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1) Abstract: Robust fit-for-purpose multivariate calibration models are of critical importance 

to on-line/in-line quantitative monitoring of bio-chemicals and pharmaceuticals using 

spectroscopic instruments. Unlike in off-line assays, the spectroscopic measurements in 

on-line/in-line real-time applications are almost inevitably subjected to variations in 

measurement conditions (e.g. temperature) and samples’ physical properties (e.g. cell 

density, particle size, sample compactness), which can invalidate the assumption of a linear 

relationship between the spectroscopic measurements and the concentrations of the target 

chemical components. This paper discusses the effects of such variations on spectroscopic 

measurements, and presents an overview of recent work on modelling and correcting of the 

detrimental effects of variations in measurement conditions and samples’ physical 

properties. A number of application studies to complex data sets and an industrial plant 

demonstrate the methodologies and algorithms discussed. 

 

Keywords: Temperature-induced spectral variations, Multiplicative Light Scattering, Optical 

Path Length Estimation and Correction, Near Infrared Spectroscopy, Multivariate linear 

calibration 
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Introduction 

 Pharmaceutical development and production are now being heavily influenced through the 

FDA PAT initiative
1
 with spectroscopic instrumentation now being much more widely applied 

to or at the very least explored for on-line real-time applications in pharma-chemistry. 

Vibrational spectroscopic technologies have been widely applied in areas of chemicals 

processing, food technology and agriculture, etc, because of their high measuring speed and 

fewer or no sample preparation requirements which make them highly suitable for in-line and 

on-line process monitoring. In particular, near infrared spectroscopy, Fourier-transform mid 

infrared spectroscopy and Fourier-transform Raman spectroscopy are now being much more 

widely applied in pharmaceutical chemistry and in bio-processing in general. For example in the 

development and production of an Active Pharmaceutical Ingredients (APIs), reaction based 

intermediates, fermentation, crystallization, downstream processing and separations, granulation, 

blending and drying, and in the monitoring of raw materials 
[1-10]

.  Indeed there is much that can 

be learnt from the large numbers of applications of spectroscopy being used for in-line and 

on-line real-time monitoring outside the pharma-chemistry and bio-pharma industries. 

 During on-line quantitative monitoring of processes using spectroscopic techniques, it is by 

and large the chemical and biological information (in most cases the concentrations of the 

chemical and biological compounds) inherent within the spectroscopic measurements, rather 

than the spectroscopic measurements themselves, that are needed for use in process monitoring 

and management, closed loop process control and quality control and process optimisation. 

Calibration models are therefore needed to transform abundant spectroscopic measurements into 

the desired concentration information. In most cases, calibration models are based on the 

assumption of a linear relationship between the spectroscopic measurements and the 

concentrations of the target chemical or biological components. However, unlike in off-line 

assays, the spectroscopic measurements in on-line and in-line real-time applications are almost 

inevitably subjected to variations in measurement conditions, e.g. temperature, as well as 

changes in samples’ physical properties, e.g. cell density, particle size, sample compactness, 

which can make the assumption of linear relationships invalid.  

                                                 
1
 FDA, PAT - A Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance, 

http://www.fda.gov/cder/guidance, 2004. 
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 In contrast in bio-pharmaceuticals development and production PAT is in its infancy
2
,
[11-14] 

with applications seen using predominantly parametric methods that monitor and measure 

surrogate markers of product quality rather than product quality directly. In a recent IFPAC 

presentation and interview
3

 the following comments were made “Until PAT for 

bio-manufacturing is really pushed by the FDA and the benefit of PAT is translated (and clearly 

understood) into cost, quality and schedule benefits, it will be slow to take-up in the industry. 

Sensor technology limitations are the other big issue. There are only a handful of sensors 

available now and they are surrogate indicators”. “The key differences in how PAT is applied to 

biologics manufacturing, as opposed to conventional pharmaceutical manufacturing are (i) there 

are approximately 15 quality attributes of a biologic (due to their complex structure and complex 

biological function) compared with typically five or so for small molecules; (ii) the fluids in 

which biologics are produced are more complex and contain more ingredients and therefore 

present more interferences to sensors; (iii) several steps in the biological manufacturing 

processes need to be sterilized with heat and many biologics measurement sensors are too 

delicate to withstand sterilization temperatures.  Nevertheless, there are several good PAT 

applications in use at, for example at Eli Lilly, Biogen Idec and Baxter Healthcare
3
”. 

 

Situations where the assumption of a linear relationship can become invalid 

Influence of external variables: Variations in measurement conditions such as temperature have 

different impact on different chemical species in mixture samples. For instance, fluctuations in 

temperature can provoke non-linear shift and broadening in spectral bands of absorptivity spectra 

of constituents in mixture samples (Figure 1) by the way of changes in intermolecular 

forces
[15,16]

.  

 

Figure 1: Five NIR spectra for a ternary mixture sample measured at five different temperatures (black solid 

line: 30
o
C, red dash line: 40

o
C, green dash-dot line: 50

o
C, pink dotted line: 60

o
C, blue dash-dot-dot line: 70

o
C)  

                                                 
2
 Shaw, G., “Biopharma says Bye Bye to Black Magic”, Pharma Quality, September 2008. 

http://www.pharmaquality.com/ME2/Audiences/Segments/Publications/Print. 

3 Galliher, P., PAT for Biopharma Slow to Take Up, Process Analytical Technology, 2005. 

http://www.pharmamanufacturing.com/articles/2005/199.html?page=print 
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For a transparent solution comprising K absorbing chemical components, the absorbance 

spectra x(t) measured at temperature t can be expressed as linear combinations of the absorbance 

contributions of all the K constituents.  

esx +=∑
=

K

k

kk tct
1

)()(  (1) 

 

where ck is the concentration of k-th chemical component in the mixture, and sk(t) represents the 

absorptivity spectrum of k-th chemical component at t and e is the measurement error. Since the 

absorptivity spectrum sk(t) is temperature dependent, using the spectra with temperature-induced 

non-linear spectral variations in the building of calibration models will result in the ensuing 

predictions being poor and potentially not fit-for-purpose. Consequently the correction of 

temperature effects on the spectra is essential for the building of a robust calibration model, even 

if the data were generated from a design-of-experiments programme. This becomes critical for 

assured process analysis, process monitoring and ultimately the elucidation of process 

understanding and in the application of closed loop process control
[29]

. 

 

Influence of samples’ physical properties: Fermentations and other bioprocesses are multiphase 

systems including solution phase(s) and solid phase(s) of microbes, filamentous and mammalian 

cells, etc. The existence of solid phases in samples will confound the extraction of quantitative 

information from spectroscopic measurements, since the uncontrolled changes in a samples’ 

physical properties, such as cell number, particle size and density of mixtures can result in 

variations of optical path length and hence the multiplicative light scattering effects which can 

‘scale’ the entire spectral measurement (Figure 2).  

 

Figure 2: Mean-centred NIR spectra of a powder mixture measured under different sample compactness. 

 

For relatively simple systems, multiplicative light scattering effects can be formulated as 

shown in eq.2
[23]

.  
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edsx ++= ∑
=

K

k

kkcb
1

 (2) 

 

where, the coefficient b accounts for the multiplicative light scattering effects due to the 

variations in optical path length caused by the uncontrolled changes in samples’ physical 

properties. The term d represents spectral variations that have not been explicitly modeled. It can 

be seen from eq.2 that multiplicative parameter b confounds with the concentrations of chemical 

species in the samples. Hence, without being properly pre-processed, spectral data contaminated 

by multiplicative light scattering effects may not be explicitly modelled by any of the current 

popular bilinear calibration methods.  

When spectral measurements are subject to such changes and variations, using the measured 

spectra in the development of calibration models without taking these effects into account can 

result in the calibration predictions being poor and problematical in their application. When 

building calibration models, the spectral variations caused by changes in variables other than the 

concentrations of constituents in the samples need to be explicitly modelled, or corrected for, in 

order to maintain an assured predictive ability of the calibration model.  

 

Strategies for maintaining linear relationships in spectroscopic measurements 

Correction of temperature-induced spectral variations
 

 For situations with relatively small temperature variations, multivariate linear calibration 

methods such as PCA and PLS can to some extent implicitly model the temperature effect by 

treating it as if it were an additional component or interference
[17]

. A synthetic model
[18]

 utilising 

constant temperature data that is augmented with a classical least-squares estimate of the spectral 

effect of temperature obtained from variable-temperature aqueous sample spectra also works 

well for white chemical systems (i.e. fully characterized chemical systems). However, when 

temperature varies over a large range, both linear implicit and explicit modelling methods are not 

sufficient. Wülfert et al
[19]

.  developed continuous piecewise direct standardization (CPDS) for 

correcting complex temperature-induced nonlinear spectra variations. The idea of CPDS is to 

find a transformation matrix for each temperature level, which transforms the spectra measured 

at an arbitrary temperature into the corresponding spectra as if they were measured at the same 
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temperature as the calibration samples used to build the original calibration model. With a view 

to compensate for the temperature effects on the spectra, Eilers and Marx
[20]

 have extended 

penalized signal regression (EPSR) to incorporate temperature as a covariate..
 
It was shown that 

both CPDS and EPSR can effectively correct temperature effects on spectra and maintain the 

predictive abilities of calibration models despite of the fluctuations of temperature. However, 

both CPDS and EPSR involve several meta-parameters. The setting of these meta-parameters is 

crucial for their performance. The optimization procedures for these meta-parameters are 

complex and time consuming. Chen, et al.
[21]

 proposed a new approach termed Individual 

Contribution Standardization (ICS) to eliminate the temperature effects on the predictive abilities 

of calibration models for white chemical system. In ICS, it was assumed that the absorbance of 

each chemical species in every wavelength follows simple monotonic smooth nonlinear 

functions with respect to temperature. ICS had the advantages of providing an enhanced 

performance with ease of implementation. Furthermore, it did not require the training samples 

measured at all training temperatures to be exactly the same. Unfortunately, since ICS was 

specially designed for white chemical systems, it could not be applied to grey chemical systems 

(or incompletely characterized chemical systems). In order to overcome these limitations, Chen, 

et al.
[22]

 generalized the ideas behind ICS and designed a Loading Space Standardization (LSS) 

approach to correct temperature-induced spectral variations for grey chemical systems. This was 

achieved by assuming thet the rows of the spectral matrices as )( 1tX , )( 2tX , …, and )( KtX  

are the corresponding spectra for the same m training mixture samples measured at training 

temperatures 1t , 2t , …, Kt . )( 1tP , )( 2tP , …, and )( KtP  are the corresponding loading 

matrixes of the spectral matrixes calculated by singular value decomposition. The underlying 

assumption of LSS is that the variations of the elements of the loading matrices with respect to 

temperature follow simple monotonic smooth nonlinear functions. In this way, LSS has the 

advantages of a rather straightforward implementation and good performance over the existing 

methods designed for the same purpose and provides a promising approach for correcting 

temperature effects on spectroscopic measurements. 
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An application of LSS to Near-IR Spectral Data is set out below and is taken from Chen, et 

al.
[22],4

. The NIR data set comprises 95 Near-IR spectra of 19 ternary mixtures of ethanol, water 

and 2-propanol, measured by at five different temperature levels (30
o
C, 40

o
C, 50

o
C, 60

o
C and 

70
o
C). The 19 samples at each temperature were divided into 13 training samples and 6 test 

samples. In Chen et al 
[22]

 a plot of the first three loading vectors for spectral data measured at all 

training temperatures (not included here) shows that they followed simple monotonic smooth 

nonlinear functions with respect to temperature substantiating the theoretical basis of LSS. 

The effectiveness of LSS for correction of temperature induced spectral variations can be 

illustrated by the following typical example. Figure 3 shows the 12 spectra of 6 test samples 

measured at 60
o
C and 70

o
C, respectively. Significant spectral differences introduced by 

temperature variation can be observed. If the calibration model built on the spectra of training 

samples measured at 60
o
C is used to predict the concentrations of the three constituents in 6 test 

samples from their corresponding spectra measured at 70
o
C, the temperature-induced spectral 

variations will cause significant systematic errors in the predictions. When the LSS correction 

model with three significant components built on the spectra of training samples measured at 

training temperatures other than 70
o
C was applied, the temperature effects can be effectively 

removed (Figure 4). After the correction of temperature-induced spectral variations, the 

calibration model built on the spectra of training samples measured at 60
o
C can provide accurate 

concentration predictions for the three chemical components in 6 test samples from the 

corresponding corrected spectra. Additional details and comparisons with continuous piecewise 

direct standardization (CPDS) are given in Chen, et al.
[22]

. It was concluded that the simplicity in 

setting parameters in LSS is an appealing feature making LSS highly competitive with CPDS. 

 

Figure 3. Spectra of 6 test samples measured at 60
o
C (solid line) and 70

o
C (dotted line) 

 

Figure 4. Spectra of 6 test samples measured at 60
o
C (solid line) and those after corrections (dotted line) from 

70
o
C to 60

o
C by LSS with three significant factors using the spectra of training samples measured at other 

temperatures (except 70
o
C) 

 

 

                                                 
4
 Reproduced with permission from Anal. Chem. 2005, 77, 1376-1384. Copyright 2005 American Chemical Society. 
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Correction of multiplicative effects 

 A number of chemometric pre-processing methods
 [23-26]

 have been proposed to explicitly 

model the multiplicative effects caused by the variations in samples’ physical properties. One of 

the most frequently reported techniques in the literature is that of Multiplicative Signal 

Correction (MSC)
[23]

. However MSC and its
 
modified versions, Inverted Signal Correction 

(ISC)
[24]

 and Extended Inverted Signal Correction (EISC)
[25]

, can only be applied to the spectrum 

that has wavelength regions containing no chemical information, i.e. influenced only by the 

multiplicative effects. Otherwise, it will produce dramatically bad results. Martens et al
[26] 

extended MSC (EMSC) by introducing chemical terms (the pure spectra of the chemical 

components in the samples) into the model to obtain a more effective separation of the physical 

effects from the chemical light absorbance effects in vibrational spectra. However, the success of 

the EMSC is strongly dependent on the availability of the pure spectra for all the chemical 

components present in the samples and the consistency of the spectral contributions from the 

components in the mixtures with the components isolated in the pure state. In practice, the 

applicability of EMSC is limited as a consequence of the difficulties in satisfying these two 

requirements.  

 The development of the Optical Path Length Estimation and Correction method (OPLEC)
[27]

 

by Chen, et al. provided a major contribution to the solution to the issues discussed above. 

Without using any prior spectroscopic knowledge, OPLEC was shown to be able to accurately 

estimate the multiplicative parameter, efficiently separate the multiplicative effects of samples’ 

physical properties from the spectral variations related to the chemical components and hence 

significantly enhance the prediction accuracy of the calibration models. Compared with other 

existing multiplicative effects correction methods, there are no additional information 

requirements with respect to the spectral data for its application. Consequently OPLEC 

potentially has wider applicability than other methods reported in the literature. 

The effectiveness of the OPLEC algorithm with respect to its ability to remove the spectral 

variations related to multiplicative light scattering was evaluated through its application to two 

sets of near infrared spectroscopic data
[27]

. Only the first study is reported here where in order to 

demonstrate the potential of the new approach a powder benchmark test data set was initially 

Page 9 of 33

Wiley-VCH

Biotechnology Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 9 

used
5
. This data set consisted of 100 near-infrared transmittance spectra of five mixtures of 

gluten and starch powder with different weight ratios (1:0, 0.75:0.25, 0.5:0.5, 0.25:0.75 and 0:1). 

For each of the five powder mixtures, five samples were randomly taken and loosely packed into 

five different glass cuvettes. Two consecutive transmittance spectra were recorded for each 

sample. Following this, each sample was packed more firmly, and a further two consecutive 

transmittance spectra were recorded resulting in a total of 100 spectra. Each of the 100 

transmittance spectra was transformed into absorbance spectra. 60 spectra from the three 

mixtures with the ratio of gluten/starch equal to 1:0, 0.5:0.5 and 0:1 formed the calibration data 

set. The test set comprised the remaining 40 spectra from the other two mixtures. More 

experimental details are given in the original paper of Martens, et al.
[26]

 The 20 replicates of the 

near-infrared absorbance spectra for each of the five mixtures of gluten and starch powder are 

shown in Figure 5. Due to the presence of multiplicative light scattering caused by the changes in 

the optical path-length, it can be observed that the 20 spectra from the same mixture differ 

significantly. Figure 6 shows the spectra pre-processed by OPLEC. The pre-processed spectra 

exhibit distinct spectral patterns for each of the five powder mixtures. The 20 replicates for each 

mixture are more or less indistinguishable. Furthermore, the pre-processed spectra maintain the 

expected equal spacing between the neighbouring spectral patterns, which correctly reflect the 

variations in the concentrations of the components within the five powder mixtures.  

 

 

Figure 5. The raw absorbance spectra of the five mixtures of gluten and starch powder with different weight 

ratios (Black solid lines: 1:0; blue small dashed lines: 0.75:0.25; red large dashed lines: 0.5:0.5; green dotted 

lines: 0.25:0.75; cyan dashed-dotted lines: 0:1) 

 

Figure 6: The calibration (blue solid lines) and test (red dotted lines) spectra of powder mixtures 

pre-processed by OPLEC 

 

Figure 7 compares the Predictive performance of the PLS models built on calibration spectra 

of powder mixtures pre-processed by OPLEC, EMSC3,93, EMSCmean and EISC. Where EMSC3,93 

                                                 
5
 Reproduced with permission from Anal. Chem. 2006, 78, 7674-7681. Copyright 2006 American Chemical Society  
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and EMSCmean refer to EMSC with two different selections of input pure spectra
6
 for full 

details). It can be seen that the PLS models built on the calibration spectra pre-processed by 

EISC resulted in unacceptable predictions with errors even larger than those achieved by the PLS 

model generated from the raw calibration spectra. The failure of EISC on this powder mixture 

data suggests that it is not suitable for samples with significant spectral variations resulting from 

changes in the chemical composition. EMSC can greatly improve the predictive accuracy of the 

PLS models. However, the significant difference between the predictions provided by the PLS 

models on the pre-processed calibration spectra of EMSCmean and EMSC3,93 demonstrate that the 

choice of input pure spectra is crucial with respect to defining performance. The application of 

OPLEC provides almost the same (if not better) improvement in terms of predictive ability of the 

PLS models as does EMSC3,93. Both methods attained the same minimal value of 

root-mean-square error of prediction for test samples (RMSEPtest = 0.005) but with slightly 

different numbers of PLS components. It is worth noting that after being pre-processed by 

OPLEC, a 2-component PLS model provided excellent predictive results with a RMSEPtest equal 

to 0.008 which is equivalent to a relative error with a magnitude of 1.7% whilst the 

corresponding RMSEPtest of EMSC3,93 is 0.013, i.e. 2.5% in terms of the relative error. 

Considering the fact that OPLEC does not use the pure spectra of the chemical components in 

the mixture samples as does EMSC23,93, such results are encouraging. 

 

Figure 7: Predictive performance of the PLS models built on calibration spectra of powder mixtures 

pre-processed by different methods (black circle: the raw spectra, blue upwards triangle: OPLEC, yellow 

diamond: EMSC3,93, green square: EMSCmean, red downwards triangle: EISC) 

 

Correction of combined temperature and multiplicative effects 

In a recent article by Chen and Morris
[28]

,
 
a new approach termed Extended Loading Space 

Stadardization (ELSS) was presented and which aims to simultaneously correct both the 

temperature and multiplicative effects. One study is taken from the article which addresses the 

                                                 
6
 Martens et al.[26] used spectra x3 and x93 in EMSC as the pure spectra of gluten and starch, respectively, and to investigate the 

influence of the choice of pure spectra on the performance of EMSC, the mean spectra of the 20 replicates of pure gluten samples 

and pure starch samples were also considered as the input pure spectra (normalized). Here, EMSC with the two different 

selections of input pure spectra is referred to as EMSC3,93 and EMSCmean. 
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calibrations issues associated with monitoring the Vapour Side Draw of a pharmaceuticals 

manufacturing facility down-stream processing column
7
. Full details of the study including the 

theoretical developments are provided in reference 28. Down stream processing in 

pharmaceuticals is an often neglected, but extremely critical, part of the manufacture of 

pharmaceutical products and increasingly PAT applications are being considered in order to 

improve processing efficiencies and reduce overall production times. The problem concerned the 

calibration of an NIR analyser for the on-line prediction of water concentration in vapour side 

draw stream of a downstream recovery distillation column.  13 mixture samples (9 calibration 

samples and 4 test samples) consisting of water and other two compounds were prepared. To 

mimic the real situations in the vapour side draw stream, water is in the range of 0.051% and 

24.69%. Each sample was heated to a temperature between 28
o
C and 48

o
C and pumped into an 

in-line flow cell. NIR transmittance spectra (between 1858nm and 2058nm) and the 

corresponding temperature readings were taken as the sample cooled down to a temperature 

between 11
o
C and 20

o
C. All the transmittance spectra were transformed into absorbance spectra. 

The raw spectra of calibration and test vapour side draw samples are shown in Figure 8a and 8b, 

respectively. It can be observed that the temperature fluctuations cause perceptible spectral 

variations on vapour side draw samples, and it was these that caused concern in the industrial 

application.  

The possibility of global PLS model to model this data was first tested. Cross-validated 

root-mean-square error of prediction reaches its minimum (0.0073) when seventeen PLS 

components were included in the calibration model. The results of the global PLS calibration 

model are quite poor (Figure 9). The RMSEP value is 0.0071 which is equivalent to a relative 

error of 96.13%. It might be conjectured that the assumption of a linear relationship between the 

water concentrations and the raw spectra is inappropriate.  

 

Figure 8: The raw training (a) and test (b) spectra of vapour side draw data 

 

Figure 9: Water concentrations in test samples predicted by a global PLS model on the raw training spectra of 

vapour side draw 

 

                                                 
7
 Reproduced with permission from The Analyst, 2008, 133, 914–922. Copyright The Royal Society of Chemistry 2008 
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Loading Space Standardisation (LSS) was initially employed to remove the temperature 

variation effects. Figure 10 shows that after the application of LSS, the spectra of the same 

sample measured at different temperatures are now almost coincidental with each other, 

demonstrating the effectiveness of LSS in eliminating temperature-induced spectral variations. 

Cross-validation suggested that a ten-component PLS model on the training spectra 

pre-processed by LSS may provide good predictions for the test samples. The decrease of the 

optimal number of PLS components from seventeen to ten again suggests that LSS 

pre-processing reduces the complexity of the raw spectra. However, the reduction in complexity 

by LSS brings about almost no improvement in the RMSEP value (0.0068) over that of the 

global PLS model on raw spectra. The predictions are still observed to be dispersed and 

significantly deviate from the actual values (Figure 11, red circles). The large dispersion of the 

predictions cannot be caused by the ‘left-over’ temperature effects since the difference among 

the standardized spectra of the same sample is negligible. A reasonable explanation for this 

phenomenon is the existence of other nonlinear effects, such as multiplicative effects in this 

particular data set. The excess number of PLS components used to account for the remaining 

nonlinear effects amplifies small spectral differences and results in the abnormal dispersion 

error.  

The ELSS algorithm was then used to address the remaining nonlinear effects in the spectra 

standardized by LSS. As a result of the application of ELSS, a parsimonious three-component 

PLS is suggested by cross-validation. The predictions of this PLS calibration model for test 

samples are shown along with the results of LSS shown in Figure 11. In comparison with LSS, 

ELSS offers far more accurate results. The RMSEP value (0.0026) is 2.6 times smaller than that 

of LSS. Moreover, the water concentrations predicted from standardized spectra of the same test 

sample also are quite close together (not shown, see reference 28). The small dispersion error 

now truly reflects the almost insignificant differences in the standardized spectra of the same test 

sample. Such encouraging results, especially on this industrial data, demonstrate the capability of 

ELSS in correcting for both temperature-induced spectral variations and multiplicative effects. 

 

Figure 10: LSS pre-processed training (a) and test (b) spectra of vapour side draw data 

 

Figure 11: Water concentrations in vapour side draw test samples predicted by PLS model on training spectra 
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pre-processed by LSS (red circles) and ELSS (blue triangles) respectively 

  

 Most recently ELSS has been applied to a complex crystallization process monitored with 

Raman Scattering
[29]

.  The aim of the study were (i) to derive a model to explicitly account for 

the confounding effects of particle size and density of solid phases on Raman intensities, (ii) to 

develop a rohust calibration strategy to separate the Raman contributions due to the changes of 

concentration of individual polymorphic forms from the confounding effects of samples’ 

physical properties, and (iii) to achieve accurate quantitative determination of the concentration 

of individual polymorphic forms during solvent-mediated phase transition processes.  The study 

demonstrated that process analytical technologies alone, without smart chemometrics and signal 

processing do not necessarily provide the underlying understanding needed. 

 

Conclusions 

During quantitative online/in-line monitoring of complex processes using spectroscopic 

instruments, calibration models are generally built on the assumption of a linear relationship 

between the spectroscopic measurements and the concentrations of the target chemical 

components. However, spectroscopic measurements made during quantitative online/in-line 

monitoring of such complex processes are inevitably subject to variations in measurement 

conditions (e.g. temperature) and samples’ physical properties which make the assumption of 

linear relationship invalid. Thus, these detrimental effects on the spectroscopic measurements 

need to be explicitly modeled and corrected in order to achieve successful quantitative 

on-line/in-line monitoring. The methods reviewed and discussed in this paper can to some extent 

correct the effects of changes in temperature and samples’ physical properties and improve the 

predictive abilities of calibration models. Most calibration methods have their limitations and 

various stringent requirements on the spectroscopic measurements. Once the spectroscopic 

measurements do not satisfy these requirements, these methods can result in poor and non-robust 

calibrations. LSS appears to be a very promising solution for removal of temperature induced 

spectral variations to maintain the predictive abilities of calibration models. OPLEC also appears 

to be a very promising methodology for modeling and correcting multiplicative effects caused by 

variations in samples’ physical properties. ELSS has been shown to be able to successfully 
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model both the temperature-induced spectral variations and multiplicative effects. Its capability 

in correcting external nonlinear effects as well as its simplicity in implementation makes ELSS a 

promising chemometric tool for in-line/on-line process monitoring as well as in closed loop 

process control applications where the spectroscopic measurements are not recorded under as 

well-controlled conditions as they are in a laboratory environment. This has major implications 

for the assured and robust application of PAT in closed loop control applications, especially in 

pharmaceutical-chemistry manufacturing
[30]

. 

 In contrast, in bio-pharmaceuticals development and manufacturing the potential benefits are 

still to be realized. The message, however, from pharmaceutical-chemistry applications of PAT 

is that process analytical technologies alone, without smart chemometrics and signal processing, 

will not provide the overall time-to-market reductions and manufacturing improvements and 

efficiencies desired.  Bio-pharma PAT technologies remain very challenging but enabling 

analysers and sensors are now being developed that will provide enhanced science-based 

management of product and process development and manufacturing and the potential to lower 

manufacturing risk. 
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Figure 1: Five NIR spectra for a ternary mixture sample measured at five different temperatures 

(black solid line: 30
o
C, red dash line: 40

o
C, green dash-dot line: 50

o
C, pink dotted line: 60

o
C, 

blue dash-dot-dot line: 70
o
C) 

 

Figure 2: Mean-centred NIR spectra of a powder mixture measured under different sample 

compactness. 

 

Figure 3. Spectra of 6 test samples measured at 60
o
C (solid lines) and 70

o
C (dotted lines) 

 

Figure 4. Spectra of 6 test samples measured at 60
o
C (solid lines) and those after corrections 

(dotted lines) from 70
o
C to 60

o
C by LSS with three significant factors using the spectra of 

training samples measured at other temperatures except 70
o
C 

 

Figure 5. The raw absorbance spectra of the five mixtures of gluten and starch powder with 

different weight ratios (Black solid lines: 1:0; blue small dashed lines: 0.75:0.25; red large 

dashed lines: 0.5:0.5; green dotted lines: 0.25:0.75; cyan dashed-dotted lines: 0:1) 

 

Figure 6: The calibration (blue solid lines) and test (red dotted lines) spectra of powder mixtures 

pre-processed by OPLEC 

 

Figure 7: Predictive performance of the PLS models built on calibration spectra of powder 

mixtures pre-processed by different methods (black circle: the raw spectra, blue upward triangle: 

OPLEC, yellow diamond: EMSC3,93, green square: EMSCmean, red downward triangle: EISC) 

 

Figure 8: The raw training (a) and test (b) spectra of vapour side draw data 

 

Figure 9: Water concentrations in test samples predicted by a global PLS model on the raw 

training spectra of a vapour side draw 
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Figure 10: LSS pre-processed training (a) and test (b) spectra of vapour side draw data 

 

Figure 11: Water concentrations in vapour side draw test samples predicted by PLS model on 

training spectra pre-processed by LSS (red circles) and ELSS (blue triangles) respectively 
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Mean-centred NIR spectra of a powder mixture measured under different sample compactness  
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Spectra of 6 test samples measured at 60oC (solid line) and 70oC (dotted line)  
297x209mm (300 x 300 DPI)  
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Spectra of 6 test samples measured at 60oC (solid line) and those after corrections (dotted line) 
from 70oC to 60oC by LSS with three significant factors using the spectra of training samples 

measured at other temperatures (except 70oC)  
297x209mm (300 x 300 DPI)  

 

Page 24 of 33

Wiley-VCH

Biotechnology Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 
  

 

 

The raw absorbance spectra of the five mixtures of gluten and starch powder with different weight 
ratios (Black solid lines: 1:0; blue small dashed lines: 0.75:0.25; red large dashed lines: 0.5:0.5; 

green dotted lines: 0.25:0.75; cyan dashed-dotted lines: 0:1)  
297x209mm (300 x 300 DPI)  
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The calibration (blue solid lines) and test (red dotted lines) spectra of powder mixtures pre-
processed by OPLEC  

297x209mm (300 x 300 DPI)  
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Predictive performance of the PLS models built on calibration spectra of powder mixtures pre-
processed by different methods (black circle: the raw spectra, blue upwards triangle: OPLEC, yellow 

diamond: EMSC3,93, green square: EMSCmean, red downwards triangle: EISC)  
297x209mm (300 x 300 DPI)  
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The raw training (a) and test (b) spectra of the vapour side draw data  
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The raw training (a) and test (b) spectra of the vapour side draw data  
297x209mm (300 x 300 DPI)  
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Water concentrations in test samples predicted by a global PLS model on the raw training spectra of 
vapour side draw  

297x209mm (300 x 300 DPI)  

 

Page 30 of 33

Wiley-VCH

Biotechnology Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 
  

 

 

LSS pre-processed training (a) and test (b) spectra of vapour side draw data  
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LSS pre-processed training (a) and test (b) spectra of vapour side draw data  
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Water concentrations in vapour side draw test samples predicted by PLS model on training spectra 
pre-processed by LSS (red circles) and ELSS (blue triangles) respectively  
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