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ABSTRACT 

The more important level of abstraction in the description of large 
and complex software is its architecture description. So, at this 
abstraction level we can describe the principal system components 
and their pathways of interaction. Software architecture is 
considered to be the driving aspect of the development process; it 
allows specifying which aspects and models in each level needed 
according to the software architecture design. Early Architecture 
Description Languages (ADLs), nearly exclusive, focus on 
structural abstraction hierarchy ignoring behavioural description 
hierarchy, conceptual hierarchy, and metamodeling hierarchy. In 
this paper we show that all those hierarchies constitute views to 
appropriately “reason about” software architectures described 
using our C3 metamodel which is a minimal and complete ADL. 
We provide a set of mechanisms to deal with different levels of 
each hierarchy; also we introduce a new enhanced definition for 
connector concept deployed in C3 architectures. 

Categories and Subject Descriptors 
D.2.11 [Software Architectures]: Data abstraction, languages 
description, interconnection, and definition.  

General Terms 
Design, Reliability, Languages. 

Keywords 
Metamodeling, Abstraction, Hierarchy, Connector, Component, 
Architecture. 

1. INTRODUCTION 
Nowadays, there is a completely new approach to building more 
reliable software systems which consist to decompose large and 
complex systems into smaller and well-defined units – software 
components.  

 

Typically, components are considered to be entities with well-
defined provided (server) and required (client) interfaces, and in 
some cases also with formally specified behaviour. A component-
based application is a collection of individual components, which 
are interconnected via well-defined connectors between their 
interfaces. 

Component that have no externally observable internal structure, 
while having real implementation in certain programming 
language, are called primitive components. Components 
containing nested subcomponents, i.e. components with 
observable internal structure, are called configurations (composite 

components). The structure of a configuration, commonly referred 
to as configuration architecture, is typically defined in an 
Architecture Description Language (ADL) [1].  

Generally, software architectures are composed of components, 
connectors and configurations, constraints on the arrangement and 
behaviour of components and connectors. The architecture of a 
software system is a model, or abstraction of that system. 
Software architecture researchers need extensible, flexible 
architecture descriptions languages (ADLs) and equally clear and 
flexible mechanisms to manipulate these core elements at the 
architecture level. 

There is not today, nor has there ever been, a clear consensus on a 
definition of software architecture. Recently Medvidovic [7] gives 
the following definition for software architecture “A software 

system’s architecture is the set of design decisions about the 

system”. So, if those decisions are made incorrectly, they may 
cause your project to be cancelled. However, these design 
decisions encompass every aspect of the system under 
development, including: 

• Design decisions related to system structure – for example, 
“there should be exactly three components in the system, the 
‘data store’, the ‘business logic’ and the ‘user interface 
component’;” 

• Design decisions related to behaviour also referred to as 
functional – for example, “data processing, storage, and 
visualisation will be handled separately;” 

• Design decisions related to the system’s non functional 
properties – for example, “the system dependability will be 
ensured by replicated processing modules;” 

• Also, we can elicit other design decisions related to the 
development process or the business position (product-line). 
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The “first-generation” ADLs all shared certain traits. They all 
modeled the structural and, with the exception of Acme [4], 
functional characteristics of software systems. They invariably 
took a single, limited perspective on software architecture. In this 
paper we introduce further perspectives which are complementary 
to the structural one. 

The majority of ADLs proposes, like reasoning model, only sub-
typing (inheritance) as a mechanism for specialization (e.g. Acme 
[4], C2 [16]). Otherwise, for the rest of ADLs, they propose their 
own ad hoc mechanisms based on algorithms and methods 
designed specially for these ADLs. 

Based on a broad survey of architecture description notations and 
approaches, we identified that ADLs capture aspects of software 
design centred around a system’s Component, connectors, and 
configurations. The core elements of our model are basically 
defined around these three elements. So, we derive the name of 
our model C3 from Component, Connector, and Configuration. 
Taking into consideration that our C3 have no relationship with 
C2 defined by Taylor [16] nor with C3 which is an extension of 
C2 defined by Pérez-Martínez [12]. The rest of the paper is 
organized as follows. In section 2 presents our research 
motivations. Section 3 describes the C3 metamodel. In section 4 
we use client-server architecture as an example to apply the 
presented approach. The last section presents our conclusion and 
the different perspectives of our work. 

2. MOTIVATION 
Our motivation in this work is to develop a generic model for the 
description of software architectures which must be minimal and 
complete. It is minimal because we are only interested by the core 
concepts in each ADL. And complete because with this minimum 
of concepts the architect will be able to describe any required 
structures he need to realize using those concepts and a set of 
predefined mechanisms. 

However, describing only the architecture structure is not 
sufficient to provide correct and reliable software systems. In this 
paper we are even more going to focus on representation 
architecture model and to reason about its elements following four 
different types of hierarchies. Each of these hierarchies provides a 
particular view on the architecture. In the following sections we 
present more details about these hierarchies. 

We expect from our approach to provide more explicit and better 
clarified software architecture. Mainly the approach is developed 
to:  

� Make explicit the possible types of hierarchies being used as 
support of reasoning on the architecture structures, with the 
different possible levels in each hierarchy. 

� Show semantics conveyed by every type of hierarchy by 
providing the necessary mechanisms used to connect elements 
in the same level of hierarchy and the mechanisms used to 
connect elements of every level with the elements of the upper 
level and the level below. 

� Allows introducing various mechanisms of reasoning within the 
same architecture according to the requirements of the system 
in a specific application domain. 

� Establish the position of existing mechanisms developed for 
reasoning with regard to our referential. 

3. The Meta Model of C3 
In order to have a complete C3 model, we have defined mainly 
two complementary models to describe and reason about system’s 
architecture. We use representation model to describe 
architectures based on C3 elements and we use reasoning model 
to understand and analyse the representation model. 

3.1 Representation Model 
The core elements of the C3 representation model are 
components, connectors, and configurations, each of these 
elements have an interface to interact with its environment like 
depicted in Figure 1. 
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Figure 1. Basic elements of C3 Meta model 

 

3.1.1 Component  
A component is a unit of computation or data storage. Therefore, 
components are loci of computation and state. A component may 
be as small as a single procedure or as entire application. It may 
require its own data or execution space, or it may share them with 
other components [8]. 

In order to be able to adequately reason about a component and 
the architecture that includes it, C3 should also provides facilities 
for specifying components needs, i.e, services required of other 
components in the architecture. An interface thus defines 
computational commitments a component can make and 
constraints on its usage. 

Each interaction point of a component is called a port. Ports are 
named and typed. We distinguish between required and provided 
ports. Each port can be used by one or more services. 

Component semantics are modeled to enable evolution, analysis, 
enforcement of constraints, and consistent mappings of 
architectures from one level of abstraction to another. The 
structure of component is the specification of its required and 
provided ports. The behaviour of a component is the specification 
of its required and provided services exchanged with its 
environment. 



 

 

3.1.2 Connector  
Connectors are architectural building blocks used to model 
interactions among components and rules that govern those 
interactions. In order to enable proper connectivity of components 
and their communication, a connector should export as its 
interface those services it exports [8]. 

C3 refers to connector interaction points as roles. Explicit 
connection (attachments) of component ports and connector roles 
is required in an architecture configuration. Roles are named and 
typed and are in many ways similar to component ports. 
Connector services are described inside the glue code [15]. 
Therefore, a connector’s interface is a set of interaction points 
between it and the components/configurations attached to it. It 
enables reasoning about well-formedness of an architectural 
configuration. 

Our contribution at this level consists in enhancing the structure of 
connectors by encapsulating the attachment links inside the 
definition of connector types (Figure 2.a). So, the application 
builder will have to spend no effort in connecting connectors with 
its compatible components and configuration. Consequently, the 
task of the developer consist only in choosing the suitable type of 
connector which is compatible with the interface types of 
components and/or configurations which are expected to be 
connected [2]. 

 
Figure 2.a.  The new structure of a connector 

 
 
We have given the following signature definition for connectors 
(Figure 2.b). 

 

 
 

Figure 2.b. Signature of C3 connector 

 
So, by encapsulating attachments inside connectors and having 
well defined connector interfaces with previously known elements 

to be connected by each connector, consequently components and 
configurations assembled in an easy and coherent way in the form 
of Lego Blocks.  

3.1.3 Configuration  
Architecture configurations or topologies are connected graphs of 
components and connectors that describe architectural structure. 
This information is needed to determine whether appropriate 
components are connected, their interfaces mach, connectors 
enables proper communication, and their combined semantics 
result in desired behaviour. 

The goal of configuration is to abstract away the details of 
individual components and connectors and to describe how they 
are fastened to each other. They depict the system at a high level 
that can be potentially be understood by people with various 
levels of technical expertise and familiarity with the problem at 
hand. 

For more clarity, in C3 model each component or connector is 
perceived and handled from the outside as primitive element. But 
their inside can be real primitive elements, or composite with a 
configuration which encapsulates all the internal elements of this 
composite. These Configurations are first-class entities. A 
configuration may have ports similar to component ports, and 
each port is perceived like a bridge (binding) between the internal 
environment of the configuration and the external one. In C3 this 
binding is realised using connectors. Generally configurations can 
be hierarchical where the internal components and connectors can 
represent sub-configurations with their proper internal 
architectures and so on as depicted in Figure 1.  

3.1.4 Interface 
Every architectural element has an interface. Each interface is 
associated with a type which corresponds to a set of operations 
which it defines. Via this interface the element publishes to the 
outside environment it needs in term of required services as well 
as the services which it provides. However, elements are selected 
and connected from their published interface. So, the interface is 
thought as a contract with the environment that the element 
should honour. 

To establish connections between elements we use 
required/provided ports for component and configuration elements 
and required/provided roles for connector elements and we assign 
the services to each port and role with the necessary set of 
constraints to be respected during the connections. From 
conceptual view ports, roles and services are concrete classes 
inherited from the interface abstract class as shown in Figure 1. 

Also, at modelling level we use cardinality to describe the 
multiplicity of each relation (connection) between architectural 
elements. This cardinality express the number of ports associated 
with components and configurations and the number of roles 
associated with connectors. Each port or role is considered as a 
channel to carry in/out required/provided services exchanged with 
elements of the environment.  

In our approach, components and connectors are assembled in an 
easy and coherent way in the form of an architectural puzzle 
(Lego Blocks) without any effort to describe links among 
components and connectors or among configurations and 
connectors because attachments are predefined in each type of 
connector, so can only connect two components by their 
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compatible connector. Consequently, this approach accelerates the 
development of components, improves testability, coherence, 
maintainability and promotes component markets More details 
about the structure of these architectural elements are presented in 
previous works [2], [11].  

The previous architectural elements are manipulated and used via 
predefined mechanisms in the reasoning model. Essentially, we 
are going to study the instantiation, specialization, composition, 
decomposition, and connections mechanisms. In the following 
section, we define the using context of each mechanism.  

3.2 Reasoning Model 
In our approach we plan to analyze the software architecture by 
using different hierarchy views where each hierarchy is 
investigated at different levels of representations. Figure 3 
illustrates the C3 reasoning model. This model is defined by four 
types of hierarchies and each type represents a specific view on 
the C3 representation model different from the others.  

 
Figure 3. C3 Representation and reasoning models 

 
The four hierarchies are: 1- The structural hierarchy used to 
explicit the different nested levels of structural hierarchies that the 
system’s architecture can have. 2- The behavioural description 
hierarchy to explicit the different levels of system’s behaviour 
hierarchy generally represented by protocols. 3- The conceptual 
hierarchy to describe the libraries of element types corresponding 
to structural or behavioural element at each level of the 
architecture description. 4- The metamodeling hierarchy to locate 
where our model coming from and what we can do with it. 
Obviously those two sides will belong to the pyramid of 
hierarchies defined by Object Management Group [9], [10]. 

We associate to each hierarchy two points of views. The first one 
is an external view “the logical architecture” as it is perceived by 
the user (designer or developer) of the architecture.  The second 
kind of view is internal view “the physical architecture” which 
represents the memory image of the logical architecture. Some 
details about the logical and physical architecture are presented in 
[11]. In the following sections, we present those types of 
hierarchy and we investigate the possible levels of each hierarchy 
with the associated mechanisms. 

3.2.1 Structural Hierarchy (SH) 
Structural hierarchy also called abstraction hierarchy has to 
provide the structure of particular system architecture in terms of 
the architectural elements defined by the used ADL. The majority 
of academic ADLs like Aesop, MetaH, Rapide, SADL, and other 
[6] or the industrials like CORBA, CCM/CORBA, EJB/J2EE [13] 
allow only a flat description of software architectures. 

Using those ADLs architecture is described only in terms of 
components connected by connectors without any nested elements 
without any structural hierarchy. This design choice was made in 
order to simplify the structure and also by lack of concepts and 
mechanisms that respectively define and manipulate 
configurations of components and connectors.  

In our C3 model the structure of architectures is described using 
components, connectors, and configurations, where configurations 
are composite elements. Each element in this configuration 
(component or connector) can be a primitive (with a basic 
behaviour scenario) or a new configuration which contains 
another set of components and connectors, which in their turn can 
be primitive or composite material, and so on. 

However, the metamodel C3 allows the representation of 
architecture with a real hierarchy with a number of abstraction 
levels (Ln, Ln-1, Ln-2,…, L1, L0) depending on the complexity of 
the problem. It is important to note that practically all 
architectural solutions for domain problems have a nested 
hierarchical nature.  

Thus, real software architecture can be viewed as a graph where 
each internal node of this graph represents a configuration and 
each end-node represents a primitive component and arcs between 
nodes are connectors. 

In Figure 4.a, the root node with double circles represents is the 
first level of the abstraction; it is also the global configuration 
which encapsulates all elements of the architecture. The small 
white circles represent primitive components and small black 
circles represent sub-configurations in the system architecture. 
These configurations contain other elements inside. Thus, a 
configuration will never be an end-node in the hierarchy tree of 
abstractions. Arcs represent the bonds of levels - the father/child 
relationship. This relationship does not necessarily imply a 
service-connection between the father node and the child one.  

 

 

 
 

Figure 4.a. External view of structural hierarchy  
 

To navigate among structural hierarchy levels we define the 
following type of connector: 
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3.2.1.1 Composition-Decomposition Connector (CDC)  
This type of connectors is used to link each configuration to its 
underling elements. Therefore, this type of connector allows the 
navigation among levels of the structural hierarchy. So, we can 
determine the childs or the father, if it is the case, of each 
elements deployed in the architecture. Figure 4.b illustrates how 
to use CDC connector to represent abstraction details (nodes 7, 8, 
and 9) at Level (n-2) corresponding to node (4) at Level (n-1). So, 
the internal view of Figure 4.a is described by seven CDC 
connectors. 

 
 

Figure 4.b.  CDC connector 
 
Figures 5.a illustrates two service-connection types of connector; 
the fist one is generally represented by an implicit link called 
Binding and the second one is defined by several ADLs as 
Attachment link. In our model those two types of connections are 
explicit and first class entities. They are defined as follows: 

 

 

 
 

Figure 5.a.  Internal view of structural hierarchy 
 

3.2.1.2 Attachment Connector (AC)  
Attachment connector is represented by a solid-line arc in Figure 
5.a. We use this type of connectors to establish service-
connections between components and/or configurations which are 
deployed in the same level of abstraction. More details about AC 
connector are depicted in Figure 5.b. The example described in 
Figure 5.b is independent from the one described in Figure 5.a. In 
some ADLs this type of connector in called assembling connector 
and represented by first class entity (e.g. Acme [4]).  

 
 

Figure 5.b.  AC connector 
 
 

Inside the AC connector the glue code (Figure 5.b) defines the 
following mapping among communicating elements: 

• The provided service of “a” is required by “x” (e1=s1), 

• The provided service of “b” is required by “z” (e2=s2), 

• The provided service of “c” is required by “y” (e3=s3). 

Roles are not indicated in the figure for space reasons. Attachment 
links among elements {a,b,c,x,y,z} inside the AC connector are 
represented by a dotted-line oriented arcs.  

It is important to note that in structural hierarchy we use at each 
level a different set of mechanisms and tools to deal with the input 
interfaces and the output interfaces. For this reason inputs are 
generally expanded when we shift from Level (i) to Level (i-1) 
and outputs are compressed when we shift from leveli-1 to level Li. 
So, the data format will change when we change the level. (e.g. if 
we manipulate a graph as a data in level Li then our inputs and 
outputs are graphs and we have a specific set of tools to 
manipulate them; at a lower level of the abstraction we have an 
other format of data to represent graphs, so it is normal that tools 
used at this last level are not those used in the upper level of the 
abstraction. From this observation we will define, in the 
following, a connector for expansion of inputs and compression of 
outputs. 

3.2.1.3 Expansion-Compression Connector (ECC)  
ECC type of connectors represented by a dotted-line oriented arc 
in Figure 5.a is represented in more details in Figure 5.c. We use 
this type of connectors to establish service-connections between 
each configuration and its underling elements (Figure 5.c). In 
some ADLs this type of link is called binding (e.g. Acme) or 

delegation (e.g. UML) but it is not defined as a first class entity. 

 

 
 

Figure 5.c.  ECC connector 
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In Figure 5.c we use the ECC connector to do the expansion of the 
inputs or to do the compression of the outputs. The different 
elements of the architecture are connected through their interfaces. 
Thus the types of interfaces are checked if they are compatible or 
not (interface matching). Consequently, in the structural 
hierarchy, the consistency of the assembled elements is controlled 
syntactically. 

3.2.2 Behavioural Hierarchy (BH) 
The behavioural hierarchy represent the description of the 
system’s behaviour at different levels. Each primitive element of 
the architecture has its own behaviour. The behaviour description 
associated with the highest level of the hierarchy - Ln - in Figure 
6.a represents the overall behaviour of the system. This behaviour 
is described by a global protocol P0. The system architecture at 
this level is perceived as a black box with a set of inputs (required 

services) and outputs (provided services). At lower level each 
component, connector, configuration, port, or role has its own 
protocol to describe its functionality (e.g. glue code is the protocol 
describing the connector behaviour), also the element behaviour 
can be described by a statechart diagram or Petri nets [17]. So, a 
protocol is a mechanism used to specify the behaviour function of 
an architectural element by defining the relationship among the 
possible states of this element and its ability to produce coherent 
results. Figure 6.a sketches how to decompose the protocol P0 at 
level Ln into its sub-protocols at Level (n-1). This decomposition 
process produces a set of other protocols {P01, P02, and P03}. By 
the same process each protocol of the level (n-1) is decomposed to 
produce an other set of sub-protocols at the level Ln-2, and so on 
until level L0. The last level of the hierarchy is a set of protocols 
representing the primitive behaviour of elements which are 
available in the library of the architect. The total set of protocol 
levels represents the behaviour hierarchy of the system 
architecture.  

 
 

Figure 6.a. Decomposition of behavioural hierarchy  

 

To explicit the parental relationship among elements belonging to 
successive levels of the behavioural hierarchy we define the 
following types of connector:  

3.2.2.1 Composition-Decomposition Connector (CDC)  
CDC connector is used to link each protocol to its possible sub-
protocols. Therefore, this type of connector allows the navigation 
among levels of the behavioural hierarchy. Also, we can 
determine the childs or the father, if it is the case, of each protocol 
used in the architecture. Figure 6.b represents the notation 
adopted.  

 

 
 

Figure 6.b.  CDC connector  

3.2.2.2 Attachment connector (AC)  
In behavioural hierarchy, attachment connectors are used to 
connect protocols belonging to the same level of hierarchy. If we 
use, for example, a transition-based system to specify the 
behaviour protocol associated with each element then connections 
between behaviours are made by simple transitions between the 
end-state of the fist protocol and the start-state of the second one. 
Inputs and outputs of each protocol are respectively required and 
provided services (Figure 6.d). 

3.2.2.3 Binding Identity Connector (BIC)  
Binding identity connector is used to keep the identity and the 
traceability of inputs and outputs of protocols. In contrast to the 
structural hierarchy, in the behavioural hierarchy we have neither 
expansion of inputs nor compression of outputs when we change 
the level of hierarchy. Consequently, we use the same set of 
mechanisms and tools at all hierarchical levels. So, when we 
move to the below level this in fact amounts to just slicing 
(sampling) the behaviour function to several sub-functions in 
order to understand and analyze the global complex behaviour of 
the system (Figure 6.c).   

 
Figure 6.c. BIC and AC connectors 
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The syntactic correction (discussed before in SH) of the 
assembled elements cannot insure the validation of the produced 
architecture. The syntactic correction checks only the 
compatibility of interfaces types. So, elements are compatible to 
exchange information, but fail to check if their collaboration “the 

semantic of connections” can produce a coherent result. 
Consequently, during the development of behavioural hierarchy 
we will insure the compatibility of protocols (protocol matching) 
associated with connected elements at any level of this hierarchy 
[5] [17]. 

It is important to note that there is no priority relationship between 
structural and behaviour hierarchies. So, the designer can start 
describing the architecture using the structural or the behaviour 
hierarchy. It depends on the type of information he/she has at first. 
But generally if the structural hierarchy is known it will be 
suitable to start by the structural hierarchy and at each level of this 
hierarchy we develop the corresponding behavioural hierarchy.  

3.2.3 Conceptual Hierarchy (CH) 
The conceptual hierarchy allows the architect to model the 
relationship among elements of the same family as illustrated in 
Figure 7.a for the component types. The architectural entities are 
represented by types.  

Each type is an element in the library and each element has its 
sub-elements in the same library. So, we can shape the graph 
representing entities hierarchy of the same family. Each graph has 
its proper number of levels (sub-type levels). At the highest level 
of hierarchy we have the basic element types developed to be 
reused. The element types of the intermediate levels are created by 
reusing the previous ones.  

Those intermediate element types are reused to produce others 
(elements are developed by reuse and to be reused) or used as 
end-elements to describe architectures, and so on. Element types 
at the last level of the hierarchy are only created to be used in the 
description of architectures [3]. 

 

 
 

Figure 7.a. Conceptual hierarchy 
 

Through the mechanism of specialization (e.g. inheritance) the 
architect will create and classify element libraries according to 
architecture development needs in each target domain. The 

number of sub-type levels is unlimited. But we must remain at 
reasonable levels of specialization in order to keep compromise 
between the use and the reuse of the architectural elements. To 
implement the conceptual hierarchy we define the following type 
of connector:  

3.2.3.1 Specialisation-Generalisation Connector (SGC)  
This type of connectors is used to connect element types coming 
from the same type (e.g. this connector is implemented by the 
inheritance mechanism in Java). So, we can construct easily all 
trees representing the classification library types. Figure 7.b 
represents the notation adopted. 

 
 

Figure 7.b.  SGC connector 

3.2.4 Metamodeling Hierarchy (MH) 
The metamodeling hierarchy is viewed like pyramid composed 
exactly from 4 architectural levels endowed with an instantiation 
mechanism (instance-of relationship). Thus, according to Figure 
8.a, each level (Ai) must conforms to the description given above 
in A(i+1) level. The level A3 conforms to itself. Symmetrically, 
each level (Ai) describes the inferior level A(i-1). A0 is the end-
level (application instance) [9], [10]. 

A0 Level is the real word level (application level) which is an 
instance of the architecture model (level A1).  At this level the 
developer has the possibility to select and instantiate elements any 
times as he needs to describe a complete application. Instances are 
created from element types which are defined at A1. Elements are 
created and assembled with respect to the different constraints 
defined at A1 level. 

A1 Level is also called architecture level. At this level we have 
models of architecture described using language constructions or 
notations defined at A2 level (e.g. C3 metamodel, UML 2.0). 
Thus, each architecture model is an instance of the metamodel 
defined in the above level. 

A2 Level (meta-architecture level) defines the language or the 
notation used to describe architectures at A1 level. This level is 
also used to modify or adapt the description language. All 
operations undertaken at this level are always in conformance 
with the top level of the pyramid. 

A3 Level (meta meta-architecture) has the top level concepts and 
elements used when we want to define any new architecture 
description language or new notation. In our previous work we 
have defined our proper meta meta-architecture model called 
Meta Architecture Description Language (MADL) [14]. So, our 
C3 metamodel is defined in conformance with MADL. MADL is 
similar to MOF but it is a component-oriented. 

Component 

Cpt2 Cpt1 Cpt3 

Cpt22 

Connector 

Cpt221 Cpt222 Cpt223 

Taxonomy 
of concepts 

(Types) 

SubTypes 1 

SubTypes 2 Cpt23 Cpt21 

SubTypes 3 

Configuration 

….

... 

….

Cpt2 

Cpt21 

S
p

ec
ia

li
sa

ti
o
n

 G
en

eralisatio
n

 

Cpt22 Cpt23 

SGC 



 

 

 
Figure 8.a.  Metamodeling hierarchy 

 

To connect each architectural element to its type at the above level 
we define:  

3.2.4.1 Instance-Of Connector (IOC)  
Instance-of connectors are used to establish connection among 
elements of a given level (model) with their classifier defined in 
the above level (metamodel). Figure 8.b represents an example of 
the notation adopted. 

 

 
 

Figure 8.b. IOC connector  
 

4. CASE STUDY 
As a simple illustrative example, Figure 9 depicts the client-server 
architecture. In the following subsections we tray to analyse this 
example from the provided view of each type of hierarchy 
introduced in this paper. In the next figures we use number 
notations to represent the following elements: 

1- Client-Server Architecture, 
2- Client Component, 
3- Server Configuration, 
4- Connection Manager Component, 
5- Security Manager Component, 
6- Data Bases Component. 

 

 
Figure 9. Simple client-server architecture / application 

 

4.1 Structural Hierarchy 
The structural hierarchy corresponding to the client-server 
example can be represented by three levels. In Figure 10.a we 
represent this hierarchy by means of two graphs. Each graph gives 
particular view for the same set of nodes (six nodes). There is one 
node for each element of system.  The left one illustrates the 
composition-decomposition view for the structural hierarchy 
using two CDC connectors, and the right one illustrates the same 
hierarchy but from physical structure interconnections view using 
two ECC connectors and four AC connectors. So, at this point we 
can say that all structural elements of the client-server system are 
depicted by the structural hierarchy. 

 
Figure 10.a.  Structural hierarchy 

 
In Figure 10.b we give, in an illustrative example, some details 
about AC connector representing the RPC connector used to 
connect the client component (node 2) to the server configuration 
(node 3).  
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Figure 10.b. Description of RPC Connector  

4.2 Behavioural Hierarchy 
To simplify our representation for the behavioural hierarchy, we 
describe three graphs. Each graph illustrates the behavioural 
hierarchy using a particular type of connector. In Figure 11 
diagram (a) we use two CDC connectors to describe the 
compression and decompression of the behaviour protocols. So, at 
Level (2) we have the global protocol (P1), at Level (1) we define 
(P2) client protocol and (P3) server protocol, and finally at Level 
(0) we have (P4), (P5), and (P6) protocols associated respectively 
to connection-manager, security-manager and database 
components. 

 

 
 

Figure 11.   BH with CDC and BIC connectors 

 
In Figure 11 diagram (b) we represent exactly the same hierarchy 
in which we show the traceability of inputs and outputs using four 
BIC connectors.  

But in Figure 12 we only focus on continuous flow of protocols at 
each level of the behavioural hierarchy using four AC connectors. 

 

 
 

Figure 12.   BH with AC connectors 
 

4.3 Conceptual Hierarchy 
The conceptual hierarchy is depicted in Figure 13 by diagram (a) 
at level A2. At this level we use the SGC connector to generate the 
five meta-connector types from the first meta-connector defined 
by C3 metamodel. The SGC meta-connector used at this level is 
the bootstrap connector for the others meta-connector types. Of 
course and by the same way we can use the SGC connector to 
specialise any architecture element described either at level A1 
(architecture level) or at level A2 (meta-architecture level). 

4.4 Metamodeling Hierarchy 
The metamodeling hierarchy depicted in Figure 13 by diagram (b) 
represents the connections between all instances of components 
used in the application level (A0) with their component types at 
the architecture level (A1), and the connections between all 
component types of the architecture level (A1) with their meta-
component defined in C3 metamodel. Those connections are 
realised using Instance-Of connectors (IOC). Also, we illustrate in 
Figure 13 diagram (a) how to generate RPC connector type from 
AC meta connector using IOC connector instance, and how to 
generate RPC1, RPC2, and RPC3 connectors from the RPC 
Connector type using always the IOC connector instance. 

 
 

Figure13. Metamodeling hierarchy 

Component Client {Port {send-request}} 

Configuration Server {Port {receive-request}} 

Connector RPC: AC (Client, Server)  

{ 
   Roles {Caller, Callee} 
   Services {List of services} 
   Properties {maxRoles: integer = 2,  
                        Synchronous: Boolean = true} 
   Constraints {List of constraints} 
   Glue {caller = callee}    
   Attachments {Client.send-request to RPC.caller  
                        Server.receive-request to RPC.callee}  

} 
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5. CONCLUSION 
In this work we have defined a minimal and a complete 
representation metamodel called C3 to describe software 
architecture and to reason about this architecture from different 
perspective view. The core elements of C3 are components, 
connectors and configurations. Elements are assembled using their 
interfaces. Syntactic and semantic corrections are carried out 
using respectively interfaces-matching and protocols-matching. 
Perspective views are defined by different kind hierarchies. 
Mainly, we use structural hierarchy to describe the structural 
decomposition hierarchy, behaviour description hierarchy to 
describe the behaviour function decomposition, conceptual 
hierarchy to describe sub-architectural elements. The new 
elements generated by conceptual hierarchy will be used to 
populate the component libraries. Finally, we use the 
metamodeling hierarchy to show how we can modify the 
metamodel C3 and how to use it.  Each hierarchy is supported and 
tooled by explicit connection mechanisms to provide the different 
form of connections required in each hierarchy. Contrary to the 
usual ADLs, which define only the attachment connectors, in C3 
we define six types of connector to deal with different types of 
connections. Structural hierarchy uses composition-decomposition 
connector, expansion-compression connector, and attachment 
connector. Behavioural hierarchy uses composition-
decomposition connector, binding-identity connector, and the 
attachment connector. Conceptual hierarchy uses the 
specialization-generalisation connector and finally metamodeling 
hierarchy uses the instance-of connector.  

Some of our ongoing works are: 1- Establishing the relationship 
between the different views associated to hierarchies. It is a 
crucial part when we want to bring together different views to the 
same architecture in a sound way. 2- We work on the 
development of an UML 2.0 profile to C3 metamodel. This will 
enable the mapping of any architecture developed using C3 to its 
corresponding architecture in UML 2.0 notation. The aim of this 
part is allow using the available tools associated with UML 2.0 to 
automatically generate the application code corresponding to the 
architecture. 
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