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PAT and compensating for non-linear effects in process spectroscopic data for improved process monitoring and control ((Research Highlight))

Introduction

Pharmaceutical development and production are now being heavily influenced through the FDA PAT initiative [START_REF] Siesler | Near-infrared spectroscopy: principal, instruments, applications[END_REF] with spectroscopic instrumentation now being much more widely applied to or at the very least explored for on-line real-time applications in pharma-chemistry.

Vibrational spectroscopic technologies have been widely applied in areas of chemicals processing, food technology and agriculture, etc, because of their high measuring speed and fewer or no sample preparation requirements which make them highly suitable for in-line and on-line process monitoring. In particular, near infrared spectroscopy, Fourier-transform mid infrared spectroscopy and Fourier-transform Raman spectroscopy are now being much more widely applied in pharmaceutical chemistry and in bio-processing in general. For example in the development and production of an Active Pharmaceutical Ingredients (APIs), reaction based intermediates, fermentation, crystallization, downstream processing and separations, granulation, blending and drying, and in the monitoring of raw materials [START_REF] Siesler | Near-infrared spectroscopy: principal, instruments, applications[END_REF][START_REF] Fayolle | Monitoring of fermentation processes producing lactic acid bacteria by mid-infrared spectroscopy[END_REF][START_REF] Schmidt | Near infrared spectroscopy in fermentation and quality control for amino acid production[END_REF][START_REF] Lopes | Industrial fermentation end-product modelling with multilinear PLS[END_REF][START_REF] Roggo | Near infrared spectroscopy for qualitative comparison of pharmaceutical batches[END_REF][START_REF] Jørgensen | On-line batch fermentation process monitoring (NIR)-introducing 'biological process time[END_REF][START_REF] Birch | Towards a PAT-Based Strategy for Crystallization Development[END_REF][START_REF] Parris | Monitoring API Drying Operations with NIR[END_REF][START_REF] Maes | The need for a broader perspective if process analytical technology implementation is to be successful in the pharmaceutical sector[END_REF][START_REF] Ferreira | Monitoring a Complex Medium Fermentation with Sample-Sample Two-Dimensional FT-NIR Correlation Spectroscopy[END_REF] . Indeed there is much that can be learnt from the large numbers of applications of spectroscopy being used for in-line and on-line real-time monitoring outside the pharma-chemistry and bio-pharma industries.

During on-line quantitative monitoring of processes using spectroscopic techniques, it is by and large the chemical and biological information (in most cases the concentrations of the chemical and biological compounds) inherent within the spectroscopic measurements, rather than the spectroscopic measurements themselves, that are needed for use in process monitoring and management, closed loop process control and quality control and process optimisation.

Calibration models are therefore needed to transform abundant spectroscopic measurements into the desired concentration information. In most cases, calibration models are based on the assumption of a linear relationship between the spectroscopic measurements and the concentrations of the target chemical or biological components. However, unlike in off-line assays, the spectroscopic measurements in on-line and in-line real-time applications are almost inevitably subjected to variations in measurement conditions, e.g. temperature, as well as changes in samples' physical properties, e.g. cell density, particle size, sample compactness, which can make the assumption of linear relationships invalid. In contrast in bio-pharmaceuticals development and production PAT is in its infancy 2 , [START_REF] Roggo | A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies[END_REF][START_REF] Larson | Use of process data to assess chromatographic performance in production-scale protein purification columns[END_REF][START_REF] Larson | Process analytical technology in biopharmaceutical production: Past successes and future challenges[END_REF][START_REF] Clementschitsch | Improvement of bioprocess monitoring: development of novel concepts[END_REF] with applications seen using predominantly parametric methods that monitor and measure surrogate markers of product quality rather than product quality directly. In a recent IFPAC presentation and interview 3 the following comments were made "Until PAT for bio-manufacturing is really pushed by the FDA and the benefit of PAT is translated (and clearly understood) into cost, quality and schedule benefits, it will be slow to take-up in the industry.

Sensor technology limitations are the other big issue. There are only a handful of sensors available now and they are surrogate indicators". "The key differences in how PAT is applied to biologics manufacturing, as opposed to conventional pharmaceutical manufacturing are (i) there are approximately 15 quality attributes of a biologic (due to their complex structure and complex biological function) compared with typically five or so for small molecules; (ii) the fluids in which biologics are produced are more complex and contain more ingredients and therefore present more interferences to sensors; (iii) several steps in the biological manufacturing processes need to be sterilized with heat and many biologics measurement sensors are too delicate to withstand sterilization temperatures. Nevertheless, there are several good PAT applications in use at, for example at Eli Lilly, Biogen Idec and Baxter Healthcare 3 ".

Situations where the assumption of a linear relationship can become invalid

Influence of external variables: Variations in measurement conditions such as temperature have different impact on different chemical species in mixture samples. For instance, fluctuations in temperature can provoke non-linear shift and broadening in spectral bands of absorptivity spectra of constituents in mixture samples (Figure 1) by the way of changes in intermolecular forces [START_REF] Iwata | Temperature dependence of the mid-infrared OH spectral band in liquid water[END_REF][START_REF] Ozaki | Two-dimensional infrared and near-infrared correlation spectroscopy: applications to studies of temperature-dependent spectral variations of self-associated molecules[END_REF] . For a transparent solution comprising K absorbing chemical components, the absorbance spectra x(t) measured at temperature t can be expressed as linear combinations of the absorbance contributions of all the K constituents.
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where c k is the concentration of k-th chemical component in the mixture, and s k (t) represents the absorptivity spectrum of k-th chemical component at t and e is the measurement error. Since the absorptivity spectrum s k (t) is temperature dependent, using the spectra with temperature-induced non-linear spectral variations in the building of calibration models will result in the ensuing predictions being poor and potentially not fit-for-purpose. Consequently the correction of temperature effects on the spectra is essential for the building of a robust calibration model, even if the data were generated from a design-of-experiments programme. This becomes critical for assured process analysis, process monitoring and ultimately the elucidation of process understanding and in the application of closed loop process control [START_REF] Chen | Advanced Calibration Strategy for in Situ Quantitative Monitoring of Phase Transition Processes in Suspensions Using FT-Raman Spectroscopy[END_REF] .

Influence of samples' physical properties: Fermentations and other bioprocesses are multiphase systems including solution phase(s) and solid phase(s) of microbes, filamentous and mammalian cells, etc. The existence of solid phases in samples will confound the extraction of quantitative information from spectroscopic measurements, since the uncontrolled changes in a samples' physical properties, such as cell number, particle size and density of mixtures can result in variations of optical path length and hence the multiplicative light scattering effects which can 'scale' the entire spectral measurement (Figure 2). For relatively simple systems, multiplicative light scattering effects can be formulated as shown in eq.2 [START_REF] Geladi | Linearization and scatter-correction for near-infrared reflectance spectra of meat[END_REF] . where, the coefficient b accounts for the multiplicative light scattering effects due to the variations in optical path length caused by the uncontrolled changes in samples' physical properties. The term d represents spectral variations that have not been explicitly modeled. It can be seen from eq.2 that multiplicative parameter b confounds with the concentrations of chemical species in the samples. Hence, without being properly pre-processed, spectral data contaminated by multiplicative light scattering effects may not be explicitly modelled by any of the current popular bilinear calibration methods.

When spectral measurements are subject to such changes and variations, using the measured spectra in the development of calibration models without taking these effects into account can result in the calibration predictions being poor and problematical in their application. When building calibration models, the spectral variations caused by changes in variables other than the concentrations of constituents in the samples need to be explicitly modelled, or corrected for, in order to maintain an assured predictive ability of the calibration model.

Strategies for maintaining linear relationships in spectroscopic measurements

Correction of temperature-induced spectral variations

For situations with relatively small temperature variations, multivariate linear calibration methods such as PCA and PLS can to some extent implicitly model the temperature effect by treating it as if it were an additional component or interference [START_REF] Wülfert | Influence of temperature on vibrational spectra and consequences for the predictive ability of multivariate models[END_REF] . A synthetic model [START_REF] Haaland | Synthetic multivariate models to accommodate unmodeled interfering spectral components during quantitative spectral analyses[END_REF] utilising constant temperature data that is augmented with a classical least-squares estimate of the spectral effect of temperature obtained from variable-temperature aqueous sample spectra also works well for white chemical systems (i.e. fully characterized chemical systems). However, when temperature varies over a large range, both linear implicit and explicit modelling methods are not sufficient. Wülfert et al [START_REF] Wülfert | Correction of temperature-induced spectral variation by continuous piecewise direct standardization[END_REF] . developed continuous piecewise direct standardization (CPDS) for correcting complex temperature-induced nonlinear spectra variations. The idea of CPDS is to find a transformation matrix for each temperature level, which transforms the spectra measured at an arbitrary temperature into the corresponding spectra as if they were measured at the same to compensate for the temperature effects on the spectra, Eilers and Marx [START_REF] Eilers | Multivariate calibration with temperature interaction using two-dimensional penalized signal regression[END_REF] have extended penalized signal regression (EPSR) to incorporate temperature as a covariate.. It was shown that both CPDS and EPSR can effectively correct temperature effects on spectra and maintain the predictive abilities of calibration models despite of the fluctuations of temperature. However, both CPDS and EPSR involve several meta-parameters. The setting of these meta-parameters is crucial for their performance. The optimization procedures for these meta-parameters are complex and time consuming. Chen, et al. [START_REF] Chen | Modelling temperature-induced spectral variations in chemical process monitoring[END_REF] proposed a new approach termed Individual Contribution Standardization (ICS) to eliminate the temperature effects on the predictive abilities of calibration models for white chemical system. In ICS, it was assumed that the absorbance of each chemical species in every wavelength follows simple monotonic smooth nonlinear functions with respect to temperature. ICS had the advantages of providing an enhanced performance with ease of implementation. Furthermore, it did not require the training samples measured at all training temperatures to be exactly the same. Unfortunately, since ICS was specially designed for white chemical systems, it could not be applied to grey chemical systems (or incompletely characterized chemical systems). In order to overcome these limitations, Chen, et al. [START_REF] Chen | Correction of temperature-induced spectral variations by loading space standardization[END_REF] generalized the ideas behind ICS and designed a Loading Space Standardization (LSS) approach to correct temperature-induced spectral variations for grey chemical systems. This was achieved by assuming thet the rows of the spectral matrices as samples. In Chen et al [START_REF] Chen | Correction of temperature-induced spectral variations by loading space standardization[END_REF] a plot of the first three loading vectors for spectral data measured at all training temperatures (not included here) shows that they followed simple monotonic smooth nonlinear functions with respect to temperature substantiating the theoretical basis of LSS.
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The effectiveness of LSS for correction of temperature induced spectral variations can be illustrated by the following typical example. Figure 3 direct standardization (CPDS) are given in Chen, et al. [START_REF] Chen | Correction of temperature-induced spectral variations by loading space standardization[END_REF] . It was concluded that the simplicity in setting parameters in LSS is an appealing feature making LSS highly competitive with CPDS. 

Correction of multiplicative effects

A number of chemometric pre-processing methods [START_REF] Geladi | Linearization and scatter-correction for near-infrared reflectance spectra of meat[END_REF][START_REF] Helland | Related versions of the multiplicative scatter correction method for preprocessing spectroscopic data[END_REF][START_REF] Pedersen | Near-infrared absorption and scattering separated by extended inverted signal correction (EISC): analysis of near-infrared transmittance spectra of single wheat seeds[END_REF][START_REF] Martens | Light scattering and light absorbance separated by extended multiplicative signal correction. Application to near-infrared transmission analysis of powder mixtures[END_REF] have been proposed to explicitly model the multiplicative effects caused by the variations in samples' physical properties. One of the most frequently reported techniques in the literature is that of Multiplicative Signal Correction (MSC) [START_REF] Geladi | Linearization and scatter-correction for near-infrared reflectance spectra of meat[END_REF] . However MSC and its modified versions, Inverted Signal Correction (ISC) [START_REF] Helland | Related versions of the multiplicative scatter correction method for preprocessing spectroscopic data[END_REF] and Extended Inverted Signal Correction (EISC) [START_REF] Pedersen | Near-infrared absorption and scattering separated by extended inverted signal correction (EISC): analysis of near-infrared transmittance spectra of single wheat seeds[END_REF] , can only be applied to the spectrum that has wavelength regions containing no chemical information, i.e. influenced only by the multiplicative effects. Otherwise, it will produce dramatically bad results. Martens et al [START_REF] Martens | Light scattering and light absorbance separated by extended multiplicative signal correction. Application to near-infrared transmission analysis of powder mixtures[END_REF] extended MSC (EMSC) by introducing chemical terms (the pure spectra of the chemical components in the samples) into the model to obtain a more effective separation of the physical effects from the chemical light absorbance effects in vibrational spectra. However, the success of the EMSC is strongly dependent on the availability of the pure spectra for all the chemical components present in the samples and the consistency of the spectral contributions from the components in the mixtures with the components isolated in the pure state. In practice, the applicability of EMSC is limited as a consequence of the difficulties in satisfying these two requirements.

The development of the Optical Path Length Estimation and Correction method (OPLEC) [START_REF] Chen | Extracting chemical information from spectral data with multiplicative light scattering effects by optical path-length estimation and correction[END_REF] by Chen, et al. provided a major contribution to the solution to the issues discussed above.

Without using any prior spectroscopic knowledge, OPLEC was shown to be able to accurately estimate the multiplicative parameter, efficiently separate the multiplicative effects of samples' physical properties from the spectral variations related to the chemical components and hence significantly enhance the prediction accuracy of the calibration models. Compared with other existing multiplicative effects correction methods, there are no additional information requirements with respect to the spectral data for its application. Consequently OPLEC potentially has wider applicability than other methods reported in the literature.

The effectiveness of the OPLEC algorithm with respect to its ability to remove the spectral variations related to multiplicative light scattering was evaluated through its application to two sets of near infrared spectroscopic data [START_REF] Chen | Extracting chemical information from spectral data with multiplicative light scattering effects by optical path-length estimation and correction[END_REF] . Only the first study is reported here where in order to demonstrate the potential of the new approach a powder benchmark test data set was initially For each of the five powder mixtures, five samples were randomly taken and loosely packed into five different glass cuvettes. Two consecutive transmittance spectra were recorded for each sample. Following this, each sample was packed more firmly, and a further two consecutive transmittance spectra were recorded resulting in a total of 100 spectra. Each of the 100 transmittance spectra was transformed into absorbance spectra. 60 spectra from the three mixtures with the ratio of gluten/starch equal to 1:0, 0.5:0.5 and 0:1 formed the calibration data set. The test set comprised the remaining 40 spectra from the other two mixtures. More experimental details are given in the original paper of Martens, et al. [START_REF] Martens | Light scattering and light absorbance separated by extended multiplicative signal correction. Application to near-infrared transmission analysis of powder mixtures[END_REF] The 20 replicates of the near-infrared absorbance spectra for each of the five mixtures of gluten and starch powder are shown in Figure 5. Due to the presence of multiplicative light scattering caused by the changes in the optical path-length, it can be observed that the 20 spectra from the same mixture differ significantly. Figure 6 shows the spectra pre-processed by OPLEC. The pre-processed spectra exhibit distinct spectral patterns for each of the five powder mixtures. The 20 replicates for each mixture are more or less indistinguishable. Furthermore, the pre-processed spectra maintain the expected equal spacing between the neighbouring spectral patterns, which correctly reflect the variations in the concentrations of the components within the five powder mixtures. Considering the fact that OPLEC does not use the pure spectra of the chemical components in the mixture samples as does EMSC2 3,93 , such results are encouraging.

Figure 7: Predictive performance of the PLS models built on calibration spectra of powder mixtures pre-processed by different methods (black circle: the raw spectra, blue upwards triangle: OPLEC, yellow diamond: EMSC 3,93 , green square: EMSC mean , red downwards triangle: EISC)

Correction of combined temperature and multiplicative effects

In a recent article by Chen and Morris [START_REF] Chen | Improving the linearity of spectroscopic data subjected to fluctuations in external variables by the extended loading space standardization[END_REF] , a new approach termed Extended Loading Space Stadardization (ELSS) was presented and which aims to simultaneously correct both the temperature and multiplicative effects. One study is taken from the article which addresses the [START_REF] Jørgensen | On-line batch fermentation process monitoring (NIR)-introducing 'biological process time[END_REF] Martens et al. [START_REF] Martens | Light scattering and light absorbance separated by extended multiplicative signal correction. Application to near-infrared transmission analysis of powder mixtures[END_REF] used spectra x3 and x93 in EMSC as the pure spectra of gluten and starch, respectively, and to investigate the influence of the choice of pure spectra on the performance of EMSC, the mean spectra of the 20 replicates of pure gluten samples and pure starch samples were also considered as the input pure spectra (normalized). Here, EMSC with the two different selections of input pure spectra is referred to as EMSC3,93 and EMSCmean. The possibility of global PLS model to model this data was first tested. Cross-validated root-mean-square error of prediction reaches its minimum (0.0073) when seventeen PLS components were included in the calibration model. The results of the global PLS calibration model are quite poor (Figure 9). The RMSEP value is 0.0071 which is equivalent to a relative error of 96.13%. It might be conjectured that the assumption of a linear relationship between the water concentrations and the raw spectra is inappropriate. Loading Space Standardisation (LSS) was initially employed to remove the temperature variation effects. Figure 10 shows that after the application of LSS, the spectra of the same sample measured at different temperatures are now almost coincidental with each other, demonstrating the effectiveness of LSS in eliminating temperature-induced spectral variations.

Cross-validation suggested that a ten-component PLS model on the training spectra pre-processed by LSS may provide good predictions for the test samples. The decrease of the optimal number of PLS components from seventeen to ten again suggests that LSS pre-processing reduces the complexity of the raw spectra. However, the reduction in complexity by LSS brings about almost no improvement in the RMSEP value (0.0068) over that of the global PLS model on raw spectra. The predictions are still observed to be dispersed and significantly deviate from the actual values (Figure 11, red circles). The large dispersion of the predictions cannot be caused by the 'left-over' temperature effects since the difference among the standardized spectra of the same sample is negligible. A reasonable explanation for this phenomenon is the existence of other nonlinear effects, such as multiplicative effects in this particular data set. The excess number of PLS components used to account for the remaining nonlinear effects amplifies small spectral differences and results in the abnormal dispersion error.

The ELSS algorithm was then used to address the remaining nonlinear effects in the spectra standardized by LSS. As a result of the application of ELSS, a parsimonious three-component PLS is suggested by cross-validation. The predictions of this PLS calibration model for test samples are shown along with the results of LSS shown in Figure 11. In comparison with LSS, ELSS offers far more accurate results. The RMSEP value (0.0026) is 2.6 times smaller than that of LSS. Moreover, the water concentrations predicted from standardized spectra of the same test sample also are quite close together (not shown, see reference 28). The small dispersion error now truly reflects the almost insignificant differences in the standardized spectra of the same test sample. Such encouraging results, especially on this industrial data, demonstrate the capability of ELSS in correcting for both temperature-induced spectral variations and multiplicative effects. Most recently ELSS has been applied to a complex crystallization process monitored with Raman Scattering [START_REF] Chen | Advanced Calibration Strategy for in Situ Quantitative Monitoring of Phase Transition Processes in Suspensions Using FT-Raman Spectroscopy[END_REF] . The aim of the study were (i) to derive a model to explicitly account for the confounding effects of particle size and density of solid phases on Raman intensities, (ii) to develop a rohust calibration strategy to separate the Raman contributions due to the changes of concentration of individual polymorphic forms from the confounding effects of samples' physical properties, and (iii) to achieve accurate quantitative determination of the concentration of individual polymorphic forms during solvent-mediated phase transition processes. The study demonstrated that process analytical technologies alone, without smart chemometrics and signal processing do not necessarily provide the underlying understanding needed.

Conclusions

During quantitative online/in-line monitoring of complex processes using spectroscopic instruments, calibration models are generally built on the assumption of a linear relationship between the spectroscopic measurements and the concentrations of the target chemical components. However, spectroscopic measurements made during quantitative online/in-line monitoring of such complex processes are inevitably subject to variations in measurement conditions (e.g. temperature) and samples' physical properties which make the assumption of linear relationship invalid. Thus, these detrimental effects on the spectroscopic measurements need to be explicitly modeled and corrected in order to achieve successful quantitative on-line/in-line monitoring. The methods reviewed and discussed in this paper can to some extent correct the effects of changes in temperature and samples' physical properties and improve the predictive abilities of calibration models. Most calibration methods have their limitations and various stringent requirements on the spectroscopic measurements. Once the spectroscopic measurements do not satisfy these requirements, these methods can result in poor and non-robust calibrations. LSS appears to be a very promising solution for removal of temperature induced spectral variations to maintain the predictive abilities of calibration models. OPLEC also appears to be a very promising methodology for modeling and correcting multiplicative effects caused by variations in samples' physical properties. ELSS has been shown to be able to successfully promising chemometric tool for in-line/on-line process monitoring as well as in closed loop process control applications where the spectroscopic measurements are not recorded under as well-controlled conditions as they are in a laboratory environment. This has major implications for the assured and robust application of PAT in closed loop control applications, especially in pharmaceutical-chemistry manufacturing [START_REF] Chen | Process Analytical Technologies (PAT)the Impact for Process Systems Engineering[END_REF] .

In contrast, in bio-pharmaceuticals development and manufacturing the potential benefits are still to be realized. The message, however, from pharmaceutical-chemistry applications of PAT is that process analytical technologies alone, without smart chemometrics and signal processing, will not provide the overall time-to-market reductions and manufacturing improvements and efficiencies desired. Bio-pharma PAT technologies remain very challenging but enabling analysers and sensors are now being developed that will provide enhanced science-based management of product and process development and manufacturing and the potential to lower manufacturing risk. 
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 1 Figure 1: Five NIR spectra for a ternary mixture sample measured at five different temperatures (black solid line: 30 o C, red dash line: 40 o C, green dash-dot line: 50 o C, pink dotted line: 60 o C, blue dash-dot-dot line: 70 o C)
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 2 Figure 2: Mean-centred NIR spectra of a powder mixture measured under different sample compactness.

  calibration samples used to build the original calibration model. With a view

  shows the 12 spectra of 6 test samples measured at 60 o C and 70 o C, respectively. Significant spectral differences introduced by temperature variation can be observed. If the calibration model built on the spectra of training samples measured at 60 o C is used to predict the concentrations of the three constituents in 6 test samples from their corresponding spectra measured at 70 o C, the temperature-induced spectral variations will cause significant systematic errors in the predictions. When the LSS correction model with three significant components built on the spectra of training samples measured at training temperatures other than 70 o C was applied, the temperature effects can be effectively removed (Figure 4). After the correction of temperature-induced spectral variations, the calibration model built on the spectra of training samples measured at 60 o C can provide accurate concentration predictions for the three chemical components in 6 test samples from the corresponding corrected spectra. Additional details and comparisons with continuous piecewise
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 34 Figure 3. Spectra of 6 test samples measured at 60 o C (solid line) and 70 o C (dotted line)
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 95 This data set consisted of 100 near-infrared transmittance spectra of five mixtures of gluten and starch powder with different weight ratios (1:0, 0.75:0.25, 0.5:0.5, 0.25:0.75 and 0:1).
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 567 Figure 5. The raw absorbance spectra of the five mixtures of gluten and starch powder with different weight ratios (Black solid lines: 1:0; blue small dashed lines: 0.75:0.25; red large dashed lines: 0.5:0.5; green dotted lines: 0.25:0.75; cyan dashed-dotted lines: 0:1)

  with monitoring the Vapour Side Draw of a pharmaceuticals manufacturing facility down-stream processing column[START_REF] Birch | Towards a PAT-Based Strategy for Crystallization Development[END_REF] . Full details of the study including the theoretical developments are provided in reference 28. Down stream processing in pharmaceuticals is an often neglected, but extremely critical, part of the manufacture of pharmaceutical products and increasingly PAT applications are being considered in order to improve processing efficiencies and reduce overall production times. The problem concerned the calibration of an NIR analyser for the on-line prediction of water concentration in vapour side draw stream of a downstream recovery distillation column. 13 mixture samples (9 calibration samples and 4 test samples) consisting of water and other two compounds were prepared. To mimic the real situations in the vapour side draw stream, water is in the range of 0.051% and 24.69%. Each sample was heated to a temperature between 28 o C and 48 o C and pumped into an in-line flow cell. NIR transmittance spectra (between 1858nm and 2058nm) and the corresponding temperature readings were taken as the sample cooled down to a temperature between 11 o C and 20 o C. All the transmittance spectra were transformed into absorbance spectra.The raw spectra of calibration and test vapour side draw samples are shown in Figure8aand 8b, respectively. It can be observed that the temperature fluctuations cause perceptible spectral variations on vapour side draw samples, and it was these that caused concern in the industrial application.
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 89 Figure 8: The raw training (a) and test (b) spectra of vapour side draw data
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 1011 Figure 10: LSS pre-processed training (a) and test (b) spectra of vapour side draw data

  temperature-induced spectral variations and multiplicative effects. Its capability in correcting external nonlinear effects as well as its simplicity in implementation makes ELSS a
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 12 Figure 1: Five NIR spectra for a ternary mixture sample measured at five different temperatures (black solid line: 30 o C, red dash line: 40 o C, green dash-dot line: 50 o C, pink dotted line: 60 o C, blue dash-dot-dot line: 70 o C)
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 3456789191011 Figure 3. Spectra of 6 test samples measured at 60 o C (solid lines) and 70 o C (dotted lines)

  

  

  

  

  

  

  

  

  

  

  

  

  

  An application of LSS to Near-IR Spectral Data is set out below and is taken from Chen, et al.[START_REF] Chen | Correction of temperature-induced spectral variations by loading space standardization[END_REF],4 . The NIR data set comprises 95 Near-IR spectra of 19 ternary mixtures of ethanol, water and 2-propanol, measured by at five different temperature levels (30 o C, 40 o C, 50 o C, 60 o C and 70 o C). The 19 samples at each temperature were divided into 13 training samples and 6 test
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matrixes of the spectral matrixes calculated by singular value decomposition. The underlying assumption of LSS is that the variations of the elements of the loading matrices with respect to temperature follow simple monotonic smooth nonlinear functions. In this way, LSS has the advantages of a rather straightforward implementation and good performance over the existing methods designed for the same purpose and provides a promising approach for correcting temperature effects on spectroscopic measurements.

  3,93 , EMSC mean and EISC. Where EMSC 3,93 refer to EMSC with two different selections of input pure spectra[START_REF] Jørgensen | On-line batch fermentation process monitoring (NIR)-introducing 'biological process time[END_REF] for full details). It can be seen that the PLS models built on the calibration spectra pre-processed by EISC resulted in unacceptable predictions with errors even larger than those achieved by the PLS model generated from the raw calibration spectra. The failure of EISC on this powder mixture data suggests that it is not suitable for samples with significant spectral variations resulting from changes in the chemical composition. EMSC can greatly improve the predictive accuracy of the PLS models. However, the significant difference between the predictions provided by the PLS models on the pre-processed calibration spectra of EMSC mean and EMSC 3,93 demonstrate that the choice of input pure spectra is crucial with respect to defining performance. The application of OPLEC provides almost the same (if not better) improvement in terms of predictive ability of the PLS models as does EMSC 3,93 . Both methods attained the same minimal value of
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root-mean-square error of prediction for test samples (RMSEP test = 0.005) but with slightly different numbers of PLS components. It is worth noting that after being pre-processed by OPLEC, a 2-component PLS model provided excellent predictive results with a RMSEP test equal to 0.008 which is equivalent to a relative error with a magnitude of 1.7% whilst the corresponding RMSEP test of EMSC 3,93 is 0.013, i.e. 2.5% in terms of the relative error.
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