
HAL Id: hal-00484099
https://hal.science/hal-00484099v1

Submitted on 17 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhanced Connectors to Support Hierarchical
Dependencies in Software Architecture

Abdelkrim Amirat, Mourad Oussalah

To cite this version:
Abdelkrim Amirat, Mourad Oussalah. Enhanced Connectors to Support Hierarchical Dependencies
in Software Architecture. 8th international conference on New Technologies in Distributed Systems,
(NOTERE 2008), Jun 2008, Lyon, France. pp.252-261. �hal-00484099�

https://hal.science/hal-00484099v1
https://hal.archives-ouvertes.fr

Enhanced Connectors to Support Hierarchical
Dependencies in Software Architecture

Abdelkrim Amirat
LINA CNRS UMR 6241, Université de Nantes

2, Rue de la Houssinière, BP 92208,
44322 Nantes Cedex 03, France

Phone: +33.2.51.12.59.68

abdelkrim.amirat@univ-nantes.fr

Mourad Oussalah
LINA CNRS UMR 6241, Université de Nantes

2, Rue de la Houssinière, BP 92208,
44322 Nantes Cedex 03, France

Phone: +33.2.51.12.58.47

mourad.oussalah@univ-nantes.fr

ABSTRACT

The more important level of abstraction in the description of large
and complex software is its architecture description. So, at this
abstraction level we can describe the principal system components
and their pathways of interaction. Software architecture is
considered to be the driving aspect of the development process; it
allows specifying which aspects and models in each level needed
according to the software architecture design. Early Architecture
Description Languages (ADLs), nearly exclusive, focus on
structural abstraction hierarchy ignoring behavioural description
hierarchy, conceptual hierarchy, and metamodeling hierarchy. In
this paper we show that all those hierarchies constitute views to
appropriately “reason about” software architectures described
using our C3 metamodel which is a minimal and complete ADL.
We provide a set of mechanisms to deal with different levels of
each hierarchy; also we introduce a new enhanced definition for
connector concept deployed in C3 architectures.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Data abstraction, languages
description, interconnection, and definition.

General Terms
Design, Reliability, Languages.

Keywords
Metamodeling, Abstraction, Hierarchy, Connector, Component,
Architecture.

1. INTRODUCTION
Nowadays, there is a completely new approach to building more
reliable software systems which consist to decompose large and
complex systems into smaller and well-defined units – software
components.

Typically, components are considered to be entities with well-
defined provided (server) and required (client) interfaces, and in
some cases also with formally specified behaviour. A component-
based application is a collection of individual components, which
are interconnected via well-defined connectors between their
interfaces.

Component that have no externally observable internal structure,
while having real implementation in certain programming
language, are called primitive components. Components
containing nested subcomponents, i.e. components with
observable internal structure, are called configurations (composite

components). The structure of a configuration, commonly referred
to as configuration architecture, is typically defined in an
Architecture Description Language (ADL) [1].

Generally, software architectures are composed of components,
connectors and configurations, constraints on the arrangement and
behaviour of components and connectors. The architecture of a
software system is a model, or abstraction of that system.
Software architecture researchers need extensible, flexible
architecture descriptions languages (ADLs) and equally clear and
flexible mechanisms to manipulate these core elements at the
architecture level.

There is not today, nor has there ever been, a clear consensus on a
definition of software architecture. Recently Medvidovic [7] gives
the following definition for software architecture “A software

system’s architecture is the set of design decisions about the

system”. So, if those decisions are made incorrectly, they may
cause your project to be cancelled. However, these design
decisions encompass every aspect of the system under
development, including:

• Design decisions related to system structure – for example,
“there should be exactly three components in the system, the
‘data store’, the ‘business logic’ and the ‘user interface
component’;”

• Design decisions related to behaviour also referred to as
functional – for example, “data processing, storage, and
visualisation will be handled separately;”

• Design decisions related to the system’s non functional
properties – for example, “the system dependability will be
ensured by replicated processing modules;”

• Also, we can elicit other design decisions related to the
development process or the business position (product-line).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NOTERE 2008, June 23-27, 2008, Lyon, France.
Copyright 2008 ACM 978-1-59593-937-1/08/0003…$5.00.

The “first-generation” ADLs all shared certain traits. They all
modeled the structural and, with the exception of Acme [4],
functional characteristics of software systems. They invariably
took a single, limited perspective on software architecture. In this
paper we introduce further perspectives which are complementary
to the structural one.

The majority of ADLs proposes, like reasoning model, only sub-
typing (inheritance) as a mechanism for specialization (e.g. Acme
[4], C2 [16]). Otherwise, for the rest of ADLs, they propose their
own ad hoc mechanisms based on algorithms and methods
designed specially for these ADLs.

Based on a broad survey of architecture description notations and
approaches, we identified that ADLs capture aspects of software
design centred around a system’s Component, connectors, and
configurations. The core elements of our model are basically
defined around these three elements. So, we derive the name of
our model C3 from Component, Connector, and Configuration.
Taking into consideration that our C3 have no relationship with
C2 defined by Taylor [16] nor with C3 which is an extension of
C2 defined by Pérez-Martínez [12]. The rest of the paper is
organized as follows. In section 2 presents our research
motivations. Section 3 describes the C3 metamodel. In section 4
we use client-server architecture as an example to apply the
presented approach. The last section presents our conclusion and
the different perspectives of our work.

2. MOTIVATION
Our motivation in this work is to develop a generic model for the
description of software architectures which must be minimal and
complete. It is minimal because we are only interested by the core
concepts in each ADL. And complete because with this minimum
of concepts the architect will be able to describe any required
structures he need to realize using those concepts and a set of
predefined mechanisms.

However, describing only the architecture structure is not
sufficient to provide correct and reliable software systems. In this
paper we are even more going to focus on representation
architecture model and to reason about its elements following four
different types of hierarchies. Each of these hierarchies provides a
particular view on the architecture. In the following sections we
present more details about these hierarchies.

We expect from our approach to provide more explicit and better
clarified software architecture. Mainly the approach is developed
to:

� Make explicit the possible types of hierarchies being used as
support of reasoning on the architecture structures, with the
different possible levels in each hierarchy.

� Show semantics conveyed by every type of hierarchy by
providing the necessary mechanisms used to connect elements
in the same level of hierarchy and the mechanisms used to
connect elements of every level with the elements of the upper
level and the level below.

� Allows introducing various mechanisms of reasoning within the
same architecture according to the requirements of the system
in a specific application domain.

� Establish the position of existing mechanisms developed for
reasoning with regard to our referential.

3. The Meta Model of C3
In order to have a complete C3 model, we have defined mainly
two complementary models to describe and reason about system’s
architecture. We use representation model to describe
architectures based on C3 elements and we use reasoning model
to understand and analyse the representation model.

3.1 Representation Model
The core elements of the C3 representation model are
components, connectors, and configurations, each of these
elements have an interface to interact with its environment like
depicted in Figure 1.

Configuration

+name: String

Component

+name: String

1

0..*

Connector

+name: String

1

1..*

Interface

RolePort Service

ProvidePortRequirePort ProvideRoleRequireRole ProvideServiceRequireService

Figure 1. Basic elements of C3 Meta model

3.1.1 Component
A component is a unit of computation or data storage. Therefore,
components are loci of computation and state. A component may
be as small as a single procedure or as entire application. It may
require its own data or execution space, or it may share them with
other components [8].

In order to be able to adequately reason about a component and
the architecture that includes it, C3 should also provides facilities
for specifying components needs, i.e, services required of other
components in the architecture. An interface thus defines
computational commitments a component can make and
constraints on its usage.

Each interaction point of a component is called a port. Ports are
named and typed. We distinguish between required and provided
ports. Each port can be used by one or more services.

Component semantics are modeled to enable evolution, analysis,
enforcement of constraints, and consistent mappings of
architectures from one level of abstraction to another. The
structure of component is the specification of its required and
provided ports. The behaviour of a component is the specification
of its required and provided services exchanged with its
environment.

3.1.2 Connector
Connectors are architectural building blocks used to model
interactions among components and rules that govern those
interactions. In order to enable proper connectivity of components
and their communication, a connector should export as its
interface those services it exports [8].

C3 refers to connector interaction points as roles. Explicit
connection (attachments) of component ports and connector roles
is required in an architecture configuration. Roles are named and
typed and are in many ways similar to component ports.
Connector services are described inside the glue code [15].
Therefore, a connector’s interface is a set of interaction points
between it and the components/configurations attached to it. It
enables reasoning about well-formedness of an architectural
configuration.

Our contribution at this level consists in enhancing the structure of
connectors by encapsulating the attachment links inside the
definition of connector types (Figure 2.a). So, the application
builder will have to spend no effort in connecting connectors with
its compatible components and configuration. Consequently, the
task of the developer consist only in choosing the suitable type of
connector which is compatible with the interface types of
components and/or configurations which are expected to be
connected [2].

Figure 2.a. The new structure of a connector

We have given the following signature definition for connectors
(Figure 2.b).

Figure 2.b. Signature of C3 connector

So, by encapsulating attachments inside connectors and having
well defined connector interfaces with previously known elements

to be connected by each connector, consequently components and
configurations assembled in an easy and coherent way in the form
of Lego Blocks.

3.1.3 Configuration
Architecture configurations or topologies are connected graphs of
components and connectors that describe architectural structure.
This information is needed to determine whether appropriate
components are connected, their interfaces mach, connectors
enables proper communication, and their combined semantics
result in desired behaviour.

The goal of configuration is to abstract away the details of
individual components and connectors and to describe how they
are fastened to each other. They depict the system at a high level
that can be potentially be understood by people with various
levels of technical expertise and familiarity with the problem at
hand.

For more clarity, in C3 model each component or connector is
perceived and handled from the outside as primitive element. But
their inside can be real primitive elements, or composite with a
configuration which encapsulates all the internal elements of this
composite. These Configurations are first-class entities. A
configuration may have ports similar to component ports, and
each port is perceived like a bridge (binding) between the internal
environment of the configuration and the external one. In C3 this
binding is realised using connectors. Generally configurations can
be hierarchical where the internal components and connectors can
represent sub-configurations with their proper internal
architectures and so on as depicted in Figure 1.

3.1.4 Interface
Every architectural element has an interface. Each interface is
associated with a type which corresponds to a set of operations
which it defines. Via this interface the element publishes to the
outside environment it needs in term of required services as well
as the services which it provides. However, elements are selected
and connected from their published interface. So, the interface is
thought as a contract with the environment that the element
should honour.

To establish connections between elements we use
required/provided ports for component and configuration elements
and required/provided roles for connector elements and we assign
the services to each port and role with the necessary set of
constraints to be respected during the connections. From
conceptual view ports, roles and services are concrete classes
inherited from the interface abstract class as shown in Figure 1.

Also, at modelling level we use cardinality to describe the
multiplicity of each relation (connection) between architectural
elements. This cardinality express the number of ports associated
with components and configurations and the number of roles
associated with connectors. Each port or role is considered as a
channel to carry in/out required/provided services exchanged with
elements of the environment.

In our approach, components and connectors are assembled in an
easy and coherent way in the form of an architectural puzzle
(Lego Blocks) without any effort to describe links among
components and connectors or among configurations and
connectors because attachments are predefined in each type of
connector, so can only connect two components by their

Glue
Component

B

Component

A

P1

P2
R2

R1 P4

P5
R4

R3

Attachment
link

New structure
of a connector

Old structure
of a connector

Legend: Pi : Port i ; Rj : Role j

Connector_TypeName (List of element interfaces)

{
 Roles {List of roles}
 Services {List of services}
 Properties {List of properties}
 Constraints {List of constraints}
 Glue {The communication protocol}
 Attachments {List of attachments}

}

compatible connector. Consequently, this approach accelerates the
development of components, improves testability, coherence,
maintainability and promotes component markets More details
about the structure of these architectural elements are presented in
previous works [2], [11].

The previous architectural elements are manipulated and used via
predefined mechanisms in the reasoning model. Essentially, we
are going to study the instantiation, specialization, composition,
decomposition, and connections mechanisms. In the following
section, we define the using context of each mechanism.

3.2 Reasoning Model
In our approach we plan to analyze the software architecture by
using different hierarchy views where each hierarchy is
investigated at different levels of representations. Figure 3
illustrates the C3 reasoning model. This model is defined by four
types of hierarchies and each type represents a specific view on
the C3 representation model different from the others.

Figure 3. C3 Representation and reasoning models

The four hierarchies are: 1- The structural hierarchy used to
explicit the different nested levels of structural hierarchies that the
system’s architecture can have. 2- The behavioural description
hierarchy to explicit the different levels of system’s behaviour
hierarchy generally represented by protocols. 3- The conceptual
hierarchy to describe the libraries of element types corresponding
to structural or behavioural element at each level of the
architecture description. 4- The metamodeling hierarchy to locate
where our model coming from and what we can do with it.
Obviously those two sides will belong to the pyramid of
hierarchies defined by Object Management Group [9], [10].

We associate to each hierarchy two points of views. The first one
is an external view “the logical architecture” as it is perceived by
the user (designer or developer) of the architecture. The second
kind of view is internal view “the physical architecture” which
represents the memory image of the logical architecture. Some
details about the logical and physical architecture are presented in
[11]. In the following sections, we present those types of
hierarchy and we investigate the possible levels of each hierarchy
with the associated mechanisms.

3.2.1 Structural Hierarchy (SH)
Structural hierarchy also called abstraction hierarchy has to
provide the structure of particular system architecture in terms of
the architectural elements defined by the used ADL. The majority
of academic ADLs like Aesop, MetaH, Rapide, SADL, and other
[6] or the industrials like CORBA, CCM/CORBA, EJB/J2EE [13]
allow only a flat description of software architectures.

Using those ADLs architecture is described only in terms of
components connected by connectors without any nested elements
without any structural hierarchy. This design choice was made in
order to simplify the structure and also by lack of concepts and
mechanisms that respectively define and manipulate
configurations of components and connectors.

In our C3 model the structure of architectures is described using
components, connectors, and configurations, where configurations
are composite elements. Each element in this configuration
(component or connector) can be a primitive (with a basic
behaviour scenario) or a new configuration which contains
another set of components and connectors, which in their turn can
be primitive or composite material, and so on.

However, the metamodel C3 allows the representation of
architecture with a real hierarchy with a number of abstraction
levels (Ln, Ln-1, Ln-2,…, L1, L0) depending on the complexity of
the problem. It is important to note that practically all
architectural solutions for domain problems have a nested
hierarchical nature.

Thus, real software architecture can be viewed as a graph where
each internal node of this graph represents a configuration and
each end-node represents a primitive component and arcs between
nodes are connectors.

In Figure 4.a, the root node with double circles represents is the
first level of the abstraction; it is also the global configuration
which encapsulates all elements of the architecture. The small
white circles represent primitive components and small black
circles represent sub-configurations in the system architecture.
These configurations contain other elements inside. Thus, a
configuration will never be an end-node in the hierarchy tree of
abstractions. Arcs represent the bonds of levels - the father/child
relationship. This relationship does not necessarily imply a
service-connection between the father node and the child one.

Figure 4.a. External view of structural hierarchy

To navigate among structural hierarchy levels we define the
following type of connector:

Behavioural
Hierarchy

-II-

-III-

Conceptual
Hierarchy

 -IV-

Metamodeling
Hierarchy

Structural
Hierarchy

 -I- C3
Representation

Meta Model

Root

Legend

1

Configuration

Primitive Component

2 3 4

7 8 9

14

5 6

15 17 13 16 10 11 12

1
L n

L n-3

L n-2

L n-1

3.2.1.1 Composition-Decomposition Connector (CDC)
This type of connectors is used to link each configuration to its
underling elements. Therefore, this type of connector allows the
navigation among levels of the structural hierarchy. So, we can
determine the childs or the father, if it is the case, of each
elements deployed in the architecture. Figure 4.b illustrates how
to use CDC connector to represent abstraction details (nodes 7, 8,
and 9) at Level (n-2) corresponding to node (4) at Level (n-1). So,
the internal view of Figure 4.a is described by seven CDC
connectors.

Figure 4.b. CDC connector

Figures 5.a illustrates two service-connection types of connector;
the fist one is generally represented by an implicit link called
Binding and the second one is defined by several ADLs as
Attachment link. In our model those two types of connections are
explicit and first class entities. They are defined as follows:

Figure 5.a. Internal view of structural hierarchy

3.2.1.2 Attachment Connector (AC)
Attachment connector is represented by a solid-line arc in Figure
5.a. We use this type of connectors to establish service-
connections between components and/or configurations which are
deployed in the same level of abstraction. More details about AC
connector are depicted in Figure 5.b. The example described in
Figure 5.b is independent from the one described in Figure 5.a. In
some ADLs this type of connector in called assembling connector
and represented by first class entity (e.g. Acme [4]).

Figure 5.b. AC connector

Inside the AC connector the glue code (Figure 5.b) defines the
following mapping among communicating elements:

• The provided service of “a” is required by “x” (e1=s1),

• The provided service of “b” is required by “z” (e2=s2),

• The provided service of “c” is required by “y” (e3=s3).

Roles are not indicated in the figure for space reasons. Attachment
links among elements {a,b,c,x,y,z} inside the AC connector are
represented by a dotted-line oriented arcs.

It is important to note that in structural hierarchy we use at each
level a different set of mechanisms and tools to deal with the input
interfaces and the output interfaces. For this reason inputs are
generally expanded when we shift from Level (i) to Level (i-1)
and outputs are compressed when we shift from leveli-1 to level Li.
So, the data format will change when we change the level. (e.g. if
we manipulate a graph as a data in level Li then our inputs and
outputs are graphs and we have a specific set of tools to
manipulate them; at a lower level of the abstraction we have an
other format of data to represent graphs, so it is normal that tools
used at this last level are not those used in the upper level of the
abstraction. From this observation we will define, in the
following, a connector for expansion of inputs and compression of
outputs.

3.2.1.3 Expansion-Compression Connector (ECC)
ECC type of connectors represented by a dotted-line oriented arc
in Figure 5.a is represented in more details in Figure 5.c. We use
this type of connectors to establish service-connections between
each configuration and its underling elements (Figure 5.c). In
some ADLs this type of link is called binding (e.g. Acme) or

delegation (e.g. UML) but it is not defined as a first class entity.

Figure 5.c. ECC connector

AC

a

y

x

z

b c e2

e1

e3

s2

s3

s1

Attachment Connector
Expansion-Compression Connector

Legend

{ei , si } = {Required, Provided} Services

e1

e1.2 e1.1

1

2 4

s9

s16

9

E
x
p

an
si

o
n

C
o

m
p

ressio
n

16 17

s17

e1 s9

ECC ECC

CDC

C
o

m
p
o

si
ti

o
n

D
eco

m
p
o

sitio
n

4

7 8 9

2 3 4

7 8 9

14

5 6

15 17 13 16 10 11 12

1

e1

e1.1 e1.2

s2 s4

s3

s1

s9

s16 s17

L n

L n-1

L n-2

In Figure 5.c we use the ECC connector to do the expansion of the
inputs or to do the compression of the outputs. The different
elements of the architecture are connected through their interfaces.
Thus the types of interfaces are checked if they are compatible or
not (interface matching). Consequently, in the structural
hierarchy, the consistency of the assembled elements is controlled
syntactically.

3.2.2 Behavioural Hierarchy (BH)
The behavioural hierarchy represent the description of the
system’s behaviour at different levels. Each primitive element of
the architecture has its own behaviour. The behaviour description
associated with the highest level of the hierarchy - Ln - in Figure
6.a represents the overall behaviour of the system. This behaviour
is described by a global protocol P0. The system architecture at
this level is perceived as a black box with a set of inputs (required

services) and outputs (provided services). At lower level each
component, connector, configuration, port, or role has its own
protocol to describe its functionality (e.g. glue code is the protocol
describing the connector behaviour), also the element behaviour
can be described by a statechart diagram or Petri nets [17]. So, a
protocol is a mechanism used to specify the behaviour function of
an architectural element by defining the relationship among the
possible states of this element and its ability to produce coherent
results. Figure 6.a sketches how to decompose the protocol P0 at
level Ln into its sub-protocols at Level (n-1). This decomposition
process produces a set of other protocols {P01, P02, and P03}. By
the same process each protocol of the level (n-1) is decomposed to
produce an other set of sub-protocols at the level Ln-2, and so on
until level L0. The last level of the hierarchy is a set of protocols
representing the primitive behaviour of elements which are
available in the library of the architect. The total set of protocol
levels represents the behaviour hierarchy of the system
architecture.

Figure 6.a. Decomposition of behavioural hierarchy

To explicit the parental relationship among elements belonging to
successive levels of the behavioural hierarchy we define the
following types of connector:

3.2.2.1 Composition-Decomposition Connector (CDC)
CDC connector is used to link each protocol to its possible sub-
protocols. Therefore, this type of connector allows the navigation
among levels of the behavioural hierarchy. Also, we can
determine the childs or the father, if it is the case, of each protocol
used in the architecture. Figure 6.b represents the notation
adopted.

Figure 6.b. CDC connector

3.2.2.2 Attachment connector (AC)
In behavioural hierarchy, attachment connectors are used to
connect protocols belonging to the same level of hierarchy. If we
use, for example, a transition-based system to specify the
behaviour protocol associated with each element then connections
between behaviours are made by simple transitions between the
end-state of the fist protocol and the start-state of the second one.
Inputs and outputs of each protocol are respectively required and
provided services (Figure 6.d).

3.2.2.3 Binding Identity Connector (BIC)
Binding identity connector is used to keep the identity and the
traceability of inputs and outputs of protocols. In contrast to the
structural hierarchy, in the behavioural hierarchy we have neither
expansion of inputs nor compression of outputs when we change
the level of hierarchy. Consequently, we use the same set of
mechanisms and tools at all hierarchical levels. So, when we
move to the below level this in fact amounts to just slicing
(sampling) the behaviour function to several sub-functions in
order to understand and analyze the global complex behaviour of
the system (Figure 6.c).

Figure 6.c. BIC and AC connectors

P0

P01

P02

P03

P032

P031

e1 e2

e1 e1

x y

P01

P02

s2 s1

e1 e2

s2 s1

s2 s1

x y

Legend: Pi : Protocol i ; ei : Input i ; si : Output i ;
 x , y : intermediate results

L n-2

L n-1

L n

CDC

C
o

m
p
o

si
ti

o
n

D
eco

m
p
o

sitio
n

P0

P01

P02

P03

BIC

e1

e1 s1

s1

BIC

P01

P03

P0

AC

L n

L n-1

The syntactic correction (discussed before in SH) of the
assembled elements cannot insure the validation of the produced
architecture. The syntactic correction checks only the
compatibility of interfaces types. So, elements are compatible to
exchange information, but fail to check if their collaboration “the

semantic of connections” can produce a coherent result.
Consequently, during the development of behavioural hierarchy
we will insure the compatibility of protocols (protocol matching)
associated with connected elements at any level of this hierarchy
[5] [17].

It is important to note that there is no priority relationship between
structural and behaviour hierarchies. So, the designer can start
describing the architecture using the structural or the behaviour
hierarchy. It depends on the type of information he/she has at first.
But generally if the structural hierarchy is known it will be
suitable to start by the structural hierarchy and at each level of this
hierarchy we develop the corresponding behavioural hierarchy.

3.2.3 Conceptual Hierarchy (CH)
The conceptual hierarchy allows the architect to model the
relationship among elements of the same family as illustrated in
Figure 7.a for the component types. The architectural entities are
represented by types.

Each type is an element in the library and each element has its
sub-elements in the same library. So, we can shape the graph
representing entities hierarchy of the same family. Each graph has
its proper number of levels (sub-type levels). At the highest level
of hierarchy we have the basic element types developed to be
reused. The element types of the intermediate levels are created by
reusing the previous ones.

Those intermediate element types are reused to produce others
(elements are developed by reuse and to be reused) or used as
end-elements to describe architectures, and so on. Element types
at the last level of the hierarchy are only created to be used in the
description of architectures [3].

Figure 7.a. Conceptual hierarchy

Through the mechanism of specialization (e.g. inheritance) the
architect will create and classify element libraries according to
architecture development needs in each target domain. The

number of sub-type levels is unlimited. But we must remain at
reasonable levels of specialization in order to keep compromise
between the use and the reuse of the architectural elements. To
implement the conceptual hierarchy we define the following type
of connector:

3.2.3.1 Specialisation-Generalisation Connector (SGC)
This type of connectors is used to connect element types coming
from the same type (e.g. this connector is implemented by the
inheritance mechanism in Java). So, we can construct easily all
trees representing the classification library types. Figure 7.b
represents the notation adopted.

Figure 7.b. SGC connector

3.2.4 Metamodeling Hierarchy (MH)
The metamodeling hierarchy is viewed like pyramid composed
exactly from 4 architectural levels endowed with an instantiation
mechanism (instance-of relationship). Thus, according to Figure
8.a, each level (Ai) must conforms to the description given above
in A(i+1) level. The level A3 conforms to itself. Symmetrically,
each level (Ai) describes the inferior level A(i-1). A0 is the end-
level (application instance) [9], [10].

A0 Level is the real word level (application level) which is an
instance of the architecture model (level A1). At this level the
developer has the possibility to select and instantiate elements any
times as he needs to describe a complete application. Instances are
created from element types which are defined at A1. Elements are
created and assembled with respect to the different constraints
defined at A1 level.

A1 Level is also called architecture level. At this level we have
models of architecture described using language constructions or
notations defined at A2 level (e.g. C3 metamodel, UML 2.0).
Thus, each architecture model is an instance of the metamodel
defined in the above level.

A2 Level (meta-architecture level) defines the language or the
notation used to describe architectures at A1 level. This level is
also used to modify or adapt the description language. All
operations undertaken at this level are always in conformance
with the top level of the pyramid.

A3 Level (meta meta-architecture) has the top level concepts and
elements used when we want to define any new architecture
description language or new notation. In our previous work we
have defined our proper meta meta-architecture model called
Meta Architecture Description Language (MADL) [14]. So, our
C3 metamodel is defined in conformance with MADL. MADL is
similar to MOF but it is a component-oriented.

Component

Cpt2 Cpt1 Cpt3

Cpt22

Connector

Cpt221 Cpt222 Cpt223

Taxonomy
of concepts

(Types)

SubTypes 1

SubTypes 2 Cpt23 Cpt21

SubTypes 3

Configuration

….

...

….

Cpt2

Cpt21

S
p

ec
ia

li
sa

ti
o
n

 G
en

eralisatio
n

Cpt22 Cpt23

SGC

Figure 8.a. Metamodeling hierarchy

To connect each architectural element to its type at the above level
we define:

3.2.4.1 Instance-Of Connector (IOC)
Instance-of connectors are used to establish connection among
elements of a given level (model) with their classifier defined in
the above level (metamodel). Figure 8.b represents an example of
the notation adopted.

Figure 8.b. IOC connector

4. CASE STUDY
As a simple illustrative example, Figure 9 depicts the client-server
architecture. In the following subsections we tray to analyse this
example from the provided view of each type of hierarchy
introduced in this paper. In the next figures we use number
notations to represent the following elements:

1- Client-Server Architecture,
2- Client Component,
3- Server Configuration,
4- Connection Manager Component,
5- Security Manager Component,
6- Data Bases Component.

Figure 9. Simple client-server architecture / application

4.1 Structural Hierarchy
The structural hierarchy corresponding to the client-server
example can be represented by three levels. In Figure 10.a we
represent this hierarchy by means of two graphs. Each graph gives
particular view for the same set of nodes (six nodes). There is one
node for each element of system. The left one illustrates the
composition-decomposition view for the structural hierarchy
using two CDC connectors, and the right one illustrates the same
hierarchy but from physical structure interconnections view using
two ECC connectors and four AC connectors. So, at this point we
can say that all structural elements of the client-server system are
depicted by the structural hierarchy.

Figure 10.a. Structural hierarchy

In Figure 10.b we give, in an illustrative example, some details
about AC connector representing the RPC connector used to
connect the client component (node 2) to the server configuration
(node 3).

Meta MetaArchitecture
e.g. MADL, MOF

Metacomponent, Metaconnector, MetaAttribute

MetaArchitecture
e.g. C3, UML 2.0

Component, Connector, Attribute …

Model of Architecture
e.g. Client/Server, Pipe/Filter

Client Component, RPC Connector, Server

Architecture Instance
e.g. Application1

(Client1, Client2, RPC1, Server1, …)

A3-Level

A2-Level

A1-Level

A0-Level Instance_Of

Instance_Of

Instance_Of

Instance_Of

Type : Classifier
Name: Classifier

Type : Classifier
Name: Component
Feature: Attributes,
Services,
Connections,

Type : Component
Name: Client
Attribute: Name

Type : Client
Name : Client1

Client Server
RPC

Connection
Manager

Security
Manager

DataBase

sendRequest receiveRequest

caller
callee

Client1 Server
RPC1

Client2

R
P

C
3

Client3

RPC2

A1

 A0

Model architecture

Application architecture

Component
PeerClient

PeerClient
C1

IOC

PeerClient
C2

PeerClient
C3

In
st

an
ce

-O
f

A1

A0

2 3

1

5 4 6

L2

L1

L0

CDC

CDC

2 3

1

5 6

AC

4

AC AC

AC

ECC

ECC

Figure 10.b. Description of RPC Connector

4.2 Behavioural Hierarchy
To simplify our representation for the behavioural hierarchy, we
describe three graphs. Each graph illustrates the behavioural
hierarchy using a particular type of connector. In Figure 11
diagram (a) we use two CDC connectors to describe the
compression and decompression of the behaviour protocols. So, at
Level (2) we have the global protocol (P1), at Level (1) we define
(P2) client protocol and (P3) server protocol, and finally at Level
(0) we have (P4), (P5), and (P6) protocols associated respectively
to connection-manager, security-manager and database
components.

Figure 11. BH with CDC and BIC connectors

In Figure 11 diagram (b) we represent exactly the same hierarchy
in which we show the traceability of inputs and outputs using four
BIC connectors.

But in Figure 12 we only focus on continuous flow of protocols at
each level of the behavioural hierarchy using four AC connectors.

Figure 12. BH with AC connectors

4.3 Conceptual Hierarchy
The conceptual hierarchy is depicted in Figure 13 by diagram (a)
at level A2. At this level we use the SGC connector to generate the
five meta-connector types from the first meta-connector defined
by C3 metamodel. The SGC meta-connector used at this level is
the bootstrap connector for the others meta-connector types. Of
course and by the same way we can use the SGC connector to
specialise any architecture element described either at level A1
(architecture level) or at level A2 (meta-architecture level).

4.4 Metamodeling Hierarchy
The metamodeling hierarchy depicted in Figure 13 by diagram (b)
represents the connections between all instances of components
used in the application level (A0) with their component types at
the architecture level (A1), and the connections between all
component types of the architecture level (A1) with their meta-
component defined in C3 metamodel. Those connections are
realised using Instance-Of connectors (IOC). Also, we illustrate in
Figure 13 diagram (a) how to generate RPC connector type from
AC meta connector using IOC connector instance, and how to
generate RPC1, RPC2, and RPC3 connectors from the RPC
Connector type using always the IOC connector instance.

Figure13. Metamodeling hierarchy

Component Client {Port {send-request}}

Configuration Server {Port {receive-request}}

Connector RPC: AC (Client, Server)

{
 Roles {Caller, Callee}
 Services {List of services}
 Properties {maxRoles: integer = 2,
 Synchronous: Boolean = true}
 Constraints {List of constraints}
 Glue {caller = callee}
 Attachments {Client.send-request to RPC.caller
 Server.receive-request to RPC.callee}

}

C3 Meta
Component

Client

IOC

DataBase
Connection

Manager

IOC IOC IOC

CL2
DB1 CM1

CL1 CL3

A2

A1

A0

Connector

BIC CDC AC ECC

SGC

IOC

RPC

IOC

IOC

RPC1 RPC2 RPC3

(b)

(a)

P2

P1
L2

L1

L0

P3

P5

P4

P6

CDC

CDC

e s

e s

d

d s

P2

P1

P3

P5

P4

P6

e s

e s d

s

d

BIC BIC

BIC BIC

(a) (b)

P2

P1 L2

L1

L0

P3

P5

P4

P6

e s

e s d

s d

AC

AC AC

AC

a b

c

5. CONCLUSION
In this work we have defined a minimal and a complete
representation metamodel called C3 to describe software
architecture and to reason about this architecture from different
perspective view. The core elements of C3 are components,
connectors and configurations. Elements are assembled using their
interfaces. Syntactic and semantic corrections are carried out
using respectively interfaces-matching and protocols-matching.
Perspective views are defined by different kind hierarchies.
Mainly, we use structural hierarchy to describe the structural
decomposition hierarchy, behaviour description hierarchy to
describe the behaviour function decomposition, conceptual
hierarchy to describe sub-architectural elements. The new
elements generated by conceptual hierarchy will be used to
populate the component libraries. Finally, we use the
metamodeling hierarchy to show how we can modify the
metamodel C3 and how to use it. Each hierarchy is supported and
tooled by explicit connection mechanisms to provide the different
form of connections required in each hierarchy. Contrary to the
usual ADLs, which define only the attachment connectors, in C3
we define six types of connector to deal with different types of
connections. Structural hierarchy uses composition-decomposition
connector, expansion-compression connector, and attachment
connector. Behavioural hierarchy uses composition-
decomposition connector, binding-identity connector, and the
attachment connector. Conceptual hierarchy uses the
specialization-generalisation connector and finally metamodeling
hierarchy uses the instance-of connector.

Some of our ongoing works are: 1- Establishing the relationship
between the different views associated to hierarchies. It is a
crucial part when we want to bring together different views to the
same architecture in a sound way. 2- We work on the
development of an UML 2.0 profile to C3 metamodel. This will
enable the mapping of any architecture developed using C3 to its
corresponding architecture in UML 2.0 notation. The aim of this
part is allow using the available tools associated with UML 2.0 to
automatically generate the application code corresponding to the
architecture.

6. REFERENCES
[1] Allen, R.J. A Formal Approach to Software Architecture.

Ph.D. Thesis, School of Computer Science, Carnegie Mellon
University, 1997.

[2] Amirat, A., Oussalah, M., and Khammaci, T. Towards an
Approach for Building Reliable Architectures. In

Proceedings of (IEEE IRI’07) International Conference on

Information Reuse and Integration (IEEE IRI’07), Las
Vegas, Nevada, USA, August 2007, 467-472.

[3] Frakes, W. B. and, Kang, K. Software Reuse Research:
Status and Future. IEEE Transactions on Software

Engineering, 31, 7, (July 2005), 529-536.

[4] Garlan, D., Monroe, R.T., and Wile, D. Acme: Architectural

Description Component-Based Systems, Foundations of

Component-Based Systems. Cambridge Univ. Press, 2000,
47-68.

[5] Lanoix, A., Hatebur, D., Heisel, M., and Souquières, J.
Enhancing Dependability of Component-Based Systems. In

Proceedings of the International Conference on Reliable

Software Technologies (Ada-Europe’07), 2007, 41-54.

[6] Matevska-Meyer, J., Hasselbring, W., and Reussner, R.
Software architecture description supporting component
deployment and system runtime reconfiguration. In the

Proceedings of WCOP 2004, Workshop on Component-

Oriented Programming , Oslo, June 2004.

[7] Medvidovic, N., Dashofy, E., and Taylor, R.N. Moving
Architectural Description from Under the Technology
Lamppost. Information and Software Technology, 49, 1,
(January 2007), 12-31.

[8] Medvidovic, N. Architecture-Based Specification-Time

Software Evolution. Ph.D. Thesis, University of California,
Irvine, 1999.

[9] OMG. Unified Modeling Superstructure. From
http://www.omg.org/docs/ptc/06-04-02.pdf, 2006.

[10] OMG. Unified Modeling Language: Infrastructure. From
http://www.omg.org/docs/formal/07-02-06.pdf, 2007.

[11] Oussalah, M., Amirat, A., and Khammaci, T. Software
Architecture Based Connection Manager. In Proceedings of

the International Conference on Software Engineering and

Data Engineering (SEDE’07), Las Vegas, Nevada, USA,
July 2007, 194-199.

[12] Pérez-Martínez, J.E. Heavyweight extensions to the UML
metamodel to describe the C3 architectural style. ACM

SIGSOFT Software Engineering Notes, 28, 3, (May 2003).

[13] Pinto, M., Fluentes, L., and Troya, M. A Dynamic
Component and Aspect-Oriented Platform. The Computer

Journal , 48, 4, (July 2005), 401-420.

[14] Smeda, A., Oussalah, M., and Khammaci, T. MADL: Meta
Architecture Description Language. In Proceedings of the

International conference on Software Engineering Research,

Management & Applications (SERA’05), Pleasant, Michigan,
USA, August 2005, 152-159.

[15] Smeda, A., Oussalah, M., and Khammaci, T. Improving
Component-Based Software Architecture by Separating
Computations from Interactions. In Proceedings of the

ECOOP Workshop on Coordination and Adaptation

Techniques for Software Entities (WCAT'04), Oslo, Norway,
2004.

[16] Taylor, R. N., Medvidovic, N., Anderson, K. M., Whitehead,
JR., Robbins, J. E., Nies, K. A., Oreizy, P., and Dubrow, D.
L. A component and message-based architectural style for
GUI software. IEEE Trans. Soft. Eng., 22, 6, (June 1996),
390–406.

[17] Schmidt, H., Trustworthy components-compositionality and
prediction. Journal of Systems and Software, Special issue

on: Component-based software engineering, Elsevier
Science Inc., 65, 3, (March 2003), 215-225.

