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REGULARITY AND CROSSINGS OF SHOT NOISE PROCESSES

HERMINE BIERMÉ AND AGNÈS DESOLNEUX

Abstract. In this paper, we consider shot noise processes and their expected number of level cross-
ings. When the kernel response function is sufficiently smooth, the crossings mean number function
is obtained through an integral formula. Moreover, as the intensity increases, or equivalently as the
number of shots becomes larger, a normal convergence to the classical Rice’s formula for Gaussian
processes is obtained. The Gaussian kernel function is studied in detail and two different regimes are
exhibited.

1. Introduction

In this paper, we will consider a shot noise process which is a real-valued random process given by

(1) X(t) =
∑

i

βig(t − τi), t ∈ R

where g is a given (deterministic) measurable function (it will be called the kernel function of the
shot noise), the {τi} are the points of a Poisson point process on the line of intensity λν(ds), where
λ > 0 and ν is a positive σ-finite measure on R, and the {βi} are independent copies of a random
variable β (called the impulse), independent of {τi}.

Shot noise processes are related to many problems in physics as they result from the superposition
of “shot effects” which occur at random. Fundamental results were obtained by Rice in [24]. Daley
in [10] gave sufficient conditions on the kernel function to ensure the convergence of the formal series
in a preliminary work. General results, including sample paths properties, were given by Rosiński
[25] in a more general setting. In most of the literature the measure ν is the Lebesgue measure on
R such that the shot noise process is a stationary one. In order to derive more precise sample paths
properties and especially crossings rates, mainly two properties have been extensively exhibited and
used. The first one is the Markov property, which is valid, choosing a non continuous positive causal
kernel function that is 0 for negative time. This is the case in particular of the exponential kernel
g(t) = e−t1It≥0 for which explicit distributions and crossings rates can be obtained [22]. A simple
formula for the expected numbers of level crossings is valid for more general kernels of this type
but resulting shot noise processes are non differentiable [4, 17]. The infinitely divisible property is
the second main tool. Actually, this allows to establish convergence to a Gaussian process as the
intensity increases [23, 16]. Sample paths properties of Gaussian processes have been extensively
studied and fine results are known concerning the level crossings of smooth Gaussian processes (see
[2, 9] for instance).

The goal of the paper is to study the crossings of a shot noise process in the general case when
the kernel function g is smooth. In this setting we lose Markov’s property but the shot noise process
inherits smoothness properties. Integral formulas for the number of level crossings of such processes
was generalized to the non Gaussian case by [19] but assumptions rely on properties of densities of
distributions, which may not be valid for shot noise processes. We derive integral formulas for the
crossings mean number function and pay a special interest in the continuity of this function with
respect to the level. Exploiting further on normal convergence, we exhibit a Gaussian regime for the
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mean crossings function when the intensity goes to infinity. A particular example, which is studied
in detail, concerns the Gaussian shot noise process where β = 1 almost surely and g is a Gaussian
kernel of width σ:

g(t) = gσ(t) =
1

σ
√

2π
e−t2/2σ2

.

Such a model has many applications because it is solution of the heat equation (we consider σ as a
variable), and it thus models a diffusion from random sources (the points of the Poisson point process).

The paper is organized as follows. In Section 2, we first give general properties (moments, co-
variance, regularity) of a shot noise process defined by (1). In Section 3, we study the question of
the existence and the continuity of a probability density for X(t). Such a question is important to
obtain a Rice’s formula for crossings. In Section 4, we give an explicit formula for crossings of a shot
noise process in terms of its characteristic function (which can be controlled thanks to estimates on
oscillatory integrals). One of the difficulties is to obtain results for the crossings of a given level α
and not only for almost every α. In Section 5, we show how the crossings mean number function
converges, and in which sense, to the one of a Gaussian process when the intensity λ goes to infinity.
We give rates of this convergence. Finally, in Section 6, we study in detail the case of a Gaussian
kernel of width σ. We are mainly interested in the mean number of local extrema of this process, as
a function of σ. Thanks to the heat equation, and also to scaling properties between σ and λ, we
prove that the mean number of local extrema is a decreasing function of σ, and give its asymptotics
as σ is small or large.

2. General properties

2.1. Elementary properties. The shot noise process given by the formal sum (1) can also be
written as the stochastic integral

(2) X(t) =

∫

R×R

zg(t − s)N(ds, dz),

where N is a Poisson random measure of intensity λν(ds)F (dz), where F is the common law of β.
We recall the basic facts (see [18] chapter 10 for instance) that for measurable sets A ⊂ R × R the
random variable N(A) is Poisson distributed with mean λν⊗F (A) and if A1, . . . , An are disjoint then
N(A1), . . . , N(An) are independent. We also recall that for measurable functions k : R×R → R, the
stochastic integral

∫
k(s, z)N(ds, dz) of k with respect to N exists a.s. if and only if

(3)

∫

R×R

min(|k(s, z)|, 1)λν(ds)F (dz) < ∞.

We focus in this paper on stationary shot noise processes obtained when ν(ds) = ds is the Lebesgue
measure. Such processes are obtained as the almost sure limit of truncated shot noise processes
defined for νT (ds) = 1I[−T,T ](s)ds, as T tends to infinity. Therefore, from now on and in all the paper,
we make the following assumption.

Assumption 1. The measure ν is absolutely continuous with respect to the Lebesgue measure and
its Radon Nikodym derivative is bounded by 1 almost everywhere.

Then, assuming that the random impulse β is an integrable random variable of L1(Ω) and that the
kernel function g is an integrable function of L1(R), is enough to check (3) and to ensure the almost
sure convergence of the infinite sum (see also Campbell Theorem and [16]). We will work under this
assumption in the whole paper.
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Finite dimensional distribution. The main tool to study the law of X is its characteristic
function. From Lemma 10.2 of [18], using (2), the characteristic function of X(t), is given by

∀u ∈ R, ψX(t)(u) = E(eiuX(t)) = exp(

∫

R×R

[eiuzg(t−s) − 1] λν(ds)F (dz))

= exp(λ

∫

R

[F̂ (ug(t − s)) − 1] ν(ds)),

where F̂ (u) = E(eiuβ) is the characteristic function of β and Fourier transform of F . This formula is
also well-known using the series representation (1) [23, 15, 28]. More generally, the finite dimensional
distributions of the process X are characterized by

(4) E


exp


i

k∑

j=1

ujX(tj)





 = exp(λ

∫

R

[F̂




k∑

j=1

ujg(tj − s)


 − 1] ν(ds)),

for any k ≥ 1 and (t1, . . . , tk), (u1, . . . , uk) ∈ Rk. Note that when β = 1 almost surely, we have F = δ1

(the Dirac mass at point 1) and F̂ (u) = eiu.

Stationary case: when ν(ds) = ds, it is clear that E

(
exp

(
i

k∑
j=1

ujX(t0 + tj)

))
= E

(
exp

(
i

k∑
j=1

ujX(tj)

))
,

for any t0 ∈ R, by translation invariance of the Lebesgue measure, which means that X is a strictly
stationary process.

Moments. Since g ∈ L1(R) and β ∈ L1(Ω), X is an integrable process with

(5) EX(t) =

∫

R×R

zg(t − s)λν(ds)F (dz) = λE(β)

∫

R

g(t − s) ν(ds).

If moreover g ∈ L2(R) and β ∈ L2(Ω), then X defines a second order process with covariance function
given by

∀t, t′ ∈ R, Cov(X(t), X(t′)) =

∫

R×R

z2g(t−s)g(t′−s)λν(ds)F (dz) = λE(β2)

∫

R

g(t−s)g(t′−s)ν(ds).

In particular, for all t ∈ R,

Var(X(t)) = λE(β2)

∫

R

g(t − s)2 ν(ds).

Stationary case: when ν(ds) = ds, for t, t′ ∈ R, Cov(X(t), X(t′)) = S(t − t′), with

(6) S(t) = g ∗ ǧ(t) = λE(β2)

∫

R

g(t − s)g(−s) ds, ∀t ∈ R,

where ǧ(t) = g(−t). In particular, according to Fourier inverse theorem, the strictly stationary

second order process X admits λE(β2)
2π |ĝ|2 for spectral density (see [11] p.522 for definition).

More generally, when for n ≥ 2, g ∈ L1(R) ∩ ... ∩ Ln(R) and E(|β|n) < +∞, according to [5], the
n − th moment of X(t) exists and is given by

(7) E(X(t)n) =
∑

(r1,...,rn)∈I(n)

Kn(r1, . . . , rn)
n∏

k=1

(
λE(βk)

∫

R

g(t − s)kν(ds)

)rk

,

where I(n) =

{
(r1, . . . , rn) ∈ Nn;

n∑
k=1

krk = n

}
and Kn(r1, . . . , rn) = n!

(1!)r1 (2!)r2 ...(n!)rnr1!...rn! . Note

also that in this case the n-th order cumulant of X(t) is finite and equals to

Cn =
1

in
dn

dun
log

(
ψX(t)(u)

)
|u=0 = λE(βn)

∫

R

g(t − s)nν(ds).
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Infinite divisibility property. The process X is infinitely divisible. Actually let us choose

(X
(j)
λ/n)1≤j≤n i.i.d. shot noise processes with intensity (λ/n)ν(ds) for n ≥ 1. Let us denote Xλ a shot

noise process with intensity λν(ds). From (4), it is clear that

Xλ
fdd
= X

(1)
λ/n + . . . + X

(n)
λ/n,

which proves the infinite divisibility according to [18] p.243. Here, as usual,
fdd
= stands for the equality

in finite dimensional distributions.
Stationary case: when ν(ds) = ds and g ∈ L1(R) ∩ L2(R) and β ∈ L2(Ω), the strictly stationary
process X is mixing and thus ergodic. Actually, this comes from the fact that the codifference

τ(t) := log E(ei(X(0)−X(t)))−log E(eiX(0))−log E(e−iX(t)) =

∫

R×R

(
eizg(−s) − 1

) (
e−izg(t−s) − 1

)
dsF (dz)

satisfies

|τ(t)| ≤ E(β2)|g| ∗ |ǧ|(t) −→
|t|→+∞

0,

which gives the result according to Proposition 4 and Remark 5 of [26].

2.2. Simulation procedure in the stationary case. We assume in this section that ν is the
Lebesgue measure on R such that X is stationary. In some examples, the kernel function g of the
shot noise process (1) will not have a bounded support. For instance this will be the case of a
Gaussian kernel. In order to get a sample of t → X(t) for t ∈ [−1, 1], using a software like MatLab
for instance, we need to truncate the sum in (1). Let T > 1, we write

X(t) =
∑

τi∈R

βig(t − τi) =
∑

|τi|≤T

βig(t − τi) +
∑

|τi|>T

βig(t − τi)

= XT (t) + RT (t),(8)

such that lim
T→+∞

XT (t) = X(t) almost surely. Actually, when g is continuous and satisfies

∫

R

sup
t∈[−1,1]

|g(t − s)|ds < +∞

almost surely the convergence holds uniformly in t ∈ [−1, 1].

Now, let us remark that XT (·) fdd
=

∫
R×R

zg(· − s)NT (ds, dz), where NT is a Poisson random measure

of intensity given by λνT (ds)F (dz), with νT (ds) = 1I[−T,T ](s)ds a finite measure. Therefore,

XT (·) fdd
=

γT∑

i=1

βig(· − U
(i)
T ),

where γT is a Poisson random variable of intensity λνT (R) = 2λT , {βi} are i.i.d. with common law F ,

{U (i)
T } are i.i.d. with uniform law on [−T, T ]. Here and in the sequel the convention is that

0∑

i=1

= 0.

The simulation algorithm to synthesize a sample of t → XT (t) on [−1, 1] is then the following:
1. Choose T > 1,
2. Let n be sampled from the Poisson distribution of parameter 2λT ,

3. Let U
(1)
T , · · · , U

(n)
T be n points sampled independently and uniformly on [−T, T ],

4. Let β1, · · · , βn be n independent samples of β,

5. Finally for t ∈ [−1, 1] compute
n∑

i=1

βig(t − U
(i)
T ).

Now, what is a “good” choice for T? Ideally T should be as large as possible. If it is taken too
small, it will clearly create a “bias” on the distribution and on the stationarity of the sample, since
XT is obviously not stationary.
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Example: when g = gσ is a Gaussian kernel of width σ, we can compute the “bias” on X(1): it is
given by

ERT (1) = λE(β)

∫

|s|>T
gσ(1 − s) ds = λE(β)(

∫ −T+1

−∞
gσ(s) ds +

∫ +∞

T+1
gσ(s) ds).

In this example, we see that taking T = 1 will create a large “bias” since the first of the two above
integral will be equal to 0.5. In order to make both integrals negligible, one has to take T − 1 large
compared to σ - say for instance T − 1 = 10σ, as illustrated in Figure 1.
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Figure 1. Importance of the choice of the interval on which the Poisson points are
sampled. Samples of a shot noise process on the interval [−1, 1] when: gσ is the
Gaussian kernel of width σ = 0.05, λ = 20 and β = 1. On the left: T = 1 and clearly
there are some boundary effects. On the right, the simulation is obtained when taking
T = 1.5 = 1 + 10σ. The boundary effects are no more noticeable.

2.3. Regularity. In this section, we focus on the sample path regularity of the shot noise process
X given by (1). The process inherits regularity from the chosen kernel function as soon as sufficient
integrability assumptions hold. We deal with two notions of regularity: a mean square one, which is
valid for second order process and needs L2 assumptions and an almost sure one, which holds under
uniform L1 assumptions. We refer to [25] who studies convergence of generalized shot noise series in
general Banach spaces.

Proposition 1. Let β ∈ L2(Ω) and g ∈ L1(R) ∩ L2(R). Assume that g ∈ C1(R) with g′ ∈ L1(R) ∩
L2(R) ∩ L∞(R). Then the shot noise process X given by (1) admits a mean square derivative.

Proof. Let us consider S(t, t′) = Cov (X(t), X(t′)) = λE(β2)
∫

R
g(t − s)g(t′ − s)ν(ds), the covariance

function of the process X. According to Theorem 2.2.2 of [1] it is sufficient to remark that assumptions

on g ensure that ∂2S
∂t∂t′ exists and is finite at point (t, t) ∈ R2 with

(9)
∂2S

∂t∂t′
(t, t) = λE(β2)

∫

R

g′(t − s)g′(t − s)ν(ds).

Therefore for all t ∈ R the limit

X ′(t) = lim
h→0

X(t + h) − X(t)

h
,

exists in L2(Ω) and the covariance function of the second-order process (X ′(t))t∈R is given by (t, t′) 7→
λE(β2)

∫
R

g′(t − s)g′(t′ − s)ν(ds). ¤

This result only gives second order properties of the derivative and one can not deduce the law of
X ′. However, under uniform L1 assumptions, we can differentiate X under the sum as stated in the
next proposition.
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Proposition 2. Let β ∈ L1(Ω). Let g ∈ C1(R) ∩ L1(R). Assume that there exists ε > 0 such that
∫

R

sup
|t|≤ε

|g′(t − s)|ds < +∞,

then almost surely the series X(·) =
∑

i

βig(· − τi) converges uniformly on any compact set of R.

Moreover X is almost surely continuously differentiable on R with

X ′(t) =
∑

i

βig
′(t − τi), ∀t ∈ R.

Proof. Let A > 0 and remark that for any s ∈ R and |t| ≤ A

|g(t − s)| =

∣∣∣∣
∫ t

0
g′(u − s)du + g(−s)

∣∣∣∣ ≤
∫ A

−A
|g′(s − u)|du + |g(−s)|,

such that by Fubini’s theorem and Assumption 1
∫

R

sup
t∈[−A,A]

|g(t − s)|ν(ds) ≤ 2A

∫

R

|g′(s)|ds +

∫

R

|g(s)|ds < +∞.

Therefore, since β ∈ L1(Ω), the series
∑

i

βi sup
t∈[−A,A]

|g(t − τi)| converges almost surely which means

that
∑

i

βig(· − τi) converges uniformly on [−A, A] almost surely. This implies that the sample

paths of X are almost surely continuous on R. Similarly, for all t0 ∈ R, almost surely the series∑

i

βig
′(· − τi) converges uniformly on [t0 − ε, t0 + ε] and therefore X is continuously differentiable

on [t0 − ε, t0 + ε] with X ′(t) =
∑

i

βig
′(t − τi) for all t ∈ [t0 − ε, t0 + ε]. This concludes the proof

using the fact that R = ∪t0∈Q[t0 − ε, t0 + ε]. ¤

Sufficient conditions to ensure both kinds of regularity are given in the following corollary.

Corollary 1. Let β ∈ L2(Ω). Let g ∈ C2(R) such that g, g′, g′′ ∈ L1(R). Then X is almost surely
and mean square continuously differentiable on R with

X ′(t) =
∑

i

βig
′(t − τi), ∀t ∈ R.

Proof. It is sufficient to check assumptions of Propositions 1 and 2. Note that g, g′ ∈ L1(R) imply
that g ∈ L∞(R) ∩ L1(R) ⊂ L2(R). Similarly we also have g′ ∈ L2(R) ∩ L∞(R). Moreover since
g′, g′′ ∈ L1(R), for any ε > 0 ∫

R

sup
|t|≤ε

|g′(t − s)|ds < +∞.

¤

Iterating this result one can obtain higher order smoothness properties. In particular it is straight-
forward to obtain the following result for Gaussian kernels.

Example (Gaussian kernel): Let β ∈ L2(Ω), g(t) = g1(t) = 1√
2π

exp(−t2/2) and X given by

(1). Then, the process X is almost surely and mean square smooth on R. Moreover, for any n ∈ N,

∀t ∈ R, X(n)(t) =
∑

i

βig
(n)
1 (t − τi) =

∑

i

βi(−1)nHn(t − τi)g1(t − τi) ,

where Hn is the Hermite polynomial of order n.
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3. Existence of a probability density for shot noise series

We focus in this section on the question of the existence of a probability density for a shot noise
series. This question arises naturally when studying regularity in variation of the law [6] or level sets
[19] of shot noise series. In particular the crossing theory for processes usually assumes the existence
of a bounded density for the random vector (X(t), X ′(t)) for t ∈ R. For sake of generality we consider
here a Rd-valued shot noise process given on R by

(10) Y (t) =
∑

i

βih(t − τi),

where h : R 7→ Rd is a given (deterministic) measurable vectorial function in L1(R). In this setting
one can recover X given by (1) with d = 1 and h = g, or recover (X, X ′)-if exists- with d = 2 and
h = (g, g′).

The question of the existence of a probability density for the random vector Y (t) for some t ∈ R

can be addressed from different points of view. One can exploit formula (10), where Y is written
as a sum of random variables. It allows for instance to establish an integral equation to compute or
approximate the density in some examples [22, 21, 15]. We adopt this point of view in the first part
of this section to derive a sufficient condition for the existence of a density for Y . However it does
not imply any continuity or boundedness of the distribution. Therefore, in the second part we deal
with integrability property for the characteristic function, which implies both existence, continuity
and boundedness of the density.

3.1. Sufficient condition for the existence of a density in the stationary case. In the
following we assume that ν is the Lebesgue measure. Then, the Rd-valued process Y given by (10)
is stationary such that it is sufficient to study the law of the random vector Y (0). We introduce a
truncated process in a similar way as in Section 2.2. We will use the same notations: let T > 0 and

write Y (0) = YT (0) + RT (0) with YT (0) =
∑

{i;|τi|≤T}
βih(−τi) independent from RT (0). Note that, as

in the one dimensional case

YT (0)
d
=

γT∑

i=1

βih(U
(i)
T ),

where γT is a Poisson random variable of parameter λνT (R) = 2λT , {βi} are i.i.d. with common law

F , {U (i)
T } are i.i.d. with uniform law on [−T, T ]. Here

d
= stands for the equality in law and we recall

the convention that
0∑

i=1

= 0.

Proposition 3. If there exists m ≥ 1 such that for any T > 0 large enough, conditionally on
{γT = m}, the random variable YT (0) admits a density, then Y (0) admits a density.

Proof. Let T > 0 sufficiently large. First, let us remark that conditionally on {γT = m}, YT (0) =
m∑

i=1

βih(U
(i)
T ). Next, note that if a random vector V in Rd admits a density fV then, for UT with

uniform law on [−T, T ] and β with law F , independent of V , the random vector W = V + βh(UT )

admits w ∈ Rd 7→ 1
2T

∫
R

∫ T
−T fV (w − zh(t))dtF (dz) for density. Therefore, by induction the assump-

tion implies that
n∑

i=1

βih(U
(i)
T ) has a density, for any n ≥ m. Then, we follow the same lines as [3],

proof of Proposition A.2. Let A ⊂ Rd be a Borel set with Lebesgue measure 0, since YT (0) and RT (0)
are independent

P(Y (0) ∈ A) = P(YT (0) + RT (0) ∈ A) =

∫

Rd

P(YT (0) ∈ A − y)µT (dy).
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with µT the law of RT (0). But for any y ∈ Rd,

P(YT (0) ∈ A − y) = P

(
γT∑

i=1

βih(U
(i)
T ) ∈ A − y

)

=
+∞∑

n=0

P

(
γT∑

i=1

βih(U
(i)
T ) ∈ A − y | γT = n

)
P(γT = n)

=
m−1∑

n=0

P

(
n∑

i=1

βih(U
(i)
T ) ∈ A − y

)
P(γT = n),

since A− y has Lebesgue measure 0 and
n∑

i=1

βi(h(U
(i)
T )) has a density for any n ≥ m. Hence, for any

T > 0 large enough,

P(Y (0) ∈ A) ≤ P(γT ≤ m − 1).

Letting T → +∞ we conclude that P(Y (0) ∈ A) = 0 such that Y (0) admits a density. ¤

Let us remark that, under the assumptions of Proposition 3, considering YT (0) instead of Y (0) or
equivalently νT (ds) = 1I[−T,T ](s)ds instead of the Lebesgue measure, we would obtain that condition-
ally to {γT ≥ m} the random variable YT (0) admits a density. Let us emphasize that YT (0) does not
admit a density since P(YT (0) = 0) ≥ P(γT = 0) > 0.

Let us mention that Breton [6] gives a similar assumption for real-valued shot noise series in
Proposition 2.1. In particular his Corollary 2.1. can be adapted in our multivalued setting.

Corollary 2. Let h : R 7→ Rd be an integrable function and β = 1 a.s. Let us define hd : Rd 7→ Rd by
hd(x) = h(x1)+ . . .+h(xd), for x = (x1, . . . , xd) ∈ Rd. If the hd image measure of the d-dimensional
Lebesgue measure is absolutely continuous with respect to the d-dimensional Lebesgue measure then
the random vector Y (0), given by (10), admits a density.

Proof. Let A ⊂ Rd a Borel set with Lebesgue measure 0 then assumptions ensure that
∫

Rd 1Ihd(x)∈Adx =
0. Therefore, for any T > 0, using notations of Proposition 3,

P

(
d∑

i=1

h(U
(i)
T ) ∈ A

)
=

1

(2T )d

∫

[−T,T ]d
1Ihd(x)∈Adx = 0.

Hence

d∑

i=1

h(U
(i)
T ) admits a density and Proposition 3 gives the conclusion. ¤

Example (Gaussian kernel): let g(t) = 1√
2π

exp(−t2/2), β = 1 a.s. and X given by (1). Let us

consider h = (g, g′) and h2 : (x1, x2) ∈ R2 7→ h(x1) + h(x2). The Jacobian of h2 is

J(h2)(x1, x2) =
1

2π
P (x1, x2) exp(−(x2

1 + x2
2)/2)

with P (x1, x2) = (1 + x1x2)(x1 − x2). Hence, the h2 image measure of the 2-dimensional Lebesgue
measure is absolutely continuous with respect to the 2-dimensional Lebesgue measure. Then, for
any t ∈ R, the random vector (X(t), X ′(t)) is absolutely continuous with respect to the Lebesgue
measure. Note that in particular this implies the existence of a density for X(t).

Most of results known on crossing theory for stationary processes (see for instance [2]) are based
on the assumptions that for any t ∈ R, the random vector (X(t), X ′(t)) admits a continuous bounded
density. One way to get this assumption true is to check the integrability of the characteristic function
of this vector.
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3.2. Is the characteristic function integrable ? Existence and boundedness of a density.
Let d ≥ 1 and consider a d-dimensional shot noise process Y (t) defined by Equation (10) with a
kernel function h and impulse β = 1 a.s. When t ∈ R is fixed the characteristic function of Y (t)
is defined by ψY (t)(u) = E(exp(iu · Y (t))), for u ∈ Rd. Let us remark that u · Y is a 1d shot noise

process with kernel u ·h such that we get ψY (t)(u) = exp(λ
∫

R
(eiu·h(s)−1) ν(ds)). Now, let us assume

that ∫

Rd

exp(−λ

∫

R

(1 − cos(u · h(s))) ν(ds))du < +∞.

This implies that ψY (t) belongs to L1(Rd) and thanks to Fourier inversion theorem, Y (t) has a
bounded continuous density (see for instance [13] p.482).

Examples: for d = 1 and ν(ds) = ds. We consider X the stationary shot noise process given by (1)
and denote by ψ the characteristic function of X(t), t ∈ R, which does not depend on t.

• Power-law shot noise: if there exists A > 0 and α > 1/2 such that g(t) = 1/tα for t > A, then
|ψ| is integrable. Actually, for any u 6= 0,

log |ψ(u)| ≤ −λ

∫ +∞

A
(1 − cos(us−α)) ds

= −λ
1

α
|u|1/α

∫ |u|A−α

0

1 − cos t

t1+1/α
dt.

Since the last integral has a finite positive limit as u goes to infinity, and since exp(−|u|1/α)
is integrable, this shows that |ψ| is integrable. Note that when g is causal i.e. g(t) = 0 for
t < 0, one can define the shot noise process for A = 0 and α > 1. In this case, X(t) is a Levy
stable random variable with stability index 1/α as proved in [21].

• Exponential kernel: if g(t) = e−t1I{t>0}, then |ψ| is integrable iff λ > 1. Actually, for |u| > 1,

log |ψ(u)| = −λ

∫ +∞

0
(1 − cos(ue−s)) ds = −λ

∫ |u|

0

1 − cos(t)

t
dt

= −λ

(∫ 1

0

1 − cos(t)

t
dt + log |u| −

∫ |u|

1

cos(t)

t
dt

)
.

Since the last term in this sum has a finite limit as |u| goes to +∞, it proves that ψ(u) is
integrable iff 1/|u|λ is, that is iff λ > 1.

• Compactly supported kernel: if g has compact support, then |ψ| is not integrable. Moreover
X(t) does not admit a density. Actually, there exists A > 0 such that g(s) = 0 for |s| > A.
Then

∫
R
(1 − cos(ug(s))) ds ≤ 2A, and thus |ψ(u)| ≥ exp(−2Aλ), which shows that it can

not be integrable. Another way to see that |ψ| is not integrable in this case is to look at the
probability of {X(t) = 0}. Indeed, X(t) is 0 as soon as there are no point of the Poisson
process in the interval [−A, A], and such an event has a strictly positive probability. Thus
P(X(t) = 0) > 0, which proves that X(t) doesn’t have a density, and consequently, |ψ| is not
integrable.

It seems that the general picture is this: if g has “heavy tails”, then |ψ| is integrable, whereas
when g(s) goes to 0 faster than exp(−|s|), then |ψ| is not integrable. A hint to understand this is
the following idea: when g goes fast to 0, then P(|X(t)| ≤ ε) is “large” compared to ε, and thus the
density of X(t), when it exists, is not bounded in a neighborhood of 0. And in particular, it implies
that |ψ| is not integrable. All these statements are formalized in the following proposition.

Proposition 4. Let X be a stationary 1d shot noise process defined by (1) with kernel function g
and ν(ds) = ds. Assume for sake of simplicity that β = 1 almost surely. Then:

(1) If g is such that there exist α > 1 and A > 0 such that ∀|s| > A, |g(s)| ≤ e−|s|α, then ∃ε0 > 0
such that ∀0 < ε < ε0:

P(|X(t)| ≤ ε) ≥ 1

2
e−2λTε where Tε is defined by Tε = (− log ε)1/α.
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(2) If g is such that there exists A > 0 such that ∀|s| > A, |g(s)| ≤ e−|s| and if λ < 1/4 then
∃ε0 > 0 such that ∀0 < ε < ε0:

P(|X(t)| ≤ ε) ≥
(

1 − λ

(1 − 2λ)2

)
e−2λTε where Tε is defined by Tε = − log ε.

This implies in both cases that P(|X(t)| ≤ ε)/ε goes to +∞ as ε goes to 0, and thus the density of
X(t) -if it exists- is not bounded in a neighborhood of 0.

Proof. We start with the first case. Let ε > 0 and let Tε = (− log ε)1/α. Assume that ε is small enough

to have Tε > A. We have by definition X(t)
d
= X(0)

d
=

∑

i

g(τi). If we denote XTε(0) =
∑

|τi|≤Tε

g(τi)

and RTε(0) =
∑

|τi|>Tε

g(τi), then XTε(0) and RTε(0) are independent and X(0) = XTε(0) + RTε(0).

We also have: P(|X(0)| ≤ ε) ≥ P(|XTε(0)| = 0 and |RTε(0)| ≤ ε) = P(|XTε(0)| = 0) × P(|RTε(0)| ≤
ε). Now on the one hand we have: P(|XTε(0)| = 0) ≥ P( there are no τi in [−Tε, Tε]) = e−2λTε .
On the other hand, the first moments of the random variable RTε(0) are given by: E(RTε(0)) =

λ
∫ +∞
|s|>Tε

g(s) ds and Var(RTε(0)) = λ
∫ +∞
|s|>Tε

g2(s) ds. Now, we use the following inequality on the tail

of
∫

e−sα
:

∀T > 0, e−T α
=

∫ +∞

T
αsα−1e−sα

ds ≥ αTα−1

∫ +∞

T
e−sα

ds.

Thus, we obtain bounds for the tail of
∫

g and of
∫

g2 :
∫ +∞

T
e−sα

ds ≤ e−T α

αTα−1
and

∫ +∞

T

(
e−sα)2

ds ≤ e−2T α

2αTα−1
.

Back to the moments of RTε(0), since Tε = (− log ε)1/α we have:

|E(RTε(0))| ≤ 2λε

αTα−1
ε

and Var(RTε(0)) ≤ λε2

αTα−1
ε

.

We can take ε small enough in such a way that we can assume that |E(RTε(0))| < ε. Then, using
Chebyshev’s inequality, we have

P(|RTε(0)| ≤ ε) = P(−ε − E(RTε(0)) ≤ RTε(0) − E(RTε(0)) ≤ ε − E(RTε(0)))

≥ 1 − P(|RTε(0) − E(RTε(0))| ≥ ε − |E(RTε(0))|)

≥ 1 − Var(RTε(0))

(ε − |E(RTε(0))|)2 ≥ 1 − λ

αTα−1
ε (1 − 2λ/αTα−1

ε )2
,

which is larger than 1/2 for Tε large enough (i.e. for ε small enough).
For the second case, we can make exactly the same computations by setting α = 1, and get

P(|RTε(0)| ≤ ε) ≥ 1 − λ/(1 − 2λ)2, which is > 0 when λ < 1/4. ¤

Example (Gaussian kernel): Let g(t) = 1√
2π

exp(−t2/2), ν(ds) = ds, β = 1 a.s. and X given

by (1). Then, for any t ∈ R, the random variable X(t) admits a density that is not bounded in a
neighborhood of 0.

Such a feature is particularly bothersome when considering crossings of these processes since most
of known results are based on the existence of bounded density for each marginal of the process.
However such a behavior is extremely linked to the number of points of the Poisson process {τi} that
are thrown in the interval of study. The density -if it exists- will be more regular as this number
increases. This can be settled considering the integrability of the characteristic function conditionally
on a certain number of points in the interval. Then, the main tool is the classical stationary phase
estimate for oscillatory integrals (see [29] for example). We will moreover need such results in the
framework of two variables (u, v), when studying crossing functions.
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Proposition 5 (Stationary phase estimate for oscillatory integrals). Let a < b and let ϕ be a function
of class C2 defined on [a, b]. Assume that ϕ′ and ϕ′′ cannot simultaneously vanish on [a, b] and denote

m = min
s∈[a,b]

√
ϕ′(s)2 + ϕ′′(s)2 > 0. Let us also assume that n0 = #{s ∈ [a, b] s. t. ϕ′′(s) = 0} < +∞.

Then

∀u ∈ R s.t. |u| >
1

m
,

∣∣∣∣
∫ b

a
eiuϕ(s) ds

∣∣∣∣ ≤
8
√

2(2n0 + 1)√
m|u|

.

Now, let ϕ1 and ϕ2 be two functions of class C3 defined on [a, b]. Assume that the derivatives
of these functions are linearly independent, in the sense that for all s ∈ [a, b], the matrix Φ(s) =(

ϕ′
1(s) ϕ′

2(s)
ϕ′′

1(s) ϕ′′
2(s)

)
is invertible. Denote m = min

s∈[a,b]
‖ Φ(s)−1 ‖−1> 0, where ‖ · ‖ is the matricial

norm induced by the Euclidean one. Assume moreover that there exists n0 < +∞ such that #{s ∈

[a, b] s.t. det(Φ′(s)) = 0} ≤ n0, where Φ′(s) =

(
ϕ′′

1(s) ϕ′′
2(s)

ϕ
(3)
1 (s) ϕ

(3)
2 (s)

)
. Then

∀(u, v) ∈ R2 s.t.
√

u2 + v2 >
1

m
,

∣∣∣∣
∫ b

a
eiuϕ1(s)+ivϕ2(s) ds

∣∣∣∣ ≤
8
√

2(2n0 + 3)√
m
√

u2 + v2
.

Proof. For the first part of the proposition, by assumption, [a, b] is the union of the three compact
sets
{
s ∈ [a, b]; |ϕ′′| ≥ m/2

}
,
{
s ∈ [a, b]; |ϕ′| ≥ m/2 and ϕ′′ ≥ 0

}
and

{
s ∈ [a, b]; |ϕ′| ≥ m/2 and ϕ′′ ≤ 0

}
.

Therefore there exists 1 ≤ n ≤ 2n0 + 1 and a subdivision (ai)0≤i≤n of [a, b] such that [ai−1, ai] is
included in one of the previous subsets for any 1 ≤ i ≤ n. If [ai−1, ai] ⊂ {s ∈ [a, b]; |ϕ′′(s)| ≥ m/2},
according to Proposition 2 p.332 of [29]

∣∣∣∣∣

∫ ai

ai−1

eiuϕ(s) ds

∣∣∣∣∣ =

∣∣∣∣∣

∫ ai

ai−1

eiu(m/2)(2ϕ(s)/m) ds

∣∣∣∣∣ ≤ 8

√
2√

m|u|
;

otherwise, ∣∣∣∣∣

∫ ai

ai−1

eiuϕ(s) ds

∣∣∣∣∣ ≤
6

m|u|
The result follows from summing up these n integrals.

For the second part of the proposition, we use polar coordinates, and write (u, v) = (r cos θ, r sin θ).
For θ ∈ [0, 2π), let ϕθ be the function defined on [a, b] by ϕθ(s) = ϕ1(s) cos θ + ϕ2(s) sin θ. Then(

ϕ′
θ(s)

ϕ′′
θ(s)

)
= Φ(s)

(
cos θ
sin θ

)
, and thus 1 =‖ Φ(s)−1

(
ϕ′

θ(s)
ϕ′′

θ(s)

)
‖. This implies that for all s ∈ [a, b],

√
ϕ′

θ(s)
2 + ϕ′′

θ(s)
2 ≥ 1/ ‖ Φ(s)−1 ‖≥ m. Moreover, thanks to Rolle’s Theorem, the number of

points s ∈ [a, b] such that ϕ′′
θ(s) = 0 is bounded by one plus the number of s ∈ [a, b] such that

ϕ′′
1(s)ϕ

′′′
2 (s) − ϕ′′′

1 (s)ϕ′′
2(s) = 0, that is by 1 + n0. Thus, we can apply the result of the first part

of the proposition to each function ϕθ and the obtained bound will depend only on m, n0 and
r =

√
u2 + v2. ¤

Proposition 6. Let X be a stationary 1d shot noise process defined by (1) with kernel function
g ∈ L1(R) and ν(ds) = ds. Assume for sake of simplicity that β = 1 almost surely. Let T > 0 and
γT = #{i; τi ∈ [−T, T ]}. Let a < b and assume that g is a function of class C2 on [−T + a, T + b]
such that

m = min
s∈[−T+a,T+b]

√
g′(s)2 + g′′(s)2 > 0 and n0 = #{s ∈ [−T + a, T + b] s. t. g′′(s) = 0} < +∞.

Then, conditionally on {γT ≥ k0} with k0 ≥ 3, for all t ∈ [a, b], the law of X(t) admits a continuous
bounded density.
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Proof. Actually, we will prove that conditionally on {γT ≥ k0}, the law of the truncated process

XT (t) =
∑

|τi|≤T

g(t − τi) admits a continuous bounded density for t ∈ [a, b]. The result will follow,

using the fact that X(t) = XT (t) + RT (t), with RT (t) independent from XT (t), as given by (8).
Therefore let us denote ψT

t,k0
the characteristic function of XT (t) conditionally on {γT ≥ k0}. Then,

for all u ∈ R, we get

ψT
t,k0

(u) =
1

P(γT ≥ k0)

∑

k≥k0

E

(
eiuXT (t)|γT = k

)
P(γT = k)

=
1

P(γT ≥ k0)

∑

k≥k0

(
1

2T

∫ T

−T
eiug(t−s)ds

)k

e−2λT (2λT )k

k!

Therefore,

∣∣ψT
t,k0

(u)
∣∣ ≤ (2T )−k0

∣∣∣∣
∫ T+t

−T+t
eiug(s)ds

∣∣∣∣
k0

.

Hence, using Proposition 5 on [−T + t, T + t] ⊂ [−T + a, T + b], one can find C a positive constant
that depends on T , k0, λ, m and n0 such that for any |u| > 1/m

∣∣ψT
t,k0

(u)
∣∣ ≤ C|u|−k0/2.

Then ψT
t,k0

is integrable on R, since k0 ≥ 3, and thanks to Fourier inverse Theorem it is the charac-
teristic function of a bounded continuous density. ¤

4. Crossings

The goal of this section is to investigate crossings for smooth shot noise processes. This is a very
different situation from the one studied in [22, 4, 17] where shot noise processes are non differentiable.
However crossings of smooth processes have been extensively studied especially in the Gaussian
processes realm (see [2] for instance). Then, most of known results are based on assumptions on
density probabilities, which are not well-adapted in our setting, as seen in the previous section. In
the next subsection, we revisit these results with a more adapted point of view based on characteristic
functions.

4.1. General formula. When X is an almost surely continuously differentiable process on R, we
can consider its multiplicity function on an interval [a, b] defined by

(11) ∀α ∈ R, NX(α, [a, b]) = #{t ∈ [a, b]; X(t) = α}.
This defines a positive random process taking integer values. Let briefly recall some points of “vo-
cabulary”. For a given level α ∈ R, a point t ∈ [a, b] such that X(t) = α is called “crossing” of the
level α. Then NX(α, [a, b]) counts the number of crossings of the level α in the interval [a, b]. Now we
have to distinguish three different types of crossings (see for instance [9]): the up-crossings are points
for which X(t) = α and X ′(t) > 0, the down-crossings are points for which X(t) = α and X ′(t) < 0
and the tangencies are points for which X(t) = α and X ′(t) = 0. The following proposition gives a
simple criterion which ensures that the number of tangencies is 0 almost surely.

Proposition 7. Let a, b ∈ R with a ≤ b. Let X be a real valued random process almost surely C2 on
[a, b]. Let us assume that there exists φ ∈ L1(R) and Ca,b > 0 such that

∀t ∈ [a, b],
∣∣∣E

(
eiuX(t)

)∣∣∣ ≤ Ca,bφ(u).

Then,

∀α ∈ R, P
(
∃t ∈ [a, b], X(t) = α and X ′(t) = 0

)
= 0.
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Proof. Let M > 0 and let denote AM the event corresponding to

max
t∈[a,b]

|X ′(t)| ≤ M and max
t∈[a,b]

∣∣X ′′(t)
∣∣ ≤ M

such that

P
(
∃t ∈ [a, b], X(t) = α, X ′(t) = 0

)
= lim

M→+∞
P

(
∃t ∈ [a, b], X(t) = α, X ′(t) = 0, AM

)
.

Note that on AM , for t, s ∈ [a, b], we have by the mean value theorem

|X(t) − X(s)| ≤ M |t − s| and |X ′(t) − X ′(s)| ≤ M |t − s|.
Let us assume that there exists t ∈ [a, b] such that X(t) = α and X ′(t) = 0. Then for any n ∈ N

there exists kn ∈ [2na, 2nb] ∩ Z such that |t − 2−nkn| ≤ 2−n with, by Taylor formula,

|X(2−nkn) − α| ≤ 2−2nM and |X ′(2−nkn)| ≤ 2−nM.

Therefore, let us denote

Bn = ∪
kn∈[2na,2nb]∩Z

{
|X(2−nkn) − α| ≤ 2−2nM and |X ′(2−nkn)| ≤ 2−nM

}
.

Since (Bn ∩ AM )n∈N is a decreasing sequence we get

P
(
∃t ∈ [a, b];X(t) = α, X ′(t) = 0, AM

)
≤ lim

n→+∞
P(Bn ∩ AM ).

But, according to assumption, for any n ∈ N the random variable X(2−nkn) admits a uniformly
bounded density function. Therefore, there exists ca,b such that

P
(
|X(2−nkn) − α| ≤ 2−2nM, |X ′(2−nkn)| ≤ 2−nM

)
≤ ca,b2

−2nM.

Hence
P(Bn ∩ AM ) ≤ (b − a + 1)ca,b2

−nM,

which yields the result. ¤

In particular, assumptions of Proposition 7 allow us to use Kac’s counting formula (see Lemma
3.1 [2]), which we recall in the following proposition.

Proposition 8 (Kac’s counting formula). Let a, b ∈ R with a < b. Let X be a real valued random
process defined on R almost surely continuously differentiable on [a, b]. Let α ∈ R. Assume that

(12) P(∃t ∈ [a, b] s.t. X(t) = α and X ′(t) = 0) = 0 and P(X(a) = α) = P(X(b) = α) = 0.

Then, almost surely

NX(α, [a, b]) = lim
δ→0

1

2δ

∫ b

a
1I|X(t)−α|<δ|X ′(t)|dt.

To study crossings, one can also use the co-area formula which is valid in the framework of bounded
variations functions (see for instance [12]), but we won’t need here such a general framework. When
X is an almost surely continuously differentiable process on [a, b], for any bounded and continuous
function h on R, we have:

(13)

∫ b

a
h(X(t))|X ′(t)| dt =

∫

R

h(α)NX(α, [a, b]) dα a.s.

In particular when h = 1 this shows that α 7→ NX(α, [a, b]) is integrable on R and
∫

R
NX(α, [a, b]) dα =∫ b

a |X ′(t)| dt is the total variation of X on [a, b].
Let us also recall that when there are no tangencies of X ′ for the zero-level, then the number

of local extrema for X is given by NX′(0, [a, b]), which corresponds to the sum of the number of
local minima (up zero-crossings of X ′) and of local maxima (down zero-crossings of X ′). Moreover,
according to Rolle’s theorem, whatever the level α is, NX(α, [a, b]) ≤ NX′(0, [a, b]) + 1 a.s.

Dealing with random processes one may be more interested in the mean number of crossings. We
will denote by CX(α, [a, b]) the mean number of crossings of the level α by the process X in [a, b]:

(14) CX(α, [a, b]) = E (NX(α, [a, b])) = E(#{t ∈ [a, b] such that X(t) = α}).
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Let us emphasize that this function is no more with integer values and can be continuous with respect
to α. When moreover X is a stationary process, by the additivity of means, we get CX(α, [a, b]) =
(b− a)CX(α, [0, 1]) for α ∈ R. In this case CX(α, [0, 1]) corresponds to the mean number of crossings
of the level α per unit length. Let us also recall that when X is a strictly stationary ergodic process,
the ergodic theorem states that (2T )−1NX(α, [−T, T ]) −→

T→+∞
CX(α, [0, 1]) a.s. (see [9] for instance).

A straightforward result can be derived from the co-area formula (13).

Proposition 9. Let a, b ∈ R with a < b. Let X be an almost surely and mean square continu-
ously differentiable process on [a, b]. Then α 7→ CX(α, [a, b]) ∈ L1(R). Moreover, for any bounded
continuous function h:

(15)

∫ b

a
E(h(X(t))|X ′(t)|)dt =

∫

R

h(α)CX(α, [a, b]) dα.

Proof. Taking the expected values in (13) for h = 1 on the interval [a, b] we get by Fubini’s theorem
that ∫ b

a
E(|X ′(t)|)dt =

∫

R

CX(α, [a, b]) dα.

Since t 7→ E(|X ′(t)|) is continuous on [a, b] by mean square continuity of X ′, the total variation of X
on [a, b] has finite expectation, which concludes the proof. ¤

Let us emphasize that this result implies in particular that CX(α, [a, b]) < +∞ for almost every
level α ∈ R but one cannot conclude for a fixed given level.

One should expect to have a similar formula for CX than the Kac’s formula obtain for NX .
However, when X is a process satisfying the assumptions of Proposition 8, Kac’s formula only gives
an upper bound on CX(α, [a, b]), according to Fatou’s Lemma:

CX(α, [a, b]) ≤ lim inf
δ→0

1

2δ

∫ b

a
E

(
1I|X(t)−α|<δ|X ′(t)|

)
dt.

This upper bound is not very tractable without assumptions on the existence of a bounded joint
density for the law of (X(t), X ′(t)). As far as shot noise processes are concerned, one can exploit
the infinite divisibility property by considering the mean crossing function of the sum of independent
processes. The next proposition gives an upper bound in this setting. Another application of this
proposition will be seen in Section 6 where we will decompose a shot noise process into the sum of
two independent processes (for which crossings are easy to compute) by partitioning the set of points
of the Poisson process.

Proposition 10 (Crossings of a sum of independent processes). Let a, b ∈ R with a < b. Let n ≥ 2
and Xj be independent real-valued processes almost surely and mean square two times continuously
differentiable on [a, b] for 1 ≤ j ≤ n. Assume that there exist constants Cj and probability measures
dµj on R such that if dPXj(t) denotes the probability measure of Xj(t), then

∀t ∈ [a, b], dPXj(t) ≤ Cjdµj , for 1 ≤ j ≤ n.

Let X be the process obtained by X =
n∑

j=1

Xj and assume that X satisfies (12) for α ∈ R. Then

(16) CX(α, [a, b]) ≤
n∑

j=1


∏

i6=j

Ci


 (CX′

j
(0, [a, b]) + 1).

Moreover, in the case where all the Xj are stationary on R:

CX(α, [a, b]) ≤
n∑

j=1

CX′
j
(0, [a, b]).
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Proof. We first need an elementary result. Let f be a C1 function on [a, b], then for all δ > 0, and
for all x ∈ R, we have:

(17)
1

2δ

∫ b

a
1I|f(t)−x|≤δ|f ′(t)| dt ≤ Nf ′(0, [a, b]) + 1.

This result (that can be found as an exercise at the end of Chapter 3 of [2]) can be proved this way:
let a1 < . . . < an denote the points at which f ′(t) = 0 in [a, b]. On each interval [a, a1], [a1, a2], . . . ,
[an, b], f is monotonic and thus

∫ ai+1

ai
1I|f(t)−x|≤δ|f ′(t)| dt ≤ 2δ. Summing up these integrals, we have

the announced result.
For the process X, since it satisfies the conditions of Kac’s formula (12), by Proposition 8 and

Fatou’s Lemma,

CX(α, [a, b]) ≤ lim inf
δ→0

1

2δ

∫ b

a
E(1I|X(t)−α|≤δ|X ′(t)|) dt.

Now, for each δ > 0, we have E(1I|X(t)−α|≤δ|X ′(t)|) ≤
n∑

j=1

E(1I|X1(t)+...+Xn(t)−α|≤δ|X ′
j(t)|). Then,

thanks to the independence of X1, . . . , Xn and to the bound on the laws of Xj(t), we get:
∫ b

a
E(1I|X1(t)+...+Xn(t)−α|≤δ|X ′

1(t)|) dt

=

∫ b

a

∫

Rn−1

E(1I|X1(t)+x2+...+xn−α|≤δ|X ′
1(t)| |X2(t) = x2, . . . , Xn(t) = xn) dPX2(t)(x2) . . . dPXn(t)(xn) dt

≤




n∏

j=2

Cj




∫

Rn−1

∫ b

a
E(1I|X1(t)+x2+...+xn−α|≤δ|X ′

1(t)|) dt dµ2(x2) . . . dµn(xn).

Now, (17) holds almost surely for X1, taking expectation we get

1

2δ

∫ b

a
E(1I|X1(t)+x2+...+xn−α|≤δ|X ′

1(t)|) dt ≤ CX′
1
(0, [a, b]) + 1.

Using the fact the dµj are probability measures we get

1

2δ

∫ b

a
E(1I|X1(t)+...+Xn(t)−α|≤δ|X ′

1(t)|) dt ≤




n∏

j=2

Cj


 (CX′

1
(0, [a, b]) + 1).

We obtain similar bounds for the other terms. Since this holds for all δ > 0, we have the bound (16)
on the expected number of crossings of the level α by the process X.

When the Xj are stationary, things become simpler: we can take Cj = 1 for any 1 ≤ j ≤ n, and also
by stationarity we have that for all p ≥ 1 integer: CX(α, [a, b+ p(b− a)]) = (p+1)CX(α, [a, b]). Now

using (16) for all p, then dividing by (p+1), we have that for all p: CX(α, [a, b]) ≤
n∑

j=1

CX′
j
(0, [a, b])+

n

p + 1
. Finally, letting p goes to infinity, we have the result. ¤

As previously seen, taking the expectation in Kac’s formula only allows us to get an upper bound
for CX . However, under stronger assumptions, one can justify the interversion of the limit and the
expectation. This is known as Rice’s formula. We recall it here under original assumptions on the
characteristic functions of the process, which are more tractable than densities, in the setting of shot
noise processes.

Proposition 11 (Rice’s Formula). Let a, b ∈ R with a ≤ b. Let X be a real valued random process
almost surely continuously differentiable on [a, b]. Let us denote ψt,ε, respectively ψt,0 := ψt, the
characteristic function of (X(t), (X(t + ε) − X(t))/ε), respectively (X(t), X ′(t)), for t ∈ [a, b] and
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ε > 0. Assume that for all t ∈ [a, b] and ε sufficiently small, and for all 0 ≤ k ≤ 3, the partial

derivatives ∂k

∂vk ψt,ε(u, v) exist and satisfy

(18)

∣∣∣∣
∂k

∂vk
ψt,ε(u, v)

∣∣∣∣ ≤ C(1 +
√

u2 + v2)−l,

for l > 2 and C a positive constant. Then, the crossings mean number function α 7→ CX(α, [a, b]) is
continuous on R and given by

(19) CX(α, [a, b]) =

∫ b

a

∫

R

|z|pt(α, z) dz dt < +∞,

where pt(α, z) = 1
4π2

ˇ̂
ψt(α, z) is the joint distribution density of (X(t), X ′(t)).

Proof. It is enough to check assumptions i)–iii) of Theorem 2 of [19] p.262. Assumptions for k = 0
ensure that ψt,ε ∈ L1(R2), respectively ψt ∈ L1(R2), such that (X(t), (X(t+ε)−X(t))/ε), respectively

(X(t), X ′(t)), admits pt,ε = 1
4π2

ˇ̂
ψt,ε, respectively pt = 1

4π2

ˇ̂
ψt, as density.

i) pt,ε(x, z) is continuous in (t, x) for each z, ε, according to Lebesgue’s dominated convergence
theorem using the fact that X is almost surely continuous on R.
ii) Since X is almost surely continuously differentiable on R we clearly have for any (u, v) ∈ R2,
ψt,ε(u, v) → ψt(u, v) as ε → 0. Then by Lebesgue’s dominated convergence theorem pt,ε(x, z) →
pt(x, z) as ε → 0, uniformly in (t, x) for each z ∈ R.
iii) For any z 6= 0, integrating by parts we get

pt,ε(x, z) =
i

4π2z3

∫

R2

e−ixu−izv ∂3

∂v3
ψt,ε(u, v)dudv,

such that pt,ε(x, z) ≤ Ch(z) for all t, ε, x with h(z) = (1 + |z|3)−1 satisfying
∫

R
|z|h(z)dz < +∞ and

C a positive constant. ¤

Let us mention that Rice’s formula (19) can be obtained under weaker assumption when considering
X strictly stationary and mean square differentiable on [a, b]. Actually, according to Theorem 2 iii)
of [14], if P(X ′(0) = 0) = 0 then the law of X(0) has a density denoted by fX(0)(x)dx, and Rice’s
formula (19) holds for fX(0)(x)dx-almost every α ∈ R. If the joint distribution density does not exist
the integral on R is replaced by fX(0)(α)E (|X ′(0)| |X(0) = α).

However, let us emphasize that Proposition 11 states also that the crossings mean number function
α 7→ CX(α, [a, b]), which was already known to be integrable, is also continuous on R.

We have not been able to obtain this property by a different way with weaker assumptions. We
use it to state the next theorem concerning shot noise processes.

Theorem 1. Let X be a stationary 1d shot noise process defined by (1) with kernel function g
and ν(ds) = ds. Assume for sake of simplicity that β = 1 almost surely. Let us assume that g
is a function of class C4 on R with g, g′, g′′ ∈ L1(R). Let T > 0, a ≤ b, and assume that for all

s ∈ [−T + a, T + b], the matrices Φ(s) =

(
g′(s) g′′(s)
g′′(s) g(3)(s)

)
and Φ′(s) =

(
g′′(s) g(3)(s)

g(3)(s) g(4)(s)

)
are

invertible. Let γT = #{i; τi ∈ [−T, T ]}. Then, conditionally on {γT ≥ k0} with k0 ≥ 8, the crossings
mean number function α 7→ E (NX(α, [a, b])|γT ≥ k0) is continuous on R.

Proof. Let t ∈ [a, b]. We write X(t) = XT (t)+RT (t) as given by (8). Let us write for ε small enough

ψt,ε,k0 = ψT
t,ε,k0

ψRT
t,ε

with ψt,ε,k0 , respectively ψT
t,ε,k0

, the characteristic function of (X(t), (X(t+ε)−X(t))/ε), respectively

(XT (t), (XT (t + ε) − XT (t))/ε), conditionally on {γT ≥ k0}. Note that, RT is independent from γT

such that ψRT
t,ε is just the characteristic function of (RT (t), (RT (t + ε) − RT (t))/ε). According to

Rice’s formula the result will follow from (18). By Leibnitz formula, for 0 ≤ k ≤ 3, one has

(20)
∂k

∂vk
ψt,ε,k0(u, v) =

k∑

l=0

(
k
l

)
∂l

∂vl
ψT

t,ε,k0
(u, v)

∂k−l

∂vk−l
ψRT

t,ε (u, v).
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On the one hand ∣∣∣∣
∂k−l

∂vk−l
ψRT

t,ε (u, v)

∣∣∣∣ ≤ E

(∣∣∣∣
RT (t + ε) − RT (t)

ε

∣∣∣∣
k−l

)
,

with ∣∣∣∣
RT (t + ε) − RT (t)

ε

∣∣∣∣ ≤
∑

|τi|>T

|gε(t − τi)| for gε(s) =
1

ε

∫ ε

0
g′(s + x)dx.

Let us remark that since g′, g′′ ∈ L1(R) one has g, g′ ∈ L∞(R). Then for any ε > 0, gε ∈ L∞(R) ∩
L1(R) with ‖gε‖∞ ≤ ‖g′‖∞ and ‖gε‖1 ≤ ‖g′‖1. Then using (7), one can find c > 0 such that for all
0 ≤ k ≤ 3, with (k − 1)+ = max(0, k − 1),

(21)

∣∣∣∣
∂k

∂vk
ψRT

t,ε (u, v)

∣∣∣∣ ≤ c max(1, ‖g′‖∞)(k−1)+ max(1, λ‖g′‖1)
k.

On the other hand,

P(γT ≥ k0)ψ
T
t,ε,k0

(u, v) =
∑

k≥k0

E

(
eiuXT (t)+iv(XT (t+ε)−XT (t))/ε|γT = k

)
P(γT = k)

=
∑

k≥k0

χT
t,ε(u, v)kP(γT = k)

where χT
t,ε(u, v) = (2T )−1

∫ T+t
−T+t eiug(s)+ivgε(s)ds, is the characteristic function of (g(t−UT ), gε(t−UT )),

with UT a uniform random variable on [−T, T ]. It follows that
∣∣χT

t,ε(u, v)
∣∣ ≤ 1, so that one can find

c > 0 such that for all 0 ≤ k ≤ 3,
∣∣∣∣

∂k

∂vk
ψT

t,ε,k0
(u, v)

∣∣∣∣ ≤ c max(1, ‖g′‖∞)(k−1)+ max(1, λ‖g′‖1)
k P(γT ≥ k0 − k)

P(γT ≥ k0)

∣∣χT
t,ε(u, v)

∣∣k0−k
.

This, together with (21) and (20), implies that one can find c > 0 such that for all 0 ≤ k ≤ 3,

(22)

∣∣∣∣
∂k

∂vk
ψt,ε,k0(u, v)

∣∣∣∣ ≤ c max(1, ‖g′‖∞)(k−1)+ max(1, λ‖g′‖1)
k P(γT ≥ k0 − k)

P(γT ≥ k0)

∣∣χT
t,ε(u, v)

∣∣k0−k
.

Moreover, let Φε(s) =

(
g′(s) g′ε(s)
g′′(s) g′′ε (s)

)
and Φ′

ε(s) =

(
g′′(s) g′′ε (s)

g(3)(s) g
(3)
ε (s)

)
. Then detΦε(s) converges

to detΦ(s) as ε → 0, uniformly in s ∈ [−T − a, T + b]. The assumption on Φ ensures that one can
find ε0 such that for ε ≤ ε0, the matrix Φε(s) is invertible for all s ∈ [−T −a, T + b]. The same holds
true for Φ′

ε(s). Denote m = min
s∈[−T−a,T+b],ε≤ε0

‖ Φε(s)
−1 ‖−1> 0, where ‖ · ‖ is the matricial norm

induced by the Euclidean one. According to Proposition 5 with n0 = 0,

∀(u, v) ∈ R2 s. t.
√

u2 + v2 >
1

m
,

∣∣χT
t,ε(u, v)

∣∣ = (2T )−1

∣∣∣∣
∫ T+t

−T+t
eiug(s)+ivgε(s)ds

∣∣∣∣ ≤
24
√

2√
m
√

u2 + v2
.

Therefore, one can find a constant ck0 > 0 such that, for all 0 ≤ k ≤ 3,
∣∣∣ ∂k

∂vk ψT
t,ε,k0

(u, v)
∣∣∣ is less than

ck0(2T )−k0+3 max(1, ‖g′‖∞)(k−1)+ max(1, λ‖g′‖1)
k P(γT ≥ k0 − k)

P(γT ≥ k0)

(
1 +

√
u2 + v2

)−(k0−3)/2
,

with (k0 − 3)/2 > 2 when k0 > 7 so that (18) holds, which concludes the proof. ¤

As previously seen, the classical Rice’s formula for the mean crossings number function, when it
holds, involves the joint probability density of (X(t), X ′(t)). Such a formula is not tractable in our
context where the existence of a density is even a question in itself. Considering the crossings mean
number as an integrable function, it is natural to consider its Fourier transform as we do in the next
section.
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4.2. Fourier transform of crossings mean number. In the following proposition we obtain a
closed formula for the Fourier transform of the crossings mean number function, which only involves
characteristic functions of the process. This can be helpful, when considering shot noise processes,
whose characteristic functions are well-known.

Proposition 12. Let a, b ∈ R with a < b. Let X be an almost surely and mean square continuously
differentiable process on [a, b]. Then α 7→ CX(α, [a, b]) ∈ L1(R) and its Fourier transform u 7→
ĈX(u, [a, b]) is given by

(23) ĈX(u, [a, b]) =

∫ b

a
E

(
eiuX(t)|X ′(t)|

)
dt.

Moreover, if ψt denotes the joint characteristic function of (X(t), X ′(t)), then ĈX(u, [a, b]) can be
computed by

ĈX(u, [a, b]) = − 1

π

∫ b

a

∫ +∞

0

1

v

(
∂ψt

∂v
(u, v) − ∂ψt

∂v
(u,−v)

)
dv dt

= − 1

π

∫ b

a

∫ +∞

0

1

v2
(ψt(u, v) + ψt(u,−v) − 2ψt(u, 0)) dv dt.

Proof. According to Proposition 9 we can choose h in Equation (15) of the form h(x) = exp(iux) for

any u real. This shows that Ĉ(u, [a, b]) =
∫ b
a E

(
eiuX(t)|X ′(t)|

)
dt. Let us now identify the right-hand

term. Let µt(dx, dy) denote the distribution of (X(t), X ′(t)). Then the joint characteristic function
ψt(u, v) of (X(t), X ′(t)) is

ψt(u, v) = E
(
exp(iuX(t) + ivX ′(t))

)
=

∫

R2

eiux+ivyµt(dx, dy).

Since the random vector (X(t), X ′(t)) has moment of order two, then ψt is twice continuously differ-
entiable on R2. Now, let us consider the integral

IA =

∫ A

0

1

v

(
∂ψt

∂v
(u, v) − ∂ψt

∂v
(u,−v)

)
dv =

∫ A

v=0

∫

x,y∈R2

iyeiux+ivy − iyeiux−ivy

v
µt(dx, dy) dv

= −2

∫ A

v=0

∫

R2

yeiux sin(vy)

v
µt(dx, dy) dv = −2

∫

R2

yeiux

∫ Ay

v=0

sin(v)

v
dvµt(dx, dy)

The order of integration has been reversed thanks to Fubini’s Theorem ( |yeiux sin(vy)
v | ≤ y2 which

is integrable on [0, A] × R2 with respect to dv × µt(dx, dy), since X ′(t) is a second order random

variable). As A goes to +∞, then
∫ Ay
v=0

sin(v)
v dv goes to π

2 sign(y), and moreover for all A, x and y,

we have |yeiux
∫ Ay
v=0

sin(v)
v dv| ≤ 3|y|, thus by Lebesgue’s dominated convergence theorem, the limit of

− 1
π IA exists as A goes to infinity and its value is:

lim
A→+∞

− 1

π

∫ A

0

1

v

(
∂ψt

∂v
(u, v) − ∂ψt

∂v
(u,−v)

)
dv =

∫

R2

|y|eiuxµt(dx, dy) = E

(
eiuX(t)|X ′(t)|

)
.

The second expression in the proposition is simply obtained by integration by parts in the above
formula. ¤

It is then natural to invert the Fourier transform to get an almost everywhere expression for
CX(α, [a, b]) itself.

Proposition 13. Let a, b ∈ R with a ≤ b. Let X be a real valued random process almost surely
continuously differentiable on [a, b]. Let us denote ψt the characteristic function of (X(t), X ′(t)), for

t ∈ [a, b]. Assume that for all t ∈ [a, b], for 1 ≤ k ≤ 2, the partial derivatives ∂k

∂vk ψt(u, v) exist and
satisfy

(24)

∣∣∣∣
∂k

∂vk
ψt(u, v)

∣∣∣∣ ≤ C(1 +
√

u2 + v2)−l,
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for l > 1 and C a positive constant. Then ĈX(u, [a, b]) ∈ L1(R) and for almost every α ∈ R

(25) CX(α, [a, b]) = − 1

2π2

∫ b

a

∫

R

∫ +∞

0

e−iuα

v

(
∂ψt

∂v
(u, v) − ∂ψt

∂v
(u,−v)

)
dv du dt.

Proof. Let u ∈ R and t ∈ [a, b], according to Proposition 12 one has

E

(
eiuX(t)|X ′(t)|

)
= − 1

π

∫ +∞

0

1

v

(
∂ψt

∂v
(u, v) − ∂ψt

∂v
(u,−v)

)
dv

It is sufficient to remark that integrating by parts, for any ε ∈ (0, 1),

∫ 1

ε

1

v

(
∂ψt

∂v
(u, v) − ∂ψt

∂v
(u,−v)

)
dv

= − ln(ε)

(
∂ψt

∂v
(u, ε) − ∂ψt

∂v
(u,−ε)

)
−

∫ 1

ε
ln(v)

(
∂2ψt

∂v2
(u, v) − ∂2ψt

∂v2
(u,−v)

)
dv.

Therefore, as ε goes to zero, one gets

(26)

∫ 1

0

1

v

(
∂ψt

∂v
(u, v) − ∂ψt

∂v
(u,−v)

)
dv = −

∫ 1

0
ln(v)

(
∂2ψt

∂v2
(u, v) − ∂2ψt

∂v2
(u,−v)

)
dv.

Then, according to (24) for k = 2,

∣∣∣∣
∫ 1

0

1

v

(
∂ψt

∂v
(u, v) − ∂ψt

∂v
(u,−v)

)
dv

∣∣∣∣ ≤ 2C(1 + |u|)−l.

On the other hand, according to (24) for k = 1,
∣∣∣∣
∫ +∞

1

1

v

(
∂ψt

∂v
(u, v) − ∂ψt

∂v
(u,−v)

)
dv

∣∣∣∣ ≤ C ′(1 + |u|)−l ln(2 + |u|).

Then ĈX(u, [a, b]) ∈ L1(R) and its inverse Fourier transform given by (25) is equal to CX(·, [a, b])
almost everywhere. ¤

Let us emphasize that the assumptions of Proposition 13 are weaker than those of Proposition 11
but the result holds almost everywhere. Actually (25) will hold everywhere as soon as the crossings
mean number function CX(·, [a, b]) is continuous on R, which is not implied by Proposition 13 alone.
However such a weak result can still be used in practice as explained in [27].

Remark. The last expression considerably simplifies when X is a stationary Gaussian process
almost surely and mean square continuously differentiable on R. By independence of X(t) and X ′(t)
we get ψt(u, v) = φX(u)φX′(v) where φX , respectively φX′ , denotes the characteristic function of
X(t), resp. X ′(t) (independent of t by stationarity). Then, ψt satisfies the assumptions of Proposition
13. Moreover one can check that X also satisfies the assumptions of Proposition 11 such that the
crossings mean number function is continuous on R. Its Fourier transform is given by

ĈX(u, [a, b]) = −b − a

π
φX(u)

∫

R

1

v

∂φX′

∂v
(v) dv.

By the inverse Fourier transform and continuity of CX(·, [a, b]) we get Rice’s formula

(27) CX(α, [a, b]) =
b − a

π

(
m2

m0

)1/2

e−(α−E(X(0)))2/2m0 , ∀α ∈ R,

where m0 = Var(X(t)) and m2 = Var(X ′(t)). Let us quote that in fact Rice’s formula holds as soon
as X is a.s. continuous (see Exercise 3.2 of [2]) in the sense that CX(α, [a, b]) = +∞ if m2 = +∞.
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4.3. Application: convergence of crossings mean number.

Proposition 14. Let a, b ∈ R with a < b. Let (Xn)n∈N and X be almost surely and mean square
continuously differentiable processes on [a, b] such that

ĈXn(u, [a, b]) −→
n→+∞

ĈX(u, [a, b]), ∀u ∈ R.

Then the sequence of crossings mean number functions CXn(·, [a, b]) converges weakly to CX(·, [a, b]),
denoted by CXn(·, [a, b]) ⇀

n→∞
CX(·, [a, b]), which means:

∀h bounded continuous function on R,

∫
h(α)CXn(α, [a, b]) dα −→

n→∞

∫
h(α)C(α, [a, b]) dα.

Proof. This result simply comes from the fact that we can see α 7→ CXn(α)/ĈXn(0) as a probability
density function on R, and then apply classical results which relate convergence of characteristic
functions to weak convergence. ¤

Using Plancherel equality, a stronger convergence can be obtained in L2(R) in the following setting.

Proposition 15. Let a, b ∈ R with a < b. Let (Xn)n∈N and X be almost surely and mean square
twice continuously differentiable processes on [a, b] such that

ĈXn(u, [a, b]) −→
n→+∞

ĈX(u, [a, b]), ∀u ∈ R.

Assume moreover that the mean total variations and the mean numbers of local extrema are uniformly
bounded: there exists M > 0 such that and

i) sup
n∈N

∫ b
a E(|X ′

n(t)|) ≤ M ;

ii) CX′(0, [a, b]) ≤ M and CX′
n
(0, [a, b]) ≤ M, ∀n ∈ N.

Then the sequence of crossings mean number functions CXn(·, [a, b]) converges to CX(·, [a, b]) in
L2(R).

Proof. Note that the condition ii) implies that CXn(·, [a, b]), respectively CX(·, [a, b]), is bounded by
M + 1 such that CXn(·, [a, b]), respectively CX(·, [a, b]), is in L1(R) ∩ L∞(R) ⊂ L2(R). Let us prove

that

(∣∣∣ĈXn(·, [a, b])
∣∣∣
2
)

n∈N

is uniformly integrable. First, by Plancherel Theorem we get

‖ĈXn(·, [a, b])‖L2(R) =
√

2π‖CXn(·, [a, b])‖L2(R) ≤
√

2π‖CXn(·, [a, b])‖1/2
L∞(R)‖CXn(·, [a, b])‖1/2

L1(R)
.

But, according to ii),

‖CXn(·, [a, b])‖L1(R) =

∫ b

a
E(|X ′

n(t)|)dt ≤ M.

Therefore, sup
n∈N

‖ĈXn(·, [a, b])‖L2(R) < +∞. Secondly, remark that
∣∣∣ĈXn(u, [a, b])

∣∣∣ ≤ ‖CXn(·, [a, b])‖L1(R)

such that for any Borel set A,

∀n ∈ N,

∫

A

∣∣∣ĈXn(u, [a, b])
∣∣∣
2
du ≤ M2|A|,

which finishes to prove that

(∣∣∣ĈXn(·, [a, b])
∣∣∣
2
)

n∈N

is uniformly integrable. Therefore ĈXn(·, [a, b])

converges to ĈX(·, [a, b]) in L2(R), which concludes the proof using Plancherel Theorem. ¤

Proposition 16. Let β(n) be a sequence of random variables in L2(Ω). Let (gn)n∈N be a sequence
of functions such that gn ∈ C2(R) with gn, g′n, g′′n ∈ L1(R). Assume that there exist β ∈ L2(Ω) and
g ∈ C2(R) with g, g′, g′′ ∈ L1(R) such that

(1) g
(k)
n −→

n→∞
g(k) in L1(R) ∩ L2(R) for k = 0, 1;

(2) β(n) −→
n→∞

β in L2(Ω).
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Let us consider the shot noise processes Xn and X defined by Xn(t) =
∑

i β
(n)
i gn(t− τi) and X(t) =∑

i βig(t − τi), where {τi} is a Poisson point process of intensity λ on R. Then for all a < b,

ĈXn(u, [a, b]) −→
n→∞

ĈX(u, [a, b]), ∀u ∈ R.

Proof. We use Equation (23) to compute the Fourier transform of the crossings mean number func-
tions and get

ĈXn(u, [a, b]) − ĈX(u, [a, b]) =

∫ b

a
E(eiuXn(t)|X ′

n(t)|) − E(eiuX(t)|X ′(t)|)dt,

with

E(eiuXn(t)|X ′
n(t)|) − E(eiuX(t)|X ′(t)|) = E((eiuXn(t) − eiuX(t))|X ′(t)|) + E(eiuXn(t)(|X ′

n(t)| − |X ′(t)|)).

Thus

|E(eiuXn(t)|X ′
n(t)|) − E(eiuX(t)|X ′(t)|)| ≤ |u|E(|Xn(t) − X(t)| · |X ′(t)|) + E(|X ′

n(t) − X ′(t)|).

Let us introduce a sequence of auxiliary shot noise processes Yn with impulses β(n) and kernel function
g such that

Xn(t) − Yn(t) =
∑

i

β
(n)
i (gn − g)(t − τi) and Yn(t) − X(t) =

∑

i

(β
(n)
i − βi)g(t − τi),

with {τi} the points of a Poisson process of intensity λ on the line, and {β(n)
i } and {βi} independent

samples of respectively β(n) and β. Then

E(|Xn(t) − X(t)| · |X ′(t)|) ≤ E(|Xn(t) − Yn(t)| · |X ′(t)|) + E(|Yn(t) − X(t)| · |X ′(t)|)
≤

(√
E(|Xn(t) − Yn(t)|2) +

√
E(|Yn(t) − X(t)|2)

)√
E(|X ′(t)|2).

According to the elementary properties of Section 2.1, we get

E((Xn(t) − Yn(t))2) = λE((β(n))2)

∫

R

(gn − g)2(s) ds + λ2E(β(n))2
(∫

R

(gn − g)(s) ds

)2

.

And in a similar way:

E((Yn(t) − X(t))2) = λE((β(n) − β)2)

∫

R

g2(s) ds + λ2E(β(n) − β)2
(∫

R

g(s) ds

)2

.

On the other hand, we have

E(|X ′
n(t) − X ′(t)|) ≤ E(|X ′

n(t) − Y ′
n(t)|) + E(|Y ′

n(t) − X ′(t)|)

≤ λ

(
E(|β(n)|)

∫

R

|g′n − g′|(s) + E(|β(n) − β|)
∫

R

|g′|(s) ds

)
.

Since
∫
|gn − g|,

∫
(gn − g)2,

∫
|g′n − g′| and E(|β(n) −β|2) all go to 0 as n goes to infinity, we obtained

the announced result. ¤

In particular this implies the weak convergence of the mean crossings number function. Let us
remark that assumption i) of Proposition 15 is clearly satisfied and therefore, under assumption ii),
the convergence holds also in L2(R).

As the intensity λ of the shot noise process tends to infinity, due to its infinitely divisible property
and since it is of second order, we obtain, after renormalization, a Gaussian process at the limit.
This behavior is studied in detail in the next section.
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5. High intensity and Gaussian field

5.1. General feature. It is well-known that, as the intensity λ of the Poisson process goes to infinity,
the shot noise process converges to a normal process. Precise bounds on the distance between the
law of a X(t) and the normal distribution are given in the paper of A. Papoulis “High density shot
noise and Gaussianity” [23]. Moreover, the paper of L. Heinrich and V. Schmidt [16] gives conditions
of normal convergence for a wide class of shot noise processes (not restricted to 1d, nor to Poisson
processes). In this section we obtain a stronger result for smooth stationary shot noise processes by
considering convergence in law in the space of continuous functions. In all this section we make the
following assumption

Hs :





ν is the Lebesgue measure on R;
g ∈ C2(R) with g, g′, g′′ ∈ L1(R);
β ∈ L2(Ω);

and we will denote Xλ the strictly stationary shot noise process given by (1) with intensity λ > 0.

Theorem 2. Let us assume Hs and define the normalized shot noise process Zλ(t) = 1√
λ

(Xλ(t) − E(Xλ(t))),

t ∈ R. Then,

Yλ =

(
Zλ

Z ′
λ

)
fdd−→

λ→+∞

√
E(β2)

(
B
B′

)
,

where B is a stationary centered Gaussian process almost surely and mean square continuously dif-
ferentiable, with covariance function

Cov
(
B(t), B(t′)

)
=

∫

R

g(t − s)g(t′ − s)ds = g ∗ ǧ(t − t′).

When, moreover g′′ ∈ Lp(R) for p > 1, the convergence holds in distribution on the space of contin-
uous functions on compact sets endowed with the topology of the uniform convergence.

Proof. We begin with the proof of finite dimensional distributions convergence. Let k be an integer
with k ≥ 1 and let t1, . . . , tk ∈ R and w1 = (u1, v1), . . . , wk = (uk, vk) ∈ R2.
Let us write

k∑

j=1

Yλ(tj) · wj =
1√
λ

(∑

i

βig̃(τi) − E

(∑

i

βig̃(τi)

))
,

for g̃(s) =
k∑

j=1

(
ujg(tj − s) + vjg

′(tj − s)
)
. Therefore

log E


e

i
k∑

j=1
Yλ(tj)·wj


 = λ

∫

R×R

(
e
iz

(
g̃(s)√

λ

)
− 1 − iz

g̃(s)√
λ

)
dsF (dz).

Note that as λ → +∞,

λ

(
e
iz

(
g̃(s)√

λ

)
− 1 − iz

g̃(s)√
λ

)
→ −1

2
z2g̃(s)2,

with for all λ > 0 ∣∣∣∣λ exp

(
iz

(
g̃(s)√

λ

)
− 1 − iz

g̃(s)√
λ

)∣∣∣∣ ≤
1

2
z2g̃(s)2.

By the dominated convergence theorem, since g̃ ∈ L2(R) and β ∈ L2(Ω) we get that as λ → +∞

E


exp


i

k∑

j=1

Yλ(tj) · wj





 → exp

(
−1

2
E(β2)

∫

R

g̃(s)2ds

)
.

Let us identify the limiting process. Let us recall that Xλ is a second order process with covariance
function given by (6), namely Cov(Xλ(t), Xλ(t′)) = λE(β2)S(t−t′) with S(t) = g∗ǧ(t). Hence one can
define B to be a stationary Gaussian centered process with (t, t′) 7→ S(t− t′) as covariance function.
The assumptions on g ensure that the function S is twice differentiable. Therefore B is mean square
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differentiable with B′ a stationary Gaussian centered process with (t, t′) 7→ −S′′(t− t′) = g′ ∗ ǧ′(t− t′)
as covariance function. Moreover

E
(
(B′(t) − B′(t′))2

)
= 2

(
S′′(0) − S′′(t − t′)

)
≤ 2‖g′‖∞‖g′′‖1|t − t′|,

such that by Theorem 3.4.1 of [1] the process B′ is almost surely continuous on R. Therefore as in

[11] p. 536, one can check that almost surely B(t) = B(0) +
∫ t
0 B′(s)ds, such that B is almost surely

continuously differentiable. We conclude for the fdd convergence by noticing that

∫

R

g̃(s)2ds = Var




k∑

j=1

ujB(tj) + vjB
′(tj)


 .

Let us prove the convergence in distribution on the space of continuous functions on compact sets
endowed with the topology of the uniform convergence. It is enough to prove the tightness of the
sequence (Yλ)λ according to Lemma 14.2 and Theorem 14.3 of [18]. Let t, s ∈ R and remark that for
any q ≥ 1, on the one hand

E
(
(Zλ(t) − Zλ(t′))2

)
= E(β2)

∫

R

(
g(t − s) − g(t′ − s)

)2
ds ≤ E(β2)‖g′‖q‖g′‖1|t − t′|2−1/q.

On the other hand,

E
(
(Z ′

λ(t) − Z ′
λ(t′))2

)
= E(β2)

∫

R

(
g′(t − s) − g′(t′ − s)

)2
ds ≤ E(β2)‖g′′‖q‖g′′‖1|t − t′|2−1/q.

Note that assuming that g′′ ∈ Lp(R) allows us to choose q = p > 1 in the second upper bound such
that 2 − 1/q > 1. Moreover assumption Hs implies that g′ ∈ L∞(R) ∩ L1(R) ⊂ Lp(R) such that
one can also choose q = p in the first upper bound. Then, (Yλ)λ satisfies a Kolmogorov-Chentsov
criterion which implies its tightness according to Corollary 14.9 of [18]. ¤

In particular, when a < b, the functional (f, g) 7→
∫ b
a h(f(t))|g(t)|dt is clearly continuous and

bounded on C([a, b], R) × C([a, b], R) for any continuous bounded function h on R. Then Theorem 2
implies that ∫ b

a
E

(
h (Zλ(t))

∣∣Z ′
λ(t)

∣∣) dt −→
λ→+∞

∫ b

a
E

(
h(B(t))|B′(t)|

)
dt.

By the co-area formula (13), this means the weak convergence of crossings mean number, i.e.

CZλ
(·, [a, b]) ⇀

λ→+∞
CB(·, [a, b]).

This implies also the pointwise convergence of Fourier transforms. Such a result can be compared
to the classical central limit theorem. Numerous of improved results can be obtained under stronger
assumptions than the classical ones. This is the case for instance for the rate of convergence derived
by Berry-Esseen Theorem or the convergence of the densities distributions. We refer to [13] chapter
15 and 16. Adapting the technical proofs allows us to get similar results for crossings in the next
section.

5.2. High intensity: rate of convergence for crossings mean number. Let us remark that
only E(β2) appears in the limit field. For sake of simplicity we may assume that β = 1 a.s. Note
that, according to Rice’s formula [9], as recalled in Equation (27), since the limit Gaussian field is
stationary, CB(α, [a, b]) = (b − a)CB(α, [0, 1]) with

CB(α, [0, 1]) =
1

π

(
m2

m0

)1/2

e−α2/2m0 , ∀α ∈ R,

where m0 = Var(B(t)) = g ∗ ǧ(0) and m2 = Var(B′(t)) = g′ ∗ ǧ′(0). Moreover its Fourier transform

is given by ĈB(u, [0, 1]) =
√

2m2
π e−m0u2/2. We obtain the following rate of convergence, for which

proof is postponed to the Appendix.
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Proposition 17. Under Hs with β = 1 a.s., there exist three constants a1, a2 and a3 (depending
only on g and its derivative) such that

∀λ > 0,∀u ∈ R such that |u| < a1

√
λ then |ĈZλ

(u, [0, 1]) −
√

2m2

π
e−m0u2/2| ≤ a2 + a3|u|√

λ
,

where m0 = g ∗ ǧ(0) and m2 = g′ ∗ ǧ′(0).

Let us emphasize that this implies the uniform convergence of the Fourier transform of the mean
crossing functions on any fixed interval. Moreover, taking u = 0, the previous upper bound may be
a bit refined such that the following corollary is in force.

Corollary 3. Under Hs with β = 1 a.s., the mean total variation of the process satisfies:

∀λ > 0,

∣∣∣∣∣
E(|X ′

λ(t)|)√
λ

−
√

2m2

π

∣∣∣∣∣ ≤
14m3

3πm2

√
λ

,

where m2 = g′ ∗ ǧ′(0) and m3 =
∫

R
|g′(s)|3 ds.

Then, according to Proposition 15,

CZλ
(α, [0, 1]) −→

λ→+∞
CB(α, [0, 1]) =

1

π

(
m2

m0

)1/2

e−α2/2m0 ,

in L2(R) when CZ′
λ
(0, [0, 1]) = CX′

λ
(0, [0, 1]) is uniformly bounded on λ and g′′∗ǧ′′(0) =

∫
R

g′′(s)2ds <

+∞, which implies that CB′
λ
(0, [0, 1]) < +∞. This means that the convergence holds for almost every

α ∈ R. Under additional assumptions we obtain the following uniform convergence. The proof is
inspired by Theorem 2 p.516 of [13] concerning central limit theorem for densities.

Theorem 3. Let us assume Hs with β = 1 a.s. Let us assume moreover that g is a function of class

C4 on R such that for all s ∈ [−1, 2], Φ(s) =

(
g′(s) g′′(s)
g′′(s) g(3)(s)

)
and Φ′(s) =

(
g′′(s) g(3)(s)

g(3)(s) g(4)(s)

)

are invertible.
Let γλ = #{i; τλ,i ∈ [−1, 1]} with {τλ,i}i the points of a Poisson point process with intensity λ > 0.

Then, for all α ∈ R, if Zλ = (Xλ − λ
∫

R
g)/

√
λ, we have

CZλ
(α, [0, 1]|γλ ≥ λ) −→

λ→+∞
CB(α, [0, 1]) =

1

π

(
m2

m0

)1/2

e−α2/2m0 , uniformly in α ∈ R,

where m0 = g ∗ ǧ(0) and m2 = g′ ∗ ǧ′(0).

Proof. Let λ > 7. Since λ > 7, according to Proposition 12, ĈZλ
(u, [0, 1] | γλ ≥ λ) and ĈB(u, [0, 1])

are integrable such that CZλ
(α, [0, 1]|γλ ≥ λ) and CB(α, [0, 1]) are bounded continuous functions

with, for any α ∈ R,

|CZλ
(α, [0, 1] | γλ ≥ λ) − CB(α, [0, 1])| ≤ 1

2π

∫

R

∣∣∣ĈZλ
(u, [0, 1] | γλ ≥ λ) − ĈB(u, [0, 1])

∣∣∣ du.

Let u ∈ R, then

ĈZλ
(u, [0, 1]) − ĈZλ

(u, [0, 1] | γλ ≥ λ) =
1

P(γλ ≥ λ)
E

(
eiuZλ(0)|Z ′

λ(0)|1Iγλ<λ

)
− P(γλ < λ)

P(γλ ≥ λ)
ĈZλ

(u, [0, 1])

Note that
∣∣∣ĈZλ

(u, [0, 1])
∣∣∣ ≤ E (|Z ′

λ(0)|), which is bounded according to Corollary 3, while by Cauchy-

Schwarz inequality, ∣∣∣E
(
eiuZλ(0)|Z ′

λ(0)|1Iγλ<λ

)∣∣∣ ≤ E
(
Z ′

λ(0)2
)1/2

P(γλ < λ)1/2,

with E
(
Z ′

λ(0)2
)

= Var(Z ′
λ(0)) ≤ max(1, ‖g′‖∞)‖g′‖1. Therefore, one can find c1 > 0 such that

∣∣∣ĈZλ
(u, [0, 1]) − ĈZλ

(u, [0, 1] | γλ ≥ λ)
∣∣∣ ≤ c1

P(γλ < λ)1/2

P(γλ ≥ λ)
.
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According to Markov’s inequality,

P(γλ < λ) = P

(
e− ln(2)γλ > e− ln(2)λ

)
≤ E

(
e− ln(2)(γλ−λ)

)
= exp (−(1 − ln(2))λ) .

Choosing λ large enough such that in particular P(γλ<λ)1/2

P(γλ≥λ) ≤ 1√
λ
, according to Proposition 17, one

can find c2 such that for all |u| < λ1/8,

|ĈZλ
(u, [0, 1] | γλ) − ĈB(u, [0, 1])| ≤ c2λ

−3/8.

Thus we may conclude that
∫

|u|≤λ1/8

∣∣∣ĈZλ
(u, [0, 1] | γλ ≥ λ) − ĈB(u, [0, 1])

∣∣∣ du −→
λ→+∞

0.

Now, let us be concerned with the remaining integral for |u| ≥ λ1/8. According to Proposition 12,

ĈZλ
(u, [0, 1] | γλ ≥ λ) =

e−iu
√

λ
∫

R
g

√
λ

ĈXλ

(
u√
λ

, [0, 1] | γλ ≥ λ

)
,

with ĈXλ

(
u√
λ
, [0, 1] | γλ ≥ λ

)
) =

∫ 1
0 E

(
e
i u√

λ
Xλ(t)|X ′

λ(t)| | γλ ≥ λ
)

dt and

E

(
e
i u√

λ
Xλ(t)|X ′

λ(t)| | γλ ≥ λ
)

= − 1

π

∫ +∞

0

1

v

(
∂ψt,λ

∂v

(
u√
λ

,
v√
λ

)
− ∂ψt,λ

∂v

(
u√
λ

,− v√
λ

))
dv,

where ψt,λ is the characteristic function of (Xλ(t), X ′
λ(t)), conditionally on {γλ ≥ λ}. According to

(22) and (26), one can find a positive constant c3 > 0 such that
∣∣∣E

(
e
i u√

λ
Xλ(t)|X ′

λ(t)| | γλ ≥ λ
)∣∣∣ ≤ c3λ

2 P(γλ ≥ λ − 2)

P(γλ ≥ λ)

×
∫

R

∣∣∣∣χt

(
u√
λ

,
v√
λ

)∣∣∣∣
λ−2 (

1√
λ
| ln(|v|)|1I0≤|v|≤1 + |v|−11I|v|≥1

)
dv,

where χt,λ(u, v) = 1
2

∫ 1+t
−1+t eiug(s)+ivg′(s)ds, is the characteristic function of (g(t−U), g′(t−U)), with

U a uniform random variable on [−1, 1]. Then,
∫

|u|≥λ1/8

∣∣∣ĈZλ
(u, [0, 1] | γλ ≥ λ) − ĈB(u, [0, 1])

∣∣∣ du

≤
∫

|u|≥λ1/8

∣∣∣ĈZλ
(u, [0, 1] | γλ ≥ λ)

∣∣∣ du +

∫

|u|≥λ1/8

∣∣∣ĈB(u, [0, 1])
∣∣∣ du

= I1(λ) + I2(λ).

Now, for θ ∈ [0, 2π], let us consider the random variable Vt,θ = cos(θ)g(t − U) + sin(θ)g′(t− U) such

that for any r > 0, χt(r cos(θ), r sin(θ)) = E(eirVt,θ) := ϕt,θ(r). By a change of variables in polar
coordinates, since λ > 1, we get

I1(λ) ≤ c4(λ)

∫ +∞

λ1/8

∫ 2π

0

∣∣∣∣ϕt,θ

(
r√
λ

)∣∣∣∣
λ

r| ln(r| sin(θ)|)|dθdr,

with c4(λ) = c3λ
3/2 P(γλ≥λ−2)

P(γλ≥λ) . Since detΦ(s) 6= 0 for any s ∈ [−1 + t, 1 + t], we have the following

property (see [13] p.516): there exists δ > 0 such that

|ϕt,θ(r)| ≤ e−
κ(t)
4

r2
, ∀r ∈ (0, δ],∀θ ∈ [0, 2π], and η = sup

r>δ,θ∈[0,2π]
|ϕt,θ(r)| < 1,

with κ(t) = min
θ∈[0,2π]

Var(Vt,θ) > 0. Note also that according to Proposition 5, |ϕt,θ(r)| ≤ 24
√

2
mr−1/2

for any r > m with m = min
s∈[−1,2]

‖Φ(s)−1‖−1, which may be assumed to be greater than δ. Then, for
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λ large enough such that λ1/8 ∈ (e, δ
√

λ),

I1(λ) ≤ c5(λ)




∫ δ
√

λ

λ1/8

e−
κ(t)
4

λ1/4
r ln(r)dr +

∫ m
√

λ

δ
√

λ
ηλr ln(r)dr +

(
24

√
2

m

)5 ∫ +∞

m
√

λ
ηλ−5r−3/2 ln(r)dr




with c5(λ) = c4(λ)
(∫ 2π

0 | ln(θ)|dθ
)
. This enables us to conclude that I1(λ) −→

λ→+∞
0. This conclude

the proof since clearly I2(λ) −→
λ→+∞

0. ¤

Notice that to obtain the convergence in Theorem 3 without the conditioning on {γλ ≥ λ} (which
is an event of probability going to 1 exponentially fast as λ goes to infinity), one simply needs to
have an upper-bound polynomial in λ on the second moment of the crossings number NZλ

(α, [0, 1]).

6. The Gaussian kernel

In this section we will be interested in the particular case where a Gaussian kernel is used in the
shot noise process X defined by Equation (1), and where β = 1 a.s. In the following, we will denote
by gσ the Gaussian kernel of width σ defined for all t ∈ R by

gσ(t) =
1

σ
√

2π
e−t2/2σ2

.

And we will write Xσ for the shot noise process given by

Xσ(t) =
∑

i

1

σ
√

2π
e−(t−τi)

2/2σ2
, t ∈ R,

where the {τi} are the points of a Poisson process of a fixed intensity λ > 0 on the line.

6.1. Moments, regularity and scaling properties. According to the elementary properties of
Section 2.1, Xσ(t) has moments of any order k. The first moments of Xσ(t) are

EXσ(t) = λ

∫

R

gσ(s) ds = λ and VarXσ(t) = λ

∫

R

gσ(s)2 ds =
λ

2σ
√

π
.

And the covariance is:

Cov(Xσ(t), Xσ(t′)) = λ

∫

R

gσ(t − s)gσ(t′ − s) ds =
λ

2σ
√

π
e−(t−t′)2/4σ2

.

For k ≥ 1, the k − th order cumulant of Xσ(t) is equal to

Ck = λ

∫

R

gσ(s)k ds =
λ

√
k
√

2π
k−1

σk−1
.

Moreover, applying Corollary 1, the process Xσ is almost surely smooth on R. For any n ∈ N, its

derivative of order n is the shot noise process X
(n)
σ given by

X(n)
σ (t) =

dnXσ

dtn
(t) =

∑

i

g(n)
σ (t − τi)

and it has also moments of any order k.

One of the main features of the shot noise process Xσ is that it can be seen in a “dynamic” way,
which means that we can study how it evolves as the width σ of the Gaussian kernel changes and
consider it as a random field indexed by the variable (σ, t). Then, the main tool is the heat equation
which is satisfied by the Gaussian kernel (this is the reason for which it is also called the heat kernel):

(28) ∀σ > 0, ∀t ∈ R,
∂gσ

∂σ
(t) = σ g′′σ(t) and also consequently

∂g′σ
∂σ

(t) = σ g′′′σ (t).
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Since the Gaussian kernel gσ is a very smooth function, both in σ > 0 and t ∈ R, by the same type
of proof as the ones in Propositions 1 and 2, we have that (σ, t) 7→ Xσ(t) is almost surely and mean
square continuously twice differentiable on (0, +∞) × R and that

(29)
∂Xσ

∂σ
(t) =

∑

i

∂gσ

∂σ
(t − τi) = σ X ′′

σ(t).

We will see in the following that this equation will be of great interest to study the crossings of Xσ.

Another interesting property of the shot noise process with Gaussian kernel is that we have two
scale parameters: the width σ of the Gaussian kernel, but also the intensity λ of the Poisson process.
These two parameters are linked in the sense that changing one of them amounts to change the other
one in an appropriate way. This is described more precisely in the following lemma.

Lemma 1. For the purpose of this lemma, we write the shot noise X
[λ]
σ to recall the value λ of the

intensity of the underlying Poisson point process. We then have the three following scaling properties:

(1) Changing σ and λ in a proportional way: for all α > 0,

{X [λ/α]
ασ (t); t ∈ R} fdd

= { 1

α
X [λ]

σ (
t

α
); t ∈ R}.

(2) Increasing the width of the Gaussian kernel: for all σ1 and σ2, we have

{X [λ]√
σ2
1+σ2

2

(t); t ∈ R} a.s.
= {(X [λ]

σ1
∗ gσ2)(t); t ∈ R}.

(3) Increasing the intensity of the Poisson process: for all α > 0, we have

{X [λ
√

1+α2]
σ (t); t ∈ R} fdd

= {
√

1 + α2 · (X [λ]
σ ∗ gασ)(t

√
1 + α2); t ∈ R)}.

Proof. For the first property, let {τi} be a Poisson point process of intensity λ/α on the line. Then

X [λ/α]
ασ (t) =

∑

i

1

ασ
√

2π
e−(t−τi)

2/2α2σ2
=

1

α

∑

i

gσ

(
t

α
− τi

α

)
.

Since the points {τi/α} are now the points of a Poisson process on intensity λ on the line, we obtain
the first scaling property. The second property comes simply from the fact that if gσ1 and gσ2 are
two Gaussian kernels of respective width σ1 and σ2, then their convolution is the Gaussian kernel
of width

√
σ2

1 + σ2
2. The third property is just a consequence of combining the first and second

properties. ¤

These scaling properties are illustrated on Figure 2, where we show two different ways to obtain

a sample of t → X
[1]
1 (t) on an interval [−T, T ] with T > 0. The first way (top right figure) is to

directly sample a Poisson point process of intensity λ = 1 on the line according to Section 2.2. The

second way (bottom figure) consists in considering a sample of X
[0.5]
1 on [−2T, 2T ] (thin line), first

convolving it with g√3, then multiplying it by a factor 2 (thick line), and finally scaling time by a
factor 2. Notice also that thanks to the divisibility property of the Poisson point process, we could

also obtain a sample of t 7→ X
[1]
1 (t) by adding to independent samples of t 7→ X

[0.5]
1 (t).

6.2. Crossings and their properties. In the following, we assume that the intensity λ of the
Poisson point process and the width σ > 0 are fixed. The shot noise with kernel gσ is still denoted
by Xσ.
In this section, we will be interested in the crossings and in the local extrema of both Xσ, and the
truncated shot noise process Xσ,M defined for all real M > 0 by

Xσ,M (t) =
∑

τi∈[−M,M ]

gσ(t − τi), t ∈ R,

where, as before, the {τi} are the points of a Poisson point process of intensity λ on R. Notice that
this truncated shot noise process is not stationary anymore. It can be seen as a shot noise process
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with intensity λ1I[−M,M ](s)ds on R. Moreover, we have that Xσ,M converges almost surely uniformly
to Xσ on any interval [a, b] as M goes to infinity. Indeed, we have for M > max(|a|, |b|):

∀t ∈ [a, b], |Xσ,M (t) − Xσ(t)| ≤ 1

σ
√

2π

∑

τi>M

e−(τi−b)2/2σ2
+

1

σ
√

2π

∑

τi<−M

e−(τi−a)2/2σ2
.

The right-hand term is a random variable that converges almost surely to 0 as M goes to infinity,
which proves the almost sure uniform convergence of Xσ,M to Xσ on [a, b]. Notice that the same
kind of inequality can also be obtained for the convergence of the derivatives of Xσ,M to the ones
of Xσ. The interest of the truncated process Xσ,M is twofold: i) Since the number of terms in the
sum defining Xσ,M is almost surely finite, it is easier to compute explicit bounds on its number of
crossings. ii) The truncated process is the one that is used in simulations (see also Section 2.2 on
the simulation procedure), and also in practical applications.

Since the Gaussian kernel gσ, and its derivatives are smooth functions which belong to L∞, L1

and L2, many results of the previous sections about crossings can be applied here. In particular, we
have:

• The function α 7→ CXσ(α, [a, b]) belongs to L1(R) (by Proposition 9).
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Figure 2. Illustration of the scaling properties. Top: two samples of a shot noise
process on the interval [−40, 40] obtained with a Gaussian kernel of width σ = 1 and
intensity of the Poisson point process λ = 0.5 on the left and λ = 1 on the right.
Bottom: according to the third scaling property (used here with α =

√
3, and thus√

1 + α2 = 2), a sample of X
[1]
1 on an interval [−T, T ] can be obtained from a sample

of X
[0.5]
1 on [−2T, 2T ] (thin line) by first convolving it with g√3, then multiplying it

by a factor 2 (thick line), and finally scaling time by a factor 2.
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• For any T > 0, the function α 7→ CXσ(α, [a, b]|γT ≥ 8) is continuous (by Theorem 1), with
γT = #{τi ∈ [−T, T ]}.

• If (σn)n∈N is a sequence that converges to σ > 0, then ĈXσn
(u, [a, b]) converges uniformly to

ĈXσ(u, [a, b]) as n goes to infinity (by Proposition 16). And consequently, by Proposition 14,
CXσn

(·, [a, b]) converges weakly to CXσ(·, [a, b]).

The second point comes from the fact that the Gaussian kernel satisfies the hypothesis of Theorem

1. Indeed, the derivatives of gσ are given by g
(k)
σ (s) = 1

σ
√

2π
e−s2/2σ2 · (−1)k

σk Hk(
s
σ ), where the Hk’s are

the Hermite polynomials (H1(x) = x ; H2(x) = x2 − 1; H3(x) = x3 − 3x and H4(x) = x4 − 6x2 + 3)

Thus, if we denote Φ(s) =

(
g′σ(s) g′′σ(s)

g′′σ(s) g
(3)
σ (s)

)
and Φ′(s) =

(
g′′σ(s) g

(3)
σ (s)

g
(3)
σ (s) g

(4)
σ (s)

)
, we get det Φ(s) =

(
1

σ
√

2π
e−s2/2σ2

)2
· −1

σ4 ( s2

σ2 + 1) < 0 and detΦ′(s) =
(

1
σ
√

2π
e−s2/2σ2

)2
· −1

σ6 ( s4

σ4 + 3) < 0. These two

matrices are thus invertible for all s ∈ R. The third point is a consequence of the convergence of
gσn to gσ, and of g′σn

to g′σ both in L1(R) ∩ L2(R). Note also that these statements hold true for
the truncated shot noise Xσ,M , except that the second point must be considered for T ≤ M . In
particular, for almost every α ∈ R, the expected numbers of crossings of the level α by Xσ or Xσ,M

are finite. But clearly {γM = 0} ⊂ {∀t ∈ [a, b], Xσ,M (t) = 0}, such that CXσ,M
(0, [a, b]) = +∞.

However, we will prove in the next section that, for every α ∈ R, CXσ(α, [a, b]) < +∞, by considering
the 0-crossings of the derivative X ′

σ. Actually, according to Rolle’s Theorem

NXσ(α, [a, b]) ≤ NX′
σ
(0, [a, b]) + 1.

Considering Xσ and Xσ,M , we will denote ρ(σ, [a, b]) (respectively ρM (σ, [a, b]|γM ≥ k)) the mean
number of local extrema of Xσ(t) (resp. of Xσ,M (t) conditionally on γM ≥ k for k ≥ 1) in the interval
[a, b]. Finally, when [a, b] is simply the interval [0, 1], we simply denote ρ(σ) instead of ρ(σ, [0, 1]). It
is the mean number of local extrema per unit length. The aim of Proposition 18 below will be to
show that local extrema are exactly the points where the derivative vanishes, such that

ρ(σ, [a, b]) = E(NX′
σ
(0, [a, b])}) and ρM (σ, [a, b]|γM ≥ k) = E(NX′

σ,M
(0, [a, b]|γM ≥ k)}).

In order to obtain this result, we would like to use a property similar to the one of Proposition 7.
Now, as already noticed in Section 3.2, the characteristic function of the shot noise process X ′

σ(t) is
not integrable. However, the result can be obtained by conditioning.

Proposition 18. Let a ≤ b. For M > 1, let γM = #{τi ∈ [−M, M ]}. Then,

• P(∃t ∈ [0, 1] such that X ′
σ(t) = 0 and X ′′

σ(t) = 0) = 0.

• P(∃t ∈ [0, 1] such that X ′
σ,M (t) = 0 and X ′′

σ,M (t) = 0 | γM ≥ 1) = 0.

Proof. We use Proposition 6 with the kernel function h = g′σ on the interval [−T +1, T ] for T > 0. For

this function we can compute h′(s) = 1
σ3

√
2π

(−1 + s2

σ2 )e−s2/2σ2
and h′′(s) = 1

σ4
√

2π
(3 s

σ − s3

σ3 )e−s2/2σ2
,

and thus n0 = 3 and m(σ, T ) = mins∈[−T,T+1]

√
h′(s)2 + h′′(s)2 > 0 (we don’t need to have an exact

value for it but notice that it is of the order of e−T 2/2σ2
when T is large). Finally, as in the proof of

Proposition 6, we get that there is a constant c(T, σ) which depends continuously on σ and T such
that

|E(eiuX′
σ(t)|γT ≥ 3)| ≤ 1

P(γT ≥ 3)

λ3c(T, σ)3

(1 +
√
|u|)3

,

with γT = #{τi ∈ [−T, T ]}. We can now use Proposition 7 and we get that for all T > 1:

P(∃t ∈ [0, 1] such that X ′
σ(t) = 0 and X ′′

σ(t) = 0|γT ≥ 3) = 0.

Since the events {γT ≥ 3} are an increasing sequence of events and that P(γT ≥ 3) goes to 1 as T
goes to infinity, we obtain that:

P(∃t ∈ [0, 1] such that X ′
σ(t) = 0 and X ′′

σ(t) = 0) = 0.
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For the second part of the proposition with the process X ′
σ,M , we already have, thanks to the bound

on the characteristic function of the truncated process, that

P(∃t ∈ [0, 1] such that X ′
σ,M (t) = 0 and X ′′

σ,M (t) = 0 | γM ≥ 3) = 0

Thus, we just need to see what happens when γM = 1 and γM = 2.
When γM = 1, we just have X ′

σ,M (t) = g′σ(t − τ1) where τ1 is a point uniformly distributed on

[−M, M ]. Thus, since g′σ(s) = −s
σ3

√
2π

e−s2/2σ2
and g′′σ(s) = s2−σ2

σ5
√

2π
e−s2/2σ2

, we have X ′
σ,M (t) = 0

implies t = τ1, and consequently X ′′
σ,M (t) = g′′σ(t − τ1) 6= 0.

When γM = 2, we have X ′
σ,M (t) = g′σ(t− τ1)+ g′σ(t− τ2) where τ1 and τ2 are two independent points

uniformly distributed on [−M, M ]. We can again explicitly compute that the event {X ′
σ,M (t) =

0 and X ′′
σ,M (t) = 0} is an event of probability zero. We thus have proved that

P(∃t ∈ [0, 1] such that X ′
σ,M (t) = 0 and X ′′

σ,M (t) = 0 | γM ≥ 1) = 0.

Note that Xσ,M = 0 when γM = 0 such that P(∃t ∈ [0, 1] such that X ′
σ,M (t) = 0 and X ′′

σ,M (t) =

0 | γM = 0) = 1.
¤

6.3. Bounds on the number of local extrema. To obtain bounds on the number of local extrema,
we will first start with the truncated process, which is, even if it is not stationary, easier to handle
with since it is a finite sum. Indeed, we have the following result:

Proposition 19 (Local extrema of the truncated process). Let γM = #{τi ∈ [−M, M ]}. Assume

the event γM ≥ 1 holds, then the local extrema of X
(M)
σ are all in the interval [−M, M ], and moreover

the random variable NX′
σ,M

(0, [−M, M ]) which counts the number of these local extrema is bounded

from above:
NX′

σ,M
(0, [−M, M ]) ≤ 2γM − 1 when γM ≥ 1 holds .

Consequently, for all interval [a, b] ⊂ R, we have

ρM (σ, [a, b]|γM ≥ 1) ≤ ρM (σ, [−M, M ]|γM ≥ 1) ≤ 2E(γM |γM ≥ 1) − 1,

with E(γM |γM ≥ 1) = 2λM
1−e−2λM .

Proof. If there are no points of the Poisson point process in [−M, M ], then the process Xσ,M is 0
everywhere - and talking about its local extrema is not interesting. This is why we assume that there
is at least one point of the Poisson process in [−M, M ] (which means that AM,1 holds). Then we

have for all t ∈ R, X ′
σ,M (t) = −1

σ3
√

2π

∑
τi∈[−M,M ](t − τi)e

−(t−τi)
2/2σ2

. This shows in particular that

X ′
σ,M (t) < 0 for all t > M and X ′

σ,M (t) > 0 for all t < −M . And thus all the local extrema of X ′
σ,M

are in the interval [−M, M ].
Notice that we can write for all t ∈ R,

X ′
σ,M (t) =

−1

σ3
√

2π

∑

τi∈[−M,M ]

(t − τi)e
−(t−τi)

2/2σ2
=

−e−t2/2σ2

σ3
√

2π

∑

τi∈[−M,M ]

e−τ2
i /2σ2

(t − τi)e
τit/σ2

.

Then, we use the following lemma:

Lemma 2. Let n ≥ 1 be an integer. Let P1,. . . , Pn be n real non-zero polynomials and let a1,. . . ,
an be n real numbers, then

#{t ∈ R such that
n∑

i=1

Pi(t)e
ait = 0} ≤

n∑

i=1

deg(Pi) + n − 1.

This elementary result can be proved by induction on n. For n = 1, it is obviously true. Assume
the result holds for n ≥ 1, then we prove it for n+1 in the following way. For t ∈ R,

∑n+1
i=1 Pi(t)e

ait =

0 ⇐⇒ f(t) := Pn+1(t)+
∑n

i=1 Pi(t)e
(ai−an+1)t = 0. Let k denote the degree of Pn+1. Thanks to Rolle’s

Theorem, we have that Nf (0, R) ≤ Nf ′(0, R) + 1 ≤ Nf ′′(0, R) + 2 ≤ . . . ≤ Nf (k+1)(0, R) + k + 1.
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But f (k+1) can be written as f (k+1)(t) =
∑n

i=1 Qi(t)e
(ai−an+1)t, where the Qi are polynomials of

degree deg(Qi) ≤ deg(Pi). Thus by induction Nf (k+1)(0, R) ≤ ∑n
i=1 deg(Pi) + n − 1, and then

Nf (0, R) ≤ ∑n
i=1 deg(Pi) + n − 1 + k + 1 ≤ ∑n+1

i=1 deg(Pi) + n. This proves the result for n + 1.
Back to our process X ′

σ,M , using the above lemma with polynomials of degree 1, we get NX′
σ,M

(0, [−M, M ]) ≤
2γM − 1 (still assume that γM ≥ 1). Taking the conditional expectation concludes the proof.

¤

Having bounds on the number of local extrema of the truncated process will now allow us to obtain
bounds for the shot noise process itself:

Proposition 20. The mean number of local extrema of Xσ per unit length is finite, and more precisely
we have the following bounds:

∀α ∈ R, CXσ(α, [0, 1]) ≤ ρ(σ) ≤ (3λ(2 + 2σ) + 1)eλ.

Proof. The left-hand inequality is simply a consequence of the stationarity of Xσ and of Rolle’s
Theorem which states that between any two crossings of a level α by a real-valued smooth function,
there exist a zero of its derivative.

To obtain the right-hand inequality (the bound on ρ(σ)), we will apply Proposition 10 to the
process X ′

σ for the crossings of the level 0 on the interval [0, 1]. We already know by Proposition 18
and Corollary 2 that the condition (12) is satisfied by X ′

σ. Then we write for all t ∈ [0, 1]:

X ′
σ(t) =

∑

τi∈R

g′σ(t−τi) =
1

σ
√

2π

∑

τi∈[−σ,1+σ]

−(t − τi)

σ2
e−(t−τi)

2/2σ2
+

1

σ
√

2π

∑

τi∈R\[−σ,1+σ]

−(t − τi)

σ2
e−(t−τi)

2/2σ2

Let Y1(t) (resp. Y2(t)) denote the first (resp. second) term. We then have

Y ′
2(t) =

1

σ
√

2π

∑

τi∈R\[−σ,1+σ]

(
(t − τi)

2

σ4
− 1

σ2

)
e−(t−τi)

2/2σ2
.

Since (t − τi)
2 > σ2 for all t ∈ [0, 1] and all τi ∈ R\[−σ, 1 + σ], we get Y ′

2(t) > 0 on [0, 1] and thus
NY ′

2
(0, [0, 1]) = 0 a.s. Note that when the event #{τi ∈ [−σ, 1 + σ]} = 0 holds, then X ′

σ = Y2 such

that NX′
σ
(0, [0, 1]) ≤ 1. On the other hand, let us work conditionally on #{τi ∈ [−σ, 1+σ]} ≥ 1. The

probability of this event is 1−e−λ(1+2σ). Thanks to Lemma 2, we know that NY ′
1
(0, [0, 1]) ≤ 3#{τi ∈

[−σ, 1+σ]})− 1 such that E(NY ′
1
(0, [0, 1])|#{τi ∈ [−σ, 1+σ]} ≥ 1) ≤ 3λ(1+2σ)/(1− e−λ(1+2σ))− 1.

To use Proposition 10, we need to obtain uniform bounds on the law of Y1(t) and of Y2(t) when
t ∈ [0, 1]. As in the notations of the proposition, we will denote these constants by C1 and C2. Let
us start with Y1. Let U be a random variable following the uniform distribution on [−1 − σ, 1 + σ].
For t ∈ [0, 1], we can write U as U = ηtUt + (1− ηt)Vt, where Ut is uniform on [−1− σ + t, σ + t], Vt

is uniform on [−1− σ,−1− σ + t]∪ [σ + t, σ + 1] and ηt is an independent Bernoulli random variable
with parameter 1+2σ

2+2σ . We then have g′σ(U) = ηtg
′
σ(Ut) + (1− ηt)g

′
σ(Vt). Thus the law of g′σ(U) is the

mixture of the law of g′σ(Ut) and of the one of g′σ(Vt), with respective weights 1+2σ
2+2σ and 1 − 1+2σ

2+2σ .
Consequently

∀t ∈ [0, 1],∀x ∈ R, dPg′σ(Ut)(x) ≤ 2 + 2σ

1 + 2σ
dPg′σ(U)(x).

The law of Y1(t) conditionally on #{τi ∈ [−σ, 1 + σ]} ≥ 1 can be written as

dPY1(t)(x) =
1

1 − e−λ(1+2σ)

+∞∑

k=1

e−λ(1+2σ) (λ(1 + 2σ))k

k!
(dPg′σ(Ut) ∗ . . . ∗ dPg′σ(Ut))(x).

Thus, if we write f0 = dPg′σ(U), we get

dPY1(t)(x) ≤ 1

1 − e−λ(1+2σ)

+∞∑

k=1

e−λ(1+2σ) (λ(1 + 2σ))k

k!

(
2 + 2σ

1 + 2σ

)k

(f0∗. . .∗f0)(x) = eλ 1 − e−λ(2+2σ)

1 − e−λ(1+2σ)
f̃0(x),

where f̃0 is a probability measure on R. This shows that we can take C1 = eλ 1−e−λ(2+2σ)

1−e−λ(1+2σ) .
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For Y2(t), we first notice that Y2(t) can be decomposed as the sum of two independent random
variables in the following way:

Y2(t) =
∑

τi∈(−∞,−1−σ+t]∪[1+σ+t,+∞)

g′σ(t − τi) +
∑

τi∈(−σ−1+t,−σ)∪(1+σ,1+σ+t)

g′σ(t − τi).

The first random variable in the sum above has a law that does not depend on t. For the second
random variable, using the same trick as above (i.e. decompose here a uniform random variable on
the interval (−1− σ,−σ) ∪ (σ, 1 + σ) as a mixture with weights 1/2 and 1/2 of two uniform random
variables: one on (−1− σ,−1− σ + t)∪ (t + σ, 1 + σ), and the other one on the rest), we obtain that
C2 = eλ.

And finally the bound on the expectation of the number of local extrema is

ρ(σ) ≤
(

C1
3λ(1 + 2σ)

1 − e−λ(1+2σ)
+ C2

)
(1 − e−λ(1+2σ)) + e−λ(1+2σ)

≤ eλ 2 + 2σ

1 + 2σ
(3λ(1 + 2σ)) + eλ = (3λ(2 + 2σ) + 1)eλ.

¤

We already saw that the truncated process uniformly converges almost surely on any fixed interval
[a, b] to the shot noise process. We will now show that there is also convergence for the number of
crossings, more precisely we have:

Proposition 21. For any interval [a, b], the crossings of Xσ,M on [a, b] converges almost surely to
the ones of Xσ:

∀a < b, ∀α ∈ R, NXσ,M
(α, [a, b])

a.s.−→ NXσ(α, [a, b]) when M → ∞.

Moreover, there is also convergence of the mean of the number of crossings or of local extrema,
conditionally on γT ≥ 8 for any T > 0: ∀a < b, ∀α ∈ R,

CXσ,M
(α, [a, b]|γT ≥ 8) −→

M→∞
CXσ(α, [a, b]|γT ≥ 8) and ρM (σ, [a, b]||γT ≥ 8) −→

M→∞
ρ(σ, [a, b]|γT ≥ 8).

Proof. The first part of the proposition is a consequence of the fact that Xσ,M and its derivative
X ′

σ,M both converge uniformly on [a, b] to respectively Xσ and X ′
σ almost surely. Thus, for a given

α ∈ R, if we denote t1, . . . , tk the points in [a, b] such that Xσ(t) = α, we may assume that for all
j, tj ∈ (a, b) and X ′

σ(tj) 6= 0 (this comes from the fact that Xσ(t) has a density, and that according
to Proposition 18 there are no tangencies). Let ε > 0 be small enough in such a way that: for all
j, |X ′

σ(t)| > 0 on [tj − ε, tj + ε]. Then let η > 0 be such that |X ′
σ(t)| ≥ η for t ∈ ∪[tj − ε, tj + ε],

and |Xσ(t)− α| ≥ η for t 6∈ ∪[tj − ε, tj + ε]. Then, using the uniform convergence of Xσ,M and of its
derivative X ′

σ,M , there exists M0 such that for all M ≥ M0, for all t ∈ [a, b], |Xσ,M (t)−Xσ(t)| ≤ η/2

and |X ′
σ,M (t) − X ′

σ(t)| ≤ η/2. Finally, for all M ≥ M0, we get that there exists exactly one crossing

of the level α in each interval [tj − ε, tj + ε], and |Xσ,M (t) − α| ≥ η/2 > 0 for t 6∈ ∪[tj − ε, tj + ε].
This proves that for M ≥ M0, NXσ,M

(α, [a, b]) = k = NXσ(α, [a, b]).
For the second part of the proposition, a first idea would be to use the first part and try to

apply dominated convergence to obtain the convergence of means. Unfortunately, we have no bound
independent of M on NXσ,M

. But instead we can use dominated convergence in Rice’s formula.
Indeed, the characteristic function of (Xσ,M , X ′

σ,M ) converges pointwise to the one of (Xσ, X ′
σ) as

M goes to infinity, and moreover, conditionally on {γT ≥ 8}, following the proofs of Proposition 11
and of Theorem 1, we can bound them (and their partial derivatives) by a same integrable function
independent of M . Thus, by Rice’s formula (19) and dominated convergence, we get that for any α,
CXσ,M

(α, [a, b]|γT ≥ 8) converges to CXσ(α, [a, b]|γT ≥ 8) as M goes to infinity. The same kind of
computation can be made for X ′

σ,M and X ′
σ, which provides the convergence of the mean number of

local extrema conditionally on {γT ≥ 8}.
¤

Let us now be concerned with the influence of σ and consider Xσ as a random field of variables
(σ, t) ∈ (0, +∞) × R.
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6.4. Heat equation and local extrema. The convolution of a 1d function with a Gaussian kernel
of increasing width σ (which amounts to apply the heat equation) is a very common smoothing
technique in signal processing. One of its main property is generally formulated by the wide-spread
idea that “Gaussian convolution in 1d can not create new extrema” (and it is in some sense the only
kernel that has this property - see [30]). This has been studied (together with its extension in higher
dimension) for applications in image processing by Lindeberg in [20], and also by other authors (for
instance to study mixtures of Gaussian distributions as in [8] and [7]). However, in most cases, the
correct mathematical framework for the validity of this property is not exactly stated. Thus we start
this section with a proposition giving the conditions under which one can obtain properties for the
zero-crossings of a function solution of the heat equation.

The following proposition is stated under a general form for a function h in the two variables σ and
t. But we have to keep in mind that we will want to apply this to h(σ, t) = X ′

σ(t) or h(σ, t) = X ′
σ,M (t)

to follow the local extrema of the truncated -or not- shot noise process when σ evolves.

Proposition 22. Let σ0 > 0 and (σ, t) 7→ h(σ, t) be a C2 function defined on (0, σ0] × [a, b], which
satisfies the heat equation:

∀(σ, t) ∈ (0, σ0] × R,
∂h

∂σ
(σ, t) = σ

∂2h

∂t2
(σ, t).

We assume that

(1) There are no t ∈ [a, b] such that h(σ0, t) = 0 and ∂h
∂t (σ0, t) = 0,

(2) There are no (σ, t) ∈ (0, σ0] × [a, b] such that h(σ, t) = 0 and ∇h(σ, t) = 0.

Then we have the following properties for the zero-crossings of h:

• Global curves: If t0 ∈ (a, b) is such that h(σ0, t0) = 0, there exists σ−
0 < σ0 and a maximal

continuous path σ 7→ Γt0(σ) defined on (σ−
0 , σ0] such that Γt0(σ0) = t0 and for all σ ∈ (σ−

0 , σ0]
we have h(σ, Γt0(σ)) = 0. Moreover, if Γt0(σ) stays within some compact set of R for all σ,
then σ−

0 = 0.

• Non-intersecting curves: If t̃0 6= t0 is another point in (a, b) such that h(σ0, t̃0) = 0, then for
all σ ∈ (0, σ0] we have Γt0(σ) 6= Γt̃0

(σ).

• Local description of the curves: If (σ1, t1) ∈ (0, σ0] × R is such that h(σ1, t1) = 0 then there
exist: else a C1 function η defined on a neighborhood of σ1 and such that h(σ, η(σ)) = 0 in
this neighborhood of σ1; or a C1 function ξ defined on a neighborhood of t1 and such that
h(ξ(t), t) = 0 in this neighborhood of t1, and moreover if ξ′(t1) = 0 then ξ′′(t1) < 0 (it is a
local maximum).

Proof. Let (σ0, t0) be a point such that h(σ0, t0) = 0. By Assumption (1), we have that ∂h
∂t (σ0, t0) 6= 0.

Then, thanks to the implicit function theorem, there exist two open intervals I = (σ−
0 , σ+

0 ) and
J = (t−0 , t+0 ) containing respectively σ0 and t0, and a C1 function η : I → J such that η(σ0) = t0 and
∀(σ, t) ∈ I × J , h(σ, t) = 0 ⇔ t = η(σ). Let us now denote η = Γt0 . We need to prove that we can
take σ−

0 = 0 when Γt0 remains bounded. Assume we cannot: the maximal interval on which Γt0 is
defined is (σ−

0 , σ+
0 ) with σ−

0 > 0. By assumption, there is an M0 > 0 such that for all σ ∈ (σ−
0 , σ+

0 ),
then |Γt0(σ)| ≤ M0. We can thus find a sub-sequence (σk) converging to σ−

0 as k goes to infinity
and a point t1 ∈ [−M0, M0] such that Γt0(σk) goes to t1 as k goes to infinity. By continuity of h,
we have h(σ−

0 , t1) = 0. Now, we also have ∂h
∂t (σ

−
0 , t1) = 0. Indeed, if it were 6= 0, we could again

apply the implicit function theorem in the same way at the point (σ−
0 , t1), and get a contradiction

with the maximality of I = (σ−
0 , σ+

0 ). Then, by Assumption (2), we have ∂h
∂σ (σ−

0 , t1) 6= 0. We can
again apply the implicit function theorem, and we thus obtain that there exist two open intervals
I1 = (σ−

1 , σ+
1 ) and J1 = (t−1 , t+1 ) containing respectively σ−

0 and t1, and a C1 function ξ : J1 → I1

such that ξ(t1) = σ−
0 and ∀(σ, t) ∈ I1 × J1, h(σ, t) = 0 ⇔ σ = ξ(t). Moreover we can compute the

derivatives of ξ at t1. We start from the implicit definition of ξ: h(ξ(t), t) = 0. By differentiation,
we get ξ′(t)∂h

∂σ (ξ(t), t) + ∂h
∂t (ξ(t), t) = 0. Taking the value at t = t1, we get ξ′(t1) = 0. We can again

differentiate, and find ξ′′(t)∂h
∂σ (ξ(t), t)+ξ′(t)2 ∂2h

∂σ2 (ξ(t), t)+2ξ′(t) ∂2h
∂σ∂t(ξ(t), t)+

∂2h
∂t2

(ξ(t), t) = 0. Taking
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again the value at t = t1, we get

ξ′′(t1) = − 1

ξ(t1)
= − 1

σ−
0

< 0.

Thus it shows that ξ has a strict local maximum at t1: there exist a neighborhood U1 of σ−
0 = ξ(t1)

and a neighborhood V1 of t1 such that for all points in U1 × V1, then h(σ, t) = 0 implies σ = ξ(t) ≤
ξ(t1) = σ−

0 , which is in contradiction with the definition of Γt0 on (σ−
0 , σ+

0 ).

Now assume that t0 and t̃0 are two points such that h(σ0, t0) = h(σ0, t̃0) = 0 and such that there
exists σ1 < σ0 such that Γt0(σ1) = Γt̃0

(σ1) = t1. Then, if ∂h
∂t (σ1, t1) 6= 0, the implicit function

theorem implies that Γt0(σ) = Γt̃0
(σ) for all σ ∈ [σ1, σ0] and in particular t0 = t̃0. But now, if

∂h
∂t (σ1, t1) = 0, then as above this implies that ∂h

∂σ (σ1, t1) 6= 0 and using again the implicit function
theorem, this would be in contradiction with the fact Γt0(σ) is defined for σ ∈ [σ1, σ0]. ¤

The properties stated in Proposition 22 are illustrated on Figure 3, where the different types of
curves formed by the set of points {(t, σ) ∈ R2; h(σ, t) = 0} are shown.

σ

t

σ0

0

Figure 3. Curves of h(σ, t) = 0 in the (t, σ) domain: here t is along the horizontal
axis and σ is along the vertical one. According to Proposition 22, the zeros-crossings
of h are a set of non-intersecting curves, that are locally else functions of σ or functions
of t with no local minima.

Let us consider the Gaussian shot noise processes X ′
σ and X ′

σ,M . Both of them satisfies almost

surely the heat equation. Then, we have to check the assumptions (1) and (2) of Proposition 22.
Assumption (1) is given by Proposition 18. Assumption (2) is given by the following proposition,
where ∇X ′

σ(t) := ∇h(σ, t) for h(σ, t) = X ′
σ(t) and similarly for ∇X ′

σ,M (t).

Proposition 23. Let λ > 0, σ0 > 0 and a ≤ b. Then,

P(∃(σ, t) ∈ (0, σ0) × [a, b] such that X ′
σ(t) = 0 and ∇X ′

σ(t) = 0) = 0.

For M > 1, let γM = #{τi ∈ [−M, M ]}. Then we have

P(∃(σ, t) ∈ (0, σ0) × [a, b] such that X ′
σ,M (t) = 0 and ∇X ′

σ,M (t) = 0 | γM ≥ 3) = 0.

Proof. It is sufficient to remark that when Y (σ, t) satisfies the heat equation

{Y (σ, t) = 0 and ∇Y (σ, t) = 0} =
{
Y (σ, t) = 0 and Y ′(σ, t) = 0 and Y ′′(σ, t) = 0

}
.

Then a slight modification of the proof of Proposition 7 allows us to conclude that P(∃(σ, t) ∈
(0, σ0) × [a, b] such that Y (σ, t) = 0 and ∇Y (σ, t) = 0) = 0, under the same assumption of uniform
integrability for the charcateristic function of Y (σ, t). Conditioning by γM ≥ 3 allows us to check the
assumption for X ′

σ,M , following Proposition 6. Then we let M → +∞ to get the first statement. ¤

Let us now see how this applies for the truncated shot noise X ′
σ,M before considering X ′

σ.

Proposition 24. For all M > 0, the function σ 7→ ρM (σ, R|γM ≥ 3) = ρM (σ, [−M, M ]|γM ≥ 3) is
decreasing. Moreover, it has the limit 2E(γM |γM ≥ 3) − 1 as σ goes to 0.
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Proof. Let M > 0 and assume that γM ≥ 3 holds: there is at least three points of the Poisson point
process of intensity λ > 0 lying in the interval [−M, M ]. We have:

∀t ∈ R,∀σ > 0, X ′
σ,M (t) =

1

σ
√

2π

∑

τi∈[−M,M ]

−(t − τi)

σ2
e−(t−τi)

2/2σ2
.

This shows that if we set Y (σ, t) = X ′
σ,M (t), then it cannot vanish when t is outside [−M, M ],

and moreover all the conditions of Proposition 22 are satisfied. Thus, if we have σ1 < σ0, we can
follow the zeros of Y (σ0, ·) in an injective way from σ0 to σ1. Thus #{t ∈ [−M, M ] s. t. Y (σ0, t) =
0} ≤ #{t ∈ [−M, M ] s. t. Y (σ1, t) = 0}. Taking the expected value on both sides knowing that
AM,3 holds proves the first part of the Proposition. For the second part: we first notice that for

σ < 1
2 min{|τi − τj |; τi, τj ∈ [−M, M ] and i 6= j}, then X ′′

σ,M (t) > 0 for t ∈ [−M, M ]\ ∪i [τi − σ, τi +

σ]. Moreover for σ small enough, X ′
σ,M (t) ≥ 1 on each [τi − σ, τi − σ/2], X ′

σ,M (t) ≤ −1 on each

[τi + σ/2, τi + σ] and X ′′
σ,M (t) < 0 on each [τi − σ/2, τi + σ/2]. Which shows that NX′

σ,M
(0, [−M, M ])

goes to 2γM − 1 as σ goes to 0. By Proposition 19, we also have that this limit is an upper-bound
for NX′

σ,M
(0, [−M, M ]). Thus by dominated convergence, this implies that ρM (σ, [−M, M ]|γM ≥ 3)

goes to 2E(γM |γM ≥ 3) − 1 as σ goes to 0. ¤

We now give the main result for the number of local extrema of Xσ as a function of σ.

Theorem 4. Assume that for all 0 < σ1 < σ0

E(#{σ ∈ [σ1, σ0] such that X ′
σ(0) = 0}) < +∞.

Then, the function σ 7→ ρ(σ), which gives the mean number of local extrema of Xσ per unit length,
is decreasing. Moreover it has the limit 2λ as σ goes to 0.

Proof. Let λ > 0 and 0 < σ1 < σ0 be fixed. By assumption E(#{σ ∈ [σ1, σ0] such that X ′
σ(0) =

0}) < +∞. Notice that by stationarity this expected value is independent of the value of t (taken as
0 above). Let T > 0 and let us consider the zeros of Y (σ, t) = X ′

σ(t) for (σ, t) ∈ [σ1, σ0] × [0, T ]. Let
t0 ∈ [0, T ] be such that Y (σ0, t0) = 0. By Proposition 22, there is a continuous path σ 7→ Γt0(σ) that
will: else “cross the left or right boundary of the domain”, i.e. be such that there exists σ ∈ such
that Γt0(σ) = 0 or T , or will be defined until σ1 and such that Γt0(σ1) ∈ [0, T ]. We thus have:

ρ(σ0, [0, T ]) ≤ 2E(#{σ ∈ [σ1, σ0] such that X ′
σ(0) = 0) + ρ(σ1, [0, T ]).

Dividing both sides by T and letting T go to infinity then shows that ρ(σ0) ≤ ρ(σ1).
For the second part of the Proposition, instead of looking at the local extrema of Xσ in [0, 1],

we will only look at the local maxima (which are the down-crossings of 0 by the derivative) in
[0, 1]. Let DX′

σ
(0, [0, 1]) be the random variable which counts these local maxima, and let ρ−(σ) =

E(DX′
σ
(0, [0, 1])). By stationarity of Xσ(t) and because between any two local maxima, there is a

local minima, we have that ρ−(σ) = 1
2ρ(σ). Now, we introduce “barriers” in the following way: let

Eσ0 be the event “there are no points of the Poisson point process in the intervals [−2σ0, 2σ0] and
[1−2σ0, 1+2σ0]”. If we assume that Eσ0 holds, then X ′′

σ(t) > 0 for all t in [−σ0, σ0]∪[1−σ0, 1+σ0] and
all σ ≤ σ0, and therefore there are no local maxima of Xσ in these intervals. Then by Proposition
22, we can follow all the local maxima of Xσ in [0, 1] from σ = σ0 down to σ = 0. Thus σ 7→
DX′

σ
(0, [0, 1])1IEσ0

is decreasing function of σ for σ ≤ σ0. Moreover, by the same reasoning as in

the proof of the previous Proposition (in the case of the truncated process), we also have that
DX′

σ
(0, [0, 1]) goes to #{τi ∈ [0, 1]} as σ goes to 0. Thus by monotone convergence, it implies that

ρ−(σ|Eσ0) goes to E(#{τi ∈ [0, 1]}|Eσ0). Since the sequence of events Eσ0 is an increasing sequence
of events as σ0 decreases to 0, we finally get:

lim
σ→0

ρ−(σ) = lim
σ0→0

E(#{τi ∈ [0, 1]}|Eσ0) = λ.

¤

The properties of the local extrema of Xσ are illustrated on Figures 4 and 5.
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Figure 4. Top: three processes t 7→ Xσ(t) obtained from the same Poisson point
process of intensity λ = 2 and for a Gaussian kernel of respective width σ = 0.1; 0.3
and 0.8. Bottom: evolution of the local extrema of t 7→ Xσ(t) as σ goes from 0 to 1.
The three values σ = 0.1; 0.3 and 0.8 are plotted as dotted line. They indicate the
local extrema of the three processes above.
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Figure 5. Empirical mean number of local extrema per unit length of Xσ as a func-
tion of σ (here λ = 1 and we have taken the mean value from 10 samples on the
interval [−100, 100]).

6.5. What about the intensity λ ? For the purpose of this section, we introduce again the intensity
λ of the underlying Poisson point process in the notations. In particular we will denote the mean

number of local extrema of X
[λ]
σ per unit length by ρ(σ, λ) (instead of simply ρ(σ) as in the previous
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section).

Thanks to the scaling relations of X
[λ]
σ , we also obtain scaling relations for ρ(σ, λ):

Proposition 25 (Scaling relations for ρ(σ, λ)). The mean number ρ(σ, λ) of local extrema of X
[λ]
σ

per unit length satisfies the following scaling relation:

∀α > 0, αρ(ασ, λ) = ρ(σ, αλ).

Proof. We have

X
′[λ]
ασ (t) =

1

ασ
√

2π

∑

τi

−(t − τi)

α2σ2
e−(t−τi)

2/2α2σ2
=

1

α2σ
√

2π

∑

τi

−(t/α − τi/α)

σ2
e−(t/α−τiα)2/2σ2

,

where the {τi} are the points of a Poisson point process of intensity λ on R. Then, since the {τi/α}
are now the points of a Poisson point process of intensity αλ on R, we have that the expected

number of points t ∈ [0, α] such that X
′[λ]
ασ (t) = 0 - which by definition equals αρ(ασ, λ), also equals

the expected number of points t ∈ [0, 1] such that X
′[αλ]
σ (t) = 0 (which is ρ(σ, αλ)). ¤

In particular, using the fact that ρ(σ, λ) = λρ(σλ, 1) the upper bound of Proposition 20 gives a
polynomial bound in λ:

∀α ∈ R, ρ(σ, λ) ≤ λ(3(2 + 2σλ) + 1)e.

Notice that, under the assumption that E(#{σ ∈ [σ1, σ0] such that X ′
σ(0) = 0}) < +∞ for all

0 < σ1 < σ0, the fact that the function σ 7→ ρ(σ, λ) is a decreasing function with limit 2λ when
σ → 0 (Theorem 4) can be translated into the following properties on λ 7→ ρ(σ, λ) thanks to the
above scaling relation:

∀α ≥ 1, ρ(σ, αλ) ≤ αρ(σ, λ); ρ(σ, λ) ≤ 2λ and
ρ(σ, λ)

2λ
−→
λ→0

1.

On the other hand, using Theorem 3, if the second moment of N
X′[λ]

σ
(0) is bounded by a polynomial

in λ, then we will get

ρ(σ, λ) −→
λ→+∞

1

σπ

√
3

2
.

And this also will imply that ρ(σ, λ) is equivalent to 1
σπ

√
3
2 as σ goes to +∞.

All these properties are empirically checked and illustrated on Figures 5 and 6.
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Figure 6. Empirical mean number of local extrema per unit length of X
[λ]
σ as a

function of λ (here σ = 1 and we have taken the mean value from 50 samples on the

interval [−100, 100]). The horizontal dashed line is the constant 1
π

√
3
2 and the dotted

line is the map λ 7→ 2λ.
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7. Appendix

Proof of Proposition 17. For k ≥ 0 and l ≥ 0 integers, let us denote mkl =
∫
|g(s)|k|g′(s)|l ds. We

will also simply denote m0 = m20 =
∫

g(s)2 ds and m2 = m02 =
∫

g′(s)2 ds.
Let ψλ(u, v) denote the joint characteristic function of (Zλ(t), Z ′

λ(t)), then

ψλ(u, v) = E(e
i u√

λ
Xλ+i v√

λ
X′

λ)e−iu
√

λ
∫

g = exp

(
λ

∫

R

(e
i u√

λ
g(s)+i v√

λ
g′(s) − 1 − i

u√
λ

g(s)) ds

)
.

We now use the fact
∫

g′ = 0, and we thus have ψλ(u, v) = exp(Hλ(u, v)) where

Hλ(u, v) = λ

∫

R

(
e
i u√

λ
g(s)+i v√

λ
g′(s) − 1 − i

u√
λ

g(s) − i
v√
λ

g′(s)

)
ds.

We need to notice that

∀(u, v) ∈ R2, |ψλ(u, v)| = | exp(Hλ(u, v))| = |E(eiuZλ+ivZ′
λ)| ≤ 1.

In the following, we will also need these simple bounds:

(30) ∀x ∈ R, |eix − 1 − ix +
x2

2
| ≤ |x|3

3!
and ∀z ∈ C, |ez − 1| ≤ |z|e|z|.

We first estimate Hλ(u, 0). We have

Hλ(u, 0) = λ

∫
(e

i u√
λ

g(s) − 1 − i
u√
λ

g(s)) ds = −1

2
u2m0 + Kλ(u),

where Kλ(u) = λ
∫

(e
i u√

λ
g(s) − 1 − i u√

λ
g(s) + 1

2
u2

λ g2(s)) ds. Then, thanks to the simple bounds (30),

we get

|Kλ(u)| ≤ |u|3m30

6
√

λ
and consequently |eHλ(u,0) − e−

1
2
u2m0 | ≤ |u|3m30

6
√

λ
e−

1
2
u2m0e

|u|3m30
6
√

λ .

We then estimate Hλ(u, v) − Hλ(u, 0):

Hλ(u, v) − Hλ(u, 0) = λ

∫
(e

i u√
λ

g(s)+i v√
λ

g′(s) − e
i u√

λ
g(s)

) ds

= λ

∫
e
i u√

λ
g(s)

(e
i v√

λ
g′(s) − 1 − i

v√
λ

g′(s)) ds

= −v2

2

∫
g′(s)2e

i u√
λ

g(s)
ds + Fλ(u, v),

where Fλ(u, v) = λ
∫

e
i u√

λ
g(s)

(e
i v√

λ
g′(s) − 1− i v√

λ
g′(s)+ v2

2λg′(s)2) ds. And again, thanks to the simple

bounds (30), we get: |Fλ(u, v)| ≤ |v|3m03

6
√

λ
. This implies that

∣∣∣∣eHλ(u,v)−Hλ(u,0) − e−
v2

2

∫
g′(s)2e

i u√
λ

g(s)
ds

∣∣∣∣ ≤
∣∣∣∣e−

v2

2

∫
g′(s)2e

i u√
λ

g(s)
ds

∣∣∣∣ ·
∣∣∣eFλ(u,v) − 1

∣∣∣

≤ |v|3m03

6
√

λ
e
− v2

2

∫
g′(s)2cos( u√

λ
g(s)) ds+

|v|3m03
6
√

λ .

Let us now compute ĈZλ
(u, [0, 1]). By Proposition 12, we know that

−πĈZλ
(u, [0, 1]) =

∫ +∞

0

1

v2
(ψλ(u, v) + ψλ(u,−v) − 2ψλ(u, 0)) dv.

Let V > 0 be a real number. We split the integral above in two parts, and write it as the sum of
the integral between 0 and V , and of the integral between V and +∞. Since for all (u, v), we have
|ψλ(u, v)| ≤ 1, we get

∣∣∣∣
∫ +∞

V

1

v2
(ψλ(u, v) + ψλ(u,−v) − 2ψλ(u, 0)) dv

∣∣∣∣ ≤ 4

∫ +∞

V

1

v2
dv =

4

V
.
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On the other hand, let IV (u) denote the integral between 0 and V . We have

IV (u) =

∫ V

0

1

v2
eHλ(u,0)

(
eHλ(u,v)−Hλ(u,0) + eHλ(u,−v)−Hλ(u,0) − 2

)
dv.

We then decompose this into:

IV (u) =

∫ V

0

1

v2
eHλ(u,0)

(
eHλ(u,v)−Hλ(u,0) + eHλ(u,−v)−Hλ(u,0) − 2e−

v2

2

∫
g′(s)2e

i u√
λ

g(s)
ds

)
dv

+

∫ V

0

1

v2
eHλ(u,0)

(
2e−

v2

2

∫
g′(s)2e

i u√
λ

g(s)
ds − 2e−

v2

2
m2

)
dv

+

∫ V

0

1

v2
(eHλ(u,0) − e−

1
2
u2m0 + e−

1
2
u2m0)

(
2e−

v2

2
m2 − 2

)
dv.

Using the bounds we computed above, we get that
∣∣∣∣∣∣
IV (u) − 2e−

1
2
u2m0

∫ V

0

e−
v2

2
m2 − 1

v2
dv

∣∣∣∣∣∣
≤ 2

∫ V

0

vm03

6
√

λ
e
− v2

2

∫
g′(s)2 cos( u√

λ
g(s)) ds+

|v|3m03
6
√

λ dv

+2

∫ V

0

1

v2

∣∣∣∣e−
v2

2

∫
g′(s)2e

i u√
λ

g(s)
ds − 2e−

v2

2
m2

∣∣∣∣ dv

+2
∣∣∣eHλ(u,0) − e−

1
2
u2m0

∣∣∣
∫ V

0

1 − e−
v2

2
m2

v2
dv.

Let J
(n)
V (u), for n = 1, 2, 3 respectively denote the three terms above. To give an upper bound for

J
(1)
V (u), we will need the following basic inequality: ∀x ∈ R, cos(x) ≥ 1 − x2

2 . This gives us the
bound:

J
(1)
V (u) ≤ 2

∫ V

0

vm03

6
√

λ
e
− v2m2

2
+ v2

2
u2m22

2λ
+

|v|3m03
6
√

λ dv.

For the second term, we use
∣∣∣∣e−

v2

2

∫
g′(s)2e

i u√
λ

g(s)
ds − 2e−

v2

2
m2

∣∣∣∣ ≤ e−
v2

2
m2

∣∣∣∣e−
v2

2

∫
g′(s)2(e

i u√
λ

g(s)
−1) ds − 1

∣∣∣∣

≤ e−
v2

2
m2

∣∣∣∣
v2

2

∫
g′(s)2(e

i u√
λ

g(s) − 1) ds

∣∣∣∣ e

∣∣∣∣ v2

2

∫
g′(s)2(e

i u√
λ

g(s)
−1) ds

∣∣∣∣
.

But
∣∣∣
∫

g′(s)2(e
i u√

λ
g(s) − 1) ds

∣∣∣ ≤
∫

g′(s)2 |u|√
λ
g(s) ds = |u|√

λ
m12 and thus

J
(2)
V (u) ≤ |u|√

λ
m12

∫ V

0
e
− v2

2
m2+ v2

2
|u|√

λ
m12 dv.

For the third term, we use an integration by parts to obtain that

∫ V

0

1 − e−
v2

2
m2

v2
dv =

e−
V 2

2
m2 − 1

V
+

∫ V

0
m2e

− v2

2
m2 dv ≤ 1

2

√
2πm2,

which gives

J
(3)
V (u) ≤

√
2πm2

|u|3m30

6
√

λ
e
− 1

2
u2m0+

|u|3m30
6
√

λ .

Moreover we also have∣∣∣∣∣∣
2

∫ V

0

1 − e−
v2

2
m2

v2
dv −

√
2πm2

∣∣∣∣∣∣
≤ 1 − e−

V 2

2
m2

V
+

∫ +∞

V
m2e

− v2

2
m2 dv ≤ 2

V
.
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The partial conclusion of all these estimates is that

∣∣∣πĈZλ
(u, [0, 1]) −

√
2πm2e

−m0u2/2
∣∣∣ ≤ 4

V
+

2e−m0u2/2

V
+ J

(1)
V (u) + J

(2)
V (u) + J

(3)
V (u).

We now have to choose V in an appropriate way. The choice of V will be given by the bound on

J
(1)
V (u). Assume in the following that u satisfies the condition (U1) given by: u2m22

2λ ≤ m2
4 , and let

us set

V =
3
√

λm2

4m03
.

Then for all v ∈ [0, V ], −v2m2
2 + v2

2
u2m22

2λ + |v|3m03

6
√

λ
≤ −v2m2

4 , and thus

J
(1)
V (u) ≤ m03

3
√

λ

∫ V

0
ve−

v2m2
4 dv ≤ 2m03

3m2

√
λ

.

For the term J
(2)
V (u), we notice that if u satisfies the condition (U2) given by: |u|√

λ
m12 ≤ m2

2 , then

for all V > 0, we can bound J
(2)
V (u) by:

J
(2)
V (u) ≤ |u|√

λ
m12

∫ V

0
e−

v2

4
m2 dv. ≤ |u|√

λ
m12

√
π

m2
.

Finally, for the third term, we have that if u satisfies the condition (U3) given by: |u|m30

3
√

λ
≤ 1

2m0,

then J
(3)
V (u) can be bounded, independently of V , by

J
(3)
V (u) ≤

√
2πm2

|u|3m30

6
√

λ
e−

1
4
u2m0 ≤

√
2πm2

2|u|m30

3m0

√
λ

e−1,

because of the fact that for all x ≥ 0, then xe−x ≤ e−1.

The final conclusion of all these computations is that if we set a1 = min(
√

m2
2m22

, m2
2m12

, 3m0
2m30

), then

for all u and λ > 0 we have

|u| ≤ a1

√
λ =⇒ |πĈZλ

(u, [0, 1]) −
√

2πm2e
−m0u2/2| ≤ a2√

λ
+

a3|u|√
λ

,

where a2 = 24m30+2m03
3m2

and a3 = m12

√
π

m2
+ 2

√
2πm2m30e−1

3m0
. ¤
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