the Gibbs’ sampler

performs ns×nd simulations of univariate random variables, the computational burden

of our method may become heavy in medium and large-scale problems. A great number

of works has been trying overcome such a limitation by considering methods such as

the ones based on the variational approximation. This is another point that we will

investigate in future works.
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Scanned images (mixtures).

Images recovered by the proposed method (linear model).

Images recovered by the proposed method (LQ model).

Images recovered by the LQ-ICA method of [11].

Fig. 4 Results: separation of scanned images.


