
Reusable Connectors in Component-Based Software Architecture
Abdelkrim Amirat and Mourad Oussalah

LINA Laboratoy, CNRS UMR 6241
University of Nantes, France

{abdelkrim.amirat;mourad.oussalah}@univ-nantes.fr

Abstract

In component-based system, connectors are used to compose components. Connectors should
have a semantics that makes them simple to construct and use. At the same time, their semantics
should be rich enough to endow them with desirable properties such as genericity, compositionality
and reusability. For connector construction, compositionality would be particularly useful, since it
would facilitate systematic construction. This paper we describe a hierarchical approach to compo-
nent and connector definition and construction that allows components and connectors to be defined
and constructed from sub-components and connectors. These composite elements are indeed generic,
compositional and reusable.

1 Introduction

A component-based system can be described as a software architecture with components (boxes) and
connectors (lines). Components represent parts of the system, while connectors represent interactions
between components. Connectors are therefore composition operators for the components. So, in com-
ponent model, the ease of building systems and reasoning about the process depends directly on the
varieties of connectors available and their semantics. A crucial question therefore is how to define and
construct suitable connectors.Thus Connectors should have a semantics that makes them simple to con-
struct and use. At the same time, their semantics should be rich enough to endow them with desirable
properties such as genericity, compositionality and reusability. For connector construction, composi-
tionality would be particularly useful, since it would allow connectors to be constructed in a systematic
manner [1],[2].

In this paper we describe a hierarchical approach to connector definition and construction. Using a
set of basic composition connector types, we can define and construct a composite components and a
composite connectors as a composition of a primitive components and connectors. In our context these
composite components and connectors are called configurations. The resulting configurations are indeed
generic, compositional and reusable. Because our basic component and connector types define a control
structures, our configurations represent composite control structures, or composite control flow patterns.
As such, they can behave like certain design patterns, and provide powerful composition operators that
can be used to perform complicated compositions involving many components all in a single step [5].

So, we take a step towards this goal by proposing a metamodel for the description of software ar-
chitecture called C3 (three ”C” for Component, Connector, and Configuration). The specificities of this
metamodel are: First, proposing a new structure and new types of connectors; second, definition and
manipulation of configurations as first classes entities and third, description of architectures from two
different views, a model architecture view (logical architecture) created by the architect and an applica-
tion architecture view (physical architecture instances of the logical architecture) generated automatically
which serves as support to maintain the consistency and the evolution of the application architectures.

After this introduction, the remainder of this article is organized as follows: Section 2 provides the
motivations of our research. In section 3 presents the concept of a logical architecture with the key
elements of the proposed metamodel. The physical architecture is defined in section 4. The last section
concludes this work with a summary of our ongoing research.

1

{abdelkrim.amirat ; mourad.oussalah}@univ-nantes.fr


Reusable Connectors A. Amirat and M. Oussalah

2 Motivations

Our main motivation is to propose a metamodel to maintain the consistency of an architecture using
new types of connectors with a richer semantics. Using these connectors, systems are built like a Lego
Blocks (Puzzle) by assembling components and connectors, where each element can only placed in the
right place in the architecture puzzle. This metamodel will make its contribution towards the following
objectives: 1-Provide a higher abstraction level for connectors in order to make them more generic and
more reusable. 2-Take into account the semantics of several types of relationships. Like association,
composition, and propagation relationships. 3-Promote the maintenance and the evolution of architec-
tures by the possibility of adding, deleting and substitution of different elements in the architectural.
4-The principle of reuse should be widely exploited. New components and connectors can be defined
by combining already existing elements through inheritance and/or composition mechanisms. 5-Using
the physical and the logical architecture, we can separate the functional aspects of architectural elements
and the non-functional aspects related to the management of their consistency.

3 Logical Architecture (LA)

Our approach is based on the description of software architecture following two architectural views.
The first one is a logic view defined by the architect by assembling the compatible elements available
in the library of element types and the second one is a physical view constructed automatically by the
system and serves as a support for user applications built in accordance with the logical architecture.
The large majority of ADLs consider components as entities of first class. So, they make distinction
between component-types and component-instances. However, this is not the case with other concepts
such as connectors and configurations. In our metamodel we consider each concept recognized by the
C3 metamodel as architectural element of the first class citizen. So, each architectural element maybe
positioned on one of the three abstraction levels defined in the following section. We believe that it is
necessary to reify the core architectural elements in order to be able to represent and manipulate them
and let them evolve easily.

3.1 Abstraction levels

In our approach, software architectures are described in accordance to the first three levels of mod-
elling defined by OMG. The application level (A0) which represents the real word application (an in-
stance of the architecture), the architecture level (A1) which represents the architecture model and meta-
architecture level (A2) which represents the meta-language for the description of the architecture [1].

3.2 Basic concepts of C3 metamodel

3.2.1 Architectural elements

In our metamodel, an architectural element may be a component, a connector or architectural configura-
tion. Each An architectural element may have several properties as well as constraints on these proper-
ties, as it may have one or more possible implementations. The interaction points of each architectural
element with its environment are the interfaces. Each architectural element is defined by its interfaces
through which they publish its required and provided services to and from its environment. Each service
may use one or more ports. We approach in the following sections with more detail the most important
concepts of our C3 metamodel.

2



Reusable Connectors A. Amirat and M. Oussalah

3.2.2 Component

A generally accepted view of a software component is that it is a software unit with provided services
and required services. The provided services are operations performed by the component. The required
services are the services needed by the component to produce the provided services. The interface of
a component consists of the specifications of its provided and required services. It should specify any
dependencies between its provided and required services. To specify these dependencies precisely, it
is necessary to mach the required services to the corresponding provided services. Services are carried
using ports. Thus, we can define a generic interface of a component type as follows:

myComponent componentType (requiredInterf, provideInterf);

3.2.3 Connector

Connectors are architectural building blocks used to model the interactions between components and
rules that govern these interactions. They correspond to lines in box-line descriptions. Examples are
pipes, procedure call, method in-vocation, client-server protocol, and SQL link between database and
application. Unlike components, connectors may not correspond to compilation entities. However, the
specifications of connectors in an ADL may also contain rules to implement a specific type of connectors.
From connector view point current ADLs can be classified into three different kinds:

ADLs with implicit connectors. Some ADLs, such as Darwin, Leda, and Radipe [5] do not consider
connectors as first class citizens. However these ADLs make difficult the reusability of components
because they have the coordination process tangled with the compotation inside them, and they are
aware of the coordination process that has to happen in order to communicate with the rest. The notion of
connector emerges from the need to separate the interaction from the computation in order to obtain more
reusable and modularized components and to improve the level of abstraction of software architecture
description. David Garlan [2] presents the need for connectors due to the fact that the specification of
software systems with complex coordination protocols is very difficult without the notion of connector.

ADLs with predefined set of connectors. UniCon [5] is a typical representative of ADLs sup-
porting a predefined set of built-in connector types only. The semantics of built-in connector types are
defined as part of the language, and are intended to correspond to the usual interaction primitives sup-
ported by underlaying operating system or programming language. A connector in the UniCon language
is specified by its protocol. A connector’s protocol consists of the connector’s type, specific set of prop-
erties, and a list of typed roles. Each role serves as a point through which the connector is connected to
a component.

ADLs with explicit connector types. Most ADLs provide connectors as first order citizens of the
language such as: ACME, Aesop,C2, Wright, ArchWare [2][4] [3], etc. All of these languages go a step
forward with regard to the previous kind of ADLs. They improve the reusability of components and
connectors by separating computation from coordination.

In our approach we opt for ADLs with explicit connector types category. So, in the C3 metamodel
we present some explicit and generic types of connectors that the user can specialize following her/his
needs in each application field.

3.2.4 Configuration

A configuration represents a graph of components and connectors. Configuration specifies how compo-
nents are connected with connectors. This concept is needed to determine if the components are well
connected, whether their interfaces agree, and so on. A configuration is described by an interface which
enables its interaction.

myConfiguration configurationType (requiredInterf, provideInterf);

3



Reusable Connectors A. Amirat and M. Oussalah

The following UML diagrams (Figure1) represent the main elements of C3 metamodel. For clarity
raisons, these diagrams present a simplified version of our metamodel. In the rest of this article we will
only deal with connectors with more detail as they represent the mainstream of our research topic in this
paper.

Figure 1: Architectural elements and their structure in C3

3.3 Connector in C3

A connector is mainly represented by an interface and a glue specification. Basically, the interface shows
the necessary information of the connector, including the number of interaction points, service type that
a connector provides (communication, conversion, coordination, facilitation), connection mode (syn-
chronous, asynchronous), transfer mode (parallel, serial) etc[5]. In C3 interaction points of an interface
are called Ports. A port is the interface of a connector intended to be tied to a component interface. A
port is either a provided port or a required port. A provide port serves as entry point to a component in-
teraction represented by a connector type instance and it is intended to be connected to the require port of
a component. Similarly, a require port serves as the outlet point of a component interaction represented
by a connector type instance and it is intended to be connected to the provide port of a component (or to
the provide role of another connector). The number of ports within a connector denotes the degree of a
connector type. For example, in client-server architecture a connector type representing procedure call
interaction between client and server entities is a connector with degree two. More complex interactions
among three or more components are typically represented by connector types of higher degrees.

The glue specification describes the functionality that is expected from a connector. It represents the
hidden part of a connector. The glue could be just a simple protocol links ports or it could be a complex
protocol that does various operations. Connectors can also have an internal architecture that includes
computation and information storage.

3.3.1 Connector structure

In this work we enhance the structure of connectors by encapsulating the attachment links. So, the ap-
plication builder will have to spend no effort in connecting connectors with its compatible components.
Consequently, the task of the developer consists only in choosing from the library the suitable type of

4



Reusable Connectors A. Amirat and M. Oussalah

connectors where its interfaces are compatible with the interfaces of component expected to be assem-
bled.

In order to illustrate our metamodel we use cleint-server exemple as case study. In client-server
configuration (CS-config) we have a client and a server. The server component itself is defined by a
configuration (S-config) whose internal components are Coordinator (Coor.), securityManager (SM) and
dataBase (DB). These elements are interconnected via connector services that determine the interactions
that can occur between the server and client on one hand and between the server and its internal elements
on the other hand.

In Figure 2 we describe the structure of the RPC connector used to connect the client component (C)
with the server component (S). In this new structure the RPC connector encapsulates attachments that
represent links between the client and server. Also, the same figure represents the signature specification
of the connector PRC. Inside this connector type we have the glue code which describes how the activities
of the client and server are coordinated. It must indicate that the activities should be sequenced in a well
defined order: the customer asks for a service, the server processes the request, the server provides the
result and the customer gets the result.

Figure 2: RPC connector structure and signature in C3

3.3.2 Connector types in C3

In C3 we have defined three connector types as illustrated in Figure 1: the Connection Connector type
(CC), the Composition Decomposition Connector type (CDC), and Expansion Compression Connector
type (ECC). Each type has its own semantic and has the following signature form:

myConnector ConnectorType (requiredInterf, providedInterf);
Where requiredInterf represents all required ports and services and providedInterf represents all pro-

vided ports and services of a connector. Obviously each interface also contains services, but in the
following definitions we focus only on structural aspect of the interface (ports). The functional aspect
(services) will not be addressed in this paper and therefore they will not be specified in the descriptions
that follow. Consider that each service can use one or more ports of the same interface. In the following
we give the exact function of each type of connector in C3 metamodel.

Connection connector (CC). This type is used to connect components belonging to the same level of
decomposition. The ports of this type of connector can be required or provided. Thus, through these
ports elements can exchange services between them.

myConnector CC ({Xi.requiredPort} ,
{

Yj.providedPort
}
)

where Xi,Yj ∈ {component,con f iguration} ; Xi.level,Yj.level ∈ Lk;
i.e. the same hierarchical level (Lk), Xi.Level = Yj.Level;

5



Reusable Connectors A. Amirat and M. Oussalah

i = 1,2, ..,M; j = 1,2, ..,N, and Lk represents the decomposition level (k = 1,2, ..,R)
Where (M+N) is the maximum number of elements which can be linked by CC connector. Hence,

CC may have to (M+N) ports. The mapping between the inputs and outputs is described by an exchange
protocol called glue defined inside of the connector. Figure 3 represents CC1 a connection connector
type used to link a client component with s-config configuration of the previous example. This type
connector has two ports: portC1 in client side and portS1 in server side. Hence, the interface CC1 will
be defined as follows: CC1 CC( portC1, portS1 );

Figure 3: CC, CDC and ECC connector types in client-server architecture

Decomposition/composition connector (CDC). CDC connector type is used to realize a top-down
refinement (i.e. to link a configuration with its internal elements) also we call this relationship a decom-
position model. Likewise CDC connector can be used to realize bottom-up abstraction (i.e. to link a
set of elements to their container or configuration also we call this relationship a composition model.
However, this type of connectors can play two semantic roles with two different glue protocols.

myConnector CDC (X .requiredPort,{Yi.providedPort}); decomposition of X to its internals;
myConnector CDC({Yi.requiredPort} ,X .providedPort); composition of Yi elements to constitute X;
Where X is a configuration, Yi ∈ {component,con f iguration}, and
i = 1,2, ..,N;X ∈ Lk and Yi ∈ Lk− j (i.e. X .Level > Yi.Level) L is the hierarchical level.
Thus, a CDC connector will have (N+1) ports, where N is the number of internal elements in the cor-

responding configuration. This type of connector has the following interests: first it allows us to shape
the genealogical tree of the different elements deployed in an architecture, second it enables a configu-
ration to spread information to all these internal elements without exception (to-down propagation) and
inversely; i.e. it allows any internal element to send information to its configuration.

Figure 3 represents CDC1 a decomposition composition connector type used to link client-server
configuration (CS-config) defined at the hierarchical level (L2) with its internals namely client component
(Client) and server configuration (s-config) defined at the lower hierarchical level (L1). Consequently,
the interface of CDC1 connector type will be specified as follows: CDC1 CDC(portCS,portC2,portS2);

Where portC2, portS2, and portCS are respectively used to connect CDC1 with the client component,
the server configuration, and client-server configuration (CS-config).

Expansion / compression connector (CDC). The ECC is used to establish a service link between a
configuration and its internal elements. Also, ECC can be used as an expansion operator of services to
several sub-services and it can be used in reverse as a compression operator of set of services to a global
service. The CDC may have an interface for expansion and another for compression. So, these interfaces
are defined as follows:

myConnector ECC (X .requiredPort,{Yi.providedPort}); //expansion

6



Reusable Connectors A. Amirat and M. Oussalah

myConnector ECC ({Yi.requiredPort} ,X .providedPort); //compression
i = 1,2, ..,N where N ≤ number of internal elements.
X ∈ Lk et Yi ∈ Lk−1;(i.e. X .Level > Yi.Level) L is the hierarchical level.
ECC connector type can be implemented using either single glue for one function (expansion or

compression) or using two separate glues for expansion and compression functions. This will depend on
the design decision.

Figure 3 illustrates the connector type ECC1 which allows exchange of information between the
server configuration (s-config) and the coordinator component (Coor.). Thus, to achieve a bidirectional
communication between the server and coordinator, ECC1 must have the following ports: portS3 and
portCo1 are used to ensure the expansion function from the server to coordinator. The portCo2 and
portS4 are used to ensure compression function. The interface of this ECC1 type will be as follows:
ECC1 ECC(portS3, portCo1, portS4, portCo2);

4 Physical Architecture (PA)

The physical architecture is a memory image of the application instance of the logical architecture. This
image is built in the form of a graph whose nodes are instances of a connections manager. Each instance
created corresponds to a component or a configuration instanced to construct the real application. Nodes
of this graph are connected by arcs. We have three types of arcs. Each type of arc corresponds to specific
type of connector. The physical architecture is built to serve as support for updating and evolution
operations of the application instance.

4.1 Connections Manager (CM)

The PA is described using only two levels of abstractions; type level and instance level. In the type
level we have the CM type represented by a class that encapsulates all information about links that a
component or a configuration may have with its environment.Each CM is identified by a name and the
following attributes: ElementName: represents the name of the architectural element associated with this
CM (i.e. the name of the component or the configuration corresponding); CC-Links: list of connection
connector names connected to the element associated with this CM; CDC-link: the name of the compo-
sition decomposition connector connected to the element associated with this CM; ECC-Link: the name
of the expansion compression connector connected to the element associated with this CM;

4.2 Operations on Connections Manager

The possible operations on the connections manager are: Instantiation: the connection manager is in-
stantiated at the instance level (A0) of the physical architecture. Whenever an architectural element is
instantiated at the application level the associated CM is automatically created in the physical architec-
ture; Installation: each time a connector is installed at the application level between a set of element
instances, so the attributes of the associated CMs are updated with the necessary information about this
connector instance. Propagation: the mechanism of propagation is used to update information about
links needed between CMs. These links are published by the interface of the connector installed at the
application level. Once the application is built by the user, the corresponding physical architecture is
also built in parallel. Thereafter if we need to intervene on the application to maintain or evolve it we
must locate the concerned elements on the physical architecture using graph searching routines and graph
updating operations like add (node), delete (node) or replace (node).

Finally we can represent the logical architecture and the physical architecture and the relationship
between them by an architecture model described in C3 metamodel where the logical architecture and

7



Reusable Connectors A. Amirat and M. Oussalah

the physical one are represented by two components and the relationship between the by a connection
connector. Any action performed at the logical architecture causes a sending a message from first archi-
tecture type to the second architecture type. This message will interpreted as an action to be performed
by the physical architecture.

Exchanged services (operations) between the types of architectures are: A component instantiation at
the logical architecture level causes sending a message CM-creation from LA-Interface to PA-Interface.
When this message is received by the physical architecture a connection manager instance will be created
to represent this component at the physical architecture level.

A connector instantiation at the logical architecture level causes sending a message CM-connection
from LA-Interface to PA-Interface. When this message is received by the physical architecture a set links
are created to link connection manager instances corresponding to all components connected by this
connector instance. Any updating action (replacement or deleting of a component or a connector) at the
logical architecture causes sending a message CM-update from LAinterface to PAinterface. When this
message is received by the physical architecture a set of updating operations are performed to rearrange
links among the corresponding CMs.

5 Conclusion

In this article we have presented the core elements of C3 metamodel and how to describe software archi-
tecture using C3. The elements defined by C3 are assembled through their interfaces to build software
architectures. So, we must ensure syntactic checks by checking the compatibility of interfaces. We found
interesting to give a new structure for connectors in which attachments are encapsulated within the defi-
nition of connectors. Hence, the interface connector is now a set of services and ports. This new structure
allows us to assemble connectors only with elements that are defined in its interface. We have identified
three types of connectors. CC which refer to the links among components belonging to the same level
of decomposition. CDC which refer to the links between a configuration and its internal components
and connectors. ECC which refer to the links used to realize any transformation of information or data
exchanged between a configuration and its internal components.

Also, we have defined a PA as a graph whose nodes are CMs associated with architectural elements
and arcs represent links that correspond to the connectors. The PA reflects the application architecture
which is an instance of the logical architecture and serves as a support for maintenance and evolution
operations applied on architecture of the application. As extension for this work, we planned to define
more than one hierarchical view to describe component-based architectures, relationship between these
hierarchies, and the different connection mechanisms used to enable interactions between elements from
different hierarchy views.

References
[1] Szyperski C. Component software: Beyond object-oriented programming. Addison-Wesley, 2002.
[2] Garlan D., Monroe, R.T., and Wile D. Acme: Architectural description component-based systems, foundations

of component-based systems. Cambridge University Press, 2000.
[3] Dashofy E., Hoek A.v.d., and Taylor R.N. A comprehensive approach for the development of xml-based

software architecture description languages. Transactions on Software Engineering Methodology, 2005.
[4] Medvidovic N., Dashofy E., and Taylor R.N. Moving architectural description from under the technology

lamppost. Information and Software Technology, 2007.
[5] Medvidovic N. and Taylor R.N. A classification and comparison framework for software architecture descrip-

tion languages. IEEE Transactions on Software Engineering, 2000.

8


	Introduction
	Motivations
	Logical Architecture (LA)
	Abstraction levels 
	Basic concepts of C3 metamodel 
	Architectural elements 
	Component
	Connector
	Configuration

	Connector in C3
	Connector structure
	Connector types in C3


	Physical Architecture (PA)
	Connections Manager (CM)
	Operations on Connections Manager

	Conclusion

