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ABSTRACT 

 

Background 

Social epidemiology investigates both individuals and their collectives. While the limits that 

define the individual bodies are very apparent, the collective body’s geographical or cultural 

limits (e.g., “neighbourhood”) are more difficult to discern.  Also, epidemiologists normally 

investigate causation as changes in group means. However, many variables of interest in 

epidemiology may cause a change in the variance of the distribution of the dependent 

variable. In spite of that, variance is normally considered a measure of uncertainty or a 

nuisance rather than a source of substantive information. This reasoning is also true in many 

multilevel investigations, whereas understanding the distribution of variance across levels 

should be fundamental. This means-centric reductionism is mostly concerned with risk factors 

and creates a paradoxical situation, since social medicine is not only interested in increasing 

the (mean) health of the population, but also in understanding and decreasing inappropriate 

health and health care inequalities (variance).  

 

Methods 

Critical essay and literature review. 

 

Results  

The present essay promotes (a) the application of measures of variance and clustering to 

evaluate the boundaries one uses in defining collective levels of analysis (e.g., 

neighbourhoods), (b) the combined use of measures of variance and means-centric measures 

of association, and (c) the investigation of causes of health variation (variance-altering 

causation). 

 

Conclusions 

Both measures of variance and means-centric measures of association need to be included 

when performing contextual analyses. The variance approach, a new aspect of contextual 

analysis that cannot be interpreted in means-centric terms, allows us to expand our 

perspectives. 
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People are simultaneously social and biological organisms and therefore social epidemiology 

distinguishes itself from general epidemiology by its inherent multilevel approach that aims to 

investigate both individuals and their collectives all together.[1] While the limits that define 

the individual biological bodies are very apparent, the collective body’s geographical or 

cultural limits (e.g., “neighbourhood”) are more difficult to discern.  Also, it is normal in 

epidemiology to investigate causation as changes in group means even though many variables 

of interest may cause a change in the variance of the distribution of the dependent variable 

and not cause a change in the mean. So far here has been little interest in understanding 

changes in terms of the variance that underlies averages. [2-6] Variance is often considered a 

measure of uncertainty or a troublesome entity, rather than a source of substantive 

information. Paradoxically, this restrictive approach is the norm  in many multilevel 

investigations, [7] whereas understanding the distribution of variance across levels should be 

the sine qua non of any solid analysis. [8-16]  One should always remember that the goal of 

social medicine is not only to increase the (mean) health of the population, but to decrease 

health and health care inequalities (variance).  

The present essay questions the usual means-centric approach and emphasises 

the need to deliberately investigate the heterogeneity that underlies averages. We propose, (a) 

the application of measures of variance and clustering to evaluate the boundaries that are to be 

used  in defining collective levels of analysis (e.g. neighbourhoods). Further, we illustrate 

how a better understanding of contextual effects may be had by also (b) combining measures 

of variance with means-centric measures of association, and by (c) investigating the causes of 

health variation (variance-altering causation), rather than only considering changes in 

averages.  
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A. MEASURING VARIANCE TO EVALUATE THE BOUNDARIES DEFINING 

COLLECTIVE LEVEL OF ANALYSIS 

Individual bodies, collective bodies, and Frankenstein 

Researchers traditionally, investigate average characteristics of individuals (e.g., blood 

pressure) or of areas (e.g., social cohesion), but seldom question the “boundaries” that define 

the units of analysis. These boundaries are often accepted a priori. At the individual level, the 

limits that define the human body are very apparent, and so is the intra-individual correlation 

of the individual parts. Without question there is a generalised individual effect that maintains 

a sophisticated homeostasis among an array of cellular and physiological processes (e.g., 

blood pressure level) within the physical boundaries of our skin.  As a result, when 

performing multiple measurements of individual variables in a group of subjects, a great 

proportion of the variance between measurements is at the individual level. From an 

epidemiological perspective this intra-individual correlation is a nuisance that, because of 

statistical reasons, needs be accounted for when analysing such things as repeated blood 

pressure measurements, diseases of the eyes or teeth, or multiple bone fractures. However, 

since the boundaries of human bodies are so well delineated, we can take them for granted. 

Instead, our research mainly focuses on whether exposure to a variable (i.e., antihypertensive 

medication) has an effect on, or changes, the mean of the distribution of another variable (i.e., 

lowering of blood pressure). 

Even since the days of Durkheim [17] we know that when individuals adhere to 

each other and form a coherent community, a relational [18] and collective effect emerges that 

becomes more that the sum of each individual action. On some occasions this collective effect 

may have arisen because of sharing of common geographic environments, [19] and not 

necessarily as a result of a voluntary individual decision to form a social group. In any case, 

this general collective effect is to some extent analogous to the general individual effect 
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mentioned above.  Like multiple measurements, individuals within a collective are themselves 

more similar to one another than they are to individuals outside of their group because 

insiders share common social boundaries and contextual influences. [10]  As in the case of the 

individual body, the collective body maintains a social homeostasis that balances numerous 

social processes. However, lacking a covering skin such as human bodies possess, the 

collective body’s geographical or cultural limits (e.g., “neighbourhood”) are more difficult to 

discern.  A further source of complexity exits: unlike the parts of a human body, [20]   

individuals often belong to several collectives, [21,22] both in a cross-sectional and in a life 

course perspective, [23]. Sometimes, however, collective boundaries are relatively easy to 

recognise, as is the case of schools or health care centres when investigating pupil outcomes 

[24] or medical treatments. [25]  

While the existence of contextual effects on individual health is rather obvious, 

[26] the validity of many administrative boundaries for defining collective bodies [27,28] 

requires more investigation. [18] In fact, we cannot exclude the possibility many of the 

“neighbourhoods” we study are – like contextual Frankensteins – constructed by assembling 

parts from different collective bodies. Paraphrasing Duncan, Jones, & Moon: “the hierarchical 

definition of the levels could be criticized as an inappropriately formalistic and mechanistic 

attempt to capture the cultural geography of lifestyle”. [29], p. 732 

 

Can we identify appropriate collective boundaries for investigating contextual effects? 

While a number of collective bodies (e.g., neighbourhoods) are assumed to be exclusively 

delimited by geographical boundaries, other cultural or relational criteria (either alone or 

combined with geographical information) may be more appropriate for identifying collective 

bodies. [18,30,31]  In any case, if such a collective body exists, one might anticipate finding a 

correlation in the health of the individuals within it. [10] Moreover, the closer our boundary 
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definition corresponds to the boundaries of the hypothesized collective body, the greater one 

may expect the clustering of the health outcome of interest to be. [10,32] Based on this 

assumption we can try to identify collective boundaries in one of two ways: either by (a) 

scanning a geographical surface to identify clusters of the outcome (e.g., specific diseases), or 

by (b) using a priori defined socio-geographical areas and quantifying the observed clustering 

of disease outcomes within these areas.   

In the first instance above, cluster recognition analysis [33,34] may help us to 

identify geographical clusters of the outcome of interest (e.g., the incidence of cholera). Once 

the relational [18] boundaries that include the clusters have been identified, we can investigate 

what makes them different from the rest of the geographical surface (e.g., the water supply) 

and thereby obtain relevant information for drawing causal hypotheses and planning public 

health interventions. This idea is close to John Snow’s approach in his seminal work on 

cholera. [35] In the second scenario (b) the most common procedure is to employ 

geographical divisions found in administrative databases (e.g., census tracts). Alternatively, 

such areas may be combined on the basis of certain characteristics [31,36,37] or by using 

Geographic Information Systems (GIS) techniques. [34]  

 Measures of variance and clustering (e.g., intraclass correlation, [15,38] median 

odds ratio, [9,39,40] or parwise odds ratio [32]) allows us to identify the scale (e.g., local 

neighbourhoods, parishes, or municipalities) [41,42] on which contextual influences operate 

with different health outcomes.[43] For example, in 1999 Boyle & Willms performed an 

unconventional multilevel analysis exclusively based on measures of intra-class correlation 

and places defined by administrative boundaries. [44] They observed that place effects were 

generally small and were influenced by both the size of the geographical area used to define 

place and the health indicator selected for study. The authors questioned the usefulness of 

carrying out health needs assessment surveys within large administrative areas, and casted 
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doubt on the utility of these geographic boundaries for studying place effects. Boyle & 

Willms based their conclusions not on means-centric measures of association, but on the 

analysis of variation, and they raised questions about the context as a whole. Their work, has 

resulted in some criticism (see, for example, Blakely [45] p. 373). 

 

B. COMBINING MEASURES OF VARIANCE AND MEAN-CENTRIC MEASURES 

OF ASSOCIATION FOR A BETTER UNDERSTANDING OF CONTEXTUAL 

EFFECTS 

Small variance but conclusive associations 

It may appear paradoxical that a conclusive (“significant”) association between a contextual 

variable and an individual outcome can be detected alongside a very small fraction of overall 

variance in the outcome at the contextual (e.g., neighbourhood) level. [46] Thus, means-

centric measures of association indicate the existence of contextual effects, while measures of 

variance suggest the opposite.  In an attempt to justify this paradox [47,48], it has been 

commented that standardized mean differences (d) between intervention and control 

neighbourhoods, that program evaluators commonly view as medium (d = 0.4) or even large 

(d = 0.6) translate into ‘small’ intra-neighbourhood correlations of  4% and 8% respectively.  

Several criticisms can be raised to this reasoning, with the most fundamental being there is no 

need for such a justification. As our essay argues, such paradox does not exist but, rather, the 

question is to distinguish between the different information provided by measures of 

association and by measures of variance. Furthermore, it has been previously revealed that 

standardised coefficients [47] are inappropriate measures of effect as they can be 

“confounded” by the variance of the specific setting where the study is performed (se 

Greenland [49] and Cummings[50] for an extended explanation). Standardized effects are 
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actually distorted measures of association and also hide the information contained in the 

variance being standardized.. 

In addition, while  intraclass correlations ranging from 4% - 8 %  may be considered small by 

some [47], they may be highly relevant for others  particulary when compared with the 

intraclass correlations of many “neighbourhood” outcomes relevant for social epidemiology. 

[51]  

The fundamental difference between measures of variation and means-centric 

measures of association becomes clear if one understands that the interpretation of variance is 

often temporo-spatially constrained and that for every individual outcome there may be a 

pattern of variance produced by different environmental conditions. [52] Thus, in seeking 

useful information for planning public health interventions, measures of variance and 

clustering from a specific context provide insight into the areas being investigated during the 

period of the study. By contrast, measures of association intend to provide causal information 

that can be generalised and applied to contexts beyond the one where the study was 

performed.  

Further illustration of this idea using a continuous contextual variable is given in the figure 1 

and its accompanying legend. See also a previous study published elsewhere in this 

Journal.[11]) 

-[Figure 1 about here] 

 

We can even clarify this apparent contradiction in an equation that can be 

calculated from a two level logistic regression model. As an example, imagine individuals are 

nested within neighbourhoods and the aim is to analyze the relation between neighbourhood 

deprivation (X) and presence of hypertension. Without loss of generality, assume the 
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contextual variable is centred on the mean. It can be shown that the total neighbourhood 

variance σ2
T (as originally estimated in the simplest “empty” model with only individual 

nested within neighbourhoods) is a function of the regression coefficient of the contextual 

variable (β2
X) the variance of this contextual variable (σ2

X), and of the residual variance (σ2
u) 

once the contextual variable is included in the model. Therefore it is possible to find a similar 

βx with very different scenarios of variance. 

σ
2
T = β

2
X · σ

2
X

 + σ2
u   Equation 1 

Failure to distinguish between the two types of measures explained above, and 

specially, interpreting means-centric measures of association as if there were measures of 

variance may lead to inappropriate conclusions, a situation that is unfortunately rather 

common in many multilevel analyses performed today. As one example, in 2001 Diez-Roux 

et al, [53] performed a state of the art and thoroughly conducted multilevel analysis of the 

relationship between characteristics of neighbourhoods and the incidence of coronary heart 

disease. Possibly, since the samples of individuals within blocks in this Atherosclerosis Risk 

in Communities Study (ARIC) were very small, the authors did not estimate neighbourhood 

variance. They did, however, assume the existence of intra-neighbourhood correlation in the 

outcome, which was considered a statistical nuisance and overcome by adjusting standard 

errors for clustering using the statistical software SUDAAN. The size of this conjectural intra-

neighbourhood correlation was never reported. The study drew two main conclusions: (1) 

“Neighbourhood characteristics are related to the incidence of coronary heart diseases” and 

(2) “Strategies for disease prevention may need to combine person-centered approaches with 

approaches aimed at changing residential environments.” While these conclusion are of clear 

academic interest for understanding the contextual causes of coronary heart disease, they are 

also vague and may even be misleading.  An approach aimed at changing residential 

environments may be effective in the ARIC context, but since we do not have information on 
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the intra-neighbourhood correlation (or similar measures of variance), we cannot be certain. 

For example, although an analogous multilevel study in Malmö, Sweden, [54] demonstrated a 

clear association between the socioeconomic characteristics of the urban areas and individual 

blood pressure (in agreement with the ARIC study) [53], differences between these same 

areas explained less than 1% of the individual variance in blood pressure.  Consequently, the 

study concluded that, with regard to Malmö, an intervention focused on urban areas with a 

higher mean level of deprivation would be ineffective [4,11] 

We should not avoid a contextual analysis because the area variance or the intra-

class correlation is very small, since means-centric associations between contextual variables 

and individual health may still be detected. On the other hand, neither can one recommend a 

contextual public health intervention based on a “significant” means-centric association if the 

clustering of individual health within areas is unknown or very low. Means-centric measures 

of association do not provide sufficient information for deciding to launch public health 

interventions at some specific areas but not at other. In fact, if clustering is small, a public 

health intervention would be ineffective, even where a contextual variable is associated with 

the individual outcome and serves to explain 100% of the area variance. As Singer has stated 

“You  can explain a large amount of very little” [55], p. 332. A different scenario is also 

possible in which we observe a clear association between the contextual variable and the 

individual outcome side by side with a very large residual area variance. In this case, if the 

contextual variable does not go very far toward explaining the original area variance, a public 

health intervention aimed at changing this contextual variable would not be very ineffective.  

As discussed earlier, measures of variance and clustering are useful for 

identifying boundary limits of the “collective body” that we assume influence the outcome 

under study. In this section we sought to demonstrate that such collective boundaries (i.e., 

“the geographic scale”) cannot be properly identified solely by means-centric measures of 
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association. For this purpose, means-centric measures of association must be combined with 

measures of variance and clustering.  

New analytical approaches – solving the paradox 

In an earlier publication, [9] we have given empirical examples of the two scenarios depicted 

above, and have also sought to apply a pair of useful measures proposed by Larsen et al 

[9,40]: the median odds ratio (MOR) and the interval odds ratio (IOR) (se the Tutorial 

published elsewhere in the Journal for a extended explanation of these measures)[39]. The 

MOR quantifies neighbourhood variance on the odds ratio scale, and the IOR incorporates 

both the means-centric effect (i.e., odds ratio) and neighbourhood variance in one interval, 

allowing for a more detailed description of the means-centric effect.   

In our previous study, [9] we found the administrative neighbourhoods of 

Malmö were very suitable for identifying the “collective body” that conditions certain 

individual behaviours, such as choosing to visit a private rather than a public physician. For 

this condition, the area variance (SE) with adjustment for age and individual education was 

1.815 (0.278) and the correspondent MOR = 3.61. However, the same neighbourhoods 

seemed inappropriate for identifying the “collective body” that conditioned hospitalisation for 

ischemic heart disease, since the corresponding variance (SE) was only 0.028 (0.025) and the 

MOR = 1.17. In the same study, the socioeconomic characteristics of the neighbourhood 

appraised by aggregated educational achievement (low vs. high) were, however, associated 

with both outcomes. Nevertheless, in spite of this observed association (and disregarding 

concerns about counter-factuality) we concluded that a possible public health intervention 

directed to specific neighbourhoods would be ineffective in either instance. In the case of 

hospitalisation for ischemic heart disease the inefficiency would depend on the very low 

neighbourhood variance. Finding such a low area variance in cross-sectional studies is rather 

common for chronic diseases which, like arteriosclerosis, develop over a whole life-course 
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and have little to do with the place where an individual may be currently residing. When it 

comes to change individual’s choice of physician, a neighbourhood intervention would 

similarly be ineffective because of the large variance that remains unexplained after including 

the variable “neighbourhood level of education” in the model. The latter expressed itself in a 

very broad IOR = 0.28–27.3. There is little doubt that the current neighbourhood context 

influences individual behaviour much more than chronic disease, but “neighbourhood 

educational level” – in spite of being associated with the choice of physician – does not 

explain very much in the city of Malmö.  

We state that combining variance-based measures with means-centric measures 

of association provides useful and complementary information on contextual effects. These 

considerations may be relevant when attempting to determine the efficacy of focusing 

intervention on places rather than on people. For example, imagine that a City Council has 

been informed that average blood pressure is higher in deprived neighbourhoods than in 

wealthy neighbourhoods. As a consequence, decision makers are considering the allocation of 

resources in the most deprived neighbourhoods for the creation of new health care centres 

specialized on blood pressure control. However, if the neighbourhood variation represents 

only a very small part of the total individual variation in blood pressure, then many people 

with high blood pressure would be ignored simply because they reside in wealthy 

neighbourhoods. When the clustering of individual health status within neighbourhoods is 

small, focusing intervention on specific places may be a rather inefficient strategy. [4,11] 

Using the words of  Clarke: “without knowledge of the random components, the interpretation 

of area-level fixed effects parameters becomes decontextualized”.[37] p. 315.  
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C. INVESTIGATING THE CAUSES OF HEALTH VARIATION 

Epidemiologists commonly understand causation in terms of group means, so the statement -

“X causes Y” is taken to imply that, ceteris paribus (see references [14,48,56,57] for a 

discussion on this aspect), an increase in the value of X changes the mean of the distribution 

of Y. However, many independent variables of interest in epidemiological studies may cause 

a change in the variance (not the mean) of the distribution of the dependent variable [2-6] (see 

figure 2).  

[Figure 2 about here] 

 

The distinction between the variance altering and means-centric altering 

approaches is still not widely observed in social epidemiology; most researchers only discuss 

classic means-centric measures of association. This means-centric reductionism goes hand by 

hand with  an epidemiology mostly concerned with risk factors [58] and drug safety and 

creates a paradoxical situation, since social medicine is not only interested in increasing the 

(mean) health of the population, but also in decreasing health inequalities (variance). 

Likewise, it is of major relevance to understand and prevent inappropriate health care 

variation, as it leads to inefficient resource utilization. Modelling variance itself as a 

dependent variable may provide useful information on health inequalities and suggest a 

different kind of contextual effect. [6,13,25,59] 

When investigating such variance-altering causation in contextual analysis, a 

fundamental independent variable is the definition of boundaries that we use to operationalise 

collective bodies (as we have attempted to show in the first section above).  For example, we 

include ‘neighbourhood’ as a random term in multilevel regression analyses. We can consider 

the boundaries that define a specific level of analysis as an independent variable in an 

equation that models variance. In this way we can investigate (potential) causation where the 
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chosen boundaries – assuming they delimit a true collective body – “cause” a certain pattern 

of individual differences/similarity. This has been the approach adopted, for example, by 

Boyle & Willms [44], Reijneveld [60], Petronis  & Anthony [32] and by ourselves 

[6,25,46,54] as well as recently by Uthman, Moradi & Lawoko [61] and by Naess et al [62]. 

This last work explores area variation across a life-course as a way of elucidating potential 

(causal) influence of area on mortality. 

 Modelling individual and area variance may yield valuable information on how 

contextual factors shape health inequalities for different individuals. In a previous study based 

on the MONICA project [6] we investigated contextual effects on individual systolic blood 

pressure, and modelled variance as a function of antihypertensive medication use and body 

mass index. Among other results we found that contextual effects were particularly strong in 

overweight women on antihypertensive medication. Actually, around 20% of the individual 

differences in blood pressure were conditioned by the MONICA population where these 

women were included. This contextual phenomenon possibly reflects disparities in the 

effectiveness of  antihypertensive treatment among different national health care systems (see 

figure 3 in reference [6]). 

 In a recent study [25] we have explicitly investigated variance altering causes 

and  presented a conceptual illustration showing that a change in the characteristics of a 

context (e.g., the implementation of a decentralized health care budget) not only changes the 

mean of the distribution of the variable studied (i.e., increasing compliance with prescription 

guidelines), but alters the variance between the collective units as well (i.e., decreasing 

inequality between health care centres). Downs & Rocke [2] and Braumoeller [5] also provide 

illustrative examples in their work.  
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CONCLUSIONS  

Both measures of variance and means-centric measures of association need to be included 

when performing contextual analyses. However, more research is needed to (a) indentify 

appropriate boundaries for collective bodies like neighbourhoods, (b) develop statistical 

methods that facilitate the use of measures of variance in social epidemiology, (c) identify 

variance-altering causes and their mechanisms, and (d) comprehend the relationship among 

the degree of clustering of individual health within administrative areas, the size of means-

centric measures of association, and the possible efficiency of public health interventions. 

Seeking causal explanations in social epidemiology is a challenge in itself,[63] 

but focusing on the (causal) circumstances that condition variance reveals a neglected 

theoretical dimension for understanding health disparities in social epidemiology. The 

variance approach, a new aspect of contextual analysis that cannot be interpreted in means-

centric terms, allows us to expand our perspectives. 
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LEGEND TO THE FIGURES 
 

Figure 1. Visualization of a hypothetical association between a contextual variable (e.g., 

extreme poverty to extreme wealth) and individual blood pressure, based on data on from 

neighbourhoods in different cities around the world. In this representation the contextual 

variable explains 100% of the variance between neighbourhoods, since all areas are located 

on a regression line. However, while the regression coefficient is identical in all cities (i.e., a 

one unit increase in wealth results in an equivalent increase in health), the original 

neighbourhood variance before the introduction of the contextual variable was lower in city B 

than in city A. The original neighbourhood variance also corresponds to a much larger 

proportion of total individual variance in city A as opposed to city B.  Consequently, a 

contextual public health intervention would be more efficient in city A than in city B. The key 

for this intervention is the size of the neighbourhood variance.  

Figure 2. Visualization of an imaginary association between the interval of time after the start 

of a contextual intervention in a hypothetical city and mean individual health measured across 

(1) the entire city (thick line) and (2) in each of the city’s neighbourhoods (thin lines). The 

measure of association (regression coefficient β) is positive; it is similar in I and II and shows 

an increase of the overall mean from the start of the intervention. However, health inequalities 

(i.e., neighbourhood variance) do not change along the time axis in scenario I, but are 

considerably reduced in scenario II. 

The regression coefficient (β) is zero in both III and IV, which might be interpreted as an 

absence of contextual effects, since the intervention does not seems to influence health. 

However, while the health inequalities represented by neighbourhood variance have not 

changed in scenario III, they have been greatly reduced in scenario IV.  

 
 






